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Marseille, France.
fDeparment of Biomedical Science, University of Sassari, Sassari, Italy.

gInstitute of Applied Sciences and Intelligent Systems, National Research Council (CNR),
Naples, Italy.

Abstract

Objective:
Narrowband oscillations (NOs) and Broadband Arrhythmic Activity (BAA) are
valuable conceptualizations extensively used to interpret brain data, with NOs
linked to communication and synchronization and BAA encompassing scale-free
dynamics and neuronal avalanches. Although both frameworks offer critical in-
sights into brain function, they have largely evolved in parallel, with limited
integration and no unifying mechanistic account of how these dynamics interact
to generate transient, Salient Events (SEs). This gap is particularly pressing
given recent interest in how SEs—brief (≈ 100 ms) bursts of activity coordi-
nated across brain regions—relate to large-scale brain function and cognition.
To address this, we introduce a signal-level framework that links the Fourier
spectral properties (oscillation-domain) of neural signals to the emergence of
realistic SEs in the time-domain from NOs and BAA.
Methods:
Our approach is grounded in a novel concept—Spectral Group Delay Consis-
tency (SGDC)—along with associated measures that quantify the temporal
alignment of spectral components and capture the conditions under which NOs
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and BAA coalesce into transient, burst-like events. Unlike traditional power- or
phase-based measures, or higher-order statistical metrics such as kurtosis and
cokurtosis, SGDC provides a signal-level mechanistic account of how local and
large-scale SEs emerge from the spectral structure of the underlying signals.
Empirical validation is provided using source-reconstructed MEG data from a
large cohort and a comprehensive array of features characterizing the statistical,
spatiotemporal and spectral properties of observed SEs.
Results:
We found that the SEs identified in our empirical MEG dataset can be seg-
regated based on their spectral signature in two main groups having different
propagation patterns. Using generative models based on the SGDC mecha-
nism we provide a theoretical framework to interpret these experimental results
showing that cluster 2 events are specifically related to the long-range spread of
narrowband alpha bursts across the brain network (i.e., SNEs: Salient Network
Events), whereas cluster 1 events correspond to more short-lived and spatially
localized fluctuations mainly promoted by the BAA (i.e., SLEs: Salient Lo-
cal Events). We also provide analytical arguments and numerical simulations
showing that a) high SGDC in specific narrow frequency bands, b) transient
cross-regional coherent NOs and c) BAA, are all key ingredients for the emer-
gence of realistic SNEs.
Significance:
We combine experimental evidence supported by a signal-level analytical frame-
work and numerical simulations based on generative models to demonstrate that
transient phase-structured alpha bursts, shaped by the SGDC mechanism, con-
tribute to long-range coordination during rest. This extends the communication-
through-coherence hypothesis to the transient domain. Additionally, SGDC
links to findings that NOs interact with fast microstates (≈ 100 - 200 ms) and
may modulate long-range dependencies across timescales. While previous stud-
ies have described SEs within the framework of neuronal avalanches, they often
lacked a generative, signal-level account. Here, we bridge that divide by offering
a mathematically grounded and empirically validated framework that accounts
for oscillatory and aperiodic bursts perspectives on brain activity.

Keywords: human MEG, large-scale salient events, brain oscillations,
broadband arrhythmic activity, group delay, complex baseband representation

Highlights1

• Salient network events propagating across the brain during spontaneous2

resting state activity, are highly structured in terms of their spatial, tem-3

poral and spectral properties.4

• The spectral group delay consistency framework provides a signal-level5

mechanism that accounts for transient salient network events emerging6

from oscillatory components of the brain activity.7
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• Narrowband oscillations and broadband arrhythmic activity interact to8

shape the timing and spatial extent of salient events.9

• Spectral group delay consistency, transient cross-regional coherent nar-10

rowband oscillations and broadband arrhythmic activity, are all key in-11

gredients for the emergence of realistic salient network events.12

• Salient network events during rest reflect large-scale spreading of synchro-13

nized alpha band activity, which may play a functional role as a long-range14

interaction mechanism in the human brain.15

1. INTRODUCTION16

The human brain generates complex behaviors from the coordinated interac-17

tion of neuronal populations, with evidence showing different degrees of special-18

ization/distribution of these networks. Such coordination is accompanied (or19

driven) by neural activity patterns that can be measured using techniques like20

electroencephalography (EEG) or magnetoencephalography (MEG). In general,21

electromagnetic brain signals are characterized by both narrowband rhythmic22

(i.e., oscillations) and broadband arrhythmic (e.g., 1/f scaling in power spectra)23

components [27].24

Oscillatory neural activity comprises rhythmic, periodic fluctuations around a25

central value in the brain’s signals, which occur across various narrow frequency26

bands and have been associated with specific cognitive functions [25]. For ex-27

ample, the alpha rhythm, typically between 8-13 Hz, emerges during eyes-closed28

wakefulness [10, 1, 47], while the gamma rhythm, exceeding 30 Hz, has been29

proposed to play a role in higher cognitive processes[12]. These oscillatory com-30

ponents manifest as ”bumps” in the signals’ Power Spectral Density (PSD).31

In contrast to brain oscillations, broadband arrhythmic neural activity exhibits32

a more complex and irregular nature, often associated with scale-free dynamics33

(i.e., no characteristic temporal scale) [27]. It generally, but not exclusively,34

displays a 1/fβ decay pattern in the PSD featuring a fractal-like distribu-35

tion of power across frequencies, with β spanning a range of values depend-36

ing on the brain condition, frequency range and recording modality (roughly37

0.1 . β . 5). This broadband activity contributes significantly to the brain’s38

overall signal and is intricately linked with cognitive processes, potentially car-39

rying valuable information [43]. Traditionally, the study of brain Narrowband40

Oscillations (NOs) and Broadband Arrhythmic Activity (BAA) has provided41

two lenses through which electrophysiological data have been examined [24]. In42

general, spectral (i.e., oscillation-domain) attributes like power and phase offer43

rich insights into brain dynamics, enabling the discrimination of brain activity44

during perceptual tasks and distinguishing between healthy and pathological45

dynamics in resting states [30]. For instance, the literature on brain connec-46

tivity has traditionally diverged into two primary streams: one emphasizing47

NOs—rhythmic, frequency-specific activity linked to communication and syn-48

chronization [56, 18, 15, 29, 38]—and another focused on BAA, encompassing49
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scale-free dynamics such as 1/f activity and neuronal avalanches [71, 5, 48].50

Although both frameworks offer critical insights into brain function, they have51

largely evolved in parallel, with limited integration and no unifying mechanistic52

account of how these dynamics interact to generate transient, Salient Events53

(SEs). This gap is particularly pressing given recent interest in how SEs—brief54

(≈ 100 ms) bursts of activity coordinated across brain region—relate to large-55

scale brain function and cognition [46, 49, 36, 70, 2, 40, 37, 35].56

Besides NOs and BAA, the analysis of collective brain dynamics reveals that57

system-level neuronal activity is interspersed by two types of SEs: Salient Lo-58

cal Events (SLEs) and Salient Network Events (SNEs). During SNEs, subsets59

of brain regions collectively exhibit rare fluctuations above a threshold (e.g.,60

signal amplitude > 3 standard deviations), igniting from specific brain sites,61

propagating across the brain circuitry in an avalanche-like cascade of activa-62

tions, and finally decaying below the threshold. As an example, Fig. C.1 in63

Appendix C shows a SE observed in our MEG dataset, constituted by transient64

above-threshold fluctuations overlapped (i.e., disclosing time-overlap, coordi-65

nated) across 5 brain regions. Due to the fact that the SE shown in Fig. C.166

involves the activation of more than 1 brain region is named Salient Network67

Event (SNE). On the other hand, a local transient above-threshold fluctuation68

involving the activation of just 1 brain region is named Salient Local Event69

(SLE). SNEs occur aperiodically and are consistently observed across imaging70

modalities, including multielectrode array recordings [7, 8], EEG [46, 20], MEG71

[46, 60], SEEG [52, 73], fMRI [64], and calcium imaging [72, 13]. In particu-72

lar, SNEs have drawn considerable interest due to their potential significance73

in information processing [59, 58], facilitating responses with a wide dynamical74

range [31, 34], and playing a role in achieving flexible dynamics [67, 62, 61]. A75

specific subtype of SNEs are known as neuronal avalanches. The latter were76

largely studied in the context of the critical brain hypothesis, which posits that77

the brain might be operating near a critical point (i.e., at the edge of a phase78

transition). In fact, neuronal avalanches display hallmark properties expected79

in systems that self-organize at a critical point, such as the power-law distribu-80

tion of avalanche durations (life span) and sizes (number of regions recruited)81

[46, 60, 41]. However, previous studies raised concerns about the interpretation82

of power law statistics associated with neuronal avalanches. First, power law83

distributed avalanches have been found in stochastic noncritical systems (see84

[16] and references therein). These works highlight the fact that power-law dis-85

tributions are not unique to systems near a critical point or a phase transition86

and can be generated by other mechanisms [44]. Second, several factors can87

contribute to deviations from power-law statistics such as finite size effects (size88

of the neuronal network or the sampling region) and thresholding procedures89

used for avalanche detection [69, 68]. Third and more crucially, the neuronal90

avalanches statistics can be influenced by heterogeneous factors like network in-91

teraction/synchronization, the concomitant presence of oscillations and/or other92

type of SEs (e.g. IEDs: Interictal Epileptiform Discharges) and also external93

interventions (e.g., antiseizure medications) [42].94

The signal processing tools proposed in this work can be used to study a variety95
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of SLEs and SNEs: sleep spindles and K-complexes observed during non-rapid-96

eye-movement sleep, IEDs and Spike and Wave Discharges (SWDs) associated97

with epileptogenicity [19] and Paroxysmal Slow-Wave Events (PSWEs) observed98

in epilepsy and age related neuropathology (e.g., Alzheimer’s disease) [50, 39].99

In general, these SEs do not follow power law statistics, indeed, IEDs, SWDs100

and PSWEs have been observed in a wide range of dynamical regimes associ-101

ated with clinical and subclinical brain states (see for instance Fig. 5 in [42]).102

Thus, for the sake of generality, we focus our analysis on the relationship among103

NOs, BAA, and SEs, without implying a connection to power law distributed104

neuronal avalanches nor the brain criticality hypothesis.105

NOs, BAA, and SEs offer valuable conceptualizations to interpret brain data,106

however, these well-established perspectives have mainly progressed in parallel,107

with only limited literature linking them largely restricted to the context of neu-108

ronal avalanches [46, 49, 36, 2, 40, 37, 35]. Given the ubiquitous and concurrent109

presence of NOs, BAA, and SEs in the brain during rest, a fundamental ques-110

tion arises: Can we establish a connection between these perspectives? In other111

words, can we invoke a parsimonious explanation that justifies the simultaneous112

presence of these phenomena? To address this, we introduce a signal-level frame-113

work that links the Fourier spectral properties (oscillation-domain) of neural114

signals to the emergence of realistic SEs in the time-domain from rhythmic and115

broadband aperiodic dynamics. Our approach is grounded in a novel concept—116

Spectral Group Delay Consistency (SGDC)—along with associated measures117

that quantify the temporal alignment of spectral components and capture the118

conditions under which NOs and BAA coalesce into transient, burst-like events.119

Unlike traditional power- or phase-based measures, or higher-order statistical120

metrics such as kurtosis and cokurtosis, SGDC provides a signal-level mecha-121

nistic account of how local (SLEs) and large-scale (SNEs) salient events emerge122

from the spectral structure of the underlying signals.123

While previous works primarily focused on describing the interaction between124

neuronal avalanches and NOs, in this work we adopts a bottom-up approach,125

using generative models based on the SGDC mechanism, aimed at elucidating126

how local and large-scale SEs emerge from the oscillatory and broadband ar-127

rhythmic components of the brain activity. The proposed data analysis tools are128

supported by a signal-level analytical SGDC framework designed to be applica-129

ble across a variety of (bio)physical domains, regardless of the specific details130

of the underlying system.131

In addition, empirical validation is provided using source-reconstructed MEG132

data from a large cohort, demonstrating that transient phase-structured alpha133

bursts, shaped by the SGDC mechanism, contribute to long-range coordination134

during rest. This extends the communication-through-coherence (CTC) hypoth-135

esis, according to which neuronal information is transferred via phase alignment136

(coherence) of rhythmic activity [22, 23], to the transient domain. Additionally,137

SGDC links to findings that NOs interact with fast microstates (≈ 100 - 200 ms)138

[3, 6, 66, 48] and may modulate long-range dependencies across timescales [5].139

Thus, while previous studies have described SEs within the framework of neu-140

ronal avalanches, they often lacked a generative, signal-level account. Here, we141
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bridge that divide by offering a mathematically grounded and empirically vali-142

dated framework that accounts for oscillatory and aperiodic bursts perspectives143

on brain activity.144

2. METHODS145

2.1. Participants and data146

We analyzed a source-reconstructed MEG dataset previously published in147

[63, 62]. In short, 58 young adults (32 males/26 females, mean age ± SD was148

30.72 ± 11.58) were recruited from the general community. All participants149

were right-handed and native Italian speakers. The inclusion criteria were (1)150

no major internal, neurological, or psychiatric illnesses; and (2) no use of drugs151

or medication that could interfere with MEG/MRI signals. The study complied152

with the Declaration of Helsinki and was approved by the local Ethics Com-153

mittee. All participants gave written informed consent. The details regarding154

the MRI acquisition are described in Section [63]. All technical details in con-155

nection with the MEG device are reported in [54]. MEG pre-processing and156

source reconstruction were performed as in [63, 62]. Briefly, the MEG registra-157

tion was divided into two eyes-closed segments of 3:30 min each. To identify158

the position of the head, four anatomical points and four position coils were159

digitized. Electrocardiogram (ECG) and electro-oculogram (EOG) signals were160

also recorded. The MEG signals, after an anti-aliasing filter, were acquired at161

1024 Hz, then a fourth-order Butterworth IIR band-pass filter in the 0.5-48 Hz162

band was applied. Principal component analysis was used to remove environ-163

mental noise measured by reference magnetometers. Supervised independent164

component analysis was adopted to clean the data from physiological artefacts,165

such as eye blinking (if present) and heart activity (generally one component).166

Noisy channels were identified and removed manually by an expert rater (136167

± 4 sensors were kept). After this pre-processing, 47 subjects were selected168

for this work and all further analyses were conducted on traces of 1 min in169

duration source-reconstructed to 84 brain Regions Of Interest (ROI) based on170

the Desikan-Killiany-Tourville (DKT) anatomical parcellation atlas (see brain171

topographies in Figs. 1 and C.3).172

2.2. Salient events detection173

To estimate SEs we first detected the local above-threshold fluctuations on174

the pre-processed and source-reconstructed MEG time series as described in175

Section 2.1. In each participant, the 1-minute source-reconstructed MEG time176

series of each brain region were individually z-scored. Positive and negative177

excursions beyond a threshold were then identified. The amplitude threshold178

was set to |z| = 3, equivalent to three standard deviations (±3σ or equiva-179

lently |z| = 3). The same amplitude threshold |z| = 3 was used in all analyzed180

brain regions. This procedure was applied separately to all the 47 participants181

included in the study. An analysis supporting the validity and robustness of182
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using a single amplitude threshold (|z| = 3) consistently across all 47 partici-183

pants is presented in Appendix C.1. Then the SEs duration was assessed by184

considering that a salient event begins when, in a sequence of contiguous time185

bins, at least one brain region is active (i.e., above the amplitude activation186

threshold: |z| > 3) and ends when all the brain regions are inactive (i.e., below187

the amplitude activation threshold: |z| ≤ 3) [7, 60]. Besides, the SEs size was188

defined as the total number of brain regions activated during a given event.189

Note that a salient event involving more than one brain region (i.e., SNE) is190

associated with a sequence adjacent time bins in which at least one brain region191

is active (|z| > 3). Thus, the detection of SNE depends on the time binning192

of the analyzed time series. Unless otherwise specified, in this study we used a193

time binning corresponding to 1 time sample per time bin (time binning = 1194

ms). This procedure allowed the detection of both SLEs (i.e., SEs of size = 1195

brain region) and SNEs (i.e., SEs of size > 1 brain region, see Fig. C.1).196

2.3. Salient events activation and co-activation matrices197

For each detected SE, we computed the activation matrix (brain regions198

× time bins) as follows. The source-reconstructed, z-scored and time binned199

signal were binarized, such that, at any time bin, a brain region exceeding ±3200

was set to 1 (active), and all other regions were set to 0 (inactive, see Figs.201

2A,B). For each detected SE, we also computed the co-activation matrix (brain202

regions × brain regions) by assigning 1 to all the brain regions recruited in that203

particular event. Thus, the diagonal of the co-activation matrix contains 1s in204

all the brain regions active during a given SE. Besides, summation across rows205

(or columns) produce, in each brain region, the number of co-activated regions206

during a given SE (i.e., in terms of graph theory, this is known as the degree of207

each brain region). The mean co-activation matrix shown in the Fig. 7C was208

computed by first averaging the co-activation matrices corresponding to all the209

SEs detected in each subject, and then, averaging the resulting matrix across210

all the participants.211

2.4. Salient events spatiotemporal profile212

To characterize SEs spatiotemporal profile, we introduce two ROI-wise met-213

rics: The mean event duration measuring the typical duration of SEs propagat-214

ing through a brain region; and the mean event size measuring the typical size215

of SEs propagating through a brain region. Specifically, we assign to each brain216

region the mean event duration (or size) computed on all the SEs recruiting that217

particular region. The mean event duration and mean event size profiles shown218

in the Fig. 1 were computed by first considering all the SEs detected in each219

subject, and then, averaging the resulting profiles across all the participants.220

2.5. Event spectral matrix221

For the spectral characterization of SEs we introduce the Event Spectral Ma-222

trix (ESM). To obtain the ESM we first compute the whitened time-frequency223

representation on the whole time series of each brain region (see Fig. 2C). Then,224
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the time-frequency maps were selectively averaged across the time points cor-225

responding to the occurrence of the SE of interest. As a result, we obtain a226

whitened power spectrum corresponding to each brain region recruited by that227

particular SE (see Fig. 2D). Finally, these power spectra are arranged in a sin-228

gle matrix conforming the ESM (Brain regions × Frequency bins, see Fig. 2F).229

The time-frequency maps were computed as scalograms using Morlet wavelets230

of duration 2 g width/(2πf) sec., where g = 3 (std. dev.), width = 7 (cy-231

cles) and f ∈ [0.5, 50] Hz. Spectral whitening, via ZH0-score normalization of232

each frequency bin across time samples as described in [19], was included in the233

computation of the time-frequency maps to facilitate the visualization of the234

high-frequency components in the resulting ESM. The ESM can be defined at235

the single event level (see Fig. 2F), by averaging all the SEs in each subject (data236

not shown) and by averaging the mean ESM of each subject across participants237

(see Figs. 2F,G and 3A,B). Of note, the ESM does not represent the frequency238

content of SEs since the latter are very short-duration transient events, instead,239

the ESM reveals the spectral signature associated with the oscillatory activ-240

ity co-occurring with each SE. That is, the ESM reveals the co-occurrence (or241

coupling) between the oscillatory activity and SEs across brain regions. To242

assess the statistical significance of the spectral signatures associated with the243

SEs, we compute pixel-level thresholding on the mean ESM with Bonferroni244

correction for multiple comparisons. More specifically, we computed the mean245

ESM on each one of the 100 B- or C-surrogate datasets (see Section 2.8). Then246

these 100 surrogate mean ESMs were used to compute pixel-level threshold-247

ing on the true mean ESM using a Bonferroni-adjusted two-tailed statistical248

threshold = 0.05/(Brain regions × Frequency bins). Note that this Bonferroni249

correction for multiple comparisons assuming independence between adjacent250

spatial/frequency bins of the mean ESM is a quite conservative test, yet, the251

observed spectral signature in the alpha band is evident even after this stringent252

thresholding process (see Fig. 2F,G).253

2.6. Salient events waveform shape254

To characterize the waveform shape of SEs we follow a ROI-wise approach.255

First, in each brain region we computed the average across the 200 ms signal256

epochs (absolute value) centered around the start time of the SEs of interest257

recruiting that particular region (see gray lines in Figs. 3C,D and D.1C,D).258

Then, we obtained the mean SEs waveform shape by computing the average of259

the resulting time series across the brain regions (see the red and blue lines in260

Figs. 3C,D and D.1C,D).261

2.7. Salient events propagation modes262

To assess the SEs starting modes we assign to each brain region the number263

of events igniting in that particular site (e.g., see the RPre brain region in the264

activation matrix shown in Fig. 2A). Similarly, for the SEs ending modes we265

assign to each brain region the number of events extinguishing in that particular266

site (e.g., see the RIC brain region in the activation matrix shown in Fig. 2A).267
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For the SEs maximum recruitment modes we assign to each brain region the268

number of events involving that particular site during the event maximum size269

(e.g., see the 4 brain regions active at Time ≈ 51.591 sec in the activation270

matrix shown in Fig. 2A). Last, by dividing the event count obtained in each271

brain region by the total number of processed SEs, we obtained the mean spatial272

profiles for the starting, maximum recruitment and ending SEs modes as shown273

in the Figs. C.5, C.6, D.2 and D.3.274

2.8. Surrogate datasets275

We generated phase-randomized A-surrogate datasets, that preserve the276

PSD in each brain region, while disrupting the phase relationships of the spec-277

tral components (both within and between brain regions) [51]. For this, in278

each brain region we implemented a frequency-domain randomization proce-279

dure, which involves taking the Discrete Fourier Transform (DFT) of the time280

series, adding a random phase-shift in the range [−π, π] on each spectral com-281

ponent of the DFT (preserving the odd phase symmetry associated with real282

signals [14]), and then taking the inverse DFT to obtain the surrogate signal283

back in the time-domain [17]. The 100 phase-randomized A-surrogate datasets284

were obtained by applying this procedure 100 times on each brain region inde-285

pendently. In addition, we also generated B-surrogate datasets that randomize286

the phases similarly to the A-surrogate, but in this case preserving both the287

regional PSDs and the cross-spectra. For this, we follow a similar procedure288

as described above with the difference that the same random phase-shift was289

applied to all the brain regions. This implies that the phase difference between290

any pair of brain regions in homologous frequency components is preserved (i.e.,291

preservation of cross-spectra). This implies to preserve the Pearson’s correla-292

tions between brain regions (see Appendix A.1). Note that the B-surrogates293

destroy the phase relationships only between non-homologous frequency compo-294

nents. Finally, we generated 100 C-surrogate sets of SEs by randomizing the295

starting time of each observed salient event and keeping unaltered all the other296

properties like the event duration and brain regions recruited in each event.297

2.9. Clustering of salient events298

SEs were clustered according to their spectral signature by using the Louvain299

method for community detection based on modularity maximization [11, 55].300

First, the Matrix of Paired Distance (MPD) was obtained by computing the301

Euclidean distance between the vectorized ESMs corresponding to the SEs of302

interest taken in pairs. The resulting MPD (Events × Events) was normalized303

to be in the range [0, 1], and the Adjacency Matrix (AM) was computed as AM304

= 1 − MPD. Then, the Louvain algorithm was repeated 100 times on the AM305

for resolution parameter values in the range 0.5 ≤ γ ≤ 2 [11, 57]. Optimization306

of modularity quality function, based on the maximization of the similarity307

measure (z-scored Rand index) [57], was achieved for resolution parameter values308

within the range 0.9 . γ . 1.1. Finally, a consensus partition was found from309

the 100 partitions [33, 4, 21]. For the events detected in our source-reconstructed310
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MEG dataset, the Louvain algorithm consistently identified two SE clusters311

with significant differences in terms of mean event duration, size and spectral312

signature in their mean ESM (see Figs. 3, C.11 and D.1).313

2.10. Spectral group delay consistency measures314

In this study, we introduce the pairwise complex baseband representation of315

band-limited signals (Eqs. A.7 - A.10 and A.13 - A.16) to provide analytical316

arguments showing that the link between local above-threshold fluctuations and317

oscillations can be understood in terms of the group delay consistency across the318

spectral components (i.e., Fourier oscillatory constituents) of the neuronal activ-319

ity. Specifically, in Appendix A.2 we show that the time-domain representation320

of any finite-length time series x(t) (inverse DFT, Eq. A.5) can be re-arranged321

by grouping the Fourier spectral components X(k) in non-overlapping adjacent322

pairs, leading to the pairwise complex baseband representation (Eq. A.7). In323

this new representation (Eq. A.7), the signal x(t) is decomposed into a linear324

superposition of amplitude modulated components, each synthesized from an325

adjacent pair of spectral components (X(2k), X(2k+ 1) in Eq. A.7). Crucially,326

the Eq. A.7 explicitly shows that the group delay is the key spectral feature327

determining the transient synchronization of the Fourier oscillatory constituents328

of the signal x(t) leading to the emergence of SEs (see Eq. A.17 and Figs. 4,329

A.2, A.3 and A.4). More precisely, the group delay determines the time align-330

ment of the amplitude modulated ocillatory constituents of the signal x(t) in331

the pairwise complex baseband representation. Such time alignment promotes332

transient large-amplitude excursions of the signal (i.e., above-threshold fluctu-333

ations). Thus, the Eq. A.7 constitutes a group delay-domain representation of334

the signal x(t), which lies in-between and links the time-domain and frequency-335

domain representations:336

• Time-domain representation: Waveform shape of the x(t) (inverse DFT,337

Eq. A.5).338

• Group delay-domain representation: Amplitude-modulated ocillatory con-339

stituents of x(t) defined by the adjacent pairs X(2k), X(2k + 1) in Eq.340

A.7.341

• Frequency-domain representation: Constant-amplitude oscillatory consti-342

tuents of x(t) defined by the spectral components X(k) in the DFT (Eq.343

A.4).344

We used the group delay-domain representation to analytically show that the345

emergence of SEs (i.e., above-threshold fluctuations) in the time-domain, is as-346

sociated with a high group delay consistency across the oscillatory components347

in the frequency-domain representation (i.e., approx. constant group delay dis-348

closed by the Fourier constituents of the signal, see Appendix A.2). This math-349

ematical fact, conceptually illustrated in Fig. 4, constitutes an essential signal-350

level feature inherent to the frequency-domain representation of time series and351
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holds true regardless of both the x(t) waveform shapes and the underlying bio-352

logical mechanisms associated with the analyzed SEs.353

The group delay is defined as the rate of change of the phase with respect to the354

frequency, then, a constant group delay across the Fourier frequencies implies355

a constant incremental phase across frequencies (provided that ∆ω = const.).356

Thus, highly structured Fourier phase values, that is, incremental phase values357

disclosing low variability across frequencies, promote the time alignment of the358

amplitude modulated components of the signal (see Fig. 4), and therefore, the359

emergence of transient above-threshold fluctuations. To quantitatively assess360

this effect, we introduce the SGDC measures as described below.361

The spectral group delay associated with the activity of the brain region r, is362

defined as the rate of change of the phase φr(ω) with the frequency ω com-363

puted on the Fourier spectrum of the brain activity (i.e., the DFT): τr(ω) =364

−∆φr(ω)/∆ω(ω). The incremental phase ∆φr(ω) is defined as the phase dif-365

ference between spectral components (adjacent in frequency ω) constituting the366

neural activity of the brain region r. The theoretical analysis presented in Ap-367

pendix A.2 shows that the spectral group delay consistency (SGDC) is an impor-368

tant feature linking the oscillatory properties of a signal to the above-threshold369

fluctuations associated with SEs. For an in-depth mathematical description of370

the oscillatory mechanisms eliciting above-threshold fluctuations in the brain371

signals and the measures quantifying the SGDC, the reader is referred to Ap-372

pendix A.2 and Appendix A.3. Here, we briefly introduce the SGDC measures373

designed to efficiently quantify this feature in the experimental data,374

SGDC(r) =
1

N

∑
ω

e−i∆φr(ω) : ∆ω = const across r (1)

SGDC(ω) =
1

N

∑
r

e−i∆φr(ω) : ∆ω = const across ω (2)

Eqs. 1 and 2 define the SGDC measures as the Euler transformed incremental375

phase values ∆φr(ω) averaged across the spectral components or brain regions,376

respectively, with N being the number of either frequency values or brain re-377

gions as appropriate. Importantly, the SGDC(r) measure (Eq. 1) assesses the378

emergence of local above-threshold fluctuations from the spectral components379

constituting the activity of the brain region r, whereas the SGDC(ω) measure380

(Eq. 2) quantifies the synchronization of the above-threshold fluctuations at381

the frequency ω across brain regions. We also define the pairwise spectral group382

delay consistency (pSGDC) to quantify the burstiness and cross-regional bursts383

synchronization in a single measure.384

pSGDC(r1, r2) =(
SGDC(r1) + SGDC(r2)

2

)
︸ ︷︷ ︸

Mean pairwise burstiness

1

N

∑
ω

e−i(∆φ1(ω)−∆φ2(ω))

︸ ︷︷ ︸
Correlation of burstiness across ω

(3)

: ∆ω = const across r

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2026. ; https://doi.org/10.1101/2024.02.28.582552doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582552
http://creativecommons.org/licenses/by-nc-nd/4.0/


Eq. 3 shows that pSGDC(r1, r2) is a linear measure conformed by two factors: a385

factor quantifying the cross-regional correlation between the group delays across386

the frequency values, weighted by a coefficient quantifying the burstiness of the387

two involved brain regions (r1, r2).388

The SGDC measures (Eqs. 1, 2 and 3) were computed using both non-time-389

resolved and time-resolved approaches. In the non-time-resolved case, the SGDC390

measures (Eqs. 1, 2 and 3) were computed on the whole time series of each brain391

region. That is, we first obtain the phase values corresponding to the Fourier392

spectral components by computing the DFT (via the Fast Fourier Transform393

algorithm) on the whole time series of each brain region. Then, SGDC mea-394

sures (Eqs. 1, 2 and 3) were computed on the incremental phase ∆φr(ω) ob-395

tained as the phase difference between the Fourier spectral components taken396

in non-overlapping adjacent pairs across the frequency ω. In particular, this397

non-time-resolved approach was used to produce the results shown in the Figs.398

7 and A.7A,B. On the other hand, in Figs. C.11 and A.7C,D we follow a time-399

resolved approach. That is, the SGDC(r) and SGDC(ω) measures (Eqs. 1400

and 2) were computed on each detected SE by considering the brain regions401

and time interval associated with each particular event. In the case of the402

Fig. C.11, the SGDC(r) and SGDC(ω) arrays were averaged selectively across403

the SEs segregated in the two clusters produced by the Louvain algorithm (see404

Section 2.9).405

3. RESULTS406

3.1. Statistical, spatiotemporal, and spectral characterization of salient events407

We identified SEs in our dataset and studied their characteristic signatures.408

In particular, we introduced a comprehensive array of features describing the409

statistical, spatiotemporal and spectral properties of SEs. The proposed tools410

allowed for the characterization of SNEs by the way they spread across the brain411

network. Indeed, we found the role that each brain region plays in the propa-412

gation of these SNEs is not homogeneous. To characterize the spatiotemporal413

profiles of SEs, we defined two ROI-wise metrics (see Methods, Section 2.4): The414

mean event duration measures the typical duration of SEs propagating through415

a brain region (Figs. 1A,B); and the mean event size measures the typical size416

of SNEs propagating through a brain region (Figs. 1C,D). The brain plots in417

Figs. 1B,D reveal a characteristic topography, demonstrating the heterogeneous418

role that each brain region plays in the propagation of SNEs. In particular, SEs419

with bigger size and longer duration seems to be more associated with the tem-420

poral and deep brain regions.421

Regarding the statistical characterization, we found that the SEs detected in422

our MEG data obtained from 47 subjects (1 min MEG time series source-423

reconstructed to 84 brain regions), disclose exponential-like distributions of the424

events size and duration with steep slope exponents (/ −3, see Fig. C.3), which425

do not follow the power law statistics putatively associated with the dynamical426

regime around a critical point or phase transition (see Introduction). Impor-427

tantly, the exponential-like distributions of the events size and duration shown428
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in the Fig. C.3 do not modify significantly when the time binning value is varied429

from 1 to 5 samples per time bin (time binning ranging from 1 ms to 5 ms, data430

not shown).431

Next, we introduce a tool to characterize the spectral signature of SEs, by432

first transforming the regional signals into a time-frequency representation and433

then averaging the time-frequency maps selectively across the time points cor-434

responding to the occurrence of each SE (Figs. 2A-D). This way, we defined the435

spectral fingerprint of each SE, which we named Event Spectral Matrix (ESM,436

see Methods and Figs. 2E-G). Of note, the ESM does not represent the fre-437

quency content of SEs since the latter are very short-duration transient events,438

instead, the ESM reveals the spectral signature associated with the oscillatory439

activity co-occurring with each SE. That is, the ESM reveals the co-occurrence440

(or coupling) between the oscillatory activity and SEs across brain regions. Fig.441

2 displays the ESM for a single event (panel E), the average ESM across 10442

subjects (panel F) and the ESM averaged across all the 47 subjects (panel G).443

Figs. 2F,G show that the oscillatory activity of most brain regions peaks in the444

alpha band (8-13 Hz) during SEs. In other words, during SEs, brain regions445

fluctuate predominantly in alpha. This is also observed away from the occipital446

regions, suggesting that synchronization in the alpha band might spread on a447

large-scale during SNEs. Note that this result provides a relevant insight re-448

garding the connection between SEs and NOs and, it is non-trivial since SEs449

are rare phenomena, occupying only a small fraction of the total recording (in450

space and time).451

3.2. Salient events and phase coherence: surrogate data analysis452

The spectral signature in the alpha band disclosed by the averaged ESMs453

shown in Figs. 2F,G suggest that a significant fraction of the SEs observed in454

our MEG data co-occur with (or are coupled to) alpha oscillations. To test this455

hypothesis, we generated 100 C-surrogate sets of SEs (see Methods, Section 2.8)456

that randomize the starting time of each observed SE and keep unaltered all457

the other properties like the time width and brain regions recruited during each458

event. Importantly, as shown in the Fig. 2F, the average ESM of the true SEs459

thresholded with the average ESM of the C-surrogate SEs (see Methods, Sec-460

tion 2.5) discloses a prominent spectral signature in the alpha band. This result461

reveals a significant (i.e., above chance level) coupling between the true SEs and462

alpha oscillations, supporting our hypothesis that the large-scale spreading of463

transient alpha bursts is associated with SNEs. Taking together these results464

suggest that during SNEs, the brain activity display large deviations from the465

baseline, which are coordinated across regions, giving rise to complex activation466

patterns with well-defined statistical, spatiotemporal, and spectral features.467

To investigate the statistical properties of the signals associated with the emer-468

gence of realistic SEs, we first tested whether the observed SEs require additional469

features beyond the autocorrelation (PSD) of each MEG trace, which could in-470

clude cross-correlation, non-stationarity, or non-Gaussianity. A common way to471

test the necessary and/or sufficient conditions underlying a phenomenon (here,472
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SEs) is the use of surrogate data analysis [51]. This approach involves cre-473

ating surrogate datasets that remove or alter a specific property (e.g., phase474

relationships) while preserving other statistical characteristics, allowing one to475

determine if the absence or modification of the property affects the observed476

feature of interest. Following this line of reasoning, we generated 100 phase-477

randomized A-surrogate datasets (see Methods). Each A-surrogate preserves478

the PSD (and thus the autocorrelation) of each brain region but disrupts the479

phase relationships of spectral components. When phases are randomized in-480

dependently across regions, this procedure also disrupts inter-regional phase481

relationships and therefore removes cross-correlation structure that depends on482

those phases. Hence, A-surrogates implement the null hypothesis that the ob-483

served SEs can be explained solely by the preserved PSDs (i.e., by stationary, ap-484

proximately Gaussian signals with inter-regional phase relationships removed).485

Despite the A-surrogates having the same spectral content as the original data,486

they disclose distributions with significantly less SEs with large size and dura-487

tion values when compared to those observed in the true data (see A-surrogates488

in Figs. C.3A,B). Besides, A-surrogates do not reproduce realistic spatiotempo-489

ral patterns of propagation (see A-surrogates in Figs. 1A,C) and ESMs (data490

not shown).491

We then tested whether the observed SEs require additional structure beyond492

the auto- and cross-correlation of the MEG trace, which could include non-493

stationarity, or non-Gaussianity. To test this hypothesis, we generated 100494

phase-randomized B-surrogate datasets (see Methods) that randomize the phases495

similarly to the A-surrogate, but in this case preserving both the regional PSDs496

and the cross-spectra. The preservation of cross-spectra implies that the phase497

difference between any pair of brain regions in homologous frequency compo-498

nents is preserved. This implies to preserve Pearson’s correlations between499

brain regions (see Appendix A.1 and Fig. A.1). However, the B-surrogates500

destroy the phase relationships between non-homologous frequency components.501

B-surrogates therefore implement the null hypothesis that the observed SEs can502

be explained by the preserved auto- and cross-correlation (i.e., by stationary, ap-503

proximately Gaussian signals with inter-regional phase relationships preserved).504

The observed mean spatiotemporal properties (see B-surrogates in Figs. 1A,C),505

the alpha signature disclosed by the ESM (see the average ESM thresholded506

using the B-surrogates shown in Fig. 2G), and the distributions of SEs du-507

ration and size (see B-surrogates in Figs. C.3A,B) are not explained by the508

B-surrogates. Notice that these results are non-trivial, since in both the orig-509

inal and the B-surrogate datasets the number of SEs is almost identical, and510

large events are also observed in the surrogate data (see B-surrogates in Figs.511

C.3A,B).512

To summarize, despite retaining the same power spectra and cross-spectra, the513

loss of synchronization across spectral components (given by the phase ran-514

domization), impairs large-scale coordinated SNEs, significantly disrupting the515

statistics and features of SEs.516
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3.3. Clustering of salient events517

The ESM can be defined at the single event level (Fig. 2E). Thus, we asked518

if SEs with different spectral signatures propagate differently. In particular, we519

hypothesized a relationship between the event spectral signature (as measured520

by the ESM) and the event duration, size and propagation topographies (see521

Methods). To test this relationship, we clustered SEs according to their ESM522

using the Louvain algorithm (see Methods). We found that SEs cluster into523

two main groups based on their spectral signature (Figs. 3A,B). The SEs be-524

longing to cluster 1 (Fig. 3A) display less marked and widespread alpha peak525

in the ESM as compared to cluster 2 (Fig. 3B). Importantly, we found a sta-526

tistically significant differences in the mean event duration and size between527

cluster 1 and cluster 2 (see Figs. 3E,H). To assess this, in each brain region528

we computed a non-parametric permutation test (random sampling without re-529

placement, 1× 104 permutations). All the brain regions disclosed a statistically530

significant difference of the mean event duration and size between cluster 1531

and 2 (the Bonferroni-adjusted two-tailed P values result P < 0.001 in all the532

brain regions). Consistently, the two clusters are also well distinguished by their533

different waveform shapes, with cluster 1 showing shorter temporal profiles of534

above-threshold fluctuations. Figs. 3C,D show the average waveform shapes of535

SEs, obtained by averaging in each brain region (BR) the absolute value of the536

time series associated with each event (see Methods).537

These results suggest that cluster 2 events are specifically related to the long-538

range spread of narrowband alpha bursts across the brain network (i.e., SNEs),539

whereas cluster 1 events correspond to more short-lived and spatially localized540

fluctuations mainly promoted by the BAA (i.e., SLEs. See Figs. 3A-D,E,H).541

Consistently, the two identified clusters are also characterized by different event542

duration and size, which supports our hypothesis. In particular, cluster 1 events543

are generally small and short-lived when compared to cluster 2 events, although544

both clusters display event size and duration distributions spanning across a few545

orders of magnitude (see Figs. 3G,J). Interestingly, the event duration and size546

distributions are different between the two clusters, which could have implica-547

tions for the study of the spectral background statistics.548

We also found that SEs propagate in a cluster-specific manner (see Figs. C.5 and549

C.6 in Appendix C). In cluster 1, the spatial profiles associated with the events550

start, maximum recruitment and end are highly correlated (see Fig. C.5A, pair-551

wise Pearson’s correlations r > 0.978, P < 0.001 two-tailed Student’s t-test),552

pointing out that cluster 1 events do not propagate to brain regions distant553

from those igniting the events. This result strongly supports the evidence pre-554

sented above regarding the spatially localized nature of cluster 1 events. On555

the other hand, the spatial profiles associated with the events start and end556

are also highly correlated in cluster 2 SEs (see Fig. C.5B, Pearson’s correlation557

r = 0.895, P < 0.001 two-tailed Student’s t-test), suggesting that the brain558

regions involved in the ignition of a particular cluster 2 event tend to remain559

active until the event extinction. However, the maximum recruitment profile of560

cluster 2 events disclose a weak negative correlation with respect to the start561

spatial profile (Pearson’s correlation r = −0.298, P < 0.01 two-tailed Student’s562
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t-test), supporting our hypothesis that cluster 2 events spread in the form of563

narrowband alpha bursts across the brain network. Intriguingly, the spatial pro-564

files associated with the events start and end are highly correlated between the565

two clusters (see Figs. C.6A-C and Figs. C.6G-I), whereas a different scenario566

is observed in terms of how the brain regions are recruited by the two event567

clusters. Specifically, brain regions that are recruited by the longer events of568

cluster 1, will be recruited by the shorter events of cluster 2, and vice versa (see569

Fig. C.6D). Within cluster 1, the longest SEs occupy the frontal and occipi-570

tal regions (see Fig. C.6E), whereas in cluster 2, associated with the spectral571

signature in the alpha band, the longest SEs are in the parietal and temporal572

regions (see Fig. C.6F). The opposite trend is observed for the shortest SEs. In573

fact, performing Pearson’s correlations between the spatial profiles of cluster 1574

and cluster 2 corresponding to the maximal size of recruitment across brain re-575

gions, we obtain a strong negative correlation (r = −0.841, P < 0.001 two-tailed576

Student’s t-test, see Fig. C.6D). Note that the specificity of cluster 2 events, as-577

sociated with transient above-threshold alpha bursts, in recruiting parietal and578

temporal brain regions can not be trivially explained by the presence of elevated579

(steady) alpha oscillatory power, which is commonly observed in occipital brain580

regions during the eyes-closed resting state (see Figs. 2B and C.4).581

In summary, in this section we have introduced a comprehensive array of SE582

features, showing that rare, short-lived SEs propagating across the brain during583

spontaneous resting state activity are highly structured in terms of their spatial,584

temporal, and spectral properties. In particular, the spectral characterization585

using the ESM provided relevant insights regarding the connection between the586

observed SNEs and NOs in the alpha band.587
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Figure 1: Spatiotemporal characterization of SEs. (A) Spatial profile showing the mean
duration of SEs propagating through each brain region (mean value across the 47 participants,
see Section 2.4 in Methods). The mean event duration is shown for the MEG data together
with the 100 A- and B-surrogates (see Section 2.8 in Methods). The labels and ordering of
the brain regions are the same as those shown in Fig. C.2. (B) Brain topographies for the
mean duration of SEs as shown in panel A. (C) Same as in A for the size of SEs. (D) Same as
in B for the size of SEs. Symbols and abbreviations: SEs, Salient Events; BR, Brain Regions.
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Figure 2: Event Spectral Matrix. (A) Activation matrix of a single SE showing the time
intervals in which each brain region was active (i.e., absolute amplitude > 3σ). (B) Activity of
the brain region RC disclosing the above-threshold fluctuation (highlighted in red) associated
with the SE shown in panel A. (C) Whitened time-frequency maps of each brain region
involved in the SE shown in panel A. (D) Whitened power spectra associated with each brain
region involved in the SE shown in panel C. The vertical dotted lines indicate the alpha
band. To build the ESM, we average the whitened time-frequency maps selectively across the
time samples corresponding to the occurrence of each SE. As a result, we obtain a whitened
power spectrum for each brain region (see Section 2.5 in Methods). (E) ESM corresponding
to the SE shown in panel C. (F) Mean ESM resulting from the average across all the SEs
detected in the 10 subjects, and then, Bonferroni-thresholded using the C-surrogates (see
Methods). (G) Mean ESM resulting from the average across all the SEs detected in the 47
subjects, and then, Bonferroni-thresholded using the B-surrogates (see Methods). Symbols
and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix; PSD, Power Spectral
Density; RPre, Right Precuneus; RC, Right Cuneus; RPeri, Right Pericalcarine; RIC, Right
Isthmus Cingulate; LC, Left Cuneus.
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Figure 3: Clustering of SEs according to their spectral signature. The SEs obtained from 41
subjects were clustered using the Louvain algorithm (resolution parameter γ = 1, see Meth-
ods). (A, B) Mean ESM of the two SE clusters identified by the Louvain algorithm computed
on the SEs detected in the 41 participants. (C, D) Waveform shapes of the SEs pertaining
to the two SE clusters identified by the Louvain algorithm. Thin gray lines correspond to
the average waveform shape in each brain region. Thick blue and red lines correspond to
the resulting waveform shape averaged across the brain regions for cluster 1 and 2 SEs, re-
spectively. (E) Spatial profile showing the mean duration of SEs pertaining to cluster 1 (in
blue) and cluster 2 (in red). For the true data, the small and big markers correspond to the
mean spatial profile in each patient and the average across the 41 participants, respectively
(see Methods). The labels and ordering of the brain regions are the same as those shown in
Fig. C.2. To test the significance of the difference of the mean SEs duration between cluster
1 and cluster 2, in each brain region we computed a non-parametric permutation test (ran-
dom sampling without replacement, 1 × 104 permutations). All the brain regions disclosed
a statistically significant difference of the mean SEs duration between cluster 1 and 2 (the
Bonferroni-adjusted two-tailed P values result P < 0.001 in all the brain regions). (F) Brain
topographies for the mean duration of SEs averaged across the 41 participants as shown in
panel E. (G) Distribution of the duration of SEs pertaining to the cluster 1 and cluster 2
observed in the 41 participants. (H) Same as in E for the size of SEs. To test the significance
of the difference of the mean SEs size between cluster 1 and cluster 2, in each brain region we
computed a non-parametric permutation test (random sampling without replacement, 1×104

permutations). All the brain regions disclosed a statistically significant difference of the mean
SEs size between cluster 1 and 2 (the Bonferroni-adjusted two-tailed P values result P < 0.001
in all the brain regions). (I) Same as in F for the size of SEs. (J) Same as in G for the size
of SEs. Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix; BR,
Brain Regions.
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3.4. Analytical framework: Spectral group delay consistency588

We next explored the mechanism mediating the reduction of local and cross-589

regional burstiness observed in our surrogate data computed via phase random-590

ization (see Section 3.2). Notice that this is a relevant question since surro-591

gate data analysis based on phase randomization is extensively used in many592

(bio)physical domains including Neuroscience. Importantly, being the phase an593

intrinsic property of NOs, it is not obvious how the modification (e.g., ran-594

domization) of this oscillation-domain parameter affects the emergence of SEs595

(compare the true data with the A- and B-surrogates in Figs. 1 and C.3).596

This question becomes apparent by taking into account that despite preserving597

both the power spectrum (PSD) in each brain region and the cross-spectra (i.e.,598

functional connectivity) B-surrogates fail to account for the SEs observed in599

our MEG dataset. To address this question, we developed a signal-level ana-600

lytical framework, named Spectral Group Delay Consistency (SGDC), designed601

to provide an analytical rationale supporting the emergence of SEs from the602

oscillatory constituents of the brain activity.603

Let us focus on a single brain activity time series. We first compute the DFT604

to decompose the time series as a linear superposition of its Fourier oscillatory605

components (see Figs. 4A,B,D and Eq. A.4). Then, we group the Fourier606

components in (non-overlapping) pairs adjacent in frequency (see color-paired607

Fourier components in Fig. 4A). This lead to the pairwise complex baseband608

representation of the time series. In this representation, the time series of inter-609

est is decomposed as a linear superposition of amplitude modulated components610

(see the color coded amplitude modulated signals in Fig. 4E and Eqs. A.7 and611

A.17). Importantly, the time offset of each amplitude modulated component612

is determined by the spectral group delay τ(ω) ≈ −∆φ(ω)/∆ω. Where τ(ω)613

is computed on Fourier spectrum of the brain activity (i.e., the DFT), as the614

rate of change of the phase φ(ω) with the frequency ω. Essentially, when all615

the Fourier components are added together to synthesize the signal in the time-616

domain (i.e., the inverse DFT), the spectral group delay determines the time617

alignment of the envelope of the amplitude modulated components associated618

with each pair of adjacent spectral components. Such time alignment promotes619

transient large-amplitude excursions of the signal (i.e., above-threshold fluctua-620

tions). In the case of adjacent spectral components with phase values depending621

linearly with ω, we obtain approximately constant spectral group delay values622

for all the pairs of adjacent spectral components (see Fig. 4C). In such a case,623

the signal has a high spectral group delay consistency (SGDC) which promotes624

the time alignment of the amplitude modulated components (see the color coded625

amplitude modulated signals in Fig. 4E), hence, supporting the occurrence of626

above-threshold fluctuations (see the large-amplitude excursions of the black627

time series in Figs. 4D,E). On the other hand, for adjacent frequency compo-628

nents having phase values disclosing a nonlinear dependence with the frequency629

ω (e.g., a quadratic dependence as shown in Fig. A.2G), the resulting spectral630

group delay depends on ω (see Figs. A.2H). The latter disrupts the time align-631

ment of the amplitude modulated components (see the color coded amplitude632

modulated signals in Fig. A.2J). In this case, we say that the signal has low633
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SGDC which reduces the occurrence of above-threshold fluctuations (see the634

sub-threshold fluctuations of the black time series in Figs. A.2I,J).635

The results discussed above constitutes strong analytical arguments pointing636

out that the reduction of the local burstiness observed in our surrogate data637

computed via phase randomization, can be understood in terms of the group638

delay consistency across the spectral components of the neuronal activity (i.e.,639

SGDC). Specifically, the phase randomization process produces phase values640

having a nonlinear (random) dependence with the frequency of the Fourier com-641

ponents, hence, reducing the SGDC of the resulting surrogate time series. We642

confirmed this theoretical results using analytically tractable model of synthetic643

time series (see the discussion about Figs. A.2 and A.3 in Appendix A.2), nu-644

merical simulations (see Section 3.5) and empirical MEG data (see the discussion645

about Figs. A.7A,C in Appendix A.4). In particular, in Appendix A.4 we ana-646

lytically show that, despite preserving the regional power spectrum (PSD), the647

phase randomization associated with both A- and B-surrogates significantly re-648

duces the burstiness of each brain region as assessed by the SGDC(r) measure649

(Eq. 1). Importantly, the reduction of the regional SGDC, as quantified by650

the SGDC(r) measure, offers an analytical rationale supporting the evidence651

showing that B-surrogates failed to reproduce the SEs observed in our MEG652

dataset despite preserving both the regional PSDs and the cross-spectra. As653

a conclusion, the SGDC constitutes a signal-level analytical model linking the654

emergence of SEs from the oscillatory components of the brain activity and655

underpining the evidence showing that our A- and B-surrogates computed via656

phase randomization failed to reproduce realistic SEs (see Section 3.2).657

For an in-depth mathematical description of the SGDC framework and mea-658

sures, the reader is referred to Appendix A.2.659
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Figure 4: Pairwise complex baseband representation. (A) Set of constant-amplitude A(k) = 1
oscillatory components uniformly spaced (fs ∆ω/(2π) = 1.2/

√
2 Hz) and having non-harmonic

frequencies fs ω(k)/(2π) = 0.5 + k fs ∆ω/(2π) ∈ [0.5 − 5] Hz, where fs = 1024 Hz is the
sampling rate. The pairwise complex baseband representation (Eq. A.13) was obtained by
grouping the oscillatory components in adjacent non-overlapping pairs color-coded in blue, red
and green. (B) Phases φ(k) having a linear dependence as a function of the frequency within
the range φ(k) ∈ 2.5 [−π, π]. (C) Group delay τ(k)/fs = −∆φ(k)/(fs ∆ω) for the pairs of
adjacent oscillatory components. The color-coded filled markers correspond to the τ(2k)/fs
values, and the black empty markers correspond to τ(2k+1)/fs values (see Eq. A.13). (D) Z-
scored signals associated with the Fourier representation. The solid color-coded lines represent
the individual oscillatory components, the solid black line is the resulting signal x(t), the
horizontal dashed black lines indicate the threshold at |z| = 3. (E) Pairwise complex baseband
representation. The solid color-coded lines represent the individual amplitude modulated
signals (pairs of adjacent oscillatory components), the solid black line is the resulting signal
x(t), the color-coded and black doted lines are the corresponding amplitude envelopes. For
an in depth mathematical description of the pairwise complex baseband representation see
Appendix A.2.

3.5. Numerical models: SEs, NOs and BAA660

We built a numerical signal model to elucidate the relation between SEs,661

NOs, and BAA. We model the activity of single brain regions as the linear su-662

perposition of Fourier components oscillating in a narrow frequency band. As663

a result, the corresponding spectral representation discloses a ”bump” of (null-664

to-null) bandwidth in the alpha band (8-13 Hz, Figs. 5A,D,G). The BAA was665

modeled by imposing a 1/f trend in the PSD of each signal (Fig. 5G). This 1/f666
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spectral background was chosen to mimic the −10dB/dec log-log decay rate ob-667

served in the PSDs associated with our MEG dataset (see Fig. C.4). To model668

different degrees of phase coherence, we assign random phase values to the spec-669

tral components within a range [−επ, επ] with ε ∈ [0, 1] (see the polar plots in670

Figs. 5A,D,G). On the one hand, for ε ' 1, the spectral components of the671

signal were desynchronized (i.e., independent oscillatory components, Fig. 5A).672

On the other hand, for ε ' 0 the spectral components were highly synchronized673

(i.e., high cross-frequency coherence). We first focused on a single brain signal674

and measured the number of SLEs (i.e., transient amplitude excursions above675

a fixed threshold of 3 standard deviations: ±3σ) across 1000 realizations (i.e.,676

trials), depending on the presence or absence of coherent NOs and 1/f activity677

(see Figs. 5C,F,I). In the absence of 1/f activity and for uniformly distributed678

random phases assigned to the spectral components in the alpha band (ε = 1,679

Figs. 5A), the model displays very few above-threshold fluctuations across trials680

(Figs. 5B,C). Increasing the coherence of the spectral components in the alpha681

band (ε = 0.75, Figs. 5D), despite the absence of 1/f activity, the number682

of above-threshold fluctuations increased, producing a salient burst in most of683

the trials (Figs. 5E,F). Importantly, Fig. B.1 shows that the results discussed684

above, in connection with the emergence of local above-threshold fluctuations685

from the Fourier oscillatory constituents of the brain activity (i.e., SLEs), can686

be understood in terms of the SGDC as quantified by the SGDC(r) measure687

(Eq. 1). Specifically, Fig. B.1 shows that the increase of the signal burstiness,688

as quantified by the kurtosis of the signal’s amplitude values, associated with689

more constrained random phase values (i.e., low phase factor ε values) corre-690

lates with the increase in the SGDC as quantified by the SGDC(r) measure.691

In Fig. B.1, the time series were synthesized by adding pure sinusoidal signals.692

The SGDC(r) was then computed directly from the synthetic phases of these693

sinusoidal components. Because the phases were taken from the exact analytical694

components, no spectral leakage was present in this case. In contrast, in Fig.695

B.2, 1 min in duration time series were synthesized following the same proce-696

dure as in Fig. B.1, but this time the SGDC(r) was computed using the alpha697

band phases obtained from the DFT applied to the synthesized time series.698

This procedure inherently introduces spectral leakage due to the time-domain699

tapering (rectangular window), which affects the phase values involved in the700

computation of the SGDC(r) measure and is visible in the corresponding power701

spectra. Fig. B.2 shows that the increase of the salience of transient fluctua-702

tions in a signal, as quantified by the kurtosis of the signal’s amplitude values,703

is reproduced by the SGDC(r) measure. Importantly, these results highlight704

that the SGDC(r) measure is not primarily driven by the spectral leakage. In-705

stead, it reflects the relationship between the salience of transient fluctuations706

and the consistency (spread or variability) of the group delay across the Fourier707

frequencies, independently of the spectral leakage. In addition, we re-compute708

the signal model for the same set of phase factor values used in Fig. B.1, this709

time using spectral phase values disclosing not a random but a linear depen-710

dence with the frequency (i.e., a time-shift in the time-domain). The results711

obtained with this configuration are shown in Fig. B.3. As predicted by the712
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SGDC mechanism (see Figs. 4A-E), we obtained |SGDC(r)| ≈ 1 independently713

of the phase factor value (ε ∈ [0, 1]), and the time series produced by the signal714

model disclosed (time-shifted) above-threshold fluctuations in all the cases (see715

Fig. B.3). These numerical results constitute further evidence showing that716

the SGDC effectively underlies the emergence of local above-threshold fluctu-717

ations from NOs, as in the case shown in Figs. 5D,E,F. Then, we introduced718

the broadband 1/f activity into the model through a linear superposition (ad-719

dition) with the oscillatory activity in the alpha band. As a result, the presence720

of the broadband 1/f activity with ε = 1 and coherent spectral components in721

the alpha band with ε = 0.75 (Fig. 5G) further increased the number of salient722

events in a single brain signal (Figs. 5H,I). Importantly, the 1/f activity also723

influences the rhythmicity of above-threshold fluctuations, which occur aperi-724

odically. More specifically, if we synthesize a long time series by concatenating725

trials constructed without the 1/f activity (as in Figs. 5E), the concatenated726

time series will disclose a periodic series of above-threshold alpha bursts (i.e.,727

one salient alpha burst per trial). Instead, in the presence of 1/f activity we728

obtain above-threshold fluctuations occurring aperiodically in each trial besides729

the salient alpha burst, hence, the time series resulting from concatenating trials730

(as in Fig. 5H) will disclose an aperiodic series of above-threshold fluctuations,731

elicited by the interaction between the 1/f and oscillatory activities. Further-732

more, the regime R2 in Fig. 5I points out a plausible range for the relative733

amplitude between NOs and the BAA in order to obtain realistic aperiodi-734

cally occurring above-threshold fluctuations. That is, in the regime R1 only735

Non-Oscillatory Salient Events (NOEs) are observed, in the regime R3 only736

Oscillatory Salient Events (OEs) are observed. In contrast, the regime R2 is737

characterized by a stochastic-resonance-like effect in which the resulting local738

activity exhibits both NOEs and OEs mirroring the two SE clusters observed739

in our MEG dataset. In Appendix C.2 we discuss additional empirical evidence740

supporting the theoretical findings described in Sections 3.4 and 3.5.741

In summary, these results suggest that the mere presence of oscillations as-742

sociated with an increase of power around a narrow frequency band does not743

guarantee the stable occurrence of above-threshold fluctuations (Figs. 5A-C).744

However, if the phases of the spectral components are coherent producing high745

|SGDC(r)| values, then high-amplitude fluctuations are consistently observed746

in the signal (Figs. 5D-F).747
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Figure 5: Model for local above-threshold fluctuations. (A) Amplitude spectrum (left) and
distribution of the phase values assigned to the spectral components (right) for the oscillatory
activity in the alpha band (Hann window with null-to-null bandwidth = 8-13 Hz, frequency
resolution df = 1/60sec ≈ 0.017 Hz). Random phases were assigned to all the spectral
components within the range [−επ, επ] with a phase factor ε = 1. (B) 10 sec epoch extracted
from the synthetic time series produced by the amplitude spectrum and phase distribution
shown in panel A (sampling rate of fs = 1024 Hz). The horizontal dashed lines in red
indicate the 3 standard deviations (±3σ) thresholds used to compute the SLEs as above-
threshold amplitude fluctuations. (C) Number of SLEs per trial as a function of the maximum
amplitude of the oscillatory activity in the alpha band. For each maximum amplitude value,
we counted the number of SLEs across 1000 time series of 10 sec in duration (trials) synthesized
as the one shown in panel B. In each trial, we recomputed the random phases of the spectral
components within the range [−επ, επ] with ε = 1. The colored markers indicate the mean
number of SLEs per trial across the 1000 trials. The shaded error bars in gray correspond to
the standard deviation around the mean value. The pseudocolor scale represents the mean
value for the number of above-threshold samples per SLE. The black arrow indicates the
maximum amplitude of the alpha oscillations used in panels A and B. (D-F) Same as in A-
C for spectral components with random phases constrained within the range [−επ, επ] with
ε = 0.75 (see the distribution of the phase values in panel D right). (G) Amplitude spectral
profile (left) resulting from the linear superposition of 1) a narrowband amplitude spectrum
around the alpha band (Hann window with null-to-null bandwidth = 8-13 Hz), and 2) a
set of spectral components with power A2(f) ∝ 1/f (frequency resolution df = 1/60sec ≈
0.017 Hz). The right side of panel G shows the distribution of phase values assigned to the
spectral components. Random phases within the range [−επ, επ] with ε = 1 where assigned
to the spectral components constituting the 1/f background (blue circles) and ε = 0.75 where
assigned to the spectral components associated with the alpha bump (red circles). (H) Same
as in B and E for the spectrum shown in panel G. In this case, it is possible to distinguish
Oscillatory (OEs) and Non-Oscillatory (NOEs) Salient Local Events. R1, R2 and R3 indicate
regions characterized by Amp. of alpha oscillations less than, approx. equal to and greater
than the Amp. of 1/f activity, respectively. Symbols and abbreviations: SLEs, Salient Local
Events; OEs, Oscillatory Salient Local Events; NOEs, Non-Oscillatory Salient Local Events.

Next, we extended the above setup to model whole-brain activity and SNEs.748

For each simulated brain signal, we set the amplitude of the alpha peak (with749
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alpha amplitude ∈ [0, 1]) proportionally to the mean alpha amplitude (average750

across the 47 participants) observed in the empirical MEG recordings, thus mod-751

eling the non-homogeneous presence of alpha activity across brain regions. In752

addition, in each region, we bounded the random phases assigned to the spectral753

components in the alpha band within a range [−επ, επ], whose width ε ∈ [0.75, 1]754

was inversely proportional to the empirical alpha power (i.e., the higher the al-755

pha peak, the higher the phase coherence among the spectral components). This756

choice was motivated by the fact that high PSD bumps are generally interpreted757

as stronger narrowband synchronization within local neuronal populations [22]758

(see Discussion). Using this setup, we measured synthetic SEs and tested their759

dependence on the 1/f activity. When only alpha oscillations were present,760

and no broadband 1/f activity (Fig. 6A), the resulting ESM was not realistic761

compared to the empiric one (compare Figs. 6B and 2G), and the distributions762

of SEs duration and size were not approximating the exponential-like distribu-763

tions observed in our MEG dataset (compare Figs. B.4A,B and C.3). Instead,764

when only broadband 1/f activity was present, and no oscillatory activity in765

the alpha band nor coherent phase values were used (i.e., ε = 1; Fig. 6C), the766

ESM did not show the spectral signature associated with the alpha component767

(Fig. 6D). Also, the distribution of SEs duration was similar to the empirical768

data, while the distribution of SEs size was shrunk, as the model did not display769

SEs involving large populations (Figs. B.4C,D). Finally, when both broadband770

1/f activity and alpha oscillations were simultaneously present (Fig. 6E), the771

emerging SEs displayed a realistic ESM (compare Figs. 6F and 2G) as well as772

exponential-like distributions of SEs duration and size (Figs. B.4E,F); although773

the SEs size decayed in a markedly more rapid fashion than in the empirical data774

(compare Figs. B.4E,F and C.3). The Pearson’s correlation between the vector-775

ized versions of the empirical (Fig. 2G) and simulated (Figs. 6B,D,F) ESMs are776

as follows: Empirical (non-thresholded version of the ESM shown in Fig. 2G)777

vs. Large scale model including only alpha oscillations (ESM shown in Fig. 6A):778

r = 0.594, P < 0.001. Empirical (non-thresholded version of the ESM shown in779

Fig. 2G) vs. Large scale model including only broadband arrhythmic activity780

(ESM shown in Fig. 6D): r = 0.167, P < 0.001. Empirical (non-thresholded781

version of the ESM shown in Fig. 2G) vs. Large scale model including both782

alpha oscillations and broadband arrhythmic activity (ESM shown in Fig. 6F):783

r = 0.611, P < 0.001. The statistical significance of these linear correlations784

was assessed by using the Student’s t distributions of the two-tailed hypothesis785

test under the null hypothesis that the correlation is zero.786

These results suggest that both NOs and broadband 1/f spectral background787

contribute to the signal deviations from baseline activity and realistic SEs, pro-788

vided that the narrowband spectral components display appropriate levels of789

SGDC.790
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Figure 6: Large-scale signal model for SEs. (A-B) Large-scale model for SEs including only
alpha oscillations (random phase values in the alpha band constrained to the range [−επ, επ]
with ε ∈ [0.75, 1]). Panel A shows a subset of synthetic activities. In each time series, the
above-threshold fluctuations (±3σ) are highlighted in dark blue. Vertical dashed lines connect
the activations associated with SEs completely contained in the subset of signals shown. Panel
B shows the resulting ESM averaged across the SEs. Panels A-B were computed on all the
SEs detected in a simulated time series of 1-minute duration. (C-D) Same as in A-B for the
large-scale model including only broadband 1/f activity, and no oscillatory activity in the
alpha band nor phase consistency values were present (ε = 1). (E-F) Same as in A-B for the
large-scale model including both broadband 1/f activity with non-constrained random phases
(ε = 1) and alpha oscillations with random phases constrained proportionally to the observed
alpha power in the range (ε ∈ [0.75, 1]). Symbols and abbreviations: SEs, Salient Events; LH,
Left Hippocampus; LA, Left Amygdala; LCAC, Left Caudal Anterior Cingulate; LCMF, Left
Caudal Middle Frontal; LC, Left Cuneus; LE, Left Entorhinal.
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3.6. Mechanisms of long-range interactions791

Whereas the SGDC(r) assesses the emergence of local above-threshold fluc-792

tuations from the Fourier oscillatory constituents of the activity in a single brain793

region (i.e., SLEs), it does not account for cross-regional effects associated with794

SNEs. To quantitatively study the cross-regional effects of SGDC on our data795

we introduce the SGDC(ω) measure (Eq. 2). The magnitude of SGDC(ω)796

is bounded in the range [0, 1] and quantifies how much the group delay at a797

given frequency ω varies across brain regions. By using synthetic time series, in798

Appendix A.3 we show that the SGDC(ω) measure assesses the contribution799

of each frequency component in the co-activation (synchronization in time) of800

above-threshold fluctuations across brain regions (see Figs. A.5 and A.6). Of801

note, Figs. A.5 and A.6 show that the SGDC(ω) measure effectively resolves802

the cross-regional synchronization of SEs across frequency bands, whereas phase803

coherence measures (e.g., PLV: Phase Locking Value) are completely blind to804

this effect (see detailed description in Appendix A.3). In Appendix C.2 we805

present additional empirical evidence supporting the connection between the806

SGDC(r) and SGDC(ω) measures and the emergence of local and large-scale807

salient events. In particular, Fig. C.11C shows that only cluster 2 SEs, associ-808

ated with the spectral signature in the alpha band, disclose |SGDC(r)| values809

higher than those disclosed by the C-surrogate SEs. Importantly, Fig. C.11D810

shows the increase of transient cross-regional coherence around the alpha band,811

as quantified by the SGDC(ω) measure, associated with the SEs disclosing the812

alpha spectral signature in the average ESM (i.e., cluster 2 SEs). Notably, Fig.813

C.11E shows that the transient cross-regional coherence around the alpha band814

associated with the cluster 2 SEs is also captured by the large-scale model pre-815

sented in Section 3.5.816

Synchrony is thought to play a role in coordinating information processing across817

different brain regions. However, correlation structures such as hemodynamic818

functional connectivity are better explained in terms of power amplitude corre-819

lations of electrophysiological signals (e.g., MEG), rather than phase-synchrony.820

In a recent work, it was demonstrated that power correlation between two sig-821

nals can be analytically decomposed into signal coherence (a measure of phase822

synchronization), cokurtosis (a measure of the probability of simultaneous large823

fluctuations), and conjugate-coherence [28]. In particular, it was proposed that824

the cokurtosis between two signals provides a measure of co-bursting that offers825

a robust neurophysiological correlate for hemodynamic resting-state networks826

[28]. Here we show that the SGDC conceptualization provides a coherent ac-827

count of both the co-burstiness and the cokurtosis in terms of the group delay828

consistency of the signals’ spectral content, therefore, advancing our understand-829

ing of the signal-level mechanisms of long-range communication. For this, we830

counted the co-participation of pairs of brain regions across SEs (see Methods,831

Section 2.3). Fig. 7C shows the co-activation matrix indicating the number of832

co-activations between each pair of brain regions. Fig. 7B shows the number833

of relative co-activations, i.e., the accumulated number of activations in each834

row of the co-activation matrix relative to the total number of activations in835

each brain region (diagonal of the co-activation matrix). Fig. 7A displays the836
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brain plots corresponding to the number of relative co-activations shown in Fig.837

7B. Importantly, the topography of co-activations shown in the Figs. 7A-C can838

not be trivially explained by the chance co-occurrence of rare above-threshold839

fluctuations in the brain activity. Note that the B-surrogates shown in Fig.840

7B fail to reproduce the the topography of co-activations despite preserving841

both the power spectrum (PSD) in each brain region and the cross-correlations842

(i.e., functional connectivity). Moreover, we found that the the kurtosis and843

SGDC(r), two measures related to the occurrence of local above-threshold fluc-844

tuations (i.e., SLEs), when computed in a non-time-resolved manner in each845

brain region fail to reproduce the topography of co-activations associated with846

the observed SEs. In the case of the SGDC(r) measure, compare the spatial847

profiles shown in Figs. A.7A and 7B. To account for both the burstiness and848

cross-regional bursts synchronization in a non-time-resolved manner we used the849

pairwise SGDC measure (pSGDC). The pSGDC(r1, r2) is defined as the prod-850

uct of two fators: a factor quantifying the cross-regional correlation between851

the group delays across the frequency components, weighted by the average852

SGDC(r) of each pair of signals r1 and r2 (see Eq. 3 in Methods and Eqs.853

A.23 and A.24 in Appendix A.3). In [28], it was analytically shown that power854

correlation depends on signal coherence, cokurtosis, and conjugate-coherence.855

In particular, co-occurring bursts in neuronal activity, statistically measured by856

cokurtosis, are relevant for our discussion of SNEs. We computed the pSGDC857

and cokurtosis (Eq. A.26) measures on our MEG dataset by using the whole858

time series of the brain regions taken in pairs (i.e., non-time-resolved approach).859

As a result, we found that the pSGDC measure and the cokurtosis disclose a860

similar correlation degree with the observed co-activations topography (compare861

Figs. 7F and 7I) and generates statistics that are lost in the A- and B-surrogates862

(see Figs. 7E and 7H). Linear correlations between topographies: Co-activations863

vs pSGDC, r = 0.881, P < 0.001 (Fig. 7F). Cokurtosis vs pSGDC, r = 0.848,864

P < 0.001 (Fig. 7I). Co-activations vs Cokurtosis, r = 0.937, P < 0.001 (Figs.865

7B,H). Co-activations vs Pairwise Pearson’s correlation, r = 0.612, P < 0.001866

(Figs. 7B and A.1B). The statistical significance of these linear correlations was867

assessed by using the Student’s t distributions of the two-tailed hypothesis test868

under the null hypothesis that the correlation is zero.869

The pSGDC measure quantifies the co-occurrence of above-threshold bursts870

mainly associated with SGDC in the alpha band, whereas cokurtosis assesses871

the presence of both oscillatory and non-oscillatory co-burstiness across brain872

regions. Importantly, the analytical framework proposed in this work based on873

the SGDC(r), SGDC(ω) and pSGDC(r1, r2) measures, admits relevant signal-874

level mechanistic interpretations linking the Fourier oscillatory constituents of875

the brain activity and SEs. Note that the latter is less evident when consid-876

ering measures based on higher-order statistical moments like the kurtosis and877

cokurtosis. Specifically, using the group delay-domain representation, one can878

quantify the group delay consistency of the spectral (Fourier) constituents of879

the signals of interest (via the SGDC measures) to predict the emergence of SEs880

(without doing any explicit computation in the time-domain). This prediction881

linking the oscillation and time-domains can not be done by higher-order sta-882
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tistical moments like the kurtosis and cokurtosis, mainly because they operate883

exclusively in the time-domain. Therefore, the SGDC framework provides a884

deeper understanding of the link between the oscillation-domain (Fourier rep-885

resentation) and the emergence of transient, salient fluctuations in the time-886

domain. Thus, the SEs co-activation pattern reproduced by the pSGDC mea-887

sure (see Figs. 7A-F) can be mechanistically segregated in two components: 1)888

the results associated with the SGDC(r) measure (Fig. C.11C) supporting the889

emergence of local above-threshold fluctuations via SGDC mainly in the alpha890

band, and 2) the results associated with the SGDC(ω) measure (Fig. C.11D)891

supporting the co-occurrence of above-threshold alpha bursts across brain re-892

gions (i.e., transient cross-regional coherence around the alpha band). We spec-893

ulate that component 1 can be interpreted as an entrainment mechanism that894

produces transient synchronization of the oscillatory activity of neuronal popu-895

lations around specific frequency bands (local cross-frequency synchronization),896

whereas component 2 can be associated with long-range interaction mediated897

by transient cross-regional coherence in NOs.898

In summary, these results suggest that a) spectral group delay consistency in899

specific narrow frequency bands (as assessed by the SGDC(r) measure), b)900

transient cross-regional coherent NOs (intra-frequency coherence across brain901

regions assessed by the SGDC(ω) measure) and c) BAA, are all key ingredients902

for the emergence of realistic SEs. In particular, the (pairwise) long-range in-903

teractions mediated by oscillatory SNEs can be effectively quantified using the904

pSGDC(r1, r2) measure.905
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Figure 7: Co-activation pattern of SEs compared against pSGDC and cokurstosis measures
computed on whole time series of the brain regions taken in pairs. (A) Brain topographies
corresponding to the co-activation profile shown in panel B (blue markers). (B) Spatial profile
showing the number of relative co-activations (mean value across the 47 participants), i.e., the
accumulated number of activations in each row of the co-activation matrix relative to the total
number of activations in each brain region (diagonal of the co-activation matrix). Note that the
spatial profiles corresponding to the 100 B-surrogates (dark gray markers) fail to reproduce the
spatial profile associated with the true MEG data (blue markers). (C) Co-activation matrix
averaged across the SEs observed in the 47 participants (see Section 2.3 in Methods). (D-E)
Same as in A-B for the pSGDC measure. (F) Scatter plot showing the correlation between the
co-activation and pSGDC spatial profiles shown in panels B and E, respectively. Number of
samples (red circles) = Number of brain regions = 84. The thick black line and black shaded
error bars represent the linear regression and the 95% confidence interval, respectively. The
reported P value for the statistical significance of the linear regression was assessed using
Student’s t distributions of the two-tailed hypothesis test under the null hypothesis that the
correlation is zero. (G-H) Same as in D-E for the cokurtosis measure. (I) Same as in F for
the correlation between the cokurtosis and pSGDC spatial profiles. In panels B, E and H, the
labels and ordering of the brain regions are the same as those shown in Fig. C.2. Symbols
and abbreviations: SEs, Salient Events; pSGDC, pairwise Spectral Group Delay Consistency.

4. DISCUSSION906

Frequency-domain representation of signals, via Fourier transforms (e.g.,907

DFT), have been extensively used for decades in many neuroscience fields to908

analyze neuronal and brain activities across several spatiotemporal scales. Re-909

gardless of the functional significance of neural oscillations, if any, the Fourier910

basis functions provide an arguably good characterization of the rhythmic com-911

ponents observed in the brain activity. In this study, we used the complex912

baseband representation of signals, based on the Fourier theory, to analytically913
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define the spectral group delay consistency (SGDC) as a novel conceptualiza-914

tion linking SEs with the signals’ spectral content. Importantly, the signal-level915

analytical framework associated with the SGDC concept allowed us to provide916

a unifying rationale for the emergence of salient local and large-scale events917

from the Fourier oscillatory constituents of the brain activity. First, the analyt-918

ical arguments described in the Sections 3.4, 3.5 and Appendix A.2 point out919

that in order to observe realistic local above-threshold fluctuations, the spec-920

tral components constituting the brain signals must disclose a certain degree of921

cross-frequency coherence as assessed by the SGDC(r) measure. Second, in Sec-922

tions 3.4 and Appendix A.4 we analytically showed that A- and B-surrogates923

failed to reproduce realistic SEs mainly because the phase randomization re-924

duces the SGDC across frequency bands in each brain region, which impairs the925

burstiness of each signal (occurrence of local above-threshold fluctuations). In926

the case of the A-surrogates the phase randomization also reduces the SGDC927

across brain regions in each frequency band, which impairs the synchronization928

of above-threshold fluctuations across brain regions. Third, in Section 3.1 we929

showed that the spectral signature in the alpha band disclosed by the averaged930

ESM of cluster 2 SEs constitutes relevant evidence linking the observed SEs with931

NOs. Importantly, in Sections 3.6 and Appendix C.2, we demonstrated that the932

synchronization of above-threshold alpha bursts across brain regions can be de-933

scribed at the signal-level by the SGDC mechanism. Specifically, we showed that934

the SNEs disclosing the alpha spectral signature in the average ESM (see cluster935

2 in Fig. C.11B) also disclose an increase of transient cross-regional coherence936

around the alpha band, as quantified by the SGDC(ω) measure (see cluster 2937

in Fig. C.11D). Of note, the SGDC(ω) measure effectively captures transient,938

cross-regional coherent NOs associated with SNEs, a phenomenon that tradi-939

tional coherence metrics, such as the Phase Locking Value (PLV), fail to detect940

(see Figs. A.5 and A.6). Thus, we combine analytical arguments, based on the941

SGDC framework, with experimental evidence obtained using novel tools like942

the ESM and SGDC measures, to provide a more direct and generative link943

for NOs (e.g., alpha oscillations) role in the coordination of SNEs observed in944

spontaneous MEG activity. This moves beyond mere correlation or characteri-945

zation to offer a plausible generative model for SNEs as spatiotemporal cascades946

of above-threshold fluctuations associated with phase-structured NOs. Fourth,947

the SGDC conceptualization allowed us, via the pSGDC(r1, r2) measure, to948

account for both the co-activation pattern of brain avalanches and cokurtosis949

in terms of the coherence of the signals’ spectral content, therefore, advancing950

our understanding of the signal-level mechanisms of long-range communication.951

The empiric, modeling and analytical results presented in this work guided us952

to identify the essential building blocks underlying the emergence of realistic953

SEs as observed in our MEG dataset, which can be summarized as follows:954

1 Spectral group delay consistency. This feature provides a signal-level mech-955

anism for the emergence, in a single brain region (i.e., locally), of transient956

above-threshold fluctuations associated with an specific frequency band (e.g.,957

alpha bursts). We speculate that the SGDC (e.g., bounded phase differ-958
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ences across spectral components within a narrowband) may be associated959

with the presence of mesoscopic neural oscillators that are not tightly tuned.960

We hypothesize that different brain regions may host mesoscopic oscillators961

disclosing rhythmic (likely non-sinusoidal) dynamics whose fundamental fre-962

quencies span a quasi-continuum within a given frequency band (e.g., alpha963

band), rather than clustering around a single sharply defined value. Thus,964

the linear superposition of these rhythmic components with slightly differ-965

ent frequencies within a narrowband (e.g., alpha range) could support the966

emergence of SEs via the SGDC signal-level mechanism.967

2 Transient cross-regional coherent alpha oscillations. This feature is associated968

with the transient synchronization of the above-threshold alpha bursts across969

brain regions, giving rise to the SNEs producing the alpha spectral signature970

in the ESM (i.e., cluster 2 SEs). This type of SEs may be associated with a971

long-range interaction mechanism mediated by specific NOs taking place in a972

transient manner (i.e., transient CTC).973

3 BAA. This feature is associated with the emergence of non-oscillatory above-974

threshold fluctuations occurring in an aperiodic manner, mainly related to975

the short-lived SEs with no characteristic spectral signature in the ESM (i.e.,976

cluster 1 SEs). We hypothesize that the close relationship between cluster 1977

SEs and arrhythmic broadband spectral features implies that cluster 1 SEs978

may play a more local role, linked either to local excitation-inhibition balance979

or to critical dynamics [43].980

Linking the presence of SEs to the group delay consistency across the Fourier981

oscillatory components of the brain activity is a relevant result of this study982

implying that SEs might mediate interactions across both frequency bands and983

brain regions as discussed above. In this regard, the CTC hypothesis posits that984

neural communication is facilitated by the presence of synchronized (steady)985

oscillations across brain regions. Our results extend the CTC hypothesis by986

showing that long-range interaction through specific NOs may take place in a987

transient manner via SNEs (i.e., transient CTC). Indeed, our results suggest988

that the large-scale spreading of transient alpha bursts is associated with SNEs.989

As a conclusion, this evidence suggests that transient cross-regional coherence990

associated with the occurrence of SEs disclosing the spectral signature in the991

alpha band (i.e., cluster 2 SEs), may play a functional role as a long-range in-992

teraction mechanism in the resting human brain.993

One of the main limitations of this study is related to the uncertain capability of994

our dataset to accurately identify deep brain sources along the cortical surface,995

mainly due to the ill-posed nature of the source-reconstructed MEG data. In996

order to address this issue, we re-computed the analysis of SEs presented above,997

but this time excluding the deep sources. It was found that all the conclusions998

and, in particular, all the characteristics of the observed SEs remain essentially999

unaltered when the deep sources are excluded from the SE analysis (see Ap-1000

pendix D). Specific analyses demonstrating that volume conduction alone is1001

unlikely to account for the cascade of above-threshold fluctuations (i.e., SNEs)1002

observed in our empirical MEG dataset have been presented and discussed in a1003
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previous publication [63]. The spatial leakage analyses and the full discussion1004

can be accessed via this link: https://elifesciences.org/articles/67400/1005

peer-reviews#content1006

5. CONCLUSION1007

In this work we provided a detailed analytical description of the mecha-1008

nisms underlying the emergence of SEs from NOs and BAA co-existing in1009

the human brain. The proposed analytical arguments were tested and con-1010

firmed using local and large-scale numerical models together with experimental1011

MEG recordings obtained in healthy subjects during eyes-closed resting state.1012

While previous studies have described SEs within the framework of neuronal1013

avalanches, they often lacked a generative, signal-level account. Here, we bridge1014

that divide by offering a mathematically grounded and empirically validated1015

framework that accounts for oscillatory and aperiodic bursts perspectives on1016

brain activity. We combine experimental evidence supported by a signal-level1017

analytical framework and numerical simulations based on generative models to1018

demonstrate that transient phase-structured alpha bursts, shaped by the SGDC1019

mechanism, contribute to long-range coordination during rest. This extends1020

the communication-through-coherence hypothesis into the transient domain. In1021

summary, our multi-pronged approach, grounded in experimental evidence sup-1022

ported by analytical arguments and extensive model-based validation, enhances1023

the robustness and interpretive depth of our results, offering a more comprehen-1024

sive picture of how SEs arise from NOs and BAA as fundamental components1025

of MEG activity during resting-state.1026
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Appendix A. Supplementary analytical results1

Appendix A.1. Preservation of the Pearson’s cross-correlation in the B-surrogates2

3

Let us start by considering the circular cross-correlation Rxy(t′) between the4

time series x(t) and y(t) representing the activities of two brain regions [45, pp.5

571, 746],6

Rxy(t′) =

Ns−1∑
t=0

x∗(t− t′)mod Ns y(t) (A.1)

where (x(t), y(t)) ∈ R are finite-length discrete time series having Ns time7

samples satisfying (x(t) = 0, y(t) = 0) ∀ 0 > t > Ns − 1, being t ∈ Z the8

discrete time index. By applying the Discrete Fourier Transform (DFT) F {.}9

on both sides of Eq. A.1 we obtain [45, pp. 575, 746],10

Sxy(ω) = F {Rxy(t′)}
= F {x(t)}∗ F {y(t)} = Ax(ω)e−iφx(ω) Ay(ω)eiφy(ω) (A.2)

where Ax(ω), φx(ω) and Ay(ω), φy(ω) are the magnitude and phase angle of11

the DFT spectrum corresponding to the signals x(t) and y(t), respectively. The12

computation of surrogate time series involves the addition of random phases13

θ(ω) to the corresponding DFT spectra as follows,14

Ssxy(ω) = Ax(ω)e−i(φx(ω)+θx(ω)) Ay(ω)ei(φy(ω)+θy(ω))

= Ax(ω)e−iφx(ω) Ay(ω)eiφy(ω) ei(θy(ω)−θx(ω)) (A.3)

In the A.3, Ssxy(ω) is the DFT of the circular cross-correlation associated with15

the surrogated time series xs(t) = F−1
{
Ax(ω)e−i(φx(ω)+θx(ω))

}
and ys(t) =16

F−1
{
Ay(ω)e−i(φy(ω)+θy(ω))

}
, where F−1 {.} stands for the inverse DFT. In the17

particular case of the B-surrogates (see Section 2.8 in Methods) we add the same18

random phase-shift in all the brain regions, that is, θx(ω) = θy(ω) producing19

ei(θy(ω)−θx(ω)) = 1 in the Eq. A.3. Under this condition, the Eqs. A.2 and A.320

becomes equivalent which in turn implies the equivalence between the circular21

cross-correlations associated with the true data and the B-surrogate,22

Sxy(ω) = Ssxy(ω) =⇒ F {Rxy(t′)} = F
{
Rsxy(t′)

}
=⇒ Rxy(t′) = Rsxy(t′)

We confirmed this analytical results by computing the time-averaged functional23

connectivity as quantified by the pairwise Pearson’s correlation on our empir-24

ical MEG dataset and the corresponding A- and B-surrogates (see Section 2.825

in Methods). Fig. A.1C shows the matrix resulting from computing the Pear-26

son’s correlation on whole time series of the brain regions taken in pairs. Fig.27

A.1B shows the spatial profile obtained by averaging the Pearson’s correlation28

matrix across rows. Fig. A.1A displays the brain plots corresponding to the29

spatial profile of the Pearson’s correlation shown in Fig. A.1B. Importantly,30

1
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Fig. A.1B shows that only B-surrogates reproduce the spatial profile of the31

Pearson’s correlation computed on the MEG data, hence, confirming that the32

pairwise Pearson’s correlation is preserved in the B-surrogates, and not in the33

case of A-surrogates.34

Figure A.1: Pearson’s correlation pattern computed on whole time series of the brain regions
taken in pairs. (A) Brain topographies corresponding to the Pearson’s correlation profile
shown in panel B (blue markers). (B) Spatial profile showing the Pearson’s correlation (mean
value across the 47 participants), i.e., the mean value computed on in each row of the Pear-
son’s correlation matrix. Note that the spatial profiles corresponding to the 100 B-surrogates
(dark gray markers) overlap with the spatial profile associated with the true MEG data (blue
markers). (C) Pearson’s correlation matrix (average across the 47 participants) obtained by
computing the Pearson’s correlation on the whole time series of the brain regions taken in
pairs. In panel B, the labels and ordering of the brain regions are the same as those shown in
Fig. C.2.
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Appendix A.2. Oscillatory mechanisms underlying the emergence of local above-35

threshold fluctuations36

In this section we provide a detailed description of the mechanism underlying37

the emergence of local above-threshold fluctuations from the Fourier oscillatory38

constituents of the brain activity. Our analysis start by projecting the brain39

signal of interest x(t) onto the Fourier basis functions using the Discrete Fourier40

Transform (DFT) equations [45, Chapters 8 and 10]. In doing so we are assum-41

ing that x(t) satisfies certain conditions so the resulting spectral estimates exist42

and are meaningful. Specifically, by considering finite-length time series con-43

stituted by Ns time samples, the existence of the DFT representation requires44

that x(t) is bounded (|x(t)| < M ∈ R ∀ 0 > t > Ns − 1). Besides, the analyzed45

brain activity are in general nonstationary, that is, the time series x(t) can be46

represented as a sum of sinusoidal components with time-varying amplitudes,47

frequencies, or phases. In this regard, we consider a small enough number of48

time samples Ns such that the spectral characteristics of the signal x(t) can49

be assumed stationary during the analyzed time window. Thus, by considering50

x(t) ∈ R being a finite-length discrete time series having an even number of51

time samples Ns and x(t) = 0 ∀ 0 > t > Ns−1, where t ∈ Z is the discrete time52

index. The analysis equation corresponding to the Discrete Fourier Transform53

(DFT) of x(t) can be written as follows [45, p. 561, Eq. (8.67)],54

X(k) =

Ns−1∑
t=0

x(t)e−iω0kt : ω0 =
2π

Ns
(A.4)

where k ∈ Z is the discrete frequency index, in general producing complex55

Fourier coefficients X(k) ∈ C and X(k) = 0 ∀ 0 > k > Ns − 1. Then, the56

synthesis equation associated with the inverse DFT (iDFT) is [45, p. 561, Eq.57

(8.68)],58

x(t) =
1

Ns

Ns−1∑
k=0

X(k)eiω0kt (A.5)

Taking into account that X(k) = |X(k)|eiφ(k) ∈ C, the Eq. A.5 can be rewritten59

as,60

x(t) =
1

Ns

Ns−1∑
k=0

|X(k)|ei(ω0kt+φ(k)) (A.6)

The core of the proposed conceptualization is to note that the Eq. A.6 can be61

expressed as a sum of (non-overlapping) pairwise adjacent spectral components62

as follows,63

x(t) =
1

Ns

Ns/2−1∑
k=0

|X(2k)|ei(ω02kt+φ(2k))

+ |X(2k + 1)|ei(ω0(2k+1)t+φ(2k+1))

3
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64

x(t) =
1

Ns

Ns/2−1∑
k=0

(
|X(2k)|eiφ(2k) + |X(2k + 1)|ei(ω0t+φ(2k+1))

)
eiω02kt

By defining the forward phase difference as ∆φ(2k) = φ(2k + 1) − φ(2k), and65

substituting φ(2k + 1) = φ(2k) + ∆φ(2k) in the previous equation we have,66

x(t) =
1

Ns

Ns/2−1∑
k=0

(
|X(2k)|e−i(

ω0
2 t+

∆φ(2k)
2 )

+ |X(2k + 1)|ei(
ω0
2 t+

∆φ(2k)
2 )

)
ei
ω0
2 tei(φ(2k)+

∆φ(2k)
2 )eiω02kt

67

x(t) =
1

Ns

Ns/2−1∑
k=0

(
|X(2k)|e−i(

ω0
2 t+

∆φ(2k)
2 )

+ |X(2k + 1)|ei(
ω0
2 t+

∆φ(2k)
2 )

)
ei(

ω0
2 (4k+1)t+φ(2k)+

∆φ(2k)
2 )

Then, by introducing in the previous equation the forward frequency difference68

∆ω = ω0 (k + 1)− ω0 k = ω0, it results,69

x(t) =
1

Ns

Ns/2−1∑
k=0

(
|X(2k)|e−i(

∆ω
2 t+

∆φ(2k)
2 )

+ |X(2k + 1)|ei(
∆ω
2 t+

∆φ(2k)
2 )

)
ei(

∆ω
2 (4k+1)t+φ(2k)+

∆φ(2k)
2 )

Taking out ∆ω/2 as a common factor we have,70

x(t) =
1

Ns

Ns/2−1∑
k=0

(
|X(2k)|e−i

∆ω
2 (t+ ∆φ(2k)

∆ω )

+ |X(2k + 1)|ei
∆ω
2 (t+ ∆φ(2k)

∆ω )
)
ei(

∆ω
2 (4k+1)t+φ(2k)+

∆φ(2k)
2 )

The rate of change of the phase with the frequency is associated with the group71

delay defined as τ(k) = −∆φ(k)/∆ω. Using this definition, the previous equa-72

tion can be written as,73

x(t) =
1

Ns

Ns/2−1∑
k=0

(
|X(2k)|e−i∆ω

2 (t−τ(2k)) + |X(2k + 1)|ei∆ω
2 (t−τ(2k))

)
︸ ︷︷ ︸

Complex envelope (sidebands)

× ei(
∆ω
2 (4k+1)t+φ(2k)+

∆φ(2k)
2 )︸ ︷︷ ︸

Complex carrier

(A.7)

4
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It is essential to note that in Eq. A.7, each (non-overlapping) pair of adjacent74

spectral components X(2k), X(2k + 1) can be interpreted as the sidebands of75

an amplitude modulated carrier at (4k + 1)∆ω/2. Importantly, the frequency76

of the carrier (4k + 1)∆ω/2 is a function of the frequency index k, that is,77

it depends on the particular pair of spectral components under consideration78

(X(2k), X(2k + 1)). However, the frequency of the modulating component is79

the same for all the pair of spectral components involved in Eq. A.7, i.e., it80

is independent of the frequency index k and only determined by the frequency81

resolution of the DFT as ∆ω/2 = ω0/2 (i.e., half the separation between the two82

sidebands). Another important characteristic of the representation given by the83

Eq. A.7 is that the frequencies associated with the complex envelopes (∆ω/2)84

and with the complex carrier ((4k+1)∆ω/2) satisfy the condition ∆ω/2 ≤ (4k+85

1)∆ω/2. In the telecom theory, a spectral profile satisfying these characteristics86

is known as the complex baseband representation of a band-limited signal (e.g.,87

amplitude modulated signal) [45, Chapter 11.4.2, p. 796; 53, Chapter 4.1, p.88

152; 26, Chapter A2.4, p. 725]. Accordingly, we refer to the Eq. A.7 as the89

inverse DFT based on the pairwise complex baseband representation of x(t).90

In line with this, the Eq. A.7 can be rewritten as a summation of amplitude91

modulated signals corresponding to each pair of adjacent spectral components92

as follows,93

x(t) =
1

Ns

Ns/2−1∑
k=0

xk+(t) (A.8)

xk+(t) = x̃k(t− τ(k)) ei(
∆ω
2 (4k+1)t+φ(2k)+

∆φ(2k)
2 ) (A.9)

x̃k(t− τ(k)) = |X(2k)|e−i∆ω
2 (t−τ(2k)) + |X(2k + 1)|ei∆ω

2 (t−τ(2k))(A.10)

In the Eq. A.8, xk+(t) is the discrete time analytic signal (a.k.a., pre-envelope)94

corresponding to each amplitude modulated component constituting the original95

signal x(t), and it is defined in Eq. A.9. In the Eq. A.9, x̃k(t − τ(k)) is96

the complex envelope of each amplitude modulated component constituting the97

original signal x(t), and it is defined in terms of the spectral components X(k)98

in the Eq. A.10. It is important to note that the alignment in time of the99

complex envelopes x̃k(t− τ(k)) synthesizing the original signal x(t), via the Eq.100

A.8, is determined by the group delay τ(k).101

The Eqs. A.7 - A.10 constitute a useful conceptualization linking the DFT and102

the complex baseband representation to account for the emergence of salient103

events from the Fourier oscillatory constituents of a band-limited signal. Due104

to the fact that the analysis proposed above is based on the DFT, in the case of105

x(t) ∈ R the result of the summation in Eqs. A.7 and A.8 is guaranteed to be106

real valued. At the same time, this also restrict the validity of the analysis to107

harmonic spectral components ω0 k associated with the fundamental frequency108

ω0 = 2π/Ns. Now we will present the general equations valid for all the cases,109

that is, harmonic (∆ω(k) = cte, ω(k + 1)/ω(k) ∈ Q), non-harmonic (∆ω(k) =110

cte, ω(k + 1)/ω(k) ∈ R \ Q) and non-uniformly spaced (∆ω(k) 6= cte) Fourier111

oscillatory components. Let us consider a real valued signal x(t) ∈ R resulting112
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from the linear superposition of an even number Ns of oscillatory components113

of arbitrary amplitude A(k), frequency ω(k) and phase φ(k).114

x(t) =

Ns−1∑
k=0

A(k) cos (ω(k)t+ φ(k)) : A(k) ∈ R (A.11)

Since the Eq. A.11 is linear we can introduce the complex notation via the115

Euler’s formula as follows,116

x(t) = Re

{Ns−1∑
k=0

A(k) ei(ω(k)t+φ(k))

}
(A.12)

In the Eq. A.12, the operator Re{.} stands for “the real part of”. By following a117

similar procedure applied above on the Eq. A.6, the Eq. A.12 can be rewritten118

as follows,119

x(t) = Re

{Ns/2−1∑
k=0

(
A(2k) e−i(

∆ω(2k)
2 t+

∆φ(2k)
2 ) +A(2k + 1) ei(

∆ω(2k)
2 t+

∆φ(2k)
2 )

)
× ei(ω̄(2k)t+φ̄(2k))

}
∆φ(2k) = φ(2k + 1)− φ(2k)

φ̄(2k) =
φ(2k + 1) + φ(2k)

2
= φ(2k) +

∆φ(2k)

2
∆ω(2k) = ω(2k + 1)− ω(2k)

ω̄(2k) =
ω(2k + 1) + ω(2k)

2
= ω(2k) +

∆ω(2k)

2

In this case the group delay is defined as τ(k) = −∆φ(k)
∆ω(k) , thus, the previous120

equation results,121

x(t) = Re

{Ns/2−1∑
k=0

(
A(2k) e−i

∆ω(2k)
2 (t−τ(2k)) +A(2k + 1) ei

∆ω(2k)
2 (t−τ(2k))

)
︸ ︷︷ ︸

Complex envelope (sidebands)

× ei(ω̄(2k)t+φ̄(2k))︸ ︷︷ ︸
Complex carrier

}
(A.13)

The Eq. A.13 is the pairwise complex baseband representation of the signal x(t).122

Provided that the frequencies associated with the complex envelopes (∆ω(2k)/2)123

and the complex carrier (ω̄(2k)) satisfy the condition ∆ω(2k)/2 < ω̄(2k), the124

Eq. A.13 can also be written as a summation of discrete time analytic signals125

xk+(t) associated with amplitude modulated signals corresponding to each pair126
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of adjacent oscillatory components as follows,127

x(t) = Re

{Ns/2−1∑
k=0

xk+(t)

}
(A.14)

xk+(t) = x̃k(t− τ(k)) ei(ω̄(2k)t+φ̄(2k)) (A.15)

x̃k(t− τ(k)) = A(2k) e−i
∆ω(2k)

2 (t−τ(2k))

+ A(2k + 1) ei
∆ω(2k)

2 (t−τ(2k)) (A.16)

Similarly to the previous case the time alignment of the complex envelopes128

x̃k(t − τ(k)) synthesizing the original signal x(t), via the Eq. A.14, is deter-129

mined by the group delay τ(k).130

In what follows we will use the Eq. A.13 to illustrate the role of the group131

delay in the emergence of above-threshold fluctuations from the oscillatory con-132

stituents of the synthetic signal x(t). As a first example, let us consider a spec-133

tral profile given by a set of constant-amplitude A(k) = A = 1 oscillatory com-134

ponents uniformly spaced fs ∆ω/(2π) = 1.2/
√

2 Hz and having non-harmonic135

frequencies fs ω(k)/(2π) = 0.5 + k fs ∆ω/(2π) ∈ [0.5− 5] Hz, where fs = 1024136

Hz is the sampling rate (see Figs. A.2A and A.2F). Accordingly, the Eq. A.13137

becomes,138

x(t) = A Re

{Ns/2−1∑
k=0

(
e−i

∆ω
2 (t−τ(2k)) + ei

∆ω
2 (t−τ(2k))

)
ei(ω̄(2k)t+φ̄(2k))

}
By using the Euler’s formula to rearrange the modulating factor, the previous139

equation results,140

x(t) =
A

2
Re

{Ns/2−1∑
k=0

cos

(
∆ω

2
(t− τ(2k))

)
ei(ω̄(2k)t+φ̄(2k))

}

=
A

2

Ns/2−1∑
k=0

cos

(
∆ω

2
(t− τ(2k))

)
︸ ︷︷ ︸

Modulating component

cos

(
ω̄(2k)t+ φ̄(2k)

)
︸ ︷︷ ︸

Modulated component

(A.17)

The Eq. A.17 explicitly shows that any pair of adjacent oscillatory components141

associated with the signal x(t) can be interpreted as an amplitude modulated142

signal with the same modulating function cos

(
∆ω
2 (t− τ(2k))

)
. The key con-143

cept here is to note that, when all the oscillatory components in Eq. A.17144

are added together to synthesize the signal x(t) in the time-domain, the group145

delay τ will determine the time alignment of the modulating functions associ-146

ated with each pair of adjacent oscillatory components. As a consequence, in147

the case of all the spectral components A(k) ei(ω(k)t+φ(k)) in Eq. A.12 having148

constant phase produces ∆φ = 0 =⇒ τ = −∆φ/∆ω = 0, hence, all the149

modulating functions cos

(
∆ω
2 (t− 0)

)
in Eq. A.17 will be aligned in time (at150
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t = 0) giving rise to a sinc-like function representing the maximum amplitude151

excursion (i.e., a salient event) that can be elicited by the set of Fourier oscil-152

latory components constituting the Eq. A.12. In the case of all the spectral153

components in Eq. A.12 having a phase proportional to the discrete frequency154

index φ(k) = −τ0 ∆ω k =⇒ ∆φ(k) = −τ0 ∆ω, results in a group delay155

which does not dependent on the frequency τ(k) = −∆φ(k)/∆ω = τ0, thus,156

in Eq. A.12 we obtain a modulating component cos

(
∆ω
2 (t− τ0)

)
. That is,157

all the modulating functions will again be aligned in time producing the same158

salient event given by the sinc-like function as in the previous case but this159

time centered at t = τ0 (i.e., a time-shift, see Figs. A.2A-E). On the other160

hand, in the case of the phases associated with the spectral components in Eq.161

A.12 having a non-linear dependence with the discrete frequency index, e.g.,162

φ(k) = −τ0 ∆ω k2 =⇒ ∆φ(k) = −τ0 ∆ω(2k + 1), the group delay results a163

function of the frequency τ(k) = τ0(2k+ 1), hence, preventing the alignment in164

time of the modulating functions associated with each pair of adjacent spectral165

components cos

(
∆ω
2 (t− τ(k))

)
. In this case, the signal x(t) discloses sub-166

threshold excursions of amplitude (see Figs. A.2F-J). It is worth mentioning167

that in deriving the pairwise complex baseband representation of x(t) given by168

the Eqs. A.7 and A.13, we grouped the original spectral components (Eqs.169

A.5 and A.11) in subsets of (non-overlapping) pairs adjacent in frequency. The170

strategy of grouping the spectral components in subsets is necessary to obtain171

a representation based on a sum of complex envelopes modulating the complex172

carriers. Representations similar to those presented in the Eqs. A.7 and A.13173

can be obtained by defining subsets containing more than 2 non-overlapping174

spectral components (not necessarily adjacent in frequency). However, our ap-175

proach based on grouping adjacent spectral components in non-overlapping pairs176

discloses the following relevant features:177

1 By defining subsets of 2 spectral components, we obtain the simplest complex178

envelopes characterized by a cos- or sin-like waveform shape (see the mod-179

ulating component in the Eq. A.17 and the colored solid lines in Figs.A.2E180

and A.3E).181

2 By defining pairs of spectral components adjacent in frequency, we maximize182

the waveform shape similarity among the resulting complex envelopes. In the183

case of uniformly spaced spectral components (∆ω = cte), we obtain complex184

envelopes having the same time period 2/∆ω (see the colored doted lines in185

Figs.A.2E and A.3E).186

3 By defining pairs of spectral components adjacent in frequency, we also maxi-187

mize the similarity among the resulting complex carriers (see the colored solid188

lines in Figs.A.2E and A.3E).189

Taking together, these features are of particular importance to support the190

link between the spectral group delay consistency (SGDC) defining the time191

alignment of the modulating components (complex envelopes) with the con-192

structive interference of the modulated components (complex carriers), which193
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in turn lead to the occurrence of salient events. As a conclusion, the results de-194

scribed above in connection with the Eqs. A.7, A.13, show that the emergence195

of above-threshold fluctuations in the signal x(t) is related to the consistency196

of the group delay τ(k) across the discrete frequency values k. That is, the197

occurrence of salient events is supported by a slowly varying group delay as a198

function of the frequency, and this hold true for harmonic, non-harmonic and199

also for non-uniformly spaced Fourier oscillatory constituents of the signal under200

analysis.201
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Figure A.2: Pairwise complex baseband representation for a set of oscillatory components
with Ak = cte. (A) Set of constant-amplitude A(k) = 1 oscillatory components uniformly
spaced (fs ∆ω/(2π) = 1.2/

√
2 Hz) and having non-harmonic frequencies fs ω(k)/(2π) =

0.5 + k fs ∆ω/(2π) ∈ [0.5 − 5] Hz, where fs = 1024 Hz is the sampling rate. The pairwise
complex baseband representation (Eq. A.13) was obtained by grouping the oscillatory compo-
nents in adjacent non-overlapping pairs color-coded in blue, red and green. (B) Phases φ(k)
having a linear dependence as a function of the frequency within the range φ(k) ∈ 2.5 [−π, π].
(C) Group delay τ(k)/fs = −∆φ(k)/(fs ∆ω) for the pairs of adjacent oscillatory compo-
nents. The color-coded filled markers correspond to the τ(2k)/fs values, and the black empty
markers correspond to τ(2k + 1)/fs values (see Eq. A.13). (D) Z-scored signals. The solid
color-coded lines represent the individual oscillatory components, the solid black line is the
resulting signal x(t), the horizontal dashed black lines indicate the threshold at |z| = 3. (E)
Pairwise complex baseband representation. The solid color-coded lines represent the individ-
ual amplitude modulated signals (pairs of adjacent oscillatory components), the solid black
line is the resulting signal x(t), the color-coded and black doted lines are the corresponding
amplitude envelopes. (F - J) Same as panels (A - E), this time with phases φ(k) having a
quadratic dependence as a function of the frequency within the range φ(k) ∈ 2.5 [−π, π] (see
panel G).
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The group delay is defined in terms of the rate of change of the phase with202

the frequency, being independent on the amplitude of the spectral components.203

As a consequence, the consistency of the spectral group delay as a mechanism204

supporting the emergence of salient events is also valid for spectral profiles other205

than the constant-amplitude spectrum shown in the Fig. A.2. The Fig. A.3206

shows the results for a spectral profile given by a set of (uniformly spaced) non-207

harmonic oscillatory components with amplitudes A(k) ∝ 1/
√
k, that is, the208

power of the spectral components A2(k) is proportional to 1/k (see Figs. A.3A209

and A.3F). Figs. A.3A-E show the case in which the phases φ(k) of the spec-210

tral components A(k) ei(ω(k)t+φ(k)) in Eq. A.12 are randomly distributed in a211

very small range around zero (φ(k) ∈ [−π/10, π/10]). Under this condition, the212

pairwise complex baseband representation (Eq. A.13) shown in the Fig. A.3E213

is constituted by amplitude modulated signals highly aligned in time. As a con-214

sequence, prominent salient events can be distinguished in the resulting signal215

(see solid black line in panels D and E of Fig. A.3). On the other hand, Figs.216

A.3A-E show the case in which the phase values φ(k) are randomly distributed217

in a wider range φ(k) ∈ [−π, π]. Under this condition, the pairwise complex218

baseband representation (Eq. A.13) shown in the Fig. A.3J is constituted by219

amplitude modulated signals non-aligned in time. As a consequence, the result-220

ing signal x(t) only discloses sub-threshold excursions of amplitude (see solid221

black line in panels I and J of Fig. A.3).222
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Figure A.3: Pairwise complex baseband representation for a set of oscillatory components
with A(k) ∝ 1/

√
k. (A) Set of non-constant amplitude A(k) ∝ 1/

√
k oscillatory compo-

nents uniformly spaced (fs ∆ω/(2π) = 1.2/
√

2 Hz) and having non-harmonic frequencies
fs ω(k)/(2π) = 0.5 + k fs ∆ω/(2π) ∈ [0.5 − 5] Hz, where fs = 1024 Hz is the sampling
rate. The pairwise complex baseband representation (Eq. A.13) was obtained by group-
ing the oscillatory components in adjacent non-overlapping pairs color-coded in blue, red
and green. (B) Phases φ(k) randomly distributed within a very small range around zero
(φ(k) ∈ [−π/10, π/10]). (C) Group delay τ(k)/fs = −∆φ(k)/(fs ∆ω) for the pairs of ad-
jacent oscillatory components. The color-coded filled markers correspond to the τ(2k)/fs
values, and the black empty markers correspond to τ(2k + 1)/fs values (see Eq. A.13). (D)
Z-scored signals. The solid color-coded lines represent the individual oscillatory components,
the solid black line is the resulting signal x(t), the horizontal dashed black lines indicate the
threshold at |z| = 3. (E) Pairwise complex baseband representation. The solid color-coded
lines represent the individual amplitude modulated signals (pairs of adjacent oscillatory com-
ponents), the solid black line is the resulting signal x(t), the color-coded and black doted lines
are the corresponding amplitude envelopes. (F - J) Same as panels (A - E), this time the
phases φ(k) are randomly distributed within the range φ(k) ∈ [−π, π] (see panel G).
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In summary, the analytical arguments presented above, condensed in the223

Eqs. A.7 - A.10 and A.13 - A.16, allowed us to identify the consistency of224

the group delay across the spectral components as a mechanism accounting225

for the emergence of above-threshold fluctuations from the Fourier oscillatory226

constituents of the activity associated with a single brain region. In the next227

section we describe the signal processing tools proposed to quantify the SGDC228

in empirical data.229

Appendix A.3. Measures to assess the spectral group delay consistency230

The analytical arguments presented in the Appendix A.2 have profound con-231

sequences regarding the interpretation of the experimental results in connection232

with the emergence of salient events from NOs and broadband 1/f activity.233

Specifically, the pairwise complex baseband representation of band-limited sig-234

nals (Eqs. A.7 - A.10 and A.13 - A.16), explicitly shows that the mechanism235

underlying the emergence of above-threshold fluctuations in a signal x(t) can236

be understood in terms of the consistency of the group delay across the Fourier237

oscillatory constituents of the signal (see the complex envelopes x̃k(t− τ(k)) in238

Eqs. A.10 and A.16). By considering a multi-regional approach, the pairwise239

complex baseband representation can be applied on the activity xr(t) of each240

brain region r, to obtain complex envelopes of the form x̃r,k(t − τr(k)). Here241

we recall that x̃r,k(t − τr(k)) determine the envelopes of the individual ampli-242

tude modulated signals constituting the signal xr(t) (see the solid and doted243

color-coded curves in the Figs. A.2E,J and A.3E,J). Hence, the consistency of244

the spectral group delay τr(k) determines the synchronization of the complex245

envelopes x̃r,k(t − τr(k)) across both frequency values ω(k) and brain regions246

r. In what follows we describe the proposed measures designed to quantify the247

spectral group delay consistency (SGDC) in experimental data across either248

frequency values and/or brain regions. In order to simplify the notation, in249

the rest of this section we will use ω instead of the discrete frequency index250

k, implicitly assuming that ω = ω(k). In the most general case, the spectral251

group delay can be estimated as τr(ω) = −∆φr(ω)/∆ω(ω), where ∆φr(ω) and252

∆ω(ω) are the incremental phase and incremental frequency between adjacent253

spectral components associated with the activity xr(t) of the brain region r,254

respectively. Let us consider first the particular case of ∆ω(ω) = ∆ω = const,255

in which the group delay results τr(ω) ∝ −∆φr(ω). Therefore, the SGDC can256

be simply assessed via the Euler’s transform of the incremental phase as follows,257

SGDC(r) =
1

N

∑
ω

e−i∆φr(ω) : ∆ω = const across r (A.18)

SGDC(ω) =
1

N

∑
r

e−i∆φr(ω) : ∆ω = const across ω (A.19)

The modulus of Eqs. A.18 and A.19 satisfies,258

|SGDC| =
∣∣∣∣ 1

N

∑
e−i∆φr(ω)

∣∣∣∣ = R = (1− S) ∈ [0, 1] (A.20)
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In the Eqs. A.18, A.19 and A.20, N is the number of either frequency values259

or brain regions as appropriate, R is the resultant vector length and S is the260

circular variance [9]. The Eq. A.20 explicitly shows that the SGDC is assessed261

as one minus the circular variance of the incremental phase. The definition of262

the SGDC measures given in the Eqs. A.18, A.19 and A.20 should not be con-263

fused with the traditional measure for quantifying coherence known as Phase264

Locking Value (PLV) [65, 32]. Specifically, the SGDC measures as defined in265

the Eqs. A.18, A.19 and A.20 assess the consistency of the incremental phase266

∆φr(ω) across the frequency values ω. In contrast, the PLV assesses the con-267

sistency of phase difference across the time samples, where the phase difference268

is computed between two phase time series corresponding to two specific fre-269

quency bands in the same or different brain regions [65, 32]. As stated in the270

Eq. A.18, the SGDC(r) is a bounded measure in the range [0, 1] and quantifies271

how much the group delay varies across the spectral components conforming272

the activity of interest xr(t). On the one hand, constant group delay values273

τr(ω) ∝ −∆φr(ω) across the spectral components produce |SGDC(r)| ≈ 1 in-274

dicating a high SGDC, which is associated with high burstiness of the signal275

xr(t) (see Figs. A.2A-E and A.3A-E). On the other hand, in the case of group276

delay values varying randomly (or non-linearly) across the spectral components277

produces |SGDC(r)| ≈ 0 indicating low SGDC associated with low burstiness278

of the signal xr(t) (see Figs. A.2F-J and A.3F-J). Similarly, the SGDC(ω) de-279

fined in the Eq. A.19 is a bounded measure in the range [0, 1] and quantifies how280

much the spectral group delay at a given frequency ω, varies across the brain281

regions r. On the one hand, constant group delay values τr(ω) ∝ −∆φr(ω)282

across the brain regions produce |SGDC(ω)| ≈ 1 indicating a high group de-283

lay consistency, which is associated with high cross-regional synchronization of284

the bursts at a given frequency ω. On the other hand, in the case of group285

delay values varying randomly (or non-linearly) across the brain regions pro-286

duces |SGDC(ω)| ≈ 0 indicating low group delay consistency associated with287

low cross-regional synchronization of the bursts at a given frequency ω. Now288

we will consider the more general case in which ∆ω(k) 6= cte. In line with the289

previous analysis, the SGDC measures can be defined in terms of the linear290

variance of the group delay Var(τ) as follows,291

|SGDC| = 1− Var(τ)

max{Var(τ)}
∈ [0, 1] (A.21)

Var(τ) =
1

N

∑
(τ − 〈τ〉)2

(A.22)

In the Eq. A.22, the mean group delay value 〈τ〉 and the the sum associated with292

the linear variance Var(τ) are computed across theN frequency values ω or brain293

regions r in which case the Eq. A.21 produces |SGDC(r)| or |SGDC(ω)|, re-294

spectively. Importantly, the Eqs. A.18, A.19 and A.21 constitute an specialized295

framework to quantify the emergence of large-scale bursts (i.e., salient network296

events) from the brain activity. That is, the SGDC(r) assesses the emergence297

of local above-threshold fluctuations from the spectral components constituting298

the activity of a single brain region, whereas the SGDC(ω) measure quantifies299
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the synchronization of the above-threshold bursts across brain regions. In line300

with this, we introduce the pairwise spectral group delay consistency (pSGDC)301

to quantify the burstiness and cross-regional bursts synchronization in a single302

measure. In the case of ∆ω(ω) = ∆ω = const, the pSGDC is defined as follows,303

pSGDC(r1, r2) =(
SGDC(r1) + SGDC(r2)

2

)
︸ ︷︷ ︸

Mean pairwise burstiness

1

N

∑
ω

e−i(∆φ1(ω)−∆φ2(ω))

︸ ︷︷ ︸
Correlation of burstiness across ω

(A.23)

: ∆ω = const across r

In the Eq. A.23, the quantities SGDC(r1) and SGDC(r2) are computed using304

the Eq. A.18. In the case of ∆ω(ω) 6= cte the pSGDC is defined as follows,305

pSGDC(r1, r2) =(
SGDC(r1) + SGDC(r2)

2

)
︸ ︷︷ ︸

Mean pairwise burstiness

Cov(τ1(ω), τ2(ω))

Var(τ1(ω)) Var(τ2(ω))︸ ︷︷ ︸
Correlation of burstiness across ω

(A.24)

Cov(τ1(ω), τ2(ω)) =
1

N

∑
ω

(τ1(ω)− 〈τ1(ω)〉) (τ2(ω)− 〈τ2(ω)〉)

In the Eq. A.24, the quantities SGDC(r1) and SGDC(r2) are computed using306

the Eqs. A.21 and A.22. Besides, the quantities Var(τ1(ω)) and Var(τ2(ω)) are307

computed using the Eq. A.22. In both cases the sum associated with the Eq.308

A.22 is computed over the frequency values ω. The Eqs. A.23 and A.24 show309

that the pSGDC(r1, r2) is a linear measure conformed by a factor quantifying310

the cross-regional correlation between the group delays across the frequency val-311

ues, weighted by a coefficient quantifying the burstiness of the two involved brain312

regions (r1, r2). Importantly, we found that the pSGDC performs similarly to313

the cokurtosis (fourth standardized cross central moment) [28] in reproducing314

the observed salient events topographies and co-activation patterns (see Fig. 7315

in Section 3.6 of the main text). This is particularly interesting taking into ac-316

count that these two non-time-resolved measures (i.e., computed on the whole317

time series) effectively reproduce the salient events topographies through two318

different approaches. That is, the cokurtosis is a non-linear time-domain mea-319

sure, whereas the pSGDC is a linear measure entirely based on the frequency-320

domain. Moreover, the pSGDC and cokurtosis disclose a better performance to321

reproduce the observed salient events topographies and co-activation patterns322

when compared to the kurtosis (scaled version of the fourth central moment)323

and the Pearson’s linear correlation (see discussion in Section 3.6 of the main324

text). These results are consistent with the fact that kurtosis measures the pres-325

ence of outliers (tails of the distribution of amplitude values) and the Pearson’s326

correlation coefficient the linear correlations between the two time series. On327

the other hand, pSGDC and cokurtosis measures quantify these two features328

simultaneously. In this work the kurtosis (K) and the cokurtosis (CK) were329
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assessed via the following standard unbiased estimators,330

K(r) =
(Ns − 1)

(Ns − 2)(Ns − 3)

(
(Ns + 1)k(r)− 3(Ns − 1)

)
(A.25)

k(r) =
µr,4
σ4
r

µr,4 =
1

Ns

∑
t

(
xr − 〈xr〉

)4
σ4
r =

(
1

Ns

∑
t

(
xr − 〈xr〉

)2)2

331

CK(r1, r2) =
ck(r1, r2)

σ2
1σ

2
2

(A.26)

ck(r1, r2) =
1

Ns

∑
t

(
x1 − 〈x1〉

)2(
x2 − 〈x2〉

)2
σ2
r =

1

Ns

∑
t

(
xr − 〈xr〉

)2
In the Eqs. A.25 and A.26, Ns is the number of time samples and 〈.〉 stands for332

mean value across the time samples.333

In the rest of this section, we present illustrative examples using the Eqs. A.18334

and A.19 on synthetic multi-channel bursts emerging from narrowband oscilla-335

tory activity. Fig. A.4 shows the |SGDC(r)| computed using the Eq. A.18 for336

three time series synthesized using the Eq. A.11. In each channel, the signal337

was synthesized by the linear superposition of 10 sinusoidal tones with uniformly338

spaced frequencies (∆ω = const) in the range fs ω/(2π) ∈ [0.5−3] Hz. In chan-339

nels 1 and 2, the phase of the tones were set as a quadratic function of the fre-340

quency within the range φ1(ω) ∝ 2πω2 ∈ [−2π, 2π] and φ2(ω) ∝ πω2 ∈ [−π, π],341

respectively. In channel 3, the phase of the tones were set as a linear function342

of the frequency within the range φ3(ω) ∝ πω ∈ [−π, π]. Fig. A.4B shows that343

the higher the burstiness (i.e., amplitude of the transient fluctuations) disclosed344

by the resulting signal (see solid black line in the Fig. A.4A), the higher the345

|SGDC(r)| value. The channel 3, corresponding to the tones having a linear346

phase dependence with the frequency, discloses the maximum |SGDC(r)| ≈ 1.347
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Figure A.4: SGDC(r) computed using the Eq. A.18 on a multi-channel configuration. (A)
Three time series xr(t) (black solid lines) synthesized using the Eq. A.11. In each channel,
the signal xr(t) was synthesized by the linear superposition of 10 sinusoidal tones (colored
solid lines) with unitary amplitude and uniformly spaced frequencies (fs ∆ω/(2π) = 0.278
Hz) within the range fs ω(k)/(2π) = 0.5 + k fs ∆ω/(2π) ∈ [0.5 − 3] Hz. In the channels 1
and 2, the phase of the tones were set as a quadratic function of the frequency within the
range φ1(ω) ∝ 2πω2 ∈ [−2π, 2π] and φ2(ω) ∝ πω2 ∈ [−π, π], respectively. In the channel
3, the phase of the tones were set as a linear function of the frequency within the range
φ3(ω) ∝ πω ∈ [−π, π]. (B) Modulus of the SGDC(r) for each channel. Note that the higher
the burstiness (i.e., amplitude of the transient fluctuations) disclosed by the resulting signal
(see solid black line in the panel A), the higher the |SGDC(r)| value. As expected, the channel
3 corresponding to the tones having a linear phase dependence with the frequency discloses
the maximum |SGDC(r)| ≈ 1.

Figs. A.5 and A.6 show the SGDC(ω) computed using the Eq. A.19 com-348

pared against the Phase Locking Value (PLV) assessed using the following ex-349
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pression [65, 32],350

PLV =
1

N

∑
t

ei(nψ(t)−mθ(t)) (A.27)

In Eq. A.27, ψ(t) and θ(t) are the phase time series of interest and the integers351

n,m ∈ N are required to allow the comparison of phase time series pertaining to352

different frequency bands. Of note, the SGDC(ω) quantifies, at each frequency353

value, the bursts synchronization across the brain regions (channels), whereas354

the PLV quantifies either local or cross-regional phase coherence between two355

frequency bands and it is not related to the signal burstiness, i.e., the PLV356

is not sensitive to the emergence of above-threshold fluctuations neither to the357

cross-regional synchronization of salient events. Fig. A.5A shows three channels358

in which the resulting time series (solid black line) have been synthesized as the359

linear superposition of 10 sinusoidal tones with uniformly spaced frequencies360

(∆ω = const) in the range fs ω/(2π) ∈ [0.5 − 3] Hz (see Eq. A.11). In each361

channel, the phase of all the oscillatory components was set to zero (φr(ω) =362

0 ∀ ω). The local and cross-regional effects of this setup can be summarized as363

follows,364

• In each channel (local effect), we obtain the maximum group delay con-365

sistency across frequency values accounting for the emergence of above-366

threshold fluctuations. That is, φr(ω) = 0 =⇒ ∆φr(ω) = 0 =⇒ τr(ω) =367

−∆φr/∆ω = 0 = cte =⇒ SGDC(r) = 1 : r = 1, 2, 3 (data not shown).368

• At each frequency, we obtain the maximum group delay consistency across369

channels (cross-regional effect) accounting for the synchronization of the370

salient events across the channels. That is, φr(ω) = 0 =⇒ ∆φr(ω) =371

0 =⇒ τr(ω) = −∆φr/∆ω = 0 = cte =⇒ SGDC(ω) = 1 ∀ ω. The372

resulting |SGDC(ω)| is shown in Fig. A.5B.373

• At each frequency, we obtain the maximum phase coherence across chan-374

nels (cross-regional effect). That is, ψr,ω(t) − θr′,ω(t) = 0 =⇒ |PLV | =375

1 ∀ ω, where the phase time series ψr,ω(t) and θr′,ω(t) were extracted from376

different channels ((r, r′) ∈ {1, 2, 3} : r 6= r′) and evaluated at the same377

frequency ω. In other words, ψr,ω(t) and θr′,ω(t) are the phase time se-378

ries associated with two tones homologous in frequency and pertaining to379

different channels. The resulting |PLV | is shown in the Fig. A.5B.380

Fig. A.5C shows three time series constituted by the same 10 tones used in381

Fig. A.5A, with the difference that in this case the phase of the tones were382

set as φ1(ω) = 0, φ2(ω) ∝ −3πω and φ3(ω) ∝ +3πω for the channel 1, 2383

and 3, respectively. The linear phase dependence with the frequency associated384

with the channels 2 and 3 produces a time-shift in the resulting signals. As a385

consequence, in this multi-channel configuration the resulting above-threshold386

fluctuations are not synchronized across channels (see the solid black lines in387

the Fig. A.5C). In this case, the SGDC and PLV measures result,388
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• In each channel (local effect), we obtain the maximum group delay con-389

sistency across frequency values accounting for the emergence of above-390

threshold fluctuations. That is, ∆φr(ω) = const =⇒ τr(ω) = −∆φr/∆ω =391

cte =⇒ SGDC(r) = 1 : r = 1, 2, 3. Note that this result is similar to392

what we obtained for a constant group delay (i.e., not a function of the393

frequency) associated with the channel 3 shown in Fig. A.4.394

• At each frequency, we obtain a low group delay consistency across channels395

(cross-regional effect) accounting for the lack synchronization of the salient396

events across the channels. That is, ∆φ1(ω) = 0,∆φ2(ω) < 0,∆φ3(ω) >397

0 =⇒ τ1(ω) = 0, τ2(ω) > 0, τ3(ω) < 0 =⇒ SGDC(ω) ≈ 0 ∀ ω. The398

resulting |SGDC(ω)| is shown in the Fig. A.5D.399

• At each frequency, we obtain the maximum phase coherence across chan-400

nels (cross-regional effect). That is, ψr,ω(t) − θr′,ω(t) = const =⇒401

|PLV | = 1 ∀ ω, where the phase time series ψr,ω(t) and θr′,ω(t) were402

extracted from different channels ((r, r′) ∈ {1, 2, 3} : r 6= r′) and evalu-403

ated at the same frequency ω. In other words, ψr,ω(t) and θr′,ω(t) are the404

phase time series associated with two tones homologous in frequency and405

pertaining to different channels. The resulting |PLV | is shown in the Fig.406

A.5D.407

It is essential to note that, the SGDC(ω) measure is highly sensitive to the408

cross-regional synchronization of the salient events, whereas the PLV measure409

is completely blind to this effect (compare Figs. A.5B and A.5D).410
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Figure A.5: SGDC(ω) computed using the Eq. A.19 on a multi-channel configuration. (A)
Three time series xr(t) (black solid lines) synthesized using the Eq. A.11. In each channel,
the signal xr(t) was synthesized by the linear superposition of 10 sinusoidal tones (colored
solid lines) with unitary amplitude and uniformly spaced frequencies (fs ∆ω/(2π) = 0.278
Hz) within the range fs ω(k)/(2π) = 0.5 + k fs ∆ω/(2π) ∈ [0.5− 3] Hz. In each channel, the
phase of all the oscillatory components was set to zero (φr(ω) = 0 ∀ ω). (B) SGDC(ω) and
PLV measures computed using the Eqs. A.19 and A.27, respectively, for the multi-channel
configuration shown in panel A. (C) Same as in A, but in this case the phase of the tones were
set as φ1(ω) = 0, φ2(ω) ∝ −3πω and φ3(ω) ∝ +3πω for the channel 1, 2 and 3, respectively.
(D) Same as in B for the multi-channel configuration shown in panel C.
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Fig. A.6A shows three time series constituted by the same 10 tones used in411

Figs. A.5A and A.5C with the difference that in this case the phase of the tones412

were set as follows,413

φ1(ω) = 0 ∀ ω (LF+HF)

φ2(ω) ∝

{
0, ∀ 0.5Hz ≤ fs ω/(2π) ≤ 1.5Hz (LF)

−3πω, ∀ 1.5Hz ≤ fs ω/(2π) ≤ 3Hz (HF)
(A.28)

φ3(ω) ∝

{
0, ∀ 0.5Hz ≤ fs ω/(2π) ≤ 1.5Hz (LF)

+3πω, ∀ 0.5Hz ≤ fs ω/(2π) ≤ 1.5Hz (HF)

This phase configuration produce LF transient fluctuations co-occurring across414

the channels, while the resulting HF transient fluctuations are not synchronized415

across the channels (see Fig. A.6A). Importantly, the SGDC(ω) effectively dis-416

criminate the cross-regional synchronization of the transient fluctuations across417

the frequency values, whereas the PLV measure is again completely blind to418

this effect (see Fig. A.6B). Fig. A.6C shows three time series constituted by419

the same 10 tones used in Fig. A.6A (see Eq. A.11) with the difference that in420

this case the phase of the tones were set as follows,421

φ1(ω) = 0 ∀ ω (LF+HF)

φ2(ω) ∝

{
−3πω, ∀ 0.5Hz ≤ fs ω/(2π) ≤ 1.5Hz (LF)

0, ∀ 1.5Hz ≤ fs ω/(2π) ≤ 3Hz (HF)
(A.29)

φ3(ω) ∝

{
+3πω, ∀ 0.5Hz ≤ fs ω/(2π) ≤ 1.5Hz (LF)

0, ∀ 0.5Hz ≤ fs ω/(2π) ≤ 1.5Hz (HF)

Similarly to the previous case, the SGDC(ω) effectively discriminate the cross-422

regional synchronization of the transient fluctuations across the frequency val-423

ues, whereas the PLV measure is again completely blind to this effect (see Fig.424

A.6D). It is worth mentioning that ∆φr(ω) in the Eq. A.19 is the incremen-425

tal phase between adjacent spectral components associated with the activity426

xr(t) of the brain region r. Thus, for N spectral components we obtain N − 1427

incremental phase values ∆φr(ω). As a convention, we add an extra value428

∆φr(ω) = 0 as the first element (i.e., lowest frequency) of the list of incremental429

phase values. Hence, for N spectral components the Eqs. A.18 and A.19 pro-430

duce N values of SGDC. In particular, the first value (i.e., lowest frequency) of431

SGDC(ω), associated with the artificially added ∆φr(ω) = 0, is always equal432

to 1 (this becomes evident in the Figs. A.5D and A.6D).433
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Figure A.6: SGDC(ω) computed using the Eq. A.19 on a multi-channel configuration. (A)
Three time series xr(t) (black solid lines) synthesized using the Eq. A.11. In each channel,
the signal xr(t) was synthesized by the linear superposition of 10 sinusoidal tones (colored
solid lines) with unitary amplitude and uniformly spaced frequencies (fs ∆ω/(2π) = 0.278
Hz) within the range fs ω(k)/(2π) = 0.5 + k fs ∆ω/(2π) ∈ [0.5− 3] Hz. In each channel, the
phases of the oscillatory components were configured as stated in the set of Eqs. A.28. (B)
SGDC(ω) and PLV measures computed using the Eqs. A.19 and A.27, respectively, for the
multi-channel configuration shown in panel A. (C) Same as in A, but in this case the phase
of the tones were configured as stated in the set of Eqs. A.29. (D) Same as in B for the
multi-channel configuration shown in panel C.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2026. ; https://doi.org/10.1101/2024.02.28.582552doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582552
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix A.4. Spectral group delay consistency in the surrogate data434

Here we analytically show that, on the one hand, A-surrogates significantly435

reduce the spectral group delay consistency (SGDC) across both frequency com-436

ponents (SGDC(r)) and brain regions (SGDC(ω)). On the other hand, B-437

surrogates significantly reduce the SGDC across frequency components (SGDC(r)),438

while preserving the SGDC across brain regions (SGDC(ω)).439

We start by recalling the definition of SGDC(r) and SGDC(ω) for a multi-440

regional time series xr(t),441

F {xr(t)} = Xr(ω) = Ar(ω)eiφr(ω)

∆φr(ω) = φr(ω + ∆ω)− φr(ω)

SGDC(r) =
1

N

∑
ω

e−i∆φr(ω) : ∆ω = const across r (A.30)

SGDC(ω) =
1

N

∑
r

e−i∆φr(ω) : ∆ω = const across ω (A.31)

where Ar(ω) and φr(ω) are the amplitude and phase Fourier spectra, respec-442

tively. In Eqs. A.30 and A.31, N is the number of either frequency values443

or brain regions, respectively, and ∆φr(ω) is the incremental phase computed444

across the spectral components of the DFT spectrum Xr(ω) associated with445

the signals xr(t). In the case of the surrogate multi-regional time series xsr(t),446

obtained by phase randomization of the original time series in the frequency-447

domain, we have,448

F {xsr(t)} = Xs
r (ω) = Ar(ω)ei(φr(ω)+θr(ω))

SGDCs(r) =
1

N

∑
ω

e−i(∆φr(ω)+∆θr(ω)) : ∆ω = const across r (A.32)

SGDCs(ω) =
1

N

∑
r

e−i(∆φr(ω)+∆θr(ω)) : ∆ω = const across ω(A.33)

In the Eqs. A.32 and A.33, ∆θr(ω) is the incremental phase associated with the449

random phase-shift θr(ω) extracted from the surrogate DFT spectrum Xs
r (ω)450

of each brain region r. Let us consider two extreme cases derived from the Eqs.451

A.30 and A.32 with ∆θr(ω) varying randomly across ω,452

1 For ∆φr(ω) ≈ const =⇒ |SGDC(r)| ≈ 1 > |SGDCs(r)| ≈ 0.453

2 For ∆φr(ω) varying randomly across ω =⇒ |SGDC(r)| ≈ |SGDCs(r)| ≈ 0.454

From these two extreme cases we infer that, for θr(ω) varying randomly across455

ω, |SGDC(r)| is the upper bound of |SGDCs(r)|. As a consequence, for the A-456

and B-surrogates in general we obtain |SGDCs(r)| < |SGDC(r)|. Similarly, in457

the case of A-surrogates computed with θr(ω) varying randomly across the brain458

regions r, Eqs. A.31 and A.33 in general produce |SGDCs(ω)| < |SGDC(ω)|.459

In the particular case of the B-surrogates, at each frequency ω we add the460

same phase-shift value θr(ω) in all the brain regions r, producing ∆θr(ω) =461
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∆θ(ω) ∀ 1 ≤ r ≤ N . As a consequence, by taking the modulus in both sides462

of the Eq. A.33 we obtain the equivalence between the true data and the B-463

surrogate in terms of |SGDC(ω)|,464

|SGDCs(ω)| =

∣∣∣∣e−i∆θ(ω) 1

N

∑
r

e−i∆φr(ω)

∣∣∣∣
=

∣∣e−i∆θ(ω)SGDC(ω)
∣∣

= |SGDC(ω)|

We confirmed this analytical results by computing the SGDC(r) and SGDC(ω)465

measures on the whole time series of our empirical MEG dataset and the corre-466

sponding A- and B-surrogates (see Section 2.8 in Methods). Fig. A.7A shows467

that the magnitude of the SGDC(r) measure is not preserved in both the A- and468

B-surrogates. Besides, Fig. A.7B shows that the magnitude of the SGDC(ω)469

measure is preserved in the B-surrogates, and not in the case of A-surrogates.470

Importantly, the reduction of the regional SGDC, as quantified by the SGDC(r)471

measure, offers an analytical rationale supporting the evidence showing that B-472

surrogates failed to reproduce the SEs observed in our MEG dataset (see Section473

3.2) despite preserving both the regional PSDs and the cross-spectra (see Ap-474

pendix A.1). It is important to note that this equivalence between the true475

MEG data and the B-surrogates in terms of |SGDC(ω)| holds only when the476

SGDC(ω) measure is computed on the whole time series (i.e., non-time-resolved477

approach). On the other hand, if the SGDC(r) and SGDC(ω) measures are478

computed in a time-resolved manner on each salient event (see Fig. A.7C,D),479

the equivalence between the true MEG data and the B-surrogates in terms of480

|SGDC(ω)| does not longer hold. This is mainly due to the fact that true SEs481

and B-surrogate SEs are different in duration and size and, more crucially, they482

do not necessarily involve the same brain regions.483
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Figure A.7: Spatial profiles associated with the SGDC measures. (A) SGDC(r) measure
computed on the whole time series of each brain region (i.e., non-time-resolved approach).
(B) SGDC(ω) measure computed on the whole time series of each brain region (i.e., non-
time-resolved approach). Note that the pattern corresponding to the 100 B-surrogates (thick
dashed black line) overlap with the spatial profile associated with the true MEG data (thin
blue line). (C) SGDC(r) measure computed on each detected SE by considering the brain
regions and time interval associated with each particular event (i.e., time-resolved approach).
(D) SGDC(ω) measure computed on each detected SE by considering the brain regions and
time interval associated with each particular event (i.e., time-resolved approach). The labels
and ordering of the brain regions are the same as those shown in Fig. C.2. Symbols and
abbreviations: SE, Salient Event.
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Appendix B. Supplementary numerical modeling results484

Figure B.1: Spectral group delay consistency underlies the emergence of local above-threshold
fluctuations from NOs. (A) Spectral group delay consistency, as quantified by the SGDC(r)
measure, as a function of the phase factor values (ε). The colored markers indicate the
mean |SGDC(r)| value across 100 synthetic time series of 10 sec in duration (trials). The
shaded error bars in gray correspond to the standard deviation around the mean value. The
pseudocolor scale represents the mean number of SLEs per trial. The SGDC(r) measure
was obtained by computing the Eq. 1 on the synthetic phase values assigned to the spectral
components in the alpha band. (B) Same as in A for the Kurtosis of the time series amplitude
values, obtained by computing the Eq. A.25 on the signals in time-domain. (C) Amplitude
spectrum (left), phase spectrum and distribution (middle), and resulting time series (right)
corresponding to the signal model for a phase factor ε = 0. For the amplitude spectrum we
used a Hann window with a null-to-null bandwidth = 8-13 Hz, frequency resolution df =
1/60sec ≈ 0.017 Hz. The phase values of the spectral components were constrained within
the range [−επ, επ] and having a random dependence with the frequency. The black arrows
in the right-most panel highlight the above-threshold fluctuations disclosed by the signal. (D)
Same as in C for a phase factor ε = 0.8. (E) Same as in C for a phase factor ε = 1. Symbols
and abbreviations: SLEs, Salient Local Events; SGDC, Spectral Group Delay Consistency.
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Figure B.2: Spectral group delay consistency underlies the emergence of local above-threshold
fluctuations from NOs. (A) Spectral group delay consistency, as quantified by the SGDC(r)
measure, as a function of the phase factor values (ε). The colored markers indicate the
mean |SGDC(r)| value across 100 synthetic time series of 60 sec in duration (trials). The
shaded error bars in gray correspond to the standard deviation around the mean value. The
pseudocolor scale represents the mean number of SLEs per trial. The SGDC(r) (Eq. 1) was
computed using the alpha band phases obtained from the DFT applied to the time series
resulting from the signal model (e.g., see the 60 sec in duration signals shown in panels C, D
and E). This procedure inherently introduces spectral leakage due to the time-domain tapering
(rectangular window), which affects the alpha band phase values involved in the computation
of the SGDC(r) measure and is visible in the corresponding power spectra shown in panels
C, D and E. (B) Same as in A for the Kurtosis of the time series amplitude values, obtained
by computing the Eq. A.25 on the signals in time-domain. (C) Amplitude spectrum (left),
phase spectrum and distribution (middle), and resulting time series (right) corresponding to
the signal model for a phase factor ε = 0. The phase values of the spectral components were
constrained within the range [−επ, επ] and having a random dependence with the frequency.
The black arrows in the right-most panel highlight the above-threshold fluctuations disclosed
by the signal. (D) Same as in C for a phase factor ε = 0.8. (E) Same as in C for a phase
factor ε = 1. Symbols and abbreviations: SLEs, Salient Local Events; SGDC, Spectral Group
Delay Consistency.
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Figure B.3: Spectral group delay consistency underlies the emergence of local above-threshold
fluctuations from NOs. (A) Spectral group delay consistency, as quantified by the SGDC(r)
measure, as a function of the phase factor values (ε). The colored markers indicate the
mean |SGDC(r)| value across 100 synthetic time series of 10 sec in duration (trials). The
shaded error bars in gray correspond to the standard deviation around the mean value. The
pseudocolor scale represents the mean number of SLEs per trial. The SGDC(r) measure
was obtained by computing the Eq. 1 on the synthetic phase values assigned to the spectral
components in the alpha band. (B) Same as in A for the Kurtosis of the time series amplitude
values, obtained by computing the Eq. A.25 on the signals in time-domain. (C) Amplitude
spectrum (left), phase spectrum and distribution (middle), and resulting time series (right)
corresponding to the signal model for a phase factor ε = 0. For the amplitude spectrum we
used a Hann window with a null-to-null bandwidth = 8-13 Hz, frequency resolution df =
1/60sec ≈ 0.017 Hz. The phase values of the spectral components were constrained within
the range [−επ, επ] and having a linear dependence with the frequency. The black arrows in
the right-most panel highlight the above-threshold fluctuations disclosed by the signal. (D)
Same as in C for a phase factor ε = 0.8. (E) Same as in C for a phase factor ε = 1. Symbols
and abbreviations: SLEs, Salient Local Events; SGDC, Spectral Group Delay Consistency.
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Figure B.4: Distributions of size and duration corresponding to the SEs detected in the large-
scale signal model. (A-B) Large-scale model for SEs including only alpha oscillations (random
phase values in the alpha band constrained to the range [−επ, επ] with ε ∈ [0.75, 1]). Panels A
and B show the distribution of SEs duration and size, respectively, computed on all the SEs
detected in a simulated time series of 1-minute duration. See Figs. 6A,B. (C-D) Same as in A-
B for the large-scale model including only broadband 1/f activity, and no oscillatory activity
in the alpha band nor phase consistency values were present (ε = 1). See Figs. 6C,D. (E-F)
Same as in A-B for the large-scale model including both broadband 1/f activity with non-
constrained random phases (ε = 1) and alpha oscillations with random phases constrained
proportionally to the observed alpha power in the range (ε ∈ [0.75, 1]). See Figs. 6E,F.
Symbols and abbreviations: SEs, Salient Events.
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Appendix C. Supplementary empirical results including the deep sources485

486

Figure C.1: Salient Network Event (SNE). (A) Z-scored time series disclosing the above-
threshold fluctuations associated with a SNE observed in the source-reconstructed MEG data.
The time interval in which at least one brain region is active (i.e., duration of the SNE) is
highlighted in red. (B) Brain plots showing the activation start time of the 5 brain regions
recruited by the SNE shown in panel A. (C) Activation matrix of the SNE shown in panel
A. The black segments correspond to the time intervals in which each brain region was active
(i.e., absolute amplitude > 3σ). (D) ESM corresponding to the SNE shown in panel A.
Symbols and abbreviations: ESM, Event Spectral Matrix; MEG, Magnetoencephalography;
RPre, Right Precuneus; RC, Right Cuneus; RPeri, Right Pericalcarine; RIC, Right Isthmus
Cingulate; LC, Left Cuneus.
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Figure C.2: Labels and ordering of the brain regions used to compute all the spatial profiles
shown in this work. Spatial profile showing the mean size of SEs propagating through each
brain region (mean value across the 47 participants, see Section 2.4 in Methods). The mean
event size is shown for the MEG data together with the 100 A- and B-surrogates (see Section
2.8 in Methods). Symbols and abbreviations: SEs, Salient Events; BR, Brain Regions.

Figure C.3: Statistical characterization of SEs. (A) Distribution of the duration of SEs ob-
served in the true source-reconstructed MEG data (filled blue circles), the A-surrogate (empty
down-pointing triangles) and the B-surrogate (filled up-pointing triangles) corresponding to
a time binning of 1 time sample per time bin (time binning = 1 ms). In the three cases the
SEs were computed on the 47 participants. (B) Same as in A for the size of SEs. To test
the significance of the difference of the distribution means between the true MEG data and
the surrogates (A and B), we computed a non-parametric permutation test (random sampling
without replacement, 1×104 permutations). The distributions of the duration and size of SEs
observed in the true source-reconstructed MEG data, disclosed statistically significant differ-
ences with respect to both A- and B- surrogates (P < 0.001). Symbols and abbreviations:
SEs, Salient Events; BR, Brain Regions.
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Figure C.4: Power Spectral Density (PSD). Power spectra computed on the Right Cuneus
(RC, panel A) and the Right Isthmus Cingulate (RIC, panel B) activities of each patient (blue
lines) and the resulting average (black line). The PSDs were computed on 1 min duration
source-reconstructed MEG data of 47 subjects. Note that the PSDs of the RC (panel A)
disclose a prominent bump in the alpha band (8-13 Hz) characteristic of the occipital brain
regions, however, a less prominent bump in the alpha band is also observed in regions away
from the occipital cortex (see the PSDs of RIC shown in panel B). Symbols and abbreviations:
PSD, Power Spectral Density; RC, Right Cuneus; RIC, Right Isthmus Cingulate.
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Figure C.5: Salient events propagation modes segregated by SE clusters. (A) Spatial profile
for the cluster 1 SEs starting, maximum recruitment and ending modes (see Section 2.7 in
Methods) computed on 41 participants. Linear correlations between topographies: Startings
vs Endings, r = 0.995, P < 0.001. Max. recruit. vs Startings, r = 0.978, P < 0.001. Max.
recruit. vs Endings, r = 0.978, P < 0.001. (B) Same as in A for the cluster 2 SEs starting,
maximum recruitment and ending modes. Linear correlations between topographies: Startings
vs Endings, r = 0.895, P < 0.001. Max. recruit. vs Startings, r = −0.298, P < 0.01. Max.
recruit. vs Endings, r = −0.280, P < 0.01. The SEs obtained from 41 subjects were clustered
using the Louvain algorithm (resolution parameter γ = 1, see Section 2.9 in Methods). The
reported P values for the statistical significance of the Pearson’s correlation were assessed
using Student’s t distributions of the two-tailed hypothesis test under the null hypothesis that
the correlation is zero. Symbols and abbreviations: SEs, Salient Events.
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Figure C.6: Salient events propagation modes. (A) Spatial profile for the SEs starting modes
(see Section 2.7 in Methods) corresponding to the two SE clusters computed on 41 participants.
The SEs obtained from 41 subjects were clustered using the Louvain algorithm (resolution
parameter γ = 1, see Section 2.9 in Methods). The Pearson’s correlation between the spatial
profiles of cluster 1 and cluster 2 SEs is r = 0.708, P < 0.001. (B) Brain topographies for the
starting modes of cluster 1 SEs as shown in panel A. (C) Brain topographies for the starting
modes of cluster 2 SEs as shown in panel A. (D-F) Same as A-C for SEs maximum recruitment
modes (see Section 2.7 in Methods). In panel D, the Pearson’s correlation between the spatial
profiles of cluster 1 and cluster 2 SEs is r = −0.841, P < 0.001. (G-I) Same as A-C for SEs
ending modes (see Section 2.7 in Methods). In panel G, the Pearson’s correlation between
the spatial profiles of cluster 1 and cluster 2 SEs is r = 0.718, P < 0.001. The reported P
values for the statistical significance of the Pearson’s correlation were assessed using Student’s
t distributions of the two-tailed hypothesis test under the null hypothesis that the correlation
is zero. Symbols and abbreviations: SEs, Salient Events.

Appendix C.1. Amplitude threshold analysis487

The validity and robustness of using a single amplitude threshold (|z| = 3)488

consistently across all 47 participants was investigated as follows. In each partic-489

ipant, the 1-minute source-reconstructed MEG time series of each brain region490

were first individually z-scored and then concatenated across all brain regions.491

Subsequently, we computed the histogram and estimated the empirical Proba-492

bility Density Function (empirical PDF) corresponding to the amplitude values493

of the concatenated time series (see blue curves in Figs. C.7A and C.7B).494

Next, we compute the Gaussian distribution that best fit the empirical PDF495

within each of the 100 fitting intervals of amplitude values spanning the range496

[Q1(z) − 5 ∗ IQR(z), Q3(z) + 5 ∗ IQR(z)], where Q1, Q3, and IQR denote the497

first quartile, the third quartile and the interquartile range, respectively. This498

procedure yielded 100 Gaussian PDFs (see grey lines in Fig. C.7A). After that,499

we computed the RMS error between the empirical PDF and each of the 100500

Gaussian PDFs. Where the RMS error was computed using a weighted differ-501

ence to assign less importance to the difference in the tails of the distributions.502

As a result of this procedure, we obtained 100 RMS values (see Fig. C.7C).503

Finally, the optimal threshold for each participant was computed as half the504
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fitting interval of amplitude values producing the minimum RMS error (see Fig.505

C.7B and the red arrow in Fig. C.7C). Note that the minimum RMS error506

is associated with the amplitude value (optimal threshold) beyond which the507

empirical PDF significantly departs from the (best fitted) Gaussian distribu-508

tion. This procedure was applied separately to all the 47 participants included509

in the study (see Fig. C.8). The mean and standard deviation of the ampli-510

tude thresholds corresponding to the true MEG data shown in Fig. C.8 are511

3.08 ± 0.23. Importantly, the amplitude threshold used in this study (|z| = 3)512

lies approximately at the center of this range. The procedure described above513

for identifying the optimal amplitude threshold, based on minimizing the RMS514

error between the empirical PDF and the Gaussian PDFs, was also applied to515

one A-surrogate and one B-surrogate generated for each participant (see Fig.516

C.8). The mean and standard deviation of the |z| thresholds across participants517

were 5 ± 0.23 for the A-surrogates and 4.7 ± 0.58 for the B-surrogates, respec-518

tively. Of note, the |z| thresholds for the A- and B-surrogates were substantially519

higher than those for the true MEG data. This result is consistent with the fact520

that the phase randomization applied in the construction of A- and B-surrogates521

produces approximately Gaussian signals [51].522

Figure C.7: Procedure to find the optimal |z| threshold for Participant 47. (A) Empirical
and the 100 Gaussian PDFs corresponding to the 100 fitting |z| intervals. (B) Empirical PDF
together with the Gaussian PDF producing the minimum RMS error. (C) RMS error between
the empirical PDF and each of the 100 Gaussian PDFs. Symbols and abbreviations: SNE,
Salient Network Event; PDF, Probability Density Function; RMS, Root Mean Square.
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Figure C.8: Optimal |z| thresholds for the 47 participants corresponding to the true MEG
data including the deep sources, and one A-surrogate and one B-surrogate generated for each
participant. The mean and standard deviation of the amplitude thresholds corresponding
to the true MEG data (blue circles) are 3.08 ± 0.23. Symbols and abbreviations: MEG,
Magnetoencephalography.

One of the main limitations of this study is related to the uncertain capability523

of our dataset to accurately identify deep brain sources along the cortical surface,524

mainly due to the ill-posed nature of the source-reconstructed MEG data. In525

order to address this issue, we re-computed the thresholding analysis presented526

above, but this time excluding the deep sources (see brain topographies in Figs.527

D.1F and D.3). The results are shown in Fig. C.9. It was found that the528

mean and standard deviation of the amplitude thresholds corresponding to the529

true MEG data excluding the deep sources are 3.08 ± 0.24. Importantly, the530

amplitude threshold used in this study (|z| = 3) lies approximately at the center531

of this range. Besides, the mean and standard deviation of the |z| thresholds532

across participants were 5 ± 0.23 for the A-surrogates and 4.68 ± 0.59 for the533

B-surrogates, respectively. As a result, by comparing Figs. C.8 and C.9 we534

can conclude that the optimal |z| thresholds remain essentially unaltered across535

the 47 participants when the deep sources are excluded from the thresholding536

analysis in our MEG dataset.537
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Figure C.9: Optimal |z| thresholds for the 47 participants corresponding to the true MEG
data excluding the deep sources, and one A-surrogate and one B-surrogate generated for each
participant. The mean and standard deviation of the amplitude thresholds corresponding
to the true MEG data (blue circles) are 3.08 ± 0.24. Symbols and abbreviations: MEG,
Magnetoencephalography.

Appendix C.2. Spectral group delay consistency, transient cross-regional coher-538

ent NOs and BAA underlie SNEs539

In Sections 3.4 and 3.5, we showed that the concurrent presence of BAA540

and NOs disclosing appropriate levels of SGDC, are two key ingredients suffi-541

cient to generate realistic above-threshold fluctuations in a single brain signal542

(i.e., SLEs). Importantly, we have analytically and computationally shown that543

only the consistency of the Fourier incremental phase values across frequencies544

(SGDC) provides a quantitative measure of the level of salience of the above-545

threshold fluctuations exhibited by the signal in the time-domain, and this re-546

lationship holds true regardless of the spectral leakage introduced by tapering547

in the time-domain (see Fig. B.2). In this section, we present empirical evi-548

dence supporting the theoretical findings described in Sections 3.4 and 3.5. Fig.549

C.10A shows the topography of the mean number of salient (above-threshold)550

samples assessed in each brain region. The Panels B and C of Fig. C.10 show,551

respectively, the time series and distributions of the amplitude values corre-552

sponding to the brain regions disclosing the maximum (Left supramarginal)553

and minimum (Left superior frontal) number of salient samples. Importantly,554

the scatter plots in Panels D and E of Fig. C.10 show a significant correlation555

between the topographies of the salient samples (Panel A) and, respectively,556

the SGDC(r) magnitude and kurtosis. This empirical evidence, together with557

the results shown in Figs. B.1, B.2 and B.3, further supports the interpretation558

of the SGDC(r) as a measure capturing the signal-level mechanism underlying559

the emergence of local above-threshold fluctuations.560

Next, we present the rationale and results pointing out that SGDC is a key561
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conceptualization also in connection with the emergence of realistic SNEs as562

collective phenomena involving multiple brain regions. Although the SGDC(r)563

measure assesses the emergence of local above-threshold fluctuations from the564

Fourier oscillatory constituents of the activity in a single brain region (i.e.,565

SLEs), it does not account for cross-regional effects associated with SNEs. To566

quantitatively study the cross-regional effects of SGDC on our data we introduce567

the SGDC(ω) measure. The magnitude of SGDC(ω) is bounded in the range568

[0, 1] and quantifies how much the group delay at a given frequency ω varies569

across brain regions (Eq. 2). By using synthetic time series, in Appendix A.3570

we show that the SGDC(ω) measure assesses the contribution of each frequency571

component in the co-activation (synchronization in time) of above-threshold572

fluctuations across brain regions (see Figs. A.5 and A.6). Of note, Figs. A.5573

and A.6 show that the SGDC(ω) measure effectively resolves the cross-regional574

synchronization of SEs across frequency bands, whereas phase coherence mea-575

sures (e.g., PLV: Phase Locking Value) are completely blind to this effect. Then,576

we used the SGDC(ω) measure to analyze the two SE clusters observed in our577

empirical MEG data. Figs. C.11A,B show the average ESMs of the two SE clus-578

ters identified by the Louvain algorithm (see Methods) computed on 10 subjects.579

As shown in Fig. C.11C, only cluster 2 SEs are associated |SGDC(r)| values580

higher than those disclosed by the C-surrogate SEs. Importantly, Fig. C.11D581

shows the increase of transient cross-regional coherence around the alpha band,582

as quantified by the SGDC(ω) measure, associated with the SEs disclosing the583

alpha spectral signature in the average ESM (i.e., cluster 2 SEs). These results584

are further evidence pointing out that the cluster 2 SEs observed in our MEG585

data co-occur with (or are coupled to) alpha bursts propagating across brain586

regions. Notably, Fig. C.11E shows that the transient cross-regional coherence587

around the alpha band associated with the cluster 2 SEs is also captured by the588

large-scale model presented in Section 3.5.589

Next, we used the SGDC(ω) measure to analyze the surrogate data computed590

via phase randomization. Our empirical results show that despite preserving591

both the power spectrum (PSD) in each brain region and the cross-correlations592

(i.e., functional connectivity) B-surrogates fail to account for the SEs observed593

in our MEG dataset. Besides, A-surrogates, which only preserve the regional594

PSD, perform worst than B-surrogates in reproducing realistic SEs (see Figs. 1595

and C.3). The analytical derivations presented in Appendix A.4 provide a uni-596

fying rationale for this evidence by pointing out that, on one hand, A-surrogates597

destroy both the burstiness of each brain region as assessed by the SGDC(r)598

measure and the synchronization of above-threshold fluctuations across brain599

regions as assessed by the SGDC(ω) measure (see Figs. A.7A,B). On the other600

hand, B-surrogates significantly reduce the SGDC across frequency components601

(SGDC(r), see Fig. A.7A), while preserving the SGDC across brain regions602

(SGDC(ω), see Fig. A.7B).603

In summary, these results suggest that a) spectral group delay consistency in604

specific narrow frequency bands (as assessed by the SGDC(r) measure), b)605

transient cross-regional coherent NOs (intra-frequency coherence across brain606

regions assessed by the SGDC(ω) measure) and c) BAA, are all key ingredients607
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for the emergence of realistic SEs.608

Figure C.10: Measures capturing the salient samples topographies. (A) Topography showing
the number of salient samples computed on the whole time series (1 min in duration) of each
brain region (mean value across the 47 participants). (B) Time series corresponding to the
brain regions disclosing the maximum (Left supramarginal) and the minimum (Left superior
frontal) number of salient samples. Each plot shows the time series superimposed across the
47 participants. (C) Distributions of the amplitude values for the Left supramarginal and
Left superior frontal time series concatenated the 47 participants. Two-sample Kolmogorov-
Smirnov test: P < 0.001. (D) Scatter plot showing the correlation between the topographies
associated with the salient samples and the magnitude of the SGDC(r) measure. Number of
samples (red circles) = Number of brain regions = 84. (E) Same as in (D) for the kurtosis.
Symbols and abbreviations: SGDC, Spectral Group Delay Consistency, K-S, Kolmogorov-
Smirnov.
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Figure C.11: Transient cross-regional coherence around the alpha band is mainly associated
with salient events. (A, B) Mean ESM of the two SE clusters identified by the Louvain
algorithm computed on the SEs detected in the 10 participants. (C) Transient cross-frequency
coherence quantified by the SGDC(r) measure (see Appendix A.3), associated with the two
SE clusters shown in panels A and B. The SGDC(r) measure was computed in a time-resolved
manner. That is, the SGDC(r) measure was computed on each detected SE by considering the
brain regions and time interval associated with each particular event. Then, the SGDC(r)
array was averaged selectively across the SEs segregated in the two clusters produced by
the Louvain algorithm (see Section 2.9 in Methods). The small markers represent mean
|SGDC(r)| values averaged across the SEs in each individual participant. The big markers
represent mean |SGDC(r)| values averaged across the 10 participants. (D) Same as in C for
the transient cross-regional coherence quantified by the SGDC(ω) measure (see Appendix
A.3). (G) Same as in D for the synthetic data corresponding to the large-scale signal model
(see Section 3.5). The red arrow highlight the increase of the |SGDC(ω)| values around the
alpha band. Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix.
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Appendix D. Supplementary empirical results excluding the deep sources609

610

Figure D.1: Clustering of SEs according to their spectral signature. The SEs obtained from 45
subjects were clustered using the Louvain algorithm (resolution parameter γ = 1, see Meth-
ods). (A, B) Mean ESM of the two SE clusters identified by the Louvain algorithm computed
on the SEs detected in the 45 participants. (C, D) Waveform shapes of the SEs pertaining
to the two SE clusters identified by the Louvain algorithm. Thin gray lines correspond to
the average waveform shape in each brain region. Thick blue and red lines correspond to
the resulting waveform shape averaged across the brain regions for cluster 1 and 2 SEs, re-
spectively. (E) Spatial profile showing the mean duration of SEs pertaining to cluster 1 (in
blue) and cluster 2 (in red). For the true data, the small and big markers correspond to the
mean spatial profile in each patient and the average across the 45 participants, respectively
(see Methods). The labels and ordering of the brain regions are the same as those shown in
Fig. C.2. To test the significance of the difference of the mean SEs duration between cluster
1 and cluster 2, in each brain region we computed a non-parametric permutation test (ran-
dom sampling without replacement, 1 × 104 permutations). All the brain regions disclosed
a statistically significant difference of the mean SEs duration between cluster 1 and 2 (the
Bonferroni-adjusted two-tailed P values result P < 0.001 in all the brain regions). (F) Brain
topographies for the mean duration of SEs averaged across the 45 participants as shown in
panel E. (G) Distribution of the duration of SEs pertaining to the cluster 1 and cluster 2
observed in the 45 participants. (H) Same as in E for the size of SEs. To test the significance
of the difference of the mean SEs size between cluster 1 and cluster 2, in each brain region we
computed a non-parametric permutation test (random sampling without replacement, 1×104

permutations). All the brain regions disclosed a statistically significant difference of the mean
SEs size between cluster 1 and 2 (the Bonferroni-adjusted two-tailed P values result P < 0.001
in all the brain regions). (I) Same as in F for the size of SEs. (J) Same as in G for the size
of SEs. Symbols and abbreviations: SEs, Salient Events; ESM, Event Spectral Matrix; BR,
Brain Regions.
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Figure D.2: Salient events propagation modes segregated by SE clusters. (A) Spatial profile
for the cluster 1 SEs starting, maximum recruitment and ending modes (see Section 2.7 in
Methods) computed on 45 participants. Linear correlations between topographies: Startings
vs Endings, r = 0.995, P < 0.001. Max. recruit. vs Startings, r = 0.972, P < 0.001. Max.
recruit. vs Endings, r = 0.968, P < 0.001. (B) Same as in A for the cluster 2 SEs starting,
maximum recruitment and ending modes. Linear correlations between topographies: Startings
vs Endings, r = 0.917, P < 0.001. Max. recruit. vs Startings, r = −0.052, P = 0.7. Max.
recruit. vs Endings, r = −0.051, P = 0.7. The SEs obtained from 45 subjects were clustered
using the Louvain algorithm (resolution parameter γ = 1, see Section 2.9 in Methods). The
reported P values for the statistical significance of the Pearson’s correlation were assessed
using Student’s t distributions of the two-tailed hypothesis test under the null hypothesis that
the correlation is zero. Symbols and abbreviations: SEs, Salient Events.
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Figure D.3: Salient events propagation modes. (A) Spatial profile for the SEs starting modes
(see Section 2.7 in Methods) corresponding to the two SE clusters computed on 45 participants.
The SEs obtained from 45 subjects were clustered using the Louvain algorithm (resolution
parameter γ = 1, see Section 2.9 in Methods). The Pearson’s correlation between the spatial
profiles of cluster 1 and cluster 2 SEs is r = 0.584, P < 0.001. (B) Brain topographies for the
starting modes of cluster 1 SEs as shown in panel A. (C) Brain topographies for the starting
modes of cluster 2 SEs as shown in panel A. (D-F) Same as A-C for SEs maximum recruitment
modes (see Section 2.7 in Methods). In panel D, the Pearson’s correlation between the spatial
profiles of cluster 1 and cluster 2 SEs is r = −0.842, P < 0.001. (G-I) Same as A-C for SEs
ending modes (see Section 2.7 in Methods). In panel G, the Pearson’s correlation between
the spatial profiles of cluster 1 and cluster 2 SEs is r = 0.571, P < 0.001. The reported P
values for the statistical significance of the Pearson’s correlation were assessed using Student’s
t distributions of the two-tailed hypothesis test under the null hypothesis that the correlation
is zero. Symbols and abbreviations: SEs, Salient Events.
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