

1 **Title:** Optimization of systemic AAV9 gene therapy in Niemann-Pick disease, type C1 mice
2

3 **Running Title:** Systemic AAV9 gene therapy in *Npc1*^{mIN} mice
4

5 **Summary Blurb:** Systemic AAV9-h*NPC1* gene therapy in null *Npc1*^{mIN} mice at higher doses or with
6 earlier administration and treatment of hypomorphic *Npc1*^{11061T} mice delays disease progression and
7 increases lifespan.
8

9 **Authors:** Avani V. Mylvara^{1,2*}, Alana L. Gibson^{2,3*}, Tansy Gu^{2,4*}, Cristin D. Davidson^{1,2+}, Arturo A. Incao²,
10 Katerina Melnyk¹, Susan R. Gembic¹, Dominick Pierre-Jacques⁵, Stephanie M. Cologna⁵, Charles P. Venditti²,
11 Forbes D. Porter¹, William J. Pavan²
12

13 ¹Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department
14 of Human Health and Services, Bethesda, MD; ²National Human Genome Research Institute, National Institutes of Health,
15 Department of Human Health and Services, Bethesda, MD; ³Howard Hughes Medical Institute, Department of Cellular and
16 Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego,
17 CA; ⁴University of North Carolina, Chapel Hill, NC; ⁵University of Illinois Chicago, Chicago, IL
18 *Indicates equal contribution
19

20 **Author Contributions**

- 21 • AVM – data curation, formal analysis, investigation, methodology, validation, visualization, writing –
22 original draft, writing – reviewing & editing (0000-0002-8741-4008)
- 23 • ALG – data curation, formal analysis, investigation, validation, writing – reviewing & editing (0000-
24 0003-2247-7064)
- 25 • TG – data curation, formal analysis, investigation, validation, writing – reviewing & editing (0000-
26 0002-0653-0892)
- 27 • CDD – conceptualization, data curation, investigation, project administration, supervision, validation,
28 visualization, writing – original draft, writing – reviewing & editing (0000-0002-5508-8113)
- 29 • AAI – investigation, methodology (0000-0001-6801-4562)
- 30 • KM – formal analysis, investigation, validation, visualization, writing – reviewing & editing (0000-
31 0001-9167-5801)
- 32 • SG – formal analysis, investigation, validation, writing – reviewing & editing
- 33 • DP-J – data curation, formal analysis, investigation, methodology, visualization, writing -reviewing &
34 editing (0009-0009-1272-0607)
- 35 • SMC – conceptualization, funding acquisition, methodology, project administration, resources,
36 supervision, writing – reviewing & editing (0000-0002-3541-3361)
- 37 • CPV – methodology, ideas, writing – reviewing & editing (0000-0001-6599-1253)
- 38 • FDP – project administration, supervision, funding acquisition, resources, writing – review & editing
39 (0000-0001-9397-0046)
- 40 • WJP – conceptualization, project administration, supervision, funding acquisition, resources (0000-
41 0001-8281-5120)

42
43 ***Corresponding Author (Cristin Davidson)**

44 **Abstract:**

45
46 Niemann-Pick disease, type C1 (NPC1) is a rare, fatal neurodegenerative disorder caused by pathological
47 variants in *NPC1*, which encodes a lysosomal cholesterol transporter. FDA-approved treatments are limited
48 and do not target the underlying genetic defect. Both systemic and central nervous system (CNS) delivery
49 of AAV9-h*NPC1* have shown significant disease amelioration in NPC1 murine models. To assess the
50 impact of dose in null *Npc1*^{m1N/m1N} mice, we systemically administered three different doses of AAV9-
51 h*NPC1* at 4 weeks old. Then, to assess the impact of age, we administered the medium dose before
52 phenotypic onset or at early- or late-stage of disease progression (4, 6 or 8 weeks old, respectively). Higher
53 vector doses and earlier treatment were associated with significantly increased lifespan, slower disease
54 progression, and enhanced CNS transduction. In *Npc1*^{II061T/II061T} mice, a model recapitulating a common
55 human hypomorphic variant, similar benefits ensued. Our findings help define dose ranges, treatment ages,
56 and efficacy in hypomorphic models of NPC1 deficiency and suggest that higher doses of AAV9-h*NPC1*
57 in pre-symptomatic disease states are likely to yield better outcomes in NPC1 individuals.

58
59 **Introduction:**

60
61 Niemann-Pick disease, type C (NPC) is a rare, fatal neurodegenerative disease with an incidence of ~1 in
62 100,000 live births [1]. This autosomal recessive lysosomal storage disorder is marked by unesterified
63 cholesterol and sphingolipid accumulation in the lysosome, the latter of which is especially prominent in
64 neural tissue. At least 95% of NPC1 individuals have disease associated variants in the integral membrane-
65 bound NPC1 protein located in the lysosome (NPC1 disease, OMIM #257220). The remaining individuals
66 have pathological variants in the NPC2 protein (NPC2 disease, OMIM #607625), a soluble lysosomal
67 protein that transfers unesterified cholesterol to NPC1 [2]. Clinical presentation of both forms of the disease
68 are similar, where loss of function of NPC1 or NPC2 results in intracellular accumulation of unesterified
69 cholesterol and glycosphingolipids [1, 3-7]. Disease severity and onset is highly variable, affecting infants,
70 children, and adults; however, the classical presentation of NPC1 is most often observed in school-age
71 children and typically includes progressive cerebellar ataxia, vertical supranuclear gaze palsy, gelastic
72 cataplexy, motor deficits, and cognitive impairment as well as visceral manifestations like
73 hepatosplenomegaly [8, 9]. Miglustat, a glycosphingolipid synthesis inhibitor, is approved for treatment for
74 NPC outside the US. Until recently, there were no Food and Drug Administration (FDA) approved therapies
75 for NPC individuals. Then, in September 2024, the FDA approved arimoclomol (Miplyffa, in combination
76 with miglustat) and levacetylleucine (Aqneursa) [10]. Though these and other investigational therapeutics
77 provide some amelioration, all fail to address the root cause of the disorder – the absence of functional
78 NPC1 protein that leads to morbidity and mortality [11-15]. Gene therapy can provide replacement of the
79 dysfunctional NPC1 protein to treat the disease [16, 17].

80
81 Many studies have demonstrated that adeno-associated viral (AAV) gene therapy can successfully treat
82 monogenic and rare diseases in pre-clinical models [18-23]. AAVs are already approved for treatment of
83 individuals with disorders such as Spinal Muscular Atrophy (SMA1; onasemnogene abeparvovec-xioi [24-
84 26]), RPE65 mutation associated retinal dystrophy (voretigene neparvovec-rzyl [27, 28]), and aromatic L-
85 amino acid decarboxylase (AADC; eladocagene exuparvovec-tneq [29]). AAV9 is well documented to
86 cross the blood-brain barrier (BBB) and transduce cells of the central nervous system (CNS) [30-34]. Given
87 the devastating neurological impact of NPC1, gene therapy targeting the CNS is imperative. Of note, AAV9
88 also transduces multiple other organ systems, including the liver and peripheral nerves, that are implicated
89 in NPC1 disease [8, 9, 35-41].

90
91 We and others have previously demonstrated that AAV9 vectors can effectively improve survival and delay
92 disease progression in the null *Npc1*^{m1N/m1N} (*Npc1*^{m1N}, single allele notation for homozygosity) murine
93 model of NPC1 deficiency [18, 42-46]. *Npc1*^{m1N} mice have a premature stop codon in the *Npc1* gene,

94 leading to the production of truncated, non-functional NPC1 protein and resulting in a severe disease
95 phenotype [18, 42-51]. Both direct CNS administration (intracerebroventricular or intracisternal magna)
96 [43, 45] and systemic administration (retro-orbital or intracardiac) [18, 42, 44] have successfully
97 ameliorated disease in these mice. Greater success has been noted when using dual routes of CNS
98 administration or administering higher doses of vector to the CNS [45, 46]. We and others have
99 demonstrated that ubiquitous promoters provide greater disease correction in *Npc1^{mIN}* mice as compared to
100 neuron-specific promoters [18, 46]. Further optimization studies have highlighted the therapeutic potential
101 of novel capsids to improve CNS transduction [44].
102

103 Many preclinical gene therapy studies in *Npc1^{mIN}* mice have targeted neonates [42, 43, 45, 46]. Previously,
104 we administered AAV9 vectors at 4 weeks old, before onset of phenotypic signs [18, 44]. The question
105 remains whether late(r) intervention can still be effective following diagnoses in individuals after disease
106 onset. Previous clinical studies for aromatic L-amino acid decarboxylase deficiency, a rare pediatric genetic
107 disorder, suggest that AAV gene therapy is universally beneficial but treatment at a younger age was
108 associated with greater benefits [29]. Intervention prior to clinical onset of neurologic symptoms in NPC is
109 currently challenging because NPC1 is not routinely screened for in newborns and the average diagnostic
110 delay remains ~4.1 years [52-55]. However, early intervention prior to neurological onset might be possible
111 in familial cases and after diagnosis when there is infantile presentation with fetal ascites and liver disease
112 [1, 56-58].
113

114 More than 600 pathogenic or likely pathogenic NPC1 variants have been described, most of which are
115 missense mutations [59-61]. One of the most prevalent variants is a missense mutation resulting in an amino
116 acid substitution (p.I1061T). The NPC1 p.I1061T protein misfolds and undergoes endoplasmic reticulum
117 associated degradation (ERAD) [62-64]. A knock-in, hypomorphic *Npc1^{I1061T}* allele was generated to
118 recapitulate the human disorder and results in a slightly protracted disease course compared to the more
119 severe *Npc1^{mIN}* mouse model [65]. To assess whether residual NPC1 protein with compromised stability
120 affected gene therapy treatment, we evaluated efficacy of gene therapy in *Npc1^{I1061T/I1061T}* mice (*Npc1^{I1061T}*,
121 single allele notation for homozygosity). We investigated and confirmed that residual NPC1 protein with
122 compromised stability did not interfere with the efficacy of gene therapy.
123

124 In this paper we build on our previous work [18, 44], using systemic administration of an AAV9-elongation
125 factor 1α (shortened)-h*NPC1* (AAV9-EF1a(s)-h*NPC1*) vector to treat NPC1 mice. We examine the
126 therapeutic efficacy of this vector across different doses, at timepoints later in disease progression, and in
127 *Npc1^{I1061T}* mice. Our results provide foundational preclinical data for the advancement of AAV9-EF1a(s)-
128 h*NPC1* as a disease modulating therapy for individuals with NPC1 deficiency.
129

130 **Results:**

131 **Dose selection and administration paradigm**

132 Dose selection was based on our previously published work [18, 44], with vector genomes (vg)
133 administered per mouse as the primary parameter. For consistency with other research and clinical trials,
134 doses are also provided in terms of vg/kilogram (vg/kg). The medium dose administered at 4 weeks
135 (1.2x10¹² vg or 1.28x10¹⁴ vg/kg) served as the baseline comparator across all studies. Lower and higher
136 doses were chosen to capture a comprehensive dose-response range, considering both experimental and
137 practical constraints which include the vector concentration coupled with our Animal Care and Use
138 Committee's approved volumes for RO delivery. The medium dose was selected for the age at treatment
139 study to ensure sufficient vector was available for full study enrollment.
140

141

142

143

144 ***Npc1*^{m1N} mice treated with higher doses of AAV9-EF1a(s)-h*NPC1* show increased survival**
145 **and delayed disease progression**

146
147 All mice received a single retro-orbital injection of AAV9-EF1a(s)-h*NPC1* (referred to as AAV9), and each
148 figure panel following includes data from 4-28 mice per group. Regarding statistical analyses, no significant
149 differences between sex were found for any readout measure in the dose, age at treatment, or hypomorphic
150 *Npc1* model sub studies. Thus, data from males and females are combined in all statistical tests. The only
151 exception to sex differences is weight curves, which were not analyzed. In this section, mice were sacrificed
152 either at 10 weeks for an age-matched cohort or at humane endpoint for survival.

153
154 To compare the efficacy of AAV9 at different doses, mice were injected at 4 weeks old with either low
155 (1x10¹¹ vg or 7.87x10¹² vg/kg), medium (1.2x10¹² vg or 1.28x10¹⁴ vg/kg), or high (4.3x10¹² vg or 3.06x10¹⁴
156 vg/kg) dose. A Log-Rank, Mantel Cox test, with Bonferroni's correction for multiple comparisons was used
157 to assess survival (Fig 1A, Table S2A). High- and medium-dose mice had a longer median survival (34.6
158 and 21.5 weeks, respectively) compared to low-dose (11.4 weeks) and saline-injected mice (10.6 weeks)
159 (for all, p < 0.0001). Notably, even the low-dose group had improved survival compared to the saline-
160 injected group (11.4 vs 10.6 weeks, p = 0.005).

161
162 To determine the effect of AAV9 dose on neurological disease progression, a composite phenotype score
163 was assessed at 3-week intervals from 6 to 18 weeks, where increasing scores indicate disease progression
164 (Fig 1B) [66]. The five neurological phenotypic parameters evaluated for the composite score include
165 hindlimb clasp, motor function, kyphosis, balance, and grooming. High-dose mice showed greatest delay
166 in disease progression, followed by medium dose mice, while low-dose mice mirrored the saline-injected
167 mice (Fig 1B). Two-way ANOVA with mixed effects analysis and Tukey's multiple comparisons test was
168 used to assess differences between groups (Table S3A). Between 6 and 9 weeks, the saline and low-dose
169 groups had similar phenotype scores (p = 0.95), while the medium-dose and high-dose groups had
170 significantly lower phenotype scores compared to the saline group (medium-dose: p = 0.020, high-dose: p
171 < 0.0001) and the low-dose group (medium-dose: p = 0.007, high-dose: p < 0.0001). Notably, high-dose
172 mice were not significantly different from *Npc1*^{+/+} mice (p = 0.91). From 9 to 12 weeks, medium- and high-
173 dose mice continued to show significantly lower phenotype scores than saline-injected and low-dose mice
174 (for all, p < 0.0001). High-dose mice maintained lower phenotype scores closer to *Npc1*^{+/+} mice (p = 0.51).
175 From 15 to 18 weeks, high-dose mice had significantly lower phenotype scores than medium-dose mice (p
176 = 0.008) and did not differ significantly from *Npc1*^{+/+} mice (p = 0.11).

177
178 *Npc1*^{m1N} mice exhibit marked weight loss starting at about 6 weeks old. To evaluate disease onset, we
179 assessed the week that mice reached peak weight (Fig 1C) and to evaluate disease progression, we assessed
180 change in weight from 6 to 9 weeks (Fig 1D). Low-dose mice reached peak weight at a similar time to
181 saline-injected mice (6.9 ± 0.6 weeks and 6.8 ± 0.7 weeks, respectively). In contrast, medium dose mice
182 reached peak weight significantly later (11.3 ± 3.9 weeks) than saline-injected (p = 0.0007) or low-dose
183 mice (p = 0.007). Similarly, high-dose mice reached peak weight significantly later (14.8 ± 3.1 weeks) than
184 saline-injected (p < 0.0001) or low-dose mice (p = 0.0003). Statistical significance for week of peak weight
185 was determined using a Kruskal-Wallis Test with Dunn's multiple comparisons test. Longitudinal weight
186 data further demonstrates that mice maintain weight and survive longer as the dose of AAV9 increases (Fig
187 S1A, B; Table S4A). When assessing percent weight change from 6 to 9 weeks (Fig 1D), both saline-
188 injected and low-dose mice showed similar percent weight loss (-14.6% ± 6.8% and -9.0% ± 11.7%,
189 respectively; p = 0.64) (Fig 1D). In contrast, medium-dose (11.2% ± 13.1%) and high-dose (15.3% ±
190 10.9%) mice showed significant weight gain compared to both saline-injected and low-dose groups (for all,
191 p < 0.0001). Medium-dose and high-dose mice gained weight similarly to *Npc1*^{+/+} mice (5.6% ± 4.1%)
192 during this period (medium-dose: p = 0.38, high-dose: p = 0.15). Statistical significance for weight change
193 from 6 to 9 weeks was assessed using one-way ANOVA with Tukey's multiple comparisons test.

194

195

196 Higher doses of AAV9 enhance viral transduction in brain and liver of *Npc1^{mIN}* mice

197

198 To evaluate the efficacy of vector transduction across tissues, droplet digital PCR (ddPCR) was performed
199 on cerebellar (Fig 2Ai, iii), cerebral (Fig 2Bi, iii) and liver tissues (Fig 2Ci, iii) to assess h*NPC1* copy
200 number at 10 weeks of age or at humane endpoint/survival. In parallel, Western blots were performed to
201 measure NPC1 protein levels present in cerebellum (Fig 2Aii), cerebrum (Fig 2Bii), and liver (Fig 2Cii), as
202 NPC1 protein presence is exclusively attributed to vector transduction in *Npc1^{mIN}* mice.

203

204 At 10-weeks-old, high-dose mice exhibited higher h*NPC1* copy numbers in the cerebellum (Fig 2Ai),
205 cerebrum (Fig 2Bi), and liver (Fig 2Ci) compared to all other groups. Similar trends were observed in the
206 spleen, kidney, lung, muscle, and brain stem (Fig S2).

207

208 In the cerebellum (Fig 2Aii) and cerebrum (Fig 2Bii), NPC1 protein levels were low, but detectable in high-
209 dose mice and *Npc1^{+/+}* mice, with higher levels observed in *Npc1^{+/+}*. In the liver (Fig 2Cii), NPC1 protein
210 was detected only in *Npc1^{+/+}*, high-dose, and medium-dose mice, with high-dose mice showing higher
211 average NPC1 protein expression than *Npc1^{+/+}* mice. Representative western blots are shown in Fig S3.

212

213 In a linear regression analysis, lifespan was significantly associated with h*NPC1* copy number in the
214 cerebellum and cerebrum within the medium dose group (Fig 2Aiii, Biii). However, two mice with
215 exceptionally high copy numbers in these regions drove significance. In the liver, copy number did not
216 predict lifespan in any individual treatment group (Fig 2Cii, linear regression analysis).

217

218

219

220 Higher doses of AAV9 reduce cerebellar and hepatic pathology in 10-week-old *Npc1^{mIN}* mice

221

222 Cerebellar ataxia is a major clinical feature in NPC individuals and is recapitulated in NPC1 mice with
223 cerebellar pathology and Purkinje neuron degeneration [8, 51, 67]. To assess cholesterol storage and
224 pathological alterations, we performed immunofluorescence staining of the cerebellum in 10-week-old
225 mice. Parallel western blot analysis was used for quantification.

226

227 Unesterified cholesterol storage, as visualized by filipin labeling [68], is increased in NPC1 disease [69].
228 However, high dose gene therapy appears to moderately reduce cholesterol storage compared to other
229 treated or saline-injected mice (Fig 3A). Reactive astrocytosis (GFAP positive staining) is a characteristic
230 finding in both human and mice with NPC1 disease [70-72]. Treatment with AAV9 shows a mild dose-
231 dependent decrease in astrocytosis (Fig 3A). GFAP protein levels do not appear to differ between saline-
232 injected, low-, medium-, or high-dose mice (Fig 3C, representative blot Fig S4A,B).

233

234 Progressive loss of Purkinje neurons, particularly from anterior to posterior cerebellar lobules, is a hallmark
235 of NPC1 disease [51, 67] and one with which our data align. Purkinje neuron survival (Calbindin D
236 labeling) appears to improve with increasing doses of AAV9 and correlates with h*NPC1* copy number.
237 Nevertheless, presence of Purkinje neuron remains markedly reduced compared to healthy *Npc1^{+/+}* mice
238 (Fig 3A). A similar dose-dependent increase is observed with Calbindin D protein levels, though levels
239 remain below those of *Npc1^{+/+}* mice (Fig 3D, representative blot Fig S4D,E).

240

241 Microglial activation, a well-documented feature of NPC1 pathology [72, 73], appears mildly reduced in
242 high-dose mice, particularly in posterior cerebellar lobules as shown by IBA1 staining (Fig 3B). This
243 reduction is accompanied by a decrease in CD68 protein levels in high-dose mice, a marker of reactive
244 microglia [74] (Fig 3E, representative blot Fig S4B,C).

245

246 Hepatomegaly is a common feature of NPC1 disease, with infantile presentation often associated with liver
247 disease [53, 57, 58]. To evaluate liver involvement, we performed immunohistochemical (Fig 4A) and
248 immunofluorescence (Fig 4C) staining of macrophages using CD68 labeling [75] in 10-week-old mice.
249 High- and medium-dose AAV9 treated mice showed a reduced percentage of CD68+ area compared to
250 low-dose and saline-injected mice (Fig 4B, representative images 4A). Additionally, immunofluorescence
251 staining demonstrated a decrease in cholesterol storage (filipin labeling) and macrophage presence (CD68)
252 as the dose of AAV9 increased (Fig 4C).

253

254 **AAV9 modulates sphingolipid accumulation in the brains of 10-week-old *Npc1*^{mIN} mice**

255

256 In addition to cholesterol accumulation, multiple lipid classes exhibit altered levels in the NPC1 deficient
257 brain due to impaired NPC1 protein function in mice [76-78]. Among these, gangliosides such as GM2
258 accumulate in the brains of *Npc1*^{mIN} mice [79]. Mass spectrometry imaging was used to assess the impact
259 of AAV9 dose on sphingolipid distribution in 10-week-old *Npc1*^{mIN} mice and *Npc1*^{+/+} mice (Figure S5).
260 While *Npc1*^{+/+} mice demonstrated little to no ganglioside accumulation, *Npc1*^{mIN} mice displayed high
261 accumulation in the frontal cortex and cerebellar lobule X. Increasing AAV9 doses led to a qualitative
262 reduction in ganglioside accumulation in both regions (Fig S5Ai). However, quantitative analysis of GM2
263 (d36:1) levels did not reveal statistically significant differences between groups (Fig S5B).

264

265 Beyond gangliosides, sphingolipid distribution is broadly disrupted in *Npc1*^{mIN} mice, with altered
266 distribution of hexosylceramides and dihydroceramides in the cerebellum [80]. Hexosylceramide (HexCer
267 46:4;O3) levels appeared lower in the cerebellum of *Npc1*^{mIN} mice compared to *Npc1*^{+/+} mice. AAV9
268 treatment was associated with a qualitative increase in HexCer abundance in a dose-dependent manner,
269 particularly in the rostral cerebellar lobules (lobules I-V) (Figure S5BAii). Conversely, dihydroceramide
270 (Cer 32:2;O3) levels appeared elevated in the cerebellum of *Npc1*^{mIN} mice compared to *Npc1*^{+/+} mice. While
271 AAV9 had a less pronounced effect on dihydroceramide accumulation, a visual trend towards reduction
272 was observed at medium and high doses (Figure S5Aiii).

273

274

275 **AAV9 treatment at 4-weeks improves survival and delays disease progression in *Npc1*^{mIN}** 276 **compared to treatment at 6- or 8- weeks of age**

277

278 *Npc1*^{mIN} mice were treated with 1.28×10^{14} vg/kg of AAV9 at 4 weeks (before onset of neurologic symptoms,
279 hereafter referred to as pre-symptomatic), 6 weeks (early-stage disease), or 8 weeks (late-stage disease) to
280 assess impact of treatment age on therapeutic efficacy. Disease onset is typically observed in *Npc1*^{mIN} mice
281 at 6 weeks, with key manifestations including changes in motor coordination and ataxia that progress until
282 death at approximately 10.6 weeks [66]. For this comparison, mice were sacrificed at 9 weeks to obtain
283 age-matched cohorts or at humane endpoint for survival comparison.

284

285 Mice injected at 4 weeks exhibited a significantly longer median survival of 21.5 weeks compared to saline-
286 injected mice (10.6 weeks, $p < 0.0001$) and those treated at 6 weeks (13.2 weeks, $p = 0.003$) or 8 weeks
287 (11.9 weeks, $p < 0.0001$) (Fig 5A). Additionally, mice treated at 6 weeks survived significantly longer than
288 both saline-injected mice ($p < 0.0001$) and mice treated at 8 weeks ($p = 0.0003$), while mice treated at 8
289 weeks survived longer than saline-injected mice ($p = 0.0006$). Statistical analysis was performed using the
290 Log-Rank Mantel-Cox test with Bonferroni's correction for multiple comparisons, with detailed results
291 provided in Table S2B.

292

293 Composite phenotype was assessed between 6 and 18 weeks to evaluate the effect of age of treatment on
294 neurological disease progression (Fig 5B). Between 6 and 9 weeks of age, mice treated at 4 weeks old
295 exhibited significantly lower phenotype scores compared to those at 6 and 8 weeks ($p = 0.001$, $p < 0.0001$

296 respectively), which progressed similarly ($p = 0.51$). From 9 to 12 weeks, the 4-week group maintained
297 significantly lower composite scores than saline-injected mice ($p < 0.0001$), the 6-week group ($p = 0.0002$),
298 and the 8-week group ($p < 0.0001$), but were higher than $Npc1^{+/+}$ mice ($p < 0.0001$). Two-way ANOVA
299 with mixed effects analysis with Tukey's multiple comparisons test were used for statistical analysis, with
300 detailed results presented in Table S3B.

301
302 To assess disease onset and progression, we evaluated week of peak weight and percent weight change
303 between 6 and 9 weeks. Mice treated at 4 weeks reached peak weight significantly later (11.3 ± 3.9 weeks)
304 than saline-injected mice (6.8 ± 0.7 weeks, $p = 0.003$) and those treated at 6 weeks (6.8 ± 2.3 weeks, $p <$
305 0.001) or 8 weeks (6.7 ± 0.6 weeks, $p < 0.001$) (Fig 5C, Kruskal-Wallis with Dunn's multiple comparisons
306 test). In contrast, mice treated at 6 and 8 weeks reached peak weight at similar times as saline-injected mice
307 ($p = 0.82$ and $p > 0.99$, respectively).

308
309 When evaluating percent weight change from 6 to 9 weeks, mice injected at 4 weeks ($11.2\% \pm 13.1\%$) and
310 $Npc1^{+/+}$ mice ($6.0\% \pm 4.1\%$) exhibited weight gain and were significantly different from all other groups
311 ($p < 0.0001$ for all comparisons). In contrast, $Npc1^{mIN}$ mice injected at 6 or 8 weeks exhibited weight loss
312 ($-12.2\% \pm 7.7\%$, $-20.0\% \pm 10.9\%$, respectively), which was not significantly different from saline-injected
313 $Npc1^{mIN}$ mice ($-14.6\% \pm 6.8\%$; $p = 0.94$, $p = 0.44$, respectively) (Fig 5D, One-way ANOVA with Tukey's
314 multiple comparisons test). Longitudinal weight data further indicate that both male and female cohorts
315 treated earlier maintained weight and survived longer (Fig S2C,D; Table S4B).

316
317 **Age of treatment affects AAV9 transduction in the cerebellum and treatment at 4 weeks
318 reduces cerebellar pathology in 9-week-old $Npc1^{mIN}$ mice**

319
320 h $NPC1$ copy number in the cerebellum was assessed in 9-week-old mice. Mice injected at 4 and 6 weeks
321 had higher h $NPC1$ copy numbers than saline mice or mice injected at 8 weeks (Fig 6A). NPC1 protein
322 levels were similar across all treated mice (Fig 6B, representative blot Fig S6A,B).

323
324 Immunofluorescence staining and Western blots were utilized to evaluate cerebellar pathology in age-
325 matched mice. Mice treated at 4 weeks demonstrated greater Purkinje neuron survival in anterior lobules
326 and the entire cerebellum when compared to saline-injected mice and those treated at 6 or 8 weeks (Fig
327 6C); this pattern is also consistent with increased Calbindin D protein levels in mice treated at 4 weeks (Fig
328 6E, representative blot Fig S6A,B). Further, microgliosis appears mildly reduced in the posterior lobules of
329 the cerebellum in the 4-week group compared to saline-injected and other treated mice (IBA1 labeling, Fig
330 6D). A similar reduction was observed in CD68 protein levels in the 4-week group, indicating decreased
331 reactive microglial activity (Fig 6F, representative blot Fig S6C,D). Finally, GFAP protein levels (reactive
332 astrocytosis) appear similar across all groups (Fig 6G, representative blot Fig S6C,D).

333
334
335 **Age of treatment impacts AAV9 transduction in cerebrum and liver of $Npc1^{mIN}$ mice**

336
337 h $NPC1$ copy number in the cerebrum and liver was also assessed via ddPCR in the age-matched cohort (9
338 weeks) and at humane endpoint. In the age-matched cohort, mice injected at 8 weeks exhibited the highest
339 h $NPC1$ copy number in the cerebrum compared to all other groups (Fig 7A). In the cerebrum, high copy
340 numbers in 4- and 6-week-old injected groups were associated with longer lifespans based on linear
341 regression analysis; however, two mice with exceptionally high copy numbers in the 4-week group drive
342 significance in this finding. In mice treated at 8 weeks, copy number did not predict lifespan (Fig 7B).

343
344 In the livers of the age-matched cohort, mice treated at 8 weeks again had higher h $NPC1$ copy numbers
345 than other treated and saline-injected mice (Fig 7C). Linear regression analysis shows that higher copy

346 numbers in the liver predicted lifespan only in mice treated at 6-weeks old (Fig 7D). In mice from the age-
347 matched cohort, immunohistochemical staining revealed a reduced presence of CD68+ macrophages in the
348 liver of mice treated at 6 weeks compared to other treated and saline-injected mice (Fig 7F; representative
349 images Fig 7E).

350

351

352 ***Npc1^{II061T}* mice treated with AAV9 show improved lifespan and delayed disease progression**

353

354 To evaluate efficacy of AAV9 in a hypomorphic mouse model of NPC1 deficiency, *Npc1^{II061T}* mice were
355 treated with 1.28×10^{14} vg/kg (1.2×10^{12} vg per mouse) of AAV9 at 4 weeks old. In this sub study, mice were
356 sacrificed at 14 weeks for an age-matched cohort or humane endpoint for survival.

357

358 AAV9 treated *Npc1^{II061T}* mice had a median survival of 22.9 weeks, significantly longer than the 15.0 weeks
359 observed in saline-injected mice (Fig 8A, Log-Rank Mantel-Cox test, $p < 0.0001$). Previous studies report
360 a median survival of about 17.9 weeks for *Npc1^{II061T}* mice, while *Npc1^{m1N}* mice typically survive to 10.5
361 weeks [65], and phenotypic onset in *Npc1^{II061T}* mice occurs at 9-10 weeks; assessments were adjusted
362 accordingly to account for differences in lifespan compared to the *Npc1^{m1N}* model.

363

364 Disease phenotype was also evaluated in treated and untreated mice to determine efficacy of gene therapy
365 in slowing progression (Fig 8B). From weeks 9-12 and weeks 12-15, AAV9 treated *Npc1^{II061T}* mice had
366 significantly lower composite scores compared to saline-injected mice, but scores were still higher than
367 *Npc1^{+/+}* mice ($p < 0.0001$ for all comparisons; two-way ANOVA with mixed effects analysis with Tukey's
368 multiple comparisons test).

369

370 Week of peak weight and percent weight change between 10 and 14 weeks were evaluated to assess disease
371 onset and progression. Treated mice reached peak weight significantly later than saline-injected mice (12.9 ± 3.8 weeks vs. 10.9 ± 1.1 weeks; $p = 0.008$, Mann-Whitney test) (Fig 8C). Treated mice gained weight
372 from 10-14 weeks ($3.8\% \pm 6.0\%$), similar to *Npc1^{+/+}* mice ($7.3\% \pm 2.7\%$) ($p = 0.37$). In contrast, saline-
373 injected mice lost weight ($-12.3\% \pm 11.0\%$) and were significantly different from treated ($p = 0.01$) mice
374 (Fig 8D, Kruskal-Wallis test with Dunn's multiple comparisons test). Longitudinal weight data further
375 demonstrates that treated mice survive and maintain weight longer than saline-injected *Npc1^{II061T}* mice (Fig
376 S1E,F; Table S4C).

377

379 **AAV9 treatment transduces the cerebellum of *Npc1^{II061T}* mice but without pathological 380 improvement**

381

382 ddPCR was used to assess hNPC1 copy number in the cerebellum of mice at 14-weeks old (age-matched
383 cohort). At 14 weeks, the typical end stage for untreated *Npc1^{II061T}* mice, treated mice demonstrated
384 increased hNPC1 copy numbers compared to saline-injected mice ($p = 0.008$, Kruskal-Wallis test with
385 Dunn's multiple comparisons test; Fig 9A). Parallel western blot analysis confirmed similar NPC1 protein
386 presence in treated and saline-injected *Npc1^{II061T}* mice (NPC1 protein antibody captures both human and
387 mouse NPC1) (Fig 9B, representative blot in Fig S7A,B).

388

389 Cerebellar pathology in the age-matched cohort was evaluated using immunofluorescence staining and
390 western blotting. *Npc1^{II061T}* mice treated with AAV9 showed some survival of Purkinje neurons in anterior
391 lobules of the cerebellum. However, global Purkinje neuron loss across the cerebellum remained
392 comparable between treated and saline-injected mice (Fig 9C). Analysis of Calbindin D protein levels
393 revealed similarly low Calbindin D levels in the cerebellum of treated and saline-injected mice, both of
394 which were lower than healthy *Npc1^{+/+}* mice (Fig 9E, representative blot Fig S7C,D). Microgliosis did not
395 appear reduced in treated mice compared to saline-injected mice, as indicated by IBA1 labeling (Fig 9D).

396 Similarly, CD68 protein levels, a reactive microglial marker, do not appear reduced in the cerebellum of
397 treated mice (Fig 9F, representative blot Fig S7E,F). Finally, reactive astrocytosis, as measured by GFAP
398 protein levels, is similar in treated mice compared to saline-injected mice (Fig 9G, representative blot Fig
399 S7G,H).

400

401

402 **AAV9 treatment of *Npc1*^{II061T} mice results in successful transduction of cerebrum and liver 403 with reduced hepatic pathology**

404

405 ddPCR was used to measure h*NPC1* copy number in the cerebrum and liver in the age-matched cohort (14-
406 weeks old) and at humane endpoint/survival. In the age-matched cohort, h*NPC1* copy number in both the
407 cerebrum (Fig 10A) and liver (Fig 10C) were elevated compared to saline-injected mice. In the cerebrum,
408 an increasing h*NPC1* copy number significantly predicted extended lifespan (Fig 10B), whereas in the liver,
409 an increase in h*NPC1* copy number was significantly associated with decreased lifespan (Fig 10D) (linear
410 regression analysis). In the liver of age-matched mice, immunohistochemical staining revealed a partial
411 reduction of CD68+ macrophages compared to saline-injected mice, albeit not to normal *Npc1*^{+/+} levels
412 (Fig 10F; representative images Fig 10E).

413

414 **Discussion**

415

416 We examined dose and age at intervention as key factors in optimizing systemically delivered AAV9-
417 EF1a(s)-h*NPC1* gene therapy. Higher doses of AAV9-EF1a(s)-h*NPC1* and treatment during the pre-
418 symptomatic period in the null *Npc1*^{m1N} model significantly improved survival and slowed disease
419 progression compared to lower doses or later treatment. Notably, mice receiving higher doses had the
420 longest survival times, though they did ultimately succumb to NPC1 disease. Additionally, we assessed
421 efficacy of gene therapy in the hypomorphic *Npc1*^{II061T} mouse, which carries a missense variant, and found
422 that AAV9-EF1a(s)-h*NPC1* successfully increased survival and slowed disease progression in this model.

423

424 NPC1 can manifest early and severely, though many individuals experience the first neurological sign in
425 childhood or adolescence, often followed by significant diagnostic delays. Previous gene therapy studies
426 have focused on treatment of neonatal *Npc1*^{m1N} mice [42, 43, 45, 46]. Importantly, we assessed gene therapy
427 efficacy in juvenile mice before and after symptom onset. *Npc1*^{m1N} mice treated pre-symptomatically
428 showed greatest improvements in survival and slowed disease progression. However, mice treated in early
429 disease stage (6 weeks) still exhibited slight survival benefits, indicating the value of early-symptomatic
430 treatment. Establishing a dose- and age-dependent effect is crucial, especially for diseases like NPC1, which
431 are typically diagnosed symptomatically and are not currently part of newborn screening. By demonstrating
432 the benefits of early intervention, our work highlights the need for expanded newborn screening programs,
433 which would enable earlier diagnosis and support treatment of NPC1 individuals before neurological
434 manifestations occur.

435

436 Although the *Npc1*^{II061T} model has not been previously studied, another hypomorphic mouse model
437 (*Npc1*^{m1fl64}) which carries a D1005G amino acid substitution, has been examined in gene therapy studies
438 [46]. Both models exhibit late-onset and slower progression compared to *Npc1*^{m1N} mice, which more closely
439 mirrors most human cases. However, the D1005G residue is not conserved in humans and its impact on
440 protein folding or stability is unclear [81]. In contrast, the *Npc1*^{II061T} model represents a prevalent human
441 variant, with NPC1 p.I1061T encoding a misfolded protein targeted for ERAD [64, 65]. This variant is the
442 most common disease-causing allele in individuals of European descent, accounting for 15-20% of
443 pathological alleles [62, 82, 83]. We demonstrate significant improvement in survival, delayed disease
444 progression, and liver (though not cerebellar) pathology with systemic gene therapy, even in the presence

445 of residual NPC1 protein. These findings might suggest broader applicability of gene therapy across
446 different patient populations, including those with slower-progressing, later-onset NPC1.
447

448 While our high dose showed the most significant survival benefits and improved transduction of multiple
449 organs affected by NPC1, its direct translation to humans requires careful consideration. For comparison,
450 Zolgensma, an FDA-approved therapy for SMA1, is administered at 1.1×10^{14} vg/kg, whereas our high dose
451 of 3.06×10^{14} vg/kg exceeds that level. Although we did not observe toxicity at this higher dose, clinical
452 experiences with AAV8-mediated gene therapy for X-linked myotubular myopathy underscore potential
453 risks, where 3 of 14 patients experienced fatal liver failure at a dose of 3.5×10^{14} vg/kg [84]. These
454 observations highlight the importance of dose escalation studies in preclinical models to refine dosing
455 strategies for translation to human applications. Our medium AAV9 dose of 1.28×10^{14} vg/kg – comparable
456 to Zolgensma – showed significant improvements in survival and disease progression, suggesting that doses
457 within this range could balance efficacy and safety. Mice receiving higher doses had the longest survival
458 times, though they ultimately succumbed to disease progression. As necropsies were not carried out, the
459 exact cause of death at the predefined humane endpoint is not known. We hypothesize that because many
460 neurons and cells throughout the CNS remain uncorrected following a single injection of the gene therapy,
461 the disease burden eventually outweighs the capabilities of the transduced, healthy cells. If correct, this
462 theory highlights the importance of widespread transduction, best case scenario being correction of 100%
463 of cells, especially of neurons throughout the CNS. Recognizing this is not yet possible, toxicity must be
464 assessed for high doses aimed at maximizing transduction prior to clinical translation. Together, these
465 findings support the notion that increasing doses achieve greater benefit, the importance of achieving
466 adequate dosing for therapeutic efficacy, and the need to balance efficacy with safety in future studies.
467

468 Regarding readout measures of mice in the same dose group, a comparison of weight metrics reveals greater
469 variability in the medium and high dose treatment groups while survival in the medium dose group covers
470 a wide range. Retro-orbital administration, as performed by human hand, is subject to inconsistency. To
471 minimize this potential confounder, a veterinarian with extensive surgical experience in rodent models was
472 the only person to perform RO injections for gene therapy studies from our group to date. Another potential
473 contributor to variability within the different readout measures is weight at time of injection. However, no
474 significant correlation was found between this data metric and the survival, hNPC1 copy number, or percent
475 weight gain from 6-9 weeks of age. Finally, handling of vector and different vector productions could
476 contribute to variability. To minimize this risk, all vector productions were purchased from University of
477 Pennsylvania Vector Core, now Franklin Biolabs. Vector was thawed only once following dilution and the
478 same vector production batch was used for the high and low dose cohorts. The medium dose cohort/study
479 spanned a greater range of time and provided an internal control as three different batches were used. There
480 was no correlation between the vector batch and lifespan of the mice in the medium dose cohort.
481

482 To compare the effects of age of treatment in *Npc1^{m1N}* mice, we used a fixed-analysis point at 9 weeks of
483 age, just before humane endpoint. This age-matched timepoint allowed for consistent comparisons of
484 pathology and vector transduction but did not account for treatment-duration-matched intervals (e.g.,
485 assessing all mice at a fixed period, such as 2 weeks post-treatment). Notably, mice treated at 8 weeks
486 exhibited higher hNPC1 copy numbers in the cerebrum and liver compared to those treated at 4 or 6 weeks.
487 However, it is unclear if this trend would persist in a treatment-duration-matched cohort. Future studies
488 could explore post-treatment intervals to better understand how vector expression changes over time and
489 more directly compare the impact of age of treatment on transduction efficiency.
490

491 Additionally, we did not determine which cell types were transduced by AAV9 administration or whether
492 neuronal dysfunction or loss contributed more to pathology. Future studies might assess the transduction of
493 cell types across the brain, investigating both cell death and dysfunction. For instance, we observed Purkinje
494 neuron loss in the cerebellum (a well-described phenomenon [67]), but others have described lipid storage
495 without cell loss in the pyramidal cells of the hippocampus [85, 86]. Understanding which cell types are

496 most affected and best transduced is essential for clinical success of this gene therapy. Another limitation
497 of this study is the absence of direct quantification of accumulating metabolites in the brain. For example,
498 while the overall cholesterol levels in the brain remain unchanged in NPC1, its intracellular localization is
499 disrupted, leading to pathological effects [8, 87]. To address lipid accumulation, we used mass spectrometry
500 imaging to measure changes in sphingolipids that change in both quantity and distribution. This provided
501 valuable insights into lipid changes in response to treatment, but future studies could incorporate high-
502 performance liquid chromatography to enhance our understanding of lipid storage correction after gene
503 therapy by broadening the analysis of lipid metabolites.
504

505 Future studies could also explore combining NPC1 gene therapy with chaperone molecules or substrate
506 reduction therapy, given that gene therapy alone does not entirely halt disease progression. For example,
507 Miglustat, an FDA-designated compound for use in combination with arimoclomol (Miplyffa), reduces
508 glycosphingolipid accumulation but does not address the root cause [10, 88, 89]. Incorporating gene therapy
509 could address this root cause while enhancing therapeutic outcomes by simultaneously reducing disease
510 burden.
511

512 In summary, systemic AAV9-EF1a(s)-h*NPC1* delivery significantly impacts NPC1 disease phenotypes and
513 improves survival in both severe and milder disease models, with delivery of high doses and pre-
514 symptomatic treatment providing greatest impact. The findings presented here lay the groundwork for
515 translating this promising therapy to clinical trials for individuals with NPC1 deficiency. Our work has
516 broader implications for gene therapy targeting other lysosomal-membrane spanning proteins, such as those
517 implicated in neuronal ceroid lipofuscinosis [20, 90, 91] and Mucolipidosis type IV [92, 93]. The ability of
518 gene therapy to improve survival and delay disease progression in juvenile mice offers hope for diseases
519 where early detection and intervention remain significant challenges. While gene therapy may not entirely
520 halt disease progression in NPC1, the demonstrated survival benefits emphasize its potential in managing
521 other similar disorders where early, aggressive intervention is critical.
522

523 Materials & Methods

524 **Vector construction and production**

525 The vector, AAV9-EF1a(s)-h*NPC1* was previously described and produced by the University of
526 Pennsylvania Vector Core [18].
527

528 **Animals**

529 All animal work in these studies was carried out in accordance with the National Institutes of Health Animal
530 Care and Use Committee approved protocols. Heterozygous (BALB/cNctr-*Npc1*^{m1N}/J strain; Jackson
531 Laboratory strain # 003092) *Npc1*^{+/m1N} mice were crossed to obtain homozygous mutants (*Npc1*^{m1N/m1N}) and
532 wildtype controls (*Npc1*⁺⁺). *Npc1*^{II061T} mice were generated by crossing heterozygous *Npc1*^{+/II061T} mice
533 (B6.129-*Npc1*^{m1Dso}/J strain; Jackson Laboratory strain # 027704) to obtain homozygous mutants and
534 *Npc1*⁺⁺ controls. We use single allele notation to indicate homozygosity. Mice were weighed weekly and
535 then more frequently as the disease progression neared humane endpoint. Mice were euthanized at a
536 predefined humane endpoint which occurred when at least two of the following four criteria were met:
537 weight falling below 70% of peak weight, repeatedly falling to side during movement, dull eyes or palpebral
538 closure of eyes, or reluctance to move.
539

540 As per the ARRIVE Essential 10, the following information refers to the studies contained herein. All
541 studies included saline-injected or untreated mice (*Npc1*^{m1N} or *Npc1*⁺⁺, respectively) as control groups. The
542 same control mice from the *Npc1*^{m1N} line were used for the dose and age at injection studies while an
543 appropriate groups of control mice from the *Npc1*^{II061T} line were used for the corresponding study. A total
544 of 238 mice were used in these studies. Group sample size is stated in the legend or figure for each analysis.
545

546 Data for dose and age of treatment study includes all saline-injected and medium-dose AAV9 *Npc1*^{m1N} mice
547 as well as untreated *Npc1*^{+/+} at 4 weeks. No specific exclusion criteria were set a priori, and all mice
548 included in the studies were randomly assigned to treatment or control groups using a blocking method.
549 Except for the researcher overseeing the studies, those involved in vector injections and data acquisition
550 remained blinded to the greatest extent possible. The primary outcome measure was survival. Secondary
551 outcome measures included behavioral assessments, weight, h*NPC1* copy number, and pathology. Details
552 of statistical analyses are found in the results, methods, or figure legends. Experimental animals,
553 procedures, and results are contained with the methods and results of this publication.
554

555 **Phenotypic Assessment**

556 Mice were tested starting at 6 weeks of age (phenotypic onset) and every three weeks thereafter until
557 humane endpoint or inability to complete the evaluation. The phenotype score evaluates five behaviors
558 associated with the NPC1 phenotype in diseased mice as previously described: hindlimb clasp, motor
559 function, kyphosis, grooming, and a balance-ledge test for cerebellar ataxia [66]. Each phenotype is scored
560 from 0 to 3 with increasing scores representing a more compromised disease state.
561

562 Phenotypic testing was carried out in a blinded fashion such that individual mice within a cage had distinct
563 tail markings. Evaluators had access only to cage card numbers and tail markings to identify mice. The
564 order in which mice were tested varied for each testing date. All animals were group housed.
565

566 **Administration of vector**

567 Treated *Npc1*^{m1N} mice received a retro-orbital injection of AAV9-EF1a(s)-h*NPC1* at 4 weeks (weaning), 6
568 weeks, or 8 weeks of age. *Npc1*^{II061T} mice received a retro-orbital injection of AAV9-EF1a(s)-h*NPC1* at 4
569 weeks old. Control littermate *Npc1*^{m1N} or *Npc1*^{II061T} mice received a retro-orbital injection of 0.9% saline at
570 4 weeks or the specified age. Mice were anesthetized using isoflurane for 30-60s and then injected retro-
571 orbitally with a 30-gauge needle affixed to a 0.3 cc syringe. Some control *Npc1*^{+/+} mice received retro-
572 orbital injections of saline while others remained un-injected.
573

574 **Dose Selection**

575 Our original dose for mice treated at 4 weeks was 1.2×10^{12} vector genomes (vg) per mouse (mean: 1.28×10^{14}
576 vg/kg), based on our previously published data [18, 44]. This served as the medium dose and the comparator
577 across studies. For ease of comparison to other animal and clinical studies, doses are provided as vector
578 genomes/kg.
579

580 For dose comparison, doses were selected and scaled based on vector genomes/mouse. We used a low dose
581 of 1×10^{11} vg/mouse (7.87×10^{12} vg/kg), representing a 1-log reduction from the baseline. The high dose,
582 4.3×10^{12} vg/mouse (3.06×10^{14} vg/kg), was dictated by the maximum concentration achievable through the
583 University of Pennsylvania Vector Core, now Franklin Biolabs, and volume constraints allowed by the
584 Animal Care and Use Committee. For the age of treatment study, dose was calculated per weight to deliver
585 1.28×10^{14} vg/kg for each mouse at either 6 or 8 weeks of age.
586

587 **Tissue collection and homogenization**

588 Mice were anesthetized with an intraperitoneal injection of Avertin (lethal dose of 0.04 mL/gm) for
589 euthanasia as previously described [44]. When mice were insensate, the chest cavity was opened, and mice
590 were perfused with 0.9% saline. Immediately, half of the brain, one lobe of the liver, and a piece of spleen,
591 kidney, lung, and leg muscle were collected and frozen on dry ice for tissue homogenization. Mice were
592 then perfused again with 4% paraformaldehyde to fix tissues; remaining organs (half of the brain, liver)
593 were collected and stored post-fixation in 4% PFA overnight and then rinsed and stored in phosphate-
594 buffered-saline (PBS).
595

596 A Benchmark Scientific Beadbug homogenizer was used to homogenize frozen tissue with UltraPure water.
597 Tissue was placed in tubes with 3 mm zirconium beads (cerebrum, cerebellum, brainstem, liver, spleen, leg
598 muscle) or 1.5 mm zirconium beads (kidney, lung) and homogenized 3 times for 30 seconds at speed 400.
599 Resulting homogenate was aliquoted into tubes for DNA extraction and protein analysis, the latter of which
600 also had RIPA buffer with proteinase inhibitor cocktail (11 836 170 001; Millipore Sigma, Burlington, MA)
601 [44].

602

603 **Western blotting**

604 Protein levels from cerebrum, cerebellum, and liver homogenates were quantified using a BCA Assay
605 (23225, Thermo Fisher Scientific, Waltham, MA). Equal amounts of protein (50 ug for liver, cerebellum,
606 and cerebrum) were run on 4-12% Bis-Tris SDS-polyacrylamide gels (NP0321BOX/Invitrogen by Thermo
607 Fisher Scientific) and separation was achieved via electrophoresis; protein was then transferred to a
608 nitrocellulose membrane (Life Technologies) and blocked for 1 hour in 5% milk in 0.01% PBSTween.
609 Samples were washed in 0.01% PBSTween incubated overnight at 4 °C on a rocking platform with primary
610 antibody (Table S1). Blots were washed three times and incubated with secondary antibodies for 1 hour at
611 room temperature (Table S1), then washed again. Bands were imaged using the LI-COR Odyssey® CLx
612 Imaging System.

613

614 **Histology**

615 Brain and liver tissue from each group were acquired at 9 or 10 weeks of age (*Npc1^{m1N}*), 14 weeks of age
616 (*Npc1^{II061T}*), or humane endpoint (both models). Post-fixation tissues were embedded in agarose blocks
617 (3.5% agarose, 8% sucrose, PBS) and sectioned parasagittally (30 µm) using a Leica VT1200 S vibratome.
618 Free-floating sections were collected, incubated in 1.6% H₂O₂ in PBS, then washed in 0.25% Triton X-
619 100/PBS (PBSt). After blocking for 1 hour at room temperature in PBSt/normal goat serum, samples were
620 incubated in primary antibodies overnight at 4°C (Table S1). Samples were washed in PBSt and then
621 incubated with secondary antibodies for 1 hour at room temperature (AlexaFluor 488 or 594; Table S1).
622 Filipin staining (Sigma-Aldrich, F9765) was finally performed to allow visualization of unesterified
623 cholesterol accumulation (0.05mg/mL) with a 20-minute incubation. ProLong Gold mounting medium
624 alone (Thermo Fisher Scientific, P36934) or with DAPI (Thermo Fisher Scientific, P36935) was used to
625 coverslip after mounting tissue sections to slides.

626

627 For immunohistochemical staining after primary antibody incubation, slides were incubated in biotinylated
628 secondary antibody and washed in PBSt. A biotinylated horse radish peroxidase was preincubated with
629 avidin to form Avidin-Biotin Complex (ABC; Vector Laboratories SK-4100) and the tissues were incubated
630 in ABC (in PBS) for 1 hour. Tissues were then washed in PBS and incubated for 10 minutes in a 3,3'-
631 Diaminobenzidine (DAB; Vector Laboratories PK-4000) solution before mounting and cover slipping with
632 VectaMount (Vector Laboratories, H-5700).

633

634 Histoserv, Inc. (Germantown, MD) performed paraffin embedding (formalin fixed, paraffin embedded i.e.,
635 FFPE, tissues). For immunofluorescent staining, FFPE sections (3 um) were collected and underwent
636 antigen retrieval in a citrate (pH 6.0, Electron Microscopy Sciences, 62706-10) or Tris-EDTA (pH 9.0,
637 Abcam, AB93684) buffer. Slides were then incubated in primary antibody diluted in antibody diluent with
638 BSA and preservative (Thermo Fisher Scientific, 003218) at 37°C for 1 hour, washed in PBS, and incubated
639 in secondary antibodies for 30 minutes at 37°C (Table S1). Tissues were then coverslipped with ProLong
640 Gold mounting medium with DAPI.

641

642 **Image capture and analysis**

643 Fluorescent imaging was performed with an inverted Zeiss AxioScan Z1slide scanner with Zen Blue 3.8 as
644 previously described in [44]. Brightfield images were captured on the same Zeiss AxioScan Z1 slide
645 scanner. Adobe Photoshop 2023 (v.23.5.0) and 2024 (v.25.1.0) was used to modify all images in a
646 figure/group identically by resizing and adjusting brightness and/or contrast.

647

648 Quantification of CD68 area

649 Percent of positive CD68 area relative to total area in liver sections was determined according to methods
650 previously described [94] using Image-Pro. V11 software (Media Cybernetics, Inc.). Images were
651 processed using ten regions of interest with total area 900,000 μm^2 to determine average percent positive
652 area.

653

654 Copy number analysis by ddPCR

655 Vector copy number was measured by droplet digital PCR (ddPCR) as previously described with *hNPC1*
656 and *GAPDH* primers (Bio-Rad; [44]). 0.5-50 ng of DNA was used for gene copy number quantification
657 with brain (cerebrum, cerebellum, or brainstem) and liver homogenates. Additional organs including
658 spleen, kidney, lung, and leg muscle were assayed for the 10-week-old cohort in the dose study, using 0.5-
659 5 ng of DNA per reaction. Signals for droplets were either positive or negative for *hNPC1* and/or *GAPDH*
660 as determined using BioRad's QuantaSoft version 1.7.4.0917 software.

661

662 Mass spectrometry imaging and lipidomics

663 The fresh frozen half of the brain was sectioned on a CryoStar NX50 Cryostat set to -12°C in preparation
664 for mass spectrometry imaging. The frozen tissue was divided into 4-6 10 μm thick sections, which were
665 then promptly thaw-mounted onto ITO slides (MIDSCI) and stored at -80°C. Immediately prior to imaging
666 sections, the slides were removed from the -80°C freezer and washed with ice cold 50 mM ammonium
667 formate for 20 seconds then dried in vacuo. 9-aminoacridine and 2,5-dihydroxybenzoic acid were chosen
668 as the matrices for negative and positive mode respectively. One hundred milligrams of solid matrix was
669 dissolved in 10 mL of 50:50 H₂O:ACN + 0.2% TFA and filtered using a 0.2 μm syringe filter. Filtered
670 matrix was applied to the slide using the HTX TM Sprayer.

671

672 Mass spectrometry imaging was performed on a Bruker RapifleX MALDI TOF with a 10 kHz laser set to
673 60% power, 500 laser shots per pixel, and a step size of 35 μm . The instrument was operated in negative
674 and positive mode within an m/z range of 200-1800. All data processing including region-of-interest
675 determination, spatial segmentation, mass spectra extraction and image generation were performed using
676 Bruker's Scils software. LIPID MAPS and the Human Metabolome Database were used to annotate and
677 identify lipids according to accurate mass measurements. Hedges-g analysis was performed for GM2 lipid
678 species across the experimental groups using total ion count normalized peak areas.

679

680 Statistical analysis

681 Randomization was achieved with multiple cohorts. Mice within each cohort were included from each age
682 at injection group or at each dosage. Statistical analysis was performed using GraphPad Prism version 9.5.1
683 for Windows or Mac. Normality was evaluated for data sets and appropriate parametric or nonparametric
684 tests were selected for further analysis. Data is presented as mean \pm SD. Kaplan Meier survival curves used
685 Log-Rank Mantel-Cox test to assess significance, with a Bonferroni-correction applied for P<0.0083 for
686 multiple (six) comparisons. Other statistical tests were as follows: Kruskal-Wallis test with Dunn's multiple
687 comparison's test, one-way ANOVA with Tukey's multiple comparisons test, two-way ANOVA with
688 Tukey's multiple comparisons test, linear regression test (all multiple comparisons test use post hoc
689 Bonferroni's correction). In all figures: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

690

691 Acknowledgments:

692 We thank Laura L. Baxter for her support and instruction in statistical analysis as well as Stephen
693 Wincovitch for imaging and quantification support. We are grateful for the technical assistance in digital
694 droplet PCR provided by the National Cancer Institute Genomics Core. We sincerely acknowledge the NIH
695 animal care and veterinary staff for the care of mice used in these studies. We also recognize the driving

696 force behind this work: individuals with NPC1 disease. Their perseverance in the face of this debilitating
697 disease inspires and humbles us.

698 **Funding**

699 This work was supported by the Intramural Research Program of the National Human Genome Research
700 Institute (NHGRI) at the NIH (1ZIAHG000068-16), the *Eunice Kennedy Schriver* National Institute of
701 Child Health and Human Development (NICHD) at the NIH (ZIAHD008988), grants from the NIH
702 (R01NS114413, R01NS124784), and the Ara Parseghian Medical Research Fund at the University of Notre
703 Dame. AVM, ALG, TG, CDD, AI, CPV, and WJP were supported by the Intramural Research Program at
704 NHGRI; CDD, KM, SRG, FDP were supported by the Intramural Research Program at NICHD. Additional
705 support for CDD came from the Support Of Accelerated Research for NPC (Hide & Seek Foundation and
706 Dana's Angels Research Trust). DP-J was supported by the Bridge to Doctoral Program and the
707 Diversifying Faculty in Illinois Fellowship.

708 **Conflict of Interest Statement**

709 CPV and WJP have NIH patents filed on work related to NPC1 genes and the AAV gene therapy treatment
710 of NPC1 (US Patent Publication Numbers 20180104289, 20210113635).

711

712 **Figure 1: *Npc1*^{mIN} mice treated with AAV9-EF1a(s)-h*NPC1* vector show increased survival and**

713 delayed disease phenotype progression.

714 (A) Kaplan-Meier survival curve of mice treated with low, medium, and high dose AAV9 and saline
715 injected mice (results presented in Table S2A) (saline n = 15, low n = 10, medium n = 24, high n = 8). (B)
716 Composite phenotype scores for each dosage group with measurements taken every 3 weeks, starting at 6
717 weeks (results presented in Table S3A) (saline n = 14, low n = 10, medium n = 13, high n = 8, *Npc1*^{+/+} n =
718 21). (C) Week at which mice reached peak weight (Kruskal-Wallis with Dunn's multiple comparisons test).
719 (D) Percent weight change between 6 and 9 weeks old (One-way ANOVA with Tukey's multiple
720 comparisons test). For (C, D): saline n = 15, low n = 10, medium n = 24, high n = 8; for (D): *Npc1*^{+/+} n =
721 21. For all: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data presented as mean ± SD for B,
722 C, D.

723

724 **Figure 2: Higher dose of AAV9 enhance viral transduction in brain and liver of *Npc1*^{mIN} mice.**

725 (A, B, C) Analysis of cerebellum (A), cerebrum (B), and liver (C). (Ai, Bi, Ci) h*NPC1* copy number in
726 cerebellum (Ai), cerebrum (Bi), and liver (Ci) from 10-week-old mice (Kruskal-Wallis test with Dunn's
727 multiple comparisons test). For Ai, Bi, Ci: (saline n = 6, low n = 5, medium n = 6, high n = 6, *Npc1*^{+/+} n =
728 9). (Aii, Bii, Cii) NPC1 protein levels were assessed via western blot in 10-week-old mice to confirm
729 amount of NPC1 protein in the cerebellum (Aii), cerebrum (Bii) and liver (Cii) (Kruskal-Wallis test with
730 Dunn's multiple comparisons test). For Aii (saline n = 6, low n = 5, medium n = 6, high n = 6, *Npc1*^{+/+} n =
731 8). For Bii, Cii (saline n = 6, low n = 5, medium n = 6, high n = 6, *Npc1*^{+/+} n = 7). (Aiii, Biii, Ciii) Linear
732 regression of h*NPC1* copy number in the cerebellum (Aii), cerebrum (Bii) and liver (Cii) in end stage mice.
733 For Aiii, Biii (saline n = 14, low n = 9, medium n = 20, high n = 6, *Npc1*^{+/+} n = 17). For Ciii (saline n = 14,
734 low n = 9, medium n = 18, high n = 5, *Npc1*^{+/+} n = 17). For all: * p < 0.05, ** p < 0.01, *** p < 0.001, ****
735 p < 0.0001. Data presented as mean ± SD for Ai, Bi, Ci, Aii, Bii, Cii.

736

737 **Figure 3: Dose-dependent amelioration of cerebellar pathology in 10-week-old *Npc1*^{mIN} mice.**

738 (A) Representative immunofluorescence staining in free floating sections for: unesterified cholesterol
739 storage (top row), reactive astrocytes and Bergmann glia (middle row), and Purkinje neurons (bottom row).
740 Insets are of anterior lobules (IV/V). (B) Representative immunofluorescence staining in formalin-fixed,
741 paraffin embedded sections for microgliosis. Insets are of posterior lobules (lobule IX). For (A, B) Scale
742 bar = 1000 microns for panels, 250 microns for insets. (C, D, E) Protein levels for GFAP (C), Calbindin
743 (D), CD68 (E), were assessed via western blot for 10-week-old mice (Kruskal-Wallis test with Dunn's
744 multiple comparisons test) (saline n = 5, low n = 5, medium n = 6, high n = 5, *Npc1*^{+/+} n = 5). For C, D, E:
745 * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, data presented as mean ± SD.

746

747 **Figure 4: Dose-dependent reduction of liver pathology in 10-week-old *Npc1*^{mIN} mice.**

748 (A) Representative CD68+ immunohistochemical staining of macrophages (free floating sections). Scale
749 bar = 250 microns. (B) Quantification of percent area CD68 labelled in 10-week-old mice (Kruskal-Wallis
750 test with Dunn's multiple comparisons test) (saline n = 5, low n = 5, medium n = 6, high n = 6, *Npc1*^{+/+} n
751 = 9). (C) Representative cholesterol storage (filipin labeling) and CD68+ immunofluorescent staining in
752 the liver (free floating sections). Yellow arrows in high-dose inset denote groups of cells without cholesterol
753 storage. Scale bar for panel (A) = 500 microns, scale bar for (C) = 100 microns. For B: * p < 0.05, ** p <
754 0.01, *** p < 0.001, **** p < 0.0001, data presented as mean ± SD.

755

756 **Figure 5: AAV9 treatment at 4-weeks improves survival and delays disease progression in *Npc1*^{mIN}**
757 **compared to treatment at 6- or 8- weeks of age.**

758 (A) Kaplan-Meier survival curve of mice treated with AAV9 (results presented in Table S2B). (B)
759 Composite phenotype scores for each dosage group with measurements taken every 3 weeks, starting at 6
760 weeks (results presented in Table S3B) (saline n = 14, 4 weeks n = 13, 6 weeks n = 20, 8 weeks n = 20,
761 *Npc1*^{+/+} n = 21). (C) Week at which mice reached peak weight (Kruskal-Wallis test with Dunn's multiple

762 comparisons test). **(D)** Percent weight change between 6 and 9 weeks old (One-way ANOVA with Tukey's
763 multiple comparisons test). For C, D (saline n = 15, 4-week n = 24, 6-week n = 20, 8-week n = 20) for D
764 (*Npc1*^{+/+} n = 21). For all: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data presented as mean
765 ± SD for B, C, D.

766

767

768 **Figure 6: Age of treatment affects AAV9 transduction in cerebellum and treatment at 4 weeks**
769 **reduces cerebellar pathology.**

770 (A) ddPCR was used to measure h*NPC1* copy number in the cerebellum of mice at 9 weeks old (Kruskal-
771 Wallis test with Dunn's multiple comparisons test) (saline n = 6, 4 weeks n = 6, 6 weeks n = 4, 8 weeks n
772 = 4, *Npc1*^{+/+} n = 4). (B) NPC1 protein levels were assessed via western blot in 9-week-old mice to confirm
773 amount of NPC1 protein in the cerebellum (Kruskal-Wallis test with Dunn's multiple comparisons test)
774 (saline n = 3, 4-week n = 6, 6-week n = 4, 8-week n = 4, *Npc1*^{+/+} n = 4). (C) Representative
775 immunofluorescence staining in free floating section for Purkinje neurons, insets are of anterior lobules
776 (IV/V). (D) Representative immunofluorescence staining in formalin-fixed, paraffin embedded sections for
777 microgliosis. Insets are of posterior lobules (lobule IX). For C,D: scale bar = 1000 microns for panels, 250
778 microns for insets. (E, F, G) Protein levels for Calbindin (E), CD68 (F), GFAP (G) were assessed via
779 western blot for each 9-week-old mice cohort (Kruskal-Wallis test with Dunn's multiple comparisons test)
780 (saline n = 3, 4 weeks n = 3, 6 weeks n = 4, 8 weeks n = 4, *Npc1*^{+/+} n = 4). For all: * p < 0.05, ** p < 0.01,
781 *** p < 0.001, **** p < 0.0001. Data presented as mean ± SD for A, B, E, F, G.

782

783 **Figure 7: Age of treatment impacts AAV9 transduction in cerebrum and liver and hepatic pathology.**
784 (A, C) ddPCR was used to measure h*NPC1* copy number in mice at 9-weeks old in cerebrum (A) and liver
785 (C) (Kruskal-Wallis test with Dunn's multiple comparisons test). For A: (saline n = 6, 4 weeks n = 3, 6
786 weeks n = 4, 8 weeks n = 4, *Npc1*^{+/+} n = 4), for C: (saline n = 6, 4 weeks n = 4, 6 weeks n = 4, 8 weeks n =
787 4, *Npc1*^{+/+} n = 4). (B, D) Linear regression of h*NPC1* copy number in end stage mice in cerebrum (B) and
788 liver (D). For B: (saline n = 14, 4 weeks n = 19, 6 weeks n = 20, 8 weeks n = 20, *Npc1*^{+/+} n = 17), for D:
789 (saline n = 14, 4 weeks n = 18, 6 weeks n = 20, 8 weeks n = 20, *Npc1*^{+/+} n = 17). (E) Representative
790 immunohistochemical staining of macrophages in the liver in 9-week-old mice (free-floating sections).
791 Scale bar = 250 microns. (F) Quantification of percent area CD68 labelled in 9-week-old mice (Kruskal-
792 Wallis test with Dunn's multiple comparisons test) (saline n = 6, 4 weeks n = 8, 6 weeks n = 4, 8 weeks n =
793 4, *Npc1*^{+/+} n = 4). For all: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data presented as
794 mean ± SD for A, C, F.

795

796 **Figure 8: *Npc1*^{II061T} mice treated with AAV9 show increased lifespan and delayed disease progression.**
797 (A) Kaplan Meier curve depicts survival of saline injected *Npc1*^{II061T} mice and *Npc1*^{II061T} mice treated with
798 AAV9 at 4 weeks. (B) Composite phenotype score for each group was measured from 6 to 21 weeks of age
799 at 3-week intervals. (C) Week mice reached peak weight (Mann-Whitney test). (D) Percent weight change
800 from 10 to 14 weeks (Kruskal-Wallis with Dunn's multiple comparisons). For A, B, C, D (saline n = 11,
801 treated n = 15) and for B,D (*Npc1*^{+/+} n = 15). For all: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p <
802 0.0001. For B, C, D: data presented as mean ± SD.

803

804 **Figure 9: AAV9 treatment effectively transduces the cerebellum of *Npc1*^{II061T} mice, modestly impacts**
805 **cerebellar pathology.**

806 (A) ddPCR was used to measure h*NPC1* copy number in the cerebellum in mice at 14-weeks old (Kruskal-
807 Wallis test with Dunn's multiple comparisons test) (saline n = 4, AAV9 n = 5, *Npc1*^{+/+} n = 4). (B) NPC1
808 protein levels were assessed via western blot in 14-week-old mice to determine amount of NPC1 protein in
809 the cerebellum (Kruskal-Wallis test with Dunn's multiple comparisons test) (saline n = 4, AAV9 n = 5,
810 *Npc1*^{+/+} n = 5). (C) Representative immunofluorescence staining in free floating section for Purkinje
811 neurons, insets are of anterior lobules (IV/V). (D) Representative immunofluorescence staining in formalin-
812 fixed, paraffin embedded sections for microgliosis. Insets are of posterior lobules (lobule IX). For C,D:

813 scale bar = 1000 microns for panels, 250 microns for insets. **(E, F, G)** Protein levels for Calbindin (E),
814 CD68 (F), GFAP (G) were assessed via western blot for each 9-week-old mice cohort (Kruskal-Wallis test
815 with Dunn's multiple comparisons test) (saline n = 4, AAV9 n = 5, *Npc1*^{+/+} n = 5). For all: * p < 0.05, **
816 p < 0.01, *** p < 0.001, **** p < 0.0001. Data presented as mean ± SD for A, B, E, F, G.
817

818 **Figure 10: Transduction efficacy of AAV9 in *Npc1*^{II061T} mice cerebrum and liver tissue and hepatic
819 pathology.**

820 (A, C) ddPCR was used to measure h*NPC1* copy number at 14 weeks in cerebrum (A) and liver (C). For
821 A,C: (Kruskal-Wallis test with Dunn's multiple comparisons test) (saline n = 4, treated n = 5, *Npc1*^{+/+} n =
822 5). (B, D) Linear regression of h*NPC1* copy number and lifespan in cerebrum (B) or liver (D). For B: (saline
823 n = 11, treated n = 12, *Npc1*^{+/+} n = 14), D: (saline n = 11, treated n = 13, *Npc1*^{+/+} n = 14). (E) Representative
824 immunohistochemical staining of macrophages in liver of saline-injected, treated, and *Npc1*^{+/+} mice at 14
825 weeks (free floating sections). Scale bar = 250 microns. (F) Quantification of percent area CD68 labelled
826 in 14-week-old mice (Kruskal-Wallis test with Dunn's multiple comparisons test) (saline n = 5, treated n =
827 5, *Npc1*^{+/+} n = 6). For all: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. For A, C, F: data
828 presented as mean ± SD.
829

830

831 **SUPPLEMENTAL**

832

833 **Table S1: Antibodies used for immunohistochemical and immunofluorescence staining** along with
834 manufacturer and dilution information.

835

836 **Table S2: Median survival of *Npc1*^{mIN} mice treated with AAV9.** Table of median survival for each dose
837 treatment group (**A**, analysis of Fig 1A) and each age of treatment group (**B**, analysis of Fig 5A). Level of
838 significance is $p = 0.0083$ based on Bonferroni's correction with 6 comparisons.

839

840 **Table S3: *Npc1*^{mIN} mice treated with AAV9 vector and *Npc1*^{+/+} mice phenotype score comparison from
841 6-12 weeks.** Two-way ANOVA with mixed effects analysis and Tukey's multiple comparisons test of
842 various dose treatment groups (**A**) and various age treatment groups (**B**) from 6-9 weeks, and 9-12 weeks.
843 Level of significance is $p = 0.0083$ based on Bonferroni's correction with 6 comparisons.

844

845 **Table S4: Total sample size for weight curves of each sub study.** (**A**) Sample size for male and female
846 mice per treatment group included in dosing study. (**B**) Sample size for male and female mice per treatment
847 group included in age at injection study. (**C**) Sample size for male and female mice per treatment group
848 included in the hypomorphic I1061T study.

849

850 **S1: Mouse weights.** *Npc1*^{mIN} mice treated with AAV9 vector and *Npc1*^{+/+} mice weights over lifespan.
851 Weights are presented as mean \pm SD. For the dose study, (**A**) males, (**B**) females. For age at injection: (**C**)
852 males, (**D**) females. For *Npc1*^{I1061T} mice: (**E**) males, (**F**) females. (n) listed in Table S4.

853

854 **S2: hNPC1 copy number in tissues of 10-week-old mice treated with varying doses.** Gene copy numbers
855 were measured for various organs at 10-weeks-old for *Npc1*^{mIN} mice treated with saline or AAV9 vector at
856 low, medium, and high doses, and untreated *Npc1*^{+/+} mice. Data presented as mean \pm SD.

857

858 **S3: Representative western blots: quantification of NPC1 in cerebrum and liver of *Npc1*^{mIN} mice in
859 dose study.**

860 Representative western blots for quantification of NPC1 in cerebellum (**A**), quantification shown in Fig
861 2Aii. Source images for cerebellum (**B**), right half of blot enlarged in (A). Representative blots for
862 quantification of NPC1 in cerebrum (**C**), quantification shown in Fig 2Bii. Source images for cerebrum
863 (**D**), left half of blot enlarged in (C). Representative western blots for quantification of NPC1 in liver (**E**),
864 quantification shown in Fig 2Cii. Source image for liver (**F**), right half of blot enlarged in (E). Red box and
865 triangle denote immunoreactive NPC1 protein (~180kDa), black triangle indicates Beta-actin (42kDa).
866 hNPC1 copy number provided for each sample below (A, C, E). For (D), molecular weight markers are
867 faint in this representative blot; approximate molecular weights were determined from a parallel blot.

868

869 **S4. Representative western blots: quantification of GFAP, CD68, and Calbindin D in cerebellum of
870 *Npc1*^{mIN} mice in dose study.**

871 Representative western blot for quantification of GFAP (**A**) and CD68 (**C**), quantification shown in Fig 3C.
872 Source image for GFAP and CD68 (**B**), right half of blot enlarged in (A, GFAP and C, CD68).
873 Representative western blot for quantification of Calbindin D (**D**), quantification shown in Fig 3D. Source
874 image for Calbindin D (**E**), left half of blot enlarged in (D). Brown box and triangle denote GFAP protein
875 (50kDa), purple box and triangle denote CD68 protein (~100 kDa), yellow triangle denotes Calbindin D
876 (28kDa), and black triangle indicates Beta-actin (42kDa). hNPC1 copy number provided for each sample
877 below blots.

878

879 **S5: AAV9 modulates sphingolipid accumulation in the brains of *Npc1*^{mIN} mice.**

880 (A) Mass spectrometry imaging of brain of 10-week-old mice treated with varying doses of AAV9. Lipids
881 displayed include i) Ganglioside GM2 (d18:1/18:0), ii) Hexosylceramide HexCer 46:4;O3, and iii)

882 Dihydroceramide Cer 32:2;O3 (for all groups, n = 3, 4-6 sections assessed). **(B)** Quantification of total ion
883 count (TIC) normalized peak areas for GM2 in cerebellum of 10-week-old mice (Kruskal-Wallis test with
884 Dunn's multiple comparisons test).

885

886 **S6: Representative western blots: quantification of NPC1, Calbindin D, CD68, and GFAP in**
887 **cerebellum in *Npc1*^{mIN} mice in age of treatment study.**

888 Representative western blot for quantification of NPC1 and Calbindin D **(A)**, quantification shown in Fig
889 6B,E respectively. Source image for NPC1, Calbindin D, and Beta-actin **(B)**, left half of blot enlarged in
890 (A). Representative blot for quantification of CD68 and GFAP **(C)**, quantification shown in Fig 6F,G
891 respectively. Source image for CD68 and GFAP **(D)**, left half of blot enlarged in (C). Red box and triangle
892 denote NPC1 protein (~180kDa), yellow triangle denotes Calbindin D (28kDa), purple box and triangle
893 denote CD68 protein (~100kDa), brown box and triangle denote GFAP protein (50kDa), and black triangle
894 indicates Beta-actin (42kDa). h*NPC1* copy number provided for each sample below blots for A, C.

895

896 **S7: Representative western blots: quantification of NPC1, Calbindin D, CD68, and GFAP in**
897 **cerebellum in *Npc1*^{II061T} mice.**

898 Representative western blot for quantification of NPC1 **(A)** and Calbindin D **(C)**, quantification shown in
899 Fig 9B,E respectively. Source image for NPC1 and Calbindin D **(B)**, left third of blot enlarged in (A, NPC1
900 and C, Calbindin D). Representative blot for quantification of CD68 and GFAP **(D)**, quantification shown
901 in Fig 9F,G respectively. Source image for CD68 and GFAP **(E)**, left third of blot enlarged in (D). Red box
902 and triangle denote NPC1 protein (~180kDa), yellow triangle denotes Calbindin D (28kDa), purple box
903 and triangle denote CD68 protein (~100 kDa), brown box and triangle denote GFAP protein (50kDa), and
904 black triangle indicates Beta-actin (42kDa). h*NPC1* copy number provided for each sample below blots for
905 A, C, D.

906 **REFERENCES**

- 907 1. Vanier, M.T., *Niemann-Pick diseases*. Handb Clin Neurol, 2013. **113**: p. 1717-21.
- 908 2. Ory, D.S., *Niemann-Pick type C: a disorder of cellular cholesterol trafficking*. Biochim
909 Biophys Acta, 2000. **1529**(1-3): p. 331-9.
- 910 3. Sleat, D.E., et al., *Genetic evidence for nonredundant functional cooperativity between*
911 *NPC1 and NPC2 in lipid transport*. Proc Natl Acad Sci U S A, 2004. **101**(16): p. 5886-91.
- 912 4. Infante, R.E., et al., *Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a*
913 *1278-amino acid membrane protein*. J Biol Chem, 2008. **283**(2): p. 1052-63.
- 914 5. Vanier, M.T., et al., *Genetic heterogeneity in Niemann-Pick C disease: a study using*
915 *somatic cell hybridization and linkage analysis*. Am J Hum Genet, 1996. **58**(1): p. 118-25.
- 916 6. Cologna, S.M. and A. Rosenhouse-Dantsker, *Insights into the Molecular Mechanisms of*
917 *Cholesterol Binding to the NPC1 and NPC2 Proteins*. Adv Exp Med Biol, 2019. **1135**: p.
918 139-160.
- 919 7. Walkley, S.U. and K. Suzuki, *Consequences of NPC1 and NPC2 loss of function in*
920 *mammalian neurons*. Biochim Biophys Acta, 2004. **1685**(1-3): p. 48-62.
- 921 8. Vanier, M.T., *Niemann-Pick disease type C*. Orphanet J Rare Dis, 2010. **5**: p. 16.
- 922 9. Patterson, M.C., et al., *Recommendations for the diagnosis and management of*
923 *Niemann-Pick disease type C: an update*. Mol Genet Metab, 2012. **106**(3): p. 330-44.
- 924 10. Mullard, A., *FDA approves first two drugs for rare Niemann-Pick disease*. Nat Rev Drug
925 Discov, 2024.
- 926 11. Fields, T., et al., *N-acetyl-L-leucine for Niemann-Pick type C: a multinational double-blind*
927 *randomized placebo-controlled crossover study*. Trials, 2023. **24**(1): p. 361.
- 928 12. Mengel, E., et al., *Efficacy and safety of arimoclomol in Niemann-Pick disease type C:*
929 *Results from a double-blind, randomised, placebo-controlled, multinational phase 2/3*
930 *trial of a novel treatment*. J Inherit Metab Dis, 2021. **44**(6): p. 1463-1480.
- 931 13. Patterson, M.C., et al., *Miglustat for treatment of Niemann-Pick C disease: a randomised*
932 *controlled study*. Lancet Neurol, 2007. **6**(9): p. 765-72.
- 933 14. Ory, D.S., et al., *Intrathecal 2-hydroxypropyl-beta-cyclodextrin decreases neurological*
934 *disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label,*
935 *phase 1-2 trial*. Lancet, 2017. **390**(10104): p. 1758-1768.
- 936 15. Administration, U.S.F.a.D. *FDA approves first treatment for Niemann-Pick disease type C*.
937 2024 September 25, 2024]; Available from: <https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-niemann-pick-disease-type-c>.
- 938 16. Patterson, M.C., et al., *Stable or improved neurological manifestations during miglustat*
939 *therapy in patients from the international disease registry for Niemann-Pick disease type*
940 *C: an observational cohort study*. Orphanet J Rare Dis, 2015. **10**: p. 65.
- 941 17. Solomon, B.I., et al., *Association of Miglustat With Swallowing Outcomes in Niemann-*
942 *Pick Disease, Type C1*. JAMA Neurol, 2020. **77**(12): p. 1564-1568.
- 943 18. Chandler, R.J., et al., *Systemic AAV9 gene therapy improves the lifespan of mice with*
944 *Niemann-Pick disease, type C1*. Hum Mol Genet, 2017. **26**(1): p. 52-64.
- 945 19. Cain, J.T., et al., *Gene Therapy Corrects Brain and Behavioral Pathologies in CLN6-Batten*
946 *Disease*. Mol Ther, 2019. **27**(10): p. 1836-1847.

948 20. Bosch, M.E., et al., *Self-Complementary AAV9 Gene Delivery Partially Corrects Pathology*
949 *Associated with Juvenile Neuronal Ceroid Lipofuscinosis (CLN3)*. *J Neurosci*, 2016. **36**(37):
950 p. 9669-82.

951 21. Sondhi, D., et al., *Slowing late infantile Batten disease by direct brain parenchymal*
952 *administration of a rh.10 adeno-associated virus expressing CLN2*. *Sci Transl Med*, 2020.
953 **12**(572).

954 22. Hudry, E. and L.H. Vandenberghe, *Therapeutic AAV Gene Transfer to the Nervous*
955 *System: A Clinical Reality*. *Neuron*, 2019. **102**(1): p. 263.

956 23. Bradbury, A.M., et al., *Krabbe disease successfully treated via monotherapy of*
957 *intrathecal gene therapy*. *J Clin Invest*, 2020. **130**(9): p. 4906-4920.

958 24. Mendell, J.R., et al., *Single-Dose Gene-Replacement Therapy for Spinal Muscular*
959 *Atrophy*. *N Engl J Med*, 2017. **377**(18): p. 1713-1722.

960 25. Al-Zaidy, S., et al., *Health outcomes in spinal muscular atrophy type 1 following AVXS-*
961 *101 gene replacement therapy*. *Pediatr Pulmonol*, 2019. **54**(2): p. 179-185.

962 26. Lowes, L.P., et al., *Impact of Age and Motor Function in a Phase 1/2A Study of Infants*
963 *With SMA Type 1 Receiving Single-Dose Gene Replacement Therapy*. *Pediatr Neurol*,
964 2019. **98**: p. 39-45.

965 27. Gao, J., R.M. Hussain, and C.Y. Weng, *Voretigene Neparvovec in Retinal Diseases: A*
966 *Review of the Current Clinical Evidence*. *Clin Ophthalmol*, 2020. **14**: p. 3855-3869.

967 28. Russell, S., et al., *Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in*
968 *patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled,*
969 *open-label, phase 3 trial*. *Lancet*, 2017. **390**(10097): p. 849-860.

970 29. Tai, C.H., et al., *Long-term efficacy and safety of eladocagene exuparvovec in patients*
971 *with AADC deficiency*. *Mol Ther*, 2022. **30**(2): p. 509-518.

972 30. Manfredsson, F.P., A.C. Rising, and R.J. Mandel, *AAV9: a potential blood-brain barrier*
973 *buster*. *Mol Ther*, 2009. **17**(3): p. 403-5.

974 31. Foust, K.D., et al., *Intravascular AAV9 preferentially targets neonatal neurons and adult*
975 *astrocytes*. *Nat Biotechnol*, 2009. **27**(1): p. 59-65.

976 32. Lykken, E.A., et al., *Recent progress and considerations for AAV gene therapies targeting*
977 *the central nervous system*. *J Neurodev Disord*, 2018. **10**(1): p. 16.

978 33. Duque, S., et al., *Intravenous administration of self-complementary AAV9 enables*
979 *transgene delivery to adult motor neurons*. *Mol Ther*, 2009. **17**(7): p. 1187-96.

980 34. Gray, S.J., et al., *Preclinical differences of intravascular AAV9 delivery to neurons and*
981 *glia: a comparative study of adult mice and nonhuman primates*. *Mol Ther*, 2011. **19**(6):
982 p. 1058-69.

983 35. Bagel, J.H., et al., *Electrodiagnostic testing and histopathologic changes confirm*
984 *peripheral nervous system myelin abnormalities in the feline model of niemann-pick*
985 *disease type C*. *J Neuropathol Exp Neurol*, 2013. **72**(3): p. 256-62.

986 36. Zincarelli, C., et al., *Analysis of AAV serotypes 1-9 mediated gene expression and tropism*
987 *in mice after systemic injection*. *Mol Ther*, 2008. **16**(6): p. 1073-80.

988 37. Inagaki, K., et al., *Robust systemic transduction with AAV9 vectors in mice: efficient*
989 *global cardiac gene transfer superior to that of AAV8*. *Mol Ther*, 2006. **14**(1): p. 45-53.

990 38. Gombash, S.E., et al., *Intravenous AAV9 efficiently transduces myenteric neurons in*
991 *neonate and juvenile mice*. *Front Mol Neurosci*, 2014. **7**: p. 81.

992 39. Schuster, D.J., et al., *Biodistribution of adeno-associated virus serotype 9 (AAV9) vector*
993 *after intrathecal and intravenous delivery in mouse*. Front Neuroanat, 2014. **8**: p. 42.

994 40. Shen, Z., et al., *Intravenous Administration of an AAV9 Vector Ubiquitously Expressing*
995 *C1orf194 Gene Improved CMT-Like Neuropathy in C1orf194(-/-) Mice*.
996 Neurotherapeutics, 2023. **20**(6): p. 1835-1846.

997 41. Higashi, Y., et al., *Peripheral nerve pathology in Niemann-Pick type C mouse*. Acta
998 Neuropathol, 1995. **90**(2): p. 158-63.

999 42. Xie, C., et al., *AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral*
1000 *abnormalities in mouse NPC disease*. J Lipid Res, 2017. **58**(3): p. 512-518.

1001 43. Hughes, M.P., et al., *AAV9 intracerebroventricular gene therapy improves lifespan,*
1002 *locomotor function and pathology in a mouse model of Niemann-Pick type C1 disease*.
1003 Hum Mol Genet, 2018. **27**(17): p. 3079-3098.

1004 44. Davidson, C.D., et al., *Improved systemic AAV gene therapy with a neurotrophic capsid in*
1005 *Niemann-Pick disease type C1 mice*. Life Sci Alliance, 2021. **4**(10).

1006 45. Kurokawa, Y., et al., *Gene Therapy in a Mouse Model of Niemann-Pick Disease Type C1*.
1007 Hum Gene Ther, 2021. **32**(11-12): p. 589-598.

1008 46. Hughes, M.P., et al., *A Novel Small NPC1 Promoter Enhances AAV-Mediated Gene*
1009 *Therapy in Mouse Models of Niemann-Pick Type C1 Disease*. Cells, 2023. **12**(12).

1010 47. Pentchev, P.G., et al., *A lysosomal storage disorder in mice characterized by a dual*
1011 *deficiency of sphingomyelinase and glucocerebrosidase*. Biochim Biophys Acta, 1980.
1012 **619**(3): p. 669-79.

1013 48. Morris, M.D., et al., *Lysosome lipid storage disorder in NCTR-BALB/c mice. I. Description*
1014 *of the disease and genetics*. Am J Pathol, 1982. **108**(2): p. 140-9.

1015 49. Shio, H., et al., *Lysosome lipid storage disorder in NCTR-BALB/c mice. II. Morphologic and*
1016 *cytochemical studies*. Am J Pathol, 1982. **108**(2): p. 150-9.

1017 50. Loftus, S.K., et al., *Murine model of Niemann-Pick C disease: mutation in a cholesterol*
1018 *homeostasis gene*. Science, 1997. **277**(5323): p. 232-5.

1019 51. Higashi, Y., et al., *Cerebellar degeneration in the Niemann-Pick type C mouse*. Acta
1020 Neuropathol, 1993. **85**(2): p. 175-84.

1021 52. Wasserstein, M.P., et al., *The future of newborn screening for lysosomal disorders*.
1022 Neurosci Lett, 2021. **760**: p. 136080.

1023 53. Patterson, M.C., et al., *Disease and patient characteristics in NP-C patients: findings from*
1024 *an international disease registry*. Orphanet J Rare Dis, 2013. **8**: p. 12.

1025 54. Gaviglio, A., et al., *Infants with Congenital Diseases Identified through Newborn*
1026 *Screening-United States, 2018-2020*. Int J Neonatal Screen, 2023. **9**(2).

1027 55. Administration, H.R.S. *Niemann-Pick disease*. 2024 September 2024 [cited 2025
1028 January]; Available from: <https://newbornscreening.hrsa.gov/conditions/niemann-pick-disease>.

1029 56. Surmeli-Onay, O., et al., *Prenatal-onset Niemann-Pick type C disease with nonimmune*
1030 *hydrops fetalis*. Pediatr Neonatol, 2013. **54**(5): p. 344-7.

1031 57. Kelly, D.A., et al., *Niemann-Pick disease type C: diagnosis and outcome in children, with*
1032 *particular reference to liver disease*. J Pediatr, 1993. **123**(2): p. 242-7.

1033 58. Kumagai, T., et al., *A case of Niemann-Pick disease type C with neonatal liver failure*
1034 *initially diagnosed as neonatal hemochromatosis*. Brain Dev, 2019. **41**(5): p. 460-464.

1036 59. Shammas, H., et al., *Different Niemann-Pick C1 Genotypes Generate Protein Phenotypes*
1037 *that Vary in their Intracellular Processing, Trafficking and Localization*. *Sci Rep*, 2019.
1038 9(1): p. 5292.

1039 60. Landrum, M.J., et al., *ClinVar: public archive of relationships among sequence variation*
1040 *and human phenotype*. *Nucleic Acids Res*, 2014. **42**(Database issue): p. D980-5.

1041 61. McKay Bounford, K. and P. Gissen, *Genetic and laboratory diagnostic approach in*
1042 *Niemann Pick disease type C*. *J Neurol*, 2014. **261 Suppl 2**(Suppl 2): p. S569-75.

1043 62. Millat, G., et al., *Niemann-Pick C1 disease: the I1061T substitution is a frequent mutant*
1044 *allele in patients of Western European descent and correlates with a classic juvenile*
1045 *phenotype*. *Am J Hum Genet*, 1999. **65**(5): p. 1321-9.

1046 63. Guatibonza Moreno, P., et al., *At a glance: the largest Niemann-Pick type C1 cohort with*
1047 *602 patients diagnosed over 15 years*. *Eur J Hum Genet*, 2023. **31**(10): p. 1108-1116.

1048 64. Gelsthorpe, M.E., et al., *Niemann-Pick type C1 I1061T mutant encodes a functional*
1049 *protein that is selected for endoplasmic reticulum-associated degradation due to protein*
1050 *misfolding*. *J Biol Chem*, 2008. **283**(13): p. 8229-36.

1051 65. Praggastis, M., et al., *A murine Niemann-Pick C1 I1061T knock-in model recapitulates the*
1052 *pathological features of the most prevalent human disease allele*. *J Neurosci*, 2015.
1053 **35**(21): p. 8091-106.

1054 66. Yerger, J., et al., *Phenotype assessment for neurodegenerative murine models with*
1055 *ataxia and application to Niemann-Pick disease, type C1*. *Biol Open*, 2022. **11**(4).

1056 67. Martin, K.B., et al., *Identification of Novel Pathways Associated with Patterned*
1057 *Cerebellar Purkinje Neuron Degeneration in Niemann-Pick Disease, Type C1*. *Int J Mol Sci*,
1058 **21**(1).

1059 68. Maxfield, F.R. and D. Wustner, *Analysis of cholesterol trafficking with fluorescent probes*.
1060 *Methods Cell Biol*, 2012. **108**: p. 367-93.

1061 69. Peake, K.B. and J.E. Vance, *Defective cholesterol trafficking in Niemann-Pick C-deficient*
1062 *cells*. *FEBS Lett*, 2010. **584**(13): p. 2731-9.

1063 70. Baudry, M., et al., *Postnatal development of inflammation in a murine model of*
1064 *Niemann-Pick type C disease: immunohistochemical observations of microglia and*
1065 *astroglia*. *Exp Neurol*, 2003. **184**(2): p. 887-903.

1066 71. Chiba, Y., et al., *Niemann-Pick disease type C1 predominantly involving the*
1067 *frontotemporal region, with cortical and brainstem Lewy bodies: an autopsy case*.
1068 *Neuropathology*, 2014. **34**(1): p. 49-57.

1069 72. Cologna, S.M., et al., *Human and mouse neuroinflammation markers in Niemann-Pick*
1070 *disease, type C1*. *J Inherit Metab Dis*, 2014. **37**(1): p. 83-92.

1071 73. Cougnoux, A., et al., *Microglia activation in Niemann-Pick disease, type C1 is amendable*
1072 *to therapeutic intervention*. *Hum Mol Genet*, 2018. **27**(12): p. 2076-2089.

1073 74. Walker, D.G. and L.F. Lue, *Immune phenotypes of microglia in human neurodegenerative*
1074 *disease: challenges to detecting microglial polarization in human brains*. *Alzheimers Res*
1075 *Ther*, 2015. **7**(1): p. 56.

1076 75. Tomita, M., et al., *Immunohistochemical phenotyping of liver macrophages in normal*
1077 *and diseased human liver*. *Hepatology*, 1994. **20**(2): p. 317-25.

1078 76. Boenzi, S., et al., *Comprehensive-targeted lipidomic analysis in Niemann-Pick C disease*.
1079 *Mol Genet Metab*, 2021. **134**(4): p. 337-343.

1080 77. Pergande, M.R., et al., *Lipidomic Analysis Reveals Altered Fatty Acid Metabolism in the*
1081 *Liver of the Symptomatic Niemann-Pick, Type C1 Mouse Model*. Proteomics, 2019.
1082 **19**(18): p. e1800285.

1083 78. Elleder, M., et al., *Niemann-Pick disease type C. Study on the nature of the cerebral*
1084 *storage process*. Acta Neuropathol, 1985. **66**(4): p. 325-36.

1085 79. Zervas, M., K. Dobrenis, and S.U. Walkley, *Neurons in Niemann-Pick disease type C*
1086 *accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and*
1087 *axonal alterations*. J Neuropathol Exp Neurol, 2001. **60**(1): p. 49-64.

1088 80. Tobias, F., K.C. Pathmasiri, and S.M. Cologna, *Mass spectrometry imaging reveals*
1089 *ganglioside and ceramide localization patterns during cerebellar degeneration in the*
1090 *Npc1(-/-) mouse model*. Anal Bioanal Chem, 2019. **411**(22): p. 5659-5668.

1091 81. Maue, R.A., et al., *A novel mouse model of Niemann-Pick type C disease carrying a*
1092 *D1005G-Npc1 mutation comparable to commonly observed human mutations*. Hum Mol

1093 Genet, 2012. **21**(4): p. 730-50.

1094 82. Park, W.D., et al., *Identification of 58 novel mutations in Niemann-Pick disease type C:*
1095 *correlation with biochemical phenotype and importance of PTC1-like domains in NPC1*.
1096 Hum Mutat, 2003. **22**(4): p. 313-25.

1097 83. Davies, J.P. and Y.A. Ioannou, *Topological analysis of Niemann-Pick C1 protein reveals*
1098 *that the membrane orientation of the putative sterol-sensing domain is identical to*
1099 *those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element*
1100 *binding protein cleavage-activating protein*. J Biol Chem, 2000. **275**(32): p. 24367-74.

1101 84. Shieh, P.B., et al., *Safety and efficacy of gene replacement therapy for X-linked*
1102 *myotubular myopathy (ASPIRO): a multinational, open-label, dose-escalation trial*.
1103 Lancet Neurol, 2023. **22**(12): p. 1125-1139.

1104 85. Ong, W.Y., et al., *Neurodegeneration in Niemann-Pick type C disease mice*. Exp Brain Res,
1105 2001. **141**(2): p. 218-31.

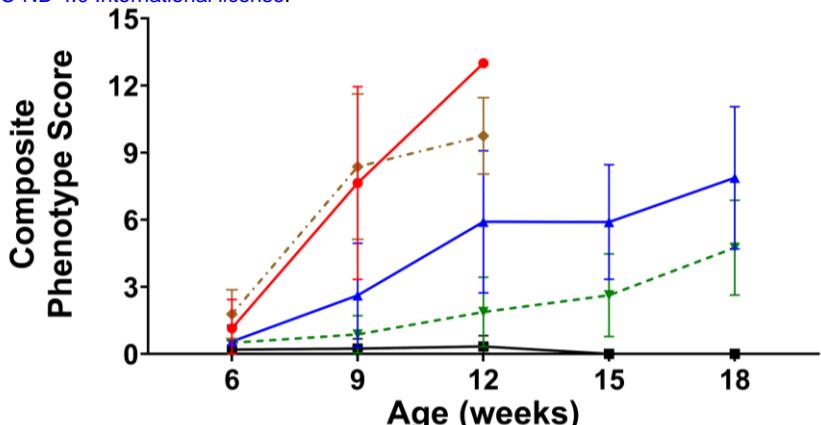
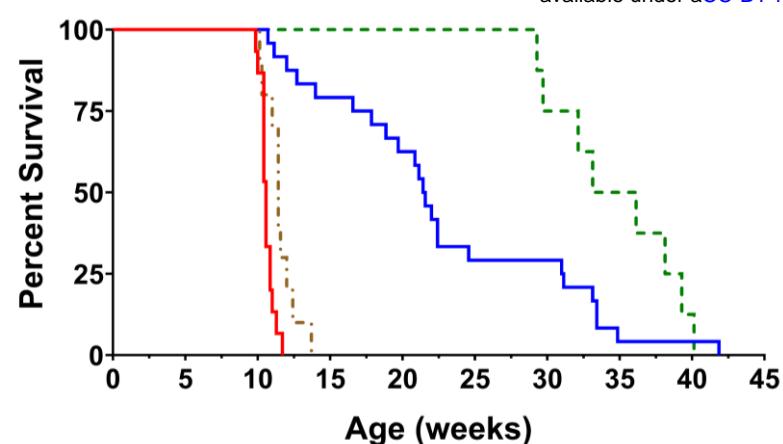
1106 86. Vance, J.E. and B. Karten, *Niemann-Pick C disease and mobilization of lysosomal*
1107 *cholesterol by cyclodextrin*. J Lipid Res, 2014. **55**(8): p. 1609-21.

1108 87. Lloyd-Evans, E. and F.M. Platt, *Lipids on trial: the search for the offending metabolite in*
1109 *Niemann-Pick type C disease*. Traffic, 2010. **11**(4): p. 419-28.

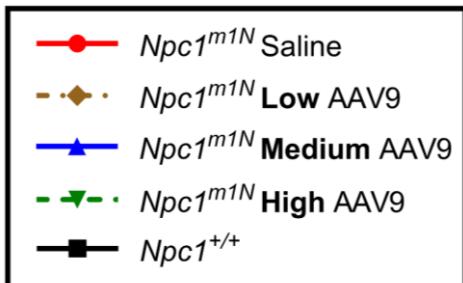
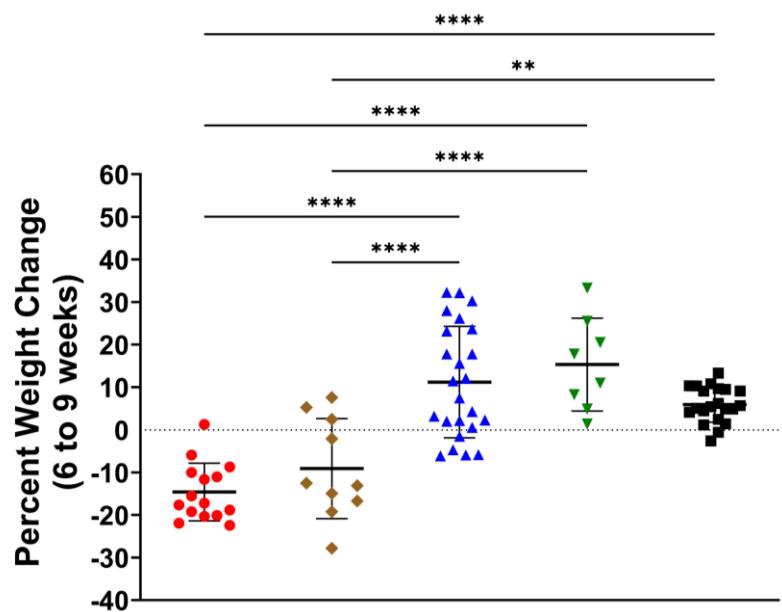
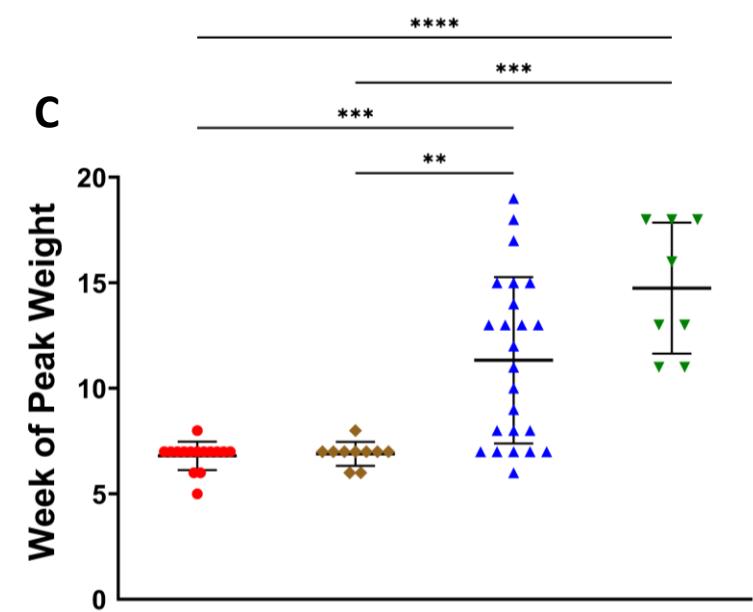
1110 88. Pineda, M., M. Walterfang, and M.C. Patterson, *Miglustat in Niemann-Pick disease type*
1111 *C patients: a review*. Orphanet J Rare Dis, 2018. **13**(1): p. 140.

1112 89. Karten, B., et al., *Trafficking of cholesterol from cell bodies to distal axons in Niemann*
1113 *Pick C1-deficient neurons*. J Biol Chem, 2003. **278**(6): p. 4168-75.

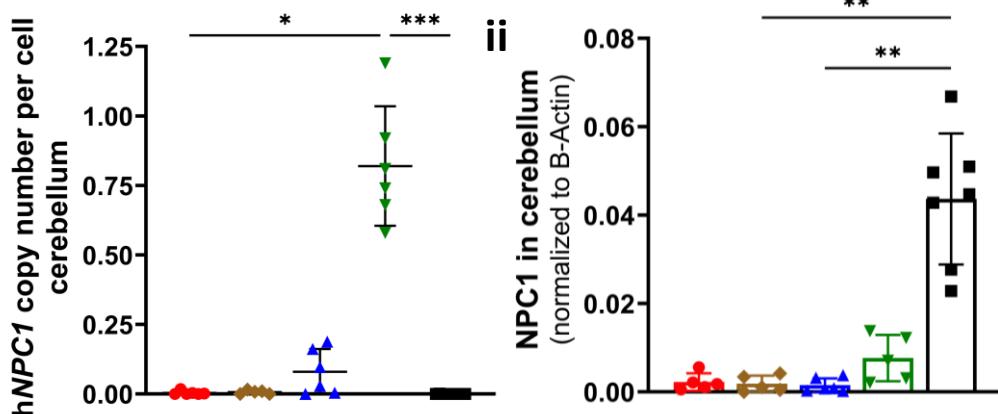
1114 90. Carcel-Trullols, J., A.D. Kovacs, and D.A. Pearce, *Cell biology of the NCL proteins: What*
1115 *they do and don't do*. Biochim Biophys Acta, 2015. **1852**(10 Pt B): p. 2242-55.

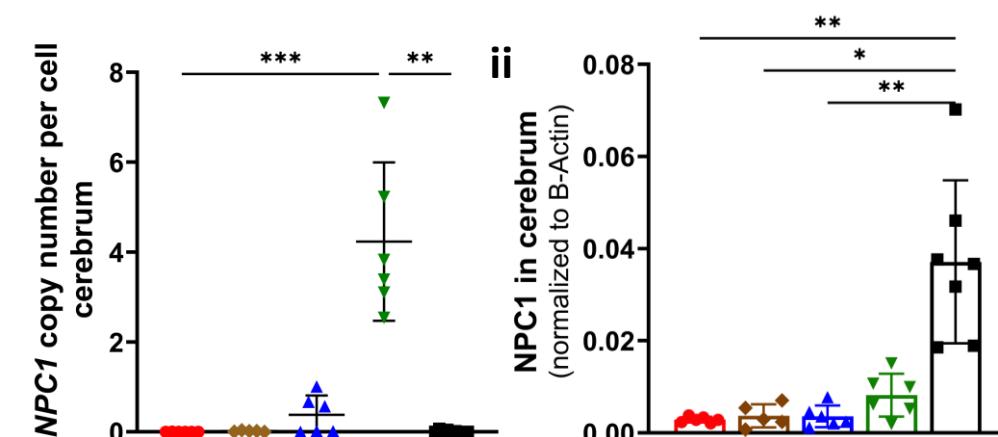


1116 91. Mukherjee, A.B., et al., *Emerging new roles of the lysosome and neuronal ceroid*
1117 *lipofuscinoses*. Mol Neurodegener, 2019. **14**(1): p. 4.

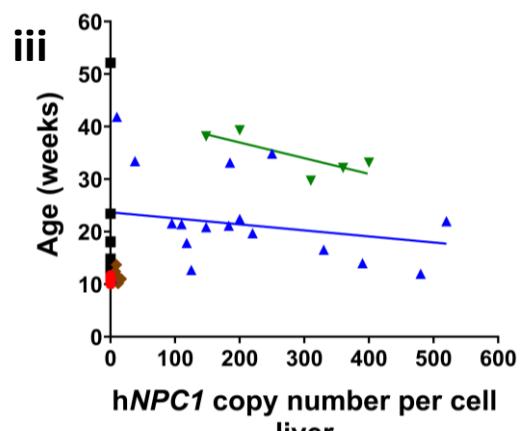
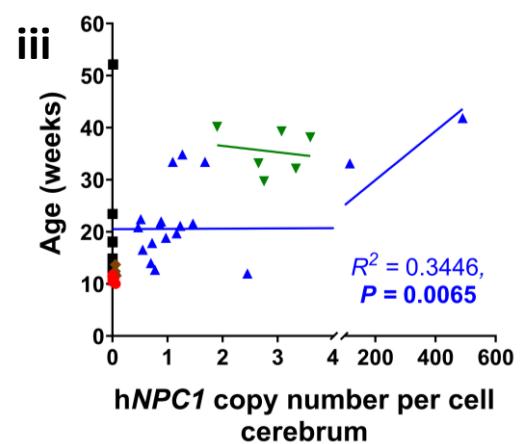
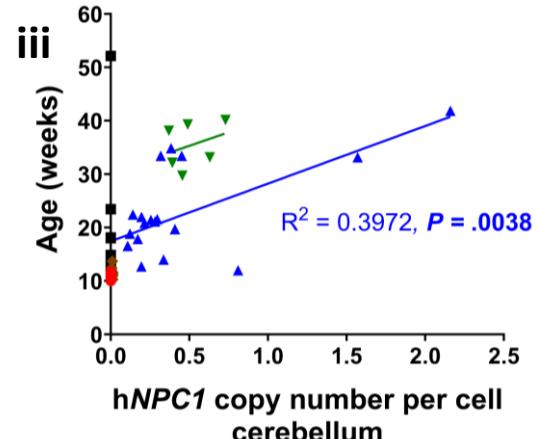
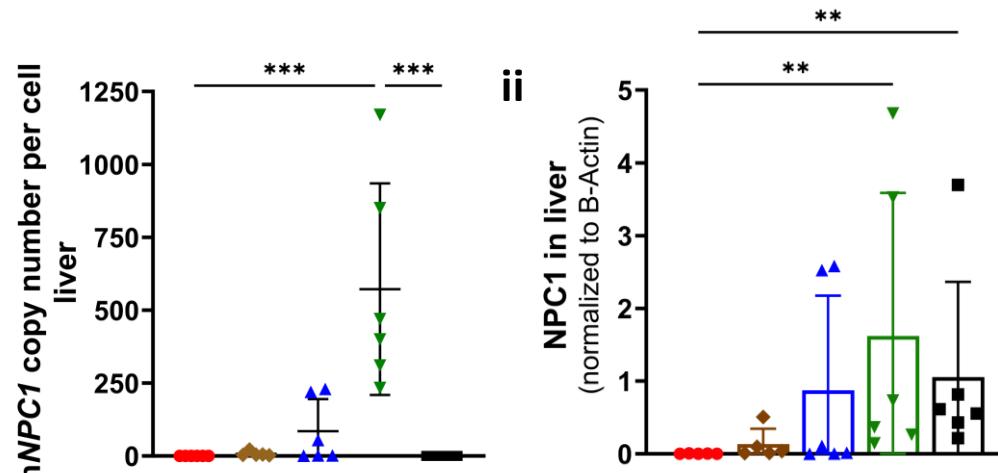
1118 92. Bach, G., *Mucolipidosis type IV*. Mol Genet Metab, 2001. **73**(3): p. 197-203.




1119 93. Sangster, M.L., et al., *A blood-brain barrier-penetrant AAV gene therapy improves*
1120 *neurological function in symptomatic mucolipidosis IV mice*. Mol Ther Methods Clin Dev,
1121 2024. **32**(2): p. 101269.

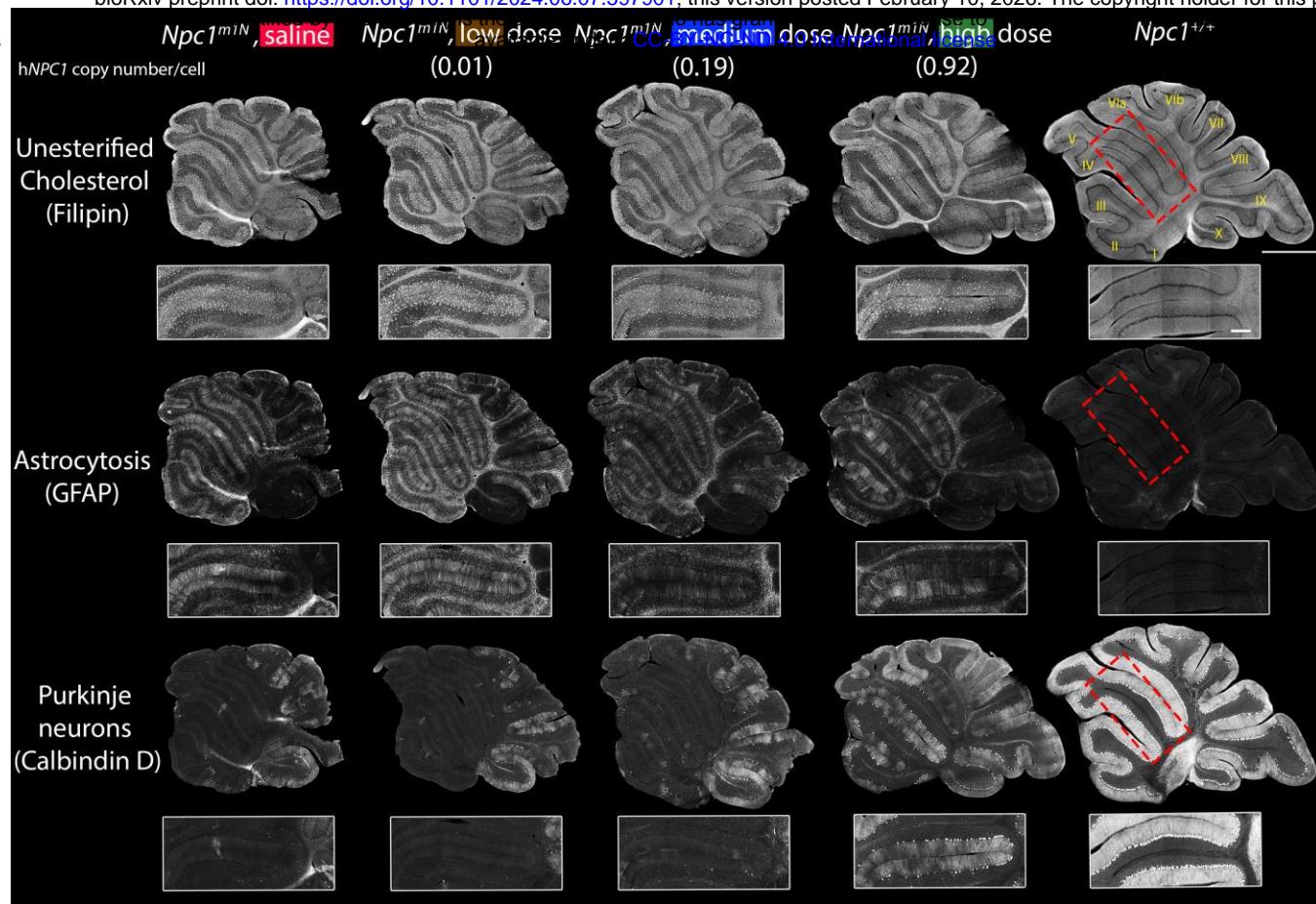
1122 94. Rodriguez-Gil, J.L., et al., *Genetic background modifies phenotypic severity and longevity*
1123 *in a mouse model of Niemann-Pick disease type C1*. Dis Model Mech, 2020. **13**(3).


A

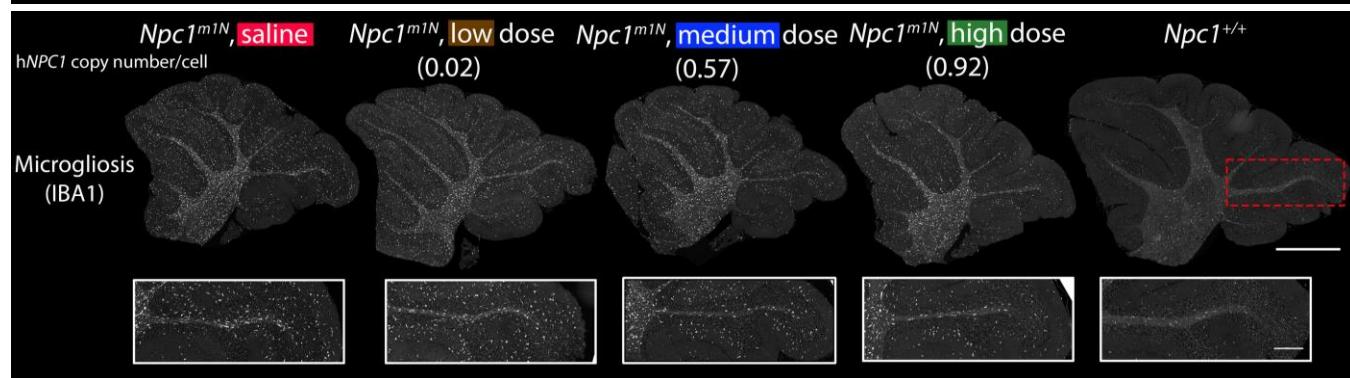

C





A

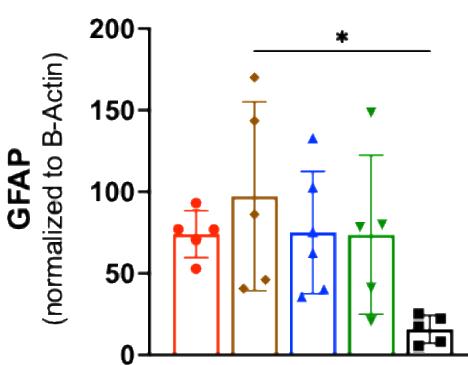
B

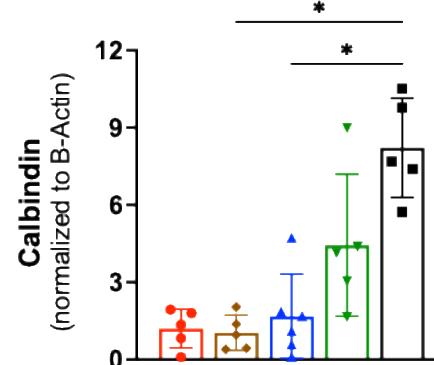


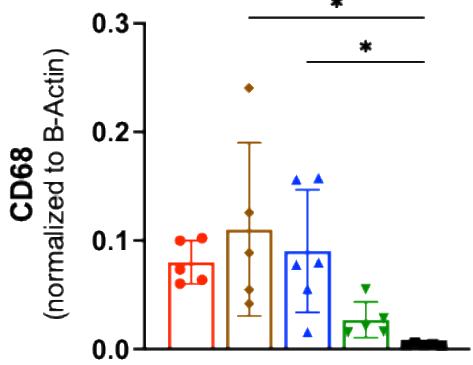
C



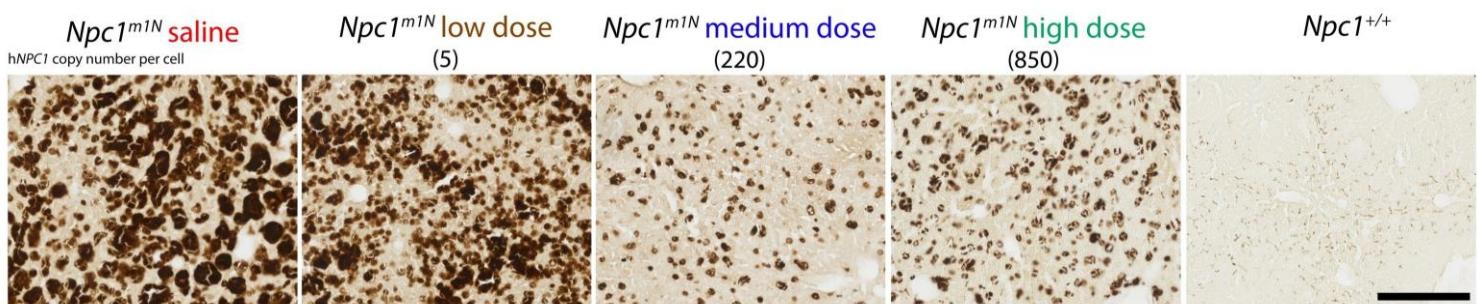
- *Npc1^{m1N}* Saline
- ◆ *Npc1^{m1N}* Low AAV9
- ▲ *Npc1^{m1N}* Med AAV9
- ▼ *Npc1^{m1N}* High AAV9
- *Npc1^{+/+}*


A

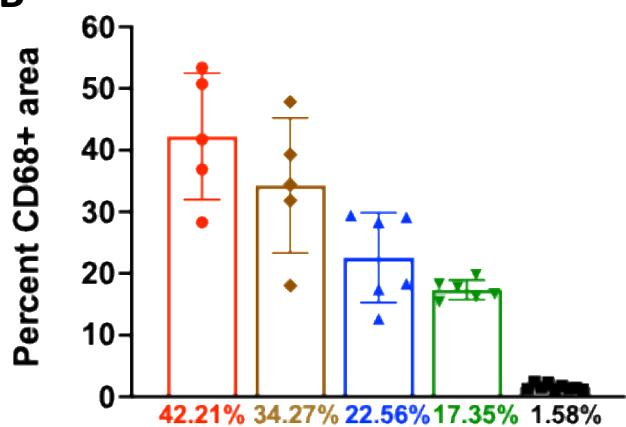

B


C

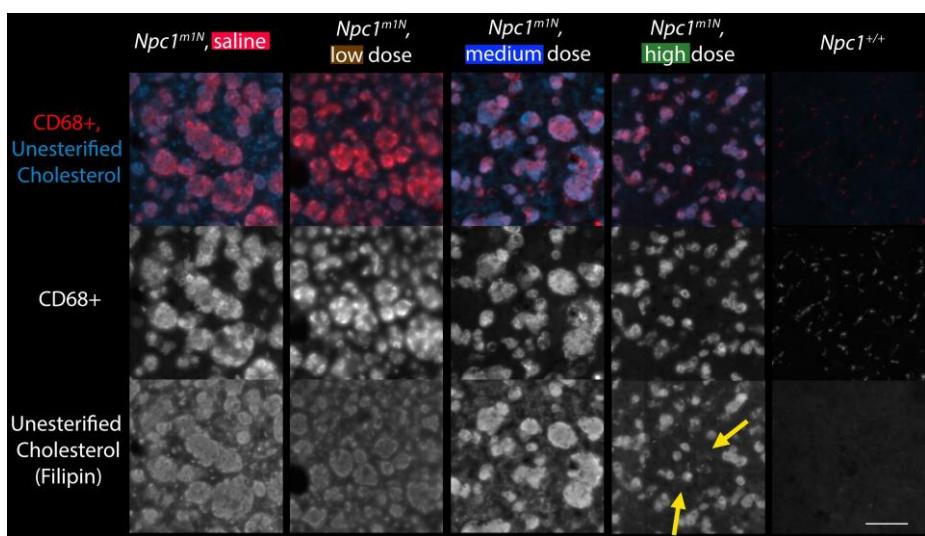
D



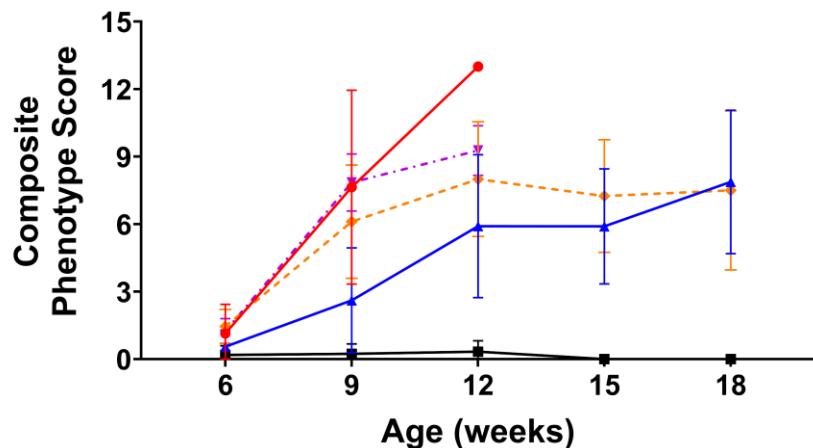
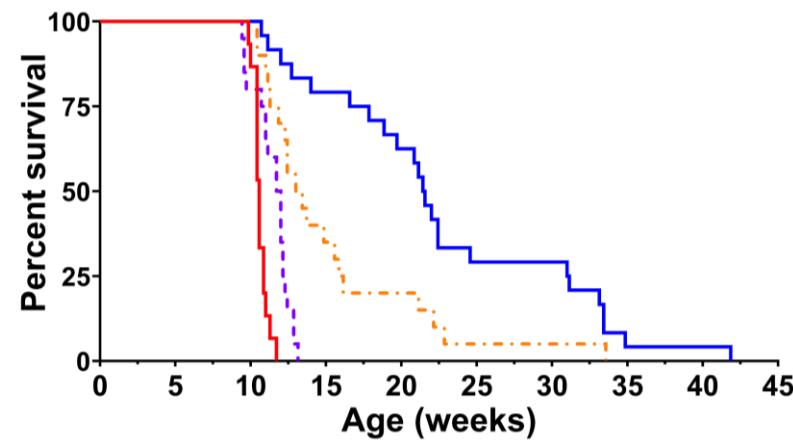
E



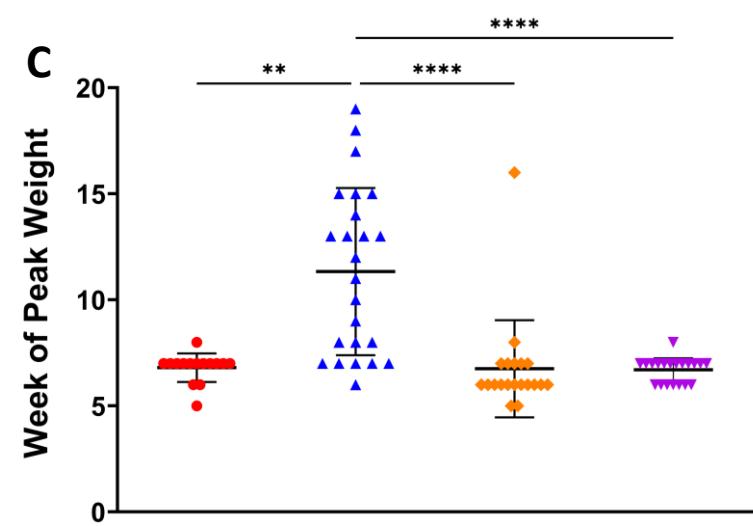
- *Npc1^{m1N}* Saline
- ◆ *Npc1^{m1N}* Low AAV9
- ▲ *Npc1^{m1N}* Med AAV9
- ▼ *Npc1^{m1N}* High AAV9
- *Npc1^{+/+}*


A

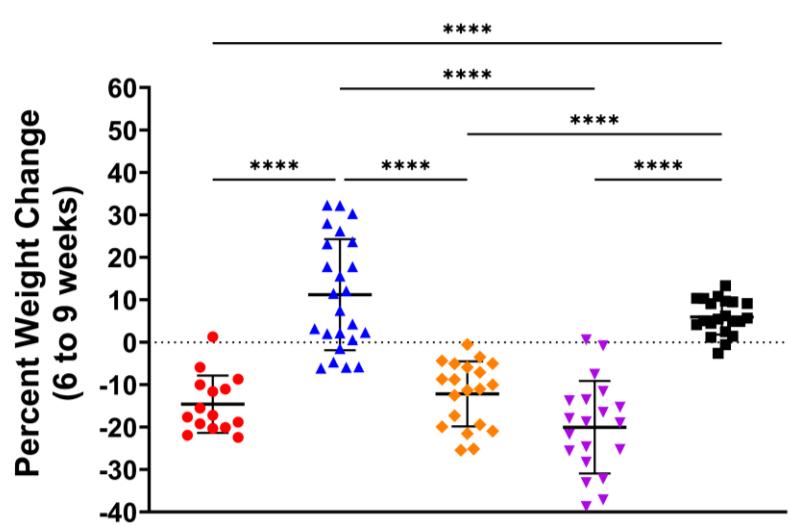
B

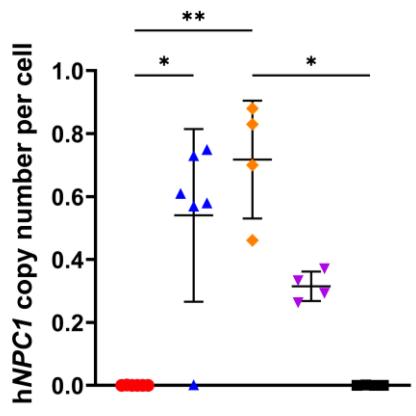
C



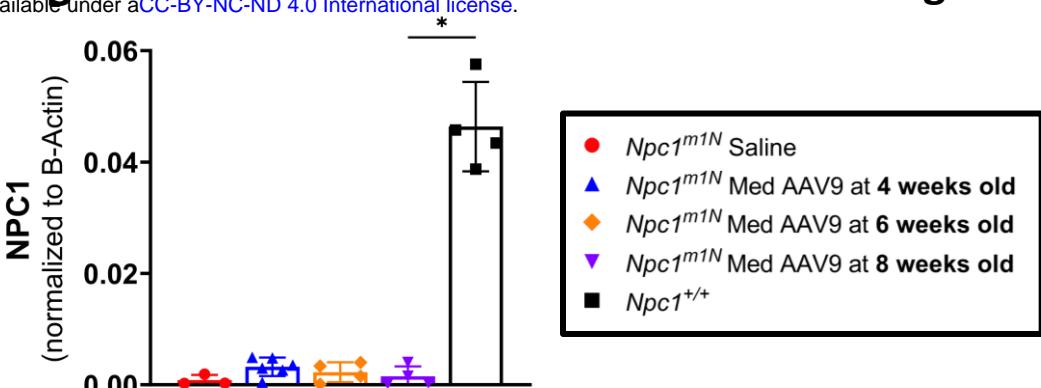
- *Npc1^{m1N}* Saline
- ◆ *Npc1^{m1N}* Low AAV9
- ▲ *Npc1^{m1N}* Med AAV9
- ▼ *Npc1^{m1N}* High AAV9
- *Npc1^{+/+}*


A

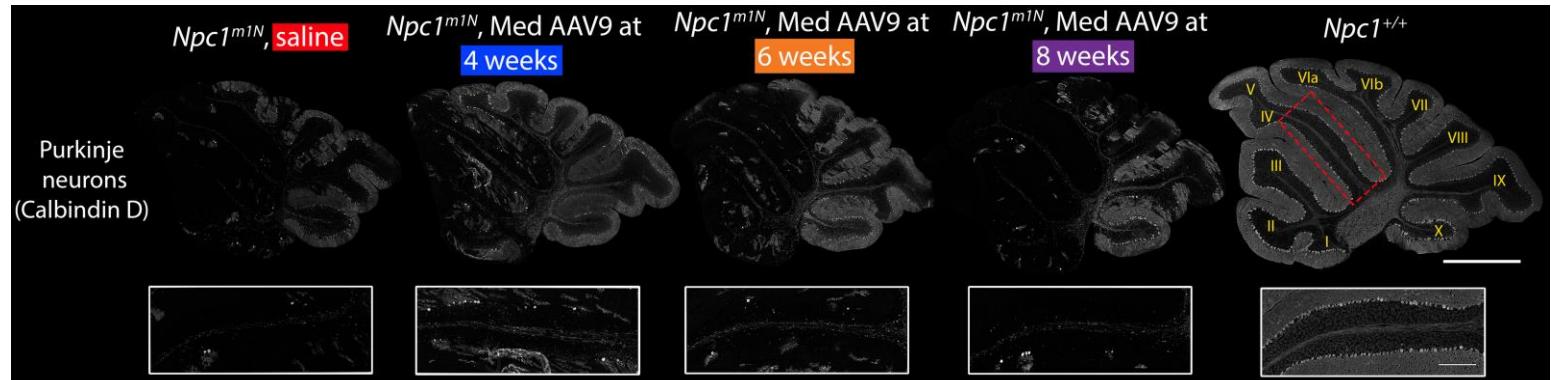
C

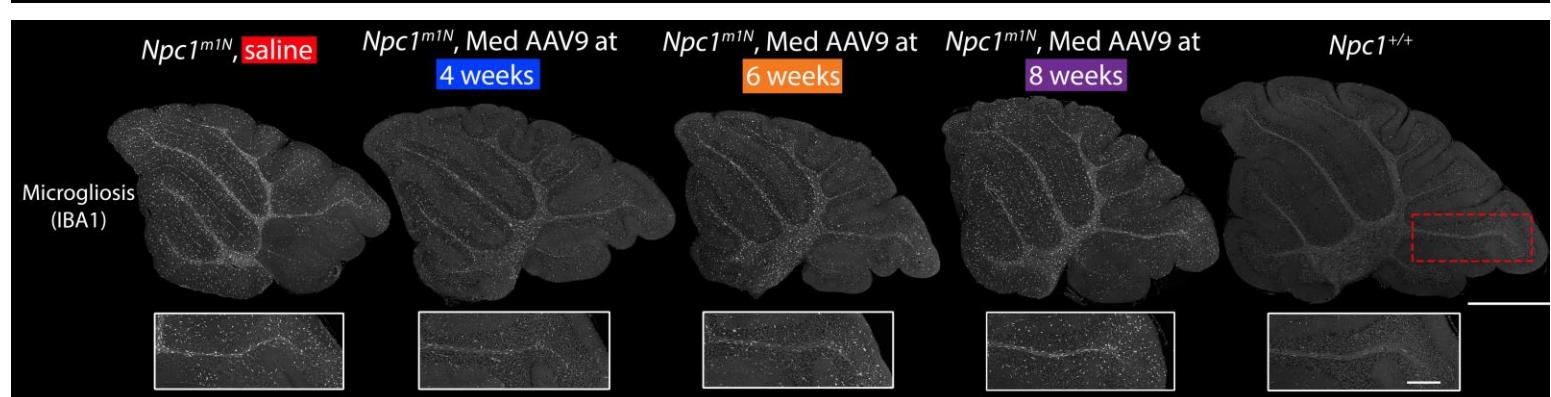


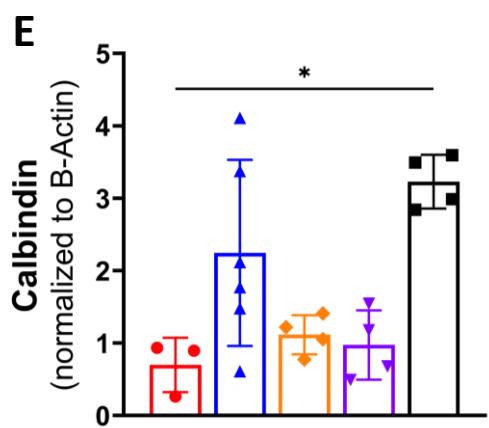
D

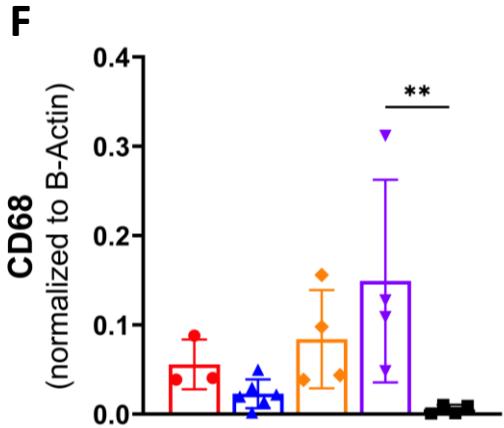


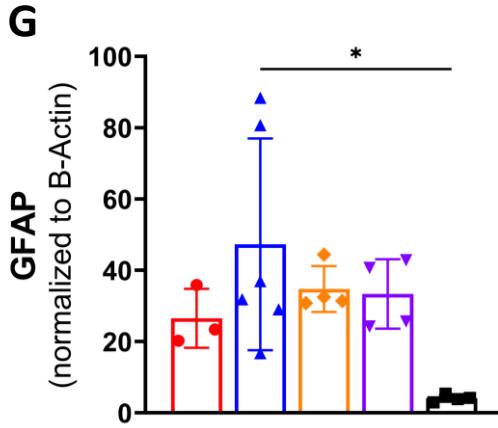
- $Npc1^{m1N}$ Saline
- ▲ $Npc1^{m1N}$ Med AAV9 at 4 weeks old
- ◆ $Npc1^{m1N}$ Med AAV9 at 6 weeks old
- $Npc1^{m1N}$ Med AAV9 at 8 weeks old
- $Npc1^{+/+}$

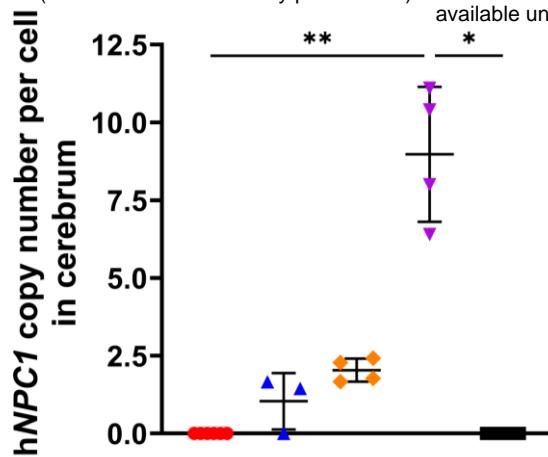

A

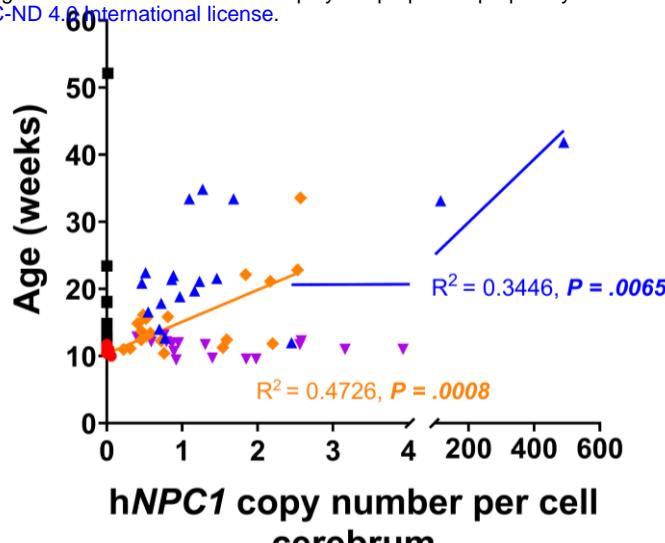

B

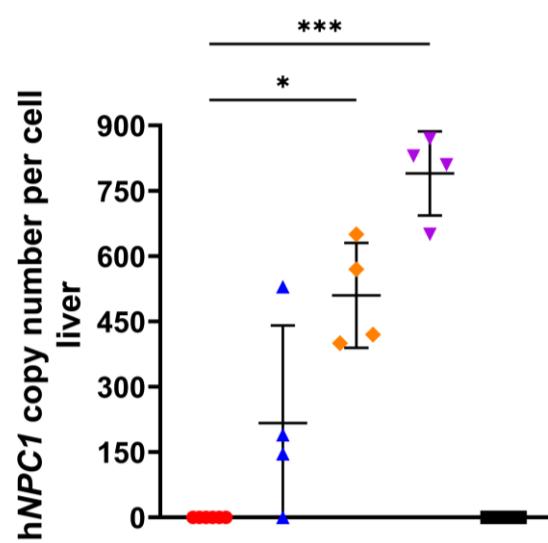

C

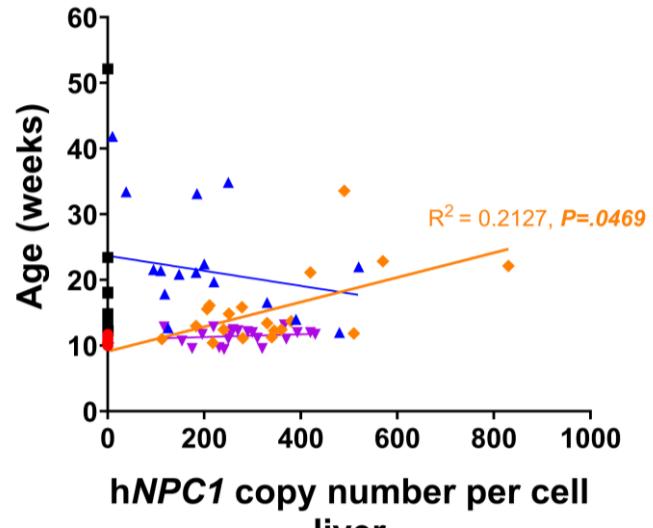

D

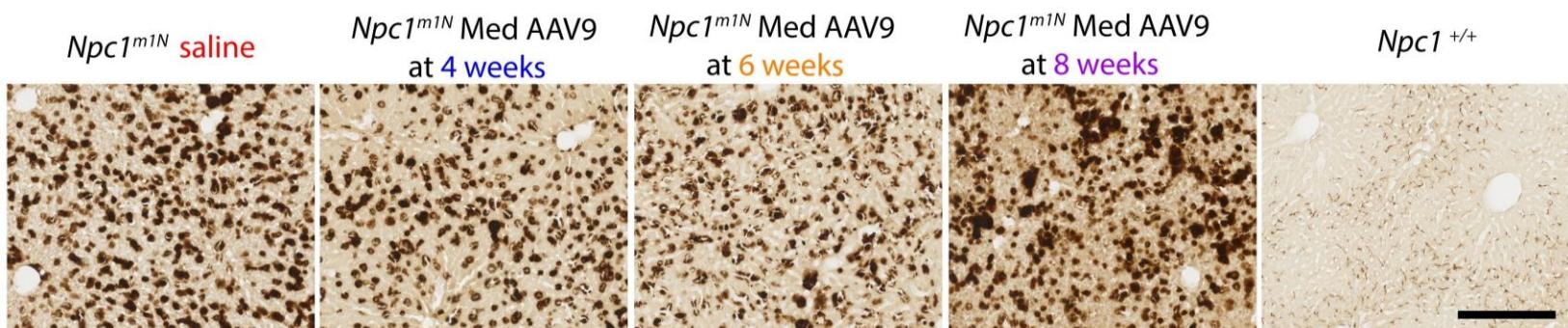

E

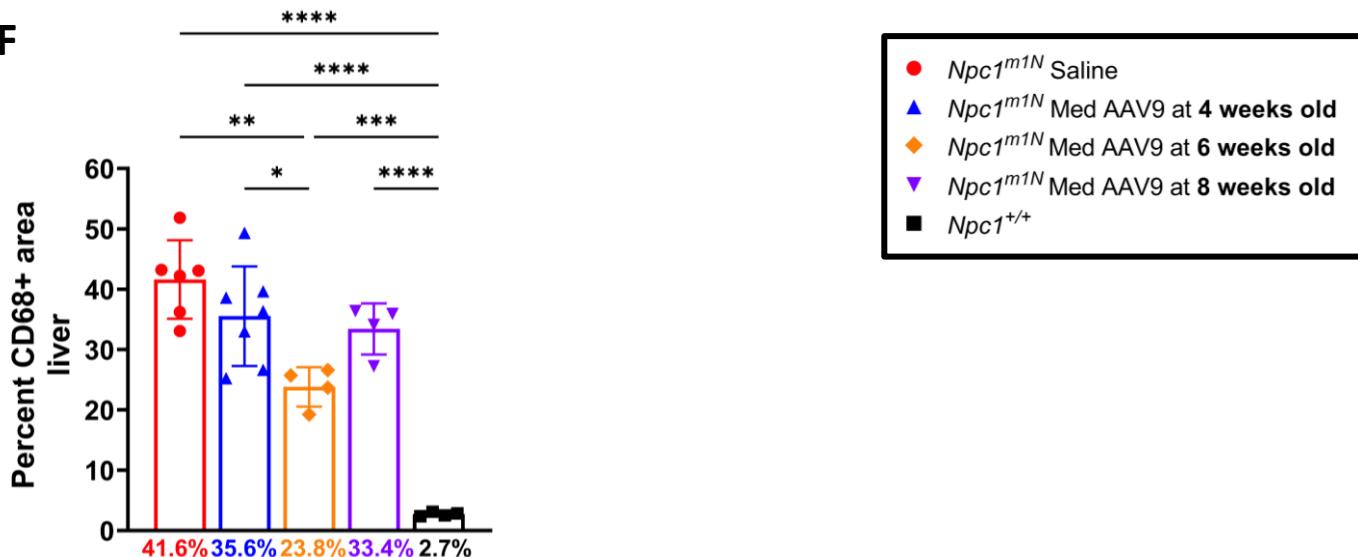

F

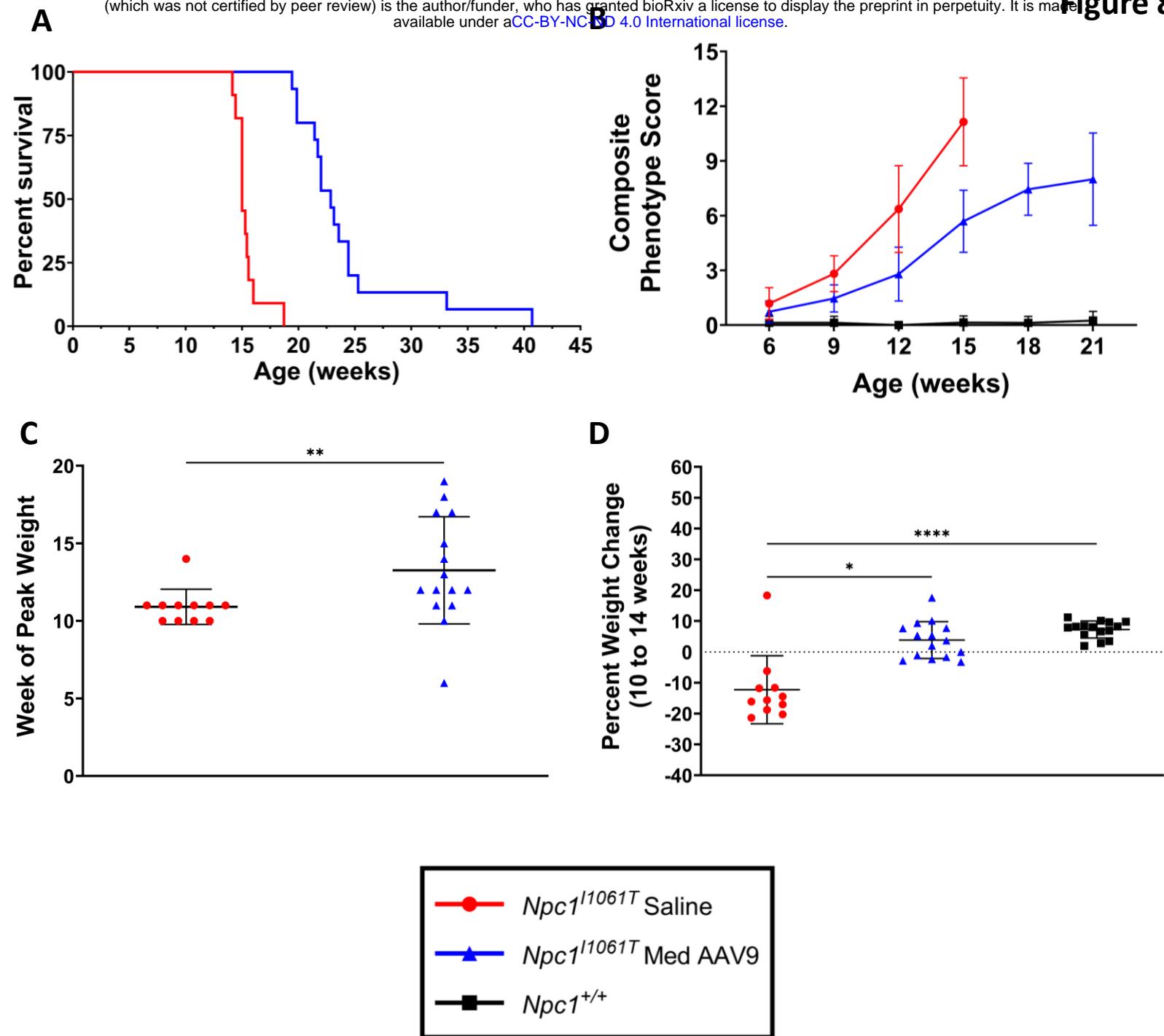

G


A

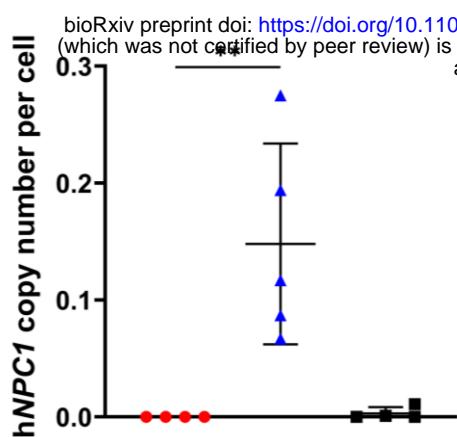

B


C

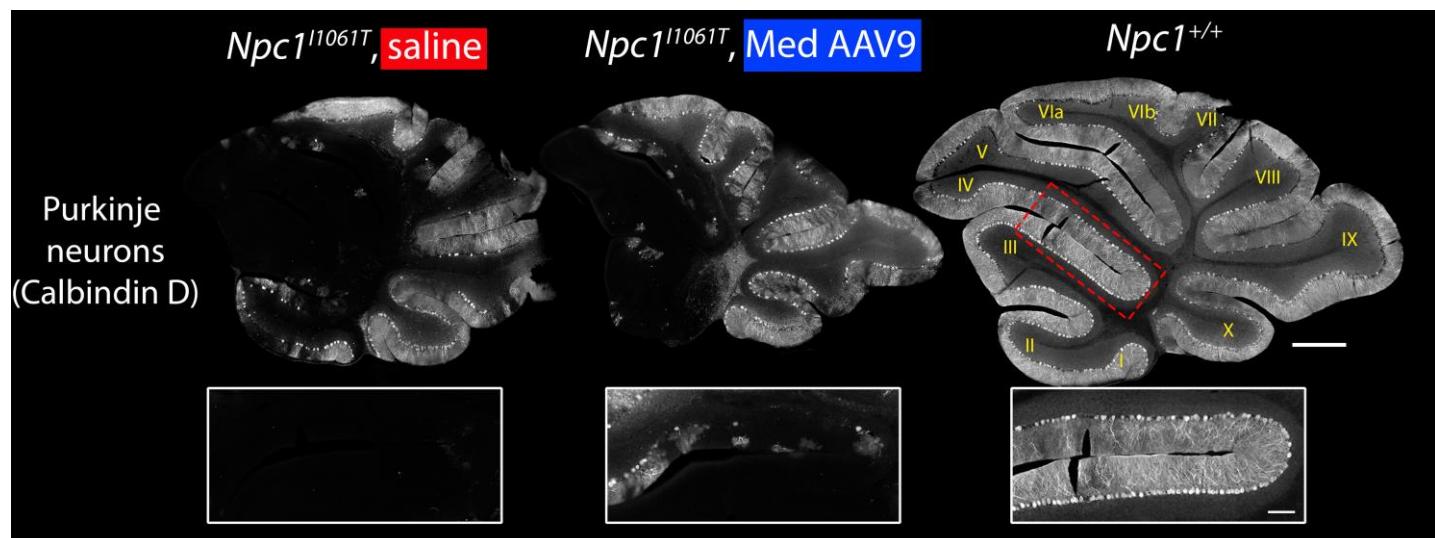

D

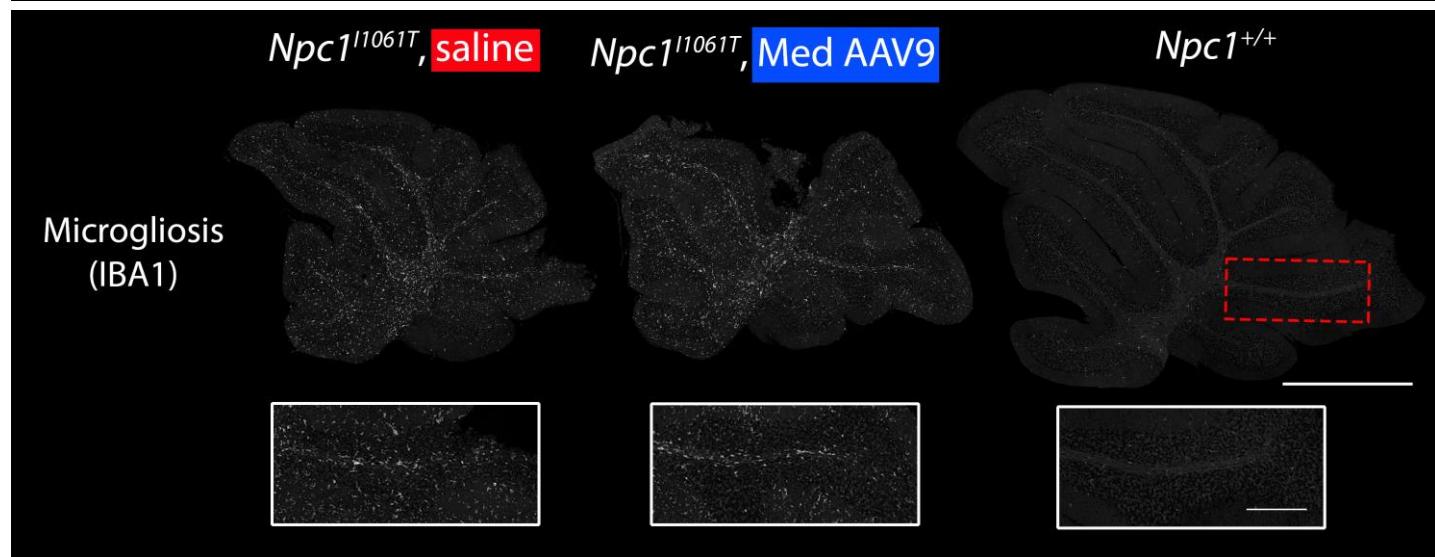


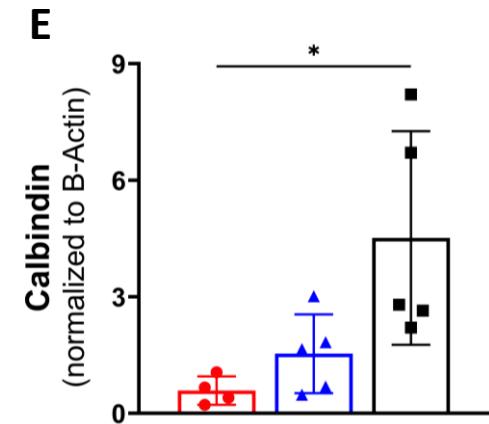
E

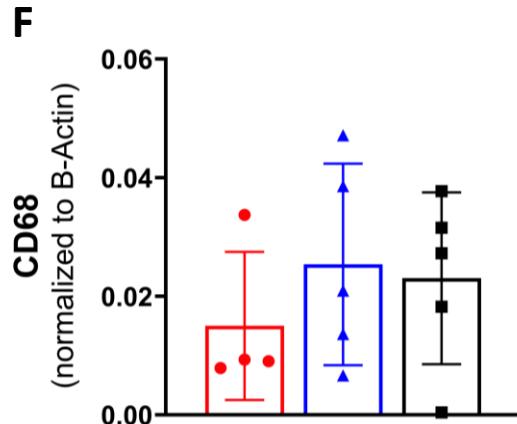


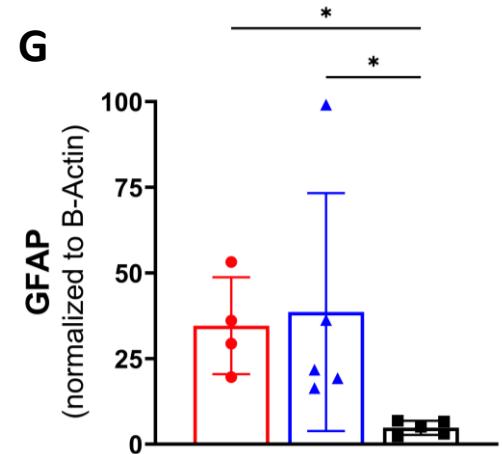
F

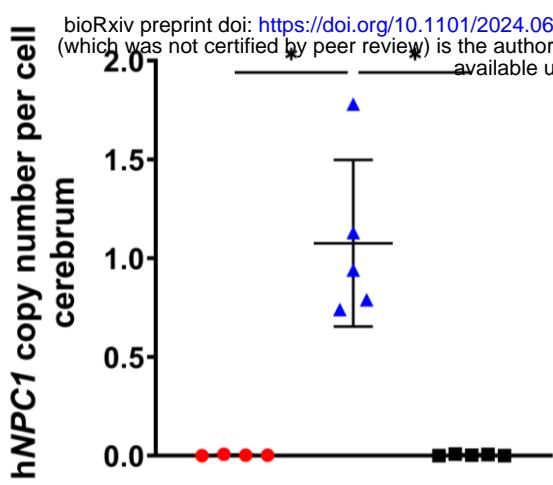

A

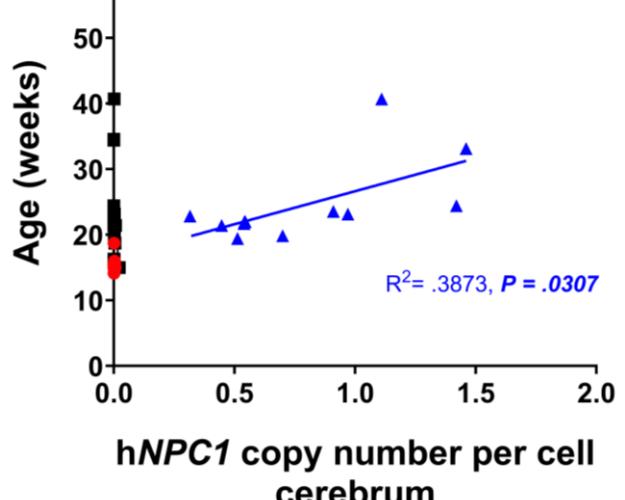

B

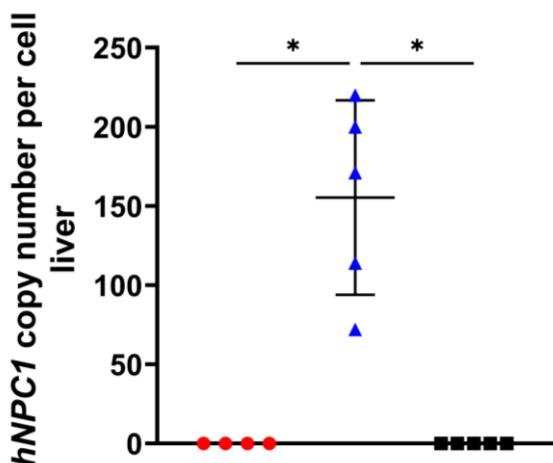

C

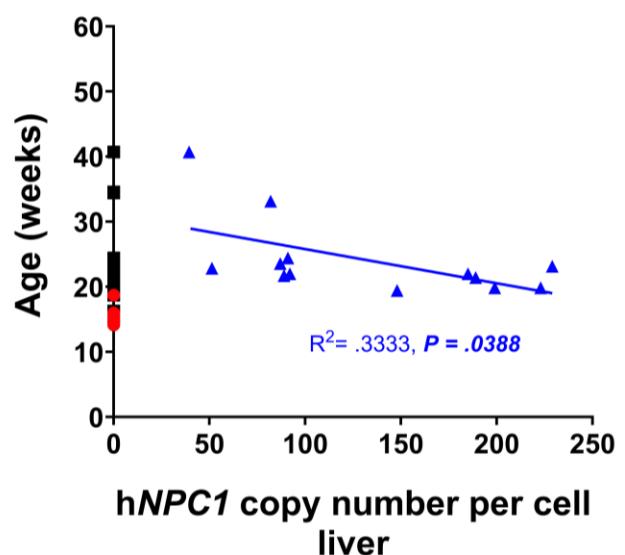

D

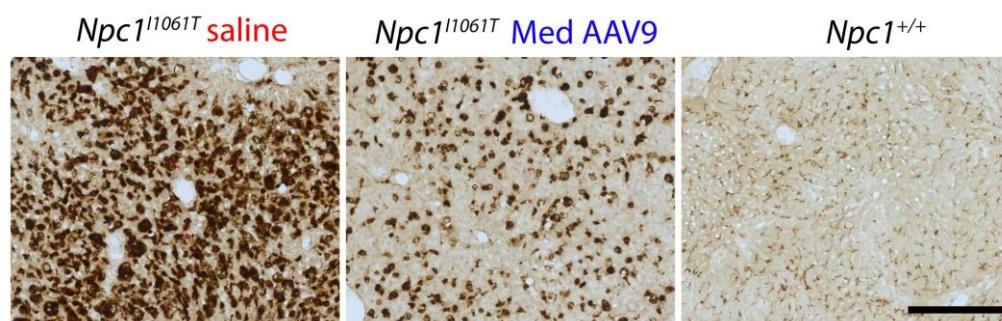

E

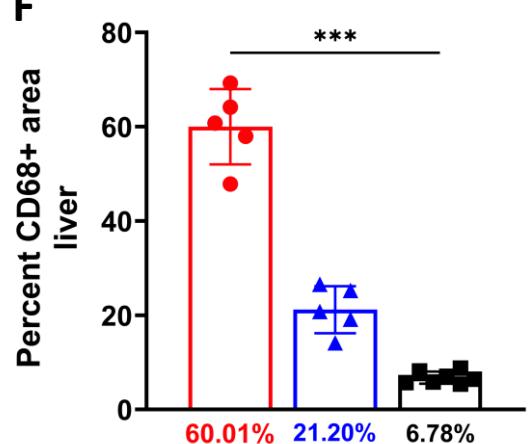

F


G


A


B


C


D

E

F

● Npc1 ^{11061T} Saline
▲ Npc1 ^{11061T} Med AAV9
■ Npc1 ^{+/+}