

Linking local and large-scale salient events with oscillatory and broadband arrhythmic activities in the resting human brain

Damián Dellavale^{a,b,*}, Emahnuel Troisi Lopez^c, Antonella Romano^d, Giovanni Rabuffo^{e,1}, Pierpaolo Sorrentino^{e,f,g,1,*}

^a*Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche, San Carlos de Bariloche, Río Negro, Argentina.*

^b*Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland.*

^c*Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR), 80078, Pozzuoli, Italy.*

^d*University of Naples Parthenope, Department of Motor Science and Wellness, Naples, Italy.*

^e*Institut de Neurosciences des Systèmes (INS), INSERM, Aix-Marseille Université, Marseille, France.*

^f*Department of Biomedical Science, University of Sassari, Sassari, Italy.*

^g*Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR), Naples, Italy.*

Abstract

Objective:

Narrowband oscillations (NOs) and Broadband Arrhythmic Activity (BAA) are valuable conceptualizations extensively used to interpret brain data, with NOs linked to communication and synchronization and BAA encompassing scale-free dynamics and neuronal avalanches. Although both frameworks offer critical insights into brain function, they have largely evolved in parallel, with limited integration and no unifying mechanistic account of how these dynamics interact to generate transient, Salient Events (SEs). This gap is particularly pressing given recent interest in how SEs—brief (≈ 100 ms) bursts of activity coordinated across brain regions—relate to large-scale brain function and cognition. To address this, we introduce a signal-level framework that links the Fourier spectral properties (oscillation-domain) of neural signals to the emergence of realistic SEs in the time-domain from NOs and BAA.

Methods:

Our approach is grounded in a novel concept—Spectral Group Delay Consistency (SGDC)—along with associated measures that quantify the temporal alignment of spectral components and capture the conditions under which NOs

*Corresponding authors.

Email addresses: ddellavale@comahue-conicet.gob.ar (Damián Dellavale), pierpaolo.sorrentino@univ-amu.fr (Pierpaolo Sorrentino)

¹Co-last authors.

and BAA coalesce into transient, burst-like events. Unlike traditional power- or phase-based measures, or higher-order statistical metrics such as kurtosis and cokurtosis, SGDC provides a signal-level mechanistic account of how local and large-scale SEs emerge from the spectral structure of the underlying signals. Empirical validation is provided using source-reconstructed MEG data from a large cohort and a comprehensive array of features characterizing the statistical, spatiotemporal and spectral properties of observed SEs.

Results:

We found that the SEs identified in our empirical MEG dataset can be segregated based on their spectral signature in two main groups having different propagation patterns. Using generative models based on the SGDC mechanism we provide a theoretical framework to interpret these experimental results showing that cluster 2 events are specifically related to the long-range spread of narrowband alpha bursts across the brain network (i.e., SNEs: Salient Network Events), whereas cluster 1 events correspond to more short-lived and spatially localized fluctuations mainly promoted by the BAA (i.e., SLEs: Salient Local Events). We also provide analytical arguments and numerical simulations showing that a) high SGDC in specific narrow frequency bands, b) transient cross-regional coherent NOs and c) BAA, are all key ingredients for the emergence of realistic SNEs.

Significance:

We combine experimental evidence supported by a signal-level analytical framework and numerical simulations based on generative models to demonstrate that transient phase-structured alpha bursts, shaped by the SGDC mechanism, contribute to long-range coordination during rest. This extends the communication-through-coherence hypothesis to the transient domain. Additionally, SGDC links to findings that NOs interact with fast microstates ($\approx 100 - 200$ ms) and may modulate long-range dependencies across timescales. While previous studies have described SEs within the framework of neuronal avalanches, they often lacked a generative, signal-level account. Here, we bridge that divide by offering a mathematically grounded and empirically validated framework that accounts for oscillatory and aperiodic bursts perspectives on brain activity.

Keywords: human MEG, large-scale salient events, brain oscillations, broadband arrhythmic activity, group delay, complex baseband representation

¹ **Highlights**

- ² ● Salient network events propagating across the brain during spontaneous
- ³ resting state activity, are highly structured in terms of their spatial, tem-
- ⁴ poral and spectral properties.

- ⁵ ● The spectral group delay consistency framework provides a signal-level
- ⁶ mechanism that accounts for transient salient network events emerging
- ⁷ from oscillatory components of the brain activity.

- 8 • Narrowband oscillations and broadband arrhythmic activity interact to
9 shape the timing and spatial extent of salient events.
- 10 • Spectral group delay consistency, transient cross-regional coherent nar-
11 rowband oscillations and broadband arrhythmic activity, are all key in-
12 gredients for the emergence of realistic salient network events.
- 13 • Salient network events during rest reflect large-scale spreading of synchro-
14 nized alpha band activity, which may play a functional role as a long-range
15 interaction mechanism in the human brain.

16 1. INTRODUCTION

17 The human brain generates complex behaviors from the coordinated interaction
18 of neuronal populations, with evidence showing different degrees of specializa-
19 tion/distribution of these networks. Such coordination is accompanied (or
20 driven) by neural activity patterns that can be measured using techniques like
21 electroencephalography (EEG) or magnetoencephalography (MEG). In general,
22 electromagnetic brain signals are characterized by both narrowband rhythmic
23 (i.e., oscillations) and broadband arrhythmic (e.g., $1/f$ scaling in power spectra)
24 components [27].

25 Oscillatory neural activity comprises rhythmic, periodic fluctuations around a
26 central value in the brain's signals, which occur across various narrow frequency
27 bands and have been associated with specific cognitive functions [25]. For ex-
28 ample, the alpha rhythm, typically between 8-13 Hz, emerges during eyes-closed
29 wakefulness [10, 1, 47], while the gamma rhythm, exceeding 30 Hz, has been
30 proposed to play a role in higher cognitive processes[12]. These oscillatory com-
31 ponents manifest as "bumps" in the signals' Power Spectral Density (PSD).

32 In contrast to brain oscillations, broadband arrhythmic neural activity exhibits
33 a more complex and irregular nature, often associated with scale-free dynamics
34 (i.e., no characteristic temporal scale) [27]. It generally, but not exclusively,
35 displays a $1/f^\beta$ decay pattern in the PSD featuring a fractal-like distribu-
36 tion of power across frequencies, with β spanning a range of values depend-
37 ing on the brain condition, frequency range and recording modality (roughly
38 $0.1 \lesssim \beta \lesssim 5$). This broadband activity contributes significantly to the brain's
39 overall signal and is intricately linked with cognitive processes, potentially car-
40 rying valuable information [43]. Traditionally, the study of brain *Narrowband*
41 *Oscillations* (NOs) and *Broadband Arrhythmic Activity* (BAA) has provided
42 two lenses through which electrophysiological data have been examined [24]. In
43 general, spectral (i.e., oscillation-domain) attributes like power and phase offer
44 rich insights into brain dynamics, enabling the discrimination of brain activity
45 during perceptual tasks and distinguishing between healthy and pathological
46 dynamics in resting states [30]. For instance, the literature on brain connec-
47 tivity has traditionally diverged into two primary streams: one emphasizing
48 NOs—rhythmic, frequency-specific activity linked to communication and syn-
49 chronization [56, 18, 15, 29, 38]—and another focused on BAA, encompassing

50 scale-free dynamics such as $1/f$ activity and neuronal avalanches [71, 5, 48].
51 Although both frameworks offer critical insights into brain function, they have
52 largely evolved in parallel, with limited integration and no unifying mechanistic
53 account of how these dynamics interact to generate transient, *Salient Events*
54 (SEs). This gap is particularly pressing given recent interest in how SEs—brief
55 (≈ 100 ms) bursts of activity coordinated across brain region—relate to large-
56 scale brain function and cognition [46, 49, 36, 70, 2, 40, 37, 35].
57 Besides NOs and BAA, the analysis of collective brain dynamics reveals that
58 system-level neuronal activity is interspersed by two types of SEs: *Salient Local*
59 *Events* (SLEs) and *Salient Network Events* (SNEs). During SNEs, subsets
60 of brain regions collectively exhibit rare fluctuations above a threshold (e.g.,
61 signal amplitude > 3 standard deviations), igniting from specific brain sites,
62 propagating across the brain circuitry in an avalanche-like cascade of activations,
63 and finally decaying below the threshold. As an example, Fig. C.1 in
64 Appendix C shows a SE observed in our MEG dataset, constituted by transient
65 above-threshold fluctuations overlapped (i.e., disclosing time-overlap, coordi-
66 nated) across 5 brain regions. Due to the fact that the SE shown in Fig. C.1
67 involves the activation of more than 1 brain region is named *Salient Network*
68 *Event* (SNE). On the other hand, a local transient above-threshold fluctuation
69 involving the activation of just 1 brain region is named *Salient Local Event*
70 (SLE). SNEs occur aperiodically and are consistently observed across imaging
71 modalities, including multielectrode array recordings [7, 8], EEG [46, 20], MEG
72 [46, 60], SEEG [52, 73], fMRI [64], and calcium imaging [72, 13]. In particu-
73 lar, SNEs have drawn considerable interest due to their potential significance
74 in information processing [59, 58], facilitating responses with a wide dynamical
75 range [31, 34], and playing a role in achieving flexible dynamics [67, 62, 61]. A
76 specific subtype of SNEs are known as *neuronal avalanches*. The latter were
77 largely studied in the context of the *critical brain hypothesis*, which posits that
78 the brain might be operating near a critical point (i.e., at the edge of a phase
79 transition). In fact, neuronal avalanches display hallmark properties expected
80 in systems that self-organize at a critical point, such as the power-law distribu-
81 tion of avalanche durations (life span) and sizes (number of regions recruited)
82 [46, 60, 41]. However, previous studies raised concerns about the interpretation
83 of power law statistics associated with neuronal avalanches. First, power law
84 distributed avalanches have been found in stochastic noncritical systems (see
85 [16] and references therein). These works highlight the fact that power-law dis-
86 tributions are not unique to systems near a critical point or a phase transition
87 and can be generated by other mechanisms [44]. Second, several factors can
88 contribute to deviations from power-law statistics such as finite size effects (size
89 of the neuronal network or the sampling region) and thresholding procedures
90 used for avalanche detection [69, 68]. Third and more crucially, the neuronal
91 avalanches statistics can be influenced by heterogeneous factors like network in-
92 teraction/synchronization, the concomitant presence of oscillations and/or other
93 type of SEs (e.g. IEDs: Interictal Epileptiform Discharges) and also external
94 interventions (e.g., antiseizure medications) [42].
95 The signal processing tools proposed in this work can be used to study a variety

96 of SLEs and SNEs: sleep spindles and K-complexes observed during non-rapid-
97 eye-movement sleep, IEDs and Spike and Wave Discharges (SWDs) associated
98 with epileptogenicity [19] and Paroxysmal Slow-Wave Events (PSWEs) observed
99 in epilepsy and age related neuropathology (e.g., Alzheimer's disease) [50, 39].
100 In general, these SEs do not follow power law statistics, indeed, IEDs, SWDs
101 and PSWEs have been observed in a wide range of dynamical regimes associated
102 with clinical and subclinical brain states (see for instance Fig. 5 in [42]).
103 Thus, for the sake of generality, we focus our analysis on the relationship among
104 NOs, BAA, and SEs, without implying a connection to power law distributed
105 neuronal avalanches nor the brain criticality hypothesis.
106 NOs, BAA, and SEs offer valuable conceptualizations to interpret brain data,
107 however, these well-established perspectives have mainly progressed in parallel,
108 with only limited literature linking them largely restricted to the context of neu-
109 ronal avalanches [46, 49, 36, 2, 40, 37, 35]. Given the ubiquitous and concurrent
110 presence of NOs, BAA, and SEs in the brain during rest, a fundamental ques-
111 tion arises: Can we establish a connection between these perspectives? In other
112 words, can we invoke a parsimonious explanation that justifies the simultaneous
113 presence of these phenomena? To address this, we introduce a signal-level frame-
114 work that links the Fourier spectral properties (oscillation-domain) of neural
115 signals to the emergence of realistic SEs in the time-domain from rhythmic and
116 broadband aperiodic dynamics. Our approach is grounded in a novel concept—
117 Spectral Group Delay Consistency (SGDC)—along with associated measures
118 that quantify the temporal alignment of spectral components and capture the
119 conditions under which NOs and BAA coalesce into transient, burst-like events.
120 Unlike traditional power- or phase-based measures, or higher-order statistical
121 metrics such as kurtosis and cokurtosis, SGDC provides a signal-level mecha-
122 nistic account of how local (SLEs) and large-scale (SNEs) salient events emerge
123 from the spectral structure of the underlying signals.
124 While previous works primarily focused on describing the *interaction* between
125 neuronal avalanches and NOs, in this work we adopts a bottom-up approach,
126 using generative models based on the SGDC mechanism, aimed at elucidating
127 how local and large-scale SEs *emerge* from the oscillatory and broadband ar-
128 rhythmic components of the brain activity. The proposed data analysis tools are
129 supported by a signal-level analytical SGDC framework designed to be applica-
130 ble across a variety of (bio)physical domains, regardless of the specific details
131 of the underlying system.
132 In addition, empirical validation is provided using source-reconstructed MEG
133 data from a large cohort, demonstrating that transient phase-structured alpha
134 bursts, shaped by the SGDC mechanism, contribute to long-range coordination
135 during rest. This extends the communication-through-coherence (CTC) hypoth-
136 esis, according to which neuronal information is transferred via phase alignment
137 (coherence) of rhythmic activity [22, 23], to the transient domain. Additionally,
138 SGDC links to findings that NOs interact with fast microstates (≈ 100 - 200 ms)
139 [3, 6, 66, 48] and may modulate long-range dependencies across timescales [5].
140 Thus, while previous studies have described SEs within the framework of neu-
141 ronal avalanches, they often lacked a generative, signal-level account. Here, we

142 bridge that divide by offering a mathematically grounded and empirically vali-
143 dated framework that accounts for oscillatory and aperiodic bursts perspectives
144 on brain activity.

145 **2. METHODS**

146 *2.1. Participants and data*

147 We analyzed a source-reconstructed MEG dataset previously published in
148 [63, 62]. In short, 58 young adults (32 males/26 females, mean age \pm SD was
149 30.72 ± 11.58) were recruited from the general community. All participants
150 were right-handed and native Italian speakers. The inclusion criteria were (1)
151 no major internal, neurological, or psychiatric illnesses; and (2) no use of drugs
152 or medication that could interfere with MEG/MRI signals. The study complied
153 with the Declaration of Helsinki and was approved by the local Ethics Com-
154 mittee. All participants gave written informed consent. The details regarding
155 the MRI acquisition are described in Section [63]. All technical details in con-
156 nection with the MEG device are reported in [54]. MEG pre-processing and
157 source reconstruction were performed as in [63, 62]. Briefly, the MEG regis-
158 tration was divided into two eyes-closed segments of 3:30 min each. To identify
159 the position of the head, four anatomical points and four position coils were
160 digitized. Electrocardiogram (ECG) and electro-oculogram (EOG) signals were
161 also recorded. The MEG signals, after an anti-aliasing filter, were acquired at
162 1024 Hz, then a fourth-order Butterworth IIR band-pass filter in the 0.5-48 Hz
163 band was applied. Principal component analysis was used to remove environ-
164 mental noise measured by reference magnetometers. Supervised independent
165 component analysis was adopted to clean the data from physiological artefacts,
166 such as eye blinking (if present) and heart activity (generally one component).
167 Noisy channels were identified and removed manually by an expert rater (136
168 \pm 4 sensors were kept). After this pre-processing, 47 subjects were selected
169 for this work and all further analyses were conducted on traces of 1 min in
170 duration source-reconstructed to 84 brain Regions Of Interest (ROI) based on
171 the Desikan-Killiany-Tourville (DKT) anatomical parcellation atlas (see brain
172 topographies in Figs. 1 and C.3).

173 *2.2. Salient events detection*

174 To estimate SEs we first detected the local above-threshold fluctuations on
175 the pre-processed and source-reconstructed MEG time series as described in
176 Section 2.1. In each participant, the 1-minute source-reconstructed MEG time
177 series of each brain region were individually z-scored. Positive and negative
178 excursions beyond a threshold were then identified. The amplitude threshold
179 was set to $|z| = 3$, equivalent to three standard deviations ($\pm 3\sigma$ or equiva-
180 lently $|z| = 3$). The same amplitude threshold $|z| = 3$ was used in all analyzed
181 brain regions. This procedure was applied separately to all the 47 participants
182 included in the study. An analysis supporting the validity and robustness of

183 using a single amplitude threshold ($|z| = 3$) consistently across all 47 participants
184 is presented in Appendix C.1. Then the SEs duration was assessed by
185 considering that a salient event begins when, in a sequence of contiguous time
186 bins, at least one brain region is active (i.e., above the amplitude activation
187 threshold: $|z| > 3$) and ends when all the brain regions are inactive (i.e., below
188 the amplitude activation threshold: $|z| \leq 3$) [7, 60]. Besides, the SEs size was
189 defined as the total number of brain regions activated during a given event.
190 Note that a salient event involving more than one brain region (i.e., SNE) is
191 associated with a sequence adjacent time bins in which at least one brain region
192 is active ($|z| > 3$). Thus, the detection of SNE depends on the time binning
193 of the analyzed time series. Unless otherwise specified, in this study we used a
194 time binning corresponding to 1 time sample per time bin (time binning = 1
195 ms). This procedure allowed the detection of both SLEs (i.e., SEs of size = 1
196 brain region) and SNEs (i.e., SEs of size > 1 brain region, see Fig. C.1).

197 2.3. Salient events activation and co-activation matrices

198 For each detected SE, we computed the activation matrix (brain regions
199 \times time bins) as follows. The source-reconstructed, z-scored and time binned
200 signal were binarized, such that, at any time bin, a brain region exceeding ± 3
201 was set to 1 (active), and all other regions were set to 0 (inactive, see Figs.
202 2A,B). For each detected SE, we also computed the co-activation matrix (brain
203 regions \times brain regions) by assigning 1 to all the brain regions recruited in that
204 particular event. Thus, the diagonal of the co-activation matrix contains 1s in
205 all the brain regions active during a given SE. Besides, summation across rows
206 (or columns) produce, in each brain region, the number of co-activated regions
207 during a given SE (i.e., in terms of graph theory, this is known as the degree of
208 each brain region). The mean co-activation matrix shown in the Fig. 7C was
209 computed by first averaging the co-activation matrices corresponding to all the
210 SEs detected in each subject, and then, averaging the resulting matrix across
211 all the participants.

212 2.4. Salient events spatiotemporal profile

213 To characterize SEs spatiotemporal profile, we introduce two ROI-wise met-
214 rrics: The *mean event duration* measuring the typical duration of SEs propagat-
215 ing through a brain region; and the *mean event size* measuring the typical size
216 of SEs propagating through a brain region. Specifically, we assign to each brain
217 region the mean event duration (or size) computed on all the SEs recruiting that
218 particular region. The *mean event duration* and *mean event size* profiles shown
219 in the Fig. 1 were computed by first considering all the SEs detected in each
220 subject, and then, averaging the resulting profiles across all the participants.

221 2.5. Event spectral matrix

222 For the spectral characterization of SEs we introduce the Event Spectral Ma-
223 trix (ESM). To obtain the ESM we first compute the whitened time-frequency
224 representation on the whole time series of each brain region (see Fig. 2C). Then,

225 the time-frequency maps were selectively averaged across the time points cor-
226 responding to the occurrence of the SE of interest. As a result, we obtain a
227 whitened power spectrum corresponding to each brain region recruited by that
228 particular SE (see Fig. 2D). Finally, these power spectra are arranged in a sin-
229 gle matrix conforming the ESM (Brain regions \times Frequency bins, see Fig. 2F).
230 The time-frequency maps were computed as scalograms using Morlet wavelets
231 of duration $2 g \text{ width}/(2\pi f)$ sec., where $g = 3$ (std. dev.), $\text{width} = 7$ (cy-
232 cles) and $f \in [0.5, 50]$ Hz. Spectral whitening, via Z_{H0} -score normalization of
233 each frequency bin across time samples as described in [19], was included in the
234 computation of the time-frequency maps to facilitate the visualization of the
235 high-frequency components in the resulting ESM. The ESM can be defined at
236 the single event level (see Fig. 2F), by averaging all the SEs in each subject (data
237 not shown) and by averaging the mean ESM of each subject across participants
238 (see Figs. 2F,G and 3A,B). Of note, the ESM does not represent the frequency
239 content of SEs since the latter are very short-duration transient events, instead,
240 the ESM reveals the spectral signature associated with the oscillatory activ-
241 ity co-occurring with each SE. That is, the ESM reveals the co-occurrence (or
242 coupling) between the oscillatory activity and SEs across brain regions. To
243 assess the statistical significance of the spectral signatures associated with the
244 SEs, we compute pixel-level thresholding on the mean ESM with Bonferroni
245 correction for multiple comparisons. More specifically, we computed the mean
246 ESM on each one of the 100 B- or C-surrogate datasets (see Section 2.8). Then
247 these 100 surrogate mean ESMs were used to compute pixel-level threshold-
248 ing on the true mean ESM using a Bonferroni-adjusted two-tailed statistical
249 threshold = $0.05/(\text{Brain regions} \times \text{Frequency bins})$. Note that this Bonferroni
250 correction for multiple comparisons assuming independence between adjacent
251 spatial/frequency bins of the mean ESM is a quite conservative test, yet, the
252 observed spectral signature in the alpha band is evident even after this stringent
253 thresholding process (see Fig. 2F,G).

254 *2.6. Salient events waveform shape*

255 To characterize the waveform shape of SEs we follow a ROI-wise approach.
256 First, in each brain region we computed the average across the 200 ms signal
257 epochs (absolute value) centered around the start time of the SEs of interest
258 recruiting that particular region (see gray lines in Figs. 3C,D and D.1C,D).
259 Then, we obtained the mean SEs waveform shape by computing the average of
260 the resulting time series across the brain regions (see the red and blue lines in
261 Figs. 3C,D and D.1C,D).

262 *2.7. Salient events propagation modes*

263 To assess the SEs starting modes we assign to each brain region the number
264 of events igniting in that particular site (e.g., see the RPre brain region in the
265 activation matrix shown in Fig. 2A). Similarly, for the SEs ending modes we
266 assign to each brain region the number of events extinguishing in that particular
267 site (e.g., see the RIC brain region in the activation matrix shown in Fig. 2A).

268 For the SEs maximum recruitment modes we assign to each brain region the
269 number of events involving that particular site during the event maximum size
270 (e.g., see the 4 brain regions active at $Time \approx 51.591$ sec in the activation
271 matrix shown in Fig. 2A). Last, by dividing the event count obtained in each
272 brain region by the total number of processed SEs, we obtained the mean spatial
273 profiles for the starting, maximum recruitment and ending SEs modes as shown
274 in the Figs. C.5, C.6, D.2 and D.3.

275 *2.8. Surrogate datasets*

276 We generated phase-randomized A-surrogate datasets, that preserve the
277 PSD in each brain region, while disrupting the phase relationships of the spec-
278 tral components (both within and between brain regions) [51]. For this, in
279 each brain region we implemented a frequency-domain randomization proce-
280 dure, which involves taking the Discrete Fourier Transform (DFT) of the time
281 series, adding a random phase-shift in the range $[-\pi, \pi]$ on each spectral com-
282 ponent of the DFT (preserving the odd phase symmetry associated with real
283 signals [14]), and then taking the inverse DFT to obtain the surrogate signal
284 back in the time-domain [17]. The 100 phase-randomized A-surrogate datasets
285 were obtained by applying this procedure 100 times on each brain region inde-
286 pendently. In addition, we also generated B-surrogate datasets that randomize
287 the phases similarly to the A-surrogate, but in this case preserving both the
288 regional PSDs and the cross-spectra. For this, we follow a similar procedure
289 as described above with the difference that the same random phase-shift was
290 applied to all the brain regions. This implies that the phase difference between
291 any pair of brain regions in *homologous frequency components* is preserved (i.e.,
292 preservation of cross-spectra). This implies to preserve the Pearson's corre-
293 lations between brain regions (see Appendix A.1). Note that the B-surrogates
294 destroy the phase relationships only between *non-homologous frequency com-*
295 *ponents*. Finally, we generated 100 C-surrogate sets of SEs by randomizing the
296 starting time of each observed salient event and keeping unaltered all the other
297 properties like the event duration and brain regions recruited in each event.

298 *2.9. Clustering of salient events*

299 SEs were clustered according to their spectral signature by using the Louvain
300 method for community detection based on modularity maximization [11, 55].
301 First, the Matrix of Paired Distance (MPD) was obtained by computing the
302 Euclidean distance between the vectorized ESMs corresponding to the SEs of
303 interest taken in pairs. The resulting MPD (Events \times Events) was normalized
304 to be in the range $[0, 1]$, and the Adjacency Matrix (AM) was computed as $AM = 1 - MPD$. Then, the Louvain algorithm was repeated 100 times on the AM
305 for resolution parameter values in the range $0.5 \leq \gamma \leq 2$ [11, 57]. Optimization
306 of modularity quality function, based on the maximization of the similarity
307 measure (z-scored Rand index) [57], was achieved for resolution parameter values
308 within the range $0.9 \lesssim \gamma \lesssim 1.1$. Finally, a consensus partition was found from
309 the 100 partitions [33, 4, 21]. For the events detected in our source-reconstructed

311 MEG dataset, the Louvain algorithm consistently identified two SE clusters
312 with significant differences in terms of mean event duration, size and spectral
313 signature in their mean ESM (see Figs. 3, C.11 and D.1).

314 *2.10. Spectral group delay consistency measures*

315 In this study, we introduce the pairwise complex baseband representation of
316 band-limited signals (Eqs. A.7 - A.10 and A.13 - A.16) to provide analytical
317 arguments showing that the link between local above-threshold fluctuations and
318 oscillations can be understood in terms of the group delay consistency across the
319 spectral components (i.e., Fourier oscillatory constituents) of the neuronal activ-
320 ity. Specifically, in Appendix A.2 we show that the time-domain representation
321 of any finite-length time series $x(t)$ (inverse DFT, Eq. A.5) can be re-arranged
322 by grouping the Fourier spectral components $X(k)$ in non-overlapping adjacent
323 pairs, leading to the pairwise complex baseband representation (Eq. A.7). In
324 this new representation (Eq. A.7), the signal $x(t)$ is decomposed into a linear
325 superposition of amplitude modulated components, each synthesized from an
326 adjacent pair of spectral components ($X(2k)$, $X(2k + 1)$ in Eq. A.7). Crucially,
327 the Eq. A.7 explicitly shows that the group delay is the key spectral feature
328 determining the transient synchronization of the Fourier oscillatory constituents
329 of the signal $x(t)$ leading to the emergence of SEs (see Eq. A.17 and Figs. 4,
330 A.2, A.3 and A.4). More precisely, the group delay determines the time align-
331 ment of the amplitude modulated oscillatory constituents of the signal $x(t)$ in
332 the pairwise complex baseband representation. Such time alignment promotes
333 transient large-amplitude excursions of the signal (i.e., above-threshold fluctu-
334 ations). Thus, the Eq. A.7 constitutes a group delay-domain representation of
335 the signal $x(t)$, which lies in-between and links the time-domain and frequency-
336 domain representations:

- 337 • *Time-domain representation:* Waveform shape of the $x(t)$ (inverse DFT,
338 Eq. A.5).
- 339 • *Group delay-domain representation:* Amplitude-modulated oscillatory con-
340 stituents of $x(t)$ defined by the adjacent pairs $X(2k)$, $X(2k + 1)$ in Eq.
341 A.7.
- 342 • *Frequency-domain representation:* Constant-amplitude oscillatory consti-
343 tudents of $x(t)$ defined by the spectral components $X(k)$ in the DFT (Eq.
344 A.4).

345 We used the group delay-domain representation to analytically show that the
346 emergence of SEs (i.e., above-threshold fluctuations) in the time-domain, is as-
347 sociated with a high group delay consistency across the oscillatory components
348 in the frequency-domain representation (i.e., approx. constant group delay dis-
349 closed by the Fourier constituents of the signal, see Appendix A.2). This math-
350 ematical fact, conceptually illustrated in Fig. 4, constitutes an essential signal-
351 level feature inherent to the frequency-domain representation of time series and

352 holds true regardless of both the $x(t)$ waveform shapes and the underlying bio-
353 logical mechanisms associated with the analyzed SEs.

354 The group delay is defined as the rate of change of the phase with respect to the
355 frequency, then, a constant group delay across the Fourier frequencies implies
356 a constant incremental phase across frequencies (provided that $\Delta\omega = \text{const.}$).
357 Thus, highly structured Fourier phase values, that is, incremental phase values
358 disclosing low variability across frequencies, promote the time alignment of the
359 amplitude modulated components of the signal (see Fig. 4), and therefore, the
360 emergence of transient above-threshold fluctuations. To quantitatively assess
361 this effect, we introduce the SGDC measures as described below.

362 The spectral group delay associated with the activity of the brain region r , is
363 defined as the rate of change of the phase $\phi_r(\omega)$ with the frequency ω com-
364 puted on the Fourier spectrum of the brain activity (i.e., the DFT): $\tau_r(\omega) =$
365 $-\Delta\phi_r(\omega)/\Delta\omega(\omega)$. The incremental phase $\Delta\phi_r(\omega)$ is defined as the phase dif-
366 ference between spectral components (adjacent in frequency ω) constituting the
367 neural activity of the brain region r . The theoretical analysis presented in Ap-
368 pendix A.2 shows that the spectral group delay consistency (SGDC) is an impor-
369 tant feature linking the oscillatory properties of a signal to the above-threshold
370 fluctuations associated with SEs. For an in-depth mathematical description of
371 the oscillatory mechanisms eliciting above-threshold fluctuations in the brain
372 signals and the measures quantifying the SGDC, the reader is referred to Ap-
373 pendix A.2 and Appendix A.3. Here, we briefly introduce the SGDC measures
374 designed to efficiently quantify this feature in the experimental data,

$$SGDC(r) = \frac{1}{N} \sum_{\omega} e^{-i\Delta\phi_r(\omega)} : \Delta\omega = \text{const across } r \quad (1)$$

$$SGDC(\omega) = \frac{1}{N} \sum_r e^{-i\Delta\phi_r(\omega)} : \Delta\omega = \text{const across } \omega \quad (2)$$

375 Eqs. 1 and 2 define the SGDC measures as the Euler transformed incremental
376 phase values $\Delta\phi_r(\omega)$ averaged across the spectral components or brain regions,
377 respectively, with N being the number of either frequency values or brain re-
378 gions as appropriate. Importantly, the $SGDC(r)$ measure (Eq. 1) assesses the
379 emergence of local above-threshold fluctuations from the spectral components
380 constituting the activity of the brain region r , whereas the $SGDC(\omega)$ measure
381 (Eq. 2) quantifies the synchronization of the above-threshold fluctuations at
382 the frequency ω across brain regions. We also define the pairwise spectral group
383 delay consistency (pSGDC) to quantify the burstiness and cross-regional bursts
384 synchronization in a single measure.

$$pSGDC(r_1, r_2) = \underbrace{\left(\frac{SGDC(r_1) + SGDC(r_2)}{2} \right)}_{\text{Mean pairwise burstiness}} \underbrace{\frac{1}{N} \sum_{\omega} e^{-i(\Delta\phi_1(\omega) - \Delta\phi_2(\omega))}}_{\text{Correlation of burstiness across } \omega} : \Delta\omega = \text{const across } r \quad (3)$$

385 Eq. 3 shows that $pSGDC(r_1, r_2)$ is a linear measure conformed by two factors: a
386 factor quantifying the cross-regional correlation between the group delays across
387 the frequency values, weighted by a coefficient quantifying the burstiness of the
388 two involved brain regions (r_1, r_2).

389 The SGDC measures (Eqs. 1, 2 and 3) were computed using both non-time-
390 resolved and time-resolved approaches. In the non-time-resolved case, the SGDC
391 measures (Eqs. 1, 2 and 3) were computed on the whole time series of each brain
392 region. That is, we first obtain the phase values corresponding to the Fourier
393 spectral components by computing the DFT (via the Fast Fourier Transform
394 algorithm) on the whole time series of each brain region. Then, SGDC mea-
395 sures (Eqs. 1, 2 and 3) were computed on the incremental phase $\Delta\phi_r(\omega)$ ob-
396 tained as the phase difference between the Fourier spectral components taken
397 in non-overlapping adjacent pairs across the frequency ω . In particular, this
398 non-time-resolved approach was used to produce the results shown in the Figs.
399 7 and A.7A,B. On the other hand, in Figs. C.11 and A.7C,D we follow a time-
400 resolved approach. That is, the $SGDC(r)$ and $SGDC(\omega)$ measures (Eqs. 1
401 and 2) were computed on each detected SE by considering the brain regions
402 and time interval associated with each particular event. In the case of the
403 Fig. C.11, the $SGDC(r)$ and $SGDC(\omega)$ arrays were averaged selectively across
404 the SEs segregated in the two clusters produced by the Louvain algorithm (see
405 Section 2.9).

406 **3. RESULTS**

407 *3.1. Statistical, spatiotemporal, and spectral characterization of salient events*

408 We identified SEs in our dataset and studied their characteristic signatures.
409 In particular, we introduced a comprehensive array of features describing the
410 statistical, spatiotemporal and spectral properties of SEs. The proposed tools
411 allowed for the characterization of SNEs by the way they spread across the brain
412 network. Indeed, we found the role that each brain region plays in the propa-
413 gation of these SNEs is not homogeneous. To characterize the spatiotemporal
414 profiles of SEs, we defined two ROI-wise metrics (see Methods, Section 2.4): The
415 *mean event duration* measures the typical duration of SEs propagating through
416 a brain region (Figs. 1A,B); and the *mean event size* measures the typical size
417 of SNEs propagating through a brain region (Figs. 1C,D). The brain plots in
418 Figs. 1B,D reveal a characteristic topography, demonstrating the heterogeneous
419 role that each brain region plays in the propagation of SNEs. In particular, SEs
420 with bigger size and longer duration seems to be more associated with the tem-
421 poral and deep brain regions.

422 Regarding the statistical characterization, we found that the SEs detected in
423 our MEG data obtained from 47 subjects (1 min MEG time series source-
424 reconstructed to 84 brain regions), disclose exponential-like distributions of the
425 events size and duration with steep slope exponents ($\lesssim -3$, see Fig. C.3), which
426 do not follow the power law statistics putatively associated with the dynamical
427 regime around a critical point or phase transition (see Introduction). Impor-
428 tantly, the exponential-like distributions of the events size and duration shown

429 in the Fig. C.3 do not modify significantly when the time binning value is varied
430 from 1 to 5 samples per time bin (time binning ranging from 1 ms to 5 ms, data
431 not shown).

432 Next, we introduce a tool to characterize the spectral signature of SEs, by
433 first transforming the regional signals into a time-frequency representation and
434 then averaging the time-frequency maps selectively across the time points cor-
435 responding to the occurrence of each SE (Figs. 2A-D). This way, we defined the
436 spectral fingerprint of each SE, which we named Event Spectral Matrix (ESM,
437 see Methods and Figs. 2E-G). Of note, the ESM does not represent the fre-
438 quency content of SEs since the latter are very short-duration transient events,
439 instead, the ESM reveals the spectral signature associated with the oscillatory
440 activity co-occurring with each SE. That is, the ESM reveals the co-occurrence
441 (or coupling) between the oscillatory activity and SEs across brain regions. Fig.
442 2 displays the ESM for a single event (panel E), the average ESM across 10
443 subjects (panel F) and the ESM averaged across all the 47 subjects (panel G).
444 Figs. 2F,G show that the oscillatory activity of most brain regions peaks in the
445 alpha band (8-13 Hz) during SEs. In other words, during SEs, brain regions
446 fluctuate predominantly in alpha. This is also observed away from the occipital
447 regions, suggesting that synchronization in the alpha band might spread on a
448 large-scale during SNEs. Note that this result provides a relevant insight re-
449 garding the connection between SEs and NOs and, it is non-trivial since SEs
450 are rare phenomena, occupying only a small fraction of the total recording (in
451 space and time).

452 *3.2. Salient events and phase coherence: surrogate data analysis*

453 The spectral signature in the alpha band disclosed by the averaged ESMs
454 shown in Figs. 2F,G suggest that a significant fraction of the SEs observed in
455 our MEG data co-occur with (or are coupled to) alpha oscillations. To test this
456 hypothesis, we generated 100 C-surrogate sets of SEs (see Methods, Section 2.8)
457 that randomize the starting time of each observed SE and keep unaltered all
458 the other properties like the time width and brain regions recruited during each
459 event. Importantly, as shown in the Fig. 2F, the average ESM of the true SEs
460 thresholded with the average ESM of the C-surrogate SEs (see Methods, Sec-
461 tion 2.5) discloses a prominent spectral signature in the alpha band. This result
462 reveals a significant (i.e., above chance level) coupling between the true SEs and
463 alpha oscillations, supporting our hypothesis that the large-scale spreading of
464 transient alpha bursts is associated with SNEs. Taking together these results
465 suggest that during SNEs, the brain activity display large deviations from the
466 baseline, which are coordinated across regions, giving rise to complex activation
467 patterns with well-defined statistical, spatiotemporal, and spectral features.
468 To investigate the statistical properties of the signals associated with the emer-
469 gence of realistic SEs, we first tested whether the observed SEs require additional
470 features beyond the autocorrelation (PSD) of each MEG trace, which could in-
471 clude cross-correlation, non-stationarity, or non-Gaussianity. A common way to
472 test the necessary and/or sufficient conditions underlying a phenomenon (here,

473 SEs) is the use of surrogate data analysis [51]. This approach involves creating
474 surrogate datasets that remove or alter a specific property (e.g., phase
475 relationships) while preserving other statistical characteristics, allowing one to
476 determine if the absence or modification of the property affects the observed
477 feature of interest. Following this line of reasoning, we generated 100 phase-
478 randomized A-surrogate datasets (see Methods). Each A-surrogate preserves
479 the PSD (and thus the autocorrelation) of each brain region but disrupts the
480 phase relationships of spectral components. When phases are randomized in-
481 dependently across regions, this procedure also disrupts inter-regional phase
482 relationships and therefore removes cross-correlation structure that depends on
483 those phases. Hence, A-surrogates implement the null hypothesis that the ob-
484 served SEs can be explained solely by the preserved PSDs (i.e., by stationary, ap-
485 proximately Gaussian signals with inter-regional phase relationships removed).
486 Despite the A-surrogates having the same spectral content as the original data,
487 they disclose distributions with significantly less SEs with large size and dura-
488 tion values when compared to those observed in the true data (see A-surrogates
489 in Figs. C.3A,B). Besides, A-surrogates do not reproduce realistic spatiotempo-
490 ral patterns of propagation (see A-surrogates in Figs. 1A,C) and ESMs (data
491 not shown).

492 We then tested whether the observed SEs require additional structure beyond
493 the auto- and cross-correlation of the MEG trace, which could include non-
494 stationarity, or non-Gaussianity. To test this hypothesis, we generated 100
495 phase-randomized B-surrogate datasets (see Methods) that randomize the phases
496 similarly to the A-surrogate, but in this case preserving both the regional PSDs
497 and the cross-spectra. The preservation of cross-spectra implies that the phase
498 difference between any pair of brain regions in *homologous frequency compo-*
499 *nents* is preserved. This implies to preserve Pearson's correlations between
500 brain regions (see Appendix A.1 and Fig. A.1). However, the B-surrogates
501 destroy the phase relationships between *non-homologous frequency components*.
502 B-surrogates therefore implement the null hypothesis that the observed SEs can
503 be explained by the preserved auto- and cross-correlation (i.e., by stationary, ap-
504 proximately Gaussian signals with inter-regional phase relationships preserved).
505 The observed mean spatiotemporal properties (see B-surrogates in Figs. 1A,C),
506 the alpha signature disclosed by the ESM (see the average ESM thresholded
507 using the B-surrogates shown in Fig. 2G), and the distributions of SEs du-
508 ration and size (see B-surrogates in Figs. C.3A,B) are not explained by the
509 B-surrogates. Notice that these results are non-trivial, since in both the orig-
510 inal and the B-surrogate datasets the number of SEs is almost identical, and
511 large events are also observed in the surrogate data (see B-surrogates in Figs.
512 C.3A,B).

513 To summarize, despite retaining the same power spectra and cross-spectra, the
514 loss of synchronization across spectral components (given by the phase ran-
515 domization), impairs large-scale coordinated SNEs, significantly disrupting the
516 statistics and features of SEs.

517 *3.3. Clustering of salient events*

518 The ESM can be defined at the single event level (Fig. 2E). Thus, we asked
519 if SEs with different spectral signatures propagate differently. In particular, we
520 hypothesized a relationship between the event spectral signature (as measured
521 by the ESM) and the event duration, size and propagation topographies (see
522 Methods). To test this relationship, we clustered SEs according to their ESM
523 using the Louvain algorithm (see Methods). We found that SEs cluster into
524 two main groups based on their spectral signature (Figs. 3A,B). The SEs be-
525 longing to cluster 1 (Fig. 3A) display less marked and widespread alpha peak
526 in the ESM as compared to cluster 2 (Fig. 3B). Importantly, we found a sta-
527 tistically significant differences in the mean event duration and size between
528 cluster 1 and cluster 2 (see Figs. 3E,H). To assess this, in each brain region
529 we computed a non-parametric permutation test (random sampling without re-
530 placement, 1×10^4 permutations). All the brain regions disclosed a statistically
531 significant difference of the mean event duration and size between cluster 1
532 and 2 (the Bonferroni-adjusted two-tailed P values result $P < 0.001$ in all the
533 brain regions). Consistently, the two clusters are also well distinguished by their
534 different waveform shapes, with cluster 1 showing shorter temporal profiles of
535 above-threshold fluctuations. Figs. 3C,D show the average waveform shapes of
536 SEs, obtained by averaging in each brain region (BR) the absolute value of the
537 time series associated with each event (see Methods).
538 These results suggest that cluster 2 events are specifically related to the long-
539 range spread of narrowband alpha bursts across the brain network (i.e., SNEs),
540 whereas cluster 1 events correspond to more short-lived and spatially localized
541 fluctuations mainly promoted by the BAA (i.e., SLEs. See Figs. 3A-D,E,H).
542 Consistently, the two identified clusters are also characterized by different event
543 duration and size, which supports our hypothesis. In particular, cluster 1 events
544 are generally small and short-lived when compared to cluster 2 events, although
545 both clusters display event size and duration distributions spanning across a few
546 orders of magnitude (see Figs. 3G,J). Interestingly, the event duration and size
547 distributions are different between the two clusters, which could have implica-
548 tions for the study of the spectral background statistics.
549 We also found that SEs propagate in a cluster-specific manner (see Figs. C.5 and
550 C.6 in Appendix C). In cluster 1, the spatial profiles associated with the events
551 start, maximum recruitment and end are highly correlated (see Fig. C.5A, pair-
552 wise Pearson's correlations $r > 0.978$, $P < 0.001$ two-tailed Student's t-test),
553 pointing out that cluster 1 events do not propagate to brain regions distant
554 from those igniting the events. This result strongly supports the evidence pre-
555 sented above regarding the spatially localized nature of cluster 1 events. On
556 the other hand, the spatial profiles associated with the events start and end
557 are also highly correlated in cluster 2 SEs (see Fig. C.5B, Pearson's correlation
558 $r = 0.895$, $P < 0.001$ two-tailed Student's t-test), suggesting that the brain
559 regions involved in the ignition of a particular cluster 2 event tend to remain
560 active until the event extinction. However, the maximum recruitment profile of
561 cluster 2 events disclose a weak negative correlation with respect to the start
562 spatial profile (Pearson's correlation $r = -0.298$, $P < 0.01$ two-tailed Student's

563 t-test), supporting our hypothesis that cluster 2 events spread in the form of
564 narrowband alpha bursts across the brain network. Intriguingly, the spatial pro-
565 files associated with the events start and end are highly correlated between the
566 two clusters (see Figs. C.6A-C and Figs. C.6G-I), whereas a different scenario
567 is observed in terms of how the brain regions are recruited by the two event
568 clusters. Specifically, brain regions that are recruited by the longer events of
569 cluster 1, will be recruited by the shorter events of cluster 2, and vice versa (see
570 Fig. C.6D). Within cluster 1, the longest SEs occupy the frontal and occipital
571 regions (see Fig. C.6E), whereas in cluster 2, associated with the spectral
572 signature in the alpha band, the longest SEs are in the parietal and temporal
573 regions (see Fig. C.6F). The opposite trend is observed for the shortest SEs. In
574 fact, performing Pearson's correlations between the spatial profiles of cluster 1
575 and cluster 2 corresponding to the maximal size of recruitment across brain re-
576 gions, we obtain a strong negative correlation ($r = -0.841$, $P < 0.001$ two-tailed
577 Student's t-test, see Fig. C.6D). Note that the specificity of cluster 2 events, as-
578 sociated with transient above-threshold alpha bursts, in recruiting parietal and
579 temporal brain regions can not be trivially explained by the presence of elevated
580 (steady) alpha oscillatory power, which is commonly observed in occipital brain
581 regions during the eyes-closed resting state (see Figs. 2B and C.4).
582 In summary, in this section we have introduced a comprehensive array of SE
583 features, showing that rare, short-lived SEs propagating across the brain during
584 spontaneous resting state activity are highly structured in terms of their spatial,
585 temporal, and spectral properties. In particular, the spectral characterization
586 using the ESM provided relevant insights regarding the connection between the
587 observed SNEs and NOs in the alpha band.

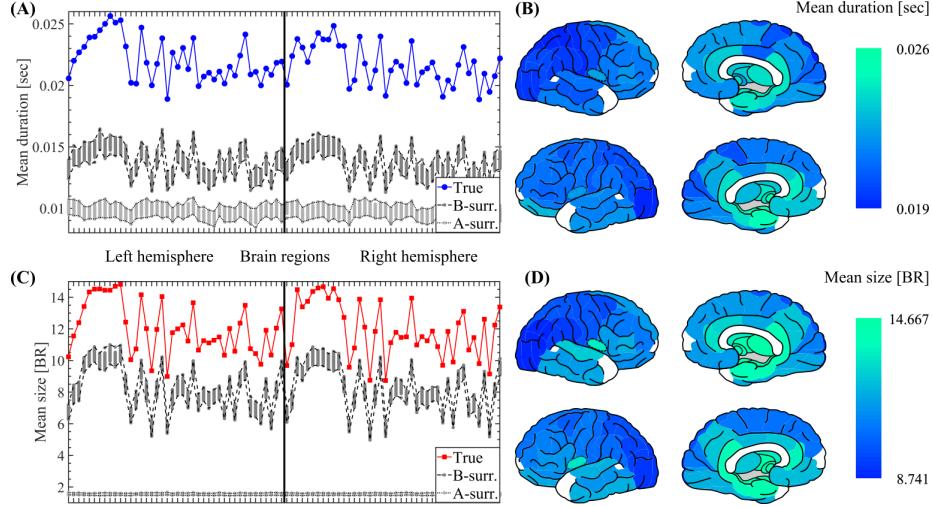


Figure 1: Spatiotemporal characterization of SEs. (A) Spatial profile showing the mean duration of SEs propagating through each brain region (mean value across the 47 participants, see Section 2.4 in Methods). The mean event duration is shown for the MEG data together with the 100 A- and B-surrogates (see Section 2.8 in Methods). The labels and ordering of the brain regions are the same as those shown in Fig. C.2. (B) Brain topographies for the mean duration of SEs as shown in panel A. (C) Same as in A for the size of SEs. (D) Same as in B for the size of SEs. Symbols and abbreviations: SEs, Salient Events; BR, Brain Regions.

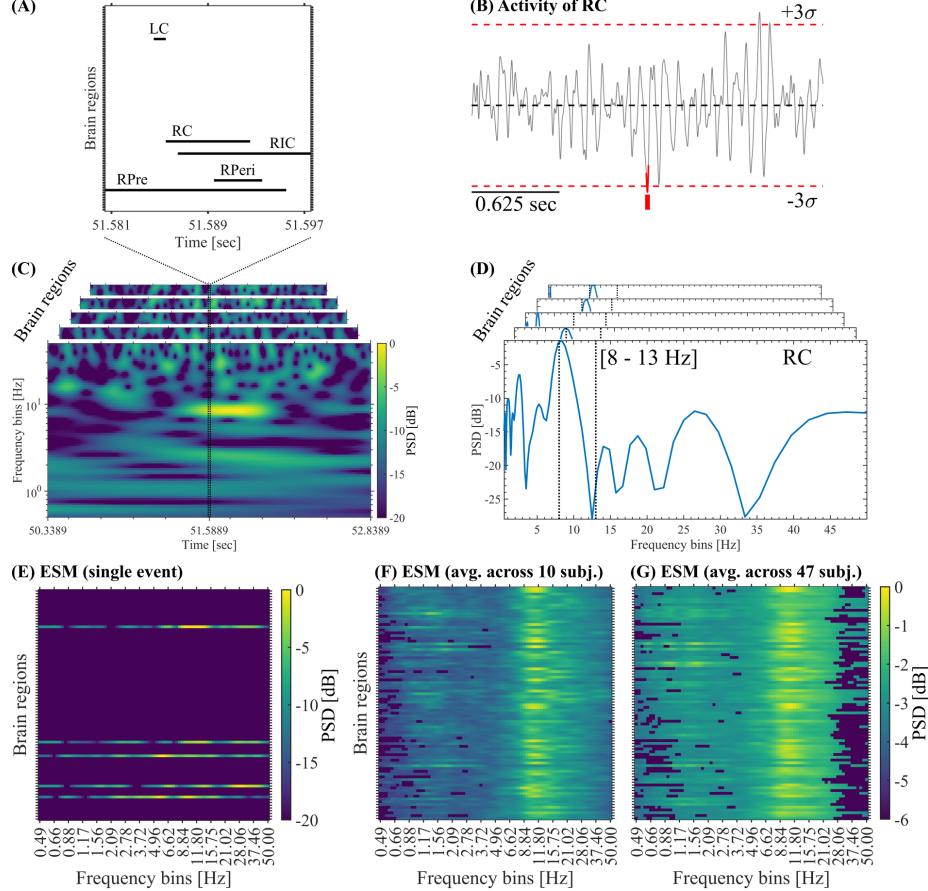


Figure 2: Event Spectral Matrix. (A) Activation matrix of a single SE showing the time intervals in which each brain region was active (i.e., absolute amplitude $> 3\sigma$). (B) Activity of the brain region RC disclosing the above-threshold fluctuation (highlighted in red) associated with the SE shown in panel A. (C) Whitened time-frequency maps of each brain region involved in the SE shown in panel A. (D) Whitened power spectra associated with each brain region involved in the SE shown in panel C. The vertical dotted lines indicate the alpha band. To build the ESM, we average the whitened time-frequency maps selectively across the time samples corresponding to the occurrence of each SE. As a result, we obtain a whitened power spectrum for each brain region (see Section 2.5 in Methods). (E) ESM corresponding to the SE shown in panel C. (F) Mean ESM resulting from the average across all the SEs detected in the 10 subjects, and then, Bonferroni-thresholded using the C-surrogates (see Methods). (G) Mean ESM resulting from the average across all the SEs detected in the 47 subjects, and then, Bonferroni-thresholded using the B-surrogates (see Methods). Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix; PSD, Power Spectral Density; RPre, Right Precuneus; RC, Right Cuneus; RPeri, Right Pericalcarine; RIC, Right Isthmus Cingulus; LC, Left Cuneus.

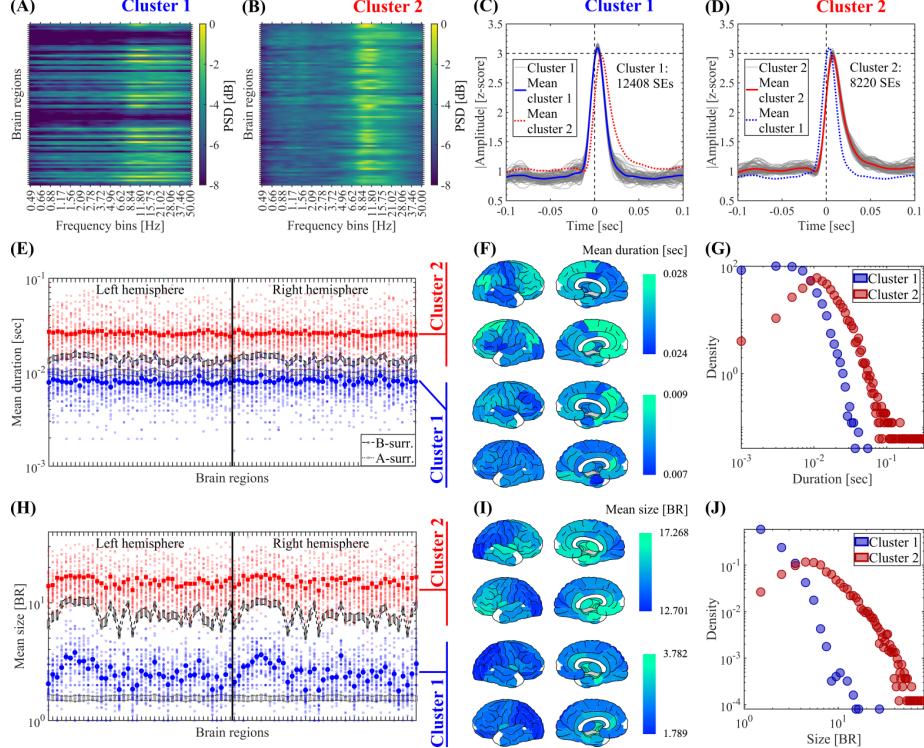


Figure 3: Clustering of SEs according to their spectral signature. The SEs obtained from 41 subjects were clustered using the Louvain algorithm (resolution parameter $\gamma = 1$, see Methods). (A, B) Mean ESM of the two SE clusters identified by the Louvain algorithm computed on the SEs detected in the 41 participants. (C, D) Waveform shapes of the SEs pertaining to the two SE clusters identified by the Louvain algorithm. Thin gray lines correspond to the average waveform shape in each brain region. Thick blue and red lines correspond to the resulting waveform shape averaged across the brain regions for cluster 1 and 2 SEs, respectively. (E) Spatial profile showing the mean duration of SEs pertaining to cluster 1 (in blue) and cluster 2 (in red). For the true data, the small and big markers correspond to the mean spatial profile in each patient and the average across the 41 participants, respectively (see Methods). The labels and ordering of the brain regions are the same as those shown in Fig. C.2. To test the significance of the difference of the mean SEs duration between cluster 1 and cluster 2, in each brain region we computed a non-parametric permutation test (random sampling without replacement, 1×10^4 permutations). All the brain regions disclosed a statistically significant difference of the mean SEs duration between cluster 1 and 2 (the Bonferroni-adjusted two-tailed P values result $P < 0.001$ in all the brain regions). (F) Brain topographies for the mean duration of SEs averaged across the 41 participants as shown in panel E. (G) Distribution of the duration of SEs pertaining to the cluster 1 and cluster 2 observed in the 41 participants. (H) Same as in E for the size of SEs. To test the significance of the difference of the mean SEs size between cluster 1 and cluster 2, in each brain region we computed a non-parametric permutation test (random sampling without replacement, 1×10^4 permutations). All the brain regions disclosed a statistically significant difference of the mean SEs size between cluster 1 and 2 (the Bonferroni-adjusted two-tailed P values result $P < 0.001$ in all the brain regions). (I) Same as in F for the size of SEs. (J) Same as in G for the size of SEs. Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix; BR, Brain Regions.

588 *3.4. Analytical framework: Spectral group delay consistency*

589 We next explored the mechanism mediating the reduction of local and cross-
590 regional burstiness observed in our surrogate data computed via phase random-
591 ization (see Section 3.2). Notice that this is a relevant question since surro-
592 gate data analysis based on phase randomization is extensively used in many
593 (bio)physical domains including Neuroscience. Importantly, being the phase an
594 intrinsic property of NOs, it is not obvious how the modification (e.g., ran-
595 domization) of this oscillation-domain parameter affects the emergence of SEs
596 (compare the true data with the A- and B-surrogates in Figs. 1 and C.3).
597 This question becomes apparent by taking into account that despite preserving
598 both the power spectrum (PSD) in each brain region and the cross-spectra (i.e.,
599 functional connectivity) B-surrogates fail to account for the SEs observed in
600 our MEG dataset. To address this question, we developed a signal-level ana-
601 lytical framework, named Spectral Group Delay Consistency (SGDC), designed
602 to provide an analytical rationale supporting the emergence of SEs from the
603 oscillatory constituents of the brain activity.

604 Let us focus on a single brain activity time series. We first compute the DFT
605 to decompose the time series as a linear superposition of its Fourier oscillatory
606 components (see Figs. 4A,B,D and Eq. A.4). Then, we group the Fourier
607 components in (non-overlapping) pairs adjacent in frequency (see color-paired
608 Fourier components in Fig. 4A). This lead to the pairwise complex baseband
609 representation of the time series. In this representation, the time series of inter-
610 est is decomposed as a linear superposition of amplitude modulated components
611 (see the color coded amplitude modulated signals in Fig. 4E and Eqs. A.7 and
612 A.17). Importantly, the time offset of each amplitude modulated component
613 is determined by the spectral group delay $\tau(\omega) \approx -\Delta\phi(\omega)/\Delta\omega$. Where $\tau(\omega)$
614 is computed on Fourier spectrum of the brain activity (i.e., the DFT), as the
615 rate of change of the phase $\phi(\omega)$ with the frequency ω . Essentially, when all
616 the Fourier components are added together to synthesize the signal in the time-
617 domain (i.e., the inverse DFT), the spectral group delay determines the time
618 alignment of the envelope of the amplitude modulated components associated
619 with each pair of adjacent spectral components. Such time alignment promotes
620 transient large-amplitude excursions of the signal (i.e., above-threshold fluctua-
621 tions). In the case of adjacent spectral components with phase values depending
622 linearly with ω , we obtain approximately constant spectral group delay values
623 for all the pairs of adjacent spectral components (see Fig. 4C). In such a case,
624 the signal has a high spectral group delay consistency (SGDC) which promotes
625 the time alignment of the amplitude modulated components (see the color coded
626 amplitude modulated signals in Fig. 4E), hence, supporting the occurrence of
627 above-threshold fluctuations (see the large-amplitude excursions of the black
628 time series in Figs. 4D,E). On the other hand, for adjacent frequency compo-
629 nents having phase values disclosing a nonlinear dependence with the frequency
630 ω (e.g., a quadratic dependence as shown in Fig. A.2G), the resulting spectral
631 group delay depends on ω (see Figs. A.2H). The latter disrupts the time align-
632 ment of the amplitude modulated components (see the color coded amplitude
633 modulated signals in Fig. A.2J). In this case, we say that the signal has low

634 SGDC which reduces the occurrence of above-threshold fluctuations (see the
635 sub-threshold fluctuations of the black time series in Figs. A.2I,J).
636 The results discussed above constitutes strong analytical arguments pointing
637 out that the reduction of the local burstiness observed in our surrogate data
638 computed via phase randomization, can be understood in terms of the group
639 delay consistency across the spectral components of the neuronal activity (i.e.,
640 SGDC). Specifically, the phase randomization process produces phase values
641 having a nonlinear (random) dependence with the frequency of the Fourier com-
642 ponents, hence, reducing the SGDC of the resulting surrogate time series. We
643 confirmed this theoretical results using analytically tractable model of synthetic
644 time series (see the discussion about Figs. A.2 and A.3 in Appendix A.2), nu-
645 matical simulations (see Section 3.5) and empirical MEG data (see the discussion
646 about Figs. A.7A,C in Appendix A.4). In particular, in Appendix A.4 we ana-
647 lytically show that, despite preserving the regional power spectrum (PSD), the
648 phase randomization associated with both A- and B-surrogates significantly re-
649 duces the burstiness of each brain region as assessed by the $SGDC(r)$ measure
650 (Eq. 1). Importantly, the reduction of the regional SGDC, as quantified by
651 the $SGDC(r)$ measure, offers an analytical rationale supporting the evidence
652 showing that B-surrogates failed to reproduce the SEs observed in our MEG
653 dataset despite preserving both the regional PSDs and the cross-spectra. As
654 a conclusion, the SGDC constitutes a signal-level analytical model linking the
655 emergence of SEs from the oscillatory components of the brain activity and
656 underpinning the evidence showing that our A- and B-surrogates computed via
657 phase randomization failed to reproduce realistic SEs (see Section 3.2).
658 For an in-depth mathematical description of the SGDC framework and mea-
659 sures, the reader is referred to Appendix A.2.

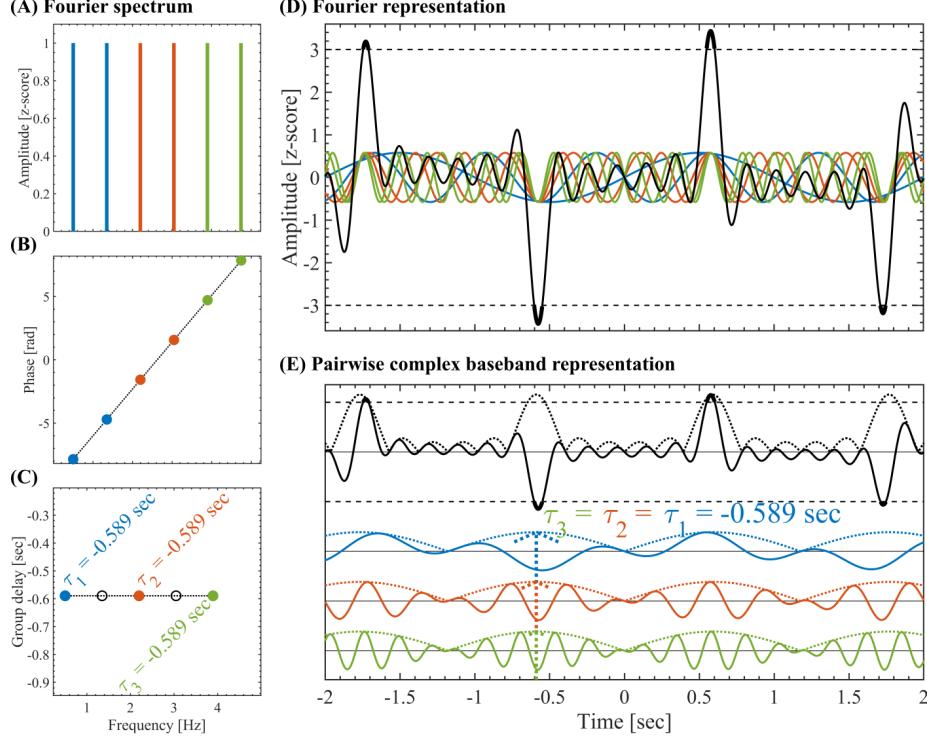


Figure 4: Pairwise complex baseband representation. (A) Set of constant-amplitude $A(k) = 1$ oscillatory components uniformly spaced ($f_s \Delta\omega/(2\pi) = 1.2/\sqrt{2}$ Hz) and having non-harmonic frequencies $f_s \omega(k)/(2\pi) = 0.5 + k f_s \Delta\omega/(2\pi) \in [0.5 - 5]$ Hz, where $f_s = 1024$ Hz is the sampling rate. The pairwise complex baseband representation (Eq. A.13) was obtained by grouping the oscillatory components in adjacent non-overlapping pairs color-coded in blue, red and green. (B) Phases $\phi(k)$ having a linear dependence as a function of the frequency within the range $\phi(k) \in 2.5 [-\pi, \pi]$. (C) Group delay $\tau(k)/f_s = -\Delta\phi(k)/(f_s \Delta\omega)$ for the pairs of adjacent oscillatory components. The color-coded filled markers correspond to the $\tau(2k)/f_s$ values, and the black empty markers correspond to $\tau(2k+1)/f_s$ values (see Eq. A.13). (D) Z-scored signals associated with the Fourier representation. The solid color-coded lines represent the individual oscillatory components, the solid black line is the resulting signal $x(t)$, the horizontal dashed black lines indicate the threshold at $|z| = 3$. (E) Pairwise complex baseband representation. The solid color-coded lines represent the individual amplitude modulated signals (pairs of adjacent oscillatory components), the solid black line is the resulting signal $x(t)$, the color-coded and black dotted lines are the corresponding amplitude envelopes. For an in depth mathematical description of the pairwise complex baseband representation see Appendix A.2.

660 3.5. Numerical models: SEs, NOs and BAA

661 We built a numerical signal model to elucidate the relation between SEs,
 662 NOs, and BAA. We model the activity of single brain regions as the linear su-
 663 perposition of Fourier components oscillating in a narrow frequency band. As
 664 a result, the corresponding spectral representation discloses a "bump" of (null-
 665 to-null) bandwidth in the alpha band (8-13 Hz, Figs. 5A,D,G). The BAA was
 666 modeled by imposing a $1/f$ trend in the PSD of each signal (Fig. 5G). This $1/f$

667 spectral background was chosen to mimic the $-10dB/dec$ log-log decay rate ob-
668 served in the PSDs associated with our MEG dataset (see Fig. C.4). To model
669 different degrees of phase coherence, we assign random phase values to the spec-
670 tral components within a range $[-\epsilon\pi, \epsilon\pi]$ with $\epsilon \in [0, 1]$ (see the polar plots in
671 Figs. 5A,D,G). On the one hand, for $\epsilon \simeq 1$, the spectral components of the
672 signal were desynchronized (i.e., independent oscillatory components, Fig. 5A).
673 On the other hand, for $\epsilon \simeq 0$ the spectral components were highly synchronized
674 (i.e., high cross-frequency coherence). We first focused on a *single brain signal*
675 and measured the number of SLEs (i.e., transient amplitude excursions above
676 a fixed threshold of 3 standard deviations: $\pm 3\sigma$) across 1000 realizations (i.e.,
677 trials), depending on the presence or absence of coherent NOs and $1/f$ activity
678 (see Figs. 5C,F,I). In the absence of $1/f$ activity and for uniformly distributed
679 random phases assigned to the spectral components in the alpha band ($\epsilon = 1$,
680 Figs. 5A), the model displays very few above-threshold fluctuations across trials
681 (Figs. 5B,C). Increasing the coherence of the spectral components in the alpha
682 band ($\epsilon = 0.75$, Figs. 5D), despite the absence of $1/f$ activity, the number
683 of above-threshold fluctuations increased, producing a salient burst in most of
684 the trials (Figs. 5E,F). Importantly, Fig. B.1 shows that the results discussed
685 above, in connection with the emergence of local above-threshold fluctuations
686 from the Fourier oscillatory constituents of the brain activity (i.e., SLEs), can
687 be understood in terms of the SGDC as quantified by the $SGDC(r)$ measure
688 (Eq. 1). Specifically, Fig. B.1 shows that the increase of the signal burstiness,
689 as quantified by the kurtosis of the signal's amplitude values, associated with
690 more constrained random phase values (i.e., low phase factor ϵ values) corre-
691 lates with the increase in the SGDC as quantified by the $SGDC(r)$ measure.
692 In Fig. B.1, the time series were synthesized by adding pure sinusoidal signals.
693 The $SGDC(r)$ was then computed directly from the synthetic phases of these
694 sinusoidal components. Because the phases were taken from the exact analytical
695 components, no spectral leakage was present in this case. In contrast, in Fig.
696 B.2, 1 min in duration time series were synthesized following the same proce-
697 dure as in Fig. B.1, but this time the $SGDC(r)$ was computed using the alpha
698 band phases obtained from the DFT applied to the synthesized time series.
699 This procedure inherently introduces spectral leakage due to the time-domain
700 tapering (rectangular window), which affects the phase values involved in the
701 computation of the $SGDC(r)$ measure and is visible in the corresponding power
702 spectra. Fig. B.2 shows that the increase of the salience of transient fluctua-
703 tions in a signal, as quantified by the kurtosis of the signal's amplitude values,
704 is reproduced by the $SGDC(r)$ measure. Importantly, these results highlight
705 that the $SGDC(r)$ measure is not primarily driven by the spectral leakage. In-
706 stead, it reflects the relationship between the salience of transient fluctuations
707 and the consistency (spread or variability) of the group delay across the Fourier
708 frequencies, independently of the spectral leakage. In addition, we re-compute
709 the signal model for the same set of phase factor values used in Fig. B.1, this
710 time using spectral phase values disclosing not a random but a linear depen-
711 dence with the frequency (i.e., a time-shift in the time-domain). The results
712 obtained with this configuration are shown in Fig. B.3. As predicted by the

713 SGDC mechanism (see Figs. 4A-E), we obtained $|SGDC(r)| \approx 1$ independently
714 of the phase factor value ($\epsilon \in [0, 1]$), and the time series produced by the signal
715 model disclosed (time-shifted) above-threshold fluctuations in all the cases (see
716 Fig. B.3). These numerical results constitute further evidence showing that
717 the SGDC effectively underlies the emergence of local above-threshold fluctu-
718 ations from NOs, as in the case shown in Figs. 5D,E,F. Then, we introduced
719 the broadband $1/f$ activity into the model through a linear superposition (ad-
720 dition) with the oscillatory activity in the alpha band. As a result, the presence
721 of the broadband $1/f$ activity with $\epsilon = 1$ and coherent spectral components in
722 the alpha band with $\epsilon = 0.75$ (Fig. 5G) further increased the number of salient
723 events in a single brain signal (Figs. 5H,I). Importantly, the $1/f$ activity also
724 influences the rhythmicity of above-threshold fluctuations, which occur aperi-
725 odically. More specifically, if we synthesize a long time series by concatenating
726 trials constructed without the $1/f$ activity (as in Figs. 5E), the concatenated
727 time series will disclose a periodic series of above-threshold alpha bursts (i.e.,
728 one salient alpha burst per trial). Instead, in the presence of $1/f$ activity we
729 obtain above-threshold fluctuations occurring aperiodically in each trial besides
730 the salient alpha burst, hence, the time series resulting from concatenating trials
731 (as in Fig. 5H) will disclose an aperiodic series of above-threshold fluctuations,
732 elicited by the interaction between the $1/f$ and oscillatory activities. Further-
733 more, the regime R2 in Fig. 5I points out a plausible range for the relative
734 amplitude between NOs and the BAA in order to obtain realistic aperi-
735 odically occurring above-threshold fluctuations. That is, in the regime R1 only
736 Non-Oscillatory Salient Events (NOEs) are observed, in the regime R3 only
737 Oscillatory Salient Events (OEs) are observed. In contrast, the regime R2 is
738 characterized by a stochastic-resonance-like effect in which the resulting local
739 activity exhibits both NOEs and OEs mirroring the two SE clusters observed
740 in our MEG dataset. In Appendix C.2 we discuss additional empirical evidence
741 supporting the theoretical findings described in Sections 3.4 and 3.5.
742 In summary, these results suggest that the mere presence of oscillations as-
743 sociated with an increase of power around a narrow frequency band does not
744 guarantee the stable occurrence of above-threshold fluctuations (Figs. 5A-C).
745 However, if the phases of the spectral components are coherent producing high
746 $|SGDC(r)|$ values, then high-amplitude fluctuations are consistently observed
747 in the signal (Figs. 5D-F).

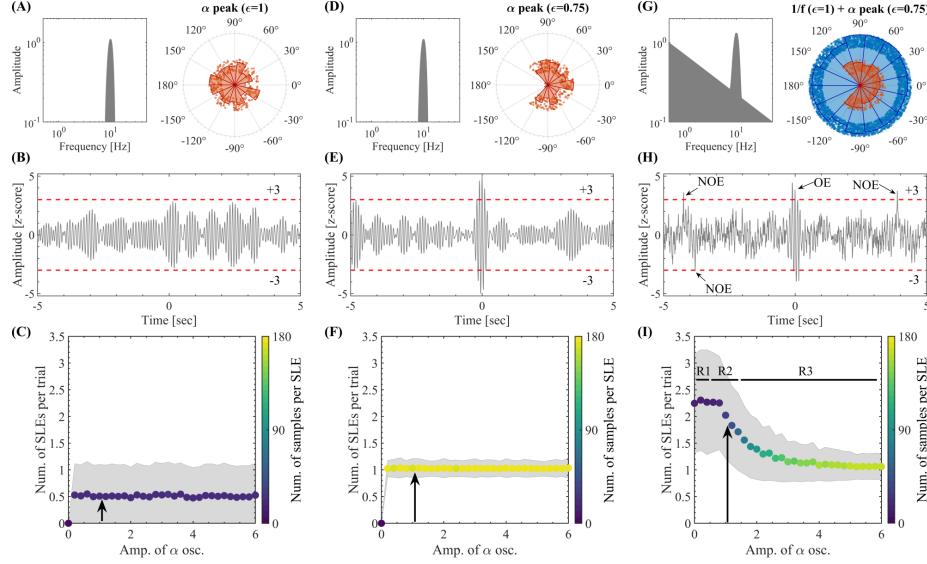


Figure 5: Model for local above-threshold fluctuations. (A) Amplitude spectrum (left) and distribution of the phase values assigned to the spectral components (right) for the oscillatory activity in the alpha band (Hann window with null-to-null bandwidth = 8-13 Hz, frequency resolution $df = 1/60\text{sec} \approx 0.017\text{ Hz}$). Random phases were assigned to all the spectral components within the range $[-\epsilon\pi, \epsilon\pi]$ with a phase factor $\epsilon = 1$. (B) 10 sec epoch extracted from the synthetic time series produced by the amplitude spectrum and phase distribution shown in panel A (sampling rate of $f_s = 1024\text{ Hz}$). The horizontal dashed lines in red indicate the 3 standard deviations ($\pm 3\sigma$) thresholds used to compute the SLEs as above-threshold amplitude fluctuations. (C) Number of SLEs per trial as a function of the maximum amplitude of the oscillatory activity in the alpha band. For each maximum amplitude value, we counted the number of SLEs across 1000 time series of 10 sec in duration (trials) synthesized as the one shown in panel B. In each trial, we recomputed the random phases of the spectral components within the range $[-\epsilon\pi, \epsilon\pi]$ with $\epsilon = 1$. The colored markers indicate the mean number of SLEs per trial across the 1000 trials. The shaded error bars in gray correspond to the standard deviation around the mean value. The pseudocolor scale represents the mean value for the number of above-threshold samples per SLE. The black arrow indicates the maximum amplitude of the alpha oscillations used in panels A and B. (D-F) Same as in A-C for spectral components with random phases constrained within the range $[-\epsilon\pi, \epsilon\pi]$ with $\epsilon = 0.75$ (see the distribution of the phase values in panel D right). (G) Amplitude spectral profile (left) resulting from the linear superposition of 1) a narrowband amplitude spectrum around the alpha band (Hann window with null-to-null bandwidth = 8-13 Hz), and 2) a set of spectral components with power $A^2(f) \propto 1/f$ (frequency resolution $df = 1/60\text{sec} \approx 0.017\text{ Hz}$). The right side of panel G shows the distribution of phase values assigned to the spectral components. Random phases within the range $[-\epsilon\pi, \epsilon\pi]$ with $\epsilon = 1$ were assigned to the spectral components constituting the $1/f$ background (blue circles) and $\epsilon = 0.75$ where assigned to the spectral components associated with the alpha bump (red circles). (H) Same as in B and E for the spectrum shown in panel G. In this case, it is possible to distinguish Oscillatory (OEs) and Non-Oscillatory (NOEs) Salient Local Events. R1, R2 and R3 indicate regions characterized by *Amp. of 1/f activity*, less than, approx. equal to and greater than the *Amp. of alpha oscillations*, respectively. Symbols and abbreviations: SLEs, Salient Local Events; OEs, Oscillatory Salient Local Events; NOEs, Non-Oscillatory Salient Local Events.

748 Next, we extended the above setup to model *whole-brain activity* and SNEs.
749 For each simulated brain signal, we set the amplitude of the alpha peak (with

750 alpha amplitude $\in [0, 1]$) proportionally to the mean alpha amplitude (average
751 across the 47 participants) observed in the empirical MEG recordings, thus mod-
752 eling the non-homogeneous presence of alpha activity across brain regions. In
753 addition, in each region, we bounded the random phases assigned to the spectral
754 components in the alpha band within a range $[-\epsilon\pi, \epsilon\pi]$, whose width $\epsilon \in [0.75, 1]$
755 was inversely proportional to the empirical alpha power (i.e., the higher the al-
756 pha peak, the higher the phase coherence among the spectral components). This
757 choice was motivated by the fact that high PSD bumps are generally interpreted
758 as stronger narrowband synchronization within local neuronal populations [22]
759 (see Discussion). Using this setup, we measured synthetic SEs and tested their
760 dependence on the $1/f$ activity. When only alpha oscillations were present,
761 and no broadband $1/f$ activity (Fig. 6A), the resulting ESM was not realistic
762 compared to the empiric one (compare Figs. 6B and 2G), and the distributions
763 of SEs duration and size were not approximating the exponential-like distribu-
764 tions observed in our MEG dataset (compare Figs. B.4A,B and C.3). Instead,
765 when only broadband $1/f$ activity was present, and no oscillatory activity in
766 the alpha band nor coherent phase values were used (i.e., $\epsilon = 1$; Fig. 6C), the
767 ESM did not show the spectral signature associated with the alpha component
768 (Fig. 6D). Also, the distribution of SEs duration was similar to the empirical
769 data, while the distribution of SEs size was shrunk, as the model did not display
770 SEs involving large populations (Figs. B.4C,D). Finally, when both broadband
771 $1/f$ activity and alpha oscillations were simultaneously present (Fig. 6E), the
772 emerging SEs displayed a realistic ESM (compare Figs. 6F and 2G) as well as
773 exponential-like distributions of SEs duration and size (Figs. B.4E,F); although
774 the SEs size decayed in a markedly more rapid fashion than in the empirical data
775 (compare Figs. B.4E,F and C.3). The Pearson's correlation between the vector-
776 ized versions of the empirical (Fig. 2G) and simulated (Figs. 6B,D,F) ESMs are
777 as follows: Empirical (non-thresholded version of the ESM shown in Fig. 2G)
778 vs. Large scale model including only alpha oscillations (ESM shown in Fig. 6A):
779 $r = 0.594$, $P < 0.001$. Empirical (non-thresholded version of the ESM shown in
780 Fig. 2G) vs. Large scale model including only broadband arrhythmic activity
781 (ESM shown in Fig. 6D): $r = 0.167$, $P < 0.001$. Empirical (non-thresholded
782 version of the ESM shown in Fig. 2G) vs. Large scale model including both
783 alpha oscillations and broadband arrhythmic activity (ESM shown in Fig. 6F):
784 $r = 0.611$, $P < 0.001$. The statistical significance of these linear correlations
785 was assessed by using the Student's t distributions of the two-tailed hypothesis
786 test under the null hypothesis that the correlation is zero.
787 These results suggest that both NOs and broadband $1/f$ spectral background
788 contribute to the signal deviations from baseline activity and realistic SEs, pro-
789 vided that the narrowband spectral components display appropriate levels of
790 SGDC.

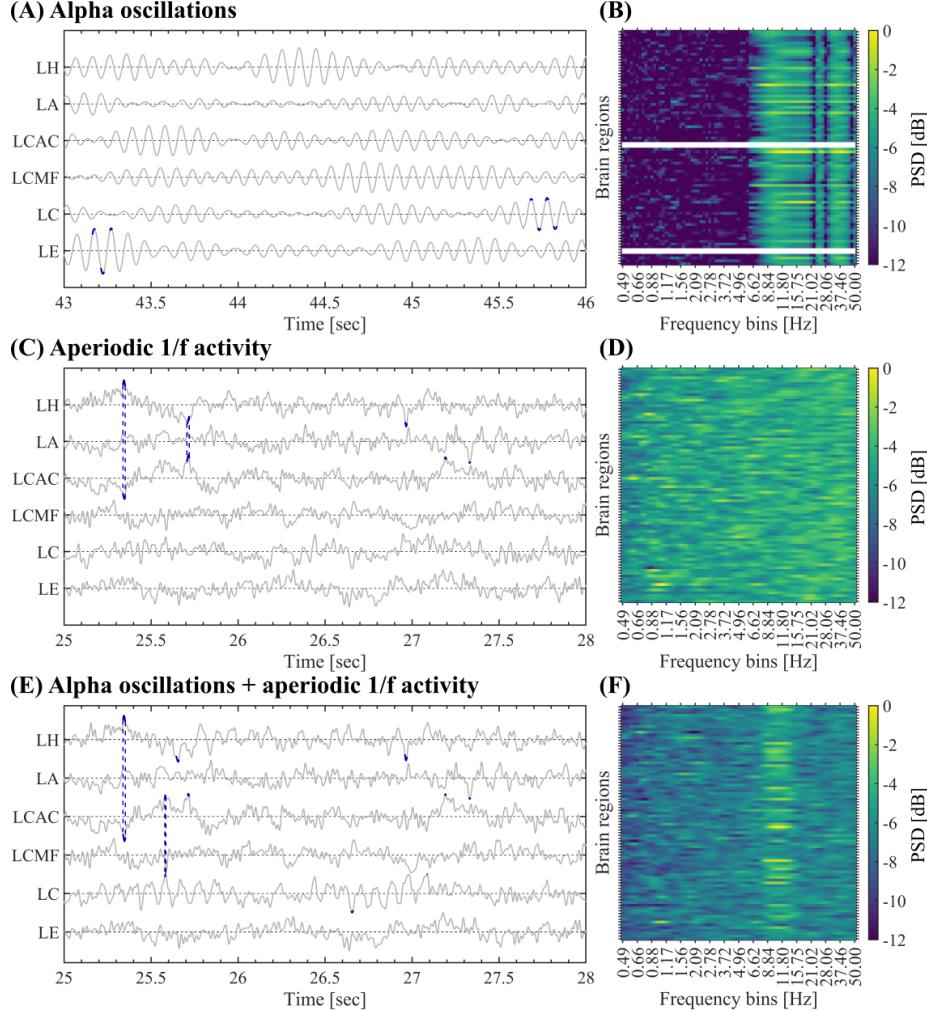


Figure 6: Large-scale signal model for SEs. (A-B) Large-scale model for SEs including only alpha oscillations (random phase values in the alpha band constrained to the range $[-\epsilon\pi, \epsilon\pi]$ with $\epsilon \in [0.75, 1]$). Panel A shows a subset of synthetic activities. In each time series, the above-threshold fluctuations ($\pm 3\sigma$) are highlighted in dark blue. Vertical dashed lines connect the activations associated with SEs completely contained in the subset of signals shown. Panel B shows the resulting ESM averaged across the SEs. Panels A-B were computed on all the SEs detected in a simulated time series of 1-minute duration. (C-D) Same as in A-B for the large-scale model including only broadband 1/f activity, and no oscillatory activity in the alpha band nor phase consistency values were present ($\epsilon = 1$). (E-F) Same as in A-B for the large-scale model including both broadband 1/f activity with non-constrained random phases ($\epsilon = 1$) and alpha oscillations with random phases constrained proportionally to the observed alpha power in the range ($\epsilon \in [0.75, 1]$). Symbols and abbreviations: SEs, Salient Events; LH, Left Hippocampus; LA, Left Amygdala; LCAC, Left Caudal Anterior Cingulate; LCMF, Left Caudal Middle Frontal; LC, Left Cuneus; LE, Left Entorhinal.

791 *3.6. Mechanisms of long-range interactions*

792 Whereas the $SGDC(r)$ assesses the emergence of local above-threshold fluctuations from the Fourier oscillatory constituents of the activity in a single brain region (i.e., SLEs), it does not account for cross-regional effects associated with SNEs. To quantitatively study the cross-regional effects of SGDC on our data we introduce the $SGDC(\omega)$ measure (Eq. 2). The magnitude of $SGDC(\omega)$ is bounded in the range $[0, 1]$ and quantifies how much the group delay at a given frequency ω varies across brain regions. By using synthetic time series, in Appendix A.3 we show that the $SGDC(\omega)$ measure assesses the contribution of each frequency component in the co-activation (synchronization in time) of above-threshold fluctuations across brain regions (see Figs. A.5 and A.6). Of note, Figs. A.5 and A.6 show that the $SGDC(\omega)$ measure effectively resolves the cross-regional synchronization of SEs across frequency bands, whereas phase coherence measures (e.g., PLV: Phase Locking Value) are completely blind to this effect (see detailed description in Appendix A.3). In Appendix C.2 we present additional empirical evidence supporting the connection between the $SGDC(r)$ and $SGDC(\omega)$ measures and the emergence of local and large-scale salient events. In particular, Fig. C.11C shows that only cluster 2 SEs, associated with the spectral signature in the alpha band, disclose $|SGDC(r)|$ values higher than those disclosed by the C-surrogate SEs. Importantly, Fig. C.11D shows the increase of transient cross-regional coherence around the alpha band, as quantified by the $SGDC(\omega)$ measure, associated with the SEs disclosing the alpha spectral signature in the average ESM (i.e., cluster 2 SEs). Notably, Fig. C.11E shows that the transient cross-regional coherence around the alpha band associated with the cluster 2 SEs is also captured by the large-scale model presented in Section 3.5.

817 Synchrony is thought to play a role in coordinating information processing across
818 different brain regions. However, correlation structures such as hemodynamic
819 functional connectivity are better explained in terms of power amplitude correlations
820 of electrophysiological signals (e.g., MEG), rather than phase-synchrony.
821 In a recent work, it was demonstrated that power correlation between two sig-
822 nals can be analytically decomposed into signal coherence (a measure of phase
823 synchronization), cokurtosis (a measure of the probability of simultaneous large
824 fluctuations), and conjugate-coherence [28]. In particular, it was proposed that
825 the cokurtosis between two signals provides a measure of co-bursting that offers
826 a robust neurophysiological correlate for hemodynamic resting-state networks
827 [28]. Here we show that the SGDC conceptualization provides a coherent ac-
828 count of both the co-burstiness and the cokurtosis in terms of the group delay
829 consistency of the signals' spectral content, therefore, advancing our understand-
830 ing of the signal-level mechanisms of long-range communication. For this, we
831 counted the co-participation of pairs of brain regions across SEs (see Methods,
832 Section 2.3). Fig. 7C shows the co-activation matrix indicating the number of
833 co-activations between each pair of brain regions. Fig. 7B shows the number
834 of relative co-activations, i.e., the accumulated number of activations in each
835 row of the co-activation matrix relative to the total number of activations in
836 each brain region (diagonal of the co-activation matrix). Fig. 7A displays the

837 brain plots corresponding to the number of relative co-activations shown in Fig.
838 7B. Importantly, the topography of co-activations shown in the Figs. 7A-C can
839 not be trivially explained by the chance co-occurrence of rare above-threshold
840 fluctuations in the brain activity. Note that the B-surrogates shown in Fig.
841 7B fail to reproduce the the topography of co-activations despite preserving
842 both the power spectrum (PSD) in each brain region and the cross-correlations
843 (i.e., functional connectivity). Moreover, we found that the the kurtosis and
844 $SGDC(r)$, two measures related to the occurrence of local above-threshold fluc-
845 tuations (i.e., SLEs), when computed in a non-time-resolved manner in each
846 brain region fail to reproduce the topography of co-activations associated with
847 the observed SEs. In the case of the $SGDC(r)$ measure, compare the spatial
848 profiles shown in Figs. A.7A and 7B. To account for both the burstiness and
849 cross-regional bursts synchronization in a non-time-resolved manner we used the
850 pairwise SGDC measure (pSGDC). The $pSGDC(r_1, r_2)$ is defined as the prod-
851 uct of two fators: a factor quantifying the cross-regional correlation between
852 the group delays across the frequency components, weighted by the average
853 $SGDC(r)$ of each pair of signals r_1 and r_2 (see Eq. 3 in Methods and Eqs.
854 A.23 and A.24 in Appendix A.3). In [28], it was analytically shown that power
855 correlation depends on signal coherence, cokurtosis, and conjugate-coherence.
856 In particular, co-occurring bursts in neuronal activity, statistically measured by
857 cokurtosis, are relevant for our discussion of SNEs. We computed the pSGDC
858 and cokurtosis (Eq. A.26) measures on our MEG dataset by using the whole
859 time series of the brain regions taken in pairs (i.e., non-time-resolved approach).
860 As a result, we found that the pSGDC measure and the cokurtosis disclose a
861 similar correlation degree with the observed co-activations topography (compare
862 Figs. 7F and 7I) and generates statistics that are lost in the A- and B-surrogates
863 (see Figs. 7E and 7H). Linear correlations between topographies: Co-activations
864 vs pSGDC, $r = 0.881$, $P < 0.001$ (Fig. 7F). Cokurtosis vs pSGDC, $r = 0.848$,
865 $P < 0.001$ (Fig. 7I). Co-activations vs Cokurtosis, $r = 0.937$, $P < 0.001$ (Figs.
866 7B,H). Co-activations vs Pairwise Pearson's correlation, $r = 0.612$, $P < 0.001$
867 (Figs. 7B and A.1B). The statistical significance of these linear correlations was
868 assessed by using the Student's t distributions of the two-tailed hypothesis test
869 under the null hypothesis that the correlation is zero.
870 The pSGDC measure quantifies the co-occurrence of above-threshold bursts
871 mainly associated with SGDC in the alpha band, whereas cokurtosis assesses
872 the presence of both oscillatory and non-oscillatory co-burstiness across brain
873 regions. Importantly, the analytical framework proposed in this work based on
874 the $SGDC(r)$, $SGDC(\omega)$ and $pSGDC(r_1, r_2)$ measures, admits relevant signal-
875 level mechanistic interpretations linking the Fourier oscillatory constituents of
876 the brain activity and SEs. Note that the latter is less evident when consid-
877 ering measures based on higher-order statistical moments like the kurtosis and
878 cokurtosis. Specifically, using the group delay-domain representation, one can
879 quantify the group delay consistency of the spectral (Fourier) constituents of
880 the signals of interest (via the SGDC measures) to predict the emergence of SEs
881 (without doing any explicit computation in the time-domain). This prediction
882 linking the oscillation and time-domains can not be done by higher-order sta-

883 tistical moments like the kurtosis and cokurtosis, mainly because they operate
884 exclusively in the time-domain. Therefore, the SGDC framework provides a
885 deeper understanding of the link between the oscillation-domain (Fourier rep-
886 resentation) and the emergence of transient, salient fluctuations in the time-
887 domain. Thus, the SEs co-activation pattern reproduced by the pSGDC mea-
888 sure (see Figs. 7A-F) can be mechanistically segregated in two components: 1)
889 the results associated with the $SGDC(r)$ measure (Fig. C.11C) supporting the
890 emergence of local above-threshold fluctuations via SGDC mainly in the alpha
891 band, and 2) the results associated with the $SGDC(\omega)$ measure (Fig. C.11D)
892 supporting the co-occurrence of above-threshold alpha bursts across brain re-
893 gions (i.e., transient cross-regional coherence around the alpha band). We spec-
894 ulate that component 1 can be interpreted as an entrainment mechanism that
895 produces transient synchronization of the oscillatory activity of neuronal popu-
896 lations around specific frequency bands (local cross-frequency synchronization),
897 whereas component 2 can be associated with long-range interaction mediated
898 by transient cross-regional coherence in NOs.
899 In summary, these results suggest that a) spectral group delay consistency in
900 specific narrow frequency bands (as assessed by the $SGDC(r)$ measure), b)
901 transient cross-regional coherent NOs (intra-frequency coherence across brain
902 regions assessed by the $SGDC(\omega)$ measure) and c) BAA, are all key ingredients
903 for the emergence of realistic SEs. In particular, the (pairwise) long-range in-
904 teractions mediated by oscillatory SNEs can be effectively quantified using the
905 $pSGDC(r_1, r_2)$ measure.

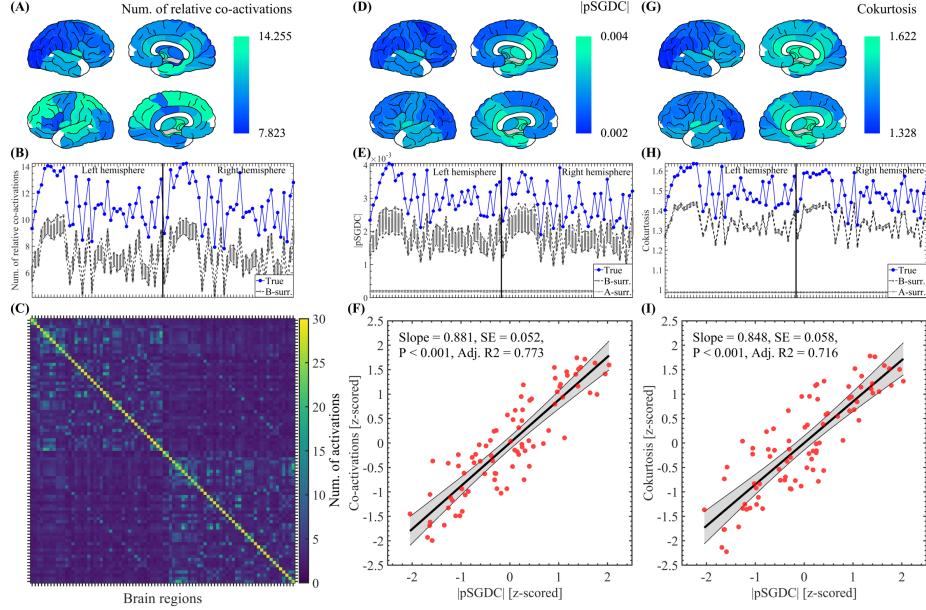


Figure 7: Co-activation pattern of SEs compared against pSGDC and cokurtosis measures computed on whole time series of the brain regions taken in pairs. (A) Brain topographies corresponding to the co-activation profile shown in panel B (blue markers). (B) Spatial profile showing the number of relative co-activations (mean value across the 47 participants), i.e., the accumulated number of activations in each row of the co-activation matrix relative to the total number of activations in each brain region (diagonal of the co-activation matrix). Note that the spatial profiles corresponding to the 100 B-surrogates (dark gray markers) fail to reproduce the spatial profile associated with the true MEG data (blue markers). (C) Co-activation matrix averaged across the SEs observed in the 47 participants (see Section 2.3 in Methods). (D-E) Same as in A-B for the pSGDC measure. (F) Scatter plot showing the correlation between the co-activation and pSGDC spatial profiles shown in panels B and E, respectively. Number of samples (red circles) = Number of brain regions = 84. The thick black line and black shaded error bars represent the linear regression and the 95% confidence interval, respectively. The reported P value for the statistical significance of the linear regression was assessed using Student's t distributions of the two-tailed hypothesis test under the null hypothesis that the correlation is zero. (G-H) Same as in D-E for the cokurtosis measure. (I) Same as in F for the correlation between the cokurtosis and pSGDC spatial profiles. In panels B, E and H, the labels and ordering of the brain regions are the same as those shown in Fig. C.2. Symbols and abbreviations: SEs, Salient Events; pSGDC, pairwise Spectral Group Delay Consistency.

906 4. DISCUSSION

907 Frequency-domain representation of signals, via Fourier transforms (e.g.,
908 DFT), have been extensively used for decades in many neuroscience fields to
909 analyze neuronal and brain activities across several spatiotemporal scales. Re-
910 gardless of the functional significance of neural oscillations, if any, the Fourier
911 basis functions provide an arguably good characterization of the rhythmic com-
912 ponents observed in the brain activity. In this study, we used the complex
913 baseband representation of signals, based on the Fourier theory, to analytically

914 define the spectral group delay consistency (SGDC) as a novel conceptualization
915 linking SEs with the signals' spectral content. Importantly, the signal-level
916 analytical framework associated with the SGDC concept allowed us to provide
917 a unifying rationale for the emergence of salient local and large-scale events
918 from the Fourier oscillatory constituents of the brain activity. First, the analytical
919 arguments described in the Sections 3.4, 3.5 and Appendix A.2 point out
920 that in order to observe realistic local above-threshold fluctuations, the spectral
921 components constituting the brain signals must disclose a certain degree of
922 cross-frequency coherence as assessed by the $SGDC(r)$ measure. Second, in Sec-
923 tions 3.4 and Appendix A.4 we analytically showed that A- and B-surrogates
924 failed to reproduce realistic SEs mainly because the phase randomization re-
925 duces the SGDC across frequency bands in each brain region, which impairs the
926 burstiness of each signal (occurrence of local above-threshold fluctuations). In
927 the case of the A-surrogates the phase randomization also reduces the SGDC
928 across brain regions in each frequency band, which impairs the synchronization
929 of above-threshold fluctuations across brain regions. Third, in Section 3.1 we
930 showed that the spectral signature in the alpha band disclosed by the averaged
931 ESM of cluster 2 SEs constitutes relevant evidence linking the observed SEs with
932 NOs. Importantly, in Sections 3.6 and Appendix C.2, we demonstrated that the
933 synchronization of above-threshold alpha bursts across brain regions can be de-
934 scribed at the signal-level by the SGDC mechanism. Specifically, we showed that
935 the SNEs disclosing the alpha spectral signature in the average ESM (see cluster
936 2 in Fig. C.11B) also disclose an increase of transient cross-regional coherence
937 around the alpha band, as quantified by the $SGDC(\omega)$ measure (see cluster 2
938 in Fig. C.11D). Of note, the $SGDC(\omega)$ measure effectively captures transient,
939 cross-regional coherent NOs associated with SNEs, a phenomenon that tradi-
940 tional coherence metrics, such as the Phase Locking Value (PLV), fail to detect
941 (see Figs. A.5 and A.6). Thus, we combine analytical arguments, based on the
942 SGDC framework, with experimental evidence obtained using novel tools like
943 the ESM and SGDC measures, to provide a more direct and generative link
944 for NOs (e.g., alpha oscillations) role in the coordination of SNEs observed in
945 spontaneous MEG activity. This moves beyond mere correlation or characteri-
946 zation to offer a plausible generative model for SNEs as spatiotemporal cascades
947 of above-threshold fluctuations associated with phase-structured NOs. Fourth,
948 the SGDC conceptualization allowed us, via the $pSGDC(r_1, r_2)$ measure, to
949 account for both the co-activation pattern of brain avalanches and cokurtosis
950 in terms of the coherence of the signals' spectral content, therefore, advancing
951 our understanding of the signal-level mechanisms of long-range communication.
952 The empiric, modeling and analytical results presented in this work guided us
953 to identify the essential building blocks underlying the emergence of realistic
954 SEs as observed in our MEG dataset, which can be summarized as follows:

955 1 Spectral group delay consistency. This feature provides a signal-level mech-
956 anism for the emergence, in a single brain region (i.e., locally), of transient
957 above-threshold fluctuations associated with a specific frequency band (e.g.,
958 alpha bursts). We speculate that the SGDC (e.g., bounded phase differ-

959 ences across spectral components within a narrowband) may be associated
960 with the presence of mesoscopic neural oscillators that are not tightly tuned.
961 We hypothesize that different brain regions may host mesoscopic oscillators
962 disclosing rhythmic (likely non-sinusoidal) dynamics whose fundamental fre-
963 quencies span a quasi-continuum within a given frequency band (e.g., alpha
964 band), rather than clustering around a single sharply defined value. Thus,
965 the linear superposition of these rhythmic components with slightly differ-
966 ent frequencies within a narrowband (e.g., alpha range) could support the
967 emergence of SEs via the SGDC signal-level mechanism.

968 2 Transient cross-regional coherent alpha oscillations. This feature is associated
969 with the transient synchronization of the above-threshold alpha bursts across
970 brain regions, giving rise to the SNEs producing the alpha spectral signature
971 in the ESM (i.e., cluster 2 SEs). This type of SEs may be associated with a
972 long-range interaction mechanism mediated by specific NOs taking place in a
973 transient manner (i.e., transient CTC).

974 3 BAA. This feature is associated with the emergence of non-oscillatory above-
975 threshold fluctuations occurring in an aperiodic manner, mainly related to
976 the short-lived SEs with no characteristic spectral signature in the ESM (i.e.,
977 cluster 1 SEs). We hypothesize that the close relationship between cluster 1
978 SEs and arrhythmic broadband spectral features implies that cluster 1 SEs
979 may play a more local role, linked either to local excitation-inhibition balance
980 or to critical dynamics [43].

981 Linking the presence of SEs to the group delay consistency across the Fourier
982 oscillatory components of the brain activity is a relevant result of this study
983 implying that SEs might mediate interactions across both frequency bands and
984 brain regions as discussed above. In this regard, the CTC hypothesis posits that
985 neural communication is facilitated by the presence of synchronized (steady)
986 oscillations across brain regions. Our results extend the CTC hypothesis by
987 showing that long-range interaction through specific NOs may take place in a
988 transient manner via SNEs (i.e., transient CTC). Indeed, our results suggest
989 that the large-scale spreading of transient alpha bursts is associated with SNEs.
990 As a conclusion, this evidence suggests that transient cross-regional coherence
991 associated with the occurrence of SEs disclosing the spectral signature in the
992 alpha band (i.e., cluster 2 SEs), may play a functional role as a long-range in-
993 teraction mechanism in the resting human brain.

994 One of the main limitations of this study is related to the uncertain capability of
995 our dataset to accurately identify deep brain sources along the cortical surface,
996 mainly due to the ill-posed nature of the source-reconstructed MEG data. In
997 order to address this issue, we re-computed the analysis of SEs presented above,
998 but this time excluding the deep sources. It was found that all the conclusions
999 and, in particular, all the characteristics of the observed SEs remain essentially
1000 unaltered when the deep sources are excluded from the SE analysis (see Ap-
1001 pendix D). Specific analyses demonstrating that volume conduction alone is
1002 unlikely to account for the cascade of above-threshold fluctuations (i.e., SNEs)
1003 observed in our empirical MEG dataset have been presented and discussed in a

1004 previous publication [63]. The spatial leakage analyses and the full discussion
1005 can be accessed via this link: <https://elifesciences.org/articles/67400/peer-reviews#content>

1007 **5. CONCLUSION**

1008 In this work we provided a detailed analytical description of the mechanisms
1009 underlying the emergence of SEs from NOs and BAA co-existing in
1010 the human brain. The proposed analytical arguments were tested and con-
1011 firmed using local and large-scale numerical models together with experimental
1012 MEG recordings obtained in healthy subjects during eyes-closed resting state.
1013 While previous studies have described SEs within the framework of neuronal
1014 avalanches, they often lacked a generative, signal-level account. Here, we bridge
1015 that divide by offering a mathematically grounded and empirically validated
1016 framework that accounts for oscillatory and aperiodic bursts perspectives on
1017 brain activity. We combine experimental evidence supported by a signal-level
1018 analytical framework and numerical simulations based on generative models to
1019 demonstrate that transient phase-structured alpha bursts, shaped by the SGDC
1020 mechanism, contribute to long-range coordination during rest. This extends
1021 the communication-through-coherence hypothesis into the transient domain. In
1022 summary, our multi-pronged approach, grounded in experimental evidence sup-
1023 ported by analytical arguments and extensive model-based validation, enhances
1024 the robustness and interpretive depth of our results, offering a more comprehen-
1025 sive picture of how SEs arise from NOs and BAA as fundamental components
1026 of MEG activity during resting-state.

1027 **ETHICAL PUBLICATION STATEMENT**

1028 We confirm that we have read the Journal's position on issues involved in
1029 ethical publication and affirm that this report is consistent with those guidelines.

1030 **DATA AND CODE AVAILABILITY**

1031 The MEG data are available upon request to the corresponding author (Pier-
1032 paolo Sorrentino), conditional on appropriate ethics approval at the local site.
1033 The availability of the data was not previously included in the ethical approval,
1034 and therefore data cannot be shared directly. In case data are requested, the
1035 corresponding author will request an amendment to the local ethical commit-
1036 tee. Conditional to approval, the data will be made available. The code and
1037 simulated data that support the findings of this study are available from the
1038 corresponding author (Damián Dellavale), upon reasonable request. We are
1039 willing to provide technical support to investigators who express an interest in
1040 implementing the SGDC tools in other programming languages, integrate it in
1041 open-source software toolboxes, or use it for non-profit research activities.

1042 **AUTHOR CONTRIBUTIONS**

1043 DD, GR and PS contributed to the conceptualization, methodology, formal
1044 analysis, writing the original draft and figures preparation. ETL, AR and PS
1045 contributed to the data acquisition, curation of the dataset and visual analysis
1046 of the recordings, review and editing the manuscript. PS contributed to the
1047 funding acquisition.

1048 **FUNDING**

1049 **DECLARATION OF COMPETING INTERESTS**

1050 None of the authors has any conflict of interest to disclose.

1051 **ACKNOWLEDGEMENTS**

1052 **REFERENCES**

- 1053 [1] Adrian, E. D. and Matthews, B. H. C. (1934). The Berger rhythm: Potential
1054 changes from the occipital lobes in man. *Brain*, 57:355–385.
- 1055 [2] Arviv, O., Goldstein, A., and Shriki, O. (2019). Neuronal avalanches
1056 and time-frequency representations in stimulus-evoked activity. *Sci Rep*,
1057 16(13319).
- 1058 [3] Baker, A. P., Brookes, M. J., Rezek, I. A., Smith, S. M., Behrens, T.,
1059 Probert Smith, P. J., and Woolrich, M. W. (2014). Fast transient networks
1060 in spontaneous human brain activity. *eLife*, 3:e01867.
- 1061 [4] Bassett, D. S., Porter, M. A., Wymbs, N. F., Grafton, S. T., Carlson, J. M.,
1062 and Mucha, P. J. (2013). Robust detection of dynamic community structure
1063 in networks. *Chaos*, 23(013142).
- 1064 [5] Becker, R., Van de Ville, D., and Kleinschmidt, A. (2018). Alpha oscillations
1065 reduce temporal long-range dependence in spontaneous human brain activity.
1066 *J Neurosci*, 38(3):755–764.
- 1067 [6] Becker, R., Vidaurre, D., Quinn, A. J., Abeysuriya, R. G., Parker Jones, O.,
1068 Jbabdi, S., and Woolrich, M. W. (2020). Transient spectral events in resting
1069 state meg predict individual task responses. *NeuroImage*, 215:116818.
- 1070 [7] Beggs, J. M. and Plenz, D. (2003). Neuronal avalanches in neocortical cir-
1071 cuits. *J Neurosci*, 23:11167–11177.
- 1072 [8] Beggs, J. M. and Plenz, D. (2004). Neuronal avalanches are diverse and pre-
1073 cise activity patterns that are stable for many hours in cortical slice cultures.
1074 *J Neurosci*, 24:5216–5229.

1075 [9] Berens, P. (2009). CircStat: A MATLAB Toolbox for Circular Statistics.
1076 *Journal of Statistical Software*, 31(10):1–21.

1077 [10] Berger, H. (1929). Über das Elektrenkephalogramm des Menschen. *Archiv
1078 F Psychiatrie*, 87:527–570.

1079 [11] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008).
1080 Fast unfolding of communities in large networks. *J Stat Mech*, 2008(P10008).

1081 [12] Bosman, C. A., Lansink, C. S., and Pennartz, C. M. (2014). Functions of
1082 gamma-band synchronization in cognition: from single circuits to functional
1083 diversity across cortical and subcortical systems. *Eur J Neurosci*, 39:1982–
1084 1999.

1085 [13] Bowen, Z., Winkowski, D. E., Seshadri, S., Plenz, D., and Kanold, P. O.
1086 (2019). Neuronal Avalanches in Input and Associative Layers of Auditory
1087 Cortex. *Front Syst Neurosci*, 13.

1088 [14] Bracewell, R. (2000). *The Fourier Transform And Its Applications*.
1089 McGraw-Hill, 3 edition.

1090 [15] Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R., Stephen-
1091 son, M. C., Barnes, G. R., Smith, S. M., and Morris, P. G. (2011). Investi-
1092 gating the electrophysiological basis of resting state networks using magne-
1093 toencephalography. *Proc Natl Acad Sci USA*, 108(40):16783–16788.

1094 [16] Chan, L.-C., Kok, T.-F., and Ching, E. S. C. (2025). Emergence of a
1095 dynamical state of coherent bursting with power-law distributed avalanches
1096 from collective stochastic dynamics of adaptive neurons. *PRX Life*, 3:013013.

1097 [17] Cohen, M. X. (2014). *Analyzing neural time series data : theory and prac-
1098 tice*. MIT Press, 1 edition.

1099 [18] de Pasquale, F., Della Penna, S., Snyder, A. Z., Lewis, C., Mantini, D.,
1100 Marzetti, L., Belardinelli, P., Ciancetta, L., Pizzella, V., Romani, G. L., and
1101 Corbetta, M. (2010). Temporal dynamics of spontaneous meg activity in
1102 brain networks. *Proc Natl Acad Sci USA*, 107(13):6040–6045.

1103 [19] Dellavale, D., Bonini, F., Pizzo, F., Makhlova, J., Wendling, F., Badier,
1104 J. M., Bartolomei, F., and Bénar, C. G. (2023). Spontaneous fast-ultradian
1105 dynamics of polymorphic interictal events in drug-resistant focal epilepsy.
1106 *Epilepsia*, 64:2027–2043.

1107 [20] Duma, G. M., Danieli, A., Mento, G., Vitale, V., Oripipari, R. S., Jirsa,
1108 V., Bonanni, P., and Sorrentino, P. (2023). Altered spreading of neuronal
1109 avalanches in temporal lobe epilepsy relates to cognitive performance: A
1110 resting-state hdEEG study. *Epilepsia*, 64:1278–1288.

1111 [21] F., B. R. (2020). Community detection in network neuroscience. *arXiv*,
1112 arXiv:2011.06723.

1113 [22] Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. *Trends in Cognitive Sciences*, 9:474–480.

1114

1115 [23] Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. *Neuron*, 88:220–235.

1116

1117 [24] Gerster, M., Waterstraat, G., Litvak, V., Lehnertz, K., Schnitzler, A., Florin, E., Curio, G., and Nikulin, V. (2022). Separating Neural Oscillations 1118 from Aperiodic 1/f Activity: Challenges and Recommendations. *Neuroinform*, 20:991–1012.

1119

1120

1121 [25] György Buzsáki (2006). *Rhythms of the Brain*. Oxford University Press.

1122

1123 [26] Haykin, S. (2000). *Communication Systems*. John Wiley & Sons, 4 edition.

1124

1125 [27] He, B. J. (2014). Scale-free brain activity: past, present, and future. *Trends 1126 Cogn Sci*, 18(9):480–487.

1127

1128 [28] Hindriks, R. and Tewarie, P. K. B. (2023). Dissociation between phase 1129 and power correlation networks in the human brain is driven by co-occurrent 1130 bursts. *Communications Biology*, 6(286).

1131

1132 [29] Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M., and Engel, A. K. 1133 (2012). Large-scale cortical correlation structure of spontaneous oscillatory 1134 activity. *Nature Neuroscience*, 15(6):884–890.

1135

1136 [30] Keitel, C., Ruzzoli, M., Dugué, L., Busch, N. A., and Benwell, C. S. Y. 1137 (2022). Rhythms in cognition: The evidence revisited. *Eur J Neurosci*, 55:2991–3009.

1138

1139 [31] Kinouchi, O. and Copelli, M. (2006). Optimal dynamical range of excitable 1140 networks at criticality. *Nature Phys*, 2:348–351.

1141

1142 [32] Lachaux, J. P., Rodriguez, E., Martinerie, J., and Varela, F. J. (1999). 1143 Measuring phase synchrony in brain signals. *Hum Brain Mapp*, 8:3194–208.

1144

1145 [33] Lancichinetti, A. and Fortunato, S. (2012). Consensus clustering in complex 1146 networks. *Sci Rep*, 2(336).

1147

1148 [34] Larremore, D. B., Shew, W. L., and Restrepo, J. G. (2011). Predicting 1149 criticality and dynamic range in complex networks: effects of topology. *Phys 1150 Rev Lett*, 106(058101).

1151

1152 [35] Lombardi, F., Herrmann, H. J., Parrino, L., Plenz, D., Scarpetta, S., Vaudano, A. E., de Arcangelis, L., and Shriki, O. (2023a). Beyond pulsed inhibition: Alpha oscillations modulate attenuation and amplification of neural 1153 activity in the awake resting state. *Cell Rep*, 42(113162).

1154

1155 [36] Lombardi, F., Herrmann, H. J., Plenz, D., and De Arcangelis, L. (2014). 1156 On the temporal organization of neuronal avalanches. *Front Syst Neurosci*, 8.

1157

1158

1159

1160

1150 [37] Lombardi, F., Pepić, S., Shriki, O., Tkačik, G., and De Martino, D. (2023b).
1151 Statistical modeling of adaptive neural networks explains co-existence of
1152 avalanches and oscillations in resting human brain. *Nat Comput Sci*, 3:254–
1153 263.

1154 [38] Marzetti, L., Della Penna, S., Snyder, A. Z., Pizzella, V., Nolte, G.,
1155 de Pasquale, F., Romani, G. L., and Corbetta, M. (2013). Frequency specific
1156 interactions of meg resting state activity within and across brain networks as
1157 revealed by the multivariate interaction measure. *NeuroImage*, 79:172–183.

1158 [39] Milikovsky, D. Z., Ofer, J., Senatorov, V. V., Friedman, A. R., Prager,
1159 O., Sheintuch, L., Elazari, N., Veksler, R., Zelig, D., Weissberg, I., Bar-
1160 Klein, G., Swissa, E., Hanael, E., Ben-Arie, G., Schefenbauer, O., Kamintsky,
1161 L., Saar-Ashkenazy, R., Shelef, I., Shamir, M. H., Goldberg, I., Glik, A.,
1162 Benninger, F., Kaufer, D., and Friedman, A. (2019). Paroxysmal slow cortical
1163 activity in alzheimer’s disease and epilepsy is associated with blood-brain
1164 barrier dysfunction. *Science Translational Medicine*, 11(521):eaaw8954.

1165 [40] Miller, S. R., Yu, S., and Plenz, D. (2019). The scale-invariant, temporal
1166 profile of neuronal avalanches in relation to cortical γ -oscillations. *Sci Rep*,
1167 9(16403).

1168 [41] Moretti, P. and Muñoz, M. A. (2013). Griffiths phases and the stretching
1169 of criticality in brain networks. *Nat Commun*, 4(2521).

1170 [42] Muller, P. M., Miron, G., Holtkamp, M., and Meisel, C. (2025). Critical
1171 dynamics predicts cognitive performance and provides a common framework
1172 for heterogeneous mechanisms impacting cognition. *Proc Natl Acad Sci USA*,
1173 122:e2417117122.

1174 [43] Nanda, A., Johnson, G. W., Mu, Y., Ahrens, M. B., Chang, C., Englot,
1175 D. J., Breakspear, M., and Rubinov, M. (2023). Time-resolved correlation of
1176 distributed brain activity tracks E-I balance and accounts for diverse scale-
1177 free phenomena. *Cell Rep*, 42(112254).

1178 [44] Newman, M. (2005). Power laws, Pareto distributions and Zipf’s law. *Contemporary Physics*, 46:323–351.

1180 [45] Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (1998). *Discrete-Time*
1181 *Signal Processing*. Prentice Hall, 2 edition.

1182 [46] Palva, J. M., Zhigalov, A., Hirvonen, J., Korhonen, O., Linkenkaer-Hansen,
1183 K., and Palva, S. (2013). Neuronal long-range temporal correlations and
1184 avalanche dynamics are correlated with behavioral scaling laws. *Proc Natl
1185 Acad Sci USA*, 110:3585–3590.

1186 [47] Palva, S. and M., P. J. (2007). New vistas for alpha-frequency band oscil-
1187 lations. *Trends in Neurosciences*, 30:150–158.

1188 [48] Pauls, K. A. M., Nurmi, P., Ala-Salomäki, H., Renvall, H., Kujala, J., and
1189 Liljeström, M. (2024). Human sensorimotor resting state beta events and
1190 aperiodic activity show good test-retest reliability. *Clinical Neurophysiology*,
1191 163:244–254.

1192 [49] Plenz, D. (2014). Criticality in cortex: neuronal avalanches and coherence
1193 potentials. In: *Criticality in neural systems*, pages 5–42.

1194 [50] Power, L., Friedman, A., and Bardouille, T. (2024). Atypical paroxysmal
1195 slow cortical activity in healthy adults: Relationship to age and cognitive
1196 performance. *Neurobiology of Aging*, 136:44–57.

1197 [51] Prichard, D. and Theiler, J. (1994). Generating surrogate data for time se-
1198 ries with several simultaneously measured variables. *Phys Rev Lett*, 73(7):951–
1199 954.

1200 [52] Priesemann, V., Valderrama, M., Wibral, M., and Le Van Quyen,
1201 M. (2013). Neuronal avalanches differ from wakefulness to deep sleep-
1202 evidence from intracranial depth recordings in humans. *PLOS Comput Biol*,
1203 9(e1002985).

1204 [53] Proakis, J. G. (2000). *Digital Communications*. McGraw-Hill, 4 edition.

1205 [54] Rombetto, S., Granata, C., Vettolire, A., and Russo, M. (2014). Multi-
1206 channel system based on a high sensitivity superconductive sensor for mag-
1207 netoencephalography. *Sensors*, 14:12114–12126.

1208 [55] Rubinov, M. and Sporns, O. (2011). Weight-conserving characterization of
1209 complex functional brain networks. *NeuroImage*, 56.

1210 [56] Schoffelen, J.-M. and Gross, J. (2009). Source connectivity analysis with
1211 meg and eeg. *Hum Brain Mapp*, 30(6):1857–1865.

1212 [57] Shafiei, G. and Zeighami, Y. and Clark, C. A. and Coull, J. T. and Nagano-
1213 Saito, A. and Leyton, M. and Dagher, A. and Mišic, B. (2019). Dopamine
1214 Signaling Modulates the Stability and Integration of Intrinsic Brain Networks.
1215 *Cereb Cortex*, 29:397–409.

1216 [58] Shew, W. L. and Plenz, D. (2013). The functional benefits of criticality in
1217 the cortex. *Neuroscientist*, 19:88–100.

1218 [59] Shew, W. L., Yang, H., Yu, S., Roy, R., and Plenz, D. (2011). Information
1219 capacity and transmission are maximized in balanced cortical networks with
1220 neuronal avalanches. *J Neurosci*, 31:55–63.

1221 [60] Shriki, O., Alstott, J., Carver, F., Holroyd, T., Henson, R. N., Smith, M. L.,
1222 Coppola, R., Bullmore, E., and Plenz, D. (2013). Neuronal avalanches in the
1223 resting MEG of the human brain. *J Neurosci*, 33:7079–7090.

1224 [61] Sorrentino, P., Petkoski, S., Sparaco, M., Troisi Lopez, E., Signoriello, E.,
1225 Baselice, F., Bonavita, S., Pirozzi, M. A., Quarantelli, M., Sorrentino, G.,
1226 and Jirsa, V. (2022). Whole-Brain Propagation Delays in Multiple Sclerosis,
1227 a Combined Tractography-Magnetoencephalography Study. *J Neurosci*,
1228 42(47):8807–8816.

1229 [62] Sorrentino, P., Rucco, R., Baselice, F., De Micco, R., Tessitore, A., Hille-
1230 brand, A., Mandolesi, L., Breakspear, M., Gollo, L., and Sorrentino, G.
1231 (2021a). Flexible brain dynamics underpins complex behaviours as observed
1232 in Parkinson’s disease. *Sci Rep*, 11(4051).

1233 [63] Sorrentino, P., Seguin, C., Rucco, R., Liparoti, M., Troisi Lopez, E.,
1234 Bonavita, S., Quarantelli, M., Sorrentino, G., Jirsa, V., and Zalesky, A.
1235 (2021b). The structural connectome constrains fast brain dynamics. *Elife*,
1236 10.

1237 [64] Tagliazucchi, E., Balenzuela, P., Fraiman, D., and Chialvo, D. R. (2012).
1238 Criticality in large-scale brain fMRI dynamics unveiled by a novel point pro-
1239 cess analysis. *Front Physiol*, 3.

1240 [65] Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann,
1241 J., Schnitzler, A., and Freund, H.-J. (1998). Detection of $n : m$ Phase Locking
1242 from Noisy Data: Application to Magnetoencephalography. *Physical Review
1243 Letters*, 81(0):3291–3294.

1244 [66] Tibon, R. and Tsvetanov, K. A. (2022). The “neural shift” of sleep quality
1245 and cognitive aging: A resting-state meg study of transient neural dynamics.
1246 *Frontiers in Aging Neuroscience*, 13:746236.

1247 [67] Tognoli, E. and Kelso, J. A. (2014). The metastable brain. *Neuron*, 81:35–
1248 48.

1249 [68] Touboul, J. and A., D. (2017). Power-law statistics and universal scaling
1250 in the absence of criticality. *Phys Rev E*, 95:012413.

1251 [69] Touboul, J. and Destexhe, A. (2010). Can power-law scaling and neuronal
1252 avalanches arise from stochastic dynamics? *PLOS One*, 5:e8982.

1253 [70] van Ede, F., Quinn, A. J., Woolrich, M. W., and Nobre, A. C. (2018).
1254 Neural oscillations: Sustained rhythms or transient burst-events? *Trends in
1255 Neurosciences*, 41(7):415–417.

1256 [71] Wen, H. and Liu, Z. (2016). Broadband electrophysiological dynamics con-
1257 tribute to global resting-state fmri signal. *J Neurosci*, 36(22):6030–6040.

1258 [72] Yaghoubi, M., de Graaf, T., Orlandi, J. G., Girotto, F., Colicos, M. A.,
1259 and Davidsen, J. (2018). Neuronal avalanche dynamics indicates different
1260 universality classes in neuronal cultures. *Sci Rep*, 8(3417).

1261 [73] Zhigalov, A., Arnulfo, G., Nobili, L., Palva, S., and Palva, J. M. (2015).
1262 Relationship of fast- and slow-timescale neuronal dynamics in human MEG
1263 and SEEG. *J Neurosci*, 35:5385–5396.

1 Appendix A. Supplementary analytical results

2 Appendix A.1. Preservation of the Pearson's cross-correlation in the B-surrogates

3

4 Let us start by considering the circular cross-correlation $R_{xy}(t')$ between the
5 time series $x(t)$ and $y(t)$ representing the activities of two brain regions [45, pp.
6 571, 746],

$$7 R_{xy}(t') = \sum_{t=0}^{N_s-1} x^*(t - t')_{\text{mod } N_s} y(t) \quad (\text{A.1})$$

8 where $(x(t), y(t)) \in \mathbb{R}$ are finite-length discrete time series having N_s time
9 samples satisfying $(x(t) = 0, y(t) = 0) \forall 0 > t > N_s - 1$, being $t \in \mathbb{Z}$ the
10 discrete time index. By applying the Discrete Fourier Transform (DFT) $\mathfrak{F}\{\cdot\}$ on both sides of Eq. A.1 we obtain [45, pp. 575, 746],

$$S_{xy}(\omega) = \mathfrak{F}\{R_{xy}(t')\} = \mathfrak{F}\{x(t)\}^* \mathfrak{F}\{y(t)\} = A_x(\omega)e^{-i\phi_x(\omega)} A_y(\omega)e^{i\phi_y(\omega)} \quad (\text{A.2})$$

11 where $A_x(\omega)$, $\phi_x(\omega)$ and $A_y(\omega)$, $\phi_y(\omega)$ are the magnitude and phase angle of
12 the DFT spectrum corresponding to the signals $x(t)$ and $y(t)$, respectively. The
13 computation of surrogate time series involves the addition of random phases
14 $\theta(\omega)$ to the corresponding DFT spectra as follows,

$$S_{xy}^s(\omega) = A_x(\omega)e^{-i(\phi_x(\omega)+\theta_x(\omega))} A_y(\omega)e^{i(\phi_y(\omega)+\theta_y(\omega))} = A_x(\omega)e^{-i\phi_x(\omega)} A_y(\omega)e^{i\phi_y(\omega)} e^{i(\theta_y(\omega)-\theta_x(\omega))} \quad (\text{A.3})$$

15 In the A.3, $S_{xy}^s(\omega)$ is the DFT of the circular cross-correlation associated with
16 the surrogated time series $x^s(t) = \mathfrak{F}^{-1}\{A_x(\omega)e^{-i(\phi_x(\omega)+\theta_x(\omega))}\}$ and $y^s(t) =$
17 $\mathfrak{F}^{-1}\{A_y(\omega)e^{-i(\phi_y(\omega)+\theta_y(\omega))}\}$, where $\mathfrak{F}^{-1}\{\cdot\}$ stands for the inverse DFT. In the
18 particular case of the B-surrogates (see Section 2.8 in Methods) we add the same
19 random phase-shift in all the brain regions, that is, $\theta_x(\omega) = \theta_y(\omega)$ producing
20 $e^{i(\theta_y(\omega)-\theta_x(\omega))} = 1$ in the Eq. A.3. Under this condition, the Eqs. A.2 and A.3
21 becomes equivalent which in turn implies the equivalence between the circular
22 cross-correlations associated with the true data and the B-surrogate,

$$S_{xy}(\omega) = S_{xy}^s(\omega) \implies \mathfrak{F}\{R_{xy}(t')\} = \mathfrak{F}\{R_{xy}^s(t')\} \implies R_{xy}(t') = R_{xy}^s(t')$$

23 We confirmed this analytical results by computing the time-averaged functional
24 connectivity as quantified by the pairwise Pearson's correlation on our empirical
25 MEG dataset and the corresponding A- and B-surrogates (see Section 2.8
26 in Methods). Fig. A.1C shows the matrix resulting from computing the Pearson's
27 correlation on whole time series of the brain regions taken in pairs. Fig.
28 A.1B shows the spatial profile obtained by averaging the Pearson's correlation
29 matrix across rows. Fig. A.1A displays the brain plots corresponding to the
30 spatial profile of the Pearson's correlation shown in Fig. A.1B. Importantly,

31 Fig. A.1B shows that only B-surrogates reproduce the spatial profile of the
 32 Pearson's correlation computed on the MEG data, hence, confirming that the
 33 pairwise Pearson's correlation is preserved in the B-surrogates, and not in the
 34 case of A-surrogates.

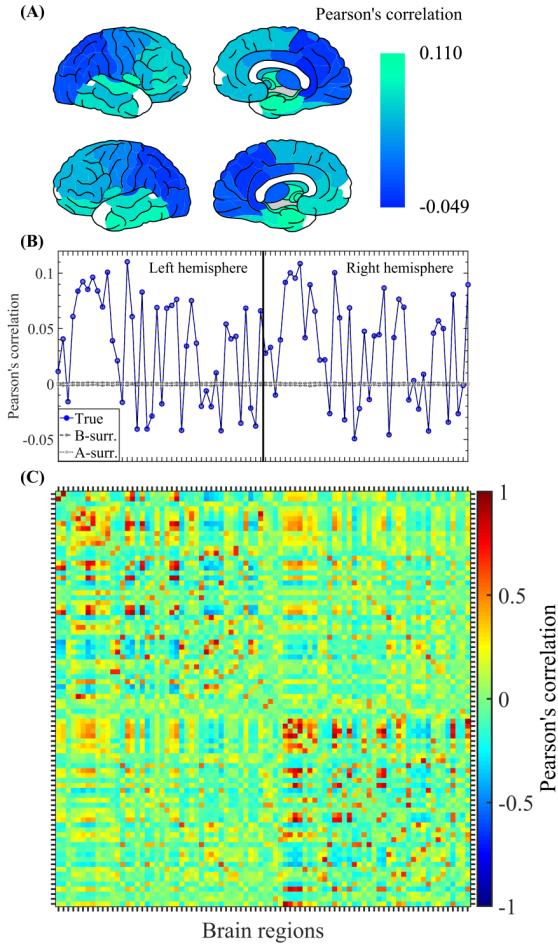


Figure A.1: Pearson's correlation pattern computed on whole time series of the brain regions taken in pairs. (A) Brain topographies corresponding to the Pearson's correlation profile shown in panel B (blue markers). (B) Spatial profile showing the Pearson's correlation (mean value across the 47 participants), i.e., the mean value computed on in each row of the Pearson's correlation matrix. Note that the spatial profiles corresponding to the 100 B-surrogates (dark gray markers) overlap with the spatial profile associated with the true MEG data (blue markers). (C) Pearson's correlation matrix (average across the 47 participants) obtained by computing the Pearson's correlation on the whole time series of the brain regions taken in pairs. In panel B, the labels and ordering of the brain regions are the same as those shown in Fig. C.2.

35 *Appendix A.2. Oscillatory mechanisms underlying the emergence of local above-
36 threshold fluctuations*

37 In this section we provide a detailed description of the mechanism underlying
38 the emergence of local above-threshold fluctuations from the Fourier oscillatory
39 constituents of the brain activity. Our analysis start by projecting the brain
40 signal of interest $x(t)$ onto the Fourier basis functions using the Discrete Fourier
41 Transform (DFT) equations [45, Chapters 8 and 10]. In doing so we are assum-
42 ing that $x(t)$ satisfies certain conditions so the resulting spectral estimates exist
43 and are meaningful. Specifically, by considering finite-length time series con-
44 stituted by N_s time samples, the existence of the DFT representation requires
45 that $x(t)$ is bounded ($|x(t)| < M \in \mathbb{R} \forall 0 > t > N_s - 1$). Besides, the analyzed
46 brain activity are in general nonstationary, that is, the time series $x(t)$ can be
47 represented as a sum of sinusoidal components with time-varying amplitudes,
48 frequencies, or phases. In this regard, we consider a small enough number of
49 time samples N_s such that the spectral characteristics of the signal $x(t)$ can
50 be assumed stationary during the analyzed time window. Thus, by considering
51 $x(t) \in \mathbb{R}$ being a finite-length discrete time series having an even number of
52 time samples N_s and $x(t) = 0 \forall 0 > t > N_s - 1$, where $t \in \mathbb{Z}$ is the discrete time
53 index. The analysis equation corresponding to the Discrete Fourier Transform
54 (DFT) of $x(t)$ can be written as follows [45, p. 561, Eq. (8.67)],

$$X(k) = \sum_{t=0}^{N_s-1} x(t)e^{-i\omega_0 kt} \quad : \quad \omega_0 = \frac{2\pi}{N_s} \quad (\text{A.4})$$

55 where $k \in \mathbb{Z}$ is the discrete frequency index, in general producing complex
56 Fourier coefficients $X(k) \in \mathbb{C}$ and $X(k) = 0 \forall 0 > k > N_s - 1$. Then, the
57 synthesis equation associated with the inverse DFT (iDFT) is [45, p. 561, Eq.
58 (8.68)],

$$x(t) = \frac{1}{N_s} \sum_{k=0}^{N_s-1} X(k)e^{i\omega_0 kt} \quad (\text{A.5})$$

59 Taking into account that $X(k) = |X(k)|e^{i\phi(k)} \in \mathbb{C}$, the Eq. A.5 can be rewritten
60 as,

$$x(t) = \frac{1}{N_s} \sum_{k=0}^{N_s-1} |X(k)|e^{i(\omega_0 kt + \phi(k))} \quad (\text{A.6})$$

61 The core of the proposed conceptualization is to note that the Eq. A.6 can be
62 expressed as a sum of (non-overlapping) pairwise adjacent spectral components
63 as follows,

$$\begin{aligned} x(t) &= \frac{1}{N_s} \sum_{k=0}^{N_s/2-1} |X(2k)|e^{i(\omega_0 2kt + \phi(2k))} \\ &+ |X(2k+1)|e^{i(\omega_0 (2k+1)t + \phi(2k+1))} \end{aligned}$$

64

$$x(t) = \frac{1}{N_s} \sum_{k=0}^{N_s/2-1} \left(|X(2k)| e^{i\phi(2k)} + |X(2k+1)| e^{i(\omega_0 t + \phi(2k+1))} \right) e^{i\omega_0 2kt}$$

65 By defining the forward phase difference as $\Delta\phi(2k) = \phi(2k+1) - \phi(2k)$, and
66 substituting $\phi(2k+1) = \phi(2k) + \Delta\phi(2k)$ in the previous equation we have,

$$\begin{aligned} x(t) &= \frac{1}{N_s} \sum_{k=0}^{N_s/2-1} \left(|X(2k)| e^{-i(\frac{\omega_0}{2}t + \frac{\Delta\phi(2k)}{2})} \right. \\ &\quad \left. + |X(2k+1)| e^{i(\frac{\omega_0}{2}t + \frac{\Delta\phi(2k)}{2})} \right) e^{i\frac{\omega_0}{2}t} e^{i(\phi(2k) + \frac{\Delta\phi(2k)}{2})} e^{i\omega_0 2kt} \end{aligned}$$

67

$$\begin{aligned} x(t) &= \frac{1}{N_s} \sum_{k=0}^{N_s/2-1} \left(|X(2k)| e^{-i(\frac{\omega_0}{2}t + \frac{\Delta\phi(2k)}{2})} \right. \\ &\quad \left. + |X(2k+1)| e^{i(\frac{\omega_0}{2}t + \frac{\Delta\phi(2k)}{2})} \right) e^{i(\frac{\omega_0}{2}(4k+1)t + \phi(2k) + \frac{\Delta\phi(2k)}{2})} \end{aligned}$$

68 Then, by introducing in the previous equation the forward frequency difference
69 $\Delta\omega = \omega_0 (k+1) - \omega_0 k = \omega_0$, it results,

$$\begin{aligned} x(t) &= \frac{1}{N_s} \sum_{k=0}^{N_s/2-1} \left(|X(2k)| e^{-i(\frac{\Delta\omega}{2}t + \frac{\Delta\phi(2k)}{2})} \right. \\ &\quad \left. + |X(2k+1)| e^{i(\frac{\Delta\omega}{2}t + \frac{\Delta\phi(2k)}{2})} \right) e^{i(\frac{\Delta\omega}{2}(4k+1)t + \phi(2k) + \frac{\Delta\phi(2k)}{2})} \end{aligned}$$

70 Taking out $\Delta\omega/2$ as a common factor we have,

$$\begin{aligned} x(t) &= \frac{1}{N_s} \sum_{k=0}^{N_s/2-1} \left(|X(2k)| e^{-i\frac{\Delta\omega}{2}(t + \frac{\Delta\phi(2k)}{\Delta\omega})} \right. \\ &\quad \left. + |X(2k+1)| e^{i\frac{\Delta\omega}{2}(t + \frac{\Delta\phi(2k)}{\Delta\omega})} \right) e^{i(\frac{\Delta\omega}{2}(4k+1)t + \phi(2k) + \frac{\Delta\phi(2k)}{2})} \end{aligned}$$

71 The rate of change of the phase with the frequency is associated with the group
72 delay defined as $\tau(k) = -\Delta\phi(k)/\Delta\omega$. Using this definition, the previous equa-
73 tion can be written as,

$$\begin{aligned} x(t) &= \frac{1}{N_s} \sum_{k=0}^{N_s/2-1} \underbrace{\left(|X(2k)| e^{-i\frac{\Delta\omega}{2}(t - \tau(2k))} + |X(2k+1)| e^{i\frac{\Delta\omega}{2}(t - \tau(2k))} \right)}_{\text{Complex envelope (sidebands)}} \\ &\quad \times \underbrace{e^{i(\frac{\Delta\omega}{2}(4k+1)t + \phi(2k) + \frac{\Delta\phi(2k)}{2})}}_{\text{Complex carrier}} \end{aligned} \tag{A.7}$$

74 It is essential to note that in Eq. A.7, each (non-overlapping) pair of adjacent
 75 spectral components $X(2k), X(2k + 1)$ can be interpreted as the sidebands of
 76 an amplitude modulated carrier at $(4k + 1)\Delta\omega/2$. Importantly, the frequency
 77 of the carrier $(4k + 1)\Delta\omega/2$ is a function of the frequency index k , that is,
 78 it depends on the particular pair of spectral components under consideration
 79 ($X(2k), X(2k + 1)$). However, the frequency of the modulating component is
 80 the same for all the pair of spectral components involved in Eq. A.7, i.e., it
 81 is independent of the frequency index k and only determined by the frequency
 82 resolution of the DFT as $\Delta\omega/2 = \omega_0/2$ (i.e., half the separation between the two
 83 sidebands). Another important characteristic of the representation given by the
 84 Eq. A.7 is that the frequencies associated with the complex envelopes ($\Delta\omega/2$)
 85 and with the complex carrier ($(4k+1)\Delta\omega/2$) satisfy the condition $\Delta\omega/2 \leq (4k +$
 86 $1)\Delta\omega/2$. In the telecom theory, a spectral profile satisfying these characteristics
 87 is known as the complex baseband representation of a band-limited signal (e.g.,
 88 amplitude modulated signal) [45, Chapter 11.4.2, p. 796; 53, Chapter 4.1, p.
 89 152; 26, Chapter A2.4, p. 725]. Accordingly, we refer to the Eq. A.7 as the
 90 inverse DFT based on the pairwise complex baseband representation of $x(t)$.
 91 In line with this, the Eq. A.7 can be rewritten as a summation of amplitude
 92 modulated signals corresponding to each pair of adjacent spectral components
 93 as follows,

$$x(t) = \frac{1}{N_s} \sum_{k=0}^{N_s/2-1} x_{k+}(t) \quad (\text{A.8})$$

$$x_{k+}(t) = \tilde{x}_k(t - \tau(k)) e^{i\left(\frac{\Delta\omega}{2}(4k+1)t + \phi(2k) + \frac{\Delta\phi(2k)}{2}\right)} \quad (\text{A.9})$$

$$\tilde{x}_k(t - \tau(k)) = |X(2k)|e^{-i\frac{\Delta\omega}{2}(t - \tau(2k))} + |X(2k + 1)|e^{i\frac{\Delta\omega}{2}(t - \tau(2k))} \quad (\text{A.10})$$

94 In the Eq. A.8, $x_{k+}(t)$ is the discrete time analytic signal (a.k.a., pre-envelope)
 95 corresponding to each amplitude modulated component constituting the original
 96 signal $x(t)$, and it is defined in Eq. A.9. In the Eq. A.9, $\tilde{x}_k(t - \tau(k))$ is
 97 the complex envelope of each amplitude modulated component constituting the
 98 original signal $x(t)$, and it is defined in terms of the spectral components $X(k)$
 99 in the Eq. A.10. It is important to note that the alignment in time of the
 100 complex envelopes $\tilde{x}_k(t - \tau(k))$ synthesizing the original signal $x(t)$, via the Eq.
 101 A.8, is determined by the group delay $\tau(k)$.

102 The Eqs. A.7 - A.10 constitute a useful conceptualization linking the DFT and
 103 the complex baseband representation to account for the emergence of salient
 104 events from the Fourier oscillatory constituents of a band-limited signal. Due
 105 to the fact that the analysis proposed above is based on the DFT, in the case of
 106 $x(t) \in \mathbb{R}$ the result of the summation in Eqs. A.7 and A.8 is guaranteed to be
 107 real valued. At the same time, this also restricts the validity of the analysis to
 108 harmonic spectral components $\omega_0 k$ associated with the fundamental frequency
 109 $\omega_0 = 2\pi/N_s$. Now we will present the general equations valid for all the cases,
 110 that is, harmonic ($\Delta\omega(k) = \text{cte}$, $\omega(k + 1)/\omega(k) \in \mathbb{Q}$), non-harmonic ($\Delta\omega(k) =$
 111 cte , $\omega(k + 1)/\omega(k) \in \mathbb{R} \setminus \mathbb{Q}$) and non-uniformly spaced ($\Delta\omega(k) \neq \text{cte}$) Fourier
 112 oscillatory components. Let us consider a real valued signal $x(t) \in \mathbb{R}$ resulting

113 from the linear superposition of an even number N_s of oscillatory components
 114 of arbitrary amplitude $A(k)$, frequency $\omega(k)$ and phase $\phi(k)$.

$$x(t) = \sum_{k=0}^{N_s-1} A(k) \cos(\omega(k)t + \phi(k)) : A(k) \in \mathbb{R} \quad (\text{A.11})$$

115 Since the Eq. A.11 is linear we can introduce the complex notation via the
 116 Euler's formula as follows,

$$x(t) = \Re \left\{ \sum_{k=0}^{N_s-1} A(k) e^{i(\omega(k)t + \phi(k))} \right\} \quad (\text{A.12})$$

117 In the Eq. A.12, the operator $\Re \{ \cdot \}$ stands for “the real part of”. By following a
 118 similar procedure applied above on the Eq. A.6, the Eq. A.12 can be rewritten
 119 as follows,

$$\begin{aligned} x(t) &= \Re \left\{ \sum_{k=0}^{N_s/2-1} \left(A(2k) e^{-i(\frac{\Delta\omega(2k)}{2}t + \frac{\Delta\phi(2k)}{2})} + A(2k+1) e^{i(\frac{\Delta\omega(2k)}{2}t + \frac{\Delta\phi(2k)}{2})} \right) \right. \\ &\quad \times \left. e^{i(\bar{\omega}(2k)t + \bar{\phi}(2k))} \right\} \\ \Delta\phi(2k) &= \phi(2k+1) - \phi(2k) \\ \bar{\phi}(2k) &= \frac{\phi(2k+1) + \phi(2k)}{2} = \phi(2k) + \frac{\Delta\phi(2k)}{2} \\ \Delta\omega(2k) &= \omega(2k+1) - \omega(2k) \\ \bar{\omega}(2k) &= \frac{\omega(2k+1) + \omega(2k)}{2} = \omega(2k) + \frac{\Delta\omega(2k)}{2} \end{aligned}$$

120 In this case the group delay is defined as $\tau(k) = -\frac{\Delta\phi(k)}{\Delta\omega(k)}$, thus, the previous
 121 equation results,

$$\begin{aligned} x(t) &= \Re \left\{ \sum_{k=0}^{N_s/2-1} \underbrace{\left(A(2k) e^{-i\frac{\Delta\omega(2k)}{2}(t-\tau(2k))} + A(2k+1) e^{i\frac{\Delta\omega(2k)}{2}(t-\tau(2k))} \right)}_{\text{Complex envelope (sidebands)}} \right. \\ &\quad \times \left. \underbrace{e^{i(\bar{\omega}(2k)t + \bar{\phi}(2k))}}_{\text{Complex carrier}} \right\} \quad (\text{A.13}) \end{aligned}$$

122 The Eq. A.13 is the pairwise complex baseband representation of the signal $x(t)$.
 123 Provided that the frequencies associated with the complex envelopes ($\Delta\omega(2k)/2$)
 124 and the complex carrier ($\bar{\omega}(2k)$) satisfy the condition $\Delta\omega(2k)/2 < \bar{\omega}(2k)$, the
 125 Eq. A.13 can also be written as a summation of discrete time analytic signals
 126 $x_{k+}(t)$ associated with amplitude modulated signals corresponding to each pair

¹²⁷ of adjacent oscillatory components as follows,

$$x(t) = \Re \left\{ \sum_{k=0}^{N_s/2-1} x_{k+}(t) \right\} \quad (\text{A.14})$$

$$x_{k+}(t) = \tilde{x}_k(t - \tau(k)) e^{i(\bar{\omega}(2k)t + \bar{\phi}(2k))} \quad (\text{A.15})$$

$$\begin{aligned} \tilde{x}_k(t - \tau(k)) &= A(2k) e^{-i\frac{\Delta\omega(2k)}{2}(t - \tau(2k))} \\ &+ A(2k + 1) e^{i\frac{\Delta\omega(2k)}{2}(t - \tau(2k))} \end{aligned} \quad (\text{A.16})$$

¹²⁸ Similarly to the previous case the time alignment of the complex envelopes
¹²⁹ $\tilde{x}_k(t - \tau(k))$ synthesizing the original signal $x(t)$, via the Eq. A.14, is deter-
¹³⁰ mined by the group delay $\tau(k)$.

¹³¹ In what follows we will use the Eq. A.13 to illustrate the role of the group
¹³² delay in the emergence of above-threshold fluctuations from the oscillatory con-
¹³³ stituents of the synthetic signal $x(t)$. As a first example, let us consider a spec-
¹³⁴ tral profile given by a set of constant-amplitude $A(k) = A = 1$ oscillatory com-
¹³⁵ ponents uniformly spaced $f_s \Delta\omega/(2\pi) = 1.2/\sqrt{2}$ Hz and having non-harmonic
¹³⁶ frequencies $f_s \omega(k)/(2\pi) = 0.5 + k f_s \Delta\omega/(2\pi) \in [0.5 - 5]$ Hz, where $f_s = 1024$
¹³⁷ Hz is the sampling rate (see Figs. A.2A and A.2F). Accordingly, the Eq. A.13
¹³⁸ becomes,

$$x(t) = A \Re \left\{ \sum_{k=0}^{N_s/2-1} \left(e^{-i\frac{\Delta\omega}{2}(t - \tau(2k))} + e^{i\frac{\Delta\omega}{2}(t - \tau(2k))} \right) e^{i(\bar{\omega}(2k)t + \bar{\phi}(2k))} \right\}$$

¹³⁹ By using the Euler's formula to rearrange the modulating factor, the previous
¹⁴⁰ equation results,

$$\begin{aligned} x(t) &= \frac{A}{2} \Re \left\{ \sum_{k=0}^{N_s/2-1} \cos \left(\frac{\Delta\omega}{2} (t - \tau(2k)) \right) e^{i(\bar{\omega}(2k)t + \bar{\phi}(2k))} \right\} \\ &= \frac{A}{2} \sum_{k=0}^{N_s/2-1} \underbrace{\cos \left(\frac{\Delta\omega}{2} (t - \tau(2k)) \right)}_{\text{Modulating component}} \underbrace{\cos \left(\bar{\omega}(2k)t + \bar{\phi}(2k) \right)}_{\text{Modulated component}} \end{aligned} \quad (\text{A.17})$$

¹⁴¹ The Eq. A.17 explicitly shows that any pair of adjacent oscillatory components
¹⁴² associated with the signal $x(t)$ can be interpreted as an amplitude modulated
¹⁴³ signal with the same modulating function $\cos \left(\frac{\Delta\omega}{2} (t - \tau(2k)) \right)$. The key con-
¹⁴⁴ cept here is to note that, when all the oscillatory components in Eq. A.17
¹⁴⁵ are added together to synthesize the signal $x(t)$ in the time-domain, the group
¹⁴⁶ delay τ will determine the time alignment of the modulating functions associ-
¹⁴⁷ ated with each pair of adjacent oscillatory components. As a consequence, in
¹⁴⁸ the case of all the spectral components $A(k) e^{i(\omega(k)t + \phi(k))}$ in Eq. A.12 having
¹⁴⁹ constant phase produces $\Delta\phi = 0 \implies \tau = -\Delta\phi/\Delta\omega = 0$, hence, all the
¹⁵⁰ modulating functions $\cos \left(\frac{\Delta\omega}{2} (t - 0) \right)$ in Eq. A.17 will be aligned in time (at

151 $t = 0$) giving rise to a sinc-like function representing the maximum amplitude
152 excursion (i.e., a salient event) that can be elicited by the set of Fourier oscillatory components constituting the Eq. A.12. In the case of all the spectral
153 components in Eq. A.12 having a phase proportional to the discrete frequency
154 index $\phi(k) = -\tau_0 \Delta\omega k \implies \Delta\phi(k) = -\tau_0 \Delta\omega$, results in a group delay
155 which does not depend on the frequency $\tau(k) = -\Delta\phi(k)/\Delta\omega = \tau_0$, thus,
156 in Eq. A.12 we obtain a modulating component $\cos\left(\frac{\Delta\omega}{2}(t - \tau_0)\right)$. That is,
157 all the modulating functions will again be aligned in time producing the same
158 salient event given by the sinc-like function as in the previous case but this
159 time centered at $t = \tau_0$ (i.e., a time-shift, see Figs. A.2A-E). On the other
160 hand, in the case of the phases associated with the spectral components in Eq.
161 A.12 having a non-linear dependence with the discrete frequency index, e.g.,
162 $\phi(k) = -\tau_0 \Delta\omega k^2 \implies \Delta\phi(k) = -\tau_0 \Delta\omega(2k + 1)$, the group delay results a
163 function of the frequency $\tau(k) = \tau_0(2k + 1)$, hence, preventing the alignment in
164 time of the modulating functions associated with each pair of adjacent spectral
165 components $\cos\left(\frac{\Delta\omega}{2}(t - \tau(k))\right)$. In this case, the signal $x(t)$ discloses sub-
166 threshold excursions of amplitude (see Figs. A.2F-J). It is worth mentioning
167 that in deriving the pairwise complex baseband representation of $x(t)$ given by
168 the Eqs. A.7 and A.13, we grouped the original spectral components (Eqs.
169 A.5 and A.11) in subsets of (non-overlapping) pairs adjacent in frequency. The
170 strategy of grouping the spectral components in subsets is necessary to obtain
171 a representation based on a sum of complex envelopes modulating the complex
172 carriers. Representations similar to those presented in the Eqs. A.7 and A.13
173 can be obtained by defining subsets containing more than 2 non-overlapping
174 spectral components (not necessarily adjacent in frequency). However, our ap-
175 proach based on grouping adjacent spectral components in non-overlapping pairs
176 discloses the following relevant features:
177

- 178 1 By defining subsets of 2 spectral components, we obtain the simplest complex
179 envelopes characterized by a cos- or sin-like waveform shape (see the mod-
180 ulating component in the Eq. A.17 and the colored solid lines in Figs.A.2E
181 and A.3E).
- 182 2 By defining pairs of spectral components adjacent in frequency, we maximize
183 the waveform shape similarity among the resulting complex envelopes. In the
184 case of uniformly spaced spectral components ($\Delta\omega = \text{cte}$), we obtain complex
185 envelopes having the same time period $2/\Delta\omega$ (see the colored doted lines in
186 Figs.A.2E and A.3E).
- 187 3 By defining pairs of spectral components adjacent in frequency, we also maxi-
188 mize the similarity among the resulting complex carriers (see the colored solid
189 lines in Figs.A.2E and A.3E).

190 Taking together, these features are of particular importance to support the
191 link between the spectral group delay consistency (SGDC) defining the time
192 alignment of the modulating components (complex envelopes) with the con-
193 structive interference of the modulated components (complex carriers), which

194 in turn lead to the occurrence of salient events. As a conclusion, the results de-
195 scribed above in connection with the Eqs. A.7, A.13, show that the emergence
196 of above-threshold fluctuations in the signal $x(t)$ is related to the consistency
197 of the group delay $\tau(k)$ across the discrete frequency values k . That is, the
198 occurrence of salient events is supported by a slowly varying group delay as a
199 function of the frequency, and this hold true for harmonic, non-harmonic and
200 also for non-uniformly spaced Fourier oscillatory constituents of the signal under
201 analysis.

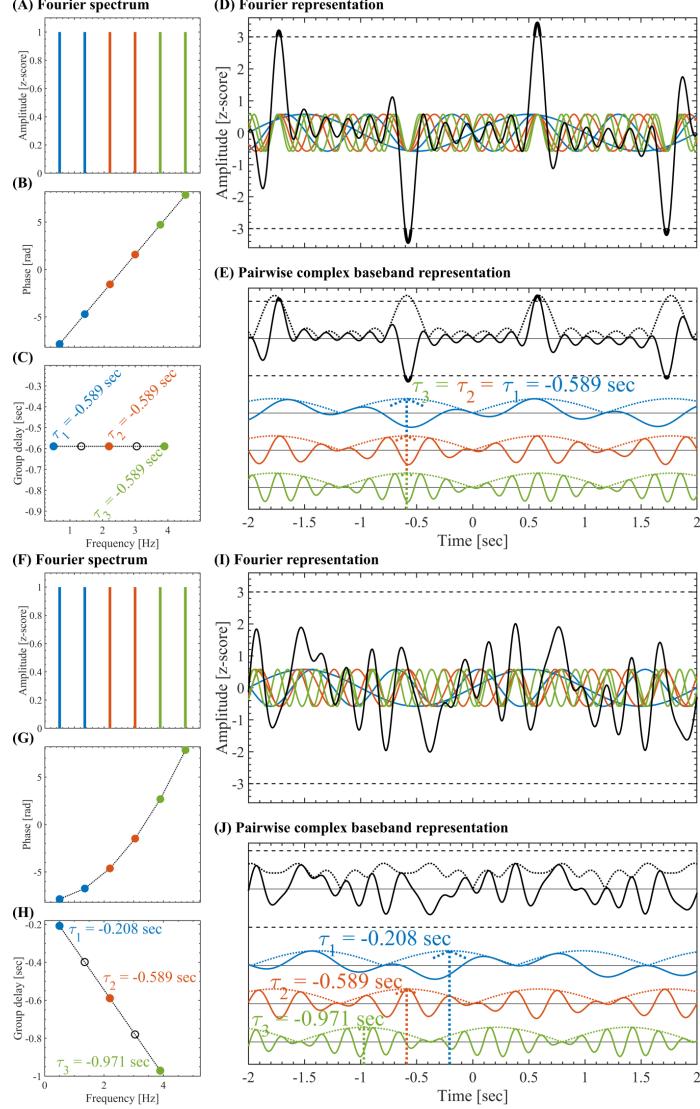


Figure A.2: Pairwise complex baseband representation for a set of oscillatory components with $A_k = \text{cte}$. (A) Set of constant-amplitude $A(k) = 1$ oscillatory components uniformly spaced ($f_s \Delta\omega/(2\pi) = 1.2/\sqrt{2}$ Hz) and having non-harmonic frequencies $f_s \omega(k)/(2\pi) = 0.5 + k f_s \Delta\omega/(2\pi) \in [0.5 - 5]$ Hz, where $f_s = 1024$ Hz is the sampling rate. The pairwise complex baseband representation (Eq. A.13) was obtained by grouping the oscillatory components in adjacent non-overlapping pairs color-coded in blue, red and green. (B) Phases $\phi(k)$ having a linear dependence as a function of the frequency within the range $\phi(k) \in 2.5 [-\pi, \pi]$. (C) Group delay $\tau(k)/f_s = -\Delta\phi(k)/(f_s \Delta\omega)$ for the pairs of adjacent oscillatory components. The color-coded filled markers correspond to the $\tau(2k)/f_s$ values, and the black empty markers correspond to $\tau(2k+1)/f_s$ values (see Eq. A.13). (D) Z-scored signals. The solid color-coded lines represent the individual oscillatory components, the solid black line is the resulting signal $x(t)$, the horizontal dashed black lines indicate the threshold at $|z| = 3$. (E) Pairwise complex baseband representation. The solid color-coded lines represent the individual amplitude modulated signals (pairs of adjacent oscillatory components), the solid black line is the resulting signal $x(t)$, the color-coded and black dotted lines are the corresponding amplitude envelopes. (F - J) Same as panels (A - E), this time with phases $\phi(k)$ having a quadratic dependence as a function of the frequency within the range $\phi(k) \in 2.5 [-\pi, \pi]$ (see panel G).

202 The group delay is defined in terms of the rate of change of the phase with
203 the frequency, being independent on the amplitude of the spectral components.
204 As a consequence, the consistency of the spectral group delay as a mechanism
205 supporting the emergence of salient events is also valid for spectral profiles other
206 than the constant-amplitude spectrum shown in the Fig. A.2. The Fig. A.3
207 shows the results for a spectral profile given by a set of (uniformly spaced) non-
208 harmonic oscillatory components with amplitudes $A(k) \propto 1/\sqrt{k}$, that is, the
209 power of the spectral components $A^2(k)$ is proportional to $1/k$ (see Figs. A.3A
210 and A.3F). Figs. A.3A-E show the case in which the phases $\phi(k)$ of the spec-
211 tral components $A(k) e^{i(\omega(k)t+\phi(k))}$ in Eq. A.12 are randomly distributed in a
212 very small range around zero ($\phi(k) \in [-\pi/10, \pi/10]$). Under this condition, the
213 pairwise complex baseband representation (Eq. A.13) shown in the Fig. A.3E
214 is constituted by amplitude modulated signals highly aligned in time. As a con-
215 sequence, prominent salient events can be distinguished in the resulting signal
216 (see solid black line in panels D and E of Fig. A.3). On the other hand, Figs.
217 A.3A-E show the case in which the phase values $\phi(k)$ are randomly distributed
218 in a wider range $\phi(k) \in [-\pi, \pi]$. Under this condition, the pairwise complex
219 baseband representation (Eq. A.13) shown in the Fig. A.3J is constituted by
220 amplitude modulated signals non-aligned in time. As a consequence, the result-
221 ing signal $x(t)$ only discloses sub-threshold excursions of amplitude (see solid
222 black line in panels I and J of Fig. A.3).

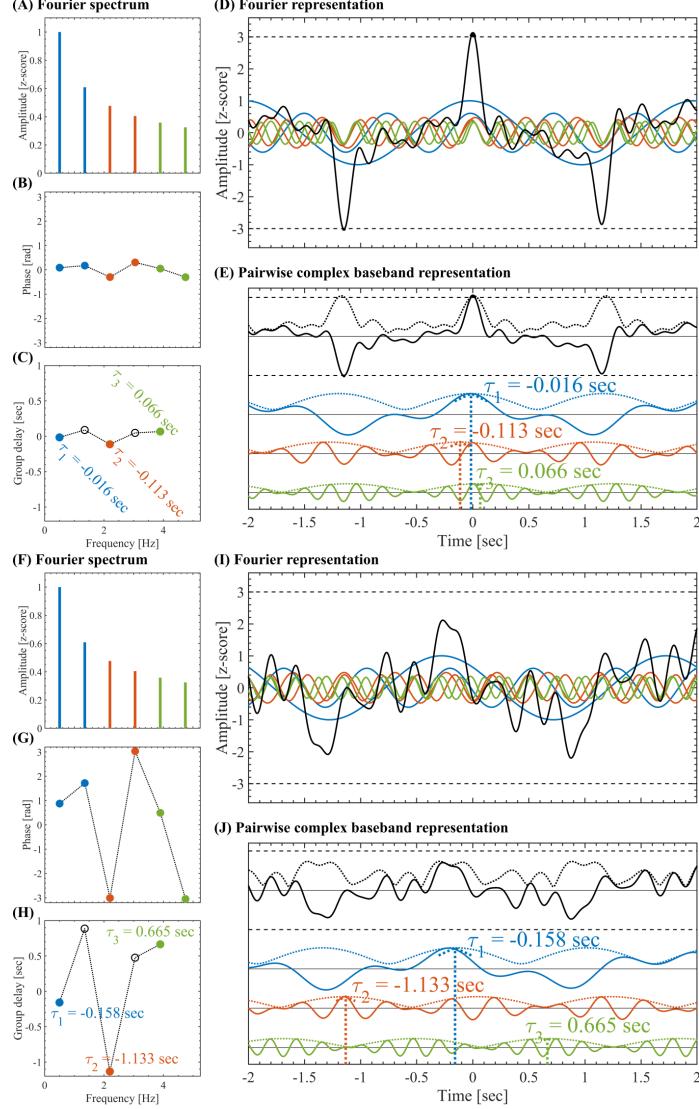


Figure A.3: Pairwise complex baseband representation for a set of oscillatory components with $A(k) \propto 1/\sqrt{k}$. (A) Set of non-constant amplitude $A(k) \propto 1/\sqrt{k}$ oscillatory components uniformly spaced ($f_s \Delta\omega/(2\pi) = 1.2/\sqrt{2}$ Hz) and having non-harmonic frequencies $f_s \omega(k)/(2\pi) = 0.5 + k f_s \Delta\omega/(2\pi) \in [0.5 - 5]$ Hz, where $f_s = 1024$ Hz is the sampling rate. The pairwise complex baseband representation (Eq. A.13) was obtained by grouping the oscillatory components in adjacent non-overlapping pairs color-coded in blue, red and green. (B) Phases $\phi(k)$ randomly distributed within a very small range around zero ($\phi(k) \in [-\pi/10, \pi/10]$). (C) Group delay $\tau(k)/f_s = -\Delta\phi(k)/(f_s \Delta\omega)$ for the pairs of adjacent oscillatory components. The color-coded filled markers correspond to the $\tau(2k)/f_s$ values, and the black empty markers correspond to $\tau(2k+1)/f_s$ values (see Eq. A.13). (D) Z-scored signals. The solid color-coded lines represent the individual oscillatory components, the solid black line is the resulting signal $x(t)$, the horizontal dashed black lines indicate the threshold at $|z| = 3$. (E) Pairwise complex baseband representation. The solid color-coded lines represent the individual amplitude modulated signals (pairs of adjacent oscillatory components), the solid black line is the resulting signal $x(t)$, the color-coded and black dotted lines are the corresponding amplitude envelopes. (F - J) Same as panels (A - E), this time the phases $\phi(k)$ are randomly distributed within the range $\phi(k) \in [-\pi, \pi]$ (see panel G).

223 In summary, the analytical arguments presented above, condensed in the
 224 Eqs. A.7 - A.10 and A.13 - A.16, allowed us to identify the consistency of
 225 the group delay across the spectral components as a mechanism accounting
 226 for the emergence of above-threshold fluctuations from the Fourier oscillatory
 227 constituents of the activity associated with a single brain region. In the next
 228 section we describe the signal processing tools proposed to quantify the SGDC
 229 in empirical data.

230 *Appendix A.3. Measures to assess the spectral group delay consistency*

231 The analytical arguments presented in the Appendix A.2 have profound con-
 232 sequences regarding the interpretation of the experimental results in connection
 233 with the emergence of salient events from NOs and broadband $1/f$ activity.
 234 Specifically, the pairwise complex baseband representation of band-limited sig-
 235 nals (Eqs. A.7 - A.10 and A.13 - A.16), explicitly shows that the mechanism
 236 underlying the emergence of above-threshold fluctuations in a signal $x(t)$ can
 237 be understood in terms of the consistency of the group delay across the Fourier
 238 oscillatory constituents of the signal (see the complex envelopes $\tilde{x}_k(t - \tau(k))$ in
 239 Eqs. A.10 and A.16). By considering a multi-regional approach, the pairwise
 240 complex baseband representation can be applied on the activity $x_r(t)$ of each
 241 brain region r , to obtain complex envelopes of the form $\tilde{x}_{r,k}(t - \tau_r(k))$. Here
 242 we recall that $\tilde{x}_{r,k}(t - \tau_r(k))$ determine the envelopes of the individual ampli-
 243 tude modulated signals constituting the signal $x_r(t)$ (see the solid and doted
 244 color-coded curves in the Figs. A.2E,J and A.3E,J). Hence, the consistency of
 245 the spectral group delay $\tau_r(k)$ determines the synchronization of the complex
 246 envelopes $\tilde{x}_{r,k}(t - \tau_r(k))$ across both frequency values $\omega(k)$ and brain regions
 247 r . In what follows we describe the proposed measures designed to quantify the
 248 spectral group delay consistency (SGDC) in experimental data across either
 249 frequency values and/or brain regions. In order to simplify the notation, in
 250 the rest of this section we will use ω instead of the discrete frequency index
 251 k , implicitly assuming that $\omega = \omega(k)$. In the most general case, the spectral
 252 group delay can be estimated as $\tau_r(\omega) = -\Delta\phi_r(\omega)/\Delta\omega(\omega)$, where $\Delta\phi_r(\omega)$ and
 253 $\Delta\omega(\omega)$ are the incremental phase and incremental frequency between adjacent
 254 spectral components associated with the activity $x_r(t)$ of the brain region r ,
 255 respectively. Let us consider first the particular case of $\Delta\omega(\omega) = \Delta\omega = \text{const}$,
 256 in which the group delay results $\tau_r(\omega) \propto -\Delta\phi_r(\omega)$. Therefore, the SGDC can
 257 be simply assessed via the Euler's transform of the incremental phase as follows,

$$SGDC(r) = \frac{1}{N} \sum_{\omega} e^{-i\Delta\phi_r(\omega)} : \Delta\omega = \text{const across } r \quad (\text{A.18})$$

$$SGDC(\omega) = \frac{1}{N} \sum_r e^{-i\Delta\phi_r(\omega)} : \Delta\omega = \text{const across } \omega \quad (\text{A.19})$$

258 The modulus of Eqs. A.18 and A.19 satisfies,

$$|SGDC| = \left| \frac{1}{N} \sum_{\omega} e^{-i\Delta\phi_r(\omega)} \right| = R = (1 - S) \in [0, 1] \quad (\text{A.20})$$

259 In the Eqs. A.18, A.19 and A.20, N is the number of either frequency values
 260 or brain regions as appropriate, R is the resultant vector length and S is the
 261 circular variance [9]. The Eq. A.20 explicitly shows that the SGDC is assessed
 262 as one minus the circular variance of the incremental phase. The definition of
 263 the SGDC measures given in the Eqs. A.18, A.19 and A.20 should not be con-
 264 fused with the traditional measure for quantifying coherence known as Phase
 265 Locking Value (PLV) [65, 32]. Specifically, the SGDC measures as defined in
 266 the Eqs. A.18, A.19 and A.20 assess the consistency of the incremental phase
 267 $\Delta\phi_r(\omega)$ across the frequency values ω . In contrast, the PLV assesses the con-
 268 sistency of phase difference across the time samples, where the phase difference
 269 is computed between two phase time series corresponding to two specific fre-
 270 quency bands in the same or different brain regions [65, 32]. As stated in the
 271 Eq. A.18, the $SGDC(r)$ is a bounded measure in the range $[0, 1]$ and quantifies
 272 how much the group delay varies across the spectral components conforming
 273 the activity of interest $x_r(t)$. On the one hand, constant group delay values
 274 $\tau_r(\omega) \propto -\Delta\phi_r(\omega)$ across the spectral components produce $|SGDC(r)| \approx 1$ in-
 275 dicating a high SGDC, which is associated with high burstiness of the signal
 276 $x_r(t)$ (see Figs. A.2A-E and A.3A-E). On the other hand, in the case of group
 277 delay values varying randomly (or non-linearly) across the spectral components
 278 produces $|SGDC(r)| \approx 0$ indicating low SGDC associated with low burstiness
 279 of the signal $x_r(t)$ (see Figs. A.2F-J and A.3F-J). Similarly, the $SGDC(\omega)$ de-
 280 fined in the Eq. A.19 is a bounded measure in the range $[0, 1]$ and quantifies how
 281 much the spectral group delay at a given frequency ω , varies across the brain
 282 regions r . On the one hand, constant group delay values $\tau_r(\omega) \propto -\Delta\phi_r(\omega)$
 283 across the brain regions produce $|SGDC(\omega)| \approx 1$ indicating a high group de-
 284 lay consistency, which is associated with high cross-regional synchronization of
 285 the bursts at a given frequency ω . On the other hand, in the case of group
 286 delay values varying randomly (or non-linearly) across the brain regions pro-
 287 duces $|SGDC(\omega)| \approx 0$ indicating low group delay consistency associated with
 288 low cross-regional synchronization of the bursts at a given frequency ω . Now
 289 we will consider the more general case in which $\Delta\omega(k) \neq \text{cte}$. In line with the
 290 previous analysis, the SGDC measures can be defined in terms of the linear
 291 variance of the group delay $\text{Var}(\tau)$ as follows,

$$|SGDC| = 1 - \frac{\text{Var}(\tau)}{\max\{\text{Var}(\tau)\}} \in [0, 1] \quad (\text{A.21})$$

$$\text{Var}(\tau) = \frac{1}{N} \sum (\tau - \langle \tau \rangle)^2 \quad (\text{A.22})$$

292 In the Eq. A.22, the mean group delay value $\langle \tau \rangle$ and the the sum associated with
 293 the linear variance $\text{Var}(\tau)$ are computed across the N frequency values ω or brain
 294 regions r in which case the Eq. A.21 produces $|SGDC(r)|$ or $|SGDC(\omega)|$, re-
 295 spectively. Importantly, the Eqs. A.18, A.19 and A.21 constitute an specialized
 296 framework to quantify the emergence of large-scale bursts (i.e., salient network
 297 events) from the brain activity. That is, the $SGDC(r)$ assesses the emergence
 298 of local above-threshold fluctuations from the spectral components constituting
 299 the activity of a single brain region, whereas the $SGDC(\omega)$ measure quantifies

300 the synchronization of the above-threshold bursts across brain regions. In line
 301 with this, we introduce the pairwise spectral group delay consistency (pSGDC)
 302 to quantify the burstiness and cross-regional bursts synchronization in a single
 303 measure. In the case of $\Delta\omega(\omega) = \Delta\omega = \text{const}$, the pSGDC is defined as follows,

$$pSGDC(r_1, r_2) = \underbrace{\left(\frac{SGDC(r_1) + SGDC(r_2)}{2} \right)}_{\text{Mean pairwise burstiness}} \underbrace{\frac{1}{N} \sum_{\omega} e^{-i(\Delta\phi_1(\omega) - \Delta\phi_2(\omega))}}_{\text{Correlation of burstiness across } \omega} \quad (\text{A.23})$$

: $\Delta\omega = \text{const}$ across r

304 In the Eq. A.23, the quantities $SGDC(r_1)$ and $SGDC(r_2)$ are computed using
 305 the Eq. A.18. In the case of $\Delta\omega(\omega) \neq \text{cte}$ the pSGDC is defined as follows,

$$pSGDC(r_1, r_2) = \underbrace{\left(\frac{SGDC(r_1) + SGDC(r_2)}{2} \right)}_{\text{Mean pairwise burstiness}} \underbrace{\frac{\text{Cov}(\tau_1(\omega), \tau_2(\omega))}{\text{Var}(\tau_1(\omega)) \text{Var}(\tau_2(\omega))}}_{\text{Correlation of burstiness across } \omega} \quad (\text{A.24})$$

$$\text{Cov}(\tau_1(\omega), \tau_2(\omega)) = \frac{1}{N} \sum_{\omega} (\tau_1(\omega) - \langle \tau_1(\omega) \rangle) (\tau_2(\omega) - \langle \tau_2(\omega) \rangle)$$

306 In the Eq. A.24, the quantities $SGDC(r_1)$ and $SGDC(r_2)$ are computed using
 307 the Eqs. A.21 and A.22. Besides, the quantities $\text{Var}(\tau_1(\omega))$ and $\text{Var}(\tau_2(\omega))$ are
 308 computed using the Eq. A.22. In both cases the sum associated with the Eq.
 309 A.22 is computed over the frequency values ω . The Eqs. A.23 and A.24 show
 310 that the $pSGDC(r_1, r_2)$ is a linear measure conformed by a factor quantifying
 311 the cross-regional correlation between the group delays across the frequency val-
 312 ues, weighted by a coefficient quantifying the burstiness of the two involved brain
 313 regions (r_1, r_2) . Importantly, we found that the pSGDC performs similarly to
 314 the cokurtosis (fourth standardized cross central moment) [28] in reproducing
 315 the observed salient events topographies and co-activation patterns (see Fig. 7
 316 in Section 3.6 of the main text). This is particularly interesting taking into ac-
 317 count that these two non-time-resolved measures (i.e., computed on the whole
 318 time series) effectively reproduce the salient events topographies through two
 319 different approaches. That is, the cokurtosis is a non-linear time-domain mea-
 320 sure, whereas the pSGDC is a linear measure entirely based on the frequency-
 321 domain. Moreover, the pSGDC and cokurtosis disclose a better performance to
 322 reproduce the observed salient events topographies and co-activation patterns
 323 when compared to the kurtosis (scaled version of the fourth central moment)
 324 and the Pearson's linear correlation (see discussion in Section 3.6 of the main
 325 text). These results are consistent with the fact that kurtosis measures the pres-
 326 ence of outliers (tails of the distribution of amplitude values) and the Pearson's
 327 correlation coefficient the linear correlations between the two time series. On
 328 the other hand, pSGDC and cokurtosis measures quantify these two features
 329 simultaneously. In this work the kurtosis (K) and the cokurtosis (CK) were

³³⁰ assessed via the following standard unbiased estimators,

$$\begin{aligned}
 K(r) &= \frac{(N_s - 1)}{(N_s - 2)(N_s - 3)} \left((N_s + 1)k(r) - 3(N_s - 1) \right) \quad (\text{A.25}) \\
 k(r) &= \frac{\mu_{r,4}}{\sigma_r^4} \\
 \mu_{r,4} &= \frac{1}{N_s} \sum_t (x_r - \langle x_r \rangle)^4 \\
 \sigma_r^4 &= \left(\frac{1}{N_s} \sum_t (x_r - \langle x_r \rangle)^2 \right)^2
 \end{aligned}$$

³³¹

$$\begin{aligned}
 CK(r_1, r_2) &= \frac{ck(r_1, r_2)}{\sigma_1^2 \sigma_2^2} \quad (\text{A.26}) \\
 ck(r_1, r_2) &= \frac{1}{N_s} \sum_t (x_1 - \langle x_1 \rangle)^2 (x_2 - \langle x_2 \rangle)^2 \\
 \sigma_r^2 &= \frac{1}{N_s} \sum_t (x_r - \langle x_r \rangle)^2
 \end{aligned}$$

³³² In the Eqs. A.25 and A.26, N_s is the number of time samples and $\langle \cdot \rangle$ stands for
³³³ mean value across the time samples.

³³⁴ In the rest of this section, we present illustrative examples using the Eqs. A.18
³³⁵ and A.19 on synthetic multi-channel bursts emerging from narrowband oscillatory
³³⁶ activity. Fig. A.4 shows the $|SGDC(r)|$ computed using the Eq. A.18 for
³³⁷ three time series synthesized using the Eq. A.11. In each channel, the signal
³³⁸ was synthesized by the linear superposition of 10 sinusoidal tones with uniformly
³³⁹ spaced frequencies ($\Delta\omega = \text{const}$) in the range $f_s \omega/(2\pi) \in [0.5 - 3]$ Hz. In chan-
³⁴⁰nels 1 and 2, the phase of the tones were set as a quadratic function of the fre-
³⁴¹quency within the range $\phi_1(\omega) \propto 2\pi\omega^2 \in [-2\pi, 2\pi]$ and $\phi_2(\omega) \propto \pi\omega^2 \in [-\pi, \pi]$,
³⁴² respectively. In channel 3, the phase of the tones were set as a linear function
³⁴³ of the frequency within the range $\phi_3(\omega) \propto \pi\omega \in [-\pi, \pi]$. Fig. A.4B shows that
³⁴⁴ the higher the burstiness (i.e., amplitude of the transient fluctuations) disclosed
³⁴⁵ by the resulting signal (see solid black line in the Fig. A.4A), the higher the
³⁴⁶ $|SGDC(r)|$ value. The channel 3, corresponding to the tones having a linear
³⁴⁷ phase dependence with the frequency, discloses the maximum $|SGDC(r)| \approx 1$.

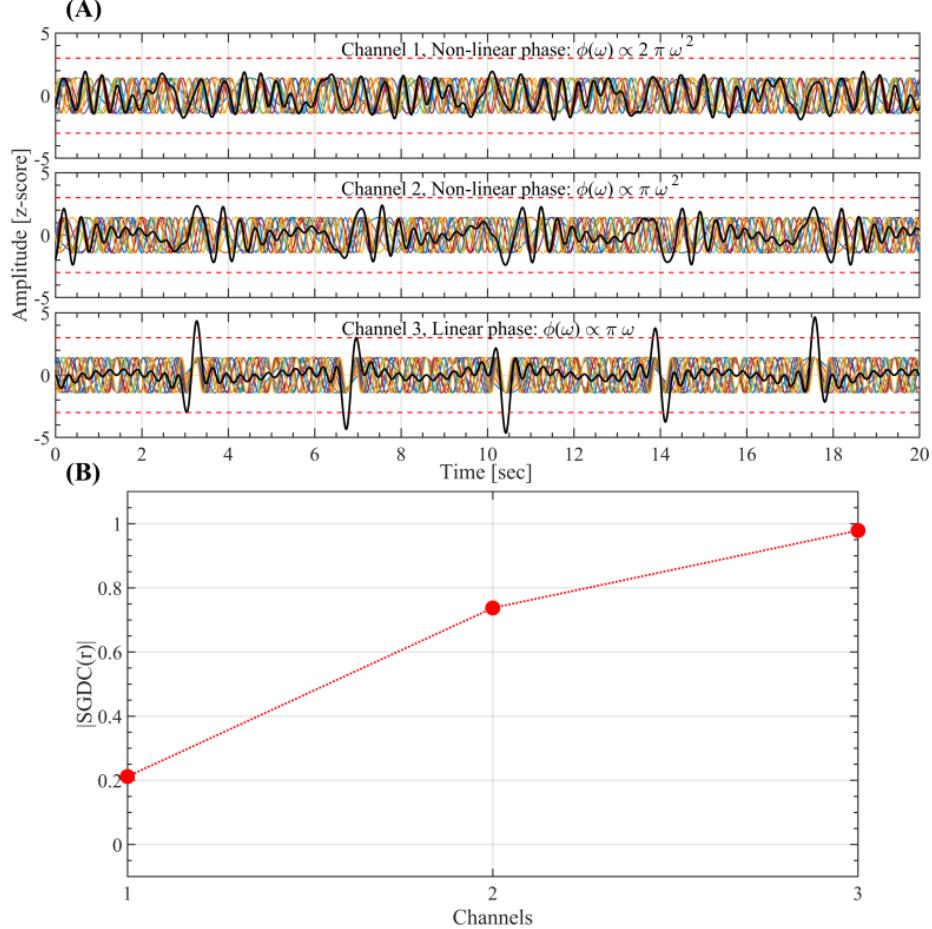


Figure A.4: $SGDC(r)$ computed using the Eq. A.18 on a multi-channel configuration. (A) Three time series $x_r(t)$ (black solid lines) synthesized using the Eq. A.11. In each channel, the signal $x_r(t)$ was synthesized by the linear superposition of 10 sinusoidal tones (colored solid lines) with unitary amplitude and uniformly spaced frequencies ($f_s \Delta\omega/(2\pi) = 0.278$ Hz) within the range $f_s \omega(k)/(2\pi) = 0.5 + k f_s \Delta\omega/(2\pi) \in [0.5 - 3]$ Hz. In the channels 1 and 2, the phase of the tones were set as a quadratic function of the frequency within the range $\phi_1(\omega) \propto 2\pi\omega^2 \in [-2\pi, 2\pi]$ and $\phi_2(\omega) \propto \pi\omega^2 \in [-\pi, \pi]$, respectively. In the channel 3, the phase of the tones were set as a linear function of the frequency within the range $\phi_3(\omega) \propto \pi\omega \in [-\pi, \pi]$. (B) Modulus of the $SGDC(r)$ for each channel. Note that the higher the burstiness (i.e., amplitude of the transient fluctuations) disclosed by the resulting signal (see solid black line in the panel A), the higher the $|SGDC(r)|$ value. As expected, the channel 3 corresponding to the tones having a linear phase dependence with the frequency discloses the maximum $|SGDC(r)| \approx 1$.

348 Figs. A.5 and A.6 show the $SGDC(\omega)$ computed using the Eq. A.19 com-
 349 pared against the Phase Locking Value (PLV) assessed using the following ex-

350 pression [65, 32],

$$PLV = \frac{1}{N} \sum_t e^{i(n\psi(t) - m\theta(t))} \quad (\text{A.27})$$

351 In Eq. A.27, $\psi(t)$ and $\theta(t)$ are the phase time series of interest and the integers
 352 $n, m \in \mathbb{N}$ are required to allow the comparison of phase time series pertaining to
 353 different frequency bands. Of note, the $SGDC(\omega)$ quantifies, at each frequency
 354 value, the bursts synchronization across the brain regions (channels), whereas
 355 the PLV quantifies either local or cross-regional phase coherence between two
 356 frequency bands and it is not related to the signal burstiness, i.e., the PLV
 357 is not sensitive to the emergence of above-threshold fluctuations neither to the
 358 cross-regional synchronization of salient events. Fig. A.5A shows three channels
 359 in which the resulting time series (solid black line) have been synthesized as the
 360 linear superposition of 10 sinusoidal tones with uniformly spaced frequencies
 361 ($\Delta\omega = \text{const}$) in the range $f_s \omega/(2\pi) \in [0.5 - 3]$ Hz (see Eq. A.11). In each
 362 channel, the phase of all the oscillatory components was set to zero ($\phi_r(\omega) =$
 363 $0 \forall \omega$). The local and cross-regional effects of this setup can be summarized as
 364 follows,

- 365 • In each channel (local effect), we obtain the maximum group delay consistency
 366 across frequency values accounting for the emergence of above-threshold
 367 fluctuations. That is, $\phi_r(\omega) = 0 \implies \Delta\phi_r(\omega) = 0 \implies \tau_r(\omega) =$
 368 $-\Delta\phi_r/\Delta\omega = 0 = \text{cte} \implies SGDC(r) = 1 : r = 1, 2, 3$ (data not shown).
- 369 • At each frequency, we obtain the maximum group delay consistency across
 370 channels (cross-regional effect) accounting for the synchronization of the
 371 salient events across the channels. That is, $\phi_r(\omega) = 0 \implies \Delta\phi_r(\omega) =$
 372 $0 \implies \tau_r(\omega) = -\Delta\phi_r/\Delta\omega = 0 = \text{cte} \implies SGDC(\omega) = 1 \forall \omega$. The
 373 resulting $|SGDC(\omega)|$ is shown in Fig. A.5B.
- 374 • At each frequency, we obtain the maximum phase coherence across channels
 375 (cross-regional effect). That is, $\psi_{r,\omega}(t) - \theta_{r',\omega}(t) = 0 \implies |PLV| =$
 376 $1 \forall \omega$, where the phase time series $\psi_{r,\omega}(t)$ and $\theta_{r',\omega}(t)$ were extracted from
 377 different channels $((r, r') \in \{1, 2, 3\} : r \neq r')$ and evaluated at the same
 378 frequency ω . In other words, $\psi_{r,\omega}(t)$ and $\theta_{r',\omega}(t)$ are the phase time
 379 series associated with two tones homologous in frequency and pertaining to
 380 different channels. The resulting $|PLV|$ is shown in the Fig. A.5B.

381 Fig. A.5C shows three time series constituted by the same 10 tones used in
 382 Fig. A.5A, with the difference that in this case the phase of the tones were
 383 set as $\phi_1(\omega) = 0$, $\phi_2(\omega) \propto -3\pi\omega$ and $\phi_3(\omega) \propto +3\pi\omega$ for the channel 1, 2
 384 and 3, respectively. The linear phase dependence with the frequency associated
 385 with the channels 2 and 3 produces a time-shift in the resulting signals. As a
 386 consequence, in this multi-channel configuration the resulting above-threshold
 387 fluctuations are not synchronized across channels (see the solid black lines in
 388 the Fig. A.5C). In this case, the SGDC and PLV measures result,

389 • In each channel (local effect), we obtain the maximum group delay con-
390 sistency across frequency values accounting for the emergence of above-
391 threshold fluctuations. That is, $\Delta\phi_r(\omega) = \text{const} \implies \tau_r(\omega) = -\Delta\phi_r/\Delta\omega =$
392 cte $\implies SGDC(r) = 1 : r = 1, 2, 3$. Note that this result is similar to
393 what we obtained for a constant group delay (i.e., not a function of the
394 frequency) associated with the channel 3 shown in Fig. A.4.

395 • At each frequency, we obtain a low group delay consistency across channels
396 (cross-regional effect) accounting for the lack synchronization of the salient
397 events across the channels. That is, $\Delta\phi_1(\omega) = 0, \Delta\phi_2(\omega) < 0, \Delta\phi_3(\omega) >$
398 0 $\implies \tau_1(\omega) = 0, \tau_2(\omega) > 0, \tau_3(\omega) < 0 \implies SGDC(\omega) \approx 0 \forall \omega$. The
399 resulting $|SGDC(\omega)|$ is shown in the Fig. A.5D.

400 • At each frequency, we obtain the maximum phase coherence across chan-
401 nels (cross-regional effect). That is, $\psi_{r,\omega}(t) - \theta_{r',\omega}(t) = \text{const} \implies$
402 $|PLV| = 1 \forall \omega$, where the phase time series $\psi_{r,\omega}(t)$ and $\theta_{r',\omega}(t)$ were
403 extracted from different channels $((r, r') \in \{1, 2, 3\} : r \neq r')$ and eval-
404 uated at the same frequency ω . In other words, $\psi_{r,\omega}(t)$ and $\theta_{r',\omega}(t)$ are the
405 phase time series associated with two tones homologous in frequency and
406 pertaining to different channels. The resulting $|PLV|$ is shown in the Fig.
407 A.5D.

408 It is essential to note that, the $SGDC(\omega)$ measure is highly sensitive to the
409 cross-regional synchronization of the salient events, whereas the PLV measure
410 is completely blind to this effect (compare Figs. A.5B and A.5D).

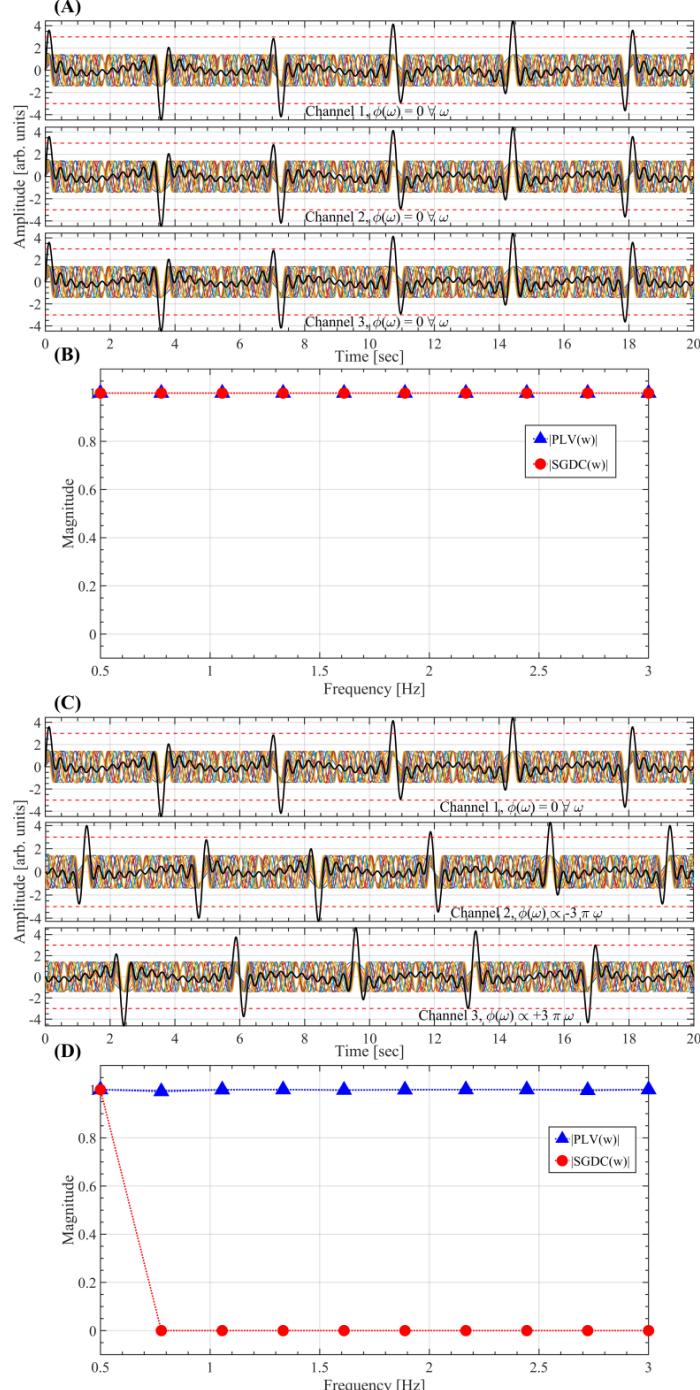


Figure A.5: $SGDC(\omega)$ computed using the Eq. A.19 on a multi-channel configuration. (A) Three time series $x_r(t)$ (black solid lines) synthesized using the Eq. A.11. In each channel, the signal $x_r(t)$ was synthesized by the linear superposition of 10 sinusoidal tones (colored solid lines) with unitary amplitude and uniformly spaced frequencies ($f_s \Delta\omega/(2\pi) = 0.278$ Hz) within the range $f_s \omega(k)/(2\pi) = 0.5 + k 20 \Delta\omega/(2\pi) \in [0.5 – 3]$ Hz. In each channel, the phase of all the oscillatory components was set to zero ($\phi_r(\omega) = 0 \forall \omega$). (B) $SGDC(\omega)$ and PLV measures computed using the Eqs. A.19 and A.27, respectively, for the multi-channel configuration shown in panel A. (C) Same as in A, but in this case the phase of the tones were set as $\phi_1(\omega) = 0$, $\phi_2(\omega) \propto -3\pi\omega$ and $\phi_3(\omega) \propto +3\pi\omega$ for the channel 1, 2 and 3, respectively. (D) Same as in B for the multi-channel configuration shown in panel C.

411 Fig. A.6A shows three time series constituted by the same 10 tones used in
 412 Figs. A.5A and A.5C with the difference that in this case the phase of the tones
 413 were set as follows,

$$\begin{aligned}\phi_1(\omega) &= 0 \quad \forall \omega \text{ (LF+HF)} \\ \phi_2(\omega) &\propto \begin{cases} 0, & \forall 0.5\text{Hz} \leq f_s \omega/(2\pi) \leq 1.5\text{Hz} \text{ (LF)} \\ -3\pi\omega, & \forall 1.5\text{Hz} \leq f_s \omega/(2\pi) \leq 3\text{Hz} \text{ (HF)} \end{cases} \\ \phi_3(\omega) &\propto \begin{cases} 0, & \forall 0.5\text{Hz} \leq f_s \omega/(2\pi) \leq 1.5\text{Hz} \text{ (LF)} \\ +3\pi\omega, & \forall 0.5\text{Hz} \leq f_s \omega/(2\pi) \leq 1.5\text{Hz} \text{ (HF)} \end{cases}\end{aligned}\quad (\text{A.28})$$

414 This phase configuration produce LF transient fluctuations co-occurring across
 415 the channels, while the resulting HF transient fluctuations are not synchronized
 416 across the channels (see Fig. A.6A). Importantly, the $SGDC(\omega)$ effectively dis-
 417 criminate the cross-regional synchronization of the transient fluctuations across
 418 the frequency values, whereas the PLV measure is again completely blind to
 419 this effect (see Fig. A.6B). Fig. A.6C shows three time series constituted by
 420 the same 10 tones used in Fig. A.6A (see Eq. A.11) with the difference that in
 421 this case the phase of the tones were set as follows,

$$\begin{aligned}\phi_1(\omega) &= 0 \quad \forall \omega \text{ (LF+HF)} \\ \phi_2(\omega) &\propto \begin{cases} -3\pi\omega, & \forall 0.5\text{Hz} \leq f_s \omega/(2\pi) \leq 1.5\text{Hz} \text{ (LF)} \\ 0, & \forall 1.5\text{Hz} \leq f_s \omega/(2\pi) \leq 3\text{Hz} \text{ (HF)} \end{cases} \\ \phi_3(\omega) &\propto \begin{cases} +3\pi\omega, & \forall 0.5\text{Hz} \leq f_s \omega/(2\pi) \leq 1.5\text{Hz} \text{ (LF)} \\ 0, & \forall 0.5\text{Hz} \leq f_s \omega/(2\pi) \leq 1.5\text{Hz} \text{ (HF)} \end{cases}\end{aligned}\quad (\text{A.29})$$

422 Similarly to the previous case, the $SGDC(\omega)$ effectively discriminate the cross-
 423 regional synchronization of the transient fluctuations across the frequency val-
 424 ues, whereas the PLV measure is again completely blind to this effect (see Fig.
 425 A.6D). It is worth mentioning that $\Delta\phi_r(\omega)$ in the Eq. A.19 is the incremen-
 426 tal phase between adjacent spectral components associated with the activity
 427 $x_r(t)$ of the brain region r . Thus, for N spectral components we obtain $N - 1$
 428 incremental phase values $\Delta\phi_r(\omega)$. As a convention, we add an extra value
 429 $\Delta\phi_r(\omega) = 0$ as the first element (i.e., lowest frequency) of the list of incremental
 430 phase values. Hence, for N spectral components the Eqs. A.18 and A.19 pro-
 431 duce N values of $SGDC$. In particular, the first value (i.e., lowest frequency) of
 432 $SGDC(\omega)$, associated with the artificially added $\Delta\phi_r(\omega) = 0$, is always equal
 433 to 1 (this becomes evident in the Figs. A.5D and A.6D).

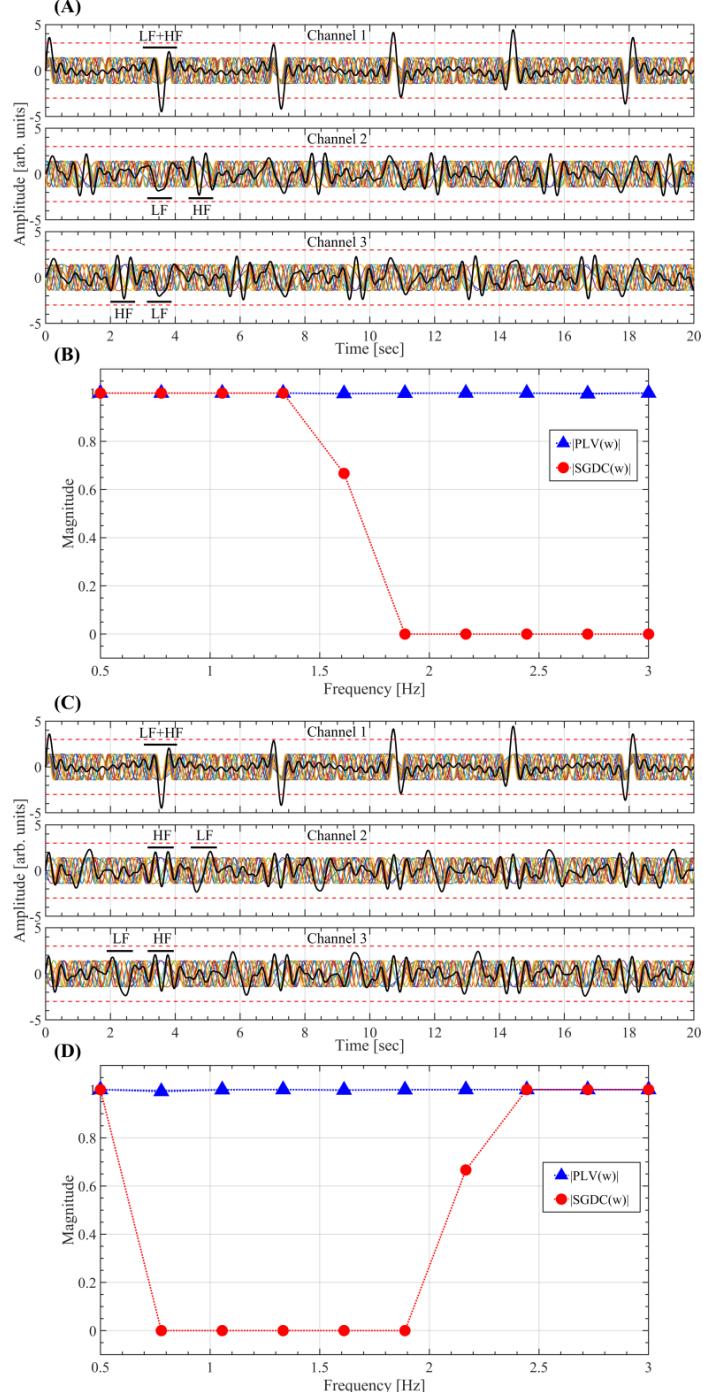


Figure A.6: $SGDC(\omega)$ computed using the Eq. A.19 on a multi-channel configuration. (A) Three time series $x_r(t)$ (black solid lines) synthesized using the Eq. A.11. In each channel, the signal $x_r(t)$ was synthesized by the linear superposition of 10 sinusoidal tones (colored solid lines) with unitary amplitude and uniformly spaced frequencies ($f_s \Delta\omega/(2\pi) = 0.278$ Hz) within the range $f_s \omega(k)/(2\pi) = 0.5 + k 22 \Delta\omega/(2\pi) \in [0.5 – 3]$ Hz. In each channel, the phases of the oscillatory components were configured as stated in the set of Eqs. A.28. (B) $SGDC(\omega)$ and PLV measures computed using the Eqs. A.19 and A.27, respectively, for the multi-channel configuration shown in panel A. (C) Same as in A, but in this case the phase of the tones were configured as stated in the set of Eqs. A.29. (D) Same as in B for the multi-channel configuration shown in panel C.

434 *Appendix A.4. Spectral group delay consistency in the surrogate data*

435 Here we analytically show that, on the one hand, A-surrogates significantly
 436 reduce the spectral group delay consistency (SGDC) across both frequency com-
 437 ponents ($SGDC(r)$) and brain regions ($SGDC(\omega)$). On the other hand, B-
 438 surrogates significantly reduce the SGDC across frequency components ($SGDC(r)$),
 439 while preserving the SGDC across brain regions ($SGDC(\omega)$).

440 We start by recalling the definition of $SGDC(r)$ and $SGDC(\omega)$ for a multi-
 441 regional time series $x_r(t)$,

$$\begin{aligned} \mathfrak{F}\{x_r(t)\} &= X_r(\omega) = A_r(\omega)e^{i\phi_r(\omega)} \\ \Delta\phi_r(\omega) &= \phi_r(\omega + \Delta\omega) - \phi_r(\omega) \\ SGDC(r) &= \frac{1}{N} \sum_{\omega} e^{-i\Delta\phi_r(\omega)} : \Delta\omega = \text{const across } r \end{aligned} \quad (\text{A.30})$$

$$SGDC(\omega) = \frac{1}{N} \sum_r e^{-i\Delta\phi_r(\omega)} : \Delta\omega = \text{const across } \omega \quad (\text{A.31})$$

442 where $A_r(\omega)$ and $\phi_r(\omega)$ are the amplitude and phase Fourier spectra, respec-
 443 tively. In Eqs. A.30 and A.31, N is the number of either frequency values
 444 or brain regions, respectively, and $\Delta\phi_r(\omega)$ is the incremental phase computed
 445 across the spectral components of the DFT spectrum $X_r(\omega)$ associated with
 446 the signals $x_r(t)$. In the case of the surrogate multi-regional time series $x_r^s(t)$,
 447 obtained by phase randomization of the original time series in the frequency-
 448 domain, we have,

$$\begin{aligned} \mathfrak{F}\{x_r^s(t)\} &= X_r^s(\omega) = A_r(\omega)e^{i(\phi_r(\omega)+\theta_r(\omega))} \\ SGDC^s(r) &= \frac{1}{N} \sum_{\omega} e^{-i(\Delta\phi_r(\omega)+\Delta\theta_r(\omega))} : \Delta\omega = \text{const across } r \end{aligned} \quad (\text{A.32})$$

$$SGDC^s(\omega) = \frac{1}{N} \sum_r e^{-i(\Delta\phi_r(\omega)+\Delta\theta_r(\omega))} : \Delta\omega = \text{const across } \omega \quad (\text{A.33})$$

449 In the Eqs. A.32 and A.33, $\Delta\theta_r(\omega)$ is the incremental phase associated with the
 450 random phase-shift $\theta_r(\omega)$ extracted from the surrogate DFT spectrum $X_r^s(\omega)$
 451 of each brain region r . Let us consider two extreme cases derived from the Eqs.
 452 A.30 and A.32 with $\Delta\theta_r(\omega)$ varying randomly across ω ,

453 1 For $\Delta\phi_r(\omega) \approx \text{const} \implies |SGDC(r)| \approx 1 > |SGDC^s(r)| \approx 0$.
 454 2 For $\Delta\phi_r(\omega)$ varying randomly across $\omega \implies |SGDC(r)| \approx |SGDC^s(r)| \approx 0$.

455 From these two extreme cases we infer that, for $\theta_r(\omega)$ varying randomly across
 456 ω , $|SGDC(r)|$ is the upper bound of $|SGDC^s(r)|$. As a consequence, for the A-
 457 and B-surrogates in general we obtain $|SGDC^s(r)| < |SGDC(r)|$. Similarly, in
 458 the case of A-surrogates computed with $\theta_r(\omega)$ varying randomly across the brain
 459 regions r , Eqs. A.31 and A.33 in general produce $|SGDC^s(\omega)| < |SGDC(\omega)|$.
 460 In the particular case of the B-surrogates, at each frequency ω we add the
 461 same phase-shift value $\theta_r(\omega)$ in all the brain regions r , producing $\Delta\theta_r(\omega) =$

462 $\Delta\theta(\omega) \forall 1 \leq r \leq N$. As a consequence, by taking the modulus in both sides
463 of the Eq. A.33 we obtain the equivalence between the true data and the B-
464 surrogate in terms of $|SGDC(\omega)|$,

$$\begin{aligned} |SGDC^s(\omega)| &= \left| e^{-i\Delta\theta(\omega)} \frac{1}{N} \sum_r e^{-i\Delta\phi_r(\omega)} \right| \\ &= |e^{-i\Delta\theta(\omega)} SGDC(\omega)| \\ &= |SGDC(\omega)| \end{aligned}$$

465 We confirmed this analytical results by computing the $SGDC(r)$ and $SGDC(\omega)$
466 measures on the whole time series of our empirical MEG dataset and the corre-
467 sponding A- and B-surrogates (see Section 2.8 in Methods). Fig. A.7A shows
468 that the magnitude of the $SGDC(r)$ measure is not preserved in both the A- and
469 B-surrogates. Besides, Fig. A.7B shows that the magnitude of the $SGDC(\omega)$
470 measure is preserved in the B-surrogates, and not in the case of A-surrogates.
471 Importantly, the reduction of the regional SGDC, as quantified by the $SGDC(r)$
472 measure, offers an analytical rationale supporting the evidence showing that B-
473 surrogates failed to reproduce the SEs observed in our MEG dataset (see Section
474 3.2) despite preserving both the regional PSDs and the cross-spectra (see Ap-
475 pendix A.1). It is important to note that this equivalence between the true
476 MEG data and the B-surrogates in terms of $|SGDC(\omega)|$ holds only when the
477 $SGDC(\omega)$ measure is computed on the whole time series (i.e., non-time-resolved
478 approach). On the other hand, if the $SGDC(r)$ and $SGDC(\omega)$ measures are
479 computed in a time-resolved manner on each salient event (see Fig. A.7C,D),
480 the equivalence between the true MEG data and the B-surrogates in terms of
481 $|SGDC(\omega)|$ does not longer hold. This is mainly due to the fact that true SEs
482 and B-surrogate SEs are different in duration and size and, more crucially, they
483 do not necessarily involve the same brain regions.

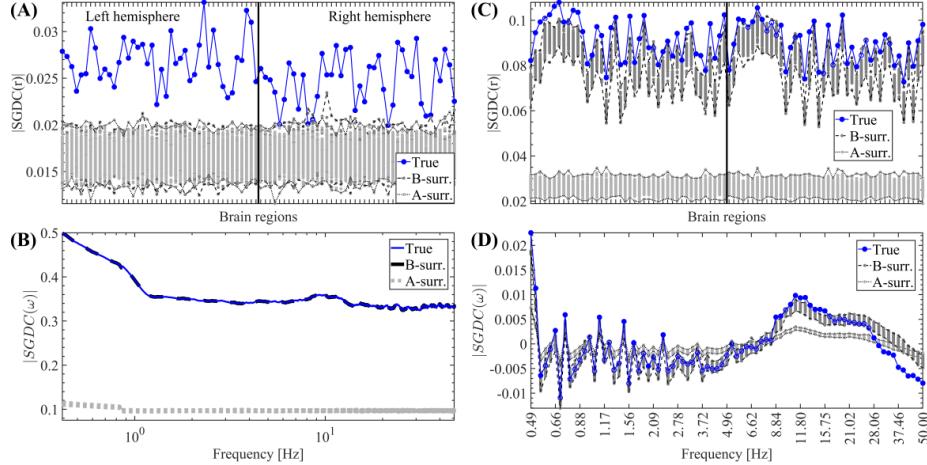


Figure A.7: Spatial profiles associated with the SGDC measures. (A) $SGDC(r)$ measure computed on the whole time series of each brain region (i.e., non-time-resolved approach). (B) $SGDC(\omega)$ measure computed on the whole time series of each brain region (i.e., non-time-resolved approach). Note that the pattern corresponding to the 100 B-surrogates (thick dashed black line) overlap with the spatial profile associated with the true MEG data (thin blue line). (C) $SGDC(r)$ measure computed on each detected SE by considering the brain regions and time interval associated with each particular event (i.e., time-resolved approach). (D) $SGDC(\omega)$ measure computed on each detected SE by considering the brain regions and time interval associated with each particular event (i.e., time-resolved approach). The labels and ordering of the brain regions are the same as those shown in Fig. C.2. Symbols and abbreviations: SE, Salient Event.

484 **Appendix B. Supplementary numerical modeling results**

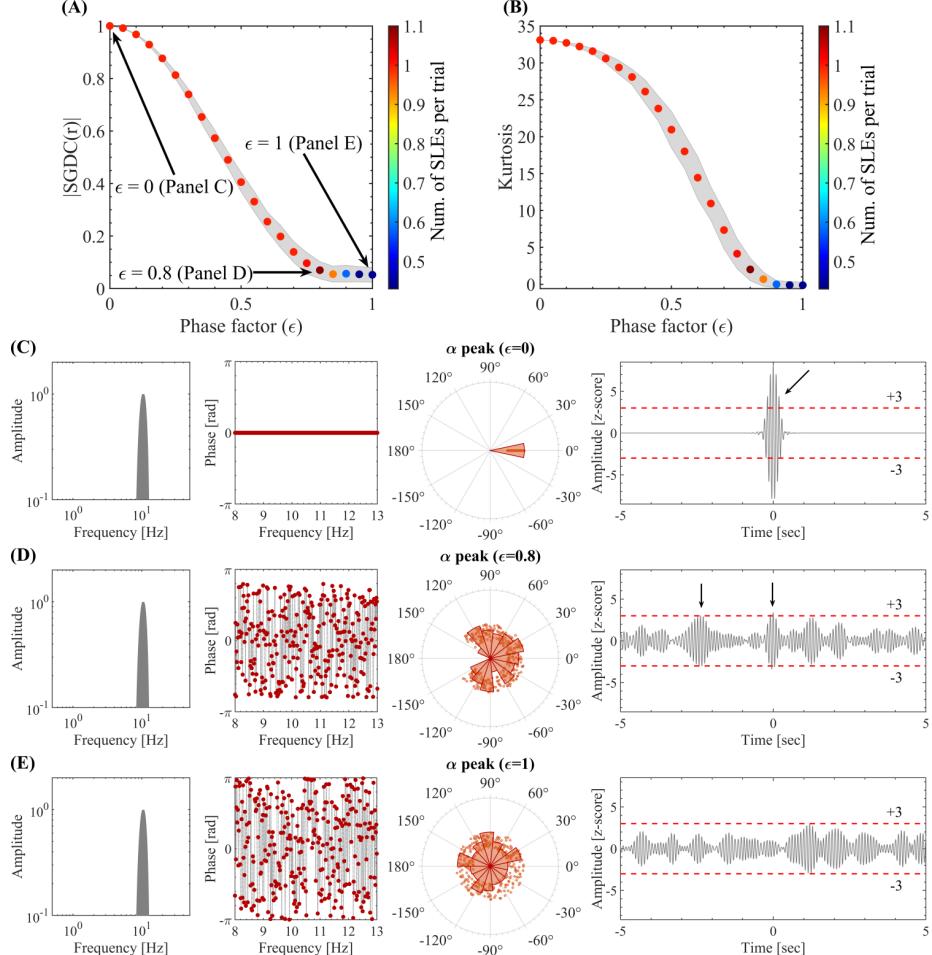
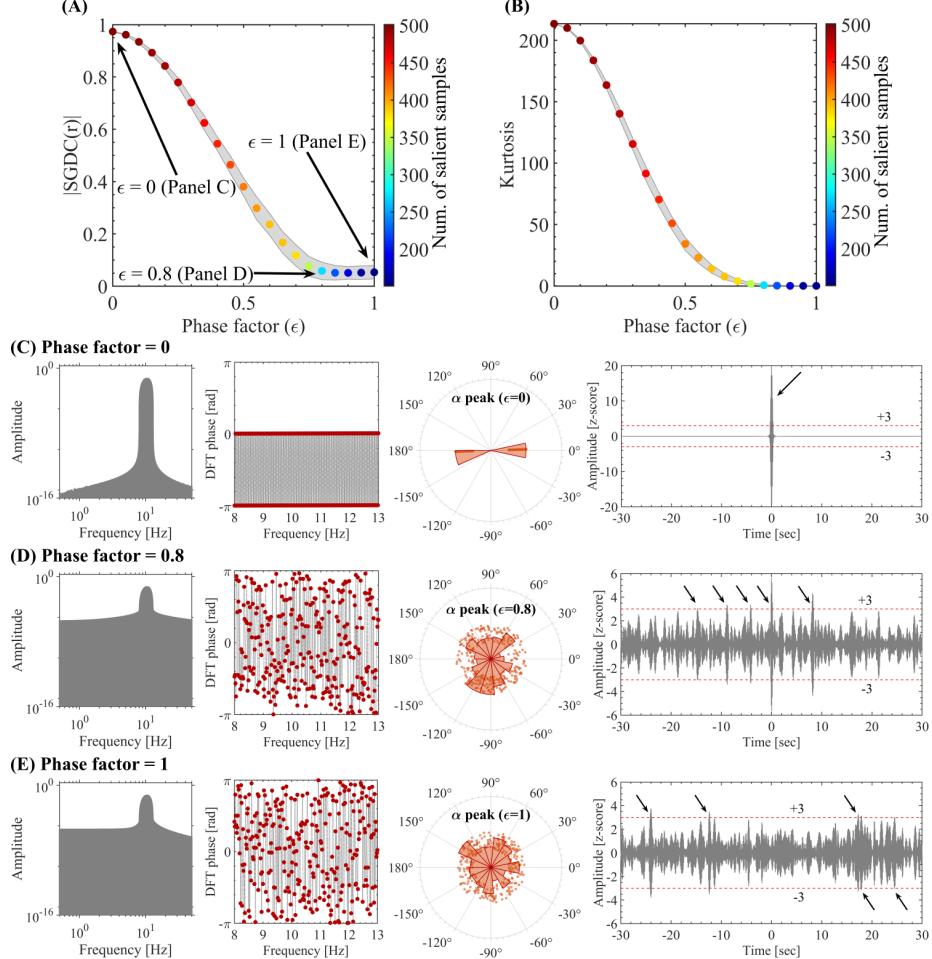


Figure B.1: Spectral group delay consistency underlies the emergence of local above-threshold fluctuations from NOS. (A) Spectral group delay consistency, as quantified by the $SGDC(r)$ measure, as a function of the phase factor values (ϵ). The colored markers indicate the mean $|SGDC(r)|$ value across 100 synthetic time series of 10 sec in duration (trials). The shaded error bars in gray correspond to the standard deviation around the mean value. The pseudocolor scale represents the mean number of SLEs per trial. The $SGDC(r)$ measure was obtained by computing the Eq. 1 on the synthetic phase values assigned to the spectral components in the alpha band. (B) Same as in A for the Kurtosis of the time series amplitude values, obtained by computing the Eq. A.25 on the signals in time-domain. (C) Amplitude spectrum (left), phase spectrum and distribution (middle), and resulting time series (right) corresponding to the signal model for a phase factor $\epsilon = 0$. For the amplitude spectrum we used a Hann window with a null-to-null bandwidth = 8-13 Hz, frequency resolution $df = 1/60\text{sec} \approx 0.017$ Hz. The phase values of the spectral components were constrained within the range $[-\epsilon\pi, \epsilon\pi]$ and having a random dependence with the frequency. The black arrows in the right-most panel highlight the above-threshold fluctuations disclosed by the signal. (D) Same as in C for a phase factor $\epsilon = 0.8$. (E) Same as in C for a phase factor $\epsilon = 1$. Symbols and abbreviations: SLEs, Salient Local Events; SGDC, Spectral Group Delay Consistency.



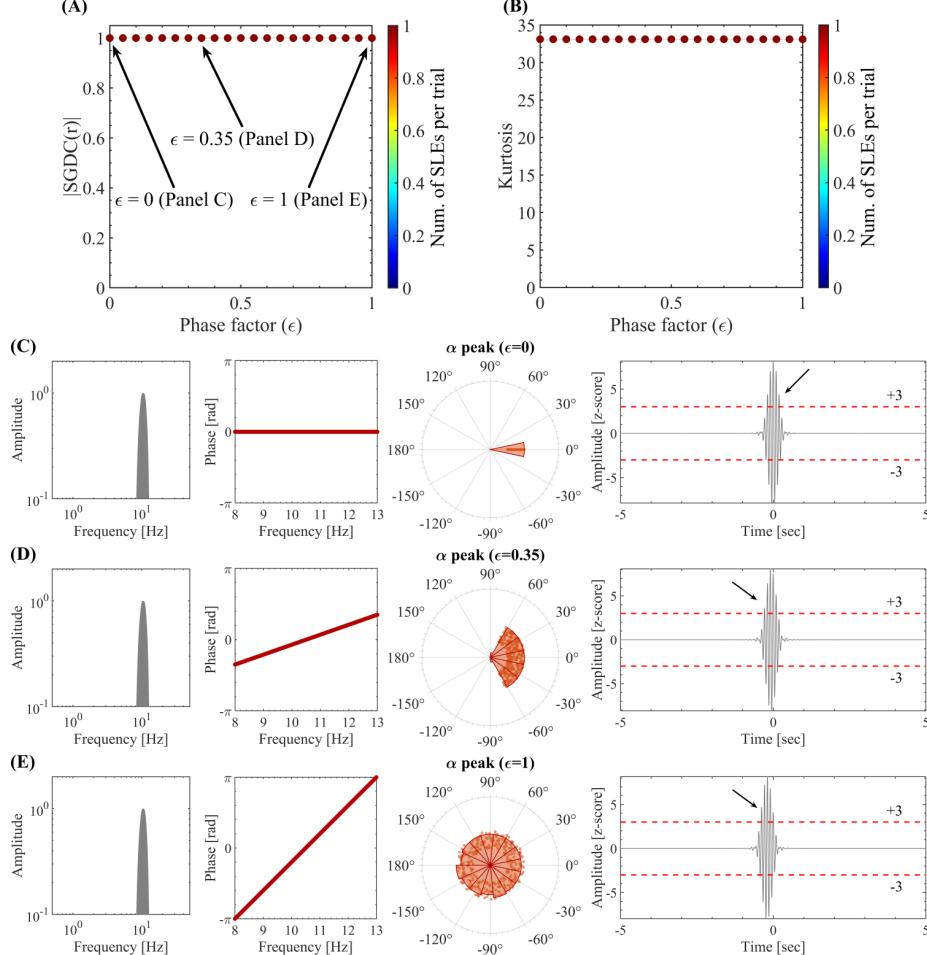


Figure B.3: Spectral group delay consistency underlies the emergence of local above-threshold fluctuations from NOs. (A) Spectral group delay consistency, as quantified by the $SGDC(r)$ measure, as a function of the phase factor values (ϵ). The colored markers indicate the mean $|SGDC(r)|$ value across 100 synthetic time series of 10 sec in duration (trials). The shaded error bars in gray correspond to the standard deviation around the mean value. The pseudocolor scale represents the mean number of SLEs per trial. The $SGDC(r)$ measure was obtained by computing the Eq. 1 on the synthetic phase values assigned to the spectral components in the alpha band. (B) Same as in A for the Kurtosis of the time series amplitude values, obtained by computing the Eq. A.25 on the signals in time-domain. (C) Amplitude spectrum (left), phase spectrum and distribution (middle), and resulting time series (right) corresponding to the signal model for a phase factor $\epsilon = 0$. For the amplitude spectrum we used a Hann window with a null-to-null bandwidth = 8-13 Hz, frequency resolution $df = 1/60\text{sec} \approx 0.017$ Hz. The phase values of the spectral components were constrained within the range $[-\epsilon\pi, \epsilon\pi]$ and having a linear dependence with the frequency. The black arrows in the right-most panel highlight the above-threshold fluctuations disclosed by the signal. (D) Same as in C for a phase factor $\epsilon = 0.35$. (E) Same as in C for a phase factor $\epsilon = 1$. Symbols and abbreviations: SLEs, Salient Local Events; SGDC, Spectral Group Delay Consistency.

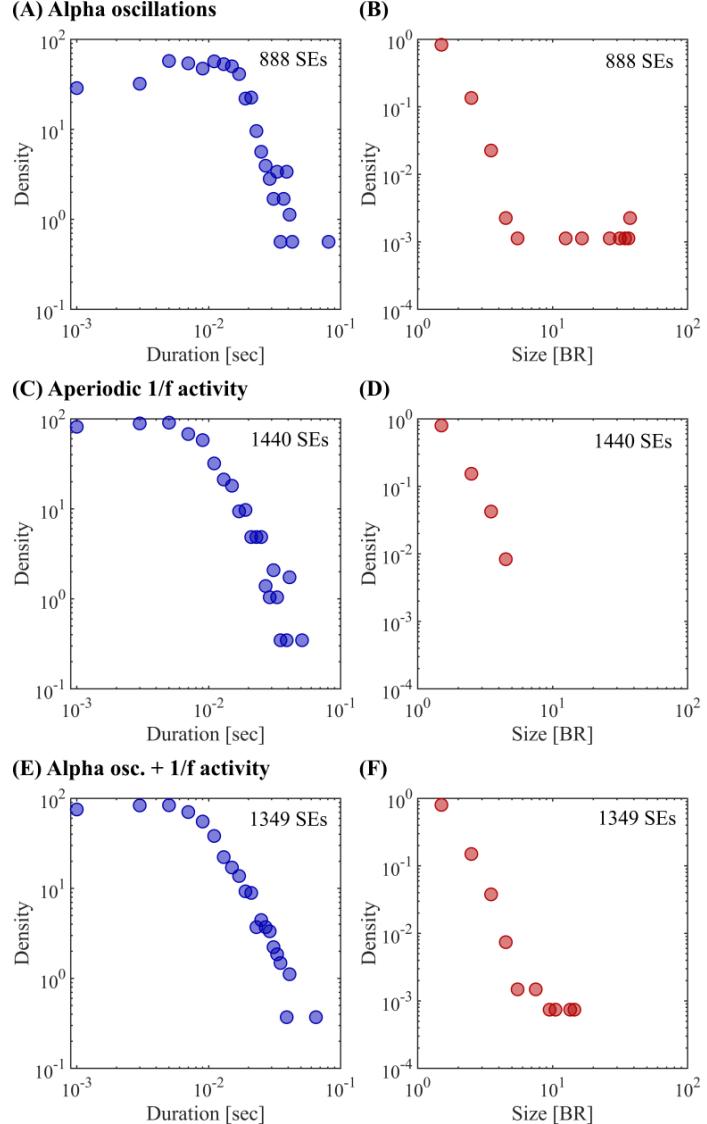


Figure B.4: Distributions of size and duration corresponding to the SEs detected in the large-scale signal model. (A-B) Large-scale model for SEs including only alpha oscillations (random phase values in the alpha band constrained to the range $[-\epsilon\pi, \epsilon\pi]$ with $\epsilon \in [0.75, 1]$). Panels A and B show the distribution of SEs duration and size, respectively, computed on all the SEs detected in a simulated time series of 1-minute duration. See Figs. 6A,B. (C-D) Same as in A-B for the large-scale model including only broadband 1/f activity, and no oscillatory activity in the alpha band nor phase consistency values were present ($\epsilon = 1$). See Figs. 6C,D. (E-F) Same as in A-B for the large-scale model including both broadband 1/f activity with non-constrained random phases ($\epsilon = 1$) and alpha oscillations with random phases constrained proportionally to the observed alpha power in the range ($\epsilon \in [0.75, 1]$). See Figs. 6E,F. Symbols and abbreviations: SEs, Salient Events.

485 **Appendix C. Supplementary empirical results including the deep sources**

486

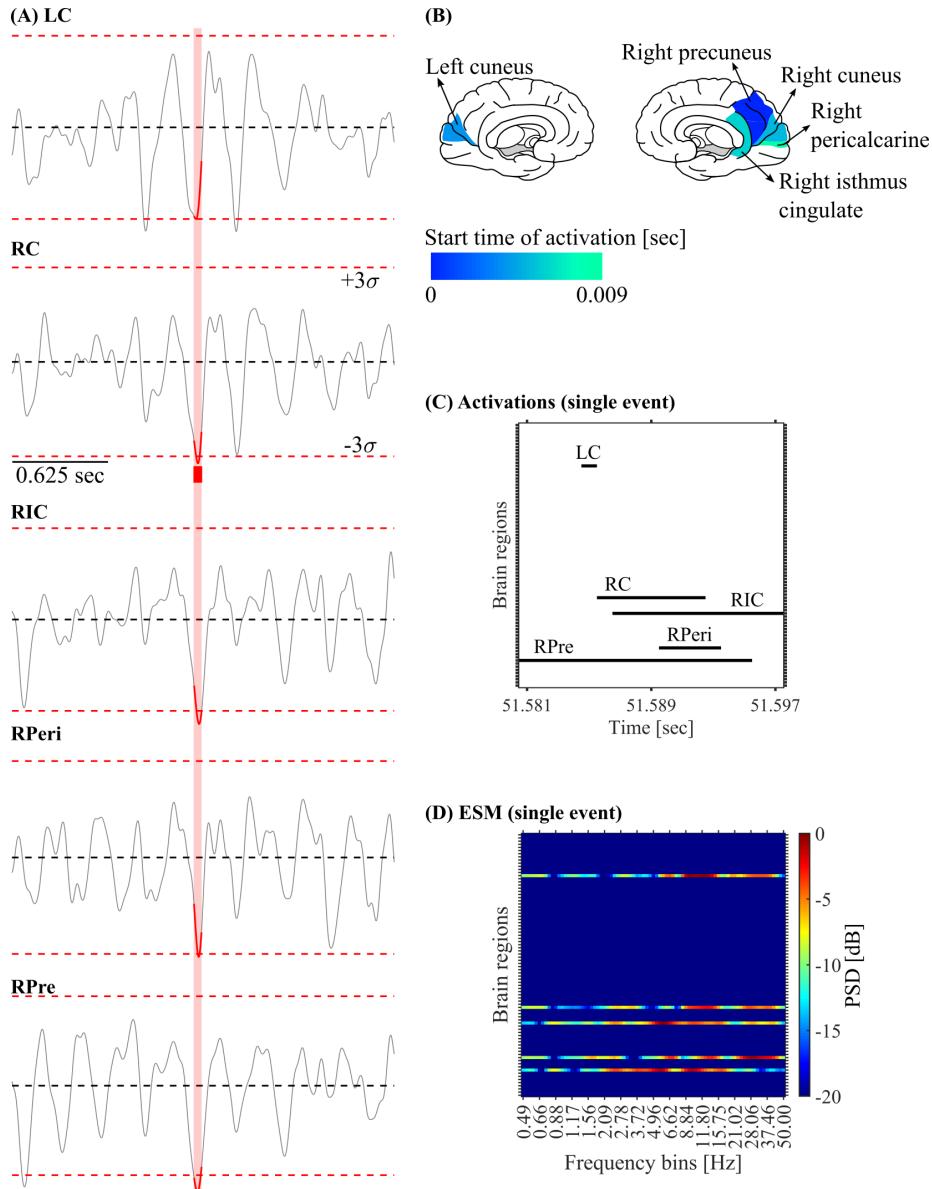


Figure C.1: Salient Network Event (SNE). (A) Z-scored time series disclosing the above-threshold fluctuations associated with a SNE observed in the source-reconstructed MEG data. The time interval in which at least one brain region is active (i.e., duration of the SNE) is highlighted in red. (B) Brain plots showing the activation start time of the 5 brain regions recruited by the SNE shown in panel A. (C) Activation matrix of the SNE shown in panel A. The black segments correspond to the time intervals in which each brain region was active (i.e., absolute amplitude $> 3\sigma$). (D) ESM corresponding to the SNE shown in panel A. Symbols and abbreviations: ESM, Event Spectral Matrix; MEG, Magnetoencephalography; RPre, Right Precuneus; RC, Right Cuneus; RPeri, Right Pericalcarine; RIC, Right Isthmus Cingulate; LC, Left Cuneus.

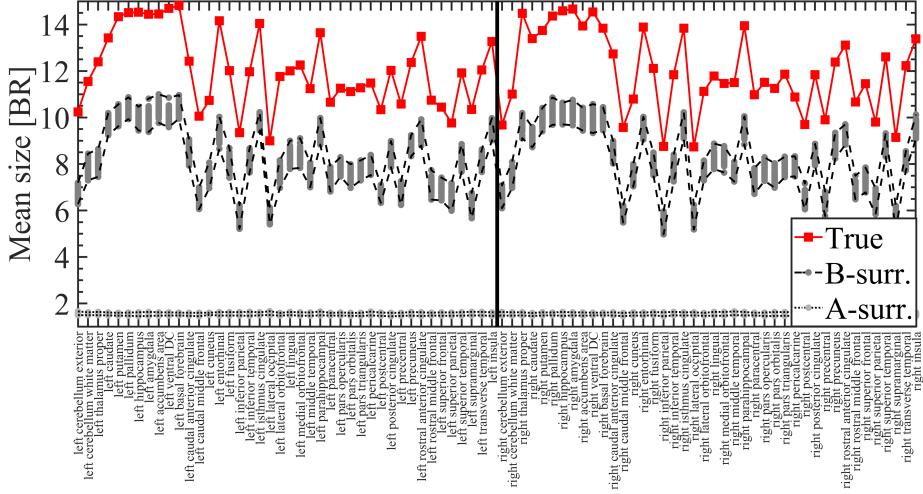


Figure C.2: Labels and ordering of the brain regions used to compute all the spatial profiles shown in this work. Spatial profile showing the mean size of SEs propagating through each brain region (mean value across the 47 participants, see Section 2.4 in Methods). The mean event size is shown for the MEG data together with the 100 A- and B-surrogates (see Section 2.8 in Methods). Symbols and abbreviations: SEs, Salient Events; BR, Brain Regions.

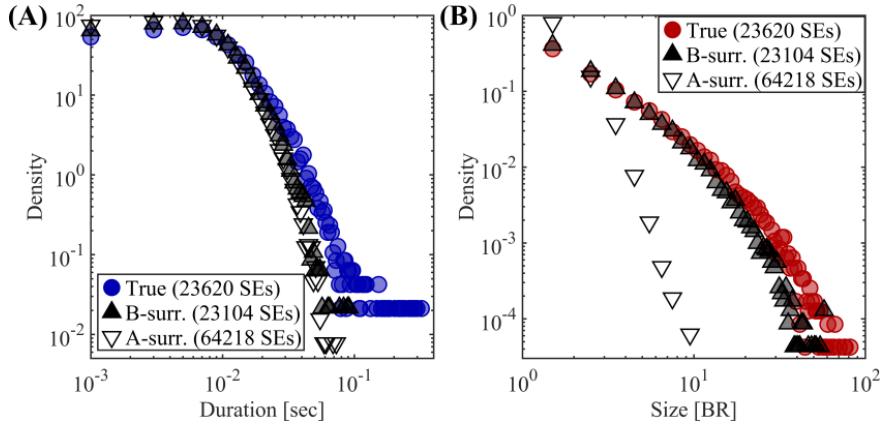


Figure C.3: Statistical characterization of SEs. (A) Distribution of the duration of SEs observed in the true source-reconstructed MEG data (filled blue circles), the A-surrogate (empty down-pointing triangles) and the B-surrogate (filled up-pointing triangles) corresponding to a time binning of 1 time sample per time bin (time binning = 1 ms). In the three cases the SEs were computed on the 47 participants. (B) Same as in A for the size of SEs. To test the significance of the difference of the distribution means between the true MEG data and the surrogates (A and B), we computed a non-parametric permutation test (random sampling without replacement, 1×10^4 permutations). The distributions of the duration and size of SEs observed in the true source-reconstructed MEG data, disclosed statistically significant differences with respect to both A- and B- surrogates ($P < 0.001$). Symbols and abbreviations: SEs, Salient Events; BR, Brain Regions.

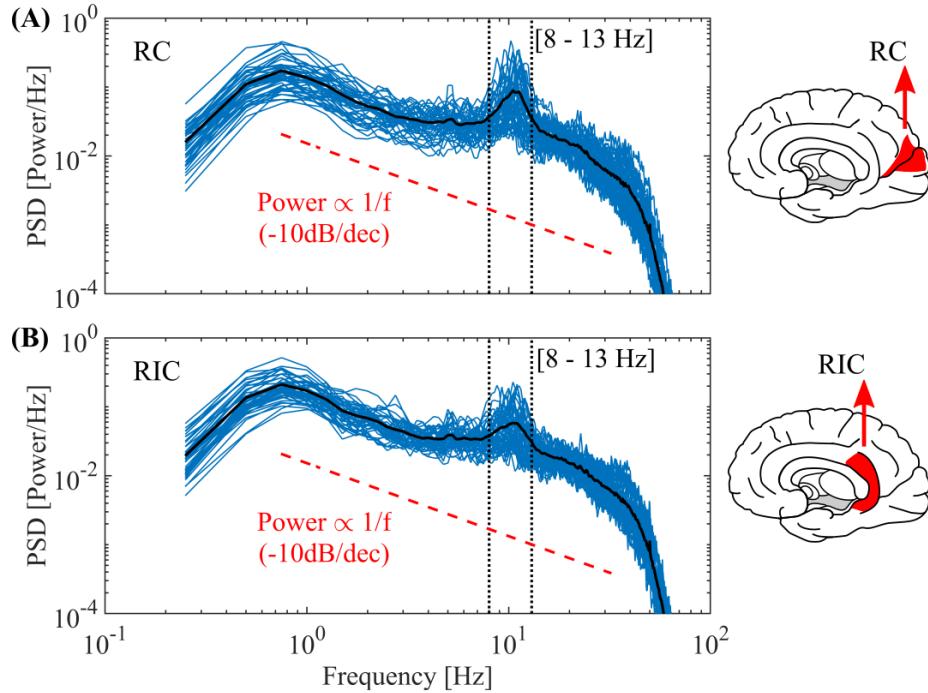


Figure C.4: Power Spectral Density (PSD). Power spectra computed on the Right Cuneus (RC, panel A) and the Right Isthmus Cingulate (RIC, panel B) activities of each patient (blue lines) and the resulting average (black line). The PSDs were computed on 1 min duration source-reconstructed MEG data of 47 subjects. Note that the PSDs of the RC (panel A) disclose a prominent bump in the alpha band (8-13 Hz) characteristic of the occipital brain regions, however, a less prominent bump in the alpha band is also observed in regions away from the occipital cortex (see the PSDs of RIC shown in panel B). Symbols and abbreviations: PSD, Power Spectral Density; RC, Right Cuneus; RIC, Right Isthmus Cingulate.

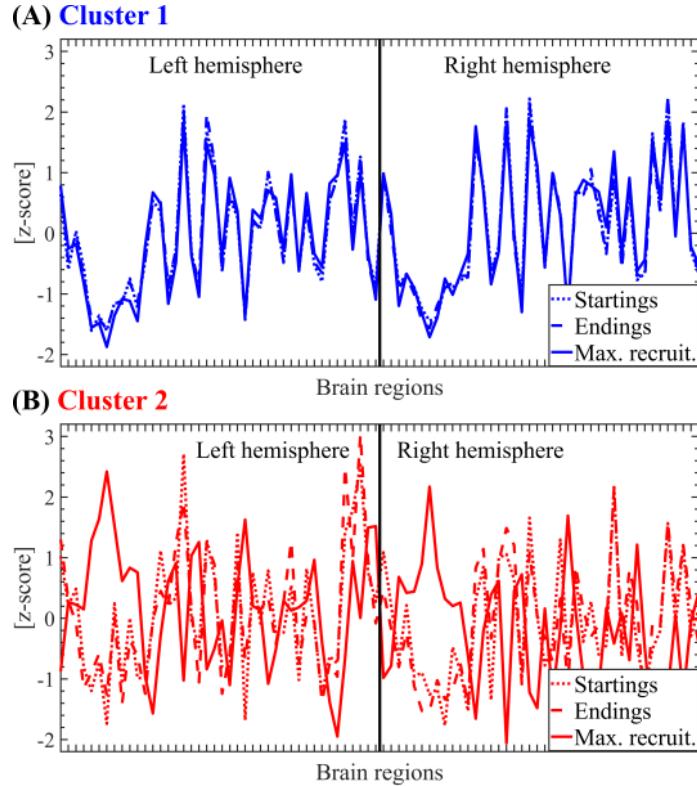


Figure C.5: Salient events propagation modes segregated by SE clusters. (A) Spatial profile for the cluster 1 SEs starting, maximum recruitment and ending modes (see Section 2.7 in Methods) computed on 41 participants. Linear correlations between topographies: Startings vs Endings, $r = 0.995$, $P < 0.001$. Max. recruit. vs Startings, $r = 0.978$, $P < 0.001$. Max. recruit. vs Endings, $r = 0.978$, $P < 0.001$. (B) Same as in A for the cluster 2 SEs starting, maximum recruitment and ending modes. Linear correlations between topographies: Startings vs Endings, $r = 0.895$, $P < 0.001$. Max. recruit. vs Startings, $r = -0.298$, $P < 0.01$. Max. recruit. vs Endings, $r = -0.280$, $P < 0.01$. The SEs obtained from 41 subjects were clustered using the Louvain algorithm (resolution parameter $\gamma = 1$, see Section 2.9 in Methods). The reported P values for the statistical significance of the Pearson's correlation were assessed using Student's t distributions of the two-tailed hypothesis test under the null hypothesis that the correlation is zero. Symbols and abbreviations: SEs, Salient Events.

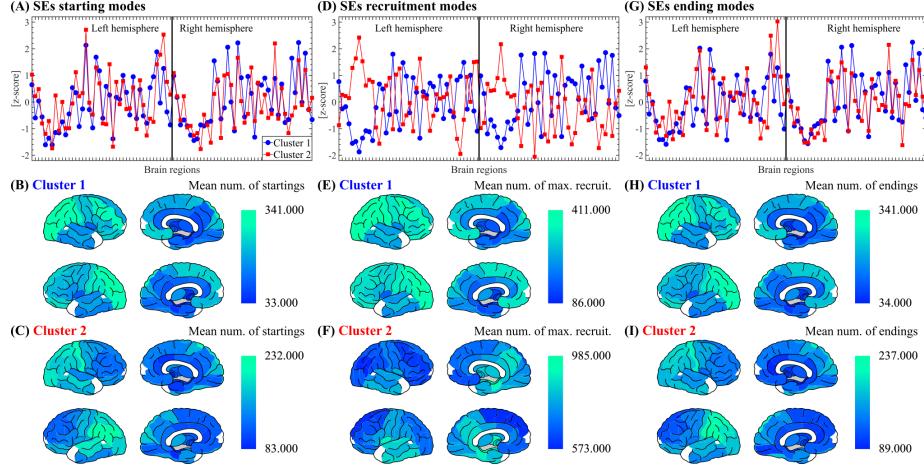


Figure C.6: Salient events propagation modes. (A) Spatial profile for the SEs starting modes (see Section 2.7 in Methods) corresponding to the two SE clusters computed on 41 participants. The SEs obtained from 41 subjects were clustered using the Louvain algorithm (resolution parameter $\gamma = 1$, see Section 2.9 in Methods). The Pearson's correlation between the spatial profiles of cluster 1 and cluster 2 SEs is $r = 0.708$, $P < 0.001$. (B) Brain topographies for the starting modes of cluster 1 SEs as shown in panel A. (C) Brain topographies for the starting modes of cluster 2 SEs as shown in panel A. (D-F) Same as A-C for SEs maximum recruitment modes (see Section 2.7 in Methods). In panel D, the Pearson's correlation between the spatial profiles of cluster 1 and cluster 2 SEs is $r = -0.841$, $P < 0.001$. (G-I) Same as A-C for SEs ending modes (see Section 2.7 in Methods). In panel G, the Pearson's correlation between the spatial profiles of cluster 1 and cluster 2 SEs is $r = 0.718$, $P < 0.001$. The reported P values for the statistical significance of the Pearson's correlation were assessed using Student's t distributions of the two-tailed hypothesis test under the null hypothesis that the correlation is zero. Symbols and abbreviations: SEs, Salient Events.

487 *Appendix C.1. Amplitude threshold analysis*

488 The validity and robustness of using a single amplitude threshold ($|z| = 3$)
 489 consistently across all 47 participants was investigated as follows. In each partic-
 490 ipant, the 1-minute source-reconstructed MEG time series of each brain region
 491 were first individually z-scored and then concatenated across all brain regions.
 492 Subsequently, we computed the histogram and estimated the empirical Prob-
 493 ability Density Function (empirical PDF) corresponding to the amplitude values
 494 of the concatenated time series (see blue curves in Figs. C.7A and C.7B).
 495 Next, we compute the Gaussian distribution that best fit the empirical PDF
 496 within each of the 100 fitting intervals of amplitude values spanning the range
 497 $[Q_1(z) - 5 * IQR(z), Q_3(z) + 5 * IQR(z)]$, where Q_1 , Q_3 , and IQR denote the
 498 first quartile, the third quartile and the interquartile range, respectively. This
 499 procedure yielded 100 Gaussian PDFs (see grey lines in Fig. C.7A). After that,
 500 we computed the RMS error between the empirical PDF and each of the 100
 501 Gaussian PDFs. Where the RMS error was computed using a weighted differ-
 502 ence to assign less importance to the difference in the tails of the distributions.
 503 As a result of this procedure, we obtained 100 RMS values (see Fig. C.7C).
 504 Finally, the optimal threshold for each participant was computed as half the

505 fitting interval of amplitude values producing the minimum RMS error (see Fig.
 506 C.7B and the red arrow in Fig. C.7C). Note that the minimum RMS error
 507 is associated with the amplitude value (optimal threshold) beyond which the
 508 empirical PDF significantly departs from the (best fitted) Gaussian distribu-
 509 tion. This procedure was applied separately to all the 47 participants included
 510 in the study (see Fig. C.8). The mean and standard deviation of the ampli-
 511 tude thresholds corresponding to the true MEG data shown in Fig. C.8 are
 512 3.08 ± 0.23 . Importantly, the amplitude threshold used in this study ($|z| = 3$)
 513 lies approximately at the center of this range. The procedure described above
 514 for identifying the optimal amplitude threshold, based on minimizing the RMS
 515 error between the empirical PDF and the Gaussian PDFs, was also applied to
 516 one A-surrogate and one B-surrogate generated for each participant (see Fig.
 517 C.8). The mean and standard deviation of the $|z|$ thresholds across participants
 518 were 5 ± 0.23 for the A-surrogates and 4.7 ± 0.58 for the B-surrogates, respec-
 519 tively. Of note, the $|z|$ thresholds for the A- and B-surrogates were substantially
 520 higher than those for the true MEG data. This result is consistent with the fact
 521 that the phase randomization applied in the construction of A- and B-surrogates
 522 produces approximately Gaussian signals [51].

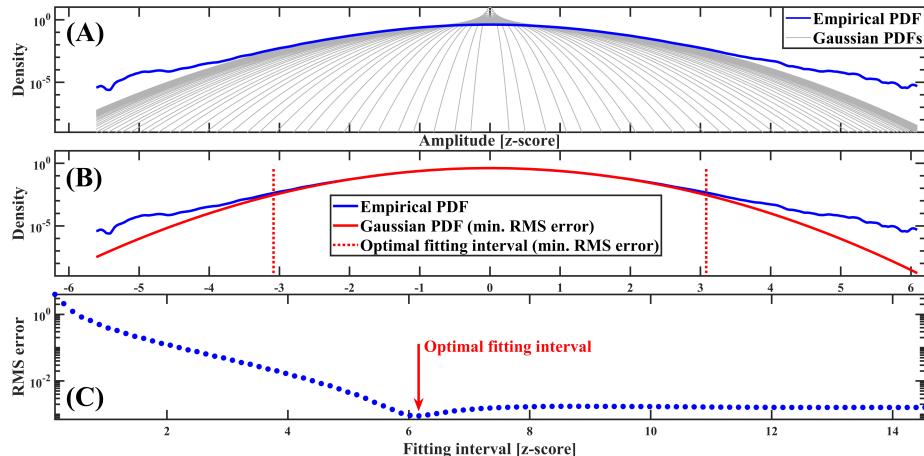


Figure C.7: Procedure to find the optimal $|z|$ threshold for Participant 47. (A) Empirical and the 100 Gaussian PDFs corresponding to the 100 fitting $|z|$ intervals. (B) Empirical PDF together with the Gaussian PDF producing the minimum RMS error. (C) RMS error between the empirical PDF and each of the 100 Gaussian PDFs. Symbols and abbreviations: SNE, Salient Network Event; PDF, Probability Density Function; RMS, Root Mean Square.

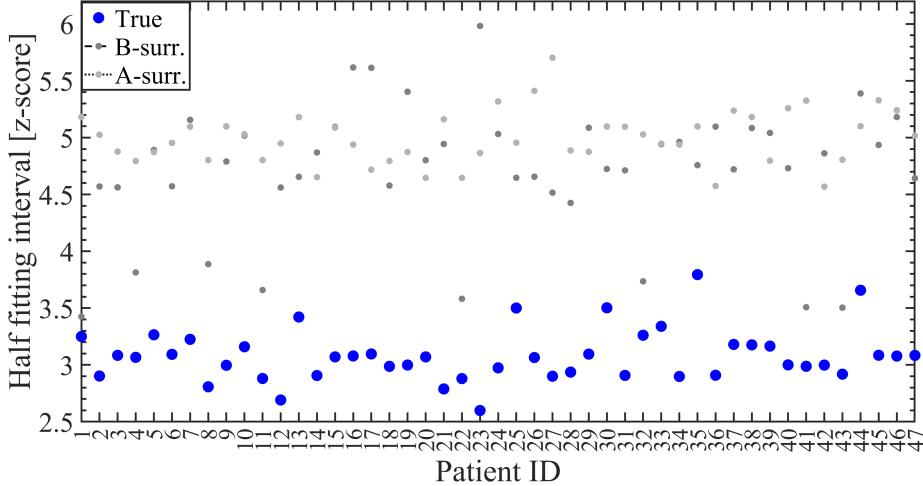


Figure C.8: Optimal $|z|$ thresholds for the 47 participants corresponding to the true MEG data including the deep sources, and one A-surrogate and one B-surrogate generated for each participant. The mean and standard deviation of the amplitude thresholds corresponding to the true MEG data (blue circles) are 3.08 ± 0.23 . Symbols and abbreviations: MEG, Magnetoencephalography.

523 One of the main limitations of this study is related to the uncertain capability
524 of our dataset to accurately identify deep brain sources along the cortical surface,
525 mainly due to the ill-posed nature of the source-reconstructed MEG data. In
526 order to address this issue, we re-computed the thresholding analysis presented
527 above, but this time excluding the deep sources (see brain topographies in Figs.
528 D.1F and D.3). The results are shown in Fig. C.9. It was found that the
529 mean and standard deviation of the amplitude thresholds corresponding to the
530 true MEG data excluding the deep sources are 3.08 ± 0.24 . Importantly, the
531 amplitude threshold used in this study ($|z| = 3$) lies approximately at the center
532 of this range. Besides, the mean and standard deviation of the $|z|$ thresholds
533 across participants were 5 ± 0.23 for the A-surrogates and 4.68 ± 0.59 for the
534 B-surrogates, respectively. As a result, by comparing Figs. C.8 and C.9 we
535 can conclude that the optimal $|z|$ thresholds remain essentially unaltered across
536 the 47 participants when the deep sources are excluded from the thresholding
537 analysis in our MEG dataset.

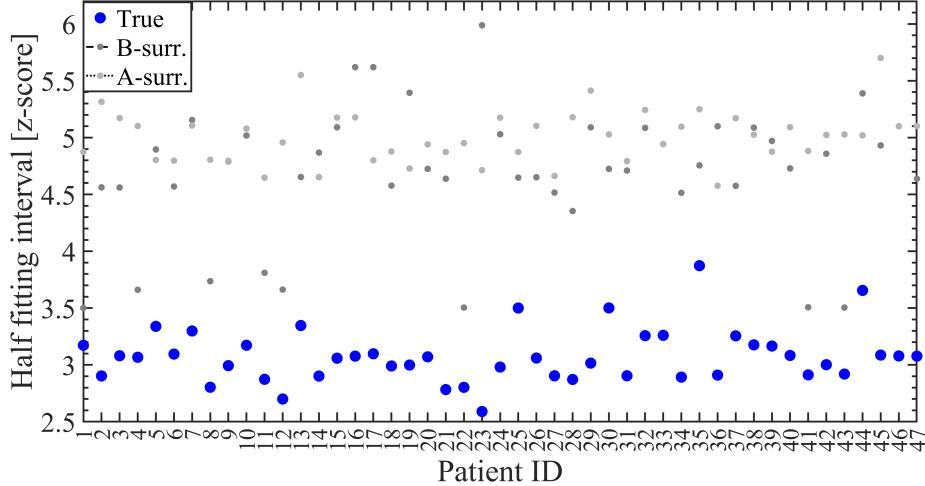


Figure C.9: Optimal $|z|$ thresholds for the 47 participants corresponding to the true MEG data excluding the deep sources, and one A-surrogate and one B-surrogate generated for each participant. The mean and standard deviation of the amplitude thresholds corresponding to the true MEG data (blue circles) are 3.08 ± 0.24 . Symbols and abbreviations: MEG, Magnetoencephalography.

538 *Appendix C.2. Spectral group delay consistency, transient cross-regional coherent*
 539 *NOS and BAA underlie SNEs*

540 In Sections 3.4 and 3.5, we showed that the concurrent presence of BAA
 541 and NOS disclosing appropriate levels of SGDC, are two key ingredients suffi-
 542 cient to generate realistic above-threshold fluctuations in a single brain signal
 543 (i.e., SLEs). Importantly, we have analytically and computationally shown that
 544 only the consistency of the Fourier incremental phase values across frequencies
 545 (SGDC) provides a quantitative measure of the level of salience of the above-
 546 threshold fluctuations exhibited by the signal in the time-domain, and this re-
 547 lationship holds true regardless of the spectral leakage introduced by tapering
 548 in the time-domain (see Fig. B.2). In this section, we present empirical evi-
 549 dence supporting the theoretical findings described in Sections 3.4 and 3.5. Fig.
 550 C.10A shows the topography of the mean number of salient (above-threshold)
 551 samples assessed in each brain region. The Panels B and C of Fig. C.10 show,
 552 respectively, the time series and distributions of the amplitude values corre-
 553 sponding to the brain regions disclosing the maximum (Left supramarginal)
 554 and minimum (Left superior frontal) number of salient samples. Importantly,
 555 the scatter plots in Panels D and E of Fig. C.10 show a significant correlation
 556 between the topographies of the salient samples (Panel A) and, respectively,
 557 the $SGDC(r)$ magnitude and kurtosis. This empirical evidence, together with
 558 the results shown in Figs. B.1, B.2 and B.3, further supports the interpretation
 559 of the $SGDC(r)$ as a measure capturing the signal-level mechanism underlying
 560 the emergence of local above-threshold fluctuations.

561 Next, we present the rationale and results pointing out that SGDC is a key

conceptualization also in connection with the emergence of realistic SNEs as collective phenomena involving multiple brain regions. Although the $SGDC(r)$ measure assesses the emergence of local above-threshold fluctuations from the Fourier oscillatory constituents of the activity in a single brain region (i.e., SLEs), it does not account for cross-regional effects associated with SNEs. To quantitatively study the cross-regional effects of SGDC on our data we introduce the $SGDC(\omega)$ measure. The magnitude of $SGDC(\omega)$ is bounded in the range $[0, 1]$ and quantifies how much the group delay at a given frequency ω varies across brain regions (Eq. 2). By using synthetic time series, in Appendix A.3 we show that the $SGDC(\omega)$ measure assesses the contribution of each frequency component in the co-activation (synchronization in time) of above-threshold fluctuations across brain regions (see Figs. A.5 and A.6). Of note, Figs. A.5 and A.6 show that the $SGDC(\omega)$ measure effectively resolves the cross-regional synchronization of SEs across frequency bands, whereas phase coherence measures (e.g., PLV: Phase Locking Value) are completely blind to this effect. Then, we used the $SGDC(\omega)$ measure to analyze the two SE clusters observed in our empirical MEG data. Figs. C.11A,B show the average ESMs of the two SE clusters identified by the Louvain algorithm (see Methods) computed on 10 subjects. As shown in Fig. C.11C, only cluster 2 SEs are associated $|SGDC(r)|$ values higher than those disclosed by the C-surrogate SEs. Importantly, Fig. C.11D shows the increase of transient cross-regional coherence around the alpha band, as quantified by the $SGDC(\omega)$ measure, associated with the SEs disclosing the alpha spectral signature in the average ESM (i.e., cluster 2 SEs). These results are further evidence pointing out that the cluster 2 SEs observed in our MEG data co-occur with (or are coupled to) alpha bursts propagating across brain regions. Notably, Fig. C.11E shows that the transient cross-regional coherence around the alpha band associated with the cluster 2 SEs is also captured by the large-scale model presented in Section 3.5.

Next, we used the $SGDC(\omega)$ measure to analyze the surrogate data computed via phase randomization. Our empirical results show that despite preserving both the power spectrum (PSD) in each brain region and the cross-correlations (i.e., functional connectivity) B-surrogates fail to account for the SEs observed in our MEG dataset. Besides, A-surrogates, which only preserve the regional PSD, perform worst than B-surrogates in reproducing realistic SEs (see Figs. 1 and C.3). The analytical derivations presented in Appendix A.4 provide a unifying rationale for this evidence by pointing out that, on one hand, A-surrogates destroy both the burstiness of each brain region as assessed by the $SGDC(r)$ measure and the synchronization of above-threshold fluctuations across brain regions as assessed by the $SGDC(\omega)$ measure (see Figs. A.7A,B). On the other hand, B-surrogates significantly reduce the SGDC across frequency components ($SGDC(r)$, see Fig. A.7A), while preserving the SGDC across brain regions ($SGDC(\omega)$, see Fig. A.7B).

In summary, these results suggest that a) spectral group delay consistency in specific narrow frequency bands (as assessed by the $SGDC(r)$ measure), b) transient cross-regional coherent NOs (intra-frequency coherence across brain regions assessed by the $SGDC(\omega)$ measure) and c) BAA, are all key ingredients

608 for the emergence of realistic SEs.

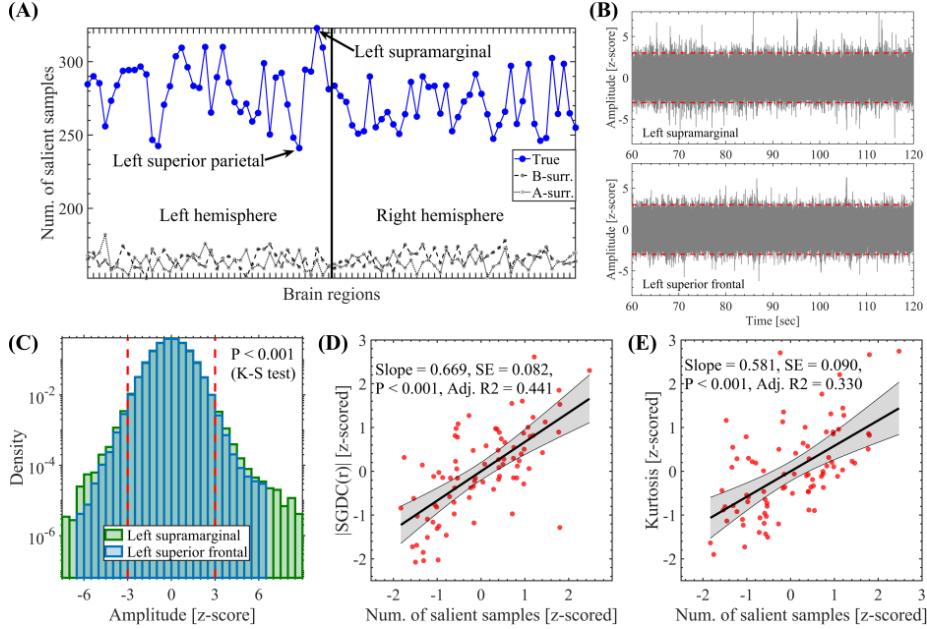


Figure C.10: Measures capturing the salient samples topographies. (A) Topography showing the number of salient samples computed on the whole time series (1 min in duration) of each brain region (mean value across the 47 participants). (B) Time series corresponding to the brain regions disclosing the maximum (Left supramarginal) and the minimum (Left superior frontal) number of salient samples. Each plot shows the time series superimposed across the 47 participants. (C) Distributions of the amplitude values for the Left supramarginal and Left superior frontal time series concatenated the 47 participants. Two-sample Kolmogorov-Smirnov test: $P < 0.001$. (D) Scatter plot showing the correlation between the topographies associated with the salient samples and the magnitude of the $SGDC(r)$ measure. Number of samples (red circles) = Number of brain regions = 84. (E) Same as in (D) for the kurtosis. Symbols and abbreviations: SGDC, Spectral Group Delay Consistency, K-S, Kolmogorov-Smirnov.

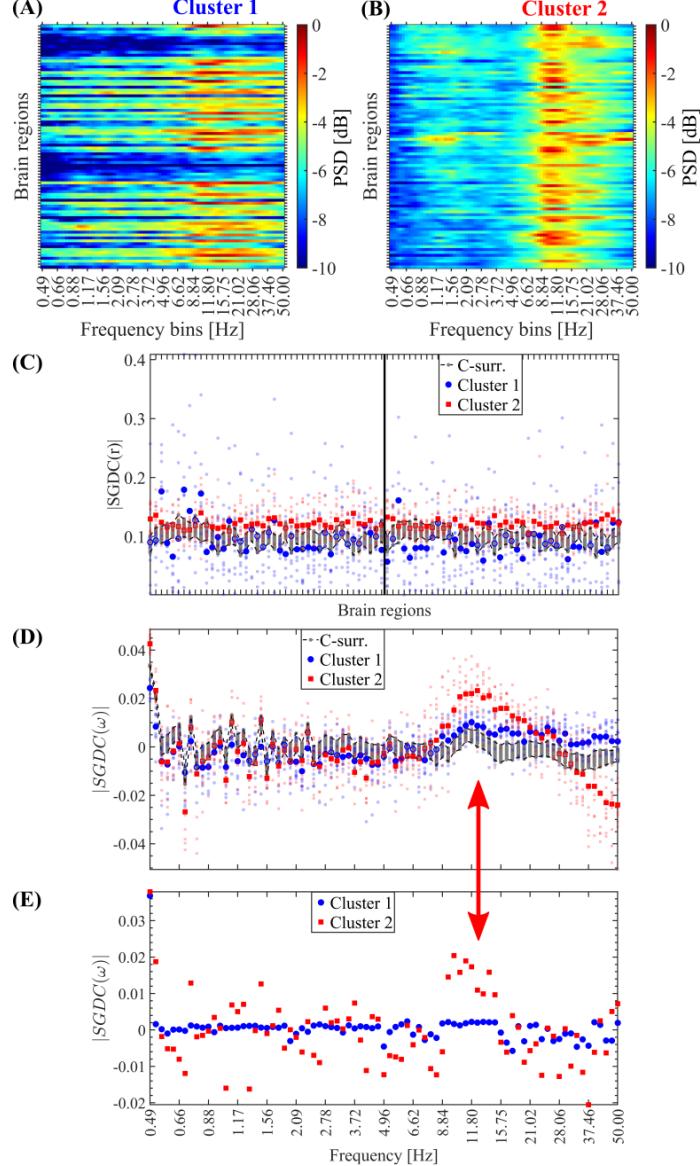


Figure C.11: Transient cross-regional coherence around the alpha band is mainly associated with salient events. (A, B) Mean ESM of the two SE clusters identified by the Louvain algorithm computed on the SEs detected in the 10 participants. (C) Transient cross-frequency coherence quantified by the $SGDC(r)$ measure (see Appendix A.3), associated with the two SE clusters shown in panels A and B. The $SGDC(r)$ measure was computed in a time-resolved manner. That is, the $SGDC(r)$ measure was computed on each detected SE by considering the brain regions and time interval associated with each particular event. Then, the $SGDC(r)$ array was averaged selectively across the SEs segregated in the two clusters produced by the Louvain algorithm (see Section 2.9 in Methods). The small markers represent mean $|SGDC(r)|$ values averaged across the SEs in each individual participant. The big markers represent mean $|SGDC(r)|$ values averaged across the 10 participants. (D) Same as in C for the transient cross-regional coherence quantified by the $SGDC(\omega)$ measure (see Appendix A.3). (G) Same as in D for the synthetic data corresponding to the large-scale signal model (see Section 3.5). The red arrow highlight the increase of the $|SGDC(\omega)|$ values around the alpha band. Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix.

609 **Appendix D. Supplementary empirical results excluding the deep sources**

610

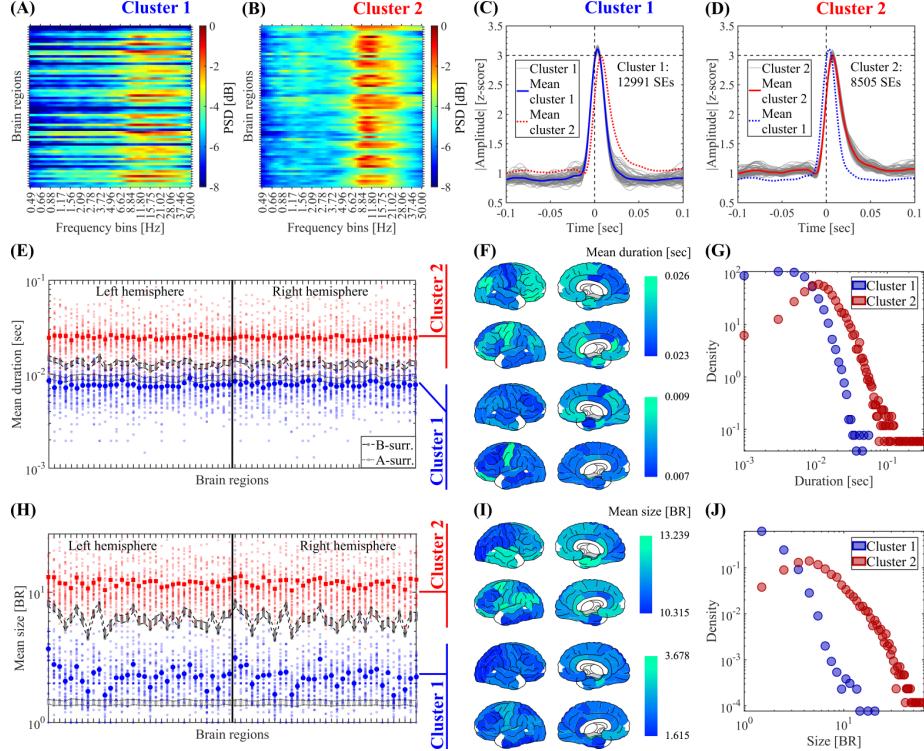


Figure D.1: Clustering of SEs according to their spectral signature. The SEs obtained from 45 subjects were clustered using the Louvain algorithm (resolution parameter $\gamma = 1$, see Methods). (A, B) Mean ESM of the two SE clusters identified by the Louvain algorithm computed on the SEs detected in the 45 participants. (C, D) Waveform shapes of the SEs pertaining to the two SE clusters identified by the Louvain algorithm. Thin gray lines correspond to the average waveform shape in each brain region. Thick blue and red lines correspond to the resulting waveform shape averaged across the brain regions for cluster 1 and 2 SEs, respectively. (E) Spatial profile showing the mean duration of SEs pertaining to cluster 1 (in blue) and cluster 2 (in red). For the true data, the small and big markers correspond to the mean spatial profile in each patient and the average across the 45 participants, respectively (see Methods). The labels and ordering of the brain regions are the same as those shown in Fig. C.2. To test the significance of the difference of the mean SEs duration between cluster 1 and cluster 2, in each brain region we computed a non-parametric permutation test (random sampling without replacement, 1×10^4 permutations). All the brain regions disclosed a statistically significant difference of the mean SEs duration between cluster 1 and 2 (the Bonferroni-adjusted two-tailed P values result $P < 0.001$ in all the brain regions). (F) Brain topographies for the mean duration of SEs averaged across the 45 participants as shown in panel E. (G) Distribution of the duration of SEs pertaining to the cluster 1 and cluster 2 observed in the 45 participants. (H) Same as in E for the size of SEs. To test the significance of the difference of the mean SEs size between cluster 1 and cluster 2, in each brain region we computed a non-parametric permutation test (random sampling without replacement, 1×10^4 permutations). All the brain regions disclosed a statistically significant difference of the mean SEs size between cluster 1 and 2 (the Bonferroni-adjusted two-tailed P values result $P < 0.001$ in all the brain regions). (I) Same as in F for the size of SEs. (J) Same as in G for the size of SEs. Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix; BR, Brain Regions.

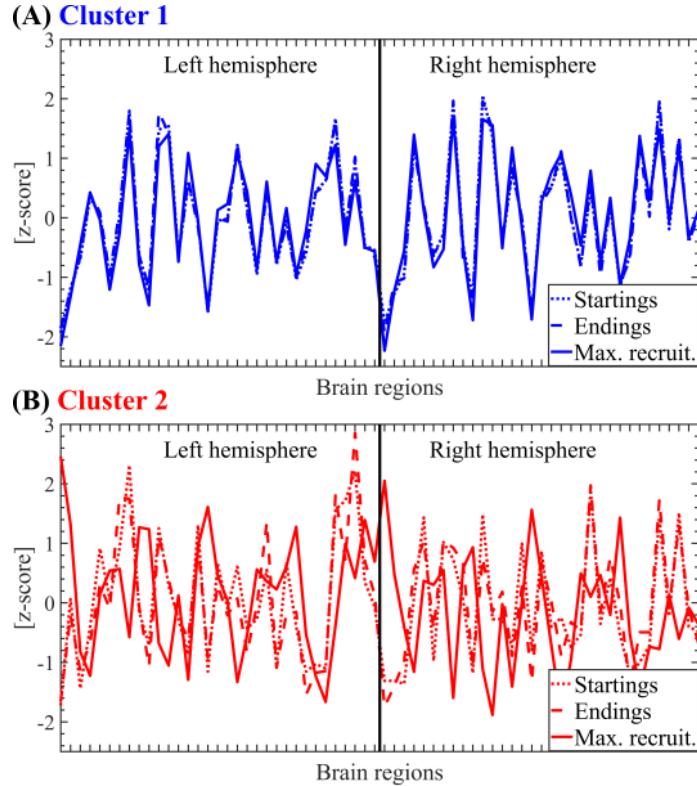


Figure D.2: Salient events propagation modes segregated by SE clusters. (A) Spatial profile for the cluster 1 SEs starting, maximum recruitment and ending modes (see Section 2.7 in Methods) computed on 45 participants. Linear correlations between topographies: Startings vs Endings, $r = 0.995$, $P < 0.001$. Max. recruit. vs Startings, $r = 0.972$, $P < 0.001$. Max. recruit. vs Endings, $r = 0.968$, $P < 0.001$. (B) Same as in A for the cluster 2 SEs starting, maximum recruitment and ending modes. Linear correlations between topographies: Startings vs Endings, $r = 0.917$, $P < 0.001$. Max. recruit. vs Startings, $r = -0.052$, $P = 0.7$. Max. recruit. vs Endings, $r = -0.051$, $P = 0.7$. The SEs obtained from 45 subjects were clustered using the Louvain algorithm (resolution parameter $\gamma = 1$, see Section 2.9 in Methods). The reported P values for the statistical significance of the Pearson's correlation were assessed using Student's t distributions of the two-tailed hypothesis test under the null hypothesis that the correlation is zero. Symbols and abbreviations: SEs, Salient Events.

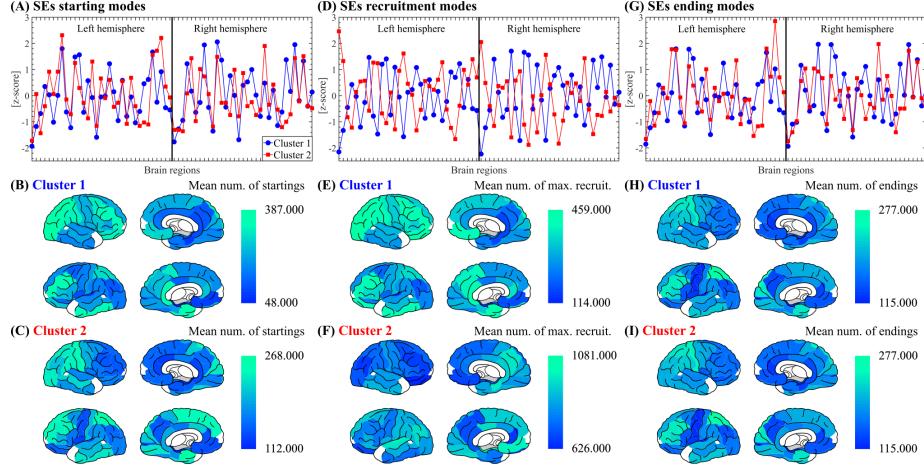


Figure D.3: Salient events propagation modes. (A) Spatial profile for the SEs starting modes (see Section 2.7 in Methods) corresponding to the two SE clusters computed on 45 participants. The SEs obtained from 45 subjects were clustered using the Louvain algorithm (resolution parameter $\gamma = 1$, see Section 2.9 in Methods). The Pearson's correlation between the spatial profiles of cluster 1 and cluster 2 SEs is $r = 0.584$, $P < 0.001$. (B) Brain topographies for the starting modes of cluster 1 SEs as shown in panel A. (C) Brain topographies for the starting modes of cluster 2 SEs as shown in panel A. (D-F) Same as A-C for SEs maximum recruitment modes (see Section 2.7 in Methods). In panel D, the Pearson's correlation between the spatial profiles of cluster 1 and cluster 2 SEs is $r = -0.842$, $P < 0.001$. (G-I) Same as A-C for SEs ending modes (see Section 2.7 in Methods). In panel G, the Pearson's correlation between the spatial profiles of cluster 1 and cluster 2 SEs is $r = 0.571$, $P < 0.001$. The reported P values for the statistical significance of the Pearson's correlation were assessed using Student's t distributions of the two-tailed hypothesis test under the null hypothesis that the correlation is zero. Symbols and abbreviations: SEs, Salient Events.