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Abstract

Objective:

Narrowband oscillations (NOs) and Broadband Arrhythmic Activity (BAA) are
valuable conceptualizations extensively used to interpret brain data, with NOs
linked to communication and synchronization and BAA encompassing scale-free
dynamics and neuronal avalanches. Although both frameworks offer critical in-
sights into brain function, they have largely evolved in parallel, with limited
integration and no unifying mechanistic account of how these dynamics interact
to generate transient, Salient Events (SEs). This gap is particularly pressing
given recent interest in how SEs—brief (~ 100 ms) bursts of activity coordi-
nated across brain regions—relate to large-scale brain function and cognition.
To address this, we introduce a signal-level framework that links the Fourier
spectral properties (oscillation-domain) of neural signals to the emergence of
realistic SEs in the time-domain from NOs and BAA.

Methods:

Our approach is grounded in a novel concept—Spectral Group Delay Consis-
tency (SGDC)—along with associated measures that quantify the temporal
alignment of spectral components and capture the conditions under which NOs
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and BAA coalesce into transient, burst-like events. Unlike traditional power- or
phase-based measures, or higher-order statistical metrics such as kurtosis and
cokurtosis, SGDC provides a signal-level mechanistic account of how local and
large-scale SEs emerge from the spectral structure of the underlying signals.
Empirical validation is provided using source-reconstructed MEG data from a
large cohort and a comprehensive array of features characterizing the statistical,
spatiotemporal and spectral properties of observed SEs.

Results:

We found that the SEs identified in our empirical MEG dataset can be seg-
regated based on their spectral signature in two main groups having different
propagation patterns. Using generative models based on the SGDC mecha-
nism we provide a theoretical framework to interpret these experimental results
showing that cluster 2 events are specifically related to the long-range spread of
narrowband alpha bursts across the brain network (i.e., SNEs: Salient Network
Events), whereas cluster 1 events correspond to more short-lived and spatially
localized fluctuations mainly promoted by the BAA (i.e., SLEs: Salient Lo-
cal Events). We also provide analytical arguments and numerical simulations
showing that a) high SGDC in specific narrow frequency bands, b) transient
cross-regional coherent NOs and ¢) BAA, are all key ingredients for the emer-
gence of realistic SNEs.

Significance:

We combine experimental evidence supported by a signal-level analytical frame-
work and numerical simulations based on generative models to demonstrate that
transient phase-structured alpha bursts, shaped by the SGDC mechanism, con-
tribute to long-range coordination during rest. This extends the communication-
through-coherence hypothesis to the transient domain. Additionally, SGDC
links to findings that NOs interact with fast microstates (=~ 100 - 200 ms) and
may modulate long-range dependencies across timescales. While previous stud-
ies have described SEs within the framework of neuronal avalanches, they often
lacked a generative, signal-level account. Here, we bridge that divide by offering
a mathematically grounded and empirically validated framework that accounts
for oscillatory and aperiodic bursts perspectives on brain activity.

Keywords: human MEG, large-scale salient events, brain oscillations,
broadband arrhythmic activity, group delay, complex baseband representation

1 Highlights

2 e Salient network events propagating across the brain during spontaneous
3 resting state activity, are highly structured in terms of their spatial, tem-
4 poral and spectral properties.

5 e The spectral group delay consistency framework provides a signal-level
6 mechanism that accounts for transient salient network events emerging
7 from oscillatory components of the brain activity.
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8 e Narrowband oscillations and broadband arrhythmic activity interact to
0 shape the timing and spatial extent of salient events.

10 e Spectral group delay consistency, transient cross-regional coherent nar-
1 rowband oscillations and broadband arrhythmic activity, are all key in-
12 gredients for the emergence of realistic salient network events.

13 e Salient network events during rest reflect large-scale spreading of synchro-
14 nized alpha band activity, which may play a functional role as a long-range
15 interaction mechanism in the human brain.

s 1. INTRODUCTION

v The human brain generates complex behaviors from the coordinated interac-
18 tion of neuronal populations, with evidence showing different degrees of special-
v ization/distribution of these networks. Such coordination is accompanied (or
20 driven) by neural activity patterns that can be measured using techniques like
2 electroencephalography (EEG) or magnetoencephalography (MEG). In general,
2 electromagnetic brain signals are characterized by both narrowband rhythmic
2 (i.e., oscillations) and broadband arrhythmic (e.g., 1/ f scaling in power spectra)
2 components [27].

»s  Oscillatory neural activity comprises rhythmic, periodic fluctuations around a
s central value in the brain’s signals, which occur across various narrow frequency
» bands and have been associated with specific cognitive functions [25]. For ex-
;s ample, the alpha rhythm, typically between 8-13 Hz, emerges during eyes-closed
»  wakefulness [I0] [T, [47], while the gamma rhythm, exceeding 30 Hz, has been
s proposed to play a role in higher cognitive processes[I2]. These oscillatory com-
a ponents manifest as "bumps” in the signals’ Power Spectral Density (PSD).

» In contrast to brain oscillations, broadband arrhythmic neural activity exhibits
13 a more complex and irregular nature, often associated with scale-free dynamics
u (i.e., no characteristic temporal scale) [27]. It generally, but not exclusively,
» displays a 1/f? decay pattern in the PSD featuring a fractal-like distribu-
s tion of power across frequencies, with S spanning a range of values depend-
w ing on the brain condition, frequency range and recording modality (roughly
s 0.1 < B <5). This broadband activity contributes significantly to the brain’s
s overall signal and is intricately linked with cognitive processes, potentially car-
w rying valuable information [43]. Traditionally, the study of brain Narrowband
s Oscillations (NOs) and Broadband Arrhythmic Activity (BAA) has provided
» two lenses through which electrophysiological data have been examined [24]. In
i general, spectral (i.e., oscillation-domain) attributes like power and phase offer
« rich insights into brain dynamics, enabling the discrimination of brain activity
s during perceptual tasks and distinguishing between healthy and pathological
s dynamics in resting states [30]. For instance, the literature on brain connec-
«  tivity has traditionally diverged into two primary streams: one emphasizing
s  NOs—rhythmic, frequency-specific activity linked to communication and syn-
w0 chronization [56l 18, 15, 29, B8]—and another focused on BAA, encompassing
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o scale-free dynamics such as 1/f activity and neuronal avalanches [711 [5 [48§].
51 Although both frameworks offer critical insights into brain function, they have
sz largely evolved in parallel, with limited integration and no unifying mechanistic
53 account of how these dynamics interact to generate transient, Salient Events
s« (SEs). This gap is particularly pressing given recent interest in how SEs—brief
s (~ 100 ms) bursts of activity coordinated across brain region—relate to large-
s scale brain function and cognition [46], [49] 36} [70} 2] 40}, 37, B35].

s Besides NOs and BAA, the analysis of collective brain dynamics reveals that
ss  system-level neuronal activity is interspersed by two types of SEs: Salient Lo-
so cal Events (SLEs) and Salient Network Events (SNEs). During SNEs, subsets
o of brain regions collectively exhibit rare fluctuations above a threshold (e.g.,
s signal amplitude > 3 standard deviations), igniting from specific brain sites,
¢ propagating across the brain circuitry in an avalanche-like cascade of activa-
&3 tions, and finally decaying below the threshold. As an example, Fig. in
o« [Appendix C|shows a SE observed in our MEG dataset, constituted by transient
s above-threshold fluctuations overlapped (i.e., disclosing time-overlap, coordi-
s nated) across 5 brain regions. Due to the fact that the SE shown in Fig.
ez involves the activation of more than 1 brain region is named Salient Network
s Fvent (SNE). On the other hand, a local transient above-threshold fluctuation
o involving the activation of just 1 brain region is named Salient Local Event
7 (SLE). SNEs occur aperiodically and are consistently observed across imaging
7 modalities, including multielectrode array recordings [7, [§], EEG [46, 20], MEG
» [46, 60], SEEG [562, [73], fMRI [64], and calcium imaging [72] 13]. In particu-
7z lar, SNEs have drawn considerable interest due to their potential significance
7+ in information processing [59] B8], facilitating responses with a wide dynamical
7 range [31) B4], and playing a role in achieving flexible dynamics [67), 62 [61]. A
7 specific subtype of SNEs are known as neuronal avalanches. The latter were
7 largely studied in the context of the critical brain hypothesis, which posits that
7 the brain might be operating near a critical point (i.e., at the edge of a phase
79 transition). In fact, neuronal avalanches display hallmark properties expected
s in systems that self-organize at a critical point, such as the power-law distribu-
s tion of avalanche durations (life span) and sizes (number of regions recruited)
2 [46, 60, 41]. However, previous studies raised concerns about the interpretation
ss  of power law statistics associated with neuronal avalanches. First, power law
s distributed avalanches have been found in stochastic noncritical systems (see
s [16] and references therein). These works highlight the fact that power-law dis-
s tributions are not unique to systems near a critical point or a phase transition
& and can be generated by other mechanisms [44]. Second, several factors can
s contribute to deviations from power-law statistics such as finite size effects (size
o of the neuronal network or the sampling region) and thresholding procedures
o used for avalanche detection [69] [68]. Third and more crucially, the neuronal
o1 avalanches statistics can be influenced by heterogeneous factors like network in-
» teraction/synchronization, the concomitant presence of oscillations and/or other
i3 type of SEs (e.g. IEDs: Interictal Epileptiform Discharges) and also external
e« interventions (e.g., antiseizure medications) [42].

s  The signal processing tools proposed in this work can be used to study a variety
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o of SLEs and SNEs: sleep spindles and K-complexes observed during non-rapid-
o eye-movement sleep, IEDs and Spike and Wave Discharges (SWDs) associated
e with epileptogenicity [I9] and Paroxysmal Slow-Wave Events (PSWESs) observed
o in epilepsy and age related neuropathology (e.g., Alzheimer’s disease) [50, [39].
wo In general, these SEs do not follow power law statistics, indeed, IEDs, SWDs
w  and PSWEs have been observed in a wide range of dynamical regimes associ-
w2 ated with clinical and subclinical brain states (see for instance Fig. 5 in [42]).
13 Thus, for the sake of generality, we focus our analysis on the relationship among
e NOs, BAA, and SEs, without implying a connection to power law distributed
105 neuronal avalanches nor the brain criticality hypothesis.

ws NOs, BAA, and SEs offer valuable conceptualizations to interpret brain data,
w7 however, these well-established perspectives have mainly progressed in parallel,
s with only limited literature linking them largely restricted to the context of neu-
o ronal avalanches [46, 49} [36] 2, [40], 37, B5]. Given the ubiquitous and concurrent
o presence of NOs, BAA, and SEs in the brain during rest, a fundamental ques-
w tion arises: Can we establish a connection between these perspectives? In other
2 words, can we invoke a parsimonious explanation that justifies the simultaneous
us  presence of these phenomena? To address this, we introduce a signal-level frame-
s work that links the Fourier spectral properties (oscillation-domain) of neural
us signals to the emergence of realistic SEs in the time-domain from rhythmic and
us  broadband aperiodic dynamics. Our approach is grounded in a novel concept—
ur  Spectral Group Delay Consistency (SGDC)—along with associated measures
us that quantify the temporal alignment of spectral components and capture the
no conditions under which NOs and BAA coalesce into transient, burst-like events.
20 Unlike traditional power- or phase-based measures, or higher-order statistical
2z metrics such as kurtosis and cokurtosis, SGDC provides a signal-level mecha-
122 nistic account of how local (SLEs) and large-scale (SNEs) salient events emerge
123 from the spectral structure of the underlying signals.

124 While previous works primarily focused on describing the interaction between
s neuronal avalanches and NOs, in this work we adopts a bottom-up approach,
s using generative models based on the SGDC mechanism, aimed at elucidating
27 how local and large-scale SEs emerge from the oscillatory and broadband ar-
s rhythmic components of the brain activity. The proposed data analysis tools are
120 supported by a signal-level analytical SGDC framework designed to be applica-
1 ble across a variety of (bio)physical domains, regardless of the specific details
w  of the underlying system.

12 In addition, empirical validation is provided using source-reconstructed MEG
133 data from a large cohort, demonstrating that transient phase-structured alpha
14 bursts, shaped by the SGDC mechanism, contribute to long-range coordination
135 during rest. This extends the communication-through-coherence (CTC) hypoth-
136 esis, according to which neuronal information is transferred via phase alignment
1w (coherence) of rhythmic activity [22] 23], to the transient domain. Additionally,
s SGDC links to findings that NOs interact with fast microstates (= 100 - 200 ms)
o [3l 6] [66, 48] and may modulate long-range dependencies across timescales [5].
o Thus, while previous studies have described SEs within the framework of neu-
w1 ronal avalanches, they often lacked a generative, signal-level account. Here, we
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w2 bridge that divide by offering a mathematically grounded and empirically vali-
w3 dated framework that accounts for oscillatory and aperiodic bursts perspectives
us on brain activity.

uws 2. METHODS

us 2.1. Participants and data

17 We analyzed a source-reconstructed MEG dataset previously published in
us  [63 62]. In short, 58 young adults (32 males/26 females, mean age + SD was
uw  30.72 £ 11.58) were recruited from the general community. All participants
50 were right-handed and native Italian speakers. The inclusion criteria were (1)
151 no major internal, neurological, or psychiatric illnesses; and (2) no use of drugs
152 or medication that could interfere with MEG/MRI signals. The study complied
153 with the Declaration of Helsinki and was approved by the local Ethics Com-
1« mittee. All participants gave written informed consent. The details regarding
155 the MRI acquisition are described in Section [63]. All technical details in con-
15 nection with the MEG device are reported in [54]. MEG pre-processing and
157 source reconstruction were performed as in [63] [62]. Briefly, the MEG registra-
158 tion was divided into two eyes-closed segments of 3:30 min each. To identify
159 the position of the head, four anatomical points and four position coils were
wo  digitized. Electrocardiogram (ECG) and electro-oculogram (EOG) signals were
1 also recorded. The MEG signals, after an anti-aliasing filter, were acquired at
12 1024 Hz, then a fourth-order Butterworth ITR band-pass filter in the 0.5-48 Hz
13 band was applied. Principal component analysis was used to remove environ-
1« mental noise measured by reference magnetometers. Supervised independent
15 component analysis was adopted to clean the data from physiological artefacts,
s such as eye blinking (if present) and heart activity (generally one component).
167 Noisy channels were identified and removed manually by an expert rater (136
s+ 4 sensors were kept). After this pre-processing, 47 subjects were selected
1o for this work and all further analyses were conducted on traces of 1 min in
w  duration source-reconstructed to 84 brain Regions Of Interest (ROI) based on
wm  the Desikan-Killiany-Tourville (DKT) anatomical parcellation atlas (see brain

2 topographies in Figs. 1] and [C.3).

1w 2.2. Salient events detection

174 To estimate SEs we first detected the local above-threshold fluctuations on
s the pre-processed and source-reconstructed MEG time series as described in
s Section 2.0] In each participant, the 1-minute source-reconstructed MEG time
7 series of each brain region were individually z-scored. Positive and negative
s excursions beyond a threshold were then identified. The amplitude threshold
o was set to |z| = 3, equivalent to three standard deviations (+3c or equiva-
wo lently |z] = 3). The same amplitude threshold |z| = 3 was used in all analyzed
w1 brain regions. This procedure was applied separately to all the 47 participants
12 included in the study. An analysis supporting the validity and robustness of
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13 using a single amplitude threshold (|z| = 3) consistently across all 47 partici-
1 pants is presented in Then the SEs duration was assessed by
15 considering that a salient event begins when, in a sequence of contiguous time
s bins, at least one brain region is active (i.e., above the amplitude activation
17 threshold: |z| > 3) and ends when all the brain regions are inactive (i.e., below
s the amplitude activation threshold: |z| < 3) [7, [60]. Besides, the SEs size was
19 defined as the total number of brain regions activated during a given event.
wo Note that a salient event involving more than one brain region (i.e., SNE) is
w1 associated with a sequence adjacent time bins in which at least one brain region
w2 is active (|z| > 3). Thus, the detection of SNE depends on the time binning
103 of the analyzed time series. Unless otherwise specified, in this study we used a
s time binning corresponding to 1 time sample per time bin (time binning = 1
s ms). This procedure allowed the detection of both SLEs (i.e., SEs of size = 1
s brain region) and SNEs (i.e., SEs of size > 1 brain region, see Fig. |C.1)).

w7 2.8. Salient events activation and co-activation matrices

198 For each detected SE, we computed the activation matrix (brain regions
wo X time bins) as follows. The source-reconstructed, z-scored and time binned
200 signal were binarized, such that, at any time bin, a brain region exceeding +3
a1 was set to 1 (active), and all other regions were set to 0 (inactive, see Figs.
202 ,B). For each detected SE, we also computed the co-activation matrix (brain
203 regions X brain regions) by assigning 1 to all the brain regions recruited in that
2 particular event. Thus, the diagonal of the co-activation matrix contains 1s in
205 all the brain regions active during a given SE. Besides, summation across rows
25 (or columns) produce, in each brain region, the number of co-activated regions
27 during a given SE (i.e., in terms of graph theory, this is known as the degree of
2 each brain region). The mean co-activation matrix shown in the Fig. [7|C was
200 computed by first averaging the co-activation matrices corresponding to all the
a0 SEs detected in each subject, and then, averaging the resulting matrix across
an - all the participants.

a2 2.4. Salient events spatiotemporal profile

213 To characterize SEs spatiotemporal profile, we introduce two ROI-wise met-
2 rics: The mean event duration measuring the typical duration of SEs propagat-
25 ing through a brain region; and the mean event size measuring the typical size
26 of SEs propagating through a brain region. Specifically, we assign to each brain
27 region the mean event duration (or size) computed on all the SEs recruiting that
218 particular region. The mean event duration and mean event size profiles shown
210 in the Fig. [I] were computed by first considering all the SEs detected in each
20 subject, and then, averaging the resulting profiles across all the participants.

o 2.5, Bvent spectral matriz

2 For the spectral characterization of SEs we introduce the Event Spectral Ma-
23 trix (ESM). To obtain the ESM we first compute the whitened time-frequency
2¢ representation on the whole time series of each brain region (see Fig. ) Then,
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»s  the time-frequency maps were selectively averaged across the time points cor-
26 responding to the occurrence of the SE of interest. As a result, we obtain a
227 whitened power spectrum corresponding to each brain region recruited by that
»s particular SE (see Fig. ) Finally, these power spectra are arranged in a sin-
20 gle matrix conforming the ESM (Brain regions X Frequency bins, see Fig. )
20 The time-frequency maps were computed as scalograms using Morlet wavelets
an of duration 2 g width/(2wf) sec., where g = 3 (std. dev.), width = 7 (cy-
2 cles) and f € [0.5,50] Hz. Spectral whitening, via Zpg-score normalization of
23 each frequency bin across time samples as described in [19], was included in the
2 computation of the time-frequency maps to facilitate the visualization of the
25 high-frequency components in the resulting ESM. The ESM can be defined at
2 the single event level (see Fig. ), by averaging all the SEs in each subject (data
27 not shown) and by averaging the mean ESM of each subject across participants
= (see Figs. 2F,G and [BA,B). Of note, the ESM does not represent the frequency
29 content of SEs since the latter are very short-duration transient events, instead,
20 the ESM reveals the spectral signature associated with the oscillatory activ-
21 ity co-occurring with each SE. That is, the ESM reveals the co-occurrence (or
22 coupling) between the oscillatory activity and SEs across brain regions. To
23 assess the statistical significance of the spectral signatures associated with the
24 SEs, we compute pixel-level thresholding on the mean ESM with Bonferroni
us  correction for multiple comparisons. More specifically, we computed the mean
2« ESM on each one of the 100 B- or C-surrogate datasets (see Section [2.8). Then
a7 these 100 surrogate mean ESMs were used to compute pixel-level threshold-
28 ing on the true mean ESM using a Bonferroni-adjusted two-tailed statistical
210 threshold = 0.05/(Brain regions x Frequency bins). Note that this Bonferroni
0 correction for multiple comparisons assuming independence between adjacent
51 spatial/frequency bins of the mean ESM is a quite conservative test, yet, the
2 observed spectral signature in the alpha band is evident even after this stringent
2 thresholding process (see Fig. 2F,G).

4 2.60. Salient events waveform shape

255 To characterize the waveform shape of SEs we follow a ROI-wise approach.
6 First, in each brain region we computed the average across the 200 ms signal
»7 epochs (absolute value) centered around the start time of the SEs of interest
258 recruiting that particular region (see gray lines in Figs. ,D and 7D).
9 Then, we obtained the mean SEs waveform shape by computing the average of
20 the resulting time series across the brain regions (see the red and blue lines in

261 FigS. ,D and ,D).

w2 2.7. Salient events propagation modes

263 To assess the SEs starting modes we assign to each brain region the number
26« of events igniting in that particular site (e.g., see the RPre brain region in the
%5 activation matrix shown in Fig. ) Similarly, for the SEs ending modes we
x6  assign to each brain region the number of events extinguishing in that particular
7 site (e.g., see the RIC brain region in the activation matrix shown in Fig. )
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x%s For the SEs maximum recruitment modes we assign to each brain region the
0 number of events involving that particular site during the event maximum size
o0 (e.g., see the 4 brain regions active at Time = 51.591 sec in the activation
on matrix shown in Fig. ) Last, by dividing the event count obtained in each
o2 brain region by the total number of processed SEs, we obtained the mean spatial
13 profiles for the starting, maximum recruitment and ending SEs modes as shown

a2 in the Figs. and

a5 2.8. Surrogate datasets

276 We generated phase-randomized A-surrogate datasets, that preserve the
a7 PSD in each brain region, while disrupting the phase relationships of the spec-
os tral components (both within and between brain regions) [51I]. For this, in
ae each brain region we implemented a frequency-domain randomization proce-
20 dure, which involves taking the Discrete Fourier Transform (DFT) of the time
21 series, adding a random phase-shift in the range [—m, 7] on each spectral com-
222 ponent of the DFT (preserving the odd phase symmetry associated with real
23 signals [I4]), and then taking the inverse DFT to obtain the surrogate signal
20 back in the time-domain [I7]. The 100 phase-randomized A-surrogate datasets
s were obtained by applying this procedure 100 times on each brain region inde-
s pendently. In addition, we also generated B-surrogate datasets that randomize
27 the phases similarly to the A-surrogate, but in this case preserving both the
28 regional PSDs and the cross-spectra. For this, we follow a similar procedure
20 as described above with the difference that the same random phase-shift was
20 applied to all the brain regions. This implies that the phase difference between
21 any pair of brain regions in homologous frequency components is preserved (i.e.,
22 preservation of cross-spectra). This implies to preserve the Pearson’s correla-
203 tions between brain regions (see |[Appendix A.l]). Note that the B-surrogates
2 destroy the phase relationships only between non-homologous frequency compo-
205 ments. Finally, we generated 100 C-surrogate sets of SEs by randomizing the
26 starting time of each observed salient event and keeping unaltered all the other
27 properties like the event duration and brain regions recruited in each event.

208 2.9. Clustering of salient events

299 SEs were clustered according to their spectral signature by using the Louvain
s method for community detection based on modularity maximization [IT], [55].
sn First, the Matrix of Paired Distance (MPD) was obtained by computing the
;2 Buclidean distance between the vectorized ESMs corresponding to the SEs of
203 interest taken in pairs. The resulting MPD (Events x Events) was normalized
3¢ to be in the range [0, 1], and the Adjacency Matrix (AM) was computed as AM
s = 1 — MPD. Then, the Louvain algorithm was repeated 100 times on the AM
w6 for resolution parameter values in the range 0.5 < < 2 [I1, [57]. Optimization
so7  of modularity quality function, based on the maximization of the similarity
ws  measure (z-scored Rand index) [57], was achieved for resolution parameter values
30 within the range 0.9 < v < 1.1. Finally, a consensus partition was found from
a0 the 100 partitions [33 4}, 21]. For the events detected in our source-reconstructed
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sn MEG dataset, the Louvain algorithm consistently identified two SE clusters
sz with significant differences in terms of mean event duration, size and spectral

as  signature in their mean ESM (see Figs. and [D.1]).

su 2.10. Spectral group delay consistency measures

315 In this study, we introduce the pairwise complex baseband representation of
as  band-limited signals (Egs. - [A.10] and |A.13| - [A.16]) to provide analytical
sz arguments showing that the link between local above-threshold fluctuations and
ais  oscillations can be understood in terms of the group delay consistency across the
a0 spectral components (i.e., Fourier oscillatory constituents) of the neuronal activ-
20 ity. Specifically, in we show that the time-domain representation
a1 of any finite-length time series x(t) (inverse DFT, Eq. can be re-arranged
2 by grouping the Fourier spectral components X (k) in non-overlapping adjacent
»s  pairs, leading to the pairwise complex baseband representation (Eq. [A.7). In
2+ this new representation (Eq. , the signal z(t) is decomposed into a linear
»s  superposition of amplitude modulated components, each synthesized from an
26 adjacent pair of spectral components (X (2k), X(2k+1) in Eq. . Crucially,
2 the Eq. [A.7] explicitly shows that the group delay is the key spectral feature
18 determining the transient synchronization of the Fourier oscillatory constituents
2o of the signal x(¢) leading to the emergence of SEs (see Eq. and Figs.
330 and . More precisely, the group delay determines the time align-
s ment of the amplitude modulated ocillatory constituents of the signal z(¢) in
s the pairwise complex baseband representation. Such time alignment promotes
s transient large-amplitude excursions of the signal (i.e., above-threshold fluctu-
s ations). Thus, the Eq. constitutes a group delay-domain representation of
55 the signal x(t), which lies in-between and links the time-domain and frequency-
335 domain representations:

337 o Time-domain representation: Waveform shape of the z(t) (inverse DFT,
338 Eq. .

339 o Group delay-domain representation: Amplitude-modulated ocillatory con-
340 stituents of x(¢) defined by the adjacent pairs X (2k), X (2k + 1) in Eq.
341

342 o Frequency-domain representation: Constant-amplitude oscillatory consti-
243 tuents of x(t) defined by the spectral components X (k) in the DFT (Eq.
344 A.4).

us  We used the group delay-domain representation to analytically show that the
us emergence of SEs (i.e., above-threshold fluctuations) in the time-domain, is as-
a7 sociated with a high group delay consistency across the oscillatory components
us  in the frequency-domain representation (i.e., approx. constant group delay dis-
uo  closed by the Fourier constituents of the signal, see . This math-
s ematical fact, conceptually illustrated in Fig. 4] constitutes an essential signal-
s level feature inherent to the frequency-domain representation of time series and
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52 holds true regardless of both the z(t) waveform shapes and the underlying bio-
33 logical mechanisms associated with the analyzed SEs.

s The group delay is defined as the rate of change of the phase with respect to the
s frequency, then, a constant group delay across the Fourier frequencies implies
36 a constant incremental phase across frequencies (provided that Aw = const.).
7 Thus, highly structured Fourier phase values, that is, incremental phase values
s disclosing low variability across frequencies, promote the time alignment of the
30 amplitude modulated components of the signal (see Fig. [4]), and therefore, the
w0 emergence of transient above-threshold fluctuations. To quantitatively assess
sr  this effect, we introduce the SGDC measures as described below.

2 The spectral group delay associated with the activity of the brain region r, is
s defined as the rate of change of the phase ¢,(w) with the frequency w com-
s« puted on the Fourier spectrum of the brain activity (i.e., the DFT): 7,.(w) =
35 —A¢(w)/Aw(w). The incremental phase A¢,(w) is defined as the phase dif-
w6 ference between spectral components (adjacent in frequency w) constituting the
% peural activity of the brain region r. The theoretical analysis presented in [Ap]
368 shows that the spectral group delay consistency (SGDC) is an impor-
w0 tant feature linking the oscillatory properties of a signal to the above-threshold
s fluctuations associated with SEs. For an in-depth mathematical description of
sn  the oscillatory mechanisms eliciting above-threshold fluctuations in the brain
w2 signals and the measures quantifying the SGDC, the reader is referred to [Ap]
s [pendix A.2|and [Appendix A.3| Here, we briefly introduce the SGDC measures
s designed to efficiently quantify this feature in the experimental data,

1 .

SGDC(r) = N Ze*’Ad’T(“’) : Aw = const across (1)
1 .

SGDC(w) = N Ze_lA%(“’) : Aw = const across w (2)

ws  Egs. [1] and [2| define the SGDC measures as the Euler transformed incremental
s phase values A¢,(w) averaged across the spectral components or brain regions,
sir - respectively, with NV being the number of either frequency values or brain re-
s gions as appropriate. Importantly, the SGDC(r) measure (Eq. [1) assesses the
s emergence of local above-threshold fluctuations from the spectral components
10 constituting the activity of the brain region r, whereas the SGDC'(w) measure
s (Eq. quantifies the synchronization of the above-threshold fluctuations at
s the frequency w across brain regions. We also define the pairwise spectral group
ss  delay consistency (pSGDC) to quantify the burstiness and cross-regional bursts
s« synchronization in a single measure.

pSGDC(ry,r9) =
SGDC(Tl) + SGDC(T‘Q) 1 — A¢1(w)—A¢2(w))
( F o )

2

Mean pairwise burstiness Correlation of burstiness across w

: Aw = const across r

11
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s Eq. Shows that pSGDC(r1,12) is a linear measure conformed by two factors: a
s factor quantifying the cross-regional correlation between the group delays across
sr  the frequency values, weighted by a coefficient quantifying the burstiness of the
38 two involved brain regions (r1,72).

30 The SGDC measures (Egs. and |3) were computed using both non-time-
30 resolved and time-resolved approaches. In the non-time-resolved case, the SGDC
;1 measures (Egs. and were computed on the whole time series of each brain
s region. That is, we first obtain the phase values corresponding to the Fourier
33 spectral components by computing the DFT (via the Fast Fourier Transform
3¢ algorithm) on the whole time series of each brain region. Then, SGDC mea-
w5 sures (Egs. and [3) were computed on the incremental phase A¢,(w) ob-
w6 tained as the phase difference between the Fourier spectral components taken
s7  in non-overlapping adjacent pairs across the frequency w. In particular, this
s non-time-resolved approach was used to produce the results shown in the Figs.
0o [7]and [AZ7A,B. On the other hand, in Figs. [C.11] and [AT7C,D we follow a time-
wo resolved approach. That is, the SGDC(r) and SGDC(w) measures (Egs.
a1 and were computed on each detected SE by considering the brain regions
a2 and time interval associated with each particular event. In the case of the
w3 Fig. the SGDC(r) and SGDC(w) arrays were averaged selectively across
ws  the SEs segregated in the two clusters produced by the Louvain algorithm (see

a5 Section .

ws 3. RESULTS

wr 3.1, Statistical, spatiotemporal, and spectral characterization of salient events
408 We identified SEs in our dataset and studied their characteristic signatures.
w0 In particular, we introduced a comprehensive array of features describing the
a0 statistical, spatiotemporal and spectral properties of SEs. The proposed tools
an  allowed for the characterization of SNEs by the way they spread across the brain
a2 network. Indeed, we found the role that each brain region plays in the propa-
a3 gation of these SNEs is not homogeneous. To characterize the spatiotemporal
ss  profiles of SEs, we defined two ROI-wise metrics (see Methods, Section: The
as  mean event duration measures the typical duration of SEs propagating through
a6 a brain region (Figs. ,B); and the mean event size measures the typical size
a7 of SNEs propagating through a brain region (Figs. 7D). The brain plots in
as  Figs. [IB,D reveal a characteristic topography, demonstrating the heterogeneous
a0 role that each brain region plays in the propagation of SNEs. In particular, SEs
a0 with bigger size and longer duration seems to be more associated with the tem-
a1 poral and deep brain regions.

22 Regarding the statistical characterization, we found that the SEs detected in
w23 our MEG data obtained from 47 subjects (1 min MEG time series source-
w24 reconstructed to 84 brain regions), disclose exponential-like distributions of the
s events size and duration with steep slope exponents (< —3, see Fig. , which
w26 do not follow the power law statistics putatively associated with the dynamical
w2 regime around a critical point or phase transition (see Introduction). Impor-
s tantly, the exponential-like distributions of the events size and duration shown
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a0 in the Fig. do not modify significantly when the time binning value is varied
w0 from 1 to 5 samples per time bin (time binning ranging from 1 ms to 5 ms, data
431 not ShOWIl).

a2 Next, we introduce a tool to characterize the spectral signature of SEs, by
.3 first transforming the regional signals into a time-frequency representation and
s then averaging the time-frequency maps selectively across the time points cor-
s responding to the occurrence of each SE (Figs. -D). This way, we defined the
w6 spectral fingerprint of each SE, which we named Event Spectral Matrix (ESM,
s7 see Methods and Figs. —G). Of note, the ESM does not represent the fre-
a8 quency content of SEs since the latter are very short-duration transient events,
.0 instead, the ESM reveals the spectral signature associated with the oscillatory
wo  activity co-occurring with each SE. That is, the ESM reveals the co-occurrence
w1 (or coupling) between the oscillatory activity and SEs across brain regions. Fig.
w2 [2] displays the ESM for a single event (panel E), the average ESM across 10
w3 subjects (panel F) and the ESM averaged across all the 47 subjects (panel G).
ws Figs. 2F,G show that the oscillatory activity of most brain regions peaks in the
ws alpha band (8-13 Hz) during SEs. In other words, during SEs, brain regions
us  fluctuate predominantly in alpha. This is also observed away from the occipital
w7 regions, suggesting that synchronization in the alpha band might spread on a
us large-scale during SNEs. Note that this result provides a relevant insight re-
o garding the connection between SEs and NOs and, it is non-trivial since SEs
w0 are rare phenomena, occupying only a small fraction of the total recording (in
1 space and time).

w2 3.2. Salient events and phase coherence: surrogate data analysis

453 The spectral signature in the alpha band disclosed by the averaged ESMs
s shown in Figs. 2F,G suggest that a significant fraction of the SEs observed in
s our MEG data co-occur with (or are coupled to) alpha oscillations. To test this
6 hypothesis, we generated 100 C-surrogate sets of SEs (see Methods, Section [2.8])
7 that randomize the starting time of each observed SE and keep unaltered all
sss the other properties like the time width and brain regions recruited during each
o event. Importantly, as shown in the Fig. 2JF, the average ESM of the true SEs
wo  thresholded with the average ESM of the C-surrogate SEs (see Methods, Sec-
%1 tion discloses a prominent spectral signature in the alpha band. This result
w2 reveals a significant (i.e., above chance level) coupling between the true SEs and
w3 alpha oscillations, supporting our hypothesis that the large-scale spreading of
w4 transient alpha bursts is associated with SNEs. Taking together these results
w5 suggest that during SNEs, the brain activity display large deviations from the
w6 baseline, which are coordinated across regions, giving rise to complex activation
w7 patterns with well-defined statistical, spatiotemporal, and spectral features.

w8 To investigate the statistical properties of the signals associated with the emer-
w0 gence of realistic SEs, we first tested whether the observed SEs require additional
w0 features beyond the autocorrelation (PSD) of each MEG trace, which could in-
an clude cross-correlation, non-stationarity, or non-Gaussianity. A common way to
a2 test the necessary and/or sufficient conditions underlying a phenomenon (here,

13


https://doi.org/10.1101/2024.02.28.582552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582552; this version posted February 12, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w3 SEs) is the use of surrogate data analysis [51]. This approach involves cre-
s ating surrogate datasets that remove or alter a specific property (e.g., phase
a5 relationships) while preserving other statistical characteristics, allowing one to
w6 determine if the absence or modification of the property affects the observed
a7 feature of interest. Following this line of reasoning, we generated 100 phase-
«s  randomized A-surrogate datasets (see Methods). Each A-surrogate preserves
a9 the PSD (and thus the autocorrelation) of each brain region but disrupts the
a0 phase relationships of spectral components. When phases are randomized in-
w1 dependently across regions, this procedure also disrupts inter-regional phase
a2 relationships and therefore removes cross-correlation structure that depends on
s3 those phases. Hence, A-surrogates implement the null hypothesis that the ob-
s served SEs can be explained solely by the preserved PSDs (i.e., by stationary, ap-
w5 proximately Gaussian signals with inter-regional phase relationships removed).
s Despite the A-surrogates having the same spectral content as the original data,
w7 they disclose distributions with significantly less SEs with large size and dura-
s tion values when compared to those observed in the true data (see A-surrogates
a0 in Figs. ,B). Besides, A-surrogates do not reproduce realistic spatiotempo-
w0 ral patterns of propagation (see A-surrogates in Figs. ,C) and ESMs (data
w1 not shown).

w2 We then tested whether the observed SEs require additional structure beyond
w3 the auto- and cross-correlation of the MEG trace, which could include non-
w4 stationarity, or non-Gaussianity. To test this hypothesis, we generated 100
w5 phase-randomized B-surrogate datasets (see Methods) that randomize the phases
w6 similarly to the A-surrogate, but in this case preserving both the regional PSDs
a7 and the cross-spectra. The preservation of cross-spectra implies that the phase
a8 difference between any pair of brain regions in homologous frequency compo-
w90 ments is preserved. This implies to preserve Pearson’s correlations between
s0  brain regions (see and Fig. |A.1)). However, the B-surrogates
s destroy the phase relationships between non-homologous frequency components.
sie  B-surrogates therefore implement the null hypothesis that the observed SEs can
ss  be explained by the preserved auto- and cross-correlation (i.e., by stationary, ap-
s« proximately Gaussian signals with inter-regional phase relationships preserved).
ss  The observed mean spatiotemporal properties (see B-surrogates in Figs. 7C),
ss the alpha signature disclosed by the ESM (see the average ESM thresholded
sov  using the B-surrogates shown in Fig. ), and the distributions of SEs du-
ss ration and size (see B-surrogates in Figs. [C.3]A,B) are not explained by the
s0 B-surrogates. Notice that these results are non-trivial, since in both the orig-
s inal and the B-surrogate datasets the number of SEs is almost identical, and
su large events are also observed in the surrogate data (see B-surrogates in Figs.
512 A ,B).

sz To summarize, despite retaining the same power spectra and cross-spectra, the
s loss of synchronization across spectral components (given by the phase ran-
sis  domization), impairs large-scale coordinated SNEs, significantly disrupting the
si6 statistics and features of SEs.
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siz 3.8, Clustering of salient events

518 The ESM can be defined at the single event level (Fig. [2E). Thus, we asked
sio  if SEs with different spectral signatures propagate differently. In particular, we
s0 hypothesized a relationship between the event spectral signature (as measured
sa by the ESM) and the event duration, size and propagation topographies (see
s2  Methods). To test this relationship, we clustered SEs according to their ESM
s using the Louvain algorithm (see Methods). We found that SEs cluster into
s« two main groups based on their spectral signature (Figs. ,B). The SEs be-
s longing to cluster 1 (Fig. [3JA) display less marked and widespread alpha peak
6 in the ESM as compared to cluster 2 (Fig. ) Importantly, we found a sta-
so7  tistically significant differences in the mean event duration and size between
s cluster 1 and cluster 2 (see Figs. ,H). To assess this, in each brain region
s0 we computed a non-parametric permutation test (random sampling without re-
s placement, 1 x 10* permutations). All the brain regions disclosed a statistically
sun  significant difference of the mean event duration and size between cluster 1
s and 2 (the Bonferroni-adjusted two-tailed P values result P < 0.001 in all the
s13  brain regions). Consistently, the two clusters are also well distinguished by their
s different waveform shapes, with cluster 1 showing shorter temporal profiles of
s above-threshold fluctuations. Figs. BIC,D show the average waveform shapes of
s.  SEs, obtained by averaging in each brain region (BR) the absolute value of the
sw7  time series associated with each event (see Methods).

s33 These results suggest that cluster 2 events are specifically related to the long-
s range spread of narrowband alpha bursts across the brain network (i.e., SNEs),
se0  whereas cluster 1 events correspond to more short-lived and spatially localized
sa  fluctuations mainly promoted by the BAA (i.e., SLEs. See Figs. —D,E,H).
sz Consistently, the two identified clusters are also characterized by different event
s duration and size, which supports our hypothesis. In particular, cluster 1 events
s are generally small and short-lived when compared to cluster 2 events, although
sss  both clusters display event size and duration distributions spanning across a few
s orders of magnitude (see Figs. B[G,J). Interestingly, the event duration and size
se7  distributions are different between the two clusters, which could have implica-
ss  tions for the study of the spectral background statistics.

s90  We also found that SEs propagate in a cluster-specific manner (see Figs. and
550 in . In cluster 1, the spatial profiles associated with the events
1 start, maximum recruitment and end are highly correlated (see Fig. A, pair-
s2 wise Pearson’s correlations r > 0.978, P < 0.001 two-tailed Student’s t-test),
553 pointing out that cluster 1 events do not propagate to brain regions distant
s« from those igniting the events. This result strongly supports the evidence pre-
sss  sented above regarding the spatially localized nature of cluster 1 events. On
sss  the other hand, the spatial profiles associated with the events start and end
ss7 are also highly correlated in cluster 2 SEs (see Fig. [C.5B, Pearson’s correlation
sss 7 = 0.895, P < 0.001 two-tailed Student’s t-test), suggesting that the brain
sso  regions involved in the ignition of a particular cluster 2 event tend to remain
sso  active until the event extinction. However, the maximum recruitment profile of
ss1  cluster 2 events disclose a weak negative correlation with respect to the start
s»  spatial profile (Pearson’s correlation » = —0.298, P < 0.01 two-tailed Student’s
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s t-test), supporting our hypothesis that cluster 2 events spread in the form of
s« narrowband alpha bursts across the brain network. Intriguingly, the spatial pro-
ses  files associated with the events start and end are highly correlated between the
s two clusters (see Figs. [C.6]A-C and Figs. [C.6/G-1), whereas a different scenario
ss7 is observed in terms of how the brain regions are recruited by the two event
sss  clusters. Specifically, brain regions that are recruited by the longer events of
se0  cluster 1, will be recruited by the shorter events of cluster 2, and vice versa (see
so  Fig. [C.6D). Within cluster 1, the longest SEs occupy the frontal and occipi-
sn tal regions (see Fig. [C.6E), whereas in cluster 2, associated with the spectral
s»  signature in the alpha band, the longest SEs are in the parietal and temporal
s regions (see Fig. |C.6F). The opposite trend is observed for the shortest SEs. In
s.a fact, performing Pearson’s correlations between the spatial profiles of cluster 1
sis and cluster 2 corresponding to the maximal size of recruitment across brain re-
s6  gions, we obtain a strong negative correlation (r = —0.841, P < 0.001 two-tailed
s Student’s t-test, see Fig. [C.6ID). Note that the specificity of cluster 2 events, as-
sis - sociated with transient above-threshold alpha bursts, in recruiting parietal and
so  temporal brain regions can not be trivially explained by the presence of elevated
s (steady) alpha oscillatory power, which is commonly observed in occipital brain
ss1  regions during the eyes-closed resting state (see Figs. and .

s2 In summary, in this section we have introduced a comprehensive array of SE
ss3  features, showing that rare, short-lived SEs propagating across the brain during
s spontaneous resting state activity are highly structured in terms of their spatial,
sss  temporal, and spectral properties. In particular, the spectral characterization
sss  using the ESM provided relevant insights regarding the connection between the
se7 observed SNEs and NOs in the alpha band.
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Figure 1: Spatiotemporal characterization of SEs. (A) Spatial profile showing the mean
duration of SEs propagating through each brain region (mean value across the 47 participants,
see Section in Methods). The mean event duration is shown for the MEG data together
with the 100 A- and B-surrogates (see Section in Methods). The labels and ordering of
the brain regions are the same as those shown in Fig. (B) Brain topographies for the
mean duration of SEs as shown in panel A. (C) Same as in A for the size of SEs. (D) Same as
in B for the size of SEs. Symbols and abbreviations: SEs, Salient Events; BR, Brain Regions.
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Figure 2: Event Spectral Matrix. (A) Activation matrix of a single SE showing the time
intervals in which each brain region was active (i.e., absolute amplitude > 30). (B) Activity of
the brain region RC disclosing the above-threshold fluctuation (highlighted in red) associated
with the SE shown in panel A. (C) Whitened time-frequency maps of each brain region
involved in the SE shown in panel A. (D) Whitened power spectra associated with each brain
region involved in the SE shown in panel C. The vertical dotted lines indicate the alpha
band. To build the ESM, we average the whitened time-frequency maps selectively across the
time samples corresponding to the occurrence of each SE. As a result, we obtain a whitened
power spectrum for each brain region (see Section in Methods). (E) ESM corresponding
to the SE shown in panel C. (F) Mean ESM resulting from the average across all the SEs
detected in the 10 subjects, and then, Bonferroni-thresholded using the C-surrogates (see
Methods). (G) Mean ESM resulting from the average across all the SEs detected in the 47
subjects, and then, Bonferroni-thresholded using the B-surrogates (see Methods). Symbols
and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix; PSD, Power Spectral
Density; RPre, Right Precuneus; RC, Right Cuneus; RPeri, Right Pericalcarine; RIC, Right
Isthmus Cingulate; LC, Left Cuneus.
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Figure 3: Clustering of SEs according to their spectral signature. The SEs obtained from 41
subjects were clustered using the Louvain algorithm (resolution parameter v = 1, see Meth-
ods). (A, B) Mean ESM of the two SE clusters identified by the Louvain algorithm computed
on the SEs detected in the 41 participants. (C, D) Waveform shapes of the SEs pertaining
to the two SE clusters identified by the Louvain algorithm. Thin gray lines correspond to
the average waveform shape in each brain region. Thick blue and red lines correspond to
the resulting waveform shape averaged across the brain regions for cluster 1 and 2 SEs, re-
spectively. (E) Spatial profile showing the mean duration of SEs pertaining to cluster 1 (in
blue) and cluster 2 (in red). For the true data, the small and big markers correspond to the
mean spatial profile in each patient and the average across the 41 participants, respectively
(see Methods). The labels and ordering of the brain regions are the same as those shown in
Fig. To test the significance of the difference of the mean SEs duration between cluster
1 and cluster 2, in each brain region we computed a non-parametric permutation test (ran-
dom sampling without replacement, 1 x 10 permutations). All the brain regions disclosed
a statistically significant difference of the mean SEs duration between cluster 1 and 2 (the
Bonferroni-adjusted two-tailed P values result P < 0.001 in all the brain regions). (F) Brain
topographies for the mean duration of SEs averaged across the 41 participants as shown in
panel E. (G) Distribution of the duration of SEs pertaining to the cluster 1 and cluster 2
observed in the 41 participants. (H) Same as in E for the size of SEs. To test the significance
of the difference of the mean SEs size between cluster 1 and cluster 2, in each brain region we
computed a non-parametric permutation test (random sampling without replacement, 1 x 104
permutations). All the brain regions disclosed a statistically significant difference of the mean
SEs size between cluster 1 and 2 (the Bonferroni-adjusted two-tailed P values result P < 0.001
in all the brain regions). (I) Same as in F for the size of SEs. (J) Same as in G for the size
of SEs. Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix; BR,
Brain Regions.
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sss 3.4. Analytical framework: Spectral group delay consistency

589 We next explored the mechanism mediating the reduction of local and cross-
s regional burstiness observed in our surrogate data computed via phase random-
s ization (see Section . Notice that this is a relevant question since surro-
so  gate data analysis based on phase randomization is extensively used in many
s0s  (bio)physical domains including Neuroscience. Importantly, being the phase an
s intrinsic property of NOs, it is not obvious how the modification (e.g., ran-
sos domization) of this oscillation-domain parameter affects the emergence of SEs
s (compare the true data with the A- and B-surrogates in Figs. [I] and [C.3).
s This question becomes apparent by taking into account that despite preserving
ses  both the power spectrum (PSD) in each brain region and the cross-spectra (i.e.,
s0 functional connectivity) B-surrogates fail to account for the SEs observed in
so our MEG dataset. To address this question, we developed a signal-level ana-
so1  lytical framework, named Spectral Group Delay Consistency (SGDC), designed
s2 to provide an analytical rationale supporting the emergence of SEs from the
o3 oscillatory constituents of the brain activity.

sa Let us focus on a single brain activity time series. We first compute the DFT
es to decompose the time series as a linear superposition of its Fourier oscillatory
s components (see Figs. ,B,D and Eq. . Then, we group the Fourier
7 components in (non-overlapping) pairs adjacent in frequency (see color-paired
s Fourier components in Fig. ) This lead to the pairwise complex baseband
eo Trepresentation of the time series. In this representation, the time series of inter-
10 est is decomposed as a linear superposition of amplitude modulated components
su  (see the color coded amplitude modulated signals in Fig. and Egs. and
sz [A.17). Importantly, the time offset of each amplitude modulated component
a3 is determined by the spectral group delay 7(w) ~ —A¢(w)/Aw. Where 7(w)
se  is computed on Fourier spectrum of the brain activity (i.e., the DFT), as the
as rate of change of the phase ¢(w) with the frequency w. Essentially, when all
s16  the Fourier components are added together to synthesize the signal in the time-
sz domain (i.e., the inverse DFT), the spectral group delay determines the time
sis  alignment of the envelope of the amplitude modulated components associated
s10  with each pair of adjacent spectral components. Such time alignment promotes
20 transient large-amplitude excursions of the signal (i.e., above-threshold fluctua-
ez tions). In the case of adjacent spectral components with phase values depending
s2 linearly with w, we obtain approximately constant spectral group delay values
s2s for all the pairs of adjacent spectral components (see Fig. ) In such a case,
s« the signal has a high spectral group delay consistency (SGDC) which promotes
s2s the time alignment of the amplitude modulated components (see the color coded
66 amplitude modulated signals in Fig. )7 hence, supporting the occurrence of
v above-threshold fluctuations (see the large-amplitude excursions of the black
es time series in Figs. ,E). On the other hand, for adjacent frequency compo-
&0 nents having phase values disclosing a nonlinear dependence with the frequency
s0 w (e.g., a quadratic dependence as shown in Fig. |A.2(G), the resulting spectral
en  group delay depends on w (see Figs. ) The latter disrupts the time align-
2 ment of the amplitude modulated components (see the color coded amplitude
s modulated signals in Fig. |A.2]). In this case, we say that the signal has low
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s SGDC which reduces the occurrence of above-threshold fluctuations (see the
e sub-threshold fluctuations of the black time series in Figs. [A2]LJ).

s3s The results discussed above constitutes strong analytical arguments pointing
s out that the reduction of the local burstiness observed in our surrogate data
es computed via phase randomization, can be understood in terms of the group
s delay consistency across the spectral components of the neuronal activity (i.e.,
s0  SGDC). Specifically, the phase randomization process produces phase values
s having a nonlinear (random) dependence with the frequency of the Fourier com-
sz ponents, hence, reducing the SGDC of the resulting surrogate time series. We
s3  confirmed this theoretical results using analytically tractable model of synthetic

s time series (see the discussion about Figs. and in , nu-
s merical simulations (see Section3.5)) and empirical MEG data (see the discussion
ss about Figs. 7C in . In particular, in we ana-
a7 lytically show that, despite preserving the regional power spectrum (PSD), the
ss phase randomization associated with both A- and B-surrogates significantly re-
o duces the burstiness of each brain region as assessed by the SGDC(r) measure
o0 (Eq. . Importantly, the reduction of the regional SGDC, as quantified by
e1  the SGDC(r) measure, offers an analytical rationale supporting the evidence
2 showing that B-surrogates failed to reproduce the SEs observed in our MEG
3 dataset despite preserving both the regional PSDs and the cross-spectra. As
s« a conclusion, the SGDC constitutes a signal-level analytical model linking the
s emergence of SEs from the oscillatory components of the brain activity and
s underpining the evidence showing that our A- and B-surrogates computed via
7 phase randomization failed to reproduce realistic SEs (see Section .

es For an in-depth mathematical description of the SGDC framework and mea-

o sures, the reader is referred to
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Figure 4: Pairwise complex baseband representation. (A) Set of constant-amplitude A(k) =1
oscillatory components uniformly spaced (fs Aw/(27) = 1.2/+/2 Hz) and having non-harmonic
frequencies fs w(k)/(27) = 0.5+ k fs Aw/(27) € [0.5 — 5] Hz, where fs = 1024 Hz is the
sampling rate. The pairwise complex baseband representation (Eq. was obtained by
grouping the oscillatory components in adjacent non-overlapping pairs color-coded in blue, red
and green. (B) Phases ¢(k) having a linear dependence as a function of the frequency within
the range ¢(k) € 2.5 [—m,7w]. (C) Group delay 7(k)/fs = —A¢(k)/(fs Aw) for the pairs of
adjacent oscillatory components. The color-coded filled markers correspond to the 7(2k)/ fs
values, and the black empty markers correspond to 7(2k+1)/ fs values (see Eq. . (D) z-
scored signals associated with the Fourier representation. The solid color-coded lines represent
the individual oscillatory components, the solid black line is the resulting signal z(¢), the
horizontal dashed black lines indicate the threshold at |z| = 3. (E) Pairwise complex baseband
representation. The solid color-coded lines represent the individual amplitude modulated
signals (pairs of adjacent oscillatory components), the solid black line is the resulting signal
z(t), the color-coded and black doted lines are the corresponding amplitude envelopes. For
an in depth mathematical description of the pairwise complex baseband representation see

o0 3.5. Numerical models: SEs, NOs and BAA

661 We built a numerical signal model to elucidate the relation between SEs,
sz NOs, and BAA. We model the activity of single brain regions as the linear su-
e3 perposition of Fourier components oscillating in a narrow frequency band. As
see & result, the corresponding spectral representation discloses a ”bump” of (null-
s6s to-null) bandwidth in the alpha band (8-13 Hz, Figs. ,D,G). The BAA was
s modeled by imposing a 1/f trend in the PSD of each signal (Fig. [5[G). This 1/ f
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s7  spectral background was chosen to mimic the —10dB/dec log-log decay rate ob-
s served in the PSDs associated with our MEG dataset (see Fig. |C.4)). To model
so different degrees of phase coherence, we assign random phase values to the spec-
s tral components within a range [—em, en] with € € [0, 1] (see the polar plots in
o Figs. ,D,G). On the one hand, for € ~ 1, the spectral components of the
2 signal were desynchronized (i.e., independent oscillatory components, Fig. )
o3 On the other hand, for € ~ 0 the spectral components were highly synchronized
e (i.e., high cross-frequency coherence). We first focused on a single brain signal
s and measured the number of SLEs (i.e., transient amplitude excursions above
s a fixed threshold of 3 standard deviations: +3c¢) across 1000 realizations (i.e.,
o7 trials), depending on the presence or absence of coherent NOs and 1/f activity
s (see Figs. ,F,I). In the absence of 1/f activity and for uniformly distributed
so  random phases assigned to the spectral components in the alpha band (e = 1,
0 Figs. [5JA), the model displays very few above-threshold fluctuations across trials
s1  (Figs. [5B,C). Increasing the coherence of the spectral components in the alpha
s2 band (e = 0.75, Figs. pD), despite the absence of 1/f activity, the number
3 of above-threshold fluctuations increased, producing a salient burst in most of
e« the trials (Figs. ,F). Importantly, Fig. shows that the results discussed
ss above, in connection with the emergence of local above-threshold fluctuations
s from the Fourier oscillatory constituents of the brain activity (i.e., SLEs), can
7 be understood in terms of the SGDC as quantified by the SGDC(r) measure
s (Eq. . Specifically, Fig. shows that the increase of the signal burstiness,
e as quantified by the kurtosis of the signal’s amplitude values, associated with
s0 more constrained random phase values (i.e., low phase factor € values) corre-
o1 lates with the increase in the SGDC as quantified by the SGDC(r) measure.
s2 In Fig. the time series were synthesized by adding pure sinusoidal signals.
o3 The SGDC(r) was then computed directly from the synthetic phases of these
s sinusoidal components. Because the phases were taken from the exact analytical
ss components, no spectral leakage was present in this case. In contrast, in Fig.
ss [B-2] 1 min in duration time series were synthesized following the same proce-
o7 dure as in Fig. but this time the SGDC(r) was computed using the alpha
es band phases obtained from the DFT applied to the synthesized time series.
s0 This procedure inherently introduces spectral leakage due to the time-domain
w0 tapering (rectangular window), which affects the phase values involved in the
7 computation of the SGDC(r) measure and is visible in the corresponding power
n2  spectra. Fig. [B:2] shows that the increase of the salience of transient fluctua-
73 tions in a signal, as quantified by the kurtosis of the signal’s amplitude values,
704 is reproduced by the SGDC(r) measure. Importantly, these results highlight
s that the SGDC(r) measure is not primarily driven by the spectral leakage. In-
06 stead, it reflects the relationship between the salience of transient fluctuations
77 and the consistency (spread or variability) of the group delay across the Fourier
s frequencies, independently of the spectral leakage. In addition, we re-compute
7o the signal model for the same set of phase factor values used in Fig. this
7m0 time using spectral phase values disclosing not a random but a linear depen-
1 dence with the frequency (i.e., a time-shift in the time-domain). The results
72 obtained with this configuration are shown in Fig. [B:3] As predicted by the
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ns SGDC mechanism (see Figs. fJA-E), we obtained |[SGDC(r)| ~ 1 independently
74 of the phase factor value (e € [0, 1]), and the time series produced by the signal
75 model disclosed (time-shifted) above-threshold fluctuations in all the cases (see
76 Fig. [B.3]). These numerical results constitute further evidence showing that
77 the SGDC effectively underlies the emergence of local above-threshold fluctu-
ns ations from NOs, as in the case shown in Figs. ,E,F. Then, we introduced
70 the broadband 1/f activity into the model through a linear superposition (ad-
70 dition) with the oscillatory activity in the alpha band. As a result, the presence
=1 of the broadband 1/f activity with e = 1 and coherent spectral components in
72 the alpha band with € = 0.75 (Fig. ) further increased the number of salient
73 events in a single brain signal (Figs. ,I). Importantly, the 1/f activity also
724 influences the rhythmicity of above-threshold fluctuations, which occur aperi-
75 odically. More specifically, if we synthesize a long time series by concatenating
s trials constructed without the 1/f activity (as in Figs. [BE), the concatenated
77 time series will disclose a periodic series of above-threshold alpha bursts (i.e.,
78 one salient alpha burst per trial). Instead, in the presence of 1/f activity we
79 obtain above-threshold fluctuations occurring aperiodically in each trial besides
70 the salient alpha burst, hence, the time series resulting from concatenating trials
= (as in Fig. [fH) will disclose an aperiodic series of above-threshold fluctuations,
72 elicited by the interaction between the 1/f and oscillatory activities. Further-
733 more, the regime R2 in Fig. points out a plausible range for the relative
72« amplitude between NOs and the BAA in order to obtain realistic aperiodi-
s cally occurring above-threshold fluctuations. That is, in the regime R1 only
76 Non-Oscillatory Salient Events (NOEs) are observed, in the regime R3 only
7 Oscillatory Salient Events (OEs) are observed. In contrast, the regime R2 is
s characterized by a stochastic-resonance-like effect in which the resulting local
720 activity exhibits both NOEs and OEs mirroring the two SE clusters observed
no  in our MEG dataset. In we discuss additional empirical evidence
m  supporting the theoretical findings described in Sections and

2 In summary, these results suggest that the mere presence of oscillations as-
3 sociated with an increase of power around a narrow frequency band does not
744 guarantee the stable occurrence of above-threshold fluctuations (Figs. —C).
us  However, if the phases of the spectral components are coherent producing high
75 |SGDC(r)| values, then high-amplitude fluctuations are consistently observed
wr in the signal (Figs. [D-F).
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Figure 5: Model for local above-threshold fluctuations. (A) Amplitude spectrum (left) and
distribution of the phase values assigned to the spectral components (right) for the oscillatory
activity in the alpha band (Hann window with null-to-null bandwidth = 8-13 Hz, frequency
resolution df = 1/60sec ~ 0.017 Hz). Random phases were assigned to all the spectral
components within the range [—en, er] with a phase factor e = 1. (B) 10 sec epoch extracted
from the synthetic time series produced by the amplitude spectrum and phase distribution
shown in panel A (sampling rate of fs = 1024 Hz). The horizontal dashed lines in red
indicate the 3 standard deviations (£+3c) thresholds used to compute the SLEs as above-
threshold amplitude fluctuations. (C) Number of SLEs per trial as a function of the maximum
amplitude of the oscillatory activity in the alpha band. For each maximum amplitude value,
we counted the number of SLEs across 1000 time series of 10 sec in duration (trials) synthesized
as the one shown in panel B. In each trial, we recomputed the random phases of the spectral
components within the range [—em, emr] with e = 1. The colored markers indicate the mean
number of SLEs per trial across the 1000 trials. The shaded error bars in gray correspond to
the standard deviation around the mean value. The pseudocolor scale represents the mean
value for the number of above-threshold samples per SLE. The black arrow indicates the
maximum amplitude of the alpha oscillations used in panels A and B. (D-F) Same as in A-
C for spectral components with random phases constrained within the range [—em, emr] with
e = 0.75 (see the distribution of the phase values in panel D right). (G) Amplitude spectral
profile (left) resulting from the linear superposition of 1) a narrowband amplitude spectrum
around the alpha band (Hann window with null-to-null bandwidth = 8-13 Hz), and 2) a
set of spectral components with power A2(f) oc 1/f (frequency resolution df = 1/60sec =~
0.017 Hz). The right side of panel G shows the distribution of phase values assigned to the
spectral components. Random phases within the range [—em, er] with € = 1 where assigned
to the spectral components constituting the 1/f background (blue circles) and e = 0.75 where
assigned to the spectral components associated with the alpha bump (red circles). (H) Same
as in B and E for the spectrum shown in panel G. In this case, it is possible to distinguish
Oscillatory (OEs) and Non-Oscillatory (NOEs) Salient Local Events. R1, R2 and R3 indicate
regions characterized by Amp. of alpha oscillations less than, approx. equal to and greater
than the Amp. of 1/f activity, respectively. Symbols and abbreviations: SLEs, Salient Local
Events; OEs, Oscillatory Salient Local Events; NOEs, Non-Oscillatory Salient Local Events.

748 Next, we extended the above setup to model whole-brain activity and SNEs.
720 For each simulated brain signal, we set the amplitude of the alpha peak (with
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70 alpha amplitude € [0,1]) proportionally to the mean alpha amplitude (average
71 across the 47 participants) observed in the empirical MEG recordings, thus mod-
72 eling the non-homogeneous presence of alpha activity across brain regions. In
73 addition, in each region, we bounded the random phases assigned to the spectral
7 components in the alpha band within a range [—em, en], whose width € € [0.75, 1]
75 was inversely proportional to the empirical alpha power (i.e., the higher the al-
7 pha peak, the higher the phase coherence among the spectral components). This
77 choice was motivated by the fact that high PSD bumps are generally interpreted
75 as stronger narrowband synchronization within local neuronal populations [22]
750 (see Discussion). Using this setup, we measured synthetic SEs and tested their
70 dependence on the 1/f activity. When only alpha oscillations were present,
7 and no broadband 1/f activity (Fig. @A), the resulting ESM was not realistic
72 compared to the empiric one (compare Figs. and )7 and the distributions
73 of SEs duration and size were not approximating the exponential-like distribu-
76« tions observed in our MEG dataset (compare Figs. ,B and . Instead,
765 when only broadband 1/f activity was present, and no oscillatory activity in
76 the alpha band nor coherent phase values were used (i.e., e = 1; Fig. @)7 the
w7 ESM did not show the spectral signature associated with the alpha component
% (Fig. [6ID). Also, the distribution of SEs duration was similar to the empirical
w0 data, while the distribution of SEs size was shrunk, as the model did not display
70 SEs involving large populations (Figs. ,D). Finally, when both broadband
m 1/f activity and alpha oscillations were simultaneously present (Fig. @E), the
72 emerging SEs displayed a realistic ESM (compare Figs. @F and [2IG) as well as
73 exponential-like distributions of SEs duration and size (Figs. [B.4E,F); although
74 the SEs size decayed in a markedly more rapid fashion than in the empirical data
75 (compare Figs. ,F and . The Pearson’s correlation between the vector-
76 ized versions of the empirical (Fig. ) and simulated (Figs. ,D,F) ESMs are
77 as follows: Empirical (non-thresholded version of the ESM shown in Fig. )
7s  vs. Large scale model including only alpha oscillations (ESM shown in Fig.
7o =0.594, P < 0.001. Empirical (non-thresholded version of the ESM shown in
w0 Fig. ) vs. Large scale model including only broadband arrhythmic activity
w (ESM shown in Fig. [(D): 7 = 0.167, P < 0.001. Empirical (non-thresholded
w2 version of the ESM shown in Fig. ) vs. Large scale model including both
% alpha oscillations and broadband arrhythmic activity (ESM shown in Fig. [6F):
7w 1 = 0.611, P < 0.001. The statistical significance of these linear correlations
75 was assessed by using the Student’s t distributions of the two-tailed hypothesis
s test under the null hypothesis that the correlation is zero.

7er These results suggest that both NOs and broadband 1/f spectral background
7 contribute to the signal deviations from baseline activity and realistic SEs, pro-
7 vided that the narrowband spectral components display appropriate levels of
790 SGDC.
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Figure 6: Large-scale signal model for SEs. (A-B) Large-scale model for SEs including only
alpha oscillations (random phase values in the alpha band constrained to the range [—em, er]
with e € [0.75,1]). Panel A shows a subset of synthetic activities. In each time series, the
above-threshold fluctuations (+£30) are highlighted in dark blue. Vertical dashed lines connect
the activations associated with SEs completely contained in the subset of signals shown. Panel
B shows the resulting ESM averaged across the SEs. Panels A-B were computed on all the
SEs detected in a simulated time series of 1-minute duration. (C-D) Same as in A-B for the
large-scale model including only broadband 1/f activity, and no oscillatory activity in the
alpha band nor phase consistency values were present (¢ = 1). (E-F) Same as in A-B for the
large-scale model including both broadband 1/ f activity with non-constrained random phases
(e = 1) and alpha oscillations with random phases constrained proportionally to the observed
alpha power in the range (e € [0.75,1]). Symbols and abbreviations: SEs, Salient Events; LH,
Left Hippocampus; LA, Left Amygdala; LCAC, Left Caudal Anterior Cingulate; LCMF, Left
Caudal Middle Frontal; LC, Left Cuneus; LE, Left Entorhinal.
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wm  3.6. Mechanisms of long-range interactions

792 Whereas the SGDC/(r) assesses the emergence of local above-threshold fluc-
793 tuations from the Fourier oscillatory constituents of the activity in a single brain
79« region (i.e., SLEs), it does not account for cross-regional effects associated with
s SNEs. To quantitatively study the cross-regional effects of SGDC on our data
w  we introduce the SGDC(w) measure (Eq. [2). The magnitude of SGDC(w)
77 is bounded in the range [0,1] and quantifies how much the group delay at a
w8 given frequency w varies across brain regions. By using synthetic time series, in
799 we show that the SGDC(w) measure assesses the contribution
so  of each frequency component in the co-activation (synchronization in time) of
sn  above-threshold fluctuations across brain regions (see Figs. and . Of
s note, Figs. and show that the SGDC(w) measure effectively resolves
sz the cross-regional synchronization of SEs across frequency bands, whereas phase
s« coherence measures (e.g., PLV: Phase Locking Value) are completely blind to
sos this effect (see detailed description in [Appendix A.3). In |Appendix C.2| we
sos  present additional empirical evidence supporting the connection between the
s SGDC(r) and SGDC(w) measures and the emergence of local and large-scale
sz salient events. In particular, Fig. shows that only cluster 2 SEs, associ-
s0 ated with the spectral signature in the alpha band, disclose |SGDC(r)| values
s higher than those disclosed by the C-surrogate SEs. Importantly, Fig. [CIID
s shows the increase of transient cross-regional coherence around the alpha band,
s as quantified by the SGDC(w) measure, associated with the SEs disclosing the
a3 alpha spectral signature in the average ESM (i.e., cluster 2 SEs). Notably, Fig.
814 shows that the transient cross-regional coherence around the alpha band
a5 associated with the cluster 2 SEs is also captured by the large-scale model pre-
a5 sented in Section 3.5

sz Synchrony is thought to play a role in coordinating information processing across
sis  different brain regions. However, correlation structures such as hemodynamic
s1o  functional connectivity are better explained in terms of power amplitude corre-
220 lations of electrophysiological signals (e.g., MEG), rather than phase-synchrony.
s21 In a recent work, it was demonstrated that power correlation between two sig-
e2 nals can be analytically decomposed into signal coherence (a measure of phase
23 synchronization), cokurtosis (a measure of the probability of simultaneous large
e fluctuations), and conjugate-coherence [28]. In particular, it was proposed that
s the cokurtosis between two signals provides a measure of co-bursting that offers
226 a robust neurophysiological correlate for hemodynamic resting-state networks
227 [28]. Here we show that the SGDC conceptualization provides a coherent ac-
g8 count of both the co-burstiness and the cokurtosis in terms of the group delay
g0 consistency of the signals’ spectral content, therefore, advancing our understand-
g0 ing of the signal-level mechanisms of long-range communication. For this, we
s counted the co-participation of pairs of brain regions across SEs (see Methods,
sz Section . Fig. Ep shows the co-activation matrix indicating the number of
s co-activations between each pair of brain regions. Fig. [7B shows the number
s« Of relative co-activations, i.e., the accumulated number of activations in each
ss row of the co-activation matrix relative to the total number of activations in
s each brain region (diagonal of the co-activation matrix). Fig. [T]A displays the
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ss7  brain plots corresponding to the number of relative co-activations shown in Fig.
s [7B. Importantly, the topography of co-activations shown in the Figs. [JA-C can
g9 not be trivially explained by the chance co-occurrence of rare above-threshold
a0 fluctuations in the brain activity. Note that the B-surrogates shown in Fig.
8a1 fail to reproduce the the topography of co-activations despite preserving
s> both the power spectrum (PSD) in each brain region and the cross-correlations
ss  (i.e., functional connectivity). Moreover, we found that the the kurtosis and
se SGDC(r), two measures related to the occurrence of local above-threshold fluc-
a5 tuations (i.e., SLEs), when computed in a non-time-resolved manner in each
sas  brain region fail to reproduce the topography of co-activations associated with
a7 the observed SEs. In the case of the SGDC(r) measure, compare the spatial
s profiles shown in Figs. [A7A and [7B. To account for both the burstiness and
s cross-regional bursts synchronization in a non-time-resolved manner we used the
g0 pairwise SGDC measure (pSGDC). The pSGDC(ry, ) is defined as the prod-
1 uct of two fators: a factor quantifying the cross-regional correlation between
s2  the group delays across the frequency components, weighted by the average
ss SGDC(r) of each pair of signals r1 and ro (see Eq. [3] in Methods and Egs.
sse  [A.23and [A.24] in [Appendix A.3)). In [28], it was analytically shown that power
s correlation depends on signal coherence, cokurtosis, and conjugate-coherence.
sss  In particular, co-occurring bursts in neuronal activity, statistically measured by
v cokurtosis, are relevant for our discussion of SNEs. We computed the pSGDC
sss  and cokurtosis (Eq. measures on our MEG dataset by using the whole
s time series of the brain regions taken in pairs (i.e., non-time-resolved approach).
so As a result, we found that the pSGDC measure and the cokurtosis disclose a
s similar correlation degree with the observed co-activations topography (compare
g2 Figs. EF and ) and generates statistics that are lost in the A- and B-surrogates
se3  (see Figs. and ) Linear correlations between topographies: Co-activations
s vs pSGDC, r = 0.881, P < 0.001 (Fig. ) Cokurtosis vs pSGDC, r = 0.848,
s P < 0.001 (Fig. [7l). Co-activations vs Cokurtosis, 7 = 0.937, P < 0.001 (Figs.
866 ,H). Co-activations vs Pairwise Pearson’s correlation, » = 0.612, P < 0.001
sor  (Figs. and ) The statistical significance of these linear correlations was
ss  assessed by using the Student’s t distributions of the two-tailed hypothesis test
g0 under the null hypothesis that the correlation is zero.

sn The pSGDC measure quantifies the co-occurrence of above-threshold bursts
sn mainly associated with SGDC in the alpha band, whereas cokurtosis assesses
sz the presence of both oscillatory and non-oscillatory co-burstiness across brain
sz regions. Importantly, the analytical framework proposed in this work based on
s the SGDC(r), SGDC(w) and pSGDC(ry, ry) measures, admits relevant signal-
srs  level mechanistic interpretations linking the Fourier oscillatory constituents of
srs  the brain activity and SEs. Note that the latter is less evident when consid-
s7  ering measures based on higher-order statistical moments like the kurtosis and
srs  cokurtosis. Specifically, using the group delay-domain representation, one can
g0 quantify the group delay consistency of the spectral (Fourier) constituents of
s0 the signals of interest (via the SGDC measures) to predict the emergence of SEs
s (without doing any explicit computation in the time-domain). This prediction
sz linking the oscillation and time-domains can not be done by higher-order sta-
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sss  tistical moments like the kurtosis and cokurtosis, mainly because they operate
s exclusively in the time-domain. Therefore, the SGDC framework provides a
sss deeper understanding of the link between the oscillation-domain (Fourier rep-
sss resentation) and the emergence of transient, salient fluctuations in the time-
g7 domain. Thus, the SEs co-activation pattern reproduced by the pSGDC mea-
s sure (see Figs. [7JA-F) can be mechanistically segregated in two components: 1)
seo  the results associated with the SGDC(r) measure (Fig. |C.11|C) supporting the
s emergence of local above-threshold fluctuations via SGDC mainly in the alpha
s1  band, and 2) the results associated with the SGDC(w) measure (Fig. [C.11D)
sz supporting the co-occurrence of above-threshold alpha bursts across brain re-
g3 gions (i.e., transient cross-regional coherence around the alpha band). We spec-
soa  ulate that component 1 can be interpreted as an entrainment mechanism that
ss produces transient synchronization of the oscillatory activity of neuronal popu-
g6 lations around specific frequency bands (local cross-frequency synchronization),
sv whereas component 2 can be associated with long-range interaction mediated
g8 Dy transient cross-regional coherence in NOs.

s0 In summary, these results suggest that a) spectral group delay consistency in
oo specific narrow frequency bands (as assessed by the SGDC(r) measure), b)
o1 transient cross-regional coherent NOs (intra-frequency coherence across brain
o2 regions assessed by the SGDC(w) measure) and ¢) BAA, are all key ingredients
o3 for the emergence of realistic SEs. In particular, the (pairwise) long-range in-
w4 teractions mediated by oscillatory SNEs can be effectively quantified using the
ws pSGDC(r1,r2) measure.
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Figure 7: Co-activation pattern of SEs compared against pSGDC and cokurstosis measures
computed on whole time series of the brain regions taken in pairs. (A) Brain topographies
corresponding to the co-activation profile shown in panel B (blue markers). (B) Spatial profile
showing the number of relative co-activations (mean value across the 47 participants), i.e., the
accumulated number of activations in each row of the co-activation matrix relative to the total
number of activations in each brain region (diagonal of the co-activation matrix). Note that the
spatial profiles corresponding to the 100 B-surrogates (dark gray markers) fail to reproduce the
spatial profile associated with the true MEG data (blue markers). (C) Co-activation matrix
averaged across the SEs observed in the 47 participants (see Section in Methods). (D-E)
Same as in A-B for the pSGDC measure. (F) Scatter plot showing the correlation between the
co-activation and pSGDC spatial profiles shown in panels B and E, respectively. Number of
samples (red circles) = Number of brain regions = 84. The thick black line and black shaded
error bars represent the linear regression and the 95% confidence interval, respectively. The
reported P value for the statistical significance of the linear regression was assessed using
Student’s t distributions of the two-tailed hypothesis test under the null hypothesis that the
correlation is zero. (G-H) Same as in D-E for the cokurtosis measure. (I) Same as in F for
the correlation between the cokurtosis and pSGDC spatial profiles. In panels B, E and H, the
labels and ordering of the brain regions are the same as those shown in Fig. Symbols
and abbreviations: SEs, Salient Events; pSGDC, pairwise Spectral Group Delay Consistency.

ws 4. DISCUSSION

007 Frequency-domain representation of signals, via Fourier transforms (e.g.,
ws DFT), have been extensively used for decades in many neuroscience fields to
wo analyze neuronal and brain activities across several spatiotemporal scales. Re-
a0 gardless of the functional significance of neural oscillations, if any, the Fourier
o basis functions provide an arguably good characterization of the rhythmic com-
o2 ponents observed in the brain activity. In this study, we used the complex
a3 baseband representation of signals, based on the Fourier theory, to analytically
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ae  define the spectral group delay consistency (SGDC) as a novel conceptualiza-
as  tion linking SEs with the signals’ spectral content. Importantly, the signal-level
ais  analytical framework associated with the SGDC concept allowed us to provide
oz a unifying rationale for the emergence of salient local and large-scale events
ais  from the Fourier oscillatory constituents of the brain activity. First, the analyt-
oo ical arguments described in the Sections and point out
o0 that in order to observe realistic local above-threshold fluctuations, the spec-
o1 tral components constituting the brain signals must disclose a certain degree of
o  cross-frequency coherence as assessed by the SGDC () measure. Second, in Sec-
w3 tions and we analytically showed that A- and B-surrogates
o4 failed to reproduce realistic SEs mainly because the phase randomization re-
es duces the SGDC across frequency bands in each brain region, which impairs the
226 burstiness of each signal (occurrence of local above-threshold fluctuations). In
w7 the case of the A-surrogates the phase randomization also reduces the SGDC
ws across brain regions in each frequency band, which impairs the synchronization
w9 of above-threshold fluctuations across brain regions. Third, in Section [3.1] we
o0 showed that the spectral signature in the alpha band disclosed by the averaged
an ESM of cluster 2 SEs constitutes relevant evidence linking the observed SEs with
2 NOs. Importantly, in Sections [3.6 and [Appendix C.2] we demonstrated that the
013 synchronization of above-threshold alpha bursts across brain regions can be de-
aa  scribed at the signal-level by the SGDC mechanism. Specifically, we showed that
o5 the SNEs disclosing the alpha spectral signature in the average ESM (see cluster
a6 2 in Fig. |C.11B) also disclose an increase of transient cross-regional coherence
o7 around the alpha band, as quantified by the SGDC(w) measure (see cluster 2
o in Fig. [C.11]D). Of note, the SGDC(w) measure effectively captures transient,
o9 cross-regional coherent NOs associated with SNEs, a phenomenon that tradi-
a0 tional coherence metrics, such as the Phase Locking Value (PLV), fail to detect
o1 (see Figs. and . Thus, we combine analytical arguments, based on the
w2 SGDC framework, with experimental evidence obtained using novel tools like
w3 the ESM and SGDC measures, to provide a more direct and generative link
s for NOs (e.g., alpha oscillations) role in the coordination of SNEs observed in
ws spontaneous MEG activity. This moves beyond mere correlation or characteri-
ws zation to offer a plausible generative model for SNEs as spatiotemporal cascades
a7 of above-threshold fluctuations associated with phase-structured NOs. Fourth,
us  the SGDC conceptualization allowed us, via the pSGDC(rq,r2) measure, to
ao account for both the co-activation pattern of brain avalanches and cokurtosis
so in terms of the coherence of the signals’ spectral content, therefore, advancing
1 our understanding of the signal-level mechanisms of long-range communication.
o2 The empiric, modeling and analytical results presented in this work guided us
o3 to identify the essential building blocks underlying the emergence of realistic
oss  SEs as observed in our MEG dataset, which can be summarized as follows:

s 1 Spectral group delay consistency. This feature provides a signal-level mech-
056 anism for the emergence, in a single brain region (i.e., locally), of transient
057 above-threshold fluctuations associated with an specific frequency band (e.g.,
058 alpha bursts). We speculate that the SGDC (e.g., bounded phase differ-
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959 ences across spectral components within a narrowband) may be associated
960 with the presence of mesoscopic neural oscillators that are not tightly tuned.
961 We hypothesize that different brain regions may host mesoscopic oscillators
962 disclosing rhythmic (likely non-sinusoidal) dynamics whose fundamental fre-
963 quencies span a quasi-continuum within a given frequency band (e.g., alpha
964 band), rather than clustering around a single sharply defined value. Thus,
965 the linear superposition of these rhythmic components with slightly differ-
966 ent frequencies within a narrowband (e.g., alpha range) could support the
967 emergence of SEs via the SGDC signal-level mechanism.

os 2 Transient cross-regional coherent alpha oscillations. This feature is associated
969 with the transient synchronization of the above-threshold alpha bursts across
970 brain regions, giving rise to the SNEs producing the alpha spectral signature
71 in the ESM (i.e., cluster 2 SEs). This type of SEs may be associated with a
o72 long-range interaction mechanism mediated by specific NOs taking place in a
o3 transient manner (i.e., transient CTC).

s 3 BAA. This feature is associated with the emergence of non-oscillatory above-
o75 threshold fluctuations occurring in an aperiodic manner, mainly related to
o76 the short-lived SEs with no characteristic spectral signature in the ESM (i.e.,

o7 cluster 1 SEs). We hypothesize that the close relationship between cluster 1
o78 SEs and arrhythmic broadband spectral features implies that cluster 1 SEs
o79 may play a more local role, linked either to local excitation-inhibition balance
080 or to critical dynamics [43].

w1 Linking the presence of SEs to the group delay consistency across the Fourier
w2 oscillatory components of the brain activity is a relevant result of this study
s3 implying that SEs might mediate interactions across both frequency bands and
e« brain regions as discussed above. In this regard, the CTC hypothesis posits that
s neural communication is facilitated by the presence of synchronized (steady)
ws oscillations across brain regions. Our results extend the CTC hypothesis by
s7  showing that long-range interaction through specific NOs may take place in a
s transient manner via SNEs (i.e., transient CTC). Indeed, our results suggest
so that the large-scale spreading of transient alpha bursts is associated with SNEs.
s As a conclusion, this evidence suggests that transient cross-regional coherence
w1 associated with the occurrence of SEs disclosing the spectral signature in the
o alpha band (i.e., cluster 2 SEs), may play a functional role as a long-range in-
w3 teraction mechanism in the resting human brain.

oa  One of the main limitations of this study is related to the uncertain capability of
es our dataset to accurately identify deep brain sources along the cortical surface,
ws mainly due to the ill-posed nature of the source-reconstructed MEG data. In
sr order to address this issue, we re-computed the analysis of SEs presented above,
ws but this time excluding the deep sources. It was found that all the conclusions
wo and, in particular, all the characteristics of the observed SEs remain essentially
wo unaltered when the deep sources are excluded from the SE analysis (see
1001 . Specific analyses demonstrating that volume conduction alone is
e unlikely to account for the cascade of above-threshold fluctuations (i.e., SNEs)
w03 observed in our empirical MEG dataset have been presented and discussed in a
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e previous publication [63]. The spatial leakage analyses and the full discussion
wos  can be accessed via this link: https://elifesciences.org/articles/67400/
w06 peer-reviews#content

wr 5. CONCLUSION

1008 In this work we provided a detailed analytical description of the mecha-
wo  nisms underlying the emergence of SEs from NOs and BAA co-existing in
w0 the human brain. The proposed analytical arguments were tested and con-
o firmed using local and large-scale numerical models together with experimental
w2 MEG recordings obtained in healthy subjects during eyes-closed resting state.
w3 While previous studies have described SEs within the framework of neuronal
w4 avalanches, they often lacked a generative, signal-level account. Here, we bridge
ws  that divide by offering a mathematically grounded and empirically validated
we framework that accounts for oscillatory and aperiodic bursts perspectives on
w7 brain activity. We combine experimental evidence supported by a signal-level
s analytical framework and numerical simulations based on generative models to
o demonstrate that transient phase-structured alpha bursts, shaped by the SGDC
w20 mechanism, contribute to long-range coordination during rest. This extends
w21 the communication-through-coherence hypothesis into the transient domain. In
w2 summary, our multi-pronged approach, grounded in experimental evidence sup-
w23 ported by analytical arguments and extensive model-based validation, enhances
1024 the robustness and interpretive depth of our results, offering a more comprehen-
s sive picture of how SEs arise from NOs and BAA as fundamental components
ws  of MEG activity during resting-state.
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1 Appendix A. Supplementary analytical results

> Appendiz A.1. Preservation of the Pearson’s cross-correlation in the B-surrogates

4 Let us start by considering the circular cross-correlation Ry, (t') between the
s time series z:(t) and y(¢) representing the activities of two brain regions [45], pp.
s D71, 746],
N,—1
Rwy(t/) = Z .’I}*(t - t/)mod N y(t> (Al)
t=0

7 where (z(t), y(t)) € R are finite-length discrete time series having N, time
s samples satisfying (z(t) = 0, y(t) = 0) V0 >t > N, — 1, being t € Z the
o discrete time index. By applying the Discrete Fourier Transform (DFT) §{.}
1 on both sides of Eq. we obtain [45, pp. 575, 746],

Sey(w) = F{Ruy(t)}
= F{z®)} F{y()} = Ap(w)e =) Ay (w)e @ (A2)

u  where A, (w), ¢,(w) and A,(w), ¢,(w) are the magnitude and phase angle of
1 the DFT spectrum corresponding to the signals x(¢) and y(¢), respectively. The
13 computation of surrogate time series involves the addition of random phases
1 0(w) to the corresponding DFT spectra as follows,

Si,(w) = Aw(w)e—i(%(m-ir@z(w)) Ay(w)ei(¢y(w)+9y(w))
= A (w)e @) A (w)er @) ¢il0y(@)=0:(w) (A.3)

15 In the S3y(w) is the DFT of the circular cross-correlation associated with
15 the surrogated time series 2°(t) = §1 {Ay(w)e @@+ and y3(t) =
v §FH{Ay (w)e P01 where 1 {.} stands for the inverse DFT. In the
18 particular case of the B-surrogates (see Sectionin Methods) we add the same
1w random phase-shift in all the brain regions, that is, 6;(w) = 6,(w) producing
n  e0u@=0:(w) =1 ip the Eq. Under this condition, the Egs. and
a1 becomes equivalent which in turn implies the equivalence between the circular
» cross-correlations associated with the true data and the B-surrogate,

Sa:y(w) = S;y(w) = S{Rwy(t/)} = 3{R;y(t/)}
= Ryy(t') = R;,(t)

23 We confirmed this analytical results by computing the time-averaged functional
2 connectivity as quantified by the pairwise Pearson’s correlation on our empir-
»s ical MEG dataset and the corresponding A- and B-surrogates (see Section
2 in Methods). Fig. m shows the matrix resulting from computing the Pear-
27 son’s correlation on whole time series of the brain regions taken in pairs. Fig.
2 shows the spatial profile obtained by averaging the Pearson’s correlation
2 matrix across rows. Fig. displays the brain plots corresponding to the
% spatial profile of the Pearson’s correlation shown in Fig. [AIB. Importantly,
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a1 Fig. shows that only B-surrogates reproduce the spatial profile of the
»  Pearson’s correlation computed on the MEG data, hence, confirming that the
13 pairwise Pearson’s correlation is preserved in the B-surrogates, and not in the
s case of A-surrogates.

(A) Pearson's correlation

0.110

&
20

(B)

0.1k Left hemisphere Right hemisphere ]
=
2
EOOS-
‘164
£ ? of
g o 1
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R -*-True
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Pearson's correlation

Brain regions

Figure A.1: Pearson’s correlation pattern computed on whole time series of the brain regions
taken in pairs. (A) Brain topographies corresponding to the Pearson’s correlation profile
shown in panel B (blue markers). (B) Spatial profile showing the Pearson’s correlation (mean
value across the 47 participants), i.e., the mean value computed on in each row of the Pear-
son’s correlation matrix. Note that the spatial profiles corresponding to the 100 B-surrogates
(dark gray markers) overlap with the spatial profile associated with the true MEG data (blue
markers). (C) Pearson’s correlation matrix (average across the 47 participants) obtained by
computing the Pearson’s correlation on the whole time series of the brain regions taken in
pairs. In panel B, the labels and ordering of the brain regions are the same as those shown in

Fig. @
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s Appendiz A.2. Oscillatory mechanisms underlying the emergence of local above-
3 threshold fluctuations

37 In this section we provide a detailed description of the mechanism underlying
;s the emergence of local above-threshold fluctuations from the Fourier oscillatory
3 constituents of the brain activity. Our analysis start by projecting the brain
w0 signal of interest x(t) onto the Fourier basis functions using the Discrete Fourier
s Transform (DFT) equations [45, Chapters 8 and 10]. In doing so we are assum-
« ing that x(t) satisfies certain conditions so the resulting spectral estimates exist
s and are meaningful. Specifically, by considering finite-length time series con-
«  stituted by Ny time samples, the existence of the DFT representation requires
s that x(¢) is bounded (Jz(t)] < M € RY 0>t > N, — 1). Besides, the analyzed
s brain activity are in general nonstationary, that is, the time series z(¢) can be
« represented as a sum of sinusoidal components with time-varying amplitudes,
s frequencies, or phases. In this regard, we consider a small enough number of
w time samples N, such that the spectral characteristics of the signal z(t) can
5o be assumed stationary during the analyzed time window. Thus, by considering
si x(t) € R being a finite-length discrete time series having an even number of
2 time samples Ny and z(t) =0V 0 >t > N, —1, where ¢t € Z is the discrete time
53 index. The analysis equation corresponding to the Discrete Fourier Transform
s« (DFT) of x(t) can be written as follows [45], p. 561, Eq. (8.67)],

N,—1
X(k) = Z z(t)e Wkt .y = ]2\[1 (A.4)
t=0 s

ss where k € Z is the discrete frequency index, in general producing complex

ss  Fourier coefficients X (k) € C and X(k) = 0V 0 > k > Ny, — 1. Then, the
s»  synthesis equation associated with the inverse DFT (iDFT) is [45, p. 561, Eq.

s (8.68)],
| Mol
x(t) = — X (k)elwokt (A.5)
¥ k=0
s Taking into account that X (k) = | X (k)|e’**) € C, the Eq. can be rewritten
60 as,
] Nl
_ i(wokt+o(k))
#(t) = 37 kz_o [ X (F)le (A.6)

e The core of the proposed conceptualization is to note that the Eq. can be
e expressed as a sum of (non-overlapping) pairwise adjacent spectral components
63 as follows,
N,/2—1
z(t - X (2k ei(w02kt+¢(2kj))

0 = 5 X Ixew

+ | X(2k+ 1)|ei(‘*’0(2k+1)t+¢(2k+1))


https://doi.org/10.1101/2024.02.28.582552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582552; this version posted February 12, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

64
N./2—1

ip(2k) i(wot+¢(2k+1)) \ iwo2kt
(1) N Z( (2k)]€™2R) 4| X (2k + 1)[ei(=0 ) 0

s By defining the forward phase difference as A¢(2k) = ¢(2k + 1) — ¢(2k), and
s substituting ¢(2k + 1) = ¢(2k) + Ad(2k) in the previous equation we have,

1 A BoK)
wt) = & D <|X(2k)|e’( Pt
5 k=0
+ X2k + 1))l t+A¢’<2’“’))ei?tei(¢(2k)+%%))emuzkt
67
(t) /Z (IX 2k) i (F 1+ 25
xz
S k=0

X2k + 1) i(Rt+ A¢(2k))>ei(“’20(4k+1)t+¢(2k)+A¢;2k))

¢ Then, by introducing in the previous equation the forward frequency difference
oo Aw=wy (k+1)—wy k= wo, it results,

N, /2—

at) = Z X (2k)|e i (A 24
Ns P
k +

X2k £ 1) (A%+M’(2’“>)>e i( A2 (Ak+1)t+(2k)+ 2228 )

70 Taking out Aw/2 as a common factor we have,

N./2—1

a(t) = N Z (IX (2k) e~ 19 (+2527)
+|X(2k + 1)|é (t+“(”>))ei(%“<4k+1>t+¢(2k>+“é”’)

7 The rate of change of the phase with the frequency is associated with the group
2 delay defined as 7(k) = —A¢(k)/Aw. Using this definition, the previous equa-
73 tion can be written as,

N./2-
]. w : w
" = 5 §: <|X 2%) e~ F TR X (2% + 1) ]! F <t—7<%>>)

Complex envelope (sidebands)

% ei( B2 @kt D)t+g(2k)+ 222 (A.7)

Complex carrier
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7 It is essential to note that in Eq. each (non-overlapping) pair of adjacent
75 spectral components X (2k), X (2k + 1) can be interpreted as the sidebands of
7 an amplitude modulated carrier at (4k + 1)Aw/2. Importantly, the frequency
7 of the carrier (4k + 1)Aw/2 is a function of the frequency index k, that is,
7 it depends on the particular pair of spectral components under consideration
(X (2k),X(2k + 1)). However, the frequency of the modulating component is
o the same for all the pair of spectral components involved in Eq. [A77] i.e., it
a1 is independent of the frequency index k and only determined by the frequency
&2 resolution of the DFT as Aw/2 = wq/2 (i.e., half the separation between the two
&z sidebands). Another important characteristic of the representation given by the
s Eq. is that the frequencies associated with the complex envelopes (Aw/2)
s and with the complex carrier ((4k+1)Aw/2) satisfy the condition Aw/2 < (4k+
55 1)Aw/2. In the telecom theory, a spectral profile satisfying these characteristics
& is known as the complex baseband representation of a band-limited signal (e.g.,
s amplitude modulated signal) [45, Chapter 11.4.2, p. 796; 63, Chapter 4.1, p.
s 152; 26l Chapter A2.4, p. 725]. Accordingly, we refer to the Eq. as the
o inverse DFT based on the pairwise complex baseband representation of x(t).
o In line with this, the Eq. [A77] can be rewritten as a summation of amplitude
« modulated signals corresponding to each pair of adjacent spectral components
oz as follows,

1 N./2—1
wt) = 5 D oweld) (A8)

5 k=0
Zk+(t) _ fk(t—T(k)) ei(%(4k+1)t+¢(2k)+7A¢52k)) (Ag)
dn(t— (k) = |X(2k)|e T TR 4 X (2K + 1)[e (-T2 A 10)

o In the Eq. Zg4(t) is the discrete time analytic signal (a.k.a., pre-envelope)
s corresponding to each amplitude modulated component constituting the original
o signal z(t), and it is defined in Eq. In the Eq. 7t — 7(k)) is
o7 the complex envelope of each amplitude modulated component constituting the
e original signal z(t), and it is defined in terms of the spectral components X (k)
o in the Eq. It is important to note that the alignment in time of the
o complex envelopes 2% (t — 7(k)) synthesizing the original signal x(t), via the Eq.
101 is determined by the group delay 7(k).

w2 The Egs. [A77]-[A7I0] constitute a useful conceptualization linking the DFT and
w3 the complex baseband representation to account for the emergence of salient
s events from the Fourier oscillatory constituents of a band-limited signal. Due
05 to the fact that the analysis proposed above is based on the DFT, in the case of
s x(t) € R the result of the summation in Egs. and is guaranteed to be
wr real valued. At the same time, this also restrict the validity of the analysis to
108 harmonic spectral components wq k associated with the fundamental frequency
w  wo = 2m/N,. Now we will present the general equations valid for all the cases,
uo  that is, harmonic (Aw(k) = cte, w(k + 1)/w(k) € Q), non-harmonic (Aw(k) =
w cte, w(k+1)/w(k) € R\ Q) and non-uniformly spaced (Aw(k) # cte) Fourier
12 oscillatory components. Let us consider a real valued signal x(t) € R resulting
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us  from the linear superposition of an even number N, of oscillatory components
us  of arbitrary amplitude A(k), frequency w(k) and phase ¢(k).

Ny—1
z(t) = Y A(k) cos(w(k)t+ p(k)) : A(k) € R (A.11)
k=0

us  Since the Eq. is linear we can introduce the complex notation via the
ue  Euler’s formula as follows,

Ns—1
z(t) = iRe{ > A(k) ei(“(’“”w(k))} (A.12)
k=0

w7 In the Eq. the operator fRe{.} stands for “the real part of”. By following a
us similar procedure applied above on the Eq. the Eq. can be rewritten
o as follows,

Ng/2—-1
x(t) = me{ > (A(Qk) e (BT RE) | g (2 4 1) (5T k)>>

k=0

% ei(@(2k)t+43(2k)) }

Ap(2k) = o2k +1) — ¢(2Kk)
- 2k +1 2k 2k
oy = HEAUAIER) oy Ao
Aw(2k) = w(2k+1) —w(2k)
2k +1 2k Aw(2k
ook = CEREDTOEE) _ oy AZh)
2 2
o In this case the group delay is defined as 7(k) = —22837 thus, the previous
21 equation results,
N —i8wZh) (4 1 (2k)) 189h) 4+ (2k))
x(t) = fRe Z A(2k) e 2 +ARk+1) e 2
k=0
Complex envelope (sidebands)
% 61‘(@(2k)t+q§(2k)) (A.13)
~—_—

Complex carrier

12 The Eq. is the pairwise complex baseband representation of the signal x(¢).
3 Provided that the frequencies associated with the complex envelopes (Aw(2k)/2)
e and the complex carrier (w(2k)) satisfy the condition Aw(2k)/2 < @(2k), the
s Eq. can also be written as a summation of discrete time analytic signals
s x4 (t) associated with amplitude modulated signals corresponding to each pair
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127 of adjacent oscillatory components as follows,

Ns/2—-1
xt) = me{ > mk+(t)} (A.14)
k=0
Ter(t) = @t — (k) (BRI (A1)
Gt — (k) = A(2k) emiTF(=T(2k)
A2k + 1) e TFEHE-T(2R) (A.16)

s Similarly to the previous case the time alignment of the complex envelopes
o T(t — 7(k)) synthesizing the original signal z(t), via the Eq. is deter-
1 mined by the group delay 7(k).

m  In what follows we will use the Eq. to illustrate the role of the group
12 delay in the emergence of above-threshold fluctuations from the oscillatory con-
13 stituents of the synthetic signal x(¢). As a first example, let us consider a spec-
w  tral profile given by a set of constant-amplitude A(k) = A =1 oscillatory com-
155 ponents uniformly spaced f, Aw/(27) = 1.2/v/2 Hz and having non-harmonic
s frequencies fs w(k)/(2m) =0.5+k fs Aw/(27) € [0.5 — 5] Hz, where f, = 1024
wr Hz is the sampling rate (see Figs. and ) Accordingly, the Eq.

18 becomes,

Ns/2—1
z(t) = A %e{ Z <e—iA2”(t—-r(2k)) +eiAz“’(t—‘r(2k)))ei(®(2k)t+¢(2k))}

k=0

10 By using the Euler’s formula to rearrange the modulating factor, the previous
uw equation results,

x(t) = ; me{ N;/Zj;)lcos (A;’ (t — T(zk)))ei(w(2k>t+a3(2k>)}
= g N:z:;)lcos (AQ“’ (t— 7'(2]{:))) Cos (w(2k)t + q>(2k)) (A.17)

Modulating component Modulated component

w1 The Eq. explicitly shows that any pair of adjacent oscillatory components
w2 associated with the signal z(¢) can be interpreted as an amplitude modulated

13 signal with the same modulating function cos % (t —7(2Kk)) ) The key con-

us  cept here is to note that, when all the oscillatory components in Eq.
us are added together to synthesize the signal z(t) in the time-domain, the group
us delay 7 will determine the time alignment of the modulating functions associ-
w  ated with each pair of adjacent oscillatory components. As a consequence, in
us  the case of all the spectral components A(k) e!@®+6(R) in Bq. having
1o constant phase produces A¢p = 0 = 7 = —A¢/Aw = 0, hence, all the

15 modulating functions cos ( 42 (t — 0) ) in Eq. |A.17|will be aligned in time (at
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51t = 0) giving rise to a sinc-like function representing the maximum amplitude
12 excursion (i.e., a salient event) that can be elicited by the set of Fourier oscil-
153 latory components constituting the Eq. In the case of all the spectral
15« components in Eq. [A7I2 having a phase proportional to the discrete frequency
55 index ¢(k) = —7190 Aw bk = A¢(k) = —79 Aw, results in a group delay
15 which does not dependent on the frequency 7(k) = —A¢(k)/Aw = 79, thus,

57 in Eq. |A.12| we obtain a modulating component cos % (t —70) ). That is,

158 all the modulating functions will again be aligned in time producing the same
10 salient event given by the sinc-like function as in the previous case but this
e time centered at t = 7y (i.e., a time-shift, see Figs. [A.2A-E). On the other
11 hand, in the case of the phases associated with the spectral components in Eq.
12 [A12] having a non-linear dependence with the discrete frequency index, e.g.,
e ¢(k) = —10 Aw k? = A¢(k) = —19 Aw(2k + 1), the group delay results a
e« function of the frequency 7(k) = 79(2k + 1), hence, preventing the alignment in
15 time of the modulating functions associated with each pair of adjacent spectral

166 components cos (Az‘“ (t— T(k))) In this case, the signal x(t) discloses sub-

67 threshold excursions of amplitude (see Figs. |A.2[F-J). It is worth mentioning
s that in deriving the pairwise complex baseband representation of x(t) given by
160 the Egs. and we grouped the original spectral components (Eqs.
170 and |A.11)) in subsets of (non-overlapping) pairs adjacent in frequency. The
1 strategy of grouping the spectral components in subsets is necessary to obtain
12 a representation based on a sum of complex envelopes modulating the complex
w73 carriers. Representations similar to those presented in the Eqgs. [A.7] and
7 can be obtained by defining subsets containing more than 2 non-overlapping
s spectral components (not necessarily adjacent in frequency). However, our ap-
e proach based on grouping adjacent spectral components in non-overlapping pairs
17 discloses the following relevant features:

s 1 By defining subsets of 2 spectral components, we obtain the simplest complex
179 envelopes characterized by a cos- or sin-like waveform shape (see the mod-
180 ulating component in the Eq. and the colored solid lines in Figs[A2E
181 and )

12 2 By defining pairs of spectral components adjacent in frequency, we maximize

183 the waveform shape similarity among the resulting complex envelopes. In the
184 case of uniformly spaced spectral components (Aw = cte), we obtain complex
185 envelopes having the same time period 2/Aw (see the colored doted lines in

186 FigsA.2E and [A.3[E).
w7 3 By defining pairs of spectral components adjacent in frequency, we also maxi-
188 mize the similarity among the resulting complex carriers (see the colored solid

189 lines in Figs[A.2E and [A3E).

1o Taking together, these features are of particular importance to support the
01 link between the spectral group delay consistency (SGDC) defining the time
12 alignment of the modulating components (complex envelopes) with the con-
3 structive interference of the modulated components (complex carriers), which
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104 in turn lead to the occurrence of salient events. As a conclusion, the results de-
s scribed above in connection with the Eqgs. [A7] show that the emergence
s of above-threshold fluctuations in the signal x(t) is related to the consistency
w7 of the group delay 7(k) across the discrete frequency values k. That is, the
s occurrence of salient events is supported by a slowly varying group delay as a
199 function of the frequency, and this hold true for harmonic, non-harmonic and
200 also for non-uniformly spaced Fourier oscillatory constituents of the signal under
20 analysis.
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Figure A.2: Pairwise complex baseband representation for a set of oscillatory components
with Ay = cte. (A) Set of constant-amplitude A(k) = 1 oscillatory components uniformly
spaced (fs Aw/(27) = 1.2/v/2 Hz) and having non-harmonic frequencies fs w(k)/(27) =
0.5+ k fs Aw/(2m) € [0.5 — 5] Hz, where f; = 1024 Hz is the sampling rate. The pairwise
complex baseband representation (Eq. was obtained by grouping the oscillatory compo-
nents in adjacent non-overlapping pairs color-coded in blue, red and green. (B) Phases ¢(k)
having a linear dependence as a function of the frequency within the range ¢(k) € 2.5 [—m, 7].
(C) Group delay 7(k)/fs = —A¢(k)/(fs Aw) for the pairs of adjacent oscillatory compo-
nents. The color-coded filled markers correspond to the 7(2k)/ fs values, and the black empty
markers correspond to 7(2k + 1)/ fs values (see Eq. [A13). (D) Z-scored signals. The solid
color-coded lines represent the individual oscillatory components, the solid black line is the
resulting signal x(¢), the horizontal dashed black lines indicate the threshold at |z| = 3. (E)
Pairwise complex baseband representation. The solid color-coded lines represent the individ-
ual amplitude modulated signals (pairs of adjacent oscillatory components), the solid black
line is the resulting signal z(¢), the color-coded and black doted lines are the corresponding
amplitude envelopes. (F - J) Same as panel§ (A - E), this time with phases ¢(k) having a
quadratic dependence as a function of the frequency within the range ¢(k) € 2.5 [—7, 7] (see
panel G).
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202 The group delay is defined in terms of the rate of change of the phase with
203 the frequency, being independent on the amplitude of the spectral components.
24 As a consequence, the consistency of the spectral group delay as a mechanism
25 supporting the emergence of salient events is also valid for spectral profiles other
25 than the constant-amplitude spectrum shown in the Fig. The Fig.
2 shows the results for a spectral profile given by a set of (uniformly spaced) non-
x5 harmonic oscillatory components with amplitudes A(k) o 1/v/k, that is, the
20 power of the spectral components A%(k) is proportional to 1/k (see Figs.
20 and |A3F). Figs. |[A.3A-E show the case in which the phases ¢(k) of the spec-
au  tral components A(k) etwmt+o(k) in Eq. are randomly distributed in a
22 very small range around zero (¢(k) € [—7/10,7/10]). Under this condition, the
23 pairwise complex baseband representation (Eq. shown in the Fig. |A.3]
2 is constituted by amplitude modulated signals highly aligned in time. As a con-
215 sequence, prominent salient events can be distinguished in the resulting signal
26 (see solid black line in panels D and E of Fig. . On the other hand, Figs.
217 —E show the case in which the phase values ¢(k) are randomly distributed
2 in a wider range ¢(k) € [—m,w]. Under this condition, the pairwise complex
20 baseband representation (Eq. shown in the Fig. is constituted by
20 amplitude modulated signals non-aligned in time. As a consequence, the result-
a1 ing signal z(t) only discloses sub-threshold excursions of amplitude (see solid
22 black line in panels I and J of Fig. .

11
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Figure A.3: Pairwise complex baseband representation for a set of oscillatory components
with A(k) o< 1/vk. (A) Set of non-constant amplitude A(k) o« 1/vVk oscillatory compo-
nents uniformly spaced (fs Aw/(27) = 1.2/4/2 Hz) and having non-harmonic frequencies
fs w(k)/(27) = 0.5+ k fs Aw/(2m) € [0.5 — 5] Hz, where fs = 1024 Hz is the sampling
rate. The pairwise complex baseband representation (Eq. was obtained by group-
ing the oscillatory components in adjacent non-overlapping pairs color-coded in blue, red
and green. (B) Phases ¢(k) randomly distributed within a very small range around zero
(¢(k) € [-7/10,7/10]). (C) Group delay 7(k)/fs = —A¢(k)/(fs Aw) for the pairs of ad-
jacent oscillatory components. The color-coded filled markers correspond to the 7(2k)/fs
values, and the black empty markers correspond to 7(2k + 1)/ fs values (see Eq. [A13). (D)
Z-scored signals. The solid color-coded lines represent the individual oscillatory components,
the solid black line is the resulting signal x(t), the horizontal dashed black lines indicate the
threshold at |z] = 3. (E) Pairwise complex baseband representation. The solid color-coded
lines represent the individual amplitude modulated signals (pairs of adjacent oscillatory com-
ponents), the solid black line is the resulting signal z(t), the color-coded and black doted lines
are the corresponding amplitude envelopes. (§ - J) Same as panels (A - E), this time the
phases ¢(k) are randomly distributed within % e range ¢(k) € [—m, 7] (see panel G).


https://doi.org/10.1101/2024.02.28.582552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582552; this version posted February 12, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

223 In summary, the analytical arguments presented above, condensed in the
2 Egs. [A77] - [A10] and [ATT3] - [AT16] allowed us to identify the consistency of
»s the group delay across the spectral components as a mechanism accounting
26 for the emergence of above-threshold fluctuations from the Fourier oscillatory
27 constituents of the activity associated with a single brain region. In the next
28 section we describe the signal processing tools proposed to quantify the SGDC
29 in empirical data.

20 Appendiz A.3. Measures to assess the spectral group delay consistency

21 The analytical arguments presented in the have profound con-
2 sequences regarding the interpretation of the experimental results in connection
2 with the emergence of salient events from NOs and broadband 1/f activity.
2 Specifically, the pairwise complex baseband representation of band-limited sig-
25 nals (Egs. -[A.10] and [A.13] - [A.16)), explicitly shows that the mechanism
26 underlying the emergence of above-threshold fluctuations in a signal z(t) can
23 be understood in terms of the consistency of the group delay across the Fourier
2 oscillatory constituents of the signal (see the complex envelopes #(t — 7(k)) in
20 Egs. and . By considering a multi-regional approach, the pairwise
20 complex baseband representation can be applied on the activity z,.(t) of each
21 brain region r, to obtain complex envelopes of the form &, (¢t — 7.(k)). Here
22 we recall that Z, ,(t — 7-(k)) determine the envelopes of the individual ampli-
23 tude modulated signals constituting the signal z,.(t) (see the solid and doted
aa color-coded curves in the Figs. 7J and ,J). Hence, the consistency of
25 the spectral group delay 7,.(k) determines the synchronization of the complex
us envelopes Z, (t — 7,(k)) across both frequency values w(k) and brain regions
27 1. In what follows we describe the proposed measures designed to quantify the
2 spectral group delay consistency (SGDC) in experimental data across either
20 frequency values and/or brain regions. In order to simplify the notation, in
0 the rest of this section we will use w instead of the discrete frequency index
51k, implicitly assuming that w = w(k). In the most general case, the spectral
2 group delay can be estimated as 7,.(w) = —A¢,(w)/Aw(w), where Ag, (w) and
53 Aw(w) are the incremental phase and incremental frequency between adjacent
254 spectral components associated with the activity z,(t) of the brain region r,
255 respectively. Let us consider first the particular case of Aw(w) = Aw = const,
256 in which the group delay results 7.(w) o< —A¢,(w). Therefore, the SGDC can
»7  be simply assessed via the Euler’s transform of the incremental phase as follows,

1 .
SGDC(r) = N Ze‘ZA¢T(“’) : Aw = const across r (A.18)
SGDC(w) = % Ze‘m‘m‘(‘”) : Aw = const across w (A.19)

25 The modulus of Egs. and satisfies,

1 .
SGDC| = | Y e A= R=(1-5)€[0,1] (A.20)

13
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20 In the Eqs. [A18] [A.19] and [A.20] N is the number of either frequency values
%0 Or brain regions as appropriate, R is the resultant vector length and S is the
21 circular variance [9]. The Eq. explicitly shows that the SGDC is assessed
%2 as one minus the circular variance of the incremental phase. The definition of
%3 the SGDC measures given in the Egs. [A.18] [A.19] and [A.20] should not be con-
xe  fused with the traditional measure for quantifying coherence known as Phase
s Locking Value (PLV) [65] [32]. Specifically, the SGDC measures as defined in
2 the Eqgs. [A.18] [A19] and [A.20] assess the consistency of the incremental phase
w7 A¢pp(w) across the frequency values w. In contrast, the PLV assesses the con-
xs  sistency of phase difference across the time samples, where the phase difference
%o is computed between two phase time series corresponding to two specific fre-
2o quency bands in the same or different brain regions [65] [32]. As stated in the
= Eq. the SGDC(r) is a bounded measure in the range [0, 1] and quantifies
o2 how much the group delay varies across the spectral components conforming
o3 the activity of interest x,.(t). On the one hand, constant group delay values
m Tr(w) ¢ —A¢,(w) across the spectral components produce |[SGDC(r)| ~ 1 in-
s dicating a high SGDC, which is associated with high burstiness of the signal
2 x,(t) (see Figs. [A.2A-E and [A-3]A-E). On the other hand, in the case of group
o delay values varying randomly (or non-linearly) across the spectral components
zs  produces [SGDC(r)| ~ 0 indicating low SGDC associated with low burstiness
2 of the signal @, (t) (see Figs. [A.2F-J and [A-3F-J). Similarly, the SGDC(w) de-
0 fined in the Eq. is a bounded measure in the range [0, 1] and quantifies how
s much the spectral group delay at a given frequency w, varies across the brain
22 regions r. On the one hand, constant group delay values 7.(w) x —Ag,(w)
283 across the brain regions produce |SGDC(w)| &~ 1 indicating a high group de-
x  lay consistency, which is associated with high cross-regional synchronization of
s the bursts at a given frequency w. On the other hand, in the case of group
25 delay values varying randomly (or non-linearly) across the brain regions pro-
27 duces |SGDC(w)| = 0 indicating low group delay consistency associated with
28 low cross-regional synchronization of the bursts at a given frequency w. Now
20 we will consider the more general case in which Aw(k) # cte. In line with the
200 previous analysis, the SGDC measures can be defined in terms of the linear
21 variance of the group delay Var(r) as follows,

_ Var(7)
|ISGDC| = 1-— e {Var(r)} € [0,1] (A.21)
Var(r) = % Z (r — (1))? (A.22)

22 In the Eq. the mean group delay value (7) and the the sum associated with
203 the linear variance Var(7) are computed across the N frequency values w or brain
24 Tegions r in which case the Eq. produces |SGDC(r)| or |[SGDC(w)|, re-
25 spectively. Importantly, the Eqs. [A.18] [A.19] and [A.21] constitute an specialized
26 framework to quantify the emergence of large-scale bursts (i.e., salient network
207 events) from the brain activity. That is, the SGDC(r) assesses the emergence
208 of local above-threshold fluctuations from the spectral components constituting
200 the activity of a single brain region, whereas the SGDC(w) measure quantifies

14
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a0 the synchronization of the above-threshold bursts across brain regions. In line
sn with this, we introduce the pairwise spectral group delay consistency (pSGDC)
s2  to quantify the burstiness and cross-regional bursts synchronization in a single
33 measure. In the case of Aw(w) = Aw = const, the pSGDC is defined as follows,

pSGDC(Tl, 7‘2) =
<5GDC(7"1) + SGDC(T2)> % S iAn-an@) (A 23)

2

Mean pairwise burstiness Correlation of burstiness across w

: Aw = const across r

s In the Eq. [A.23] the quantities SGDC(ry) and SGDC(ry) are computed using
35 the Eq. In the case of Aw(w) # cte the pSGDC is defined as follows,
pSGDC(Tl,TQ) =
SGDC(r1) + SGDC(rs) Cov(m (w), T2(w))
2 Var (7 (w)) Var(rz(w))

Mean pairwise burstiness Correlation of burstiness across w

Cov(m(w), a(w)) = %Z (11 (w) = (1 (W) (12(w) = (72(w)))

(A.24)

ws  In the Eq. [A.24] the quantities SGDC(r1) and SGDC(ry) are computed using
s the Egs. nd Besides, the quantities Var((w)) and Var(mz(w)) are
xs computed using the Eq. [A222] In both cases the sum associated with the Eq.
300 is computed over the frequency values w. The Egs. and show
a0 that the pSGDC(r1,72) is a linear measure conformed by a factor quantifying
an  the cross-regional correlation between the group delays across the frequency val-
sz ues, weighted by a coefficient quantifying the burstiness of the two involved brain
sz regions (r1,72). Importantly, we found that the pSGDC performs similarly to
s the cokurtosis (fourth standardized cross central moment) [28] in reproducing
a5 the observed salient events topographies and co-activation patterns (see Fig.
a6 in Section of the main text). This is particularly interesting taking into ac-
air - count that these two non-time-resolved measures (i.e., computed on the whole
as  time series) effectively reproduce the salient events topographies through two
a0 different approaches. That is, the cokurtosis is a non-linear time-domain mea-
x0  sure, whereas the pSGDC is a linear measure entirely based on the frequency-
s domain. Moreover, the pSGDC and cokurtosis disclose a better performance to
22 reproduce the observed salient events topographies and co-activation patterns
»2s  when compared to the kurtosis (scaled version of the fourth central moment)
2« and the Pearson’s linear correlation (see discussion in Section of the main
25 text). These results are consistent with the fact that kurtosis measures the pres-
»s ence of outliers (tails of the distribution of amplitude values) and the Pearson’s
w27 correlation coefficient the linear correlations between the two time series. On
»s  the other hand, pSGDC and cokurtosis measures quantify these two features
2o simultaneously. In this work the kurtosis (K) and the cokurtosis (CK) were

15
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a0 assessed via the following standard unbiased estimators,

Kr) = (NS<N;)(_N18)3)((NS+1)k(r)—3(Ns—1)) (A.25)
k) = B

T

Hra = Nis Z (.T,,» - <.T,,»>)4

331

CK(rrr) = Hir) (4.20)
k) = o 3 (= (o) e ()’
1 2
0—3 = E ;(xr7<x7’>)

sz In the Eqgs. and Ny is the number of time samples and (.) stands for
;3 mean value across the time samples.

s In the rest of this section, we present illustrative examples using the Eqgs. [A-I§]
us  and [A19 on synthetic multi-channel bursts emerging from narrowband oscilla-
16 tory activity. Fig. shows the |SGDC(r)| computed using the Eq. for
s37 three time series synthesized using the Eq. In each channel, the signal
18 was synthesized by the linear superposition of 10 sinusoidal tones with uniformly
a0 spaced frequencies (Aw = const) in the range f; w/(27) € [0.5—3] Hz. In chan-
a0 nels 1 and 2, the phase of the tones were set as a quadratic function of the fre-
s quency within the range ¢1(w) x 2mw? € [—27,27] and ¢2(w) o TwW? € [, 7],
s respectively. In channel 3, the phase of the tones were set as a linear function
a3 of the frequency within the range ¢3(w) x 7w € [—m, w]. Fig. [A.4B shows that
s the higher the burstiness (i.e., amplitude of the transient fluctuations) disclosed
us by the resulting signal (see solid black line in the Fig. |A.4A), the higher the
us |SGDC(r)| value. The channel 3, corresponding to the tones having a linear
a7 phase dependence with the frequency, discloses the maximum [SGDC(r)| =~ 1.

16


https://doi.org/10.1101/2024.02.28.582552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582552; this version posted February 12, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Amplitude [z-score]

0
(B) Time [sec]
T
I 1
08 A
@0,6 -_ -
]
2
F04F ]
08" ]
0 - -
L 1
1 2 3
Channels

Figure A.4: SGDC(r) computed using the Eq. on a multi-channel configuration. (A)
Three time series z,(t) (black solid lines) synthesized using the Eq. In each channel,
the signal z,(t) was synthesized by the linear superposition of 10 sinusoidal tones (colored
solid lines) with unitary amplitude and uniformly spaced frequencies (fs Aw/(27) = 0.278
Hz) within the range fs w(k)/(27) = 0.5+ k fs Aw/(27) € [0.5 — 3] Hz. In the channels 1
and 2, the phase of the tones were set as a quadratic function of the frequency within the
range ¢1(w) x 27w? € [~27,27] and ¢2(w) x ww? € [—7, 7], respectively. In the channel
3, the phase of the tones were set as a linear function of the frequency within the range
¢3(w) x Tw € [—7, 7). (B) Modulus of the SGDC(r) for each channel. Note that the higher
the burstiness (i.e., amplitude of the transient fluctuations) disclosed by the resulting signal
(see solid black line in the panel A), the higher the |[SGDC(r)| value. As expected, the channel
3 corresponding to the tones having a linear phase dependence with the frequency discloses
the maximum |[SGDC(r)| = 1.

348 Figs. and show the SGDC(w) computed using the Eq. com-
so  pared against the Phase Locking Value (PLV) assessed using the following ex-

17


https://doi.org/10.1101/2024.02.28.582552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582552; this version posted February 12, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

30 pression [65] [32],

1 .

PLV = Zt: ety () —mo(1)) (A.27)
1 In Eq. ¥(t) and 6(t) are the phase time series of interest and the integers
2 n,m € N are required to allow the comparison of phase time series pertaining to
553 different frequency bands. Of note, the SGDC(w) quantifies, at each frequency
3 value, the bursts synchronization across the brain regions (channels), whereas
s the PLV quantifies either local or cross-regional phase coherence between two
6 frequency bands and it is not related to the signal burstiness, i.e., the PLV
37 1S not sensitive to the emergence of above-threshold fluctuations neither to the
s cross-regional synchronization of salient events. Fig. shows three channels
30 in which the resulting time series (solid black line) have been synthesized as the
w0 linear superposition of 10 sinusoidal tones with uniformly spaced frequencies
1 (Aw = const) in the range fs w/(27r) € [0.5 — 3] Hz (see Eq. [A.11)). In each
32 channel, the phase of all the oscillatory components was set to zero (¢, (w) =
33 0V w). The local and cross-regional effects of this setup can be summarized as
64 follows,

365 e In each channel (local effect), we obtain the maximum group delay con-
366 sistency across frequency values accounting for the emergence of above-
367 threshold fluctuations. That is, ¢, (w) =0 = A¢,(w) =0 = 7.(w) =
368 —A¢,/Aw =0=cte = SGDC(r)=1:r=1,2,3 (data not shown).
369 e At each frequency, we obtain the maximum group delay consistency across
370 channels (cross-regional effect) accounting for the synchronization of the
m salient events across the channels. That is, ¢,(w) = 0 = A¢,(w) =
a2 0 = 7 (w) = —-A¢./Aw =0 =cte = SGDC(w) =1V w. The
S8 resulting |[SGDC(w)] is shown in Fig. [A.5B.

374 e At each frequency, we obtain the maximum phase coherence across chan-
375 nels (cross-regional effect). That is, ¥, (t) — 6, () =0 = |PLV| =
376 1V w, where the phase time series v, ,,(t) and 6,/ ., (t) were extracted from
377 different channels ((r,7’) € {1,2,3} : r # ') and evaluated at the same
378 frequency w. In other words, ., ., (t) and 6,/ ,(t) are the phase time se-
379 ries associated with two tones homologous in frequency and pertaining to
380 different channels. The resulting |PLV| is shown in the Fig. [A.5B.

1 Fig. shows three time series constituted by the same 10 tones used in
s Fig. [A5A, with the difference that in this case the phase of the tones were
s set as ¢1(w) = 0, Pa(w) x —3mw and ¢3(w) x +37w for the channel 1, 2
s« and 3, respectively. The linear phase dependence with the frequency associated
;s with the channels 2 and 3 produces a time-shift in the resulting signals. As a
s consequence, in this multi-channel configuration the resulting above-threshold
w7 fluctuations are not synchronized across channels (see the solid black lines in
s the Fig. |A.5C). In this case, the SGDC and PLV measures result,

18
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389 e In each channel (local effect), we obtain the maximum group delay con-
390 sistency across frequency values accounting for the emergence of above-
301 threshold fluctuations. That is, A¢,(w) = const = 7. (w) = —A¢,/Aw =
392 cte = SGDC(r) =1:r =1,2,3. Note that this result is similar to
303 what we obtained for a constant group delay (i.e., not a function of the
304 frequency) associated with the channel 3 shown in Fig. [A.4

305 e At each frequency, we obtain a low group delay consistency across channels
396 (cross-regional effect) accounting for the lack synchronization of the salient
307 events across the channels. That is, A¢i(w) = 0, Aga(w) < 0, Ags(w) >
398 0 = nw)=0,nw) >0,mnw) <0 = SGDC(w) =0V w. The
399 resulting |[SGDC(w)] is shown in the Fig. [A5D.

400 e At each frequency, we obtain the maximum phase coherence across chan-
o nels (cross-regional effect). That is, ¢, ,(t) — 0 () = const =
402 |[PLV| = 1 V w, where the phase time series ¢, ., (t) and 6, ., (t) were
403 extracted from different channels ((r,r’) € {1,2,3} : r # ') and evalu-
404 ated at the same frequency w. In other words, ¥, ., (t) and 6,/ ,(t) are the
405 phase time series associated with two tones homologous in frequency and
406 pertaining to different channels. The resulting |PLV| is shown in the Fig.

a07 [A5D.

ws It is essential to note that, the SGDC(w) measure is highly sensitive to the
w0 cross-regional synchronization of the salient events, whereas the PLV measure

a0 is completely blind to this effect (compare Figs. and [A5D).

19
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Figure A.5: SGDC(w) computed using the Eq. on a multi-channel configuration. (A)
Three time series z,(t) (black solid lines) synthesized using the Eq. In each channel,
the signal z,(t) was synthesized by the linear superposition of 10 sinusoidal tones (colored
solid lines) with unitary amplitude and uniformly spaced frequencies (fs Aw/(27) = 0.278
Hz) within the range fs w(k)/(27) = 0.5+ k 20 Aw/(27) € [0.5 — 3] Hz. In each channel, the
phase of all the oscillatory components was set to zero (¢r(w) =0V w). (B) SGDC(w) and
PLV measures computed using the Egs. and respectively, for the multi-channel
configuration shown in panel A. (C) Same as in A, but in this case the phase of the tones were
set as ¢1(w) =0, Pp2(w) x —37w and ¢3(w) x +37w for the channel 1, 2 and 3, respectively.
(D) Same as in B for the multi-channel configuration shown in panel C.
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a Fig. shows three time series constituted by the same 10 tones used in
a2 Figs. and with the difference that in this case the phase of the tones
a3 were set as follows,

$1(w) = 0Vw (LF+HF)
0, vV 0.5Hz < f, w/(27) < 1.5Hz (LF)

Pow) o { 3rw, ¥ 1.5Hz < f, w/(27) < 3 (HF) (4.28)
0, vV 0.5Hz < f; w/(27) < 1.5Hz (LF)

93(w) 43mw, ¥ 0.5Hz < f, w/(27) < 1.5Hz (HF)

aa  This phase configuration produce LF transient fluctuations co-occurring across
a5 the channels, while the resulting HF transient fluctuations are not synchronized
a6 across the channels (see Fig. A). Importantly, the SGDC(w) effectively dis-
a7 criminate the cross-regional synchronization of the transient fluctuations across
as  the frequency values, whereas the PLV measure is again completely blind to
a0 this effect (see Fig. [A.6B). Fig. shows three time series constituted by
420 the same 10 tones used in Fig. ee Eq. with the difference that in
a1 this case the phase of the tones were set as follows,

$1(w) = 0V w (LF+HF)
—3rw, V 0.5Hz < fs w/(2m) < 1.5Hz (LF)

Pow) o {0, ¥V 1.5Hz < f, w/(27) < 3 (HF) (4.29)
+3mw, V 0.5Hz < fs w/(27) < 1.5Hz (LF)

os(w) = 3 V 0.5Hz < f, w/(2r) < 1.5Hz (HF)

w22 Similarly to the previous case, the SGDC(w) effectively discriminate the cross-
23 regional synchronization of the transient fluctuations across the frequency val-
w24 ues, whereas the PLV measure is again completely blind to this effect (see Fig.
o [A.6D). It is worth mentioning that A¢,(w) in the Eq. is the incremen-
26 tal phase between adjacent spectral components associated with the activity
w7 . (t) of the brain region r. Thus, for N spectral components we obtain N — 1
w28 incremental phase values A¢,.(w). As a convention, we add an extra value
2 A¢pr(w) = 0 as the first element (i.e., lowest frequency) of the list of incremental
a0 phase values. Hence, for N spectral components the Egs. and pro-
a  duce N values of SGDC. In particular, the first value (i.e., lowest frequency) of
w2 SGDC(w), associated with the artificially added A¢,.(w) = 0, is always equal

s to 1 (this becomes evident in the Figs. and [A-6]D).
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Figure A.6: SGDC(w) computed using the Eq. on a multi-channel configuration. (A)
Three time series z,(t) (black solid lines) synthesized using the Eq. In each channel,
the signal z,(t) was synthesized by the linear superposition of 10 sinusoidal tones (colored
solid lines) with unitary amplitude and uniformly spaced frequencies (fs Aw/(27) = 0.278
Hz) within the range fs w(k)/(27) = 0.5+ k 22 Aw/(27) € [0.5 — 3] Hz. In each channel, the
phases of the oscillatory components were configured as stated in the set of Eqgs. (B)
SGDC(w) and PLV measures computed using the Egs. and respectively, for the
multi-channel configuration shown in panel A. (C) Same as in A, but in this case the phase
of the tones were configured as stated in the set of Eqgs. (D) Same as in B for the
multi-channel configuration shown in panel C.
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. Appendiz A.4. Spectral group delay consistency in the surrogate data

435 Here we analytically show that, on the one hand, A-surrogates significantly

w6 reduce the spectral group delay consistency (SGDC) across both frequency com-

wr ponents (SGDC(r)) and brain regions (SGDC(w)). On the other hand, B-

w8 surrogates significantly reduce the SGDC across frequency components (SGDC/(r)),
10 while preserving the SGDC across brain regions (SGDC(w)).

uo  We start by recalling the definition of SGDC(r) and SGDC(w) for a multi-

w1 regional time series z,.(t),

Flar )} = Xo(w) = Ap(w)e )
Apr(w) = ¢r(w+ Aw) — ¢p(w)
1 CiAG ) . ALy
SGDC(r) = N zw:e : Aw = const across (A.30)
_ 1 ~iG (@) . Ay —
SGDC(w) = N Ze : Aw = const across w (A.31)

T

w2 where A,.(w) and ¢, (w) are the amplitude and phase Fourier spectra, respec-
ws  tively. In Eqgs. and N is the number of either frequency values
ws Or brain regions, respectively, and A¢,(w) is the incremental phase computed
ws across the spectral components of the DFT spectrum X, (w) associated with
us  the signals z,(t). In the case of the surrogate multi-regional time series z2(¢),
a7 obtained by phase randomization of the original time series in the frequency-
wxs  domain, we have,

B0} = Xi(w) = A)el @0
1 .
SGDC*(r) = i Ze*Z(A‘z’T(“’)*MT(”)) : Aw = const across 7 (A.32)
1 )
SGDC?*(w) = i Ze‘Z(A@‘(“)’LAQT(‘“)) : Aw = const across w(A.33)

T

wo  In the Egs. and [A.33] Af,(w) is the incremental phase associated with the
0 random phase-shift 6,.(w) extracted from the surrogate DFT spectrum X3 (w)
a1 of each brain region r. Let us consider two extreme cases derived from the Egs.

e and with Af,.(w) varying randomly across w,

i3 1 For A¢,(w) = const = |SGDC(r)| ~1>|SGDC*(r)| =~ 0.
s 2 For A¢,(w) varying randomly across w = |[SGDC(r)| = |SGDC*(r)| = 0.

5 From these two extreme cases we infer that, for 0, (w) varying randomly across
w6 w, |SGDC(r)| is the upper bound of |SGDC*(r)|. As a consequence, for the A-
»s7 and B-surrogates in general we obtain [SGDC?(r)| < |[SGDC(r)|. Similarly, in
s the case of A-surrogates computed with 6,.(w) varying randomly across the brain
w0 regions r, Egs. and in general produce |SGDC*(w)| < |SGDC(w)|.
w0 In the particular case of the B-surrogates, at each frequency w we add the
w1 same phase-shift value 6,.(w) in all the brain regions r, producing A6, (w) =
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w2 Afw) V1 <r < N. As a consequence, by taking the modulus in both sides
ws  of the Eq. we obtain the equivalence between the true data and the B-
ws  surrogate in terms of |[SGDC(w)|,

. 1 i
|SGDCS((,L})| = e_lAe(w)i e_ZA(br(w)
N T
= |e A SGDO(W)|
= |SGDC(w)|

w5 We confirmed this analytical results by computing the SGDC(r) and SGDC(w)
w6 measures on the whole time series of our empirical MEG dataset and the corre-
w7 sponding A- and B-surrogates (see Section in Methods). Fig. shows
we that the magnitude of the SGDC(r) measure is not preserved in both the A- and
wo B-surrogates. Besides, Fig. shows that the magnitude of the SGDC(w)
a0 measure is preserved in the B-surrogates, and not in the case of A-surrogates.
m  Importantly, the reduction of the regional SGDC, as quantified by the SGDC/(r)
a2 measure, offers an analytical rationale supporting the evidence showing that B-
w3 surrogates failed to reproduce the SEs observed in our MEG dataset (see Section
s 3.2]) despite preserving both the regional PSDs and the cross-spectra (see
a7 Qﬁb It is important to note that this equivalence between the true
«s MEG data and the B-surrogates in terms of [SGDC(w)| holds only when the
w SGDC(w) measure is computed on the whole time series (i.e., non-time-resolved
ws approach). On the other hand, if the SGDC(r) and SGDC(w) measures are
a9 computed in a time-resolved manner on each salient event (see Fig. ,D),
w0 the equivalence between the true MEG data and the B-surrogates in terms of
w1 |SGDC(w)| does not longer hold. This is mainly due to the fact that true SEs
s and B-surrogate SEs are different in duration and size and, more crucially, they
w3 do not necessarily involve the same brain regions.
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Figure A.7: Spatial profiles associated with the SGDC measures. (A) SGDC(r) measure
computed on the whole time series of each brain region (i.e., non-time-resolved approach).
(B) SGDC(w) measure computed on the whole time series of each brain region (i.e., non-
time-resolved approach). Note that the pattern corresponding to the 100 B-surrogates (thick
dashed black line) overlap with the spatial profile associated with the true MEG data (thin
blue line). (C) SGDC(r) measure computed on each detected SE by considering the brain
regions and time interval associated with each particular event (i.e., time-resolved approach).
(D) SGDC(w) measure computed on each detected SE by considering the brain regions and
time interval associated with each particular event (i.e., time-resolved approach). The labels
and ordering of the brain regions are the same as those shown in Fig. @ Symbols and
abbreviations: SE, Salient Event.
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s Appendix B. Supplementary numerical modeling results

(A) (B)
1 1.1 35 1.1
L
L ]
1 = 30 ®e 1 =
0.8 .g . X .g
095 25 . 09 5
=06 » 210 . =
O e =1 (Panel E) 0.8 2 0.8Mm
a . 7 £ ° o
n
3 N
R04te=0 (Panel 0)* 07% 2 15 . 07%
. 3 ° .
g 10
o | N 063 o 06§
’ . 5 ° z
° 0.5 0.5
€=0.8 (Panel Dy——>%c o0 0 o..l
0 0.5 1 0 0.5 1
Phase factor (€) Phase factor (€)
©) a peak (e=0)
™ 90°
120° 60° = ‘ /
10° gs M +3
2 =) 150° 30° F fommmoo WD
Z £ 8 | ﬁ
= 9 0 30 . H
g 2 180° = L \ \1 _____________
3] 3
s W
107! - -150° 300 <
10° 10' 8 9 10 11 12 13 120° 0° 5 0 5
Frequency [Hz] Frequency [Hz] - 90° Time [sec]
(D) «a peak (¢=0.8)
’ 2oe M e T
10° S
b =) 150° 300 %
2 £ A 5
= 2 2
E g 180° 00 2
< ) =
3 £-
107! o : T asee 300 <
10° 10' 8 9 10 11 12 13 1200 0 5 0 5
Frequency [Hz] Frequency [Hz] - 90° Time [sec]
(E) « peak (e=1)
v o900 .
) 120 60 ) ]
5
gl z 150° T S P 3o
2 £ » & 0 w\\“‘hn,‘ﬂl|'u,”,\!‘\
= o) o I I W
£ g 150° e 2 0T P
oy = 3
A g
107! Al T SLLbe 1500 300 <
10° 10 8 9 10 11 12 13 120° 0 5 0 5
Frequency [Hz] Frequency [Hz] : 900 Time [sec]

Figure B.1: Spectral group delay consistency underlies the emergence of local above-threshold
fluctuations from NOs. (A) Spectral group delay consistency, as quantified by the SGDC(r)
measure, as a function of the phase factor values (¢). The colored markers indicate the
mean |SGDC(r)| value across 100 synthetic time series of 10 sec in duration (trials). The
shaded error bars in gray correspond to the standard deviation around the mean value. The
pseudocolor scale represents the mean number of SLEs per trial. The SGDC(r) measure
was obtained by computing the Eq. |I| on the synthetic phase values assigned to the spectral
components in the alpha band. (B) Same as in A for the Kurtosis of the time series amplitude
values, obtained by computing the Eq. [A.25| on the signals in time-domain. (C) Amplitude
spectrum (left), phase spectrum and distribution (middle), and resulting time series (right)
corresponding to the signal model for a phase factor ¢ = 0. For the amplitude spectrum we
used a Hann window with a null-to-null bandwidth = 8-13 Hz, frequency resolution df =
1/60sec ~ 0.017 Hz. The phase values of the spectral components were constrained within
the range [—em, er] and having a random dependence with the frequency. The black arrows
in the right-most panel highlight the above-threshold fluctuations disclosed by the signal. (D)
Same as in C for a phase factor e = 0.8. (E) Same as in C for a phase factor e = 1. Symbols
and abbreviations: SLEs, Salient Local Events; SGDC, Spectral Group Delay Consistency.
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Figure B.2: Spectral group delay consistency underlies the emergence of local above-threshold
fluctuations from NOs. (A) Spectral group delay consistency, as quantified by the SGDC(r)
measure, as a function of the phase factor values (¢). The colored markers indicate the
mean |SGDC(r)| value across 100 synthetic time series of 60 sec in duration (trials). The
shaded error bars in gray correspond to the standard deviation around the mean value. The
pseudocolor scale represents the mean number of SLEs per trial. The SGDC(r) (Eq. was
computed using the alpha band phases obtained from the DFT applied to the time series
resulting from the signal model (e.g., see the 60 sec in duration signals shown in panels C, D
and E). This procedure inherently introduces spectral leakage due to the time-domain tapering
(rectangular window), which affects the alpha band phase values involved in the computation
of the SGDC(r) measure and is visible in the corresponding power spectra shown in panels
C, D and E. (B) Same as in A for the Kurtosis of the time series amplitude values, obtained
by computing the Eq. on the signals in time-domain. (C) Amplitude spectrum (left),
phase spectrum and distribution (middle), and resulting time series (right) corresponding to
the signal model for a phase factor ¢ = 0. The phase values of the spectral components were
constrained within the range [—emr, er] and having a random dependence with the frequency.
The black arrows in the right-most panel highlight the above-threshold fluctuations disclosed
by the signal. (D) Same as in C for a phase factor ¢ = 0.8. (E) Same as in C for a phase
factor e = 1. Symbols and abbreviations: SLEs, Salient Local Events; SGDC, Spectral Group
Delay Consistency.
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Figure B.3: Spectral group delay consistency underlies the emergence of local above-threshold
fluctuations from NOs. (A) Spectral group delay consistency, as quantified by the SGDC(r)
measure, as a function of the phase factor values (¢). The colored markers indicate the
mean |SGDC(r)| value across 100 synthetic time series of 10 sec in duration (trials). The
shaded error bars in gray correspond to the standard deviation around the mean value. The
pseudocolor scale represents the mean number of SLEs per trial. The SGDC(r) measure
was obtained by computing the Eq. El on the synthetic phase values assigned to the spectral
components in the alpha band. (B) Same as in A for the Kurtosis of the time series amplitude
values, obtained by computing the Eq. on the signals in time-domain. (C) Amplitude
spectrum (left), phase spectrum and distribution (middle), and resulting time series (right)
corresponding to the signal model for a phase factor ¢ = 0. For the amplitude spectrum we
used a Hann window with a null-to-null bandwidth = 8-13 Hz, frequency resolution df =
1/60sec ~ 0.017 Hz. The phase values of the spectral components were constrained within
the range [—em, err] and having a linear dependence with the frequency. The black arrows in
the right-most panel highlight the above-threshold fluctuations disclosed by the signal. (D)
Same as in C for a phase factor ¢ = 0.8. (E) Same as in C for a phase factor ¢ = 1. Symbols
and abbreviations: SLEs, Salient Local Events; SGDC, Spectral Group Delay Consistency.
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Figure B.4: Distributions of size and duration corresponding to the SEs detected in the large-
scale signal model. (A-B) Large-scale model for SEs including only alpha oscillations (random
phase values in the alpha band constrained to the range [—em, er] with € € [0.75,1]). Panels A
and B show the distribution of SEs duration and size, respectively, computed on all the SEs
detected in a simulated time series of 1-minute duration. See Figs. @A,B. (C-D) Same as in A-
B for the large-scale model including only broadband 1/ activity, and no oscillatory activity
in the alpha band nor phase consistency values were present (e = 1). See Figs. Ep,D. (E-F)
Same as in A-B for the large-scale model including both broadband 1/f activity with non-
constrained random phases (¢ = 1) and alpha oscillations with random phases constrained
proportionally to the observed alpha power in the range (¢ € [0.75,1]). See Figs. EIE,F.

Symbols and abbreviations: SEs, Salient Events.
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45 Appendix C. Supplementary empirical results including the deep sources
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Figure C.1: Salient Network Event (SNE). (A) Z-scored time series disclosing the above-
threshold fluctuations associated with a SNE observed in the source-reconstructed MEG data.
The time interval in which at least one brain region is active (i.e., duration of the SNE) is
highlighted in red. (B) Brain plots showing the activation start time of the 5 brain regions
recruited by the SNE shown in panel A. (C) Activation matrix of the SNE shown in panel
A. The black segments correspond to the time intervals in which each brain region was active
(i-e., absolute amplitude > 30). (D) ESM corresponding to the SNE shown in panel A.
Symbols and abbreviations: ESM, Event Spectral Matrix; MEG, Magnetoencephalography;
RPre, Right Precuneus; RC, Right Cuneus; BPeri, Right Pericalcarine; RIC, Right Isthmus
Cingulate; LC, Left Cuneus.
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Figure C.2: Labels and ordering of the brain regions used to compute all the spatial profiles
shown in this work. Spatial profile showing the mean size of SEs propagating through each
brain region (mean value across the 47 participants, see Section in Methods). The mean
event size is shown for the MEG data together with the 100 A- and B-surrogates (see Section
in Methods). Symbols and abbreviations: SEs, Salient Events; BR, Brain Regions.
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Figure C.3: Statistical characterization of SEs. (A) Distribution of the duration of SEs ob-
served in the true source-reconstructed MEG data (filled blue circles), the A-surrogate (empty
down-pointing triangles) and the B-surrogate (filled up-pointing triangles) corresponding to
a time binning of 1 time sample per time bin (time binning = 1 ms). In the three cases the
SEs were computed on the 47 participants. (B) Same as in A for the size of SEs. To test
the significance of the difference of the distribution means between the true MEG data and
the surrogates (A and B), we computed a non-parametric permutation test (random sampling
without replacement, 1 x 10* permutations). The distributions of the duration and size of SEs
observed in the true source-reconstructed MEG data, disclosed statistically significant differ-
ences with respect to both A- and B- surrogates (P < 0.001). Symbols and abbreviations:
SEs, Salient Events; BR, Brain Regions.
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Figure C.4: Power Spectral Density (PSD). Power spectra computed on the Right Cuneus
(RC, panel A) and the Right Isthmus Cingulate (RIC, panel B) activities of each patient (blue
lines) and the resulting average (black line). The PSDs were computed on 1 min duration
source-reconstructed MEG data of 47 subjects. Note that the PSDs of the RC (panel A)
disclose a prominent bump in the alpha band (8-13 Hz) characteristic of the occipital brain
regions, however, a less prominent bump in the alpha band is also observed in regions away
from the occipital cortex (see the PSDs of RIC shown in panel B). Symbols and abbreviations:
PSD, Power Spectral Density; RC, Right Cuneus; RIC, Right Isthmus Cingulate.
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Figure C.5: Salient events propagation modes segregated by SE clusters. (A) Spatial profile
for the cluster 1 SEs starting, maximum recruitment and ending modes (see Section in
Methods) computed on 41 participants. Linear correlations between topographies: Startings
vs Endings, r = 0.995, P < 0.001. Max. recruit. vs Startings, » = 0.978, P < 0.001. Max.
recruit. vs Endings, » = 0.978, P < 0.001. (B) Same as in A for the cluster 2 SEs starting,
maximum recruitment and ending modes. Linear correlations between topographies: Startings
vs Endings, 7 = 0.895, P < 0.001. Max. recruit. vs Startings, r = —0.298, P < 0.01. Max.
recruit. vs Endings, r = —0.280, P < 0.01. The SEs obtained from 41 subjects were clustered
using the Louvain algorithm (resolution parameter v = 1, see Section in Methods). The
reported P values for the statistical significance of the Pearson’s correlation were assessed
using Student’s t distributions of the two-tailed hypothesis test under the null hypothesis that
the correlation is zero. Symbols and abbreviations: SEs, Salient Events.
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Figure C.6: Salient events propagation modes. (A) Spatial profile for the SEs starting modes
(see Sectionin Methods) corresponding to the two SE clusters computed on 41 participants.
The SEs obtained from 41 subjects were clustered using the Louvain algorithm (resolution
parameter v = 1, see Section in Methods). The Pearson’s correlation between the spatial
profiles of cluster 1 and cluster 2 SEs is r = 0.708, P < 0.001. (B) Brain topographies for the
starting modes of cluster 1 SEs as shown in panel A. (C) Brain topographies for the starting
modes of cluster 2 SEs as shown in panel A. (D-F) Same as A-C for SEs maximum recruitment
modes (see Sectionin Methods). In panel D, the Pearson’s correlation between the spatial
profiles of cluster 1 and cluster 2 SEs is r = —0.841, P < 0.001. (G-I) Same as A-C for SEs
ending modes (see Section in Methods). In panel G, the Pearson’s correlation between
the spatial profiles of cluster 1 and cluster 2 SEs is r = 0.718, P < 0.001. The reported P
values for the statistical significance of the Pearson’s correlation were assessed using Student’s
t distributions of the two-tailed hypothesis test under the null hypothesis that the correlation
is zero. Symbols and abbreviations: SEs, Salient Events.
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Appendiz C.1. Amplitude threshold analysis

The validity and robustness of using a single amplitude threshold (|z| = 3)
consistently across all 47 participants was investigated as follows. In each partic-
ipant, the 1-minute source-reconstructed MEG time series of each brain region
were first individually z-scored and then concatenated across all brain regions.
Subsequently, we computed the histogram and estimated the empirical Proba-
bility Density Function (empirical PDF) corresponding to the amplitude values
of the concatenated time series (see blue curves in Figs. and [C.7B).
Next, we compute the Gaussian distribution that best fit the empirical PDF
within each of the 100 fitting intervals of amplitude values spanning the range
[Q1(2) =5+ IQR(2),Q3(2) + 5 x IQR(2)], where Q1, @3, and IQR denote the
first quartile, the third quartile and the interquartile range, respectively. This
procedure yielded 100 Gaussian PDFs (see grey lines in Fig. ) After that,
we computed the RMS error between the empirical PDF and each of the 100
Gaussian PDFs. Where the RMS error was computed using a weighted differ-
ence to assign less importance to the difference in the tails of the distributions.
As a result of this procedure, we obtained 100 RMS values (see Fig. [C.7C).
Finally, the optimal threshold for each participant was computed as half the
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fitting interval of amplitude values producing the minimum RMS error (see Fig.
and the red arrow in Fig. ). Note that the minimum RMS error
is associated with the amplitude value (optimal threshold) beyond which the
empirical PDF significantly departs from the (best fitted) Gaussian distribu-
tion. This procedure was applied separately to all the 47 participants included
in the study (see Fig. |C.8). The mean and standard deviation of the ampli-
tude thresholds corresponding to the true MEG data shown in Fig. are
3.08 £ 0.23. Importantly, the amplitude threshold used in this study (|z| = 3)
lies approximately at the center of this range. The procedure described above
for identifying the optimal amplitude threshold, based on minimizing the RMS
error between the empirical PDF and the Gaussian PDF's, was also applied to
one A-surrogate and one B-surrogate generated for each participant (see Fig.
[C.8). The mean and standard deviation of the |z| thresholds across participants
were 5 £ 0.23 for the A-surrogates and 4.7 + 0.58 for the B-surrogates, respec-
tively. Of note, the |z| thresholds for the A- and B-surrogates were substantially
higher than those for the true MEG data. This result is consistent with the fact
that the phase randomization applied in the construction of A- and B-surrogates
produces approximately Gaussian signals [51].

1w T T T T T I T T T T T—Empirical PDF
[ (A) Gaussian PDFs
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1 1 1
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T T T

Density

T
. f®) 5 _
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Figure C.7: Procedure to find the optimal |z| threshold for Participant 47. (A) Empirical
and the 100 Gaussian PDFs corresponding to the 100 fitting |z| intervals. (B) Empirical PDF
together with the Gaussian PDF producing the minimum RMS error. (C) RMS error between
the empirical PDF and each of the 100 Gaussian PDFs. Symbols and abbreviations: SNE,
Salient Network Event; PDF, Probability Density Function; RMS, Root Mean Square.
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Figure C.8: Optimal |z| thresholds for the 47 participants corresponding to the true MEG
data including the deep sources, and one A-surrogate and one B-surrogate generated for each
participant. The mean and standard deviation of the amplitude thresholds corresponding
to the true MEG data (blue circles) are 3.08 £ 0.23. Symbols and abbreviations: MEG,
Magnetoencephalography.

523 One of the main limitations of this study is related to the uncertain capability
s2«  of our dataset to accurately identify deep brain sources along the cortical surface,
s»s mainly due to the ill-posed nature of the source-reconstructed MEG data. In
so6  order to address this issue, we re-computed the thresholding analysis presented
v above, but this time excluding the deep sources (see brain topographies in Figs.
26 [D.IF and [D.3). The results are shown in Fig. It was found that the
s0  mean and standard deviation of the amplitude thresholds corresponding to the
s0 true MEG data excluding the deep sources are 3.08 + 0.24. Importantly, the
sn amplitude threshold used in this study (|z| = 3) lies approximately at the center
s of this range. Besides, the mean and standard deviation of the |z| thresholds
33 across participants were 5 + 0.23 for the A-surrogates and 4.68 4+ 0.59 for the
su B-surrogates, respectively. As a result, by comparing Figs. [C.8| and [C.9] we
s can conclude that the optimal |z| thresholds remain essentially unaltered across
s3  the 47 participants when the deep sources are excluded from the thresholding
s analysis in our MEG dataset.
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Figure C.9: Optimal |z| thresholds for the 47 participants corresponding to the true MEG
data excluding the deep sources, and one A-surrogate and one B-surrogate generated for each
participant. The mean and standard deviation of the amplitude thresholds corresponding
to the true MEG data (blue circles) are 3.08 £ 0.24. Symbols and abbreviations: MEG,
Magnetoencephalography.

si8  Appendix C.2. Spectral group delay consistency, transient cross-regional coher-

530 ent NOs and BAA underlie SNEs

540 In Sections [3:4] and [3.5] we showed that the concurrent presence of BAA
sa.and NOs disclosing appropriate levels of SGDC, are two key ingredients suffi-
sz cient to generate realistic above-threshold fluctuations in a single brain signal
s (i.e., SLEs). Importantly, we have analytically and computationally shown that
saa - only the consistency of the Fourier incremental phase values across frequencies
ss  (SGDC) provides a quantitative measure of the level of salience of the above-
sss  threshold fluctuations exhibited by the signal in the time-domain, and this re-
se7  lationship holds true regardless of the spectral leakage introduced by tapering
ses  in the time-domain (see Fig. [B.2)). In this section, we present empirical evi-
549 dence supporting the theoretical findings described in Sections [3.4 and 3.5] Fig.
550 shows the topography of the mean number of salient (above-threshold)
551 samples assessed in each brain region. The Panels B and C of Fig. [C.10] show,
ss2 respectively, the time series and distributions of the amplitude values corre-
53 sponding to the brain regions disclosing the maximum (Left supramarginal)
s+ and minimum (Left superior frontal) number of salient samples. Importantly,
s the scatter plots in Panels D and E of Fig. show a significant correlation
56 between the topographies of the salient samples (Panel A) and, respectively,
ss7. the SGDC(r) magnitude and kurtosis. This empirical evidence, together with
s the results shown in Figs. and further supports the interpretation
ss0  of the SGDC(r) as a measure capturing the signal-level mechanism underlying
sso  the emergence of local above-threshold fluctuations.

ssi  INext, we present the rationale and results pointing out that SGDC is a key
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ss2  conceptualization also in connection with the emergence of realistic SNEs as
ss  collective phenomena involving multiple brain regions. Although the SGDC(r)
s« 1easure assesses the emergence of local above-threshold fluctuations from the
ses Fourier oscillatory constituents of the activity in a single brain region (i.e.,
sss  SLEs), it does not account for cross-regional effects associated with SNEs. To
ssv  quantitatively study the cross-regional effects of SGDC on our data we introduce
ss  the SGDC(w) measure. The magnitude of SGDC(w) is bounded in the range
so0  [0,1] and quantifies how much the group delay at a given frequency w varies
s across brain regions (Eq. [2). By using synthetic time series, in
sn we show that the SGDC(w) measure assesses the contribution of each frequency
s» component in the co-activation (synchronization in time) of above-threshold
ss fluctuations across brain regions (see Figs. and . Of note, Figs.
st and show that the SGDC(w) measure effectively resolves the cross-regional
sis synchronization of SEs across frequency bands, whereas phase coherence mea-
se  sures (e.g., PLV: Phase Locking Value) are completely blind to this effect. Then,
s we used the SGDC(w) measure to analyze the two SE clusters observed in our
s empirical MEG data. Figs. [C.1TJA,B show the average ESMs of the two SE clus-
so ters identified by the Louvain algorithm (see Methods) computed on 10 subjects.
so0  As shown in Fig. [C.11C, only cluster 2 SEs are associated |[SGDC/(r)| values
s higher than those disclosed by the C-surrogate SEs. Importantly, Fig. [CIID
ss2  shows the increase of transient cross-regional coherence around the alpha band,
s¢s  as quantified by the SGDC(w) measure, associated with the SEs disclosing the
s« alpha spectral signature in the average ESM (i.e., cluster 2 SEs). These results
sss  are further evidence pointing out that the cluster 2 SEs observed in our MEG
ss6  data co-occur with (or are coupled to) alpha bursts propagating across brain
ss7  regions. Notably, Fig. shows that the transient cross-regional coherence
sss around the alpha band associated with the cluster 2 SEs is also captured by the
ss0  large-scale model presented in Section (3.5

s0 Next, we used the SGDC/(w) measure to analyze the surrogate data computed
s via phase randomization. Our empirical results show that despite preserving
s2  both the power spectrum (PSD) in each brain region and the cross-correlations
si3  (i.e., functional connectivity) B-surrogates fail to account for the SEs observed
s in our MEG dataset. Besides, A-surrogates, which only preserve the regional
ss  PSD, perform worst than B-surrogates in reproducing realistic SEs (see Figs.
so6  and . The analytical derivations presented in provide a uni-
sov  fying rationale for this evidence by pointing out that, on one hand, A-surrogates
ss destroy both the burstiness of each brain region as assessed by the SGDC(r)
so measure and the synchronization of above-threshold fluctuations across brain
0 regions as assessed by the SGDC(w) measure (see Figs. A,B). On the other
s hand, B-surrogates significantly reduce the SGDC across frequency components
o2 (SGDC(r), see Fig. [A.7]A), while preserving the SGDC across brain regions
o3 (SGDC(w), see Fig. .

s In summary, these results suggest that a) spectral group delay consistency in
s0s specific narrow frequency bands (as assessed by the SGDC(r) measure), b)
6 transient cross-regional coherent NOs (intra-frequency coherence across brain
o7 regions assessed by the SGDC(w) measure) and ¢) BAA, are all key ingredients
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s for the emergence of realistic SEs.
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Figure C.10: Measures capturing the salient samples topographies. (A) Topography showing
the number of salient samples computed on the whole time series (1 min in duration) of each
brain region (mean value across the 47 participants). (B) Time series corresponding to the
brain regions disclosing the maximum (Left supramarginal) and the minimum (Left superior
frontal) number of salient samples. Each plot shows the time series superimposed across the
47 participants. (C) Distributions of the amplitude values for the Left supramarginal and
Left superior frontal time series concatenated the 47 participants. Two-sample Kolmogorov-
Smirnov test: P < 0.001. (D) Scatter plot showing the correlation between the topographies
associated with the salient samples and the magnitude of the SGDC(r) measure. Number of
samples (red circles) = Number of brain regions = 84. (E) Same as in (D) for the kurtosis.
Symbols and abbreviations: SGDC, Spectral Group Delay Consistency, K-S, Kolmogorov-
Smirnov.
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Figure C.11: Transient cross-regional coherence around the alpha band is mainly associated
with salient events. (A, B) Mean ESM of the two SE clusters identified by the Louvain
algorithm computed on the SEs detected in the 10 participants. (C) Transient cross-frequency
coherence quantified by the SGDC(r) measure (see , associated with the two
SE clusters shown in panels A and B. The SGDC/(r) measure was computed in a time-resolved
manner. That is, the SGDC/(r) measure was computed on each detected SE by considering the
brain regions and time interval associated with each particular event. Then, the SGDC(r)
array was averaged selectively across the SEs segregated in the two clusters produced by
the Louvain algorithm (see Section in Methods). The small markers represent mean
|[SGDC(r)| values averaged across the SEs in each individual participant. The big markers
represent mean |SGDC/(r)| values averaged across the 10 participants. (D) Same as in C for
the transient cross-regional coherence quantified by the SGDC(w) measure (see
. (G) Same as in D for the synthetic data corresponding to the large-scale signal model
(see Section . The red arrow highlight th¢9ncrease of the |[SGDC(w)| values around the
alpha band. Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix.
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oo  Appendix D. Supplementary empirical results excluding the deep sources
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Figure D.1: Clustering of SEs according to their spectral signature. The SEs obtained from 45
subjects were clustered using the Louvain algorithm (resolution parameter v = 1, see Meth-
ods). (A, B) Mean ESM of the two SE clusters identified by the Louvain algorithm computed
on the SEs detected in the 45 participants. (C, D) Waveform shapes of the SEs pertaining
to the two SE clusters identified by the Louvain algorithm. Thin gray lines correspond to
the average waveform shape in each brain region. Thick blue and red lines correspond to
the resulting waveform shape averaged across the brain regions for cluster 1 and 2 SEs, re-
spectively. (E) Spatial profile showing the mean duration of SEs pertaining to cluster 1 (in
blue) and cluster 2 (in red). For the true data, the small and big markers correspond to the
mean spatial profile in each patient and the average across the 45 participants, respectively
(see Methods). The labels and ordering of the brain regions are the same as those shown in
Fig. [C:2] To test the significance of the difference of the mean SEs duration between cluster
1 and cluster 2, in each brain region we computed a non-parametric permutation test (ran-
dom sampling without replacement, 1 x 10 permutations). All the brain regions disclosed
a statistically significant difference of the mean SEs duration between cluster 1 and 2 (the
Bonferroni-adjusted two-tailed P values result P < 0.001 in all the brain regions). (F) Brain
topographies for the mean duration of SEs averaged across the 45 participants as shown in
panel E. (G) Distribution of the duration of SEs pertaining to the cluster 1 and cluster 2
observed in the 45 participants. (H) Same as in E for the size of SEs. To test the significance
of the difference of the mean SEs size between cluster 1 and cluster 2, in each brain region we
computed a non-parametric permutation test (random sampling without replacement, 1 x 10%
permutations). All the brain regions disclosed a statistically significant difference of the mean
SEs size between cluster 1 and 2 (the Bonferroni-adjusted two-tailed P values result P < 0.001
in all the brain regions). (I) Same as in F for the size of SEs. (J) Same as in G for the size
of SEs. Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix; BR,
Brain Regions. 44
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Figure D.2: Salient events propagation modes segregated by SE clusters. (A) Spatial profile
for the cluster 1 SEs starting, maximum recruitment and ending modes (see Section in
Methods) computed on 45 participants. Linear correlations between topographies: Startings
vs Endings, » = 0.995, P < 0.001. Max. recruit. vs Startings, » = 0.972, P < 0.001. Max.
recruit. vs Endings, » = 0.968, P < 0.001. (B) Same as in A for the cluster 2 SEs starting,
maximum recruitment and ending modes. Linear correlations between topographies: Startings
vs Endings, » = 0.917, P < 0.001. Max. recruit. vs Startings, r = —0.052, P = 0.7. Max.
recruit. vs Endings, r = —0.051, P = 0.7. The SEs obtained from 45 subjects were clustered
using the Louvain algorithm (resolution parameter v = 1, see Section in Methods). The
reported P values for the statistical significance of the Pearson’s correlation were assessed
using Student’s t distributions of the two-tailed hypothesis test under the null hypothesis that
the correlation is zero. Symbols and abbreviations: SEs, Salient Events.
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Figure D.3: Salient events propagation modes. (A) Spatial profile for the SEs starting modes
(see Section[2.7]in Methods) corresponding to the two SE clusters computed on 45 participants.
The SEs obtained from 45 subjects were clustered using the Louvain algorithm (resolution
parameter v = 1, see Section in Methods). The Pearson’s correlation between the spatial
profiles of cluster 1 and cluster 2 SEs is » = 0.584, P < 0.001. (B) Brain topographies for the
starting modes of cluster 1 SEs as shown in panel A. (C) Brain topographies for the starting
modes of cluster 2 SEs as shown in panel A. (D-F) Same as A-C for SEs maximum recruitment
modes (see Sectionin Methods). In panel D, the Pearson’s correlation between the spatial
profiles of cluster 1 and cluster 2 SEs is r = —0.842, P < 0.001. (G-I) Same as A-C for SEs
ending modes (see Section in Methods). In panel G, the Pearson’s correlation between
the spatial profiles of cluster 1 and cluster 2 SEs is r = 0.571, P < 0.001. The reported P
values for the statistical significance of the Pearson’s correlation were assessed using Student’s
t distributions of the two-tailed hypothesis test under the null hypothesis that the correlation
is zero. Symbols and abbreviations: SEs, Salient Events.
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