

1 **Manuscript Title**

2 Bullying Victimization and Brain Development: A Longitudinal Structural Magnetic Resonance Imaging
3 Study from Adolescence to Early Adulthood

4

5 **Running Title**

6 Bullying and Brain Development: An sMRI Study

7

8 **Authors**

9 Michael Connaughton, PhD.¹; Orla Mitchell, MSc.¹; Emer Cullen, MSc.¹; Michael O'Connor, MSc.¹; Tobias
10 Banaschewski, M.D., Ph.D.²; Gareth J. Barker, Ph.D.³; Arun L.W. Bokde, Ph.D.⁴; Rüdiger Brühl, Ph.D.⁵;
11 Sylvane Desrivières, Ph.D.⁶; Herta Flor, Ph.D.^{7,8}; Hugh Garavan, Ph.D.⁹; Penny Gowland, Ph.D.¹⁰; Antoine
12 Grigis, Ph.D.¹¹; Andreas Heinz, M.D., Ph.D.^{12, 13}; Hervé Lemaitre, Ph.D.^{11,14}; Jean-Luc Martinot, M.D.,
13 Ph.D.¹⁵; Marie-Laure Paillère Martinot, M.D., Ph.D.^{15,16}; Eric Artiges, M.D., Ph.D.^{15,17}; Frauke Nees,
14 Ph.D.^{2,18}; Dimitri Papadopoulos Orfanos, Ph.D.⁸; Luise Poustka, M.D.¹⁹; Michael N. Smolka, M.D.²⁰; Sarah
15 Hohmann, PhD.²; Nathalie Holz, PhD.²; Nilakshi Vaidya, M.Sc.²¹; Henrik Walter, M.D., Ph.D.¹²; Gunter
16 Schumann, M.D. ^{20,22}; Robert Whelan, Ph.D.²³; Darren Roddy, MD., PhD. ^{1*}

17

18 **Corresponding author**

19 Dr Darren Roddy, Senior Clinical Lecturer in Psychiatry, Royal College of Surgeons, Dublin 2

20 Darrenroddy@rcsi.com

21

22 **Affiliations**

23 1. Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland.

24 2. Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental
25 Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany;
26 German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm.

27 3. Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College
28 London, United Kingdom.

29 4. Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity
30 College Dublin, Dublin, Ireland.

31 5. Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

32 6. Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology &
33 Neuroscience, King's College London, United Kingdom.

34 7. Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical
35 Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany.

36 8. Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim,
37 Germany.

38 9. Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont,
39 USA.

40 10. Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham,
41 University Park, Nottingham, United Kingdom.

42 11. NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.

43 12. Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate
44 member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin,
45 Germany.

46 13. German Center for Mental Health (DZPG), Berlin-Potsdam, Germany.

47 14. Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, 33076
48 Bordeaux, France.

49 15. Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires
50 développementales & psychiatrie", University Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS;
51 Centre Borelli, Gif-sur-Yvette, France.

52 16. AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière
53 Hospital, Paris, France.

54 17. Psychiatry Department, EPS Barthélémy Durand, Etampes, France.

55 18. Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig
56 Holstein, Kiel University, Kiel, Germany.

57 19. Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University
58 Hospital Heidelberg, Heidelberg, Germany.

59 20. Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany.

60 21. Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and
61 Psychotherapy, Charité Universitätsmedizin Berlin, Germany.

62 22. Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and
63 Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.

64 23. School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland.

65

66

67 **Data Availability**

68 All the data are available from the authors upon reasonable request and with permissions of the IMAGEN
69 consortia. https://github.com/imagen2/imagen_mri

70

71 **Code Availability**

72 https://github.com/mconnaug/Bullying_Brain_Development

73

74

75 **Abstract**

76 This study investigated associations between bullying victimization and brain
77 development using longitudinal structural MRI data from the IMAGEN cohort ($n = 2,094$;
78 1,009 females) across three time points (~ 14 , ~ 19 , and ~ 22 years). A data-driven analysis
79 revealed that higher bullying victimization was significantly associated with accelerated
80 volumetric growth in subcortical and limbic regions, including the putamen ($\beta = 0.12$, 95% CI:
81 0.10–0.15), amygdala ($\beta = 0.07$, 95% CI: 0.05–0.09), hippocampus ($\beta = 0.06$, 95% CI: 0.04–
82 0.08), and anterior cingulate cortex (caudal: $\beta = 0.05$, 95% CI: 0.03–0.07; rostral: $\beta = 0.06$,
83 95% CI: 0.04–0.08). In contrast, bullying victimization was also significantly associated with
84 reduced volumetric growth in the cerebellum ($\beta = -0.09$, 95% CI: -0.11 to -0.07), entorhinal
85 cortex ($\beta = -0.10$, 95% CI: -0.13 to -0.07), and insula ($\beta = -0.08$, 95% CI: -0.11 to -0.06).
86 Exploratory analyses indicated that females exhibited more pronounced changes in emotional
87 processing regions, while males showed greater changes in motor and sensory areas. Overall,
88 the findings indicate that bullying victimization is associated with widespread structural
89 differences in brain development from adolescence to early adulthood, with sex-specific
90 trajectories.

91
92
93
94
95
96
97
98
99
100
101
102
103
104

105 Introduction

106 Bullying victimization, characterized by targeted and often chronic peer aggression—
107 whether physical, verbal, or relational—is a common experience during childhood and
108 adolescence, predominantly perpetrated by school peers (1). Persistent exposure to bullying is
109 strongly associated with increased risk for depression, anxiety, suicidality, and impaired
110 cognitive and social functioning (2-4). These adverse outcomes often extend into adulthood,
111 raising concerns that bullying may be associated with disruptions in core neurodevelopmental
112 processes during a critical period of brain maturation (5).

113 Adolescence is a particularly sensitive period for brain development, marked by
114 extensive biological and psychological transformations (6). This phase involves substantial
115 reorganization of neural circuits supporting executive function, emotion regulation, social
116 cognition, and stress responsivity (7, 8). These changes are especially pronounced in
117 frontolimbic regions (e.g., prefrontal cortex, anterior cingulate cortex), parietotemporal areas
118 (e.g., superior temporal sulcus, temporoparietal junction), and subcortical structures (e.g.,
119 amygdala, hippocampus, striatum) (7, 8). While this plasticity supports adaptive development,
120 it may also render the adolescent brain particularly vulnerable to adverse environmental
121 exposures such as bullying victimization (5). Yet, how bullying victimization is associated with
122 changes in brain development over time remains poorly understood.

123 Neurobiologically, experiences of bullying victimization may influence brain
124 development through multiple interacting pathways (5). It has been linked to stress-induced
125 neuroendocrine reactivity, neuromodulation, and limbic system dysregulation, which may
126 collectively drive widespread structural brain alterations (5). These effects are mediated by
127 multiple interconnected systems, including dysregulation of the hypothalamic-pituitary-
128 adrenal (HPA) axis, heightened inflammatory responses, altered dopaminergic and
129 serotonergic signaling, oxytocin pathway disruption, and imbalances in autonomic nervous
130 system activity (9-13). Together, these systems can lead to sustained cortisol release and other
131 neurochemical changes that result in downstream alterations in neurodevelopment, particularly
132 in circuits involved in emotional, social, and cognitive functioning (5).

133 While cross-sectional structural MRI studies have offered evidence that bullying-
134 related stress may alter brain structure (14), our understanding of its association with brain
135 development over time remains limited. To date, only two longitudinal structural MRI studies
136 have begun to address this question. Menken et al. (2023), using data from the ABCD study,
137 found that children aged 9–11 exposed to bullying exhibited developmental differences,

138 including steeper increases in hippocampal and entorhinal cortex volumes, along with
139 accelerated cortical thinning in several frontal and temporal regions (15). Quinlan et al. (2020),
140 using the IMAGEN cohort, reported that adolescents exposed to peer victimization from ages
141 14 to 19 exhibited steeper declines in left putamen volume, which predicted higher anxiety
142 symptoms in early adulthood (16). However, their analysis focused on nine bilateral regions of
143 interest, potentially overlooking broader patterns of neurodevelopmental change. While both
144 studies were pioneering in establishing early longitudinal links between bullying victimization
145 and brain development, each was limited to two imaging time points, restricting the ability to
146 capture non-linear, region-specific developmental trajectories.

147 Indeed, brain development across adolescence is rarely linear (7, 8, 17). Cortical and
148 subcortical structures often follow quadratic growth patterns, including periods of acceleration,
149 deceleration, and stabilization (7, 8, 17). Two-time-point designs constrain our ability to
150 capture such inflection points and may obscure meaningful developmental variability. In
151 contrast, three-time-point longitudinal designs allow for more accurate mapping of non-linear,
152 region-specific developmental trajectories, which is particularly important as the field moves
153 toward the development of normative brain growth charts (18). Such charts may help identify
154 neurodevelopmental shifts that contribute to diverging mental health outcomes, particularly in
155 adolescents exposed to environmental stressors like bullying victimization.

156 To address this gap, this study aims to measure the association between bullying
157 victimization on cortical and subcortical brain development using structural MRI data collected
158 at three time points: ages 14, 19, and 22. Unlike prior work limited to two time points and a
159 small set of predefined regions, our study leverages three MRI time points and a whole-brain
160 approach to capture more nuanced, region-specific trajectories. We hypothesize that increased
161 bullying victimization is associated with widespread variation in brain development,
162 particularly in regions involved in emotion regulation and social processing. Specifically, we
163 expect to observe distinct patterns of volumetric change, such as decreased cortical and
164 increased subcortical volume change across adolescence and early adulthood. In addition, we
165 will conduct exploratory analyses to examine potential sex differences in bullying-related brain
166 development. Emerging evidence suggests that males and females differ in both
167 neurobiological stress responses and developmental trajectories (19, 20). By examining sex
168 differences, we aim to clarify whether the neurodevelopmental associations of bullying
169 victimization vary by sex, contributing to a more nuanced understanding of brain maturation.

170 **Materials and Methods**

171 **Participants**

172 This study used data from the IMAGEN project, a European multicenter research
173 initiative investigating how various factors influence brain development and mental health in
174 adolescents. For a comprehensive description of the project's methodology, refer to Schumann
175 et al. (21). Participants were assessed at eight sites across England, Ireland, France, and
176 Germany. Initial data were collected at age 14, with follow-up assessments conducted at ages
177 16, 19, and 22. This study specifically analyzes data from ages 14, 19, and 22; data from age
178 16 were excluded, as MRI scans were not conducted at that time point. A detailed overview of
179 recruitment procedures and inclusion/exclusion criteria is presented in eTable 1, with further
180 details available in Schumann et al. (21).

181 Written informed consent was obtained from participants and their parent/guardian
182 prior to enrollment. The IMAGEN study was approved by ethics committees at each site,
183 including King's College London, University of Nottingham, Trinity College Dublin,
184 University of Heidelberg, Technische Universität Dresden, Commissariat à l'Energie
185 Atomique et aux Energies Alternatives, and University Medical Center.

186

187 **Bullying victimization**

188 Bullying victimization was assessed using items adapted from the revised Olweus
189 Bully/Victim Questionnaire (22) at all three study timepoints (~14, ~19, and ~22 years).
190 Participants responded to four items evaluating the frequency of victimization over the past six
191 months, each rated on a 5-point Likert scale:

- 192 1. "I was bullied at school (a student/peer said or did nasty or unpleasant things to me)."
- 193 2. "I was called mean names, made fun of, or teased in a hurtful way by a student/peer."
- 194 3. "A student/peer left me out of things on purpose, excluded me from their group of friends,
195 or completely ignored me."
- 196 4. "I was hit, kicked, pushed or shoved around, or locked indoors by a student/peer."

197 Response options ranged from 1 ("never") to 5 ("three or more times a week"). Scores
198 from the four items were summed and standardized (z-scores) to generate bullying
199 victimization scores at ages 14, 19, and 22, with higher scores indicating increased frequency
200 of self-reported bullying victimization. The composite Olweus Bully/Victim Questionnaire
201 score demonstrated excellent internal consistency in the current sample (Cronbach's $\alpha = 0.89$).

202

203 **MRI Acquisition and Protocol**

204 Structural magnetic resonance imaging (MRI) data were acquired across eight
205 IMAGEN sites in Europe, all using 3T MRI systems (Siemens: 5 sites; Philips: 2 sites; General
206 Electric: 1 site). High-resolution anatomical scans were obtained using a 3D T1-weighted
207 magnetization-prepared rapid gradient echo (MPRAGE) sequence, aligned with the
208 Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol. Full details of the IMAGEN
209 MRI acquisition and quality control procedures, including scanner standardization protocols,
210 are available in Schumann et al. (21) and subsequent publications (23, 24), and are accessible
211 via the project's Standard Operating Procedures (<https://imagen-europe.org/>). In brief, T1-
212 weighted anatomical images were acquired using a 3D MPRAGE sequence (voxel size = 1.1
213 × 1.1 × 1.1 mm³; TR = 2300 ms; TE = 2.9 ms). Full acquisition parameters are provided in
214 eTable 2. All structural MRI scans underwent IMAGEN's centralized quality control
215 procedure, which included manual inspection for artifacts, data quality, and head motion (see
216 Supplemental Material). Following these procedures, 50 scans were excluded (24 at timepoint
217 1, 17 at timepoint 2, 9 at timepoint 3), resulting in a final dataset of 4,555 structural MRI scans.

218 All MRI images were processed using FreeSurfer's *recon-all* pipeline (version 5.3.0)
219 for full cortical reconstruction and subcortical segmentation (25, 26). This automated process
220 included skull stripping, intensity normalization, Talairach transformation, surface
221 reconstruction, topology correction, and anatomical labeling. Brain parcellation was performed
222 using the Desikan-Killiany-Tourville (DKT) atlas, producing 88 cortical and subcortical
223 regions of interest, from which volume metrics were extracted, along with total gray matter
224 volume (27).

225 Prior to statistical analyses, outliers were identified as values exceeding ±3 standard
226 deviations from the mean (28). These were visually inspected across timepoints to assess
227 consistency. In line with best practices, only values deemed implausible or inconsistent with
228 developmental trajectories were removed to reduce the influence of artefactual data (29).

229

230 **Statistical Analysis**

231 Mixed-effects modeling was used to investigate associations between bullying
232 victimization and longitudinal brain development from adolescence to early adulthood.
233 Analyses were conducted in R (version 4.1.1) using the *lme4* package (version 1.1-27.1) (30).
234 Model fitting followed a structured, top-down selection procedure comprising three sequential

235 stages: (1) determining the optimal developmental trajectory for each region of interest (ROI),
236 (2) specifying the random effects structure, and (3) evaluating the fixed effects of bullying
237 victimization. A complete summary of all models tested is provided in eTable 3. Model
238 selection was guided by a combination of the Akaike Information Criterion (AIC) and
239 likelihood ratio tests (LRT). A model was considered to show improved fit if it demonstrated
240 a reduction in AIC greater than 10 and an LRT p-value < 0.05, in line with established criteria
241 for mixed model comparison (31-33). All mixed-effects models were run with mean-centered
242 continuous variables.

243

244 **Step 1: Determining the Optimal Brain Region Developmental Trajectory**

245 To characterize normative patterns of brain development, we first evaluated whether a
246 linear or quadratic representation of time (indexed as months since baseline scan) provided the
247 best fit for each brain region of interest (ROI). This analysis was performed separately for all
248 88 ROI volumes, including cortical and subcortical structures. Consistent with top-down model
249 selection procedures, both models were initially specified with covariates only— sex, pubertal
250 development status (PDS), socioeconomic status (SES), stressful life events (SLE), and
251 intracranial volume (ICV)—excluding any bullying victimization terms at this stage. See
252 supplemental material for a detailed description of covariates. All models included random
253 intercepts and slopes for participants and random intercepts for scan site. In line with best
254 practices for multisite neuroimaging studies, scan site was modeled as a random effect to
255 account for variance across imaging locations (34). A quadratic time term (time²) was retained
256 only when its inclusion significantly improved model fit, allowing for modeling of nonlinear
257 neurodevelopmental trajectories commonly observed during adolescence (18).

258

259 **Step 2: Specifying the Random Effects Structure**

260 Following identification of the optimal developmental trajectory, we next determined
261 the most appropriate random effects structure. For both the linear and quadratic models, we
262 compared random intercepts-only models (R1) with models that also included random slopes
263 for time (R2). Scan site was consistently modeled as a random intercept to adjust for multisite
264 acquisition variability. These comparisons were evaluated using the same AIC and LRT
265 thresholds as in Step 1. The selected structure allowed for adequate modeling of within-subject
266 variation in brain development.

267

268 **Step 3: Testing Fixed Effects of Bullying Victimization**

269 After finalizing the model structure, we evaluated the fixed effects of bullying
270 victimization using a series of nested models. The null model (F0) included all covariates and
271 time terms but excluded any bullying-related predictors. The simple effects model (F1) added
272 the main effect of bullying victimization frequency, while the interaction model (F2) further
273 included the bullying victimization score \times time term to examine whether the association
274 between bullying and brain development varied over time. All models were estimated using
275 maximum likelihood (ML) for model fit comparison, and final parameter estimates were
276 derived using restricted maximum likelihood (REML), which provides unbiased estimates of
277 variance components by accounting for the loss of degrees of freedom when estimating fixed
278 effects (30).

279 An unstructured variance-covariance matrix was used for random effects, permitting
280 unrestricted estimation of correlations between intercepts and slopes and thus accommodating
281 individual heterogeneity in developmental trajectories (35). To control for multiple
282 comparisons, we applied a false discovery rate (FDR) correction at $q < 0.05$ using the *stats*
283 package in R (version 4.1.1) (36, 37). This correction was applied to all p-values associated
284 with the bullying victimization score main effects and bullying victimization score \times time
285 interactions in the optimally fitted models. Only results that survived FDR correction are
286 reported.

287

288 **Sex-Specific Associations Between Bullying Victimization and Brain Development**

289 Exploratory sex-specific analyses were conducted using the optimal models identified
290 during the model selection procedure described above. To test for sex-dependent effects,
291 additional interaction terms for bullying victimization score \times sex and bullying victimization
292 score \times time \times sex were added to these models (F3). As in previous steps, model fit was
293 evaluated using AIC and LRT, and FDR correction was applied to p-values associated with
294 both interaction terms. Only associations that remained statistically significant after correction
295 are reported. These analyses aimed to explore potential sex differences in neurodevelopmental
296 responses to bullying victimization during adolescence.

297 **Results**

298 **Descriptive Statistics**

299 Full demographic and clinical characteristics are presented in Table 1. Of the 4,555
300 available MRI scans, 43 were excluded due to missing bullying questionnaire data (Time 1 =

301 11, Time 2 = 30, Time 3 = 2). The final analytic sample comprised 4,512 scans from 2,094
302 participants (females: 2,171; males: 2,341), spanning an age range of 13.23 to 25.11 years
303 across three time points (see eFigure 1). Bullying victimization showed modest but statistically
304 significant rank-order stability across waves (T1–T2: $\rho = 0.24$, $p < .000001$; T2–T3: $\rho = 0.20$,
305 $p < .000001$; T1–T3: $\rho = 0.19$, $p < .000001$). Attrition analyses were conducted using baseline
306 data and are reported in the Supplementary Material.

307

Table 1: Demographic and Site Characteristics Across Three Time Points.

Variable Name	Time 1	Time 2	Time 3
N	2052	1328	1132
Sex (female %)	1009 (49.17%)	632 (47.59%)	530 (46.81%)
Age	14.44 (0.39)	19.01 (0.78)	22.56 (0.65)
OB/VQ score (range)	4-20	0-16	0-16
SES (mean)	0.71 (1.09)	-	-
Pubertal Status (mean)	3.60 (0.71)	-	-
Ethnicity (White %)	89.4%	-	-
Number of Scans at IMAGEN Site			
London	251	168	153
Northampton	343	211	169
Dublin	192	122	116
Berlin	252	118	155
Hamburg	261	181	153
Mannheim	245	155	140
Paris	253	204	124
Dresden	255	169	122

Legend: N = total number of participants assessed at each respective time point. The Olweus Bully/Victim Questionnaire (OB/VQ) is used to measure bullying victimization and bullying experiences. Pubertal status was assessed via self-report using the Pubertal Development Scale (PDS). Socioeconomic status (SES) was indexed using the family stresses subsection of the Development and Well-Being Assessment (DAWBA). Data collection for Time 1 occurred between 2008–2010, for Time 2 between 2013–2015, and for Time 3 between 2016–2019.

308

309

310 **Bullying Victimization and Brain Development**

311 Model selection fit statistics are presented in the supplemental material (eTables 1–5),
312 with the final models derived from the top-down selection procedure shown in eTable 6. Full
313 model results are provided in eTables 7–10 and eFigure 2.

314 Significant associations between bullying victimization scores and brain volume
315 development were identified in 30 regions, indicating consistent structural differences across
316 adolescence and early adulthood (Figures 1 and 2). These included widespread volume
317 reductions in cortical areas such as the orbitofrontal cortex, superior and rostral middle frontal
318 gyri, precuneus, precentral and postcentral gyri, insula, entorhinal cortex, temporal pole, and
319 regions within the parietal, occipital, and cerebellar cortices. In contrast, increased volumes
320 were observed in several limbic and subcortical structures, including the amygdala,
321 hippocampus, parahippocampal gyrus, putamen, caudate, nucleus accumbens, and frontal pole.
322 Additional volume reductions were also found in the thalamus, pallidum, and ventral
323 diencephalon.

324 Significant bullying victimization-by-time interactions were identified in
325 approximately 16 regions, indicating that bullying victimization frequency was associated with
326 altered neurodevelopmental trajectories (Figures 1 and 2). Higher levels of victimization
327 frequency were linked to accelerated volumetric growth in regions such as the amygdala,
328 hippocampus, putamen, anterior cingulate cortex, and banks of the superior temporal sulcus.
329 Conversely, reduced volumetric growth was observed in the insula, entorhinal cortex,
330 cerebellum, and visual and parietal cortices (e.g., cuneus, lingual gyrus, superior parietal
331 lobule). These findings suggest that bullying may influence not only regional brain structure
332 but also the pace of brain maturation from adolescence into early adulthood.

333

334 **Sex Differences in the Associations of Bullying Victimization on Brain Development**

335 Exploratory analyses revealed significant three-way interactions between bullying
336 victimization, sex, and time on brain volume development (eTables 11–12). These findings
337 indicate that the association between bullying victimization and age-related brain volume
338 trajectories varies by sex (Figure 3).

339 Higher bullying victimization frequency over time was linked to greater volume
340 increases in females compared to males in several subcortical and limbic regions, including the
341 bilateral parahippocampal gyrus, right caudate, left putamen, and brainstem. Conversely, males

342 showed relatively greater volume increases in regions such as the left supramarginal gyrus,
343 right pars orbitalis, right temporal pole, left ventral diencephalon, and left cerebellar cortex.

344 These results point to sex-specific patterns in the association between bullying
345 victimization and brain development, with distinct regional trajectories emerging across
346 adolescence and early adulthood.

347

348 **Discussion**

349 This three-time-point longitudinal neuroimaging study of bully victimization examined
350 the association between bullying victimization and brain development across adolescence and
351 early adulthood. The principal findings are: (1) bullying victimization frequency is
352 significantly associated with altered development in a wide range of cortical and subcortical
353 brain structures, and (2) these alterations show notable sex-specific patterns.

354 The novelty of this study lies in capturing widespread non-linear developmental brain
355 changes not observed in previous studies, highlighting that the neurodevelopmental
356 associations of bullying victimization may be more widespread than previously known (15,
357 16). These findings are robust across variables such as sex, age, MRI scanner site,
358 socioeconomic status, pubertal status, and other negative life events, suggesting that the
359 observed brain differences may be uniquely attributed to bullying victimization.

360

361 **Association Between Bullying Victimization and Brain Development**

362 ***Habit formation, emotional salience and stress regulation: striatal and subcortical systems***

363 Subcortical structures appear to be particularly sensitive to bullying victimization, with
364 significant volumetric increases observed in the structures of the basal ganglia, including the
365 caudate, putamen, and nucleus accumbens. These regions are integral to motor control,
366 emotional regulation, and reward processing (38). The observed differences in the volumes of
367 the caudate and putamen corroborate previous findings (16). Meanwhile, the discovery of
368 increased volumes in the nucleus accumbens and pallidum represents novel contributions to
369 the field.

370 Prolonged bullying may trigger neuroplastic adaptations as the brain attempts to cope.
371 Enlarged dorsal striatal structures (caudate and putamen), involved in automatic responses and
372 attention, may underlie increased striatum-dependent (“habit”) learning in bullied individuals
373 (5). These individuals often rely on coping behaviors shaped by past threats, which may be

374 maladaptive in safe contexts, contributing to social distress and difficulty adapting to new
375 environments. Victimized adolescents also show a shift toward striatal-dependent memory
376 processing, associated with cognitive inflexibility and anxiety (39). This type of memory
377 primarily involves the ventral striatum (nucleus accumbens), which plays a central role in
378 negative emotional processing and is linked to internalizing and externalizing symptoms in
379 bullied youth (40). Thus, its enlargement may reflect a heightened bias toward emotionally
380 salient memory encoding. Though less studied, the pallidum also shows volumetric disruptions
381 in this context and has been associated with depression, anxiety, and OCD (41-43). As part of
382 the cortico-striato-thalamo-cortical (CSTC) circuitry, the pallidum is critical for emotional
383 regulation, and its enlargement may reflect CSTC disruption, contributing to stress sensitivity
384 and emotional dysregulation (41, 44).

385 A novel finding, that contradicts our hypothesis was the association between increased
386 bullying exposure and reduced ventral diencephalon volume. This region, which includes the
387 hypothalamus, is essential for regulating the neuroendocrine stress response (45). Reduced
388 volume here may impair hormonal regulation, compromising the body's ability to manage
389 stress effectively (46, 47), and increasing susceptibility to anxiety, mood disorders, and other
390 stress-related conditions (48).

391

392 ***Emotional reactivity and memory biases: limbic regions***

393 Significant differences were also observed in the limbic system, particularly the
394 amygdala and hippocampus. Enlarged hippocampal volume aligns with prior findings (15),
395 while increased amygdala volume was not previously reported, possibly due to methodological
396 differences such as the binary classification of victimization status in earlier studies. It is
397 plausible that amygdala enlargement reflects heightened emotional reactivity to chronic stress
398 (49). Victimized individuals often show increased neural responses to emotional stimuli,
399 suggesting enhanced stress sensitivity (50, 51), which may contribute to elevated risk for
400 anxiety, depression, and related disorders (52, 53).

401 Hippocampal enlargement may reflect neuroplastic adaptations to prolonged stress,
402 such as increased neurogenesis or dendritic branching in response to emotionally salient
403 memories (45). These neuroplastic changes may underpin the negative emotional memory
404 biases and increased false memory recall observed in individuals who have experienced
405 bullying victimization (46). Specifically, violent and aggressive false memories have been
406 shown to be positively associated with bullying victimization (54). This heightened memory
407 processing demand could help explain the observed structural increases. Despite these findings,

408 mixed results regarding hippocampal volume call for further research to clarify its role and
409 long-term implications in bullying-related neurodevelopment.

410

411 ***Executive control, emotional regulation, and social cognition: Frontal, temporal, parietal,***
412 ***and occipital lobes***

413 Alterations were also noted in various cortical areas across the frontal, temporal,
414 parietal, and occipital lobes. In the frontal lobe, changes were observed in regions such as the
415 medial orbitofrontal cortex, superior frontal gyrus, and frontal pole. Previous research has
416 linked functional and structural alterations in these areas to bullying victimization, suggesting
417 that victims may have difficulties in regulating emotions and making decisions under stress
418 (14). Our findings support these previous studies, reinforcing the idea that bullying impacts
419 critical areas involved in executive functioning (5).

420 The temporal regions, including the superior temporal gyrus and parahippocampal
421 gyrus, showed changes that could affect memory and emotional association. Studies have
422 indicated that victims of bullying often exhibit altered temporal lobe structures, contributing to
423 difficulties in processing and recalling emotionally charged memories (5). Our results are
424 consistent with these findings, suggesting a common pathway through which bullying affects
425 memory and emotional processing (5).

426 Significant volume reductions were found in the insula, which are novel findings not
427 previously reported in the literature. Prior research has highlighted significant differences in
428 insula activity in the context of bullying victimization, but structural changes had not been
429 documented until now (55). The insula is a deep cortical structure critical for emotional
430 processing and interoceptive awareness (5). Alterations in this structure have been linked to
431 heightened sensitivity to emotional stimuli and social rejection, a common feature of bullying
432 victimization (5).

433

434 ***Environmental interpretation via perceptual, predictive, and integrative systems: parietal,***
435 ***occipital and cerebellum regions***

436 Alterations in the parietal and occipital lobes, such as the precuneus and cuneus, may
437 influence how victims process and respond to visual and spatial cues (56, 57). This can impact
438 their social interactions and stress responses (5). Previous studies have found that these regions,
439 when affected by bullying, can alter how individuals perceive and react to their environment,
440 potentially leading to social withdrawal and heightened anxiety (5). Our findings align with

441 these studies, suggesting that visual and spatial processing deficits may contribute to the social
442 challenges faced by bullied individuals (5).

443 Our study revealed a novel link between bullying victimization frequency and reduced
444 cerebellar volume, suggesting that prolonged social stress may impair cerebellar development.
445 While traditionally associated with motor coordination, the cerebellum also plays a key role in
446 social and cognitive processes essential for social interaction (58). Poor motor skills, governed
447 by cerebellar function, are strong predictors of being bullied (59), as individuals with less
448 refined motor abilities may struggle with social coordination and integration. Beyond motor
449 control, the cerebellum contributes to higher-order functions such as prediction, error-based
450 learning, and emotional recognition (58). Disruptions in these mechanisms may impair
451 interpretation of social cues, leading to negative emotional biases common in bullied
452 individuals, who often misread neutral or ambiguous interactions as hostile, thus increasing
453 their vulnerability to interpersonal difficulties and psychopathology (58, 60).

454 In summary, our findings indicate that bullying victimization is linked to widespread
455 cortical alterations affecting cognitive and emotional functioning. These structural changes
456 may contribute to the psychological and behavioral difficulties seen in victims and support a
457 neurobiological cycle in which bullying exacerbates vulnerability to further victimization and
458 long-term mental health risks.

459

460 **Sex-Specific Differences in Brain Volume Development**

461 This study identified distinct sex-specific patterns of brain volume changes associated
462 with bullying victimization frequency, suggesting that males and females may exhibit different
463 neurodevelopmental adaptations to similar social stressors. Females demonstrated relatively
464 greater volume increases in subcortical and limbic regions—specifically the bilateral
465 parahippocampal cortex, right caudate, left putamen, and brainstem—while males showed
466 increased volume predominantly in a combination of cortical and subcortical regions, including
467 the left supramarginal gyrus, right pars orbitalis, right temporal pole, left ventral diencephalon,
468 and left cerebellar cortex.

469 These divergent patterns may reflect differences in the nature of bullying typically
470 experienced by each sex. Females are more commonly exposed to relational bullying—such as
471 social exclusion, manipulation, and rumour-spreading (61)—which preferentially engages
472 limbic and paralimbic networks involved in emotional memory and social cognition (62-65).
473 In contrast, males more frequently encounter physical and overt forms of bullying, including

474 verbal aggression and threats, which may more strongly recruit sensorimotor and salience-
475 detection circuits, consistent with volumetric changes observed in regions such as the
476 cerebellum and ventral diencephalon (66-68) .

477 Together, they underscore the importance of considering sex as a moderating factor in
478 the neural associations of bullying victimization. Although these insights are promising, further
479 research is needed to elucidate the underlying mechanisms and their long-term
480 neurodevelopmental relevance.

481

482 **Neurobiological Mechanisms Linked to Brain Volume Alterations in**
483 **Bullying Victimization**

484 The region-specific brain volume changes associated with bullying victimization likely
485 reflect broader neurobiological mechanisms triggered by chronic social stress. One key system
486 implicated is the hypothalamic–pituitary–adrenal (HPA) axis, which becomes activated in
487 response to psychological stress and elevates glucocorticoid levels—a pattern observed in
488 bullied children (69-72). These glucocorticoids disproportionately affect multiple brain
489 regions, including the prefrontal cortex (PFC) and hippocampus (73). Sustained cortisol
490 exposure can impair synaptic plasticity, promote dendritic atrophy, and even lead to
491 neurodegeneration, which may underlie the reduced PFC volume observed in bullied youth
492 (74). Interestingly, although chronic stress is typically associated with hippocampal atrophy
493 (75), this study and previous research found that bullying victimization is associated with
494 increased hippocampal volume development during early life (15). This may reflect an early
495 adaptive response, where initial stress exposure temporarily enhances dendritic complexity or
496 glial activity before volume declines with prolonged stress (76, 77). Similarly, increased
497 volume in the ventral diencephalon, including the hypothalamus, may reflect stress-induced
498 plasticity within neuroendocrine circuits (78). Chronic stress enhances corticotropin-releasing
499 hormone (CRH) production, increases excitatory input, and reduces inhibitory control in the
500 paraventricular nucleus, sustaining HPA axis activation (78). These adaptations may support
501 short-term homeostasis under prolonged social threat and contribute to the observed volumetric
502 increase.

503 Beyond the HPA axis, bullying may also activate the locus coeruleus–norepinephrine
504 (LC-NE) system, a brainstem arousal network responsive to threat (79). Sustained
505 norepinephrine release is associated with increased amygdala excitability and synaptic activity
506 (80), which over time may drive structural plasticity—such as dendritic hypertrophy (81)—

507 potentially contributing to the amygdala volume increases observed in bullied adolescents. A
508 concurrent reduction in medial PFC volume—essential for top-down regulation of the LC-NE
509 system—could reflect a shift toward reflexive, emotion-driven processing (82), potentially
510 explaining heightened threat sensitivity in bullying victims (83).

511 Additionally, volumetric increases in the caudate, putamen, and nucleus accumbens
512 may result from stress-induced changes in dopaminergic signalling within mesostriatal and
513 mesolimbic pathways (84). This dopaminergic hyperactivity has been linked to structural
514 plasticity, including dendritic growth and increased spine density in medium spiny neurons—
515 cellular changes that may underlie the volumetric expansion of striatal regions (85). These
516 changes may reflect an adaptive response to repeated exposure to socially salient stressors,
517 enhancing the salience of threat cues and reinforcing habitual coping behaviors (86). Over time,
518 this plasticity could contribute to inflexible behavioral patterns and heightened sensitivity to
519 social stress observed among individuals exposed to bully victimization (39)

520 While these findings point to region-specific developmental adaptations, the
521 neurobiological mechanisms underlying altered brain development in bullied youth are
522 inherently complex and likely involve the dynamic interplay of hormonal, neuroimmune, and
523 neurotransmitter systems. Continued investigation into these pathways is essential, as
524 developing a neurobiological framework is critical for understanding the long-term impact of
525 bullying victimization.

526

527 **Limitations**

528 This study has several limitations that warrant consideration. Bullying victimization in
529 this study was measured from age 14 onward, potentially missing developmental changes from
530 earlier experiences. As a result, early influences on brain development may be
531 underrepresented, including critical periods affected by prior victimization. Future research
532 should incorporate earlier and broader longitudinal data to better capture these effects. Another
533 limitation of the current study is that we were unable to distinguish between school-based and
534 out-of-school bullying experiences, as participant educational status was not consistently
535 recorded. Future research should explore how the context of bullying may differentially impact
536 developmental trajectories. While the questionnaire included items that could reflect
537 cyberbullying, it was not specifically measured, which may have led to an underestimation of
538 victimization. Future studies should use dedicated cyberbullying measures, such as those by
539 Aricak et al. (87), to better assess its impact on brain development. Ethnicity was not included
540 as a covariate due to imbalanced representation across sites. While scan site served as a proxy

541 - with 89.4% of participants aligning with the dominant local ethnic group - this does not fully
542 capture ethnic variation. More diverse and balanced samples are needed to examine ethnicity's
543 role in bully victimization and neurodevelopment. As IMAGEN is a community-based cohort,
544 clinical diagnoses of pre-existing mental health conditions were not collected. This makes it
545 difficult to determine whether observed brain changes are driven by bullying victimization
546 alone or influenced by earlier psychiatric vulnerabilities. With only three timepoints per
547 participant, higher-order nonlinear models (e.g., cubic, biquadratic) were not feasible due to
548 the risk of overfitting and model instability (88, 89). Linear and quadratic trajectories, however,
549 are well-established in adolescent brain development (17), making them a statistically
550 appropriate and theoretically grounded choice. The sparse longitudinal sampling also limited
551 our ability to reliably test whether within-person changes in bullying victimization were
552 paralleled by changes in cortical developmental trajectories, which will be an important focus
553 for future studies using denser longitudinal designs better suited to capturing dynamic within-
554 person victimization trajectories.

555

556 **Conclusion**

557 This longitudinal MRI study demonstrates that bullying victimization is associated with
558 widespread structural differences in brain development from adolescence to early adulthood,
559 with distinct sex-specific patterns. These findings extend prior work by highlighting
560 neurodevelopmental alterations across circuits involved in stress, emotional learning, and
561 social cognition. While causality cannot be inferred, the results underscore bullying
562 victimization as a salient social experience linked to long-term variation in brain maturation
563 and provide a foundation for future neuroimaging research to explore the underlying
564 mechanisms driving mental health vulnerability.

565

566

567

568

569

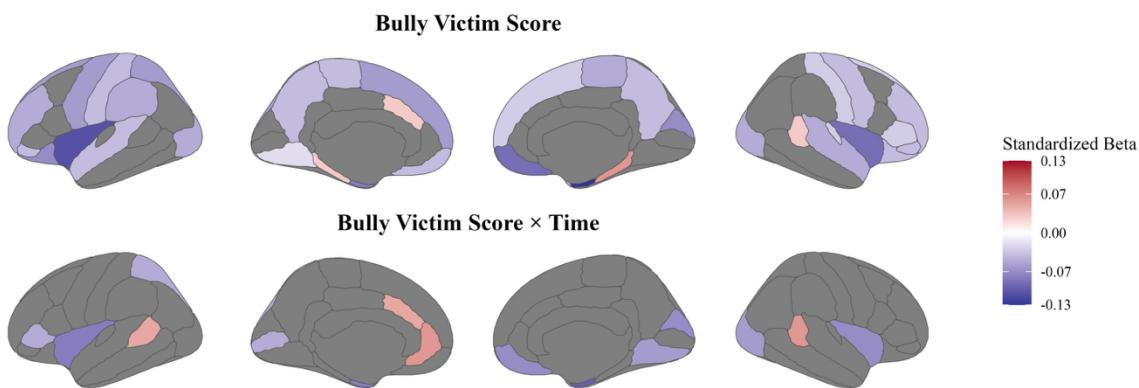
570 **Disclosures**

571 Dr Banaschewski served in an advisory or consultancy role for AGB Pharma, eye level,
572 Infectopharm, Medice, Neurim Pharmaceuticals, Oberberg GmbH and Takeda. He received
573 conference support or speaker's fee by Janssen-Cilag, Medice and Takeda. He received

574 royalties from Hogrefe, Kohlhammer, CIP Medien, Oxford University Press; the present work
575 is unrelated to these relationships. Dr Barker has received honoraria from General Electric
576 Healthcare for teaching on scanner programming courses. Dr Poustka served in an advisory or
577 consultancy role for Roche and Viforphan and received speaker's fee by Shire. She received
578 royalties from Hogrefe, Kohlhammer and Schattauer. The present work is unrelated to the
579 above grants and relationships. The other authors report no biomedical financial interests or
580 potential conflicts of interest.

581

582 **Acknowledgments**

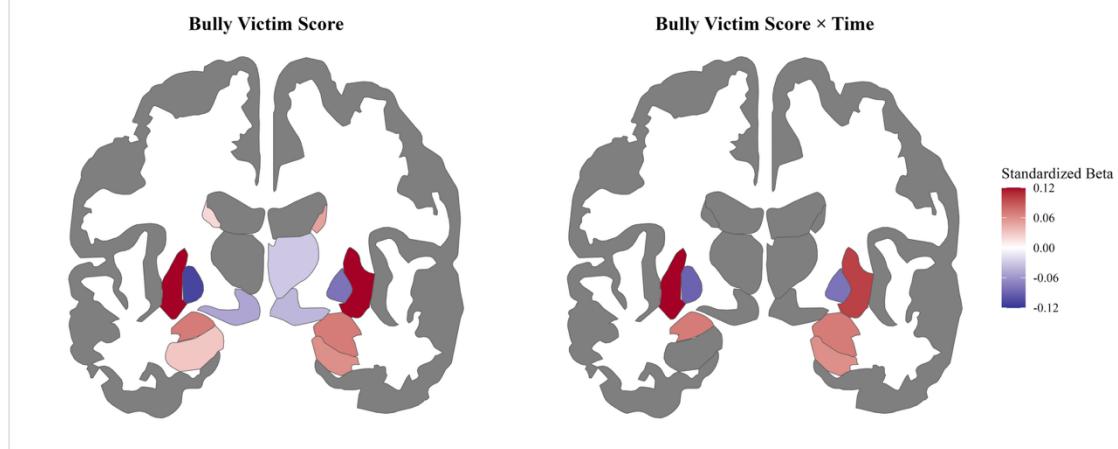

583 This work received support from the following sources: the European Union-funded
584 FP6 Integrated Project IMAGEN (Reinforcement-related behaviour in normal brain function
585 and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced
586 Grant 'STRATIFY' (Brain network based stratification of reinforcement-related disorders)
587 (695313), Horizon Europe 'environMENTAL', grant no: 101057429, UK Research and
588 Innovation (UKRI) Horizon Europe funding guarantee (10041392 and 10038599), Human
589 Brain Project (HBP SGA 2, 785907, and HBP SGA 3, 945539), the Chinese government via
590 the Ministry of Science and Technology (MOST). The German Center for Mental Health
591 (DZPG), the Bundesministerium für Bildung und Forschung (BMBF grants 01GS08152;
592 01EV0711; Forschungsnetz AERIAL 01EE1406A, 01EE1406B; Forschungsnetz IMAC-Mind
593 01GL1745B), the Deutsche Forschungsgemeinschaft (DFG project numbers 458317126
594 [COPE], 186318919 [FOR 1617], 178833530 [SFB 940], 386691645 [NE 1383/14-1],
595 402170461 [TRR 265], 454245598 [IRTG 2773]), the Medical Research Foundation and
596 Medical Research Council (grants MR/R00465X/1 and MR/S020306/1), the National
597 Institutes of Health (NIH) funded ENIGMA-grants 5U54EB020403-05, 1R56AG058854-01
598 and U54 EB020403 as well as NIH R01DA049238, the National Institutes of Health, Science
599 Foundation Ireland (16/ERCD/3797). NSFC grant 82150710554. Further support was provided
600 by grants from: - the ANR (ANR-12-SAMA-0004, AAPG2019 - GeBra), the Eranet Neuron
601 (AF12-NEUR0008-01 - WM2NA; and ANR-18-NEUR0002-01 - ADORé), the Fondation de
602 France (00081242), the Fondation pour la Recherche Médicale (DPA20140629802), the
603 Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives
604 (MILDECA), the Assistance-Publique-Hôpitaux-de-Paris and INSERM (interface grant), Paris
605 Sud University IDEX 2012, the Fondation de l'Avenir (grant AP-RM-17-013), the Fédération
606 pour la Recherche sur le Cerveau.

607

608 **Figure Titles and Legends**

609

610 **Figure 1:** Magnitude of Effect Sizes for Bullying victimization and Bullying victimization-by-
611 Age on Cortical Brain Regions.

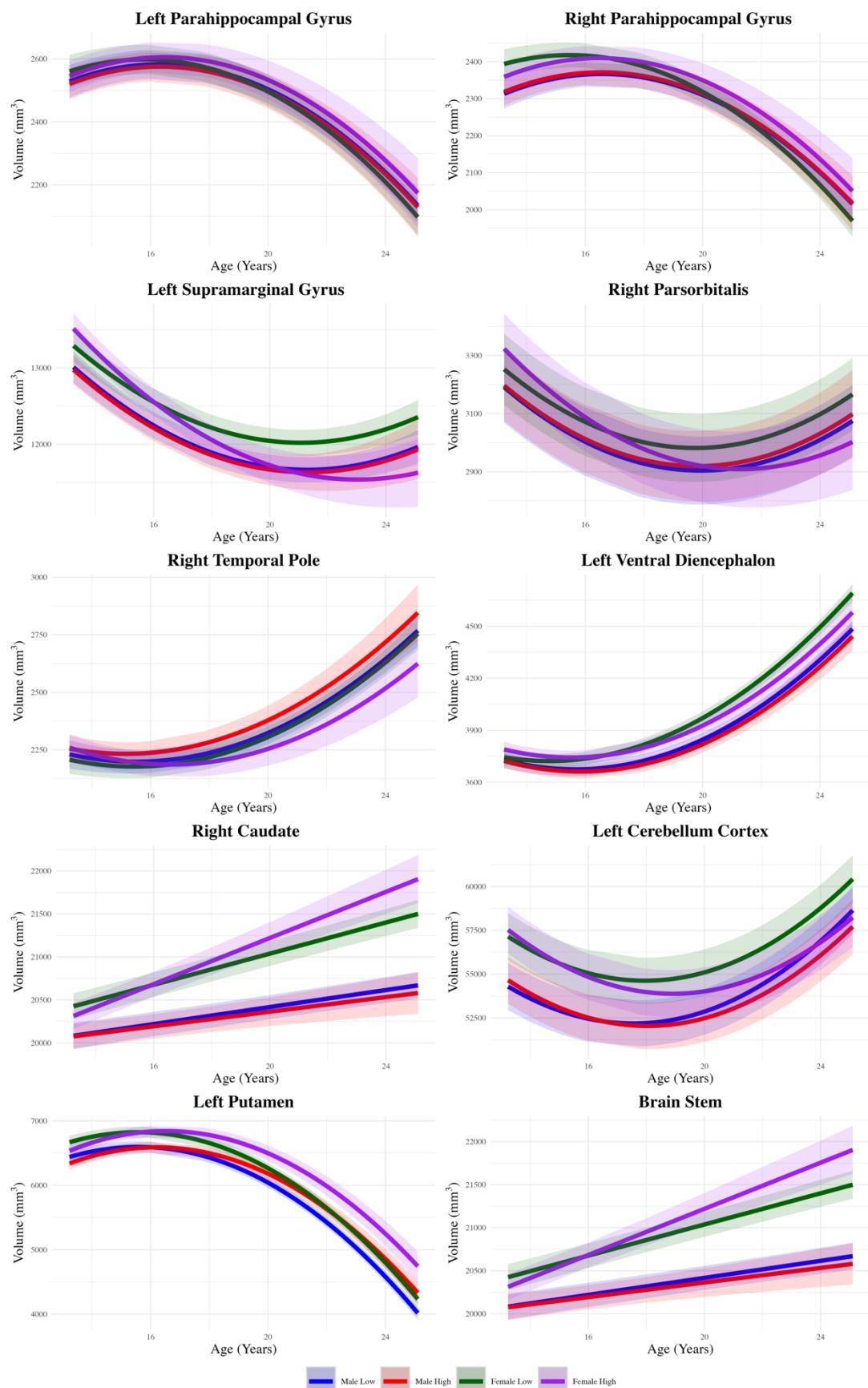


612

613 **Figure 1 legend:** This figure presents standardized effect sizes (β) for the associations between
614 bullying victimization score and the bullying victimization score-by-time interaction on
615 cortical brain volumes. The top panel displays the effect sizes for the main effect of bullying
616 victimization scores, while the bottom panel illustrates the effect sizes for the interaction
617 between bullying victimization and time. The color scale represents standardized β values, with
618 warmer shades indicating stronger positive or negative effects. These visualizations highlight
619 cortical regions where bullying victimization and its interaction with time are significantly
620 linked to changes in brain volume development.

621

622 **Figure 2:** Magnitude of Effect Sizes for Bullying victimization and Bullying victimization-by-
623 Age on Subcortical Brain Regions.



624

625 **Figure 2 legend:** This figure displays standardized effect sizes (β) for the associations between
626 bullying victimization score and bullying victimization score-by-time on subcortical brain
627 volumes. The left panel illustrates the effect sizes for the main effect of bullying victimization
628 scores, while the right panel shows the effect sizes for the interaction between bullying
629 victimization and time. The color scale reflects standardized β values, with warmer colors
630 indicating larger effect sizes in either the positive or negative direction. These visualizations
631 highlight subcortical regions where bullying victimization and its interaction with time are
632 significantly associated with volume development.

633

634 **Figure 3:** Sex Differences in the Impact of Peer Victimization on Brain Development.

636 **Figure 3 legend:** The analysis had peer victimization as a sum score, but for visualization
637 purposes, these scores were grouped into four categories. "Male Low" represents males in the
638 lowest quartile of bullying victim scores, shown in red. "Male High" represents males in the
639 highest quartile of bullying victim scores, shown in blue. "Female Low" represents females in
640 the lowest quartile of bullying victim scores, shown in dark green. "Female High" represents
641 females in the highest quartile of bullying victim scores, shown in purple. The shaded region
642 around each line represents the 95% confidence interval for the predicted values.

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670
671

References

1. Olweus D, Pellegrini AD. Bullying at school. *Aggressive behavior*. 1996;22(2):150-4.
2. Arseneault L. Annual Research Review: The persistent and pervasive impact of being bullied in childhood and adolescence: implications for policy and practice. *Journal of Child Psychology and Psychiatry*. 2018;59(4):405-21.
3. Copeland WE, Wolke D, Angold A, Costello EJ. Adult psychiatric outcomes of bullying and being bullied by peers in childhood and adolescence. *JAMA psychiatry*. 2013;70(4):419-26.
4. Lereya ST, Copeland WE, Costello EJ, Wolke D. Adult mental health consequences of peer bullying and maltreatment in childhood: two cohorts in two countries. *Lancet Psychiatry*. 2015;2(6):524-31.
5. Palamarchuk IS, Vaillancourt T. Integrative brain dynamics in childhood bullying victimization: cognitive and emotional convergence associated with stress psychopathology. *Frontiers in integrative neuroscience*. 2022;16:782154.
6. Spear LP. Neurodevelopment during adolescence. Neurodevelopmental mechanisms in psychopathology. 2003;62-83.
7. Tamnes CK, Herting MM, Goddings AL, Meuwese R, Blakemore SJ, Dahl RE, et al. Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. *J Neurosci*. 2017;37(12):3402-12.
8. Mills KL, Goddings AL, Herting MM, Meuwese R, Blakemore SJ, Crone EA, et al. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. *Neuroimage*. 2016;141:273-81.
9. Danese A, J Lewis S. Psychoneuroimmunology of Early-Life Stress: The Hidden Wounds of Childhood Trauma? *Neuropsychopharmacology*. 2017;42(1):99-114.
10. Vaillancourt T, Hymel S, McDougall P. The Biological Underpinnings of Peer Victimization: Understanding Why and How the Effects of Bullying Can Last a Lifetime. *Theory Into Practice*. 2013;52(4):241-8.
11. Hostinar CE, Gunnar MR. Social support can buffer against stress and shape brain activity. *AJOB neuroscience*. 2015;6(3):34-42.
12. McLaughlin KA, Sheridan MA, Lambert HK. Childhood adversity and neural development: deprivation and threat as distinct dimensions of early experience. *Neurosci Biobehav Rev*. 2014;47:578-91.
13. Tottenham N, Galván A. Stress and the adolescent brain: Amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. *Neurosci Biobehav Rev*. 2016;70:217-27.
14. Ke T, De Simoni S, Barker E, Smith P. The association between peer-victimisation and structural and functional brain outcomes: A systematic review. *JCPP Advances*. 2022;2(2):e12081.
15. Menken MS, Rodriguez Rivera PJ, Isaiah A, Ernst T, Cloak CC, Chang L. Longitudinal alterations in brain morphometry mediated the effects of bullying victimization on cognitive development in preadolescents. *Dev Cogn Neurosci*. 2023;61:101247.
16. Quinlan EB, Barker ED, Luo Q, Banaschewski T, Bokde AL, Bromberg U, et al. Peer victimization and its impact on adolescent brain development and psychopathology. *Molecular Psychiatry*. 2020;25(11):3066-76.
17. Vijayakumar N, Allen NB, Youssef G, Dennison M, Yücel M, Simmons JG, et al. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. *Hum Brain Mapp*. 2016;37(6):2027-38.

719 18. Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al.
720 Brain charts for the human lifespan. *Nature*. 2022;604(7906):525-33.

721 19. Cserveska A, Stroup ML, Etkin A, Nagel BJ. The effects of age, sex, and hormones on
722 emotional conflict-related brain response during adolescence. *Brain and cognition*.
723 2015;99:135-50.

724 20. Whittle S, Yücel M, Yap MB, Allen NB. Sex differences in the neural correlates of
725 emotion: evidence from neuroimaging. *Biological psychology*. 2011;87(3):319-33.

726 21. Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Büchel C, et al. The
727 IMAGEN study: reinforcement-related behaviour in normal brain function and
728 psychopathology. *Molecular psychiatry*. 2010;15(12):1128-39.

729 22. Olweus D. Revised Olweus bully/victim questionnaire. *Journal of Psychopathology*
730 and Behavioral Assessment

731 23. Burt KB, Whelan R, Conrod PJ, Banaschewski T, Barker GJ, Bokde ALW, et al.
732 Structural brain correlates of adolescent resilience. *Journal of Child Psychology and*
733 *Psychiatry*. 2016;57(11):1287-96.

734 24. Sibilia F, Jost-Mousseau C, Banaschewski T, Barker GJ, Büchel C, Desrivière S, et al.
735 The relationship between negative life events and cortical structural connectivity in
736 adolescents. *IBRO Neuroscience Reports*. 2024;16:201-10.

737 25. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain
738 segmentation: automated labeling of neuroanatomical structures in the human brain. *Neuron*.
739 2002;33(3):341-55.

740 26. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al.
741 Automatically parcellating the human cerebral cortex. *Cereb Cortex*. 2004;14(1):11-22.

742 27. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An
743 automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral
744 based regions of interest. *Neuroimage*. 2006;31(3):968-80.

745 28. Iglewicz B, Hoaglin DC. Volume 16: how to detect and handle outliers: Quality Press;
746 1993.

747 29. Massara P, Asrar A, Bourdon C, Ngari M, Keown-Stoneman CDG, Maguire JL, et al.
748 New approaches and technical considerations in detecting outlier measurements and
749 trajectories in longitudinal children growth data. *BMC Med Res Methodol*. 2023;23(1):232.

750 30. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using
751 lme4. *Journal of Statistical Software*. 2015;67(1):1 - 48.

752 31. Bohon C, Welch H. Quadratic relations of BMI with depression and brain volume in
753 children: Analysis of data from the ABCD study. *Journal of psychiatric research*.
754 2021;136:421-7.

755 32. Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in
756 model selection. *Sociological methods & research*. 2004;33(2):261-304.

757 33. Lewis F, Butler A, Gilbert L. A unified approach to model selection using the likelihood
758 ratio test. *Methods in ecology and evolution*. 2011;2(2):155-62.

759 34. Bayer JMM, Dinga R, Kia SM, Kottaram AR, Wolfers T, Lv J, et al. Accommodating
760 site variation in neuroimaging data using normative and hierarchical Bayesian models.
761 *NeuroImage*. 2022;264:119699.

762 35. Verbeke G. Linear mixed models for longitudinal data. *Linear mixed models in*
763 *practice*: Springer; 1997. p. 63-153.

764 36. Team RC. R: A Language and Environment for Statistical Computing. Vienna, Austria:
765 R Foundation for Statistical Computing; 2024.

766 37. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
767 powerful approach to multiple testing. *Journal of the Royal statistical society: series B*
768 *(Methodological)*. 1995;57(1):289-300.

769 38. Young CB, Reddy V, Sonne J. Neuroanatomy, basal ganglia. StatPearls [Internet]:
770 StatPearls Publishing; 2023.

771 39. Lago T, Davis A, Grillon C, Ernst M. Striatum on the anxiety map: Small detours into
772 adolescence. *Brain research*. 2017;1654:177-84.

773 40. Telzer EH, Fowler CH, Davis MM, Rudolph KD. Hungry for inclusion: Exposure to
774 peer victimization and heightened social monitoring in adolescent girls. *Development and*
775 *psychopathology*. 2020;32(4):1495-508.

776 41. Zhang S, Zhang Y, Ma W, Qi Z, Wang Y, Tao Q. Neural correlates of negative emotion
777 processing in subthreshold depression. *Social Cognitive and Affective Neuroscience*.
778 2022;17(7):655-61.

779 42. Chang CH, Grace AA. Amygdala-ventral pallidum pathway decreases dopamine
780 activity after chronic mild stress in rats. *Biol Psychiatry*. 2014;76(3):223-30.

781 43. Boedhoe PS, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, et al. Distinct
782 subcortical volume alterations in pediatric and adult OCD: a worldwide meta-and mega-
783 analysis. *American Journal of Psychiatry*. 2017;174(1):60-9.

784 44. Zhang W, Provensi G, Maffei A. New challenges and perspectives in emotion
785 regulation and processing. *Frontiers in Behavioral Neuroscience*. 2022;16:1006627.

786 45. De Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease.
787 *Nature reviews neuroscience*. 2005;6(6):463-75.

788 46. Esmaeel TEZ, Abdelghany HS, Mounir SM, Rasekh AI, Mahmoud HAA, Allam
789 MFAB. The utility of volumetric MRI in assessment of volume changes in ventral
790 diencephalon in autistic children. *Egyptian Journal of Radiology and Nuclear Medicine*.
791 2023;54(1):173.

792 47. Ozgen Saydam B, Yildiz BO. Polycystic ovary syndrome and brain: an update on
793 structural and functional studies. *The Journal of Clinical Endocrinology & Metabolism*.
794 2021;106(2):e430-e41.

795 48. Jadambaa A, Thomas HJ, Scott JG, Graves N, Brain D, Pacella R. The contribution of
796 bullying victimisation to the burden of anxiety and depressive disorders in Australia.
797 *Epidemiology and Psychiatric Sciences*. 2020;29:e54.

798 49. Forster GL, Simons RM, Baugh LA. Revisiting the role of the amygdala in
799 posttraumatic stress disorder. The amygdala-where emotions shape perception, learning and
800 memories: InTechOpen, London; 2017. p. 67585.

801 50. Swartz JR, Carranza AF, Knodt AR. Amygdala activity to angry and fearful faces
802 relates to bullying and victimization in adolescents. *Social Cognitive and Affective*
803 *Neuroscience*. 2019;14(10):1027-35.

804 51. Yamamoto T, Toki S, Siegle GJ, Takamura M, Takaishi Y, Yoshimura S, et al.
805 Increased amygdala reactivity following early life stress: a potential resilience enhancer role.
806 *BMC Psychiatry*. 2017;17(1):27.

807 52. Ye Z, Wu D, He X, Ma Q, Peng J, Mao G, et al. Meta-analysis of the relationship
808 between bullying and depressive symptoms in children and adolescents. *BMC Psychiatry*.
809 2023;23(1):215.

810 53. Dantchev S, Hickman M, Heron J, Zammit S, Wolke D. The independent and
811 cumulative effects of sibling and peer bullying in childhood on depression, anxiety, suicidal
812 ideation, and self-harm in adulthood. *Frontiers in psychiatry*. 2019;10:651.

813 54. Vannucci M, Nocentini A, Mazzoni G, Menesini E. Recalling unpresented hostile
814 words: False memories predictors of traditional and cyberbullying. *European Journal of*
815 *Developmental Psychology*. 2012;9(2):182-94.

816 55. Cubillo A. Neurobiological correlates of the social and emotional impact of peer
817 victimization: A review. *Frontiers in psychiatry*. 2022;13:866926.

818 56. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and
819 behavioural correlates. *Brain*. 2006;129(3):564-83.

820 57. Grill-Spector K, Malach R. The human visual cortex. *Annu Rev Neurosci*.
821 2004;27(1):649-77.

822 58. Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. *Social*
823 *cognitive and affective neuroscience*. 2020;15(5):599-613.

824 59. Bejerot S, Plenty S, Humble A, Humble MB. Poor motor skills: A risk marker for bully
825 victimization. *Aggressive Behavior*. 2013;39(6):453-61.

826 60. Franzen M, de Jong PJ, Veling W, aan het Rot M. Victims of bullying: Emotion
827 recognition and understanding. *Frontiers in psychology*. 2021;12:729835.

828 61. Useche SA, Valle-Escolano R, Valle E, Colomer-Pérez N. Gender differences in
829 teenager bullying dynamics and predictors of peer-to-peer intimidation. *Heliyon*.
830 2023;9(9):e20243.

831 62. Aminoff EM, Kveraga K, Bar M. The role of the parahippocampal cortex in cognition.
832 *Trends Cogn Sci*. 2013;17(8):379-90.

833 63. Bhanji JP, Delgado MR. The social brain and reward: social information processing in
834 the human striatum. *Wiley Interdiscip Rev Cogn Sci*. 2014;5(1):61-73.

835 64. Delgado MR, Nearing KI, Ledoux JE, Phelps EA. Neural circuitry underlying the
836 regulation of conditioned fear and its relation to extinction. *Neuron*. 2008;59(5):829-38.

837 65. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress
838 responses. *Nature Reviews Neuroscience*. 2009;10(6):397-409.

839 66. Ben-Shabat E, Matyas TA, Pell GS, Brodtmann A, Carey LM. The Right
840 Supramarginal Gyrus Is Important for Proprioception in Healthy and Stroke-Affected
841 Participants: A Functional MRI Study. *Front Neurol*. 2015;6:248.

842 67. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, et
843 al. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on
844 cerebellar involvement in movement. *Cerebellum*. 2012;11(2):457-87.

845 68. Martinez-Ferre A, Martinez S. Molecular Regionalization of the Diencephalon.
846 *Frontiers in Neuroscience*. 2012;Volume 6 - 2012.

847 69. Ouellet-Morin I, Cantave C, Paquin S, Geoffroy MC, Brendgen M, Vitaro F, et al.
848 Associations between developmental trajectories of peer victimization, hair cortisol, and
849 depressive symptoms: a longitudinal study. *Journal of Child Psychology and Psychiatry*.
850 2021;62(1):19-27.

851 70. Vaillancourt T, Duku E, Becker S, Schmidt LA, Nicol J, Muir C, et al. Peer
852 victimization, depressive symptoms, and high salivary cortisol predict poorer memory in
853 children. *Brain and Cognition*. 2011;77(2):191-9.

854 71. Kliewer W, Sosnowski DW, Noh H, McGuire K, Wright AW. Peer victimization and
855 cortisol production in children and adolescents: A systematic review. *Journal of Applied*
856 *Biobehavioral Research*. 2019;24(4):e12172.

857 72. Murphy F, Nasa A, Cullinane D, Raajakesary K, Gazzaz A, Sooknarine V, et al.
858 Childhood Trauma, the HPA Axis and Psychiatric Illnesses: A Targeted Literature Synthesis.
859 *Frontiers in Psychiatry*. 2022;Volume 13 - 2022.

860 73. Quax RA, Manenschijn L, Koper JW, Hazes JM, Lamberts SWJ, van Rossum EFC, et
861 al. Glucocorticoid sensitivity in health and disease. *Nature Reviews Endocrinology*.
862 2013;9(11):670-86.

863 74. Krasner H, Ong CV, Hewitt P, Vida TA. From Stress to Synapse: The Neuronal
864 Atrophy Pathway to Mood Dysregulation. *Int J Mol Sci*. 2025;26(7).

865 75. Vellapandian C. Hypothalamic-Pituitary-Adrenal (HPA) Axis: Unveiling the Potential
866 Mechanisms Involved in Stress-Induced Alzheimer's Disease and Depression. *Cureus*.
867 2024;16(8):e67595.

868 76. Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G, et al.
869 Neuropathology of stress. *Acta Neuropathol.* 2014;127(1):109-35.

870 77. LaDage LD, McCormick GL, Robbins TR, Longwell AS, Langkilde T. The effects of
871 early-life and intergenerational stress on the brain. *Proc Biol Sci.* 2023;290(2011):20231356.

872 78. Herman JP, Tasker JG. Paraventricular Hypothalamic Mechanisms of Chronic Stress
873 Adaptation. *Front Endocrinol (Lausanne).* 2016;7:137.

874 79. Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C,
875 Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related
876 Disorders. *Biological Psychiatry.* 2022;91(9):786-97.

877 80. Giustino TF, Ramanathan KR, Totty MS, Miles OW, Maren S. Locus Coeruleus
878 Norepinephrine Drives Stress-Induced Increases in Basolateral Amygdala Firing and Impairs
879 Extinction Learning. *J Neurosci.* 2020;40(4):907-16.

880 81. Padival M, Quinette D, Rosenkranz JA. Effects of repeated stress on excitatory drive
881 of basal amygdala neurons in vivo. *Neuropsychopharmacology.* 2013;38(9):1748-62.

882 82. Arnsten AFT, Raskind MA, Taylor FB, Connor DF. The effects of stress exposure on
883 prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress
884 disorder. *Neurobiology of Stress.* 2015;1:89-99.

885 83. Kellij S, Lodder GMA, van den Bedem N, Güroğlu B, Veenstra R. The Social
886 Cognitions of Victims of Bullying: A Systematic Review. *Adolescent Research Review.*
887 2022;7(3):287-334.

888 84. Baik J-H. Stress and the dopaminergic reward system. *Experimental & Molecular
889 Medicine.* 2020;52(12):1879-90.

890 85. Fasano C, Bourque MJ, Lapointe G, Leo D, Thibault D, Haber M, et al. Dopamine
891 facilitates dendritic spine formation by cultured striatal medium spiny neurons through both
892 D1 and D2 dopamine receptors. *Neuropharmacology.* 2013;67:432-43.

893 86. McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to
894 socioeconomic status, health, and disease. *Ann N Y Acad Sci.* 2010;1186:190-222.

895 87. Aricak T, Siyahhan S, Uzunhasanoglu A, Saribeyoglu S, Ciplak S, Yilmaz N, et al.
896 Cyberbullying among Turkish adolescents. *Cyberpsychology & behavior.* 2008;11(3):253-61.

897 88. Singer JD, Willett JB. Applied longitudinal data analysis: Modeling change and event
898 occurrence. New York, NY, US: Oxford University Press; 2003. xx, 644-xx, p.

899 89. Vijayakumar N, Mills KL, Alexander-Bloch A, Tamnes CK, Whittle S. Structural brain
900 development: A review of methodological approaches and best practices. *Developmental
901 Cognitive Neuroscience.* 2018;33:129-48.

902