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Abstract 
 

The ability to interpret, modify, and design DNA has driven many of the most significant advances 
in modern medicine, from diagnostics, biologics, and vaccines to cell and gene therapies. However, the 
inherent complexity of biological systems means that most modern medicines are still engineered using 
bespoke, labor-intensive processes.  

To address the need for a generalisable and programmable approach to therapeutic design, we 
introduce the EDEN (environmentally-derived evolutionary network) family of metagenomic foundation 
models, including a 28 billion parameter model trained on 9.7 trillion nucleotide tokens from BaseData1. 
This dataset, at the time of training, contained more than 10 billion novel genes from over 1 million new 
species, and is intentionally enriched for environmental and host-associated metagenomes, phage 
sequences, and mobile genetic elements, enabling the model to learn from diverse and novel 
cross-species evolutionary mechanisms and apply them to key challenges in human health.  

EDEN achieves state-of-the-art performance across a series of predictive and generative 
genomic and protein benchmarks. To demonstrate the models’ broad applicability across biology, we 
evaluate EDEN’s capacity for programmable therapeutic design by challenging a single architecture to 
design biological novelty across three distinct therapeutic modalities, disease areas and biological scales: 
(i) large gene insertion, (ii) antibiotic peptide design, and (iii) microbiome design.  

First, we demonstrate AI-programmable Gene Insertion (aiPGI), in which EDEN designs de novo 
large serine recombinases (LSRs) capable of inserting large pieces of DNA at desired target sites in the 
human genome when prompted only on 30 nucleotides of DNA sequence from the desired target site. In 
low-N experimental validation, EDEN generated multiple active recombinases for all tested 
disease-associated genomic loci (ATM, DMD, F9, FANCC, GALC, IDS, P4HA1, PHEX, RYR2, USH2A) 
and 4 potential safe harbor sites in the human genome. EDEN achieves an overall functional hit rate of 
63.2% across diverse DNA prompts when prompted on only 30bp of DNA from outside the training data.  

50% of EDEN-generated LSRs were active in human cells, achieving therapeutically relevant 
levels of CAR insertion in primary human T cells. We also show that EDEN can generate active bridge 
recombinases when prompted on the associated guide RNA alone, with sequence identities to training 
and public data as low as 65%. These results pave the way for a new generation of cell and gene 
therapies by opening the door to rapid, programmable and site-specific integration of large genetic 
payloads without double-strand breaks. This offers an alternative to the safety, efficiency and payload 
limitations inherent in viral or nuclease-based editing at thousands of currently intractable human 
therapeutic targets. 

Second, we use the same model to generate a focused low-N library of novel antimicrobial 
peptides where 97% showed activity, with top candidates achieving single-digit micromolar potency 
against critical-priority multidrug-resistant pathogens.  

Third, to demonstrate that EDEN captures inter-genomic features, we design a gigabase-scale 
microbiome with over 94,000 synthetic metagenomic assemblies, including prophage genomes and 
correct cross-species metabolic pathway completions. The EDEN-generated synthetic microbiome covers 
9,067 species with a biome-specific taxonomic accuracy of 99%. Over 1,500 of the generated species 
were outside the fine-tuning dataset while retaining the correct microecological properties and biome 
association, thus significantly expanding genetic and taxonomic diversity. 

Together, these results establish a new strategic direction for AI-programmable therapeutics, in 
which a single foundation model architecture designs candidate therapeutics across diverse modalities 
and disease areas. This suggests that the combination of billions of years of evolutionary data with 
specific therapeutic records offers a clear, scaling-driven path to making therapeutic design a predictable 
engineering discipline. 
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Introduction 
 
Background & motivation 
 

The ability to generalisably and predictably design therapeutics holds the potential to 
transform human health, offering the ability to address complex pathologies with speed, efficacy 
and precision. However, despite decades of progress in genomic engineering and the 
foundational premise of systems biology that biological systems are non-random, logical and 
inherently computable, the systematic programming of biological outcomes has so far remained 
largely intractable. Moving therapeutic design towards a deterministic engineering discipline 
represents a major, and still largely unrealized, opportunity in modern medicine.  

This paper frames the current intractability of biological programming as an engineering 
bottleneck arising from the profound information asymmetry between the complexity of 
biological systems2,3, and two interlinked technical deficits: (a) the scarcity of diverse primary 
biological information and (b) the lack of computational systems capable of translating this 
information into medicine4,5. These deficits arise from the limitations of physical laboratories as 
the primary tool for large scale data collection and human cognition as the primary engine for 
data interpretation; neither of which has the capacity to match the scale or complexity resulting 
from four billion years of evolution. 

In previous work1, the authors presented a new approach for surmounting the first deficit; 
a new, globally scaled and partnership based supply chain of evolutionary genomic data. The 
resulting dataset, BaseData, contained nearly 10 billion genes from over 1 million new species 
at the time of publication, and is capable of growing at over 2 billion genes per month. 

AI models offer a promising new paradigm for surmounting the latter deficit; by learning 
statistical patterns within large biological datasets, generative foundation models are unlocking 
increasingly sophisticated and generalisable biological design capabilities – generating 
functional proteins, regulatory elements and even complete genomes in response to complex 
queries, often without the need for exhaustive experimental screening6–13. However, as detailed 
in our previous work1, the full potential of these models for biological design could likely be 
enhanced significantly by leveraging additional diverse biological sequence data, especially 
those derived from the complex interplay between hosts, mobile genetic elements and their 
environments.  

On this basis, we hypothesize that progress towards true programmable biology will 
require expanding the training datasets of generative models to include increasingly large 
quantities of diverse evolutionary data, far beyond the constraints of current publicly available 
resources. If this hypothesis is true, we would expect these models to learn increasingly 
universal design principles from this data and progressively improve the predictability, accuracy, 
and controllability of the computational design of biological code. 

To test this hypothesis, we introduce the EDEN (Environmentally-Derived Evolutionary 
Network) family of foundation models, the largest of which was trained on 9.7 trillion 
evolutionary nucleotide tokens from BaseData1, with no human, lab or clinical data in the 
pre-training dataset. We evaluate EDEN’s capacity for programmable therapeutic design by 
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challenging a single architecture to design biological novelty across three distinct therapeutic 
modalities, disease areas and biological scales: (i) large gene insertion, (ii) antibiotic peptide 
design, and (iii) microbiome design.  

Through this, we demonstrate that a single foundation model, learning from a greater 
diversity of genomic evolution than previously available, can drive the design of novel potential 
medicines in response to a range of therapeutically-relevant queries. Together, these results 
open the path and indicate a route towards unified AI systems capable of designing therapeutic 
candidates across diverse disease areas and modalities. 

 
The evolution of biological design 
 

The treatment of biology as a designable system represents the culmination of a 
century-long shift from viewing life as a “vital force” to seeing it as a modular information 
technology. This trajectory began with Darwin and Mendel, who established the optimization 
logic (natural selection) and the discrete units of inheritance (genes) that allow life to operate as 
a set of defined, logical systems14,15. The theoretical convergence of physics and information 
theory saw Schrödinger predict the molecular storage for this code, while Shannon, Turing and 
von Neumann provided the mathematical framework that formalized biological self-replication as 
a computable process16–18. 

In parallel to these theoretical insights, our rapidly improving ability to physically read, 
write and design DNA has driven decades of progress in medicine and biotechnology15,19,20. 
Recombinant DNA technology now underpins the production of therapeutic proteins, including 
hormones, peptides, antibiotics, and antibodies used to treat diseases such as diabetes, cancer, 
bacterial infections and autoimmune disorders21–24.  

More recently, the field has moved beyond simple protein production towards the editing 
and engineering of more complex multi-component systems: for example, genome editing 
technologies like CRISPR/Cas9 have moved from research to clinic within a decade25,26. 
Already, CRISPR-based therapies are curing genetic diseases in clinical trials (for example, ex 
vivo edited hematopoietic cells for β-thalassemia and sickle cell disease) and have recently 
proven effective in a rapidly developed personalized therapy for an infant with CPS1 deficiency, 
an ultra-rare genetic metabolic disease27,28 

Moving up the ladder of complexity, engineered cell therapies such as CAR-T cells – 
T-cells genetically modified with synthetic receptors – have achieved unprecedented success in 
refractory leukemias, with seven therapies approved by early 202629,30. Simultaneously, the 
maturation of mRNA platforms has introduced a high-velocity modality, enabling the 
“programming” of personalized cancer vaccines that translate patient-specific tumor mutations 
directly into therapeutic instructions31,32. 

However, despite these breakthroughs, biological engineering remains a comparatively 
artisanal endeavor when compared to true systematic engineering disciplines. It is still common 
for complex therapeutic development to depend on labor-intensive, stochastic screening 
campaigns33,34. This bespoke, trial-and-error approach is (a) functionally unscalable, (b) largely 
restricted to ”low-hanging fruit” targets where natural proteins can be easily repurposed, and (c) 
fundamentally incapable of addressing the vast majority of complex polygenic or multi-factoral 
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pathologies. Consequently, the immense therapeutic potential of programmable biology remains 
largely latent, constrained by our inability to design de novo function. 

The hypothesis within this paper is that the current constraints in therapeutic design 
arise from a profound disparity between the information content within biological systems and 
the processing bandwidth of our engineering tools. Evolution operates on a timescale of eons 
across a planetary-scale ‘laboratory’, optimizing fitness within an extremely high-dimensional 
combinatorial landscape that dwarfs laboratory capacity and human cognition.  

Physical laboratories, while essential for validation, act as comparatively low-throughput 
filters for data collection. Even the most advanced high-throughput screening campaigns 
capture only an infinitesimal fraction of the theoretical sequence space, leaving the vast majority 
of the “design universe” unexplored. The authors have discussed this extensively in previous 
work1. Compounding this data sparsity is a cognitive limit: the rules governing biological 
function, defined by high-order epistasis, long-range interactions, and environmental context, 
are too subtle and multidimensional for human intuition alone to decipher.  

Consequently, therapeutic development stays in a cycle of iterative screening. As this 
laboratory-intensive approach scales linearly, it is fundamentally incapable of matching the 
exponential complexity of disease biology. This bottleneck necessitates a need for generalisable 
and programmable biological design – algorithms or computational systems that can learn 
evolutionary grammar at a scale sufficient for designing novel therapeutic constructs on demand 
across diverse modalities and disease areas, in response to specific, and, ultimately, 
personalized therapeutic queries.  

 
Foundation models in biology 
 

In parallel to the advancements in genomic engineering, foundation models - large-scale 
deep learning models trained on broad, multi-billion to trillion-token scale datasets - offer the 
field a way past the cognitive bottlenecks outlined above. These models, trained on massive 
and heterogeneous datasets, often using self-supervised objectives, exhibit the capacity to 
generalize across a wide range of downstream tasks without task-specific retraining35 and have 
revolutionized domains including natural language, computer vision and robotics. 

As model architectures matured - with the introduction of the Transformer in 2017 – 
foundation models advanced further through rapid growth in available compute and the 
assembly of large-scale datasets35–37. Together, efficient architectures, abundant data, and 
increased computational resources enabled more systematic study of how empirical 
performance varies with model and dataset scale. These studies, often referred to as scaling 
laws, show that, across broad regimes, performance improvements are well approximated by 
power-law relationships in model size, dataset size, and training compute, thereby reframing 
model progress as an engineering problem of allocating capacity, data, and computation 
effectively38–41. 

Empirical studies demonstrated that training models on increasingly large datasets 
produced emergent behaviors such as in-context learning and compositional reasoning42. This 
principle guided the development of large language models such as the Llama and GPT families 
of large language model43,44, trained on datasets of hundreds of billions to trillions of tokens 
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derived from diverse web, book, and code sources. These models have had a profound societal 
impact, transforming how we interact with machines and enabling breakthroughs in software 
development, education and healthcare, through enhanced personalisation and automation45–47. 

In turn, the application of large AI models to biological problems has transformed 
computational biology and our understanding of molecular design and properties, with use 
cases spanning industrial processes, synthetic biology, and therapeutic applications48. This is 
exemplified by AlphaFold2, which, when trained on multiple sequence alignments, 
3-dimensional protein structures, and atomic-coordinate supervision, achieved 
near-experimental accuracy in protein structure prediction, work that was ultimately awarded the 
2024 Nobel Prize in Chemistry49–51. Building on this, AlphaFold3 expands training to 
protein–protein, protein–nucleic-acid, and protein–ligand complexes and uses diffusion-inspired 
refinement to improve interaction and assembly accuracy, while other biomolecular foundation 
models such as those from the Chai or Boltz family combine generative, diffusion-based, and 
graph-neural approaches to enable joint sequence–structure generation and functional binding 
design52–59. 

In addition to this, language modeling has been an additional major driving force in 
biological foundation modeling, especially in protein and DNA design. Protein language models 
treat amino-acid sequences as unlabeled data for self-supervised learning, supporting 
downstream tasks such as supervised fitness prediction, domain annotation, mutation effect 
prediction, structure prediction, and sequence generation. Early autoregressive models trained 
on UniProt/UniRef, including ProGen and ProtGPT2, showed that de novo samples can 
preserve natural amino-acid propensities8,10–12,60. ZymCTRL added Enzyme Commission label 
conditioning to steer sequences toward specific catalytic functions, and PoET then framed 
protein families as “sequences-of-sequences,” using family-aware transformers to improve 
zero-shot variant effect prediction and controllable family-conditioned generation12,61,62. 
Diffusion-based models such as EvoDiff and DPLM enabled order-agnostic generation, while 
ProGen3 and Dayhoff demonstrated that training on metagenomic data increases the quality 
and diversity of generated sequences11,63–65. Meanwhile, ESM models demonstrated that 
massively scaled self-supervised training on protein sequences yields embeddings capturing 
structural grammars61,62,66,67. However, it remains difficult to precisely steer these models for 
desired functions, such as DNA-protein interactions or antimicrobial activity, as most models do 
not consider genomic or community context.  

Beyond proteins and molecular interactions, genomic language models have extended 
to entire genomes by treating the genome as a learnable language whose syntax encodes 
regulatory function beyond individual Open Reading Frames (ORFs)68,69. Encoder-only models 
such as DNABERT first demonstrated that transformers pretrained on k-merized genomic 
sequences could learn promoter and splice-site grammars across species70,71. Subsequent DNA 
foundation models expanded training data or context, such as the Nucleotide Transformer 
enabling zero-shot predictions of regulatory elements or HyenaDNA expanding genomic 
modelling context to the megabase scale72,73. Genome-scale generative models such as Evo 
and Evo2 further unified molecular-to-genome modeling across long-range genomic 
interactions, supporting variant effect inference and realistic genome synthesis6,7. Impressively, 
Evo2 has done so by scaling the training data to all known domains of life7. AlphaGenome 
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extends this paradigm to multimodal prediction, coupling sequence inputs with chromatin and 
structural readouts74. 

Across the various design tasks, whether based on protein- or genomic foundation 
models, the prediction and design of protein-DNA interactions have proven to be particularly 
challenging75. In particular, at a molecular level, DNA’s primarily sequence-independent 
double-helix structure complicates accurate modeling and design of protein interactions with 
specific DNA sequences. Compared to protein-small molecule, or protein-protein interactions, 
protein-DNA interactions often score worse across the most recent protein-ligand design 
models52–56. In this domain, significant progress has been made, for example with the design of 
sequence-specific DNA-binding proteins with helix-turn-helix domains using RFDiffusion76. 
However, while various design campaigns based on biological deep learning models have 
indeed generated functional DNA-binders or -editors, there is room for further improvement and 
generalisation: their design from biological deep learning models has relied on high-throughput 
experimentation in the millions of variants range, prompting on the entire protein itself, up to ten 
epochs of fine-tuning, as well as the restriction to specific subfamilies6,77,78.  

In this paper, we suggest that heavy dependence of current models on extensive 
experimental iteration and the inability of current models to reliably execute complex tasks 
necessary for multi-modality therapeutic design may arise from a fundamental deficit in the 
scale and diversity of the available training data, whether that be sequence-specific, structural, 
or otherwise1,51,79–82.  

Effective modeling of complex therapeutic modalities depends on models’ ability to learn 
higher-order biological interactions, for example cross-species DNA-protein interactions, 
host-pathogen interactions, and other multi-species co-evolutionary signals, especially when 
designing more complex therapeutic modalities such as peptides or cell and gene therapies83–86. 
For example, modeling Cas9 nucleases or Large Serine Recombinases (LSRs) necessitates 
sourcing immense quantities of high quality, diverse primary data on the proteins and their 
associated non-coding elements, including guide RNAs and attachment sites, which dictate 
target specificity1,77.  

In this context, deep learning models in this space have frequently relied on the usage of 
reference genomes, often derived from cultured isolates6,7,73. Whilst these are valuable 
resources for microbial genomics, public biological sequence databases frequently fail to 
capture the natural evolution within microecological complex environments (metagenomes, 
microbiomes) at scale that give rise to vast, otherwise unmapped parts of the tree of life87–89. 
This data sparsity has consequences for models’ ability to learn the higher-order biological 
interactions discussed above, and thus is one of the key limits on progress towards true 
programmable therapeutic design.  
 
Introducing EDEN: learning from evolution 
 

Returning to our central hypothesis, that a path to programmable biology lies in 
expanding training data distributions of generative models to capture broader evolutionary 
context – we face two interlinked technical challenges: the lack of known biological information 
and the lack of cognitive bandwidth necessary to fully interpret the information that we do have. 
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From this hypothesis, it follows that, if these deficits could be systematically addressed, an 
improvement in the predictability, accuracy, and controllability of computational biological design 
would be observed. 

To address the first of these challenges, the authors previously published BaseData1 
which has increased the known non-redundant sequence diversity both globally and across key 
gene editing protein families of interest, contextualized with over 4 times the genomic context 
and over a million new species compared to comparable public biological sequence 
databases1,11,81,82.  

Now, to address the second of these challenges, we introduce the EDEN 
(Environmentally-Derived Evolutionary Network) family of foundation models trained on up to 
9.7 trillion nucleotide tokens from BaseData. EDEN uses a Llama3-style architecture, scaling 
from 100 million to 28 billion parameters. Trained on up to 1.95x1024 FLOPs, the EDEN models 
are some of the largest foundation models ever trained and achieve state-of-the-art 
performance across a range of predictive and generative genomic and protein benchmarks. 

To evaluate EDEN’s ability to learn from evolution to predictably, accurately, and 
controllably design therapeutic modalities, we moved beyond traditional benchmarks to test the 
models on three distinct design challenges that span a range of modalities, disease areas and 
biological scales: (a) large gene insertion, (b) peptide design and (c) synthetic microbiomes.  

In the next section, we discuss the background and motivation of each of these 
therapeutic tests, establishing the existing benchmarks and the technical and medical 
implications of these achievements. 

 
 

EDEN designs therapeutics across scales, modalities, and disease areas 
 
AI-Programmable Gene Insertion (aiPGI) 
 

Despite major advances in genome engineering, current technologies still fall short of 
delivering programmable, scalable solutions for repairing or rewriting the human genome. 
CRISPR nucleases, base editors, and reverse-transcriptase-based editors have enabled 
targeted correction of single-nucleotide changes or short indels, but these strategies remain 
inherently mutation-specific26,90. In practice, this means a therapeutic edit must be uniquely 
designed for the exact pathogenic variant a patient carries. Even within a single disease, 
different patients often carry distinct mutations, and in many disorders the pathogenic landscape 
spans hundreds to thousands of allelic variants91–93. Consequently, CRISPR-based correction 
scales poorly: each patient, or small patient subgroup, requires its own bespoke edit, limiting 
both clinical generalisability and the feasibility of broad therapeutic deployment93.  

Programmable Gene Insertion (PGI), the ability to efficiently insert large pieces of DNA 
into specific genomic locations, is a significant challenge for the gene editing field. PGI has the 
potential to address many limitations of current gene therapy and gene editing systems, such as 
treating very heterogenous genetic diseases with a single therapy, insertional oncogenesis (due 
to random integration), non-native gene expression (using safe harbor sites), and loss of 
episomal expression over time (particularly in pediatric patients). In addition to increasing the 
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safety and efficacy of current cell therapy approaches (e.g. CAR-T engineering), PGI enables 
the insertion of healthy copies of genes into their correct endogenous locations in patients with 
genetic disease. This would enable native regulation, (avoiding over or under-expression), a 
single product that will treat most if not all patients (mutation agnostic), and allow for a one-time 
cure that grows with the patient.  

Large Serine Recombinases (LSRs) are an abundant class of enzymes found in nature 
that have many properties that make them attractive for PGI applications. They are very small, 
can efficiently integrate large pieces of DNA (>30 kb94), have a predictable integration profile95, 
and are not reliant on DNA damage or host DNA repair pathways, meaning they are efficient in 
both dividing and quiescent cells.  

The key challenge with developing recombinases for human therapeutics is that each 
natural LSR has evolved to integrate into a unique bacterial DNA sequence, none of which are 
at sites relevant for human therapeutics. While there have been efforts to re-direct LSRs to 
novel sites96–98, most efforts use laborious wet-lab evolution and/or involve appending additional 
domains to the LSR, which can have a negative effect on both efficiency and size. 
LSR-mediated PGI has indeed shown to be feasible in a non-human primate model99, however 
this approach was limited by complexity and manufacturing challenges since it required a Cas9 
nickase and reverse transcriptase in order to make LSR-mediated insertion programmable. 

An elegant solution would be to be able to design programmability directly into the 
recombinase itself. However, addressing this inverse design problem - mapping a desired DNA 
target back to a functional protein sequence - requires a generative model that understands the 
high-dimensional evolutionary logic coupling LSR amino acid sequences to their specific DNA 
targets.  

To validate EDEN’s capacity for AI-Programmable Gene Insertion (aiPGI), we use EDEN 
to generate de novo large serine recombinase proteins when prompted with only the desired 
genomic target site. Recombinase design serves as a rigorous benchmark for programmable 
biology by testing the model’s capacity for writing complex biological instructions from a 
comparatively small prompt, whilst simultaneously optimizing DNA-binding specificity and 
catalytic efficiency.  

We show that, when prompted with only 30 nucleotides of DNA representing the desired 
attB genomic target site, EDEN generates multiple active recombinase proteins for all tested 
disease-associated human genomic loci (ATM, DMD, F9, FANCC, GALC, IDS, P4HA1, PHEX, 
RYR2, USH2A) and four potential safe harbor sites in the human genome. Over all prompts, 
EDEN achieves a functional hit rate of 53.6%. Top tier variants exhibit biochemical activity on 
par with any natural recombinases screened to date and several high-performing candidates 
shared as little as 52% sequence identity with the parental protein, indicating that EDEN is 
learning biological ‘grammar’ and efficiently navigating the vast evolutionary sequence 
landscape.  
 In parallel to attachment-site-prompted LSR design, we showcase EDEN’s ability to 
address aiPGI in an orthogonal approach by designing active bridge recombinases (BRs) which 
have recently been studied and developed as an RNA-programmable alternative to LSRs 
(Durrant et al. 2024; Perry et al. 2025). EDEN-generated BRs were prompted solely on their 
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corresponding non-coding RNA sequence and exhibit sequence identity to the training and any 
public BRs as low as 65%.  

By enabling the site-specific integration of large genetic payloads in a single protein 
without the genotoxicity associated with double-strand breaks and without the requirement for a 
guide RNA, these results suggest that EDEN has the potential to systematically address the 
complexity, safety and payload limitations of current viral and nuclease-based editing in gene 
therapy, paving the way for new generations of complex and curative cell and gene therapies to 
treat a much broader range of indications than is currently accessible. 

While these de novo designs are potent functional hits, it is important to acknowledge 
that they will require downstream optimization before becoming clinic-ready medicines. 
Nonetheless, as the EDEN models continue to improve, this capability opens the door to a 
programmable toolkit for safe, large-payload gene integration and is a powerful proof point on 
the route to designing personalized therapeutics within the complex requirements of clinical 
intervention. 
 
AI-based antimicrobial peptide design 
 

The escalation of antimicrobial resistance (AMR) has created an urgent imperative for 
new therapeutics, as drug-resistant “superbugs” are now recognized among the World Health 
Organization’s top global health threats100–103. In particular, critical-priority multidrug-resistant 
pathogens – exemplified by the ESKAPE bacteria (e.g. carbapenem-resistant Acinetobacter 
baumannii) – pose imminent dangers that could usher in a post-antibiotic era without effective 
countermeasures104,105. Motivated by recent findings that AI can be used to accelerate antibiotic 
discovery106, and that antimicrobial peptides (AMP) can be discovered from biology, including 
within microbiomes86,107, the human proteome108, and ancient biology109–111, we envisioned using 
EDEN for the generative design thereof.  

Biologically, AMPs constitute a diverse class of short peptides produced by a wide range 
of organisms, as well as identified in numerous environmental microbiomes, and many display 
broad-spectrum activity through mechanisms that are less prone to conventional resistance22,84. 
Yet AMP discovery and design, whilst showing successes both from existing genomic resources 
as well as through machine-learning methods110,112, could be scaled significantly by widening the 
phylogenetic and environmental diversity beyond what is represented in public resources, which 
are otherwise limiting the ability of machine learning models to generalize fully across the 
antimicrobial sequence landscape towards programmably targeting the most relevant pathogens.  

To validate EDEN’s ability to design functional therapeutic candidates within near-infinite 
sequence spaces, we applied the model to the de novo design of AMPs. Experimental 
validation revealed that 32 of the 33 EDEN designed peptides (97%) were functional, 
demonstrating high potency against WHO critical-priority pathogens, including 
multidrug-resistant Acinetobacter baumannii100,101. By achieving such high precision without 
iterative experimental cycles, we show the potential of an AI-driven framework for responding to 
the global antimicrobial resistance crisis. While these de novo peptides exhibit potent activity, 
they remain early-stage candidates requiring further optimization for stability, toxicity, and 
pharmacokinetic properties before clinical application. 
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Synthetic microbiome 
 
The ultimate frontier in programmable biology lies in understanding complex multi-species 
biological systems such as microbiomes, and developing the ability to programmably generate 
them. Their design requires accounting for emergent properties including metabolic 
cross-feeding, niche competition, and trophic stability that are absent at the single-genome 
level113–117. One example for such multi-species systems include host-associated microbiomes 
which are well-established in their role in human metabolic health and carcinogenesis118–121, with 
precision microbiome editing having recently shown promise for human health and disease 
applications122. Modeling this higher-order logic represents a distinct challenge from molecular 
design, requiring the internalization of ecological rather than just structural syntax. 

While previous generative biological foundation models have achieved success in 
designing open-reading frames, mobile genetic elements, and even whole genomes, they have 
largely stopped at the organismal boundary7,123. Current approaches fail to capture the "dark 
matter" of interactions that dictate community survival. Without modeling the cross-species 
dependencies inherent in natural environments, the de novo design of a stable, functional 
microbiome remains out of reach for models trained on isolated reference genomes. 

To validate EDEN’s capacity for design beyond the individual genome, we challenged 
the model to generate a fully synthetic, gigabase-scale microbiome. Leveraging the 
cross-species evolutionary information inherent in its metagenomic training, EDEN generated a 
synthetic host-associated community containing phage genomes and biome-specific metabolic 
pathway completions across different synthetic assemblies. 99% of generated species had the 
correct biome association. By generating a microbiome that coheres at the gigabase scale, we 
show that EDEN captures statistical regularities at the metagenome level. While these synthetic 
microbiomes require experimental instantiation and validation, the in silico results suggest the 
feasibility of moving from the design of individual molecules or genomes to a larger scale at the 
biological community level. 

 
Toward a unified model for programmable therapeutics 

 
By validating the EDEN models across three different biological scales, disease areas 

and therapeutic modalities, we demonstrate that a single foundation model, learning from a 
higher diversity of genomic evolution than previous models, can drive towards more predictable 
engineering of novel potential therapeutic candidates in response to sophisticated and specific 
therapeutically-relevant queries. 

Together, these results indicate that training on more evolutionary data is an important 
and likely underappreciated part of the path towards unified AI systems capable of designing 
therapeutic candidates across multiple diverse disease areas and modalities. If this trajectory 
continues, these systems hold the potential to evolve from predicting properties to designing full 
curative therapeutic interventions, bringing currently intractable pathologies within the reach of 
personalized and programmable medicine. 
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Results 
 
Training the EDEN model family 
 

EDEN was trained on BaseData, a training data corpus enriched for environmental and 
host-associated metagenomes and purpose-built for foundation model training1. We have 
previously shown how BaseData expands the known sequence space compared to several 
public resources, and include the comparison between BaseData and the metagenomic portion 
of OpenGenome-2 (OG2), the dataset used for training the frontier Evo2 genomic foundation 
model7 (Figure 1A). The range of environmental features BaseData has been sourced from is 
also shown, representing the genomic sequence space as it relates to the sample biome (Figure 
1B) and pH (Figure 1C). This type of metadata is largely not consistently captured in public 
resources. Beyond the sequence space itself, we show the distribution of contig nucleotide 
length and ORF count (Figure 1D-E), with BaseData assemblies showing significantly larger 
genomic context compared to those from the metagenomic portion of OG2. 

The EDEN family of models was trained on BaseData using a next-token prediction 
objective and a context length of 8192 tokens using a Llama3.1-style architecture1,7,43,124 (Figure 
1F, Methods). Quality-aware scaling laws extrapolate how much computation is required to 
achieve a desired performance threshold40. These scaling laws model the test loss as a function 
of model size, data volume, and an effective data-quality parameter, with higher-quality data 
increasing the useful information per token and thereby reducing the computational resources 
required to reach a performance target40.  

To explore how different metagenomic datasets influence model performance during 
scaling, we trained three pairs of EDEN models with 100M, 1B, and 7B parameters on a 
randomly sampled subset of contigs covering 350 billion nucleotides from the metagenomic 
portion of OpenGenome2 (OG2; mean contig length ≈ 4 kbp) and BaseData (mean contig length 
≈ 18 kbp). To ensure a fair comparison, all models were matched by the number of non-padding 
nucleotide tokens, and padding-related compute overhead was explicitly corrected when 
constructing the FLOPs axis in Figure 1G (Methods). Fitting a power law between training 
FLOPs and test perplexity shows that perplexity decreases more rapidly with compute on 
BaseData. (Figure 1G).  
 Consistent with this, while the 100M parameter model trained on OG2 performs better 
than the 100M model trained on BaseData, the 7B model trained on BaseData achieves lower 
test perplexity than its OG2 counterpart. This crossover supports a quality-aware interpretation: 
small models underfit the longer-range structure in the longer metagenomic assemblies in 
BaseData, while larger models have sufficient capacity to exploit it, extracting more useful 
information per token41. We therefore hypothesize that the observed difference in scaling 
behavior reflects intrinsic information structure: OG2 seldom presents contiguous genomic 
context beyond ~4 kbp, whereas BaseData routinely provides multi-kilobase neighborhoods 
within a single window. This richer long-range context offers a plausible explanation for the 
steeper scaling exponent observed for BaseData, consistent with frameworks in which data 
quality and long-range information content modulate compute efficiency125.  
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 Figure  1:  The  EDEN  model  family.  A  UMAP  of  metagenomic  assemblies  from  BaseData  and  the 
 metagenomic  portion  of  OpenGenome2.  B  UMAP  of  metagenomic  assemblies  from  BaseData  colored  by 
 biome  origin.  C  UMAP  of  metagenomic  assemblies  from  BaseData  colored  by  pH.  D  Distribution  of  contig 
 lengths  across  metagenomic  databases,  showing  a  median  contig  length  of  18.6  kb  for  BaseData  and  4.0kb  for 
 OG2  (metagenomic).  E  Distribution  of  ORF  number  per  contig  across  metagenomic  databases,  showing  a 
 median  of  4.9  ORFs  per  assembly  in  OG2  (metagenomic)  and  20.2  in  BaseData.  F  Llama3.1-like  architecture 
 used  for  EDEN  training.  G  Test  perplexity  vs  FLOPs  across  the  EDEN  family  of  models  at  100  million,  1  billion, 
 and  7  billion  parameters,  utilized  as  a  basis  for  the  decision  to  scale  the  EDEN  model  family  to  a  28  billion 
 parameter  model  trained  on  the  entirety  of  BaseData.  H  Distribution  of  EDEN-28B-generated  large  serine 
 recombinase  (LSR)  pLDDT  when  prompted  with  30%  of  the  5”  end  of  the  ORF  across  the  pretraining  course. 
 On  the  right  we  show  example  structures  of  EDEN-generated  LSRs  from  various  points  (token  counts  1  trillion, 
 5 trillion, and 9 trillion) across the pretraining run. 

 This  observation  also  motivates  a  curriculum-learning  strategy.  Recent  work  on  continual 
 pretraining  suggests  that  training  first  with  shorter  context  windows  and  then  transitioning  to 
 longer  contexts  can  achieve  similar  final  performance  at  lower  computational  cost,  consistent 
 with  rapid  adaptation  once  long-range  dependencies  are  introduced  126  .  In  our  setting,  a 
 short-to-long  curriculum  could  further  improve  BaseData’s  compute  efficiency  by  learning  local 
 sequence  regularities  during  an  inexpensive  short-context  phase,  then  allocating  long-context 
 compute  to  the  multi-kilobase  genomic  neighborhood  signal  that  BaseData  frequently  contains 
 but OG2 rarely provides. 
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Motivated by the scaling trends observed (Figure 1G), we trained a 28 billion parameter 

model, EDEN-28B, on the entirety of BaseData (9.7 trillion nucleotide tokens at the time of 
training). EDEN-28B attains the lowest test perplexity and falls near the extrapolation of the 
scaling fit from the smaller models, indicating that EDEN continues to scale efficiently and 
predictably when trained on the entire dataset (Supplementary Figure 1). In addition to tracking 
pre-training loss, we periodically evaluated EDEN-28B on biologically relevant downstream 
tasks, including semantic mining autocompletion and LSR generation. During pre-training, we 
saved model checkpoints every 1250 steps and, at each checkpoint, generated large serine 
recombinase (LSR) proteins and assessed them using an in silico evaluation pipeline 
(Methods). We show that the proportion of generated LSR sequences with high pLDDT values 
increases monotonically across the pretraining run up to the final 9.7 trillion token point (Figure 
1H-I). This proportion increases steadily over the course of pre-training, indicating that, as the 
model is exposed to more data, optimisation progress is accompanied by consistent 
improvements in a task-aligned confidence metric for the generated proteins. 

 
EDEN model evaluations 
 

We investigated EDEN’s zero-shot performance on a range of biologically relevant 
predictive and generative tasks. First, we tested the ability of EDEN to predict mutational effects 
on protein-coding gene function leveraging deep mutational scanning (DMS) studies, a method 
commonly used by protein language models and more recently DNA language models127,128. 
DMS involves generating a comprehensive library of sequence variants and experimentally 
assessing how each mutation influences one or more fitness readouts that reflect the functional 
performance of the molecule. The likelihood or pseudolikelihood computed by a language model 
for a DNA or protein sequence can be used to predict its experimental fitness.  
 EDEN displays state-of-the art performance across genomic and RNA foundation 
models for this benchmark when averaging across prokaryotic protein-coding genes (Figure 
2A). In particular, EDEN achieves higher performance than all other models on β-lactamase E. 
coli, even though this task heavily overlaps with the training data of existing DNA and protein 
language models, whereas EDEN is trained solely on diverse environmental sequences.  
 We moved on to evaluate EDEN’s generative capabilities, and compared these to the 
capabilities of Evo2 40B. First, we studied the quality of genomic generations of conserved 
genes from model organisms. We prompted EDEN and Evo2 40B with the 5’ end of the gene 
(20% of the ORF) and evaluated the ability of each model to generate the remainder. Both 
models demonstrated the ability to autocomplete the correct gene reliably (Figure 2B).  
 Notably, EDEN generated genes that were further apart in sequence space while 
remaining structurally consistent, with TM-score values exceeding 0.8. We also compared large 
serine recombinase proteins designed by EDEN and Evo2, using 30% of the 5’ end of the gene 
as prompts (Figure 2C), showing both overlap and unique sequence space coverage between 
the two generative models. 
 We then moved beyond single-gene generation to evaluating multiple-gene and 
long-context generations. Using the well-conserved ribosomal S10 operon as a case study, EDEN 
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 consistently  generated  sequences  with  coding  densities  greater  than  0.7,  beyond  the  8192 
 nucleotide  context-length used in model training (Figure 2D). 

 Figure  2:  EDEN  model  evaluations.  A  Mutation  effect  prediction  for  prokaryotic  protein  coding  genes  based 
 on  RNAGym  DMS  datasets,  with  EDEN  showing  state  of  the  art  performance.  B  Protein  recovery  of  conserved 
 bacterial  genes  using  a  30%  sequence  prompt  shows  high  diversity  in  sequence  space  but  conserved 
 structural  homology  for  EDEN  model  (n  =  100).  C  UMAP  of  LSRs  generated  by  EDEN  and  Evo2,  showing  both 
 overlap  and  expansion  across  sequence  space.  D  Coding  density  of  reference  genome,  EDEN,  and  Evo2 
 across  S10  operon  covering  14,000  bp.  E  Exemplary  syntenies  of  S10  operons  and  the  downstream  conserved 
 SPC  operon  across  exemplary  EDEN  generations.  F  Sequence  complexity  across  14,000  bp  visualized  as 
 percentage  unmasked  for  the  reference,  EDEN-generated,  and  Evo2-generated  S10  operon  (same  reference 
 and  generations  as  in  D).  G  8  exemplary  protein  superimpositions  between  EDEN-28B  generations  and  natural 
 counterparts, indicating a range of sequence identities whilst maintaining high structural homology. 

 Genes  generated  downstream  of  the  prompt  appeared  in  the  expected  order  and 
 orientation,  reflecting  the  canonical  organization  of  ribosomal  operons  (Figure  2E).  This 
 demonstrates  that  EDEN  can  model  patterns  of  gene  synteny  and  operon  structure  from 
 sequence  data  alone,  without  relying  on  explicit  annotations.  In  addition,  generated  sequences 
 maintained high DUST complexity across the entire 13kbp length (Figure 2F). 

 Across  multiple  operons  tested,  the  model  generated  the  subsequent  proteins  with  high 
 TM-scores  and  pLDDT  values,  while  still  retaining  substantial  sequence  diversity  (Figure  2G). 
 Overall,  the  results  suggest  that  EDEN  captures  information  from  across  the  dataset  to  generate 
 novel diversity that preserves the structural constraints of the encoded proteins. 

 16 

% Sequence Identity to Natural Protein

B Bacillus subtilis str 168
RecA

Streptomyces coelicolor A23
SecY

0.0

0.2

0.4

0.6

E
D
E
N
−2
8B

E
vo

2-
7B

E
vo

1

E
vo

1.
5

E
vo
2−
40
B

R
N

A
E

rn
ie N
T

R
N
A
−F

M

rin
al

m
o

G
en

S
LM

A
bs

ol
ut

e 
S

pe
ar

m
an

 C
or

re
la

tio
n

A

C
od

in
g 

D
en

si
ty

Window Start Position (kbp)
20 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

0.0

Window Start Position (kbp)

20 4 6 8 10 12
80.0

85.0

90.0

95.0

100.0

82.5

87.5

92.5

97.5

Reference
EDEN-28B
Evo2-40B-8k%

 o
f b

as
es

 u
nm

as
ke

d

4,000 nt

Prompt

S10 operon

SPC operon

ModA
pLDDT: 91.5
TM2: 0.9139
RMSD: 1.90
% ID: 48.1

TrpE
pLDDT: 85.0
TM2: 0.8813
RMSD: 1.73
% ID: 55.8

ModB
pLDDT: 95.7
TM2: 0.9943
RMSD: 0.43
% ID: 70.0

ModC
pLDDT: 90.4
TM2: 0.9531
RMSD: 1.60
% ID: 41.7

RPS4
pLDDT: 91.2
TM2: 0.9519
RMSD: 1.36
% ID: 56.8

RPS8
pLDDT: 85.2
TM2: 0.9919
RMSD: 0.39
% ID: 66.2SecY

pLDDT: 88.0
TM2: 0.9408
RMSD: 1.35
% ID: 58.0

RPL4
pLDDT: 87.9
TM2: 0.9540
RMSD: 1.26
% ID: 57.2

UMAP 1

U
M

A
P

 2

Evo2-40BEDEN-28B

Reference
EDEN-28B
Evo2-40B-8k

C

D E F

Evo2-40B
EDEN-28B

G

−5

0

5

10

−10 0 10

TM
2

40 60 80 100

0.7

0.8

0.9

1.0

40 60 80 100 40 60 80 100

Escherichia coli str K-12 MG1655
FtsZ

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2026. ; https://doi.org/10.64898/2026.01.12.699009doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.12.699009
http://creativecommons.org/licenses/by-nc/4.0/


 

AI-Programmable Gene Insertion (aiPGI) with EDEN 
 
 As discussed above, a programmable strategy for site-specific integration of 
multi-gene-length DNA into the human genome would enable precise replacement of 
pathogenic alleles with healthy copies of the gene and support the construction of complex, 
multicomponent genetic circuits for cell-based therapies targeting cancer and autoimmune 
disease.  

Among existing gene-integration platforms, large serine recombinases (LSRs) are 
distinguished by their compact size (~500 amino acids), the ability to insert large DNA cargos of 
arbitrary length in specific genomic locations without generating double-strand breaks or 
requiring host DNA repair pathways, a broad repertoire of target specificities shaped by 
extensive phage–host co-evolution, and highly reproducible integration profiles that enable 
systematic de-risking of off-target events94,97.  

EDEN was pretrained on a large dataset of metagenomic sequences, including 
sequences that preserve a direct record of phage insertion into host genomes. These 
sequences provide an explicit link between phage-encoded genes required for precise genomic 
targeting and their corresponding DNA target sequences. In the case of LSRs, the relationship 
between bacterial and phage attachment sites (attB and attP, respectively) and the LSR coding 
sequence defines a grammar of DNA–protein interactions (Figure 3A) that, if learned, could 
enable an AI programmed approach to large gene insertion. 

The ultimate goal of doing this is to prompt on a therapeutically relevant target sequence 
from the human genome and generate high performing recombinases that integrate large DNA 
payloads specifically at that target site. 

Having first demonstrated that EDEN can generate diverse LSRs when prompted with 
the first 30% of a protein sequence (Figure 1H, 2C), we sought to extend this capability to the 
design of site-specific recombinases guided by a short DNA prompt containing only the desired 
genomic target site.  

Although EDEN acquires broad evolutionary principles during pretraining, targeted 
fine-tuning enables the model to focus on specific structure–function relationships, here defined 
by ground-truth attachment site-LSR pairings. To this end, millions of LSR-attachment site pairs 
(Figure 3B) were mined from unlabelled metagenomic sequences in BaseData using a 
bioinformatics pipeline which yielded att sites that could further be used as reference sequences 
to identify additional LSR-att pairs from public databases. The resulting paired LSR-att-site 
dataset forms a complex sparse graph structure (Figure 3B). For fine-tuning, attachment sites 
were reoriented to the attL configuration (attBoP′ or attB-half) and concatenated with the 
corresponding LSR ORF, with control tokens inserted at the termini of both the attachment site 
and ORF sequences (Figure 3C). 

The best-performing fine-tuned model, EDEN-LSR, was derived from the 28B-parameter 
EDEN architecture fine-tuned on millions of curated att-LSR sequences, until convergence on a 
held-out validation set of attachment site-LSR pairs. To evaluate EDEN-LSR, we assembled a 
benchmark comprising 46 phylogenetically distant attachment site-LSR pairs from BaseData 
that had been previously validated for activity in a biochemical assay. These LSRs spanned a 
wide range of similarity to sequences in the training set, including several with no homologs 
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exceeding 70% sequence identity. For each benchmark example, the model was prompted with 
either a 60-bp core attL (attBoP′) or a 30-bp half-core attB (attB-half) sequence and tasked with 
generating up to 2,600 nucleotides. Generated nucleotide sequences were translated and 
assessed for domain content using HMMER, and all LSR-containing ORFs were evaluated for 
sequence similarity to both the ground-truth LSR corresponding to the attachment site prompt 
and the nearest homolog present in the training set.  

Across model variants trained with increasing parameter counts and progressively larger 
pretraining and fine-tuning datasets, we observed a strong scaling relationship between model 
and data size and performance (Figure 3D). 

Under both prompting schemes (attBoP′ or attB-half sequence), EDEN-LSR consistently 
generated full-length LSR ORFs, with more than 74% of all generations having the correct 
domain architecture (resolvase, recombinase, and zinc beta ribbon). The majority of these 
sequences also exhibited high predicted foldability, with ESMFold pLDDT scores comparable to 
those of native LSR sequences.  

Next, we investigated the global conditionality of generated sequences within the natural 
LSR sequence space, using an orthogonal protein language model (ESM2-650M) to generate 
embeddings for both native and generated protein sequences and visualizing their distribution 
on a UMAP projection (Figure 3E). We observed that while generated sequences are frequently 
represented in the vicinity (>70% sequence identity) of the native LSR for the paired wild-type 
attachment site (5.9% of all generated sequences), many generated sequences occupy more 
distant regions, indicative of the broad diversity of generated LSR sequences for any given 
prompt. The near-native generation rate varied substantially across prompts and tended to 
correlate with the abundance of the corresponding LSR in the BaseData training set, as 
measured by cluster size (Supplementary Figure 2). For one of the most highly represented 
LSR clusters, here named “PRT075”, 34% of generated sequences exceeded 70% sequence 
identity when prompted on the wild-type attBoP′ site. 

To evaluate the activity of generated LSRs under experimental conditions, we developed 
a rapid biochemical recombination assay, encoding LSR ORFs within double-stranded DNA 
fragments containing a T7 promoter and flanked by attB and attP attachment sites. Incubation of 
these fragments in an in vitro transcription–translation (IVTT) system produces the 
corresponding LSR protein; if active, the enzyme catalyzes recombination between the 
attachment sites to generate a circularized DNA product, which is subsequently quantified by 
qPCR.  

First, we evaluated LSRs using attBoP′ and attB-half prompts derived from nine active 
native LSRs in BaseData. EDEN-LSR was prompted with the corresponding native attBoP′ or 
attB-half sequence. To prioritize EDEN-LSR-generated proteins for experimental testing, we 
selected in silico generations exhibiting 50-90% sequence identity to the native LSR associated 
with each prompt. We further filtered candidates to limit similarity to any sequence in the training 
set and to enforce diversity among generated sequences using an all-by-all distance criterion. 
This procedure yielded 818 candidate LSRs, from which 176 were selected for experimental 
testing. 
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Figure 3: Utilization of EDEN for AI-programmable gene insertion (aiPGI). A Diagram of Large Serine 
Recombinase (LSR) mechanism including oligomerisation and a visualisation of LSR monomer bound to DNA. 
B Multi-million-node graph of LSRs (green, clustered at 80% sequence identity) connected to their paired 
attachment sites (blue) after bioinformatic mining. LSR dotsize (green) is proportional to the cluster size. 100% 
of att-LSR dataset (left) and 10% subsample of att-LSR dataset (right). C EDEN fine-tuning procedure yielding 
the EDEN-LSR model used for aiPGI applications. D For EDEN-LSR, scaling the basemodel token (up to 10 
trillion) and parameter counts (up to 28 billion) yields higher model performance in silico towards better LSR 
generation (measured by protein domain presence) across log scales. E UMAP showing the distribution of 
generated LSRs in ESM2-embedded space when prompted on the wild-type site from one of the most 
abundant LSR clusters (PRT075). F Experimental recombination activity of 176 LSRs generated by EDEN 
when prompted on the wild-type sites of nine active natural LSRs (across each of the nine plots). Orange bars 
show wild-type LSR activity within each group. G Experimental activity vs sequence identity to wild-typeLSR for 
selected LSR prompts. AttBoP’ prompts are shown as triangles, attB-half prompts as circles, and wild-type 
LSRs as stars. H Example Boltz-folded structures of functionally active generated LSRs (various colors) 
superimposed with their corresponding wild-type LSRs (green), covering a range of sequence identities. I CD19 
CAR integration in primary human T cells mediated by PRT075-based AI generated LSR variants. Integration 
percentage was measured by anti-CD19 flow cytometry; wild-type LSR (orange) and EDEN-generated LSRs 
(green). J Experimental recombination activity of LSRs generated by EDEN when prompted on therapeutically 
relevant target sites (30bp) in the human genome and not found in EDEN’s training data. First eleven plots 
show results from prompting on 11 loci in introns in disease-relevant genes, latter four show results from 
prompting on 4 putative safe-harbor sites. K Activity vs sequence ID to PRT075 for selected pseudosite 
prompts, with all LSRs generated from attB-half prompts and shown as open circles. L Example Boltz-folded 
structures of active generated LSRs (green) conditioned on pseudosite prompts superimposed with 
wild-typePRT075 structure (orange). 

 
In total, 53.6% of generated LSRs exhibited significant recombination activity, with 

similar success rates using attBoP′ and attB-half prompts (48.1% and 63.2% respectively) 
(Figure 3F). In this biochemical assay, across all prompts, 23 tested LSRs (13%) exhibit activity 
levels similar to the native LSR from the corresponding prompt. EDEN-generated LSRs also 
exhibit significant sequence diversity – the most divergent active LSR had only 52% sequence 
identity to its matched native LSR (Figure 3G). Despite low sequence identity, the generated 
LSRs adopt folds closely resembling the corresponding wild-type LSR structures, as predicted 
by Boltz-2 (Figure 3H)52.  

To evaluate activity in a therapeutically relevant system, we selected twenty 
EDEN-generated LSRs based on PRT075 and evaluated them for CD19 CAR insertion into 
primary human T cells. Using mRNA to express the LSR and a plasmid template containing the 
cognate attP sequence and CD19 CAR expression cassette, we found that 50% of 
EDEN-generated LSRs were capable of CAR insertion into T cells (significantly higher activity 
than that of the empty cargo control, p<0.05), with one candidate having equivalent activity to 
the WT parental protein (Figure 3I). Future work is planned to investigate the specificity of these 
LSRs. Together, these data show that EDEN-LSR is capable of generating active, sequence 
diverse LSRs when prompted with wild-type bacterial att-sites, and are capable of achieving 
therapeutically relevant levels of gene insertion in human T cells.  

Next, we set out to generate functional LSRs by conditioning the model on 
pseudo–attachment sites from the human genome. These pseudo-sites are not found in the 
training data and include sites in disease-relevant genomic locations. We focused on a native 
LSR from BaseData (PRT075) that exhibited a high success rate with the native attB prompt 
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(Figure 3F), and demonstrated therapeutically relevant levels (~40%) of integration in human 
cells (K562) (Supplementary Figure 3). We identified fourteen therapeutically relevant target 
pseudosites for this LSR spanning a range of genomic contexts, including 4 putative safe-harbor 
and 10 loci in early introns in disease-relevant genes (ATM, DMD, F9, FANCC, GALC, IDS, 
P4HA1, PHEX, RYR2, USH2A). These pseudosite sequences had a 54-75% sequence identity 
relative to the closest native bacterial attB site in the training data. We prompted EDEN-LSR 
with the 30-bp attB-half sequence of these therapeutically relevant pseudosites and sampled 
approximately 10 generated sequences per target for experimental testing, using a sequence 
identity threshold of >50% vs native PRT075 to select candidates. Pseudosites were then tested 
for recombination with the native attP sequence. 

Notably, despite being prompted using only a short (30bp) DNA target sequence 
completely outside the training data, EDEN generated multiple successful LSRs for every 
targeted pseudosite (Figure 3J). For the most successful prompts (safe harbor 2-chr13, safe 
harbor 3-chr13, and safe harbor 4-chr8), 66% of tested LSRs had significant recombination 
activity on the pseudosite; others exhibited a lower success rate, with 20% of LSRs generated 
from DMD-intron 9 displaying significant activity. Across all prompts, 48% of the generated LSRs 
tested positive for recombination on the corresponding pseudosite, with 27 LSRs (16%) 
exhibiting activity similar to the native PRT075, including proteins with as low as 76% sequence 
identity to PRT075 (Figure 3K). Further work is planned to validate the activity of these 
psuedo-site prompted LSRs in relevant human cell models, building on the success in cells of 
the wild-type prompted LSRs above. 

In summary, these results demonstrate that EDEN-LSR is capable of generating diverse, 
active LSRs when prompted directly with short (30bp) genomic target sites, including 
therapeutically relevant sequences from the human genome that were absent from the training 
data. As natural LSRs in BaseData have been experimentally shown to integrate at over 10,000 
disease-relevant sites in the human genome (data not shown), this establishes a powerful new 
approach for engineering therapeutic LSRs with activity at defined genomic sites.  

While initial findings indicate successful on-target activity, realizing the full potential of 
safe, programmable recombinases for large-payload medical applications will require further 
model optimization and experimental validation. Future work will integrate reinforcement 
learning to refine control over activity and specificity, alongside comprehensive assessment of 
integration efficiencies and off-target profiles in relevant human cell populations. 
  
EDEN designs active and novel bridge recombinases  
 

In contrast to LSRs, where DNA targeting is programmed entirely by the amino acid 
sequence of the protein, bridge recombinases (BRs) offer an RNA-programmable protein 
complex that is capable of genetic insertion and excision in the context of the human genome129, 
positioning it as an emerging gene editing technology for potential therapeutic applications.  

The BR system consists of a transposase protein of diverse classes (of which the IS110 
and IS1111 classes are the most well-studied), and a ncRNA element, termed bridge 
recombinase guide (bRNA), that is either upstream (i.e. left element or LE) or downstream (i.e. 
right element or RE) of the transposase (Figure 4A). The bRNA folds into a secondary 
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 double-loop  structure,  each  of  which  binds  to  the  donor  and  target  sequence  based  on 
 sequence-specific  guide  motifs  130,131  .  Physical  interactions  between  the  BR  and  the  bRNA 
 ultimately  facilitate  the  joining  of  the  target  and  donor  sequences  and  subsequent  recombination 
 events  132  . 

 The  EDEN-28B  base  model  demonstrates  that  prompting  with  as  short  as  50%  of  the 
 upstream  guide  RNA  sequence  was  sufficient  to  generate  the  downstream  recombinase  gene 
 encoding  BR  proteins  unique  to  public  and  BaseData  natural  sequences.  These  generated 
 proteins  bear  the  RuvC-like  domain  with  the  DEDD  catalytic  residues,  as  well  as  the  Tnp 
 domain with its conserved serine residue. 

 EDEN-BR  was  created  by  fine-tuning  the  base  model  on  over  six  million  BR-containing 
 genomic  regions  from  BaseData,  (Figure  4B  and  Methods).  EDEN-BR  improved  the  generation 
 of  BR  proteins  by  over  eight-fold  when  the  complete  guide  was  used  as  prompt  (Supplementary 
 Figure 4). 

 Figure  4:  EDEN  designs  active  and  novel  bridge  recombinases.  A  Diagram  of  bridge  recombinase  system 
 displaying  the  bridge  RNA,  target  DNA,  donor  DNA,  and  recombinase  components.  B  Fine-tuning  strategy 
 using  EDEN-28B  and  BaseData  bridge  recombinase  systems  for  EDEN-BR.  C  Density  of  pairwise  sequence 
 identity  of  EDEN-generated  bridge  recombinases.  D  Density  of  sequence  identities  of  EDEN-generated  bridge 
 recombinases  compared  to  training  data.  E  pLDDT  and  sequence  identity  distributions  of  EDEN-generated 
 BRs  for  different  fractions  of  guide  RNA  prompts.  F  IVTT  assay  results  of  EDEN-generated  and  wild-type  BRs. 
 G  Structural superimpositions of EDEN-generated, active  BRs compared to ISCro4. 
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For 99 bridges the fine-tuning increased the number of guide prompts giving rise to 

downstream coding sequences with the expected functional annotations. At the same time, 
within a given prompt, fine-tuned generations maintained a spread of diversity with respect to 
other generated BR proteins (Figure 4C). Significantly, the fine-tuned EDEN-BR model 
generated more diverse BR proteins with reference to those observed in the training data 
(Figure 4D), as well as the natural recombinase protein associated with the bRNA prompt that 
was used in the generation (Figure 4E). Overall, for both base and fine-tuned models, 
generated BR proteins maintained highly confident structure predictions despite the wide 
sequence diversity spread (Figure 4E). Pilot biochemical, cell free validation assays were 
conducted on a small set of 49 sequences generated by EDEN-BR with 100% length bRNA. 
These tests demonstrated recombinase activity for two sequences, named DF3873 and DF3851 
(Figure 4F). 

These two active AI designed BRs are no more than 85% identical in sequence to any 
BaseData or public sequences (Table 1). Importantly, these generated proteins present high 
structural homologies to ISCro4, the best characterized BR protein to date129, despite being no 
more than 35% similar in sequence to ISCro4 (Figure 4G).  

 
Table 1. Sequence identity between DF3873/DF3851 and BaseData and public databases 

Database Closest Match to DF3873 (%)* Closest Match to DF3851 (%)* 

BaseData Proprietary Sequence A (84.7) Proprietary Sequence B (82.4) 

NCBI HMK23979.1 (57.9) MBW2541154.1 (55.0) 

MGnify MGYP003941236639 (57.6) MGYP003449954008 (79.9) 

UniProt A0A2U3KKS4 (57.8) A0A2Z5GAY9 (52.2) 

EMBL Patent USPTO:WFL37734 (40.2) USPTO:AAO95525 (33.6) 

*hits above 90% coverage based on query sequence 
 

 Overall, we show successful design of novel, active bridge recombinases by EDEN 
when only prompted on the non-coding bridge RNA sequence, and in some cases, even only a 
fraction thereof. We further show significant divergence of the EDEN-generated BRs from both 
training data as well as public BRs. Viewing these as an orthogonal approach to LSR design for 
programmable gene insertion, we show that EDEN is a foundation model capable of designing 
candidate therapeutic molecules across different modalities and protein families.  

 
EDEN designs potent antimicrobial peptides 
 

First, we screened BaseData for antimicrobial peptide (AMP) activity to confirm that the 
pretraining data contained active AMPs. For this, we conducted a search for small open reading 
frames (smORFs) with all assembled sequences in BaseData. After size filtering, over 300 
million peptide sequences were evaluated using the APEX pathogen prediction model133, which 
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 generated  minimum  inhibitory  concentration  (MIC,  µmol  L⁻¹)  predictions  across  a  training  set  of 
 pathogens;  lower  MIC  values  correspond  to  stronger  inhibitory  activity.  The  median  MIC  across 
 individual  pathogen-specific  predictions  was  used  for  downstream  analysis  (Figure  5B).  Using  a 
 cutoff  of  64  µmol  L-1,  the  dataset  was  prioritized  to  over  20,000  sequences.  These  candidates 
 were  further  analyzed  through  comparisons  to  the  DRAMP  v4.0  database  134  ,  taxonomic 
 annotation,  physicochemical  property  profiling,  and  representative  clustering.  One  peptide  could 
 not  be  synthesized;  however,  all  remaining  34  candidates  inhibited  growth  across  a  panel  of  20 
 gram-positive  and  gram-negative  pathogenic  strains,  with  MIC  values  ≤  64  µmol  L⁻¹.  Notably, 
 several  candidates  exhibited  strong  activity  at  low  concentrations  (<2µmol  L⁻¹)  against 
 approximately 80% of the tested strains. (Supplementary Figure 5). 

 Figure  5:  EDEN  designs  potent  antimicrobial  peptides.  A  Fine-tuning  and  prompting  strategy  for 
 antimicrobial  peptide  generation.  B  Predicted  individual  pathogen  MIC  values  across  all  smORFs  in  BaseData 
 using  APEX  pathogen.  C  Heatmap  showing  the  results  of  activity  validation  assays  confirming  antimicrobial 
 activity  of  EDEN  generated  peptides  against  16  clinically  relevant  pathogen  strains.  D  UMAP  visualization  of 
 EDEN  generated  AMPs  against  the  training  data  and  DRAMP.  Activity  range  is  the  same  as  indicated  in 
 subfigure  C.  EF  Sequence  similarity  distributions  of  generated  peptides  relative  to  BaseData  and  DRAMP. 
 Context  fine-tuning  yields  higher  similarity  to  reference  datasets,  whereas  control-tag  fine-tuning  produces 
 more divergent, novel sequences. 

 We  then  developed  a  fine-tuning  and  prompting  strategy  in  order  to  generate  synthetic 
 AMPs  (Figure  5A).  Leveraging  EDEN-28B,  we  developed  two  fine-tuned  models  using  distinct 
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but complementary datasets, built from analyses and results produced from the natural 
BaseData AMP activity exercise. The first, a context fine-tuned model, was trained on genomic 
sequences capturing the local contextual neighborhoods of smORFs encoding putative AMPs. 
This training set comprised over 15,000 sequences, totaling approximately 115 million tokens. 

For the second model, we introduced control tags. This was trained on peptide 
sequences represented with explicit start and stop tokens and prefixed pathogen-specific 
control tags to enable conditional generation. Control tag conditioning has been explored in 
generative language modeling and is emerging in biological sequence models to steer 
generation toward desired properties135. The control-tag training dataset comprised over 1.5 
million sequences, totaling approximately 64 million tokens. 

Prompting strategies for both fine-tuned models are shown in Figure 5A. For the context 
fine-tuned model, prompts of varying lengths derived from sequence upstream of the smORF 
were used to generate over 80,000 peptide sequences. The control tag fine-tuned model 
generated over 400,000 sequences by prompting on pathogen-specific control tags or in an 
unconditional manner using the start tag alone.  
 Given the scale and diversity of the generated sequences, additional in silico selection 
was required prior to experimental testing. We therefore subjected the predicted AMPs to further 
confirmation analyses. Leveraging predicted MIC scores on the generated sequences using 
APEX pathogen, we first showed that effective antimicrobial peptide design can be achieved 
with EDEN directly from a genomic context. Additionally, by adding predicted pathogen tags to 
the training data, we generated peptides with lower predicted MIC values for certain pathogens 
including increasing the number of predicted AMPs by approximately 16-fold for E. coli ATCC 
11775 compared to unconditional generation. We were able to generate predicted AMPs for 10 
out of 11 strains. In particular, generation of AMPs predicted to be activated against A. 
baumannii ATCC 19606 was highly successful, with over 15,000 predicted AMPs generated 
across both fine-tuning strategies. Through the two models we have built a collection of 
predicted AMPs of over 25,000 sequences using a stringent activity threshold of predicted MIC 
of ≤32 for at least one pathogen and a length threshold of 8 - 50 amino acids.  

To assess novelty, we compared the predicted AMPs to known AMP sequences using 
sequence similarity metrics. By calculating a Striped Smith-Waterman similarity score to the 
natural AMPs for the fine-tuning dataset of each model and the DRAMP database, we were able 
to confirm substantial novelty to both the training data and publicly available AMPs (Figure 5E, 
4F). In particular, a large proportion of EDEN generated peptides have a similarity of below 0.7 
to any natural AMP. These results indicate that the generated peptides are not close variants of 
sequences in the training data or public AMP databases, but instead exhibit low pairwise 
similarity to known AMPs. 

Additionally, the EDEN generated predicted AMPs exhibit amino-acid compositions and 
physicochemical property distributions that globally overlap with those of natural AMPs 
(Supplementary Figure 6A-E). In particular, a substantial fraction of peptides fall within the 
canonical cationic charge range associated with AMP activity (+2 to +9). For example, 49.6% of 
peptides in the DRAMP reference set and 58.7% of fine-tuning peptides fall within this range, 
compared with 28.0% of the EDEN generated predicted AMPs. While the charge distribution of 
generated peptides is not identical to that of natural AMPs, this partial overlap indicates that 
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EDEN captures key physicochemical trends relevant to antimicrobial function. This is consistent 
with a noticeable enrichment of lysine (K) in comparison to natural AMPs, a pattern previously 
seen in generated peptides136.The hydrophobicity distributions of the generated peptides 
overlap substantially with those of natural antimicrobial peptides. DRAMP peptides show 
near-neutral median hydrophobicity (median −0.02), while fine-tuning peptides (median −0.19) 
and Eden-generated peptides (median −0.41) span a similar overall range of values. Although 
the generated peptides are modestly shifted toward lower hydrophobicity, their distributions 
retain broad overlap with natural AMPs. 

ESM650M embeddings were used to project the predicted AMPs into UMAP space 
alongside AMPs from the fine-tuning dataset and DRAMP (Figure 5D). The generated peptides 
broadly overlap with known antimicrobial sequence space while also extending into less densely 
populated regions, indicating that EDEN can produce sequences consistent with established 
AMP characteristics while introducing sequence diversity. EDEN therefore recapitulates key 
chemical features of natural AMP distributions while significantly expanding coverage and 
sequence novelty beyond known examples from public data. Both the similarity scores and the 
UMAP projections demonstrate that the sequences exhibited substantial novelty, highlighting the 
model’s ability to design towards broader sequence space and enable realistic yet diverse AMP 
generation.  

To test the potency of EDEN’s AMP generations we synthesized and tested 33 
generated AMPs in vitro against a panel of pathogenic bacteria. The panel consisted of six 
gram-negative species (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, 
Pseudomonas aeruginosa, Salmonella enterica, Enterobacter cloacae) and four gram-positive 
species (Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Enterococcus 
faecium), and included both drug-susceptible strains and multidrug-resistant clinical isolates.  

97% of the selected EDEN-generated peptides demonstrated antimicrobial activity 
inhibiting bacterial growth at concentrations ≤64 µmol L-1 in wet-lab assays, confirming that 
EDEN’s in silico designs translate into experimentally validated function (Figure 5C). In 
particular, several generated AMPs showed broad activity across multiple strains, with 27 AMPs 
active across five or more strains. The antimicrobial activity of the tested AMPs was stronger 
across the gram-negative strains, and all Acinetobacter, Escherichia, Klebsiella, and Salmonella 
strains had MICs of 1 - 4 µmol L-1 for at least one tested AMP. This observation is of particular 
interest, as gram-negative bacteria present unique structural barriers to AMPs, including a 
lipopolysaccharide-rich outer membrane and specialized resistance mechanisms that impede 
peptide permeation and activity, rendering them intrinsically more difficult targets than 
gram-positive organisms137. The tested peptides covered diverse regions of the AMP sequence 
space and were highly divergent, all tested sequences had a similarity score below 0.7 and 
strong activity observed for sequences exhibiting high novelty (similarity < 0.4). 

In summary, we show that EDEN can generate potent antibiotics for a range of 
drug-resistant pathogens, significantly expanding beyond the training data and publicly known 
peptides. To our knowledge, this marks the first instance a DNA foundation model has been 
used directly for peptide and antibiotics design with proven potency in ground-truth experiments 
against targets of interest. 
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EDEN designs multi-species synthetic microbiomes 
 

With previous generative biological foundation models showing successful design on the 
open-reading frame, mobile genetic element, and genome level7,123, we sought to leverage 
EDEN for design tasks beyond individual genomes and generate a fully synthetic microbiome. 
The motivation behind this lies in the recent development of therapeutic solutions in chronic 
diseases through the engineering of microbial consortia for chronic diseases such as 
immune-mediated colitis138. To assess this design potential, samples in BaseData were 
characterized to find annotation signatures specific to the biome where it was collected. This 
was conducted to curate a set of biome specific prompts, create a baseline of metrics used to 
evaluate sequences and to identify a well characterized sample for fine-tuning (Figure 6A-B).  

The specific biome that was chosen for this assessment was “digestive system” 
(following MGnify biome hierarchy) due to its unique set of KEGG annotations and well defined 
sequence profile (Figure 6B)82,139. Digestive systems were particularly enriched in KEGG 
annotations such as K04029 (ethanolamine utilization protein) and K02791 (maltose/glucose PTS 
system EIICB component), had a GC profile range between 47-55% (Figure 6B), and a coding 
density of approximately 82%, which is a the slightly lower end of the traditionally reported 
prokaryotic coding density range of 80-95%140,141. A single digestive system microbiome sample 
containing over 160,000 contigs was selected from BaseData and used to fine-tune EDEN for 
1.5 epochs. We designed prompts based on the context that is adjacent or at digestive system 
annotations specifically extracting sequences of length ranging 500 bp to the length of a full 
gene. Using a vLLM inference engine (Methods) paired with the fine-tuned model, these 
prompts generated more than 100,000 sequences of 10 kb each, totaling a gigabase scale 
synthetic microbiome (Figure 6A)142. 

We then characterized the synthetic microbiome at a global scale according to sequence 
space and taxonomic constitution. Encouragingly, the synthetic microbiome generated by EDEN 
recapitulates and expands beyond the sequence space of the digestive system fine-tuning 
sample (Figure 6C). When annotating the synthetic microbiome with kraken2, we identified 9067 
taxonomic units, 7533 (83%) of which were shared with the sample used for fine-tuning and 
9006 (99%) were shared with other samples from the same biome, suggesting that EDEN, 
when generating the synthetic microbiome, captures cross-species biological consistencies 
beyond the explicit taxonomic make-up of the fine-tuning data. When representing the synthetic 
sample within a UMAP with samples from BaseData based on taxonomic breakdown, the 
synthetic microbiome is placed in taxonomic space consistent with natural digestive system 
samples (Figure 6D). 

In order to study inter- and intra-genomic functional features of the synthetic microbiome, 
we analysed metabolic pathway abundance across natural samples, identifying a set of 16 
pathways with significantly higher proportions in digestive system samples compared to others 
(Figure 6E). We further show that for all of these 16 pathways identified, we observe a 
significant enrichment of these within the synthetic microbiome, all of which at completion rates 
above 60% (Figure 6 E). We note that several of the pathways listed here are commonly 
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 completed  across,  and  not  within  species  in  microbiome  environments,  such  as  the 
 superpathway of coenzyme A biosynthesis  143  . 

 Figure  6  Towards  multi-species  synthetic  microbiomes.  (A)  Strategy  for  generating  a  synthetic 
 metagenome.  BaseData™  was  used  to  identify  appropriate  sample(s)  of  digestive  systems  which  was  used  to 
 fine-tune  the  EDEN  base  model.  This  fine-tuned  model  was  used  to  generate  a  population  of  sequences  seen 
 in  a  digestive  system  sample.  (B)  All  samples  from  biomes  in  BaseData™  were  characterized  to  identify  KEGG 
 annotation  signatures  for  use  in  downstream  evaluation  metrics  and  to  construct  appropriate  prompts.  Shown 
 are  biome  wise  scaled  KEGG  gene  enrichment  and  GC%.  (C)  UMAP  projection  of  training  and  synthetic 
 metagenome  sequences  based  on  k-mer  composition,  illustrating  their  distribution  and  overlap  in  reduced 
 dimensional  space.  (D)  UMAP  of  BaseData™,  training  sample  and  synthetic  metagenome  sample  based  on 
 Jaccard  distances  of  taxon  presence–absence  profiles,  colored  by  biomes.  (E)  Overview  of  a  selection  of  top 
 16  metabolic  pathways  significantly  enriched  in  the  synthetic  metagenome,  showing  scaled  counts  of  pathway 
 genes  between  sequences  (left)  and  their  corresponding  natural  enrichment  in  BaseData™:  digestive  systems 
 versus  other  biomes  (right).  All  16  pathways  show  ≥  60%  completion  in  the  generated  synthetic  metagenome 
 (F)  A  generated  sequence  from  the  synthetic  metagenome  outlining  a  prophage-like  sequence  and  its  genetic 
 architecture.  (G)  An  11  kb  generated  genomic  sequence  encoding  multiple  ORFs,  highlighting  the  tenth  ORF 
 with  minimal  detectable  sequence  homology  to  the  training  set  and  public  databases.  Despite  low  sequence 
 identity,  the  predicted  protein  adopts  a  well-formed  fold  with  high  structural  similarity,  indicating  preservation  of 
 genomic context beyond the prompt region. 
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 A  metagenomic  sample  represents  a  population  of  organisms  at  a  given  time.  This  may 
 include  but  is  not  limited  to  microeukaryotes  (in  environmental  samples),  bacteria  and 
 bacteriophages.  We  observe  that  a  portion  (21,561)  of  our  generated  and  filtered  sequences 
 have  been  annotated  as  phage  using  geNomad  144  ,  including  sequences  that  may  contain  phage 
 fragments.  We  also  observe  prophage  annotations,  where  geNomad  has  annotated  a  portion  of 
 the  sequence  as  a  prophage,  and  the  remaining  sequence  as  host.  We  performed  a  second 
 round  of  generations  (Methods)  producing  a  prophage  annotation  flanked  by  its  host  genome, 
 indicating  that  the  underlying  phage  architecture  is  preserved  rather  than  fragmented  (Figure 
 6F).  This  is  confirmed  using  geNomad  annotating  a  prophage  between  the  region  coordinates  of 
 5  kbp  and  12  kbp  within  the  21  kbp  generated  sequence  with  a  score  of  0.9988.  It  also  classifies 
 the  prophage  sequence  as  Caudioviricetes  ,  a  common  class  of  phages  found  in  gut 
 metagenomes  145  . 

 Whilst  our  prophage  annotation  has  a  confident  geNomad  score,  it  is  important  to  note 
 that  geNomad,  like  many  common  prophage  annotation  tools,  approximates  boundaries  of 
 prophages  but  does  not  identify  exact  start  and  end  attachment  sites  144  .Thus  we  also 
 investigated  the  prophage  genome  architecture  .  Gene  prediction  tools  such  as  Prodigal, 
 Glimmer  and  GeneMark  failed  to  correctly  predict  any  genes  in  a  synthetic  phage  genome  123  ,  so 
 we  used  pharokka  146  and  phold  147  to  annotate  genes  and  determine  more  precise  prophage-host 
 boundaries.  We  identify  phage  tail  and  holin  gene  on  the  prophage  (Figure  6F).  Holins  are  small 
 hydrophobic  proteins  common  in  bacteriophages,  especially  tailed  double-stranded  DNA 
 phages  148  like  those  found  in  the  Caudioviricetes  class.  These  tools  did  not  annotate  all  ORFs 
 and  a  diamond  blast  against  the  NCBI  database  revealed  low  identity,  high  coverage  matches  to 
 proteins  found  in  gut  metagenome  samples.  To  confirm  whether  the  host  sequence  flanking  the 
 prophage  came  from  the  same  organism,  we  ran  Kraken2  on  the  sequence  upstream  and 
 downstream  the  prophage  and  they  were  both  classified  within  the  Streptomyces  genus.  We 
 foresee  further  analysis  of  a  de  novo  generated  phage  like  this  would  benefit  from  likely  even 
 more sensitive functional annotation methods to have all required phage ORFs fully annotated. 

 In  addition  to  demonstrating  that  EDEN  generates  functional  proteins  and  mobile  genetic 
 elements,  we  further  assess  whether  the  model  can  preserve  a  biome-aware  biological  signal 
 across  longer  context  when  prompting  with  only  a  sequence  fragment.  Using  the  same 
 prompting  strategy  as  indicated  above,  gene  prediction/ORF  calling  was  run  on  the  generated 
 sequences.  After  filtering  by  length,  sequence  complexity  and  presence  of  metabolic  pathway 
 annotation,  a  subset  of  the  ORFs  were  mapped  against  BaseData,  NCBI  protein,  UniProt  and 
 MGnify  databases  to  evaluate  the  closest  member  using  strict  identity  and  coverage 
 thresholds  60,82,149  .  To  illustrate  candidates  with  low  sequence  homology  but  functional  and 
 biome-related  conservation,  we  investigate  further  BCR-SM-481-10,  an  ORF  of  length  286  aa. 
 BCR-SM-481-10  was  called  at  8938  to  9798  of  an  11.3  kb  generated  sequence,  representing 
 the 10th ORF out of 11 predicted genes (Figure 6G). 

 To  understand  whether  BCR-SM-481-10  was  generated  with  a  level  of  variability  not 
 found  in  the  training  dataset,  an  alignment  against  BaseData  revealed  the  closest  match  to  a 
 protein  sourced  from  an  animal  faeces  sample  with  sequence  identity  of  30.5%.  We 
 characterize  BCR-SM-481-10  on  the  sequence  level  revealing  a  xylose  isomerase-like  TIM 
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barrel PFAM domain but no KEGG annotations. TIM barrels (triose-phosphate isomerase) are 
one of the most common structural motifs found in enzymes150. We used ESMFold to predict the 
structure of BCR-SM-481-10 (Figure 6G) to reveal a structure highly similar to the canonical TIM 
barrel like structure with 8 sheets in the barrel66. We then compared BCR-SM-481-10 with public 
databases. The top match from any public database was a protein from a Firmicutes bacterium 
taken from an anaerobic digester metagenome sample (ncbi) with a sequence identity of 29.6%. 
The fact that the top matches originate from anaerobic, digestive system environments supports 
the idea that the model is capturing contextual signals, consistent with BCR-SM-481-10 being 
generated from a digestive system derived prompt (Figure 6G). Taking this top match, we 
structurally aligned the ncbi hit to BCR-SM-481-10 using TMAlign and visualized using Pymol. 
Both matches showed strong alignment with TM scores at 0.83 (Figure 6G).  

Overall, we show that EDEN, when generating long context sequences from a 
digestive-system prompt, produces ORFs with low sequence identity to public databases yet 
with structurally plausible folds, and importantly, maintains beyond-species, biological contextual 
signals far beyond the prompt region. Given the large number of sequences and variety of 
analytical approaches that can be applied to a system like this, the EDEN-generated synthetic 
microbiome will be further analyzed and characterized with additional taxonomic (such as 
marker gene based annotation151,152), functional, and genomic insights. The concept presented 
here could point towards a proof-of-principle deserving of a) further validation, including that of 
experimental nature, and b) broader applicability towards different biomes. 

 
 

Discussion 
 

In this paper, we set out to evaluate the hypothesis that progress towards true 
programmable biology will require expanding the training datasets of generative models to 
include increasingly large quantities of diverse evolutionary data, far beyond the constraints of 
current publicly available resources. If this hypothesis is true, we would expect these models to 
learn increasingly universal design principles from this data and progressively improve the 
predictability, accuracy, and controllability of the computational design of biological code. 

To test this hypothesis, we build on our previous publication of BaseData1 and introduce 
the EDEN (Environmentally-Derived Evolutionary Network) family of foundation models, the 
largest of which was trained on 9.7 trillion evolutionary nucleotide tokens from BaseData1, with 
no human, lab or clinical data in the pre-training dataset. In this paper, we demonstrate EDEN’s 
capacity for programmable therapeutic design by challenging a single architecture to design 
biological novelty across three distinct therapeutic modalities, disease areas and biological 
scales: (i) large gene insertion, (ii) antibiotic peptide design, and (iii) microbiome design.  

As a result of this, we observe three key points worthy of a more extensive discussion: 
(1) the EDEN training data and how training was conducted; (2) the various therapeutic 
applications, their successes and their limitations; and (3) the wider implications of these 
findings for the field. 
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The role of evolutionary data in biological foundation models 
 
Our results suggest that the path towards programmable biology lies in altering both the 

nature and scale of the pre-training and fine-tuning data of generative models, combined with 
scaling of the models themselves. 

The EDEN model family has been developed in a wider field of recent and impressive 
achievements, but a gap remains in the training of models on data representing cross-species 
selective & evolutionary pressures that give rise to therapeutically relevant molecule classes at 
the 10 trillion token-scale and beyond. For instance, Evo2 introduced a 40B-parameter model 
with a 1 million basepair context window that achieves remarkable long-range genomic 
modeling capabilities across prokaryotes and eukaryotes7. Evo2’s 9.3 trillion token dataset 
contained ~854 billion tokens (9%) from metagenomic sources, with the vast majority derived 
from eukaryotic reference genomes (e.g. >5 trillion tokens from Animalia alone). Similarly, while 
the gLM2 model was explicitly designed for metagenomics using the 3.1 trillion basepair OMG 
corpus, the resulting 650M parameter model was trained on ~315 billion tokens - a training 
corpus similar in scale to the metagenomic portion of OG281. 

EDEN complements this work with a deliberate and exclusive focus on large-scale novel 
evolutionary data from metagenomic sources- training on 9.7 trillion tokens derived entirely from 
BaseData. By incorporating environmental and host-associated DNA, phage sequences, mobile 
genetic elements and transposons often absent from curated reference genomes at the 
trillion-token scale, we imbued EDEN with an especially rich repertoire of evolutionary 
mechanisms (such as phage-host interactions and microbiome-derived antibiotic genes) that 
other biological training datasets may capture to a lesser extent.  

This focus on evolutionary diversity capturing inter-species signals also yielded an 
important insight regarding quality-aware scaling laws for biological foundation models. We 
observed that models trained on BaseData exhibited a steeper scaling exponent compared to 
those trained on curated public metagenomic datasets, achieving lower perplexity as compute 
increased. We attribute this to the higher quality of the evolutionary signal in BaseData - 
specifically the preservation of longer-range inter and intra genomic context. This provides 
validation to our hypothesis that expanding training data to include high-quality, diverse 
evolutionary context allows models to extract more useful information per token, thereby 
improving the predictability of biological design. 

Since the EDEN models are trained on BaseData, we note that they have several key 
features that can be considered unique or rare in biological foundation model development: 
orthogonality, consistency in data collection, and consent & data governance. First, as 
previously stated, BaseData contains over a million previously undiscovered species, 
demonstrating that state-of-the art biological foundation models can be built on the basis of 
novel and orthogonal data outside of what is publicly known about the tree of life1,87. Second, 
each nucleotide token used to train EDEN has been derived from rigorously consistent data 
collection, sequencing and bioinformatics annotation pipelines which contrasts with the vast 
range of methodologies and protocols used in the compilation of public sequence 
databases80–82,149. Third, and uniquely for a model of this scale, each token used for pretraining 
EDEN has been derived from explicit stakeholder consent and benefit sharing agreements, 
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establishing a new standard for ethical AI development in biology (see Stakeholder Best 
Practices section below).  

Finally, while we acknowledge the utility of megabase-scale contexts for whole-genome 
modeling, we found that a context length of 8,192 tokens was sufficient to capture the necessary 
functional logic for our applications. By evaluating different options for the context length during 
pretraining we note the quality of generations remained high for several thousands of basepairs 
beyond the context length of 8,192 tokens (Figure 2). EDEN consistently maintained correct 
gene architectures and operon synteny (not just sequence quality or ORF density) beyond 
10,000 basepairs and successfully generated complex systems like prophages by using 
selected regions of previous generations as prompts. This suggests that for programmable 
therapeutics, where the goal is often the precise engineering of functional modules in the 
context of accurate biological grammar, rather than entire chromosomes; a targeted, 
high-quality, multi-gene context window offers an efficient path to predictable biological novelty. 

 

Programmable therapeutic design across modalities, biological scales and 
disease areas 

 
 To evaluate the therapeutic utility of training models on this expanded scale of 

evolutionary data distribution, we tested EDEN on a series of therapeutically relevant design 
tasks (large gene insertion, antibiotic peptide design, and microbiome design) and 
demonstrated a range of new capabilities with major potential medical implications. In the 
context of AI-based, generative approaches for gene editing, previous work has shown 
impressive design outcomes, for example generating active Cas9 nucleases6,77. We 
complement these successes by using EDEN to design large serine recombinases (LSRs) and 
bridge recombinases (BRs) to enable programmable large gene insertion. We show that EDEN 
solves the inverse design problem outlined earlier in this paper by mapping directly from DNA 
target to a functional protein: successful designs only require prompting with the desired 
attachment site (in the case of LSRs) or non-coding bridge RNA (in the case of BRs). 

We show that, when prompted with only 30 nucleotides of DNA representing the desired 
human attB genomic target site, EDEN generates multiple active LSR proteins for all tested 
disease-associated human genomic loci (ATM, DMD, F9, FANCC, GALC, IDS, P4HA1, PHEX, 
RYR2, USH2A) and four potential safe harbor sites in the human genome.  

We further demonstrated the EDEN models’ flexibility by designing active Bridge 
Recombinases using only non-coding guide RNA sequences as prompts. These generated 
enzymes exhibited sequence identities as low as 65% relative to training data, confirming that 
EDEN generates novel functional machinery rather than merely retrieving memorized 
sequences. 

Prior research and reviews have discussed the potential for AI to provide a solution for 
the repurposing of drugs across several rare diseases, providing additional scale in treatments, 
but not providing a generalizable solution to the vast diversity of rare diseases153. Other more 
recent work has shown a novel prime-editing-installed suppressor tRNA approach for 
disease-agnostic gene editing that could theoretically be applied to conditions caused by 
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nonsense mutations, which make up a significant fraction of genetic human diseases154–156. 
However, with the ability to generate active LSRs upon a specified attachment site used as 
prompt at inference time, we see that our aiPGI approach has the potential to scale even further 
in breadth and programmability of applications across cell and gene therapies.  

For patients, this scalability is evidenced by the fact that EDEN generated active 
recombinases for all tested disease-associated loci and potential safe harbor sites, suggesting 
that thousands of currently intractable genomic targets are now within reach. Furthermore, this 
capability could significantly improve cell therapies by enabling the predictable insertion of large, 
multi-component genetic circuits into safe harbors, unlocking the sophisticated cellular logic 
required to tackle complex cancers and autoimmune diseases. This represents the beginning of 
a potentially transformative shift toward ‘mutation-agnostic’ medicines, where a single 
therapeutic product could treat heterogeneous genetic diseases, offering a potentially safer, 
one-time cure that overcomes the payload and genotoxicity limitations of current viral or 
nuclease-based editing. 

On top of this, we show that the same model can design antimicrobial peptides (AMPs) 
with high prospective hit rates - 97% of tested AMPs showed activity, with top candidates 
achieving single-digit micromolar potency against critical-priority multidrug-resistant pathogens. 
To our knowledge, this is the first time a nucleotide-based foundation model has been used for 
the design of antibiotic peptides. Crucially, we demonstrate that this process is programmable: 
by prompting the model with pathogen-specific control tags, we steered generation toward 
specific targets, increasing the yield of high-confidence candidates against E. coli by 
approximately 16-fold compared to unconditional generation.  

For patients facing the growing threat of antimicrobial resistance, this suggests a 
potential future capability where, in response to a resistant outbreak or a patient with a 
refractory infection like Acinetobacter baumannii, we can rapidly 'dial in' the specific target 
pathogen to generate bespoke, structurally novel antibiotic candidates on demand. 

Finally, we extended the model’s capabilities beyond the organismal boundary to 
systems-level engineering. EDEN generated a gigabase-scale synthetic microbiome in silico 
that retained metabolic pathway completeness and complex host-phage relationships. This 
capability could open up the potential to engineer stable, multi-species consortia capable of 
correcting the dysbiosis underlying complex metabolic and immunological disorders. 

Collectively, we believe that these results could represent an inflection point in 
generative biology. It is rare for a single foundation model to demonstrate, with robust wet-lab 
validation, the ability to design candidate therapeutic molecules across biochemically distinct 
regimes: By successfully spanning the small, amphipathic structures of antimicrobial peptides, 
the complex, multi-domain architecture of DNA-editing enzymes, and the gigabase-scale, 
metabolic logic of synthetic microbiomes, EDEN demonstrates that it has moved beyond narrow, 
task-specific optimization and is emerging as a versatile tool for generating effective therapeutic 
candidates across distinct modalities and disease areas. 

We note that for therapeutic applications, the EDEN designed candidates will require 
continued validation in relevant human cells, and be profiled for site specificity with downstream 
optimisation through reinforcement learning or otherwise in order to increase activity and 
increase specificity. However, the transition from stochastic screening to predictable, 
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prompt-based generation in response to therapeutically-relevant queries represents a 
meaningful shift in how we approach the engineering of biological systems. 
 
Toward a unified paradigm for predictable therapeutic design 

 
When discussing the wider implications of biological foundation models targeted towards 

therapeutic design tasks, it is crucial to consider the potential of such models to address the 
most pressing issues in modern medicine. Modern day healthcare systems face a convergence 
of serious challenges: first and foremost the explosion of overall healthcare cost and the 
prohibitive expense of individual therapeutic discovery and development campaigns, occurring 
alongside a noticeable decline in pharmaceutical R&D efficiency known as Eroom’s law157–160. 
Simultaneously humanity faces significant biological threats, typified by the rise of antimicrobial 
resistance across a range of critical pathogens,102 and the systemic, growing burdens of cancer, 
genetic disorders, and autoimmune disease.  

Given these harsh economic realities and biological threats, we argue that a scalable 
solution lies in the prospect of building unified AI systems that can design effective therapeutic 
candidates across modalities and molecule types, in a disease-agnostic, on-demand, and 
personalisable manner. To achieve this at scale, we return to our central hypothesis: that 
progress towards true programmable biology will require expanding the training datasets of 
generative models to include increasingly large quantities of diverse evolutionary data, far 
beyond the constraints of current publicly available resources. 

Here, with our work on EDEN, we believe we have presented an early step that points 
towards that vision, with a single model demonstrating experimentally validated design 
capabilities across diverse modalities, molecule types, and disease areas, from small peptides 
to multiple complex gene insertion systems.  

By demonstrating that state-of-the-art designs of therapeutic candidate molecules can be 
achieved using evolutionary priors alone, without human or clinical data in pre-training, these 
results support a shift in how biological foundation models can be constructed and applied. 
Crucially, this shift is enabled by overcoming a crucial data limitation that constrains models 
trained on public sequence data. While public databases face diminishing returns in high-quality, 
non-redundant diversity, BaseData’s purpose-built supply chain expands access to evolutionary 
& valuable cross-species sequence data at a scale supporting continuous model improvement 
and application range. In this respect, just as language models leveraged the vastness of the 
web to learn linguistic structure, biological models may increasingly leverage large-scale 
evolutionary data to learn and apply transferable biological principles towards increasingly 
complex and more therapeutically-aligned design tasks.  

This suggests that a possible route to general-purpose biological intelligence lies not in 
generating massive amounts of clinical data, but in a hybrid approach: using large, scalable 
evolutionary datasets to learn universal design principles, which then act as a robust foundation 
for fine-tuning on smaller, high-value clinical datasets. Ultimately, we project that it will be this 
combination of billions of years of evolutionary data with specific therapeutic records that offers 
a potential scaling-driven path to making therapeutic design a predictable engineering discipline. 
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Biosafety  
 

The development and deployment of the EDEN generative foundation model family has 
been guided by rigorous biosafety and biosecurity considerations. All major applications of 
EDEN – from de novo recombinase engineering for gene insertion, to antimicrobial peptide 
generation and synthetic microbiome design – were accompanied by proactive risk 
considerations and oversight. Training data was stringently curated to exclude potentially 
hazardous sequences, notably filtering out all known eukaryotic viral genomes to prevent the 
inadvertent generation of pathogenic elements. Dual-use concerns have been carefully 
evaluated, particularly in relation to EDEN’s capacity to design genome-editing proteins and 
novel antimicrobials. For example, the World Health Organization’s 2022 Global Guidance 
Framework for the Responsible Use of Life Sciences emphasizes comprehensive biorisk 
management spanning laboratory biosafety, biosecurity, and oversight of dual-use research and 
the U.S. National Science Advisory Board for Biosecurity (NSABB, 2023) has similarly called for 
integrated oversight of life science research with potential biosecurity risks161,162. EDEN’s 
development and evaluations adheres to all these principles. All laboratory work (such as 
validating EDEN-designed recombinases and peptides) was conducted under appropriate 
containment and institutional oversight, in accordance with NIH Guidelines for recombinant DNA 
research and institutional biosafety committee (IBC) review162. 
 
 

Stakeholder Best Practices for Equitable Data  
 

All data used in EDEN pre-training has been collected with Prior Informed Consent 
(PIC), Material Transfer Agreements (MTA) and Mutually Agreed Terms (MAT) through Access 
and Benefit-Sharing (ABS) and knowledge-sharing partnerships that Basecamp Research has 
established across five continents. This means that each of the 9.7 trillion tokens used in EDEN 
pretraining can be traced back to stakeholder consent. Sample access is facilitated through 208 
country-specific permits and 10 Access and Benefit-Sharing (ABS) collaboration agreements, 
which cover 28 countries in total, each explicitly defining the permission for the 
commercialisation of digital sequencing information (DSI) and describing the intended uses of 
the data - including downstream model training and other commercial applications - prior to 
collection. This approach ensures that consent is informed, freely given, and that the data is 
equitably sourced. Basecamp Research’s database provides full traceability of consent and 
permissions from the point of collection to downstream utilization, ensuring regulatory 
compliance and enabling the appropriate distribution of royalties back to Genetic Resource (GR) 
providers. 
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 IP Statement 

 Some  of  the  authors  that  are  employees  of  Basecamp  Research  Ltd  and  its  wholly-owned 
 subsidiary  Basecamp  Research  US  Inc.  are  inventors  or  co-inventors  on  pending  patent 
 applications that encompass innovations related to disclosed subject matter in this manuscript. 

 Methods 

 BaseData and OG2 curation 

 We  applied  stringent  filtering  criteria  to  retain  only  high-quality  contigs.  We  first  required 
 contigs  to  be  longer  than  2  kb  and  to  exhibit  a  predicted  gene  density  greater  than  20%.  In 
 addition,  contigs  were  required  to  have  a  minimum  mean  sequencing  depth  of  at  least  4X. 
 Low-complexity  contigs  shorter  than  10  kb  and  containing  more  than  50%  low-complexity 
 sequence,  as  quantified  with  DUSTmasker  (v2.15.0),  were  removed  163  .  Finally,  contigs  with  hits 
 to  known  eukaryotic  viruses,  as  identified  by  GeNomad  (v1.7.6)  annotation,  were  excluded  from 
 the  final  dataset  144  .  For  the  100M,  1B,  and  7B  parameter  models  trained  on  BaseData,  we  fixed 
 the  random  seed  and  used  an  identical  data  split  across  all  training  runs,  training  each  model  on 
 up  to  350B  tokens,  whereas  the  28B  parameter  model  was  trained  on  the  entirety  of  BaseData. 
 We  used  the  metagenomic  portion  of  the  OG2  dataset  for  the  training  of  the  100M,  1B,  and  7B 
 models  and  followed  the  same  training  procedure  as  we  did  for  BaseData  by  fixing  a  random 
 seed and using an identical data split across training runs. 

 EDEN architecture 

 Table  2:  Overview  of  the  key  hyperparameters  of  EDEN.  We  display  settings  for  100M,  1B 
 and 7B and 28B models. 

 Hyperparameter  100M  1B  7B  28B 

 Layers  12  16  32  48 

 Model Dimension  512  2048  4096  6144 

 FFN Dimension  2048  8192  14336  26368 

 Attention Heads  8  16  32  48 
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The EDEN model family adopts a decoder-only Transformer architecture. The largest 
configuration uses up to 48 layers with a hidden dimension of 6,144 and 48 attention heads. 
Across all model scales (100M, 1B, 7B, and 28B parameters), we use 8 key-value heads, 
SwiGLU activation, a vocabulary size of 512, and set the RoPE base frequency hyperparameter 
to 500,000. We use the Llama 3.1 implementation in BioNemo (using NeMo 2.0 and 
Megatron-LM124). (Table 2). 
 
 
Pre-training  
 

EDEN-28B was pre-trained using the AdamW optimizer (β₁ = 0.9, β₂ = 0.95, ε = 1 × 10⁻⁸, 
weight decay = 0.01) with global norm gradient clipping set to 1.0. The learning rate schedule 
followed cosine decay with an initial linear warmup for the first 2,500 steps, peaking at 3 × 10⁻⁵ 
and annealing to a minimum of 6 × 10⁻⁷ over a total of 640,920 optimizer steps. Training was 
performed using bfloat16 mixed precision, with FP8 hybrid mode enabled. A global batch size of 
2,016 sequences was used (micro-batch size of 1, gradient accumulation 4, data parallelism 
504), each with a sequence length of 8,192, resulting in approximately 16.52 million tokens 
processed per update. The parallel training setup consisted of tensor parallelism = 2, with 
sequence parallelism enabled, utilizing 1,008 GPUs deployed across 126 nodes (data parallel = 
504). 

In accordance with the stabilization method proposed by Takase and Kiyono (2025), the 
embedding layer was initialized from a normal distribution, Ɲ(0,1.0)164, while the remaining 
model parameters used standard Megatron initialization. For efficiency and robustness, the 
training process included overlapped gradient reduction, asynchronous checkpointing, and 
preemption support; fp32 residual connections were disabled. Training remained stable 
throughout and, although occasional loss spikes were detected, no intervention was required to 
correct for model training divergence. 

 
Dataloading 
 

EDEN tokenizes DNA sequences at single-nucleotide resolution, using a byte-level 
tokenizer with an effective vocabulary of four tokens, one per base, from a total vocabulary of 
512 characters. We employed a sliding window dataloader to process genomic sequences of 
arbitrary length. Each sequence was partitioned into overlapping windows of 8,192 tokens with 
a stride of 7,992 tokens, resulting in 200 bp overlap between consecutive windows. This overlap 
preserves local context at window boundaries. Each window is formatted as: BOS token, 
followed by optional control tags, a SEP token, the sequence, and an EOS token. 
 
Compute 
 

EDEN-28B was trained on 1,008 H200 GPUs, each running at 700W TDP with 141GB 
HBM3e memory. Each server is equipped with eight GPUs, within a server the GPUs are 
connected with NVLink, servers are interconnected to each other with NVIDIA Quantum-2 
InfiniBand at 400Gb/s. Training jobs are scheduled with the Kubeflow Pytorch Operator on 
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Kubernetes. For storage we used the Nebius Shared Filesystem storage fabric, backed by 
all-flash NVMe drives and served over NFS. For Networking EDEN used a NVIDIA Quantum-2 
InfiniBand fabric at 400 Gb/s between nodes 
 
Inference  
 

EDEN inference was performed using two inference backends: the inference pipeline 
from the NVIDIA BioNeMo framework (v2.6.3)165 and the vLLM OpenAI-compatible server 
(v0.11.0)142. For vLLM, optimized implementations for Llama 3.1 were used, with FlashInfer 
(v0.4.1)166 enabled to support efficient attention computation. vLLM was utilized as an alternative 
inference engine due to its optimisations for language-model inference and ease of deployment. 
Evo2 inference was performed using the Evo2 NVIDIA NIM (NVIDIA Inference Microservices) 
(v2.1.0)167 following the deployment guidelines from NVIDIA. EDEN and Evo2 inference was 
performed on NVIDIA H200 GPUs. 
 
Scaling laws 
 

To characterise scaling behavior across model capacities, we trained the EDEN models 
at three parameter scales (100M, 1B and 7B). For comparability, training used randomly 
sampled subsets matched for total nucleotide budget (350 billion nucleotides per dataset). 
Cumulative training compute was estimated from empirical throughput statistics. Raw 
floating-point operations (FLOPs) were derived as the product of total training steps, measured 
GPU throughput, and step duration. Given the variable sequence lengths between datasets, we 
normalized raw compute to effective FLOPs to account for padding overhead in the absence of 
sequence packing. We empirically determined the fraction of loss-contributing tokens by 
randomly sampling five global batches from each dataset (approximately 84 million tokens). This 
correction ensures that scaling metrics reflect compute allocated strictly to valid biological 
signals. 

Model performance was assessed via test perplexity (on a held‑out test set from both 
datasets) at checkpoints matched for total nucleotide exposure. To quantify data efficiency, we 
modeled the relationship between perplexity and effective compute as a power law. The scaling 
parameters exponent was estimated via linear regression in log-log space. We observed fitted 
scaling exponents of 𝑏≈0.058 for BaseData and 𝑏≈0.047 for OG2. Within the range of model 
sizes we tested, the BaseData models exhibit a steeper scaling exponent and lower perplexity 
at high FLOPs/model size than the OG2 models. This provides evidence that BaseData is 
effectively “higher quality” in the scaling-law sense: as compute and capacity increase, 
perplexity decreases faster for BaseData than for OG2.  

 
BaseData genomic uniform manifold approximation and projection (UMAP) 
 

K-mer frequencies (k=4-6) were calculated for all BaseData contigs using Jellyfish 
v2.3.1168. A maximum of 10,000 contigs were selected from each sample and a metadata-based 
scaling factor was then applied using the Lineage 3 MGnify biome for the sample to visually 
separate contigs with different biome metadata82. A UMAP of Euclidean distances for the scaled 
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k-mer frequencies was calculated using the UMAP function of umap-learn v0.5.9169 with 
parameters n_neighbors=20, min_dist=0.1 using a random subset of 10,000,000 contigs. The 
UMAP embeddings were plotted using Datashader v0.18.2170. 
 
Gene autocompletion 
 

Prompt sets were constructed from conserved genes recA from Bacillus subtilis, secY 
from Streptomyces coelicolor, and ftsZ from Escherichia coli using 20% of each native DNA 
sequence as the prompt. Sequence generation produced 1500 bp outputs with top k 4 and 
temperature 0.9. The generated DNA sequences were translated into protein sequences and 
percentage identity to the corresponding natural proteins was calculated using global alignment 
implemented in Biopython. Translated proteins were folded using ESMFold and TM-score 
against the native protein was calculated using USalign, normalising to the length of the 
reference structure66,171.  
 Additionally, prompt sets comprising 30% of large serine recombinase sequences from 
BaseData were generated and used to produce 2500 bp sequences. The prompts were 
prepended to the generated DNA sequences, which were then translated into protein 
sequences, and ESM embeddings were computed and projected using UMAP. 
 
Operon autocompletion 

 Prompt sets for trp operon and modABC operon from E. coli K-12 (NC_000913.3) were 
generated using the full coding sequences of each gene in the operon, including reverse 
complement sequences for bi-directional generation. For each prompt, sequences of length 
2500 nt were generated using generation parameters top k 4 and temperature 0.9. After gene 
prediction using pyrodigal (version 3.6.0), predicted proteins were folded using ESMFold and 
TM-score against the native protein was calculated using USalign, normalising to the length of 
the reference structure135,171,172. Native and generated protein structures were subsequently 
visualized using PyMOL. 

Evaluation of long context generations 
 

A prompt set targeting the bacterial S10 operon was curated using ten publicly available 
NCBI RefSeq assemblies (Table 3). The start coordinates of the operon in each reference was 
determined by annotating the assemblies with Bakta v1.8.1173 and light database v2025-02-24. 
Samtools v1.22.1174 was used to extract the first 1000bp of the operon in each reference as a 
prompt set, and 14,000bp downstream of the start of each was extracted as a point of 
reference. EDEN-28b and evo2-40b-8k were prompted with each of the ten sequences, 
specifying 100 generations per prompt at 13,000 tokens with top-k=4, top-p=1 and 
temperature=0.9. Coding densities were calculated by predicting ORFs in each generated 
sequence with Pyrodigal v3.6.3 with option -p meta172. The proportion of nucleotides occurring 
within ORFs was calculated across a sliding window of 100bp across each generated 
sequence. The percentages of unmasked bases across each 100bp window was calculated as 
100 minus the percentage of bases masked using pydustmasker v1.0.3 with default 
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light database v2025-02-24 and arrow plots of the operons created using lovis4u v0.1.6173,175. 
Predicted proteins were folded using ESMFold and TM-score against the native protein was 
calculated using USalign, normalising to the length of the reference structure171 and visualized 
using PyMOL.  

 
 
Table 3: Public prompts used in the long-context generations 
 

RefSeq accession Genomic coordinates (start, end) Orientation 

CP026387 2875037, 2876036 Forward 

CP028915 877336, 878335 Forward 

NC_000913 3452271, 3453270 Reverse complement 

NC_003197 3595538, 3596537 Reverse complement 

NC_003198 4232972, 4233971 Forward 

NC_004547 4502338, 4501337 Reverse complement 

NC_009436 4054414, 4053413 Reverse complement 

NC_009792 4350639, 4351638 Reverse complement 

NC_013592 4267630, 4268629 Reverse complement 

NC_017390 3682075, 3683074 Reverse complement 

 
 
Protein mutational effect prediction 
 

We used published deep mutational scanning (DMS) datasets to benchmark EDEN 
against RNA and DNA models in their ability to predict the functional consequences of 
mutations. Specifically, we used the prokaryotic datasets curated in RNAGym176 to evaluate 
mutational effect prediction performance for coding genes. When scoring sequences with 
EDEN-28B, a BOS token was prepended to the start of each sequence. In addition to the 
results reported in RNAGym, we evaluated Evo2-40B on all datasets, with an EOS token 
prepended to each sequence. 
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EDEN fine-tuning with LSRs 
 

Prior to training, paired LSR-attachment site sequences were clustered at a 70% 
sequence identity threshold using MMseqs2, with cluster singletons held out as an independent 
validation set. EDEN was fine-tuned using a batch size of 32 and the model checkpoint with the 
lowest cross entropy loss on the validation set was retained for evaluation. For fine-tuning, 
clusters were sampled uniformly, irrespective of their size, and individual LSR-attachment site 
pairs were selected from each cluster. Training employed the Adam optimizer. The learning rate 
was increased from zero to a maximum of 9e-6 and decayed according to a cosine annealing 
schedule. The model was trained to optimise the cross entropy loss over the next token 
distribution.  
 
EDEN synthetic LSR generation 
 

LSR generation was prompted with either full attBoP′ (60 nucleotides) or attB-half (30 nt) 
context from active LSR-attachment site pairs. Generated DNA sequences were first translated 
into amino acid sequences with Biopython, and InterProScan (v5.75-106.0) was run to assign 
putative LSRs by the sequential presence of PF00239 (Resolvase, N terminal domain), 
PF07508 (Recombinase), and PF13408 (Recombinase zinc beta ribbon domain). Synthetic 
LSRs with fewer than 700aa, high sequence complexity (computed by tantan and sequence 
entropy), and at least 50% Levenshtein sequence identity to the wildtype LSR for a given 
attachment site were selected as candidates for wet lab experimentation177. For determination of 
genomic sites in putative safe harbors, we used previous literature information178 
 
LSR production and quantitative PCR recombination assay 
 

Double-stranded DNA (dsDNA) substrates were synthesized in arrayed format (Twist 
Bioscience). Each substrate contained, in linear order, an attB site, a T7 promoter, the 
recombinase ORF, and an attP site. Large serine recombinase (LSR) protein was expressed 
from the dsDNA template using PURExpress® In Vitro Protein Synthesis Kit (NEB catalog 
#E6800). Unless otherwise indicated, the final concentration of the LSR template in IVTT 
reactions was 10 nM. 

Recombination was assayed by self-circularization of the dsDNA template mediated by 
intramolecular attB–attP recombination. Circularization juxtaposes primer binding sites that are 
oriented away from one another on the linear template but face each other following 
recombination. Reaction products were quantified by quantitative PCR (qPCR) (NEB catalog 
#M3003) using primers (IDT or Azenta) specific to the recombined junction. 

All qPCR assays were performed in technical duplicate, alongside a single 
no-IVTT dsDNA negative control lacking transcription–translation reagents. Quantification 
was based on relative cycle threshold (Cq) values using a fixed reference point applied 
uniformly across all reactions, such that larger ΔCq values reflected greater accumulation 
of recombined product. The threshold was selected such that all positive samples had a 
one-sided tail probability of approximately p=0.01 under a Gaussian assumption, with 
ΔCq values from negative-control measurements used to define the null distribution. 
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Multiplexed quantitative PCR recombination assay 
 

Nine pseudosite substrates were designed, each consisting of an attH sequence, a 
spacer region, and an attP sequence (Twist Bioscience). One of three unique primer pair 
binding site and TaqMan probe binding site combinations was embedded within the spacer 
region of each substrate to enable multiplexed detection of circularized recombination products. 
Each combination/assay was assigned a unique fluorophore in combination with a 
ZEN™/TAO™ internal quencher and/or 3’ Iowa Black™ FQ/RQ quencher (IDT). A wild-type 
attB–attP substrate (under a unique primer/probe set and fluorescent channel) was included as 
an internal reference in all reactions. 

Substrates were pooled into three multiplex reactions, each containing three pseudosite 
substrates and the wild-type substrate for a total of four substrates per pool. LSR-coding gene 
fragments (Twist Bioscience) were incubated with each substrate pool (3) in separate reactions 
for 15 minutes at 37°C using PURExpress® In Vitro Protein Synthesis Kit (NEB catalog #E6800) 
followed by 1:20 dilution in ultra-pure water before multiplexed quantitative PCR alongside 
no-IVTT pooled-substrate dsDNA negative controls (3; one per pool) using PrimeTime™ Gene 
Expression Master Mix (IDT catalog #1055772) on a QuantStudio™ 6 Pro Real-Time PCR 
System (ThermoFisher). Primer concentrations were empirically adjusted to balance 
amplification maxima between wild-type and pseudosite substrates. 

Recombination efficiency for each substrate was quantified based on Cq values obtained 
from the corresponding fluorescence channel. Quantification was based on relative cycle 
threshold (Cq) values using a fixed reference point applied uniformly across all reactions. 
Quantification was based on relative cycle threshold (Cq) values using a fixed reference point 
applied uniformly across all reactions, such that larger ΔCq values reflected greater 
accumulation of recombined product. The threshold was selected such that all positive samples 
had a one-sided tail probability of approximately p=0.01 under a Gaussian assumption, with 
ΔCq values from LSR reactions with low/no detectable amplification (presumed negative) used 
to define the null distribution. 
 
IVTT-based cryptic sequence recombination assay 
 

The pseudosite recombination discovery assay was adapted from the previously 
described Cryptic-Seq protocol 95. Recombinase protein was produced by IVTT from linear 
dsDNA templates encoding the corresponding ORFs using PURExpress® In Vitro Protein 
Synthesis Kit (NEB catalog #E6800). Human male (XY) genomic DNA (Millipore Sigma catalog 
#70572) was prepared as an integration target background via enzymatic fragmentation and 
next-generation sequencing adapter ligation (custom; P7-only 5’ overhang with UMI) using 
NEBNext® Ultra™ II FS DNA Library Prep Kit for Illumina (NEB catalog #E7805). 

Linear dsDNA donor fragments containing candidate cryptic recombination sites were 
incubated with NGS-adaptor-ligated gDNA libraries and recombinase protein IVTT product at 
37°C overnight. Libraries of integrated donor DNA junctions were amplified via nested 
target-enrichment PCR and sequenced on an Illumina MiSeq i100+ platform using paired-end 
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 sequencing.  Sequencing  data  were  processed  using  a  custom  bioinformatics  pipeline  designed 
 to  detect  split  reads  spanning  junctions  between  donor  fragments  and  human  genomic  DNA; 
 reads  containing  one  segment  mapping  to  the  donor  fragment  and  a  second  segment  mapping 
 to  the  human  genome  were  classified  as  recombination  events  and  used  to  identify  cryptic 
 recombination sites. 

 Human cell activity assay 

 K562  cells  were  maintained  in  RPMI  1640  Medium  (Gibco  11875093)  with  10%  FBS 
 (Gibco  A3840201)  at  37C  5%  CO2.  100,000  cells  per  condition  were  electroplated  using  the 
 Neon™  NxT  Electroporation  System  in  a  10uL  total  volume  to  introduce  2ug  mRNA  encoding 
 the  LSR  (PRT075)  and  2ug  cargo  plasmid  containing  the  corresponding  attP  sequence.  After  5 
 days  in  culture,  genomic  DNA  was  extracted  using  QuickExtract  (QE09050)  according  to  the 
 manufacturer  protocol.  dPCR  was  run  on  10ng  of  DNA  for  each  condition  (QuantStudio 
 Absolute  Q)  to  quantify  the  integration  at  a  pseudosite  on  chromosome  7.  RNaseP  was  used  as 
 a  housekeeping  gene  for  normalization.  T  cells  were  isolated  from  a  Leukopak  using  negative 
 selection  using  EasySep™  Human  T  Cell  Isolation  Kit  (STEMCELL  17951),  banked  and  stored 
 in  LN2.  At  day  -3,  cells  were  thawed  into  ImmunoCult™-XF  T  Cell  Expansion  Medium 
 (STEMCELL  10981)  supplemented  with  10ng/mL  Human  Recombinant  IL-2  (STEMCELL 
 78145)  and  activated  with  Dynabeads™  Human  T-Activator  CD3/CD28  for  T  Cell  Expansion 
 and  Activation  (11161D)  for  3  days.  On  D0,  the  Dynabeads  were  removed  and  100,000  cells 
 were  electroplated  using  the  Neon™  NxT  Electroporation  System  in  a  10uL  total  volume  to 
 introduce  1.5ug  mRNA  encoding  the  LSRs  (WT  LSR  and  20  EDEN  generated  LSR's)  and  1ug 
 cargo  plasmid  with  EF1a  driving  the  expression  of  a  CD19  CAR  and  containing  the 
 corresponding  attP  sequence.  3  days  after  transfection,  cells  were  stained  with  LIVE/DEAD™ 
 Fixable  Violet  Dead  Cell  Stain  (Thermo  L34964)  and  PE-Labeled  Human  CD19  and  analyzed 
 on  the  Attune  NxT  Flow  Cytometer.  Percent  integration  in  live  cells  was  quantified  using  a  cargo 
 only control as the negative gate. 

 EDEN fine-tuning with bridge recombinase (BR) systems 

 EDEN-28B  was  fine-tuned  using  a  dataset  of  putative  Bridge  Recombinase  (BR) 
 systems,  which  included  both  the  bDNA  and  the  bridge  recombinase  protein  sequences.  This 
 dataset,  consisting  o  f  6,183,225  seq  uences,  specifically  focused  on  ORFs  containing  the 
 PF01548  (  DEDD_Tnp_IS110  )  and  PF02371  (  Transposase_20  )  protein  domains,  along  with  1 
 kilobase of sequence both upstream and downstream (Fig. 4B). 

 To  prevent  data  leakage,  amino  acid  sequences  were  clustered  at  80%  identity  using 
 mmseqs2  (v15.6f452)  179  .  The  resulting  clusters  were  then  split  into  training,  validation,  and  test 
 sets  at  a  ratio  of  80%,  10%,  and  10%,  respectively.  Fine-tuning  was  performed  using  the 
 bionemo  codebase  over  21500  steps.  Model  evaluation  utilized  a  set  of  239  BR  sequences, 
 comprising  a  mix  of  72  publicly  available  129  and  167  proprietary  sequences.  The  sequences 
 comprising  the  benchmark  were  not  utilized  in  the  fine-tuning  process.  For  each  sequence  in  the 
 benchmark,  four  prompts  were  generated,  corresponding  to  25%,  50%,  75%,  and  100%  of  the 
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 bDNA  sequence.  One  hundred  sequences  were  generated  for  each  prompt  condition.  Valid 
 generations were selected using the same parameters defined in the base model section. 

 Computational evaluation of generated BRs 

 Generation  (for  both  zero-shot  and  fine-tuned  models)  was  prompted  using  either  25%, 
 50%,  75%  or  100%  of  the  bridge  guide  upstream  of  the  recombinase  coding  sequence. 
 Generated  DNA  sequences  were  first  translated  into  ORFs  with  prodigal  (metagenomics  mode), 
 proteins  between  300-500aa  and  starting  with  a  methionine  were  retained  for  downstream 
 analysis.  InterProScan  was  run  to  assign  ORFs  as  putative  BRs  by  presence  of  PF01548 
 (  DEDD_Tnp_IS110  )  and  PF02371  (  Transposase_20  )  domains.  In  addition,  those  with  DEDD 
 residues  and  the  conserved  serine  residue  corresponding  to  position  241  in  IS621  underwent 
 structure  prediction  using  BaseFold  180  .  Predicted  structures  bearing  a  pLDDT  score  between 
 70-90,  and  those  sharing  structural  similarity  (i.e.  RMSD  3  over  300aa)  to  IS621  or  IS622  are ≤
 nominated  for  in  vitro  validation.  With  the  exception  of  the  100%  guide  prompt,  the  generation  of 
 guide  fragments  necessitates  evaluation  of  the  completion  of  the  guide  via  CMsearch  based  on 
 a  covariate  model  containing  guide  sequences  of  IS621  and  related  public  and  BaseData 
 sequences,  and  matching  systems  with  an  e-value  of  <  0.01  were  considered  for  manual 
 detection of putative target and donor-binding and handshake residues  129  . 

 Laboratory validation and evaluation of activity in generated BR systems 

 Double-stranded  DNA  (dsDNA)  fragments  of  bridge  recombinases,  bridge  RNA  and 
 cargo  were  synthesized  in  arrayed  format  from  IDT  or  Twist  Biosciences.  The  bridge 
 recombinase  dsDNA  fragment  contained  in  linear  order  a  T7  promoter,  5'  UTR,  recombinase 
 ORF  and  3’  UTR.  The  bridge  RNA  dsDNA  contained  a  T7  promoter,  the  bridge  RNA  sequence 
 containing  target  and  donor  loops.  The  cargo  fragment  contained  target  and  donor  sequences 
 and  outward  facing.  Primers  were  synthesized  by  IDT  to  amplify  each  dsDNA  fragment. 
 Amplifications  were  carried  out  using  Platinum™  SuperFi™  PCR  Master  Mix  (Invitrogen, 
 Catalog#  12358050)  and  PCR  product  was  purified  using  AMPure  XP  Beads  (Beckman  Coulter, 
 Catalog#  A63881).  Concentrations  were  measured  using  Qubit  DNA  BR  kit  (Thermo  Fisher 
 Scientific,  Catalog#  Q33266).  IVTT  reaction  was  carried  out  using  PURExpress®  In  Vitro 
 Protein  Synthesis  Kit  (New  England  Biolabs,  Catalog#  E6800)  with  dsDNA  fragment  of  bridge 
 recombinase  and  bridge  RNA.  dsDNA  cargo  fragment  was  incubated  with  the  IVTT  product, 
 followed  by  heat  inactivation.  For  quantification  of  circularisation,  outward  facing  primers  on  the 
 cargo  dsDNA  fragment  that  detect  recombined  circular  products  (similar  to  the  LSR  quantitative 
 PCR  recombination  assay)  were  used.  qPCR  for  samples  were  set  up  using  Luna  qPCR  Master 
 Mix  (New  England  Biolabs,  Catalog#  M3003)  in  technical  replicates  alongside  a  single  no-IVTT 
 dsDNA  negative  control  lacking  transcription  translation  reagents.  Cq  values  were  assessed  to 
 determine  abundance  of  circular  products.  ΔCq  values  were  calculated  based  on  their 
 respective  controls  and  used  to  determine  activity  of  the  recombinase  system,  where  higher 
 ΔCq value represents higher accumulation of recombination products. 
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Antimicrobial peptide discovery 
 

ORFs/smORFs were mined from assemblies in the Basecamp Research BaseData1 
database. After filtering for candidates <=50aa, APEX-pathogen133 (version taken Apr 22, 2025) 
was run on candidate ORF/peptide sequences. For each peptide, we calculate the median 
predicted MIC (µM) across strains as a holistic metric for classifying antibiotic activity. A 
threshold of 64 (µM) was used to filter candidates . This subset of candidates were compared 
against the DRAMP database (v4.0)134 using a StripedSmithWaterman local alignment and 
BLOSUM50 scoring matrix and a 0.7 similarity cutoff for novel classification. Additional 
annotation for taxonomy using the underlying contig the candidate ORF is on was done using 
kraken2(v2.1.3)181 taxonomic classifier.  

From the filtered AMP discovery candidates, mmseqs2 (v15.6f452)179 cluster was run 
with sequence ID and coverage cutoffs of 0.9. A custom script was written to return the best 
representative for each cluster according to the median predicted MIC value. Representatives 
were broken down to three tiers based on predicted median MIC cutoffs. Candidates were 
chosen from those with a median MIC cutoff of 32 (µM). These candidates were then filtered 
and selected based on sequence composition and likelihood of synthesis success. 

 
EDEN synthetic antimicrobial peptides generation 
 

Two fine-tuning datasets were curated from BaseData based on predicted MIC values 
using apex-pathogen (version taken Apr 22, 2025)133. The first dataset comprised ORFs with a 
predicted median MIC below 64 µM and included 8 kb of surrounding genomic context. The 
second dataset comprised ORFs that have a predicted MIC of less than 64 µM for any 
pathogen, and AMP-specific start and end tags and tags pertaining to the predicted pathogens it 
targets were added to the sequences. Each dataset was split into training, validation, and test 
sets using an 80%, 10%, and 10% partition, respectively. Using these splits, two models were 
derived from the EDEN-28B base model via full-parameter fine-tuning (Figure 5A): one trained 
on the 8 kb context window dataset and the other trained on the pathogen-tagged ORF dataset. 

Generation of antimicrobial peptides was conducted using the fine-tuned 8Kb context 
model and the fine-tuned pathogen tag model. The prompt strategy involving genomic context 
sequences were constructed using either 300 bp or 1 kb of upstream sequence, with or without 
including a start codon. Source sequences were drawn from three sets: AMP-containing contigs 
chosen at random curated from BaseData, contigs containing AMPs with a predicted MIC below 
32 µM, and representatives from the top 20 sequence clusters. Sequence generation was 
performed via a vLLM code inference endpoint, producing 100 sequences per prompt. 
Generation using the fine-tuned tag model was conducted by prompting on the specific 
pathogen or start tag using a custom script leveraging the bionemo framework. 

Generated sequences were translated using biopython, filtered to only include 
sequences under 50 amino acids, and apex-pathogen was used to predict the per-strain MIC. 
Peptides with a predicted MIC of ≤ 32 µM for at least one strain were retained for downstream 
analyses. Physicochemical properties (charge, isoelectric point, hydrophobicity, and 
hydrophobic moment) of the generated AMPs were calculated using modlAMP (v 4.3.2)182. To 
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compare EDEN-generated AMPs with reference AMP collections, sequence similarity scores 
were computed against entries in the DRAMP (v4.0) database134 and BaseData AMPs used to 
fine-tune the models. Sequences were aligned against the target database using the 
Smith-Waterman local alignment algorithm with the BLOSUM50 substitution matrix. The 
sequence similarity score between these two peptides was defined as the normalized alignment 
score as defined previously110,112. Additionally, peptides from DRAMP, BaseData, and EDEN 
were embedded with the ESM-2 650M model and projected into two dimensions using UMAP 
(cosine distance; n_neighbors = 15; min_dist = 0.1) for visualisation. Lab-tested peptides were 
matched to their embeddings and overlaid on the same projection. 

Additional annotations for filtering of candidates for experimental validation included, 
charge (+2 to +8 net for 25 to 40-mers) and hydrophobicity of residue counts (35–60% 
hydrophobic/aliphatic residues), presence of aggregation patterns (>2 aromatics in a row, >4 
hydrophobics in a 6-residue window, or highly repetitive triads) and similarity to training data. 
This set was then filtered with a length cutoff of <40aa. Candidates were additionally clustered 
at 80% using mmseqs2 (v15.6f452)179 Candidates that passed this initial filtering were then 
analysed for simple repeats and low complexity regions using tantan default parameters 
(version 51)177. Percent of masked regions were then calculated for each candidate sequence. 
Sequences over 20% repeat across the length were excluded. Focus on the predicted MIC 
scores for pathogens A. baumannii ATCC 19606, E. coli AIC221, E. coli AIC222 activity was 
prioritized as the predicted results for these pathogens show stronger predictive values for 
activity. A Smith-Waterman similarity score threshold of 0.7 was used, with only sequences 
scoring below this threshold advanced to wet-lab validation. 

 
Peptide synthesis and characterization 
 

Peptides were synthesized on an automated peptide synthesizer (Symphony X, Gyros 
Protein Technologies) by standard 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase 
peptide synthesis (SPPS) on Fmoc-protected amino acid-Wang resins (100–200 mesh). In 
addition to preloaded resins, standard Fmoc-protected amino acids were employed for chain 
elongation. N,N-Dimethylformamide (DMF) was used as the primary solvent throughout 
synthesis. Stock solutions included: 500 mmol L-1 Fmoc-protected amino acids in DMF, a 
coupling mixture of HBTU (450 mmol L-1) and N-methylmorpholine (NMM, 900 mmol L-1) in 
DMF, and 20% (v/v) piperidine in DMF for Fmoc deprotection. After synthesis, peptides were 
deprotected and cleaved from the resin using a cleavage cocktail of trifluoroacetic 
(TFA)/triisopropylsilane (TIS)/dithiothreitol (DTT)/water (92.8% v/v, 1.1% v/v, 0.9% w/v, 4.8%, 
w/w) for 2.5 hours with stirring at room temperature. The resin was removed by vacuum 
filtration, and the peptide-containing solution was collected. Crude peptides were precipitated 
with cold diethyl ether and incubated for 20 min at -20 °C, pelleted by centrifugation, and 
washed once more with cold diethyl ether. The resulting pellets were dissolved in 0.1% (v/v) 
aqueous formic acid and incubated overnight at -20 °C, followed by lyophilization to obtain dried 
peptides.  

For characterization, peptides were dried, reconstituted in 0.1% formic acid, and 
quantified spectrophotometrically. Peptide separations were performed on a Waters XBridge C18 
column (4.6 × 50 mm, 3.5 µm, 120 Å) at room temperature using a conventional 
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high-performance liquid chromatography (HPLC) system. Mobile phases were water with 0.1% 
formic acid (solvent A) and acetonitrile with 0.1% formic acid (solvent B). A linear gradient of 
1–95% B over 7 min was applied at 1.5 mL min-1. UV detection was monitored at 220 nm. 
Eluates were analyzed on Waters SQ Detector 2 with electrospray ionization in positive mode. 
Full scan spectra were collected over m/z 100–2,000. Selected Ion Recording (SIR) was used 
for targeted peptides. Source conditions were capillary voltage 3.0 kV, cone voltage 25-40 V, 
source temperature 120 °C, and desolvation temperature 350 °C. Mass spectra were processed 
with MassLynx software. Observed peptide masses were compared with theoretical values, and 
quantitative analysis was based on integrated SIR peak areas. 

 
Bacterial strains and growth conditions  

 
The bacterial panel utilized in this study consisted of the following pathogenic strains: 

Acinetobacter baumannii ATCC 19606; A. baumannii ATCC BAA-1605 (resistant to ceftazidime, 
gentamicin, ticarcillin, piperacillin, aztreonam, cefepime, ciprofloxacin, imipenem, and 
meropenem); Escherichia coli ATCC 11775; E. coli AIC221 [MG1655 phnE_2::FRT, 
polymyxin-sensitive control]; E. coli AIC222 [MG1655 pmrA53 phnE_2::FRT, 
polymyxin-resistant]; E. coli ATCC BAA-3170 (resistant to colistin and polymyxin B); E. coli K-12 
BW25113; Enterobacter cloacae ATCC 13047; Klebsiella pneumoniae ATCC 13883; K. 
pneumoniae ATCC BAA-2342 (resistant to ertapenem and imipenem); Pseudomonas 
aeruginosa PAO1; P. aeruginosa PA14; P. aeruginosa ATCC BAA-3197 (resistant to 
fluoroquinolones, β-lactams, and carbapenems); Salmonella enterica ATCC 9150; S. enterica 
subsp. enterica Typhimurium ATCC 700720; Bacillus subtilis ATCC 23857; Staphylococcus 
aureus ATCC 12600; S. aureus ATCC BAA-1556 (methicillin-resistant); Enterococcus faecalis 
ATCC 700802 (vancomycin-resistant); and Enterococcus faecium ATCC 700221 
(vancomycin-resistant). P. aeruginosa strains were propagated on Pseudomonas Isolation Agar, 
whereas all other species were maintained on Luria-Bertani (LB) agar and broth. For each 
assay, cultures were initiated from single colonies, incubated overnight at 37 °C, and 
subsequently diluted 1:100 into fresh medium to obtain cells in mid-logarithmic phase. 

 
AMP Minimal Inhibitory Concentration (MIC) determination  

 
MIC values were established using the standard broth microdilution method in untreated 

96-well plates. Test peptides were dissolved in sterile water and prepared as twofold serial 
dilutions ranging from 1 to 64 μmol L-1. Each dilution was combined at a 1:1 ratio with LB broth 
containing 4 × 106 CFU mL-1 of the target bacterial strain. Plates were incubated at 37 °C for 24 
h, and the MIC was defined as the lowest peptide concentration that completely inhibited visible 
bacterial growth. All experiments were conducted independently in triplicate. 
 
Synthetic metagenomes: fine-tuning, generation, and characterization 
 

Characterization of biomes based on annotations was conducted on assembled contigs 
contained in BaseData. Digestive system specific annotations were identified and used as 

48 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2026. ; https://doi.org/10.64898/2026.01.12.699009doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.12.699009
http://creativecommons.org/licenses/by-nc/4.0/


 

markers for sequence collection. GC and coding density were also used to characterize biomes. 
Biome labels are based on MGnify names and lineages82,183.  

Before large scale sequence generation, EDEN was fine-tuned for 1.5 epochs on 
160,885 assembled contigs from a single digestive-system microbiome sample in BaseData.For 
synthetic microbiome generation, we identified prompts from curated digestive system 
sequences which fell into three categories: sequences from the beginning of BaseData digestive 
system sample contigs, genes enriched in BaseData digestive system samples, and genes 
within 5kb neighborhoods known to co-occur with other conserved genes in BaseData digestive 
system samples. Source of sequence prompts were from BaseData. Each category of prompt 
contained between 150-200 carefully curated sequences between 1000 bp to the length of an 
entire gene to generate 10kb sequences. Generation was facilitated using a custom script 
leveraging the specific vLLM code inference endpoint. 

Generated sequences of 10kb were initially filtered using length and low complexity 
criteria. This subset was then run through an internally developed custom annotation pipeline. 
This pipeline characterizes genes, proteins and pathways. The generated sequences were run 
through pyrodigal (3.6.0) to call ORFs172. Diamond (v2.1.14) was used to align ORFs against the 
kegg database (2011)139. InterProScan (v5.76-107.0local) was used for functional annotation of 
domains using PFAMs184. Skani (v0.3.0) was used to compare generated sequences with 
BaseData185. We aligned the source short reads from the sample used in fine tuning against all 
generated sequences using strobealign (v0.16.1)186. Viral and phage annotation was conducted 
using geNomad (v1.11.1)144.  

A list of ORFs with KEGG annotations across all contigs were run through GSEApy 
(v1.1.10) package’s enrichr function using a custom gmt pathway database curated from BioCyc 
and annotated with KEGG ids139,187,188. The list of resulting enriched pathways were filtered to 
keep pathways with adjusted p-value <= 0.05. 

For prophage generation, we leveraged our fine tuned model to run a second round of 
generations prompting it on the end of our generations from the first set that were categorized 
as a viral contig or as containing a pro-phage by genomad (v1.9.4, database v1.9)144. We then 
concatenated the original sequence and new sequence to obtain a sequence 21kb in length and 
ran this through genomad (v1.9.4, database v1.9) to obtain a 7kb pro-phage like sequence with 
viral score > 0.9 and taxonomy assigned to Caudoviricetes flanked by sequences from the 
host genome (Streptomyces on both ends) Sequences were then annotated with pharokka 
v1.8.2 and phold v1.1.0 to create consensus annotations, and visualisations of prophage 
candidates created using phold plot and lovis4u v0.1.6146,147,175. 

 
Taxonomic UMAP 
 

BaseData samples were sub-sampled to contigs between 7-10kbp in length to match the 
length distribution of contigs in the synthetic metagenome. Taxonomic profiling of the synthetic 
metagenome and all filtered BaseData samples was then conducted using Kraken2 v2.17.1 with 
option –use-names181. A binary matrix of taxon ID presence and absence in each sample was 
created and used as input into the UMAP function of umap-learn v0.5.9 with metric jaccard and 
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parameters n_neighbors=50, min_dist=0.1169. The embeddings of the UMAPs were colored by 
the Lineage 3 MGnify biome of the samples and plotted using Datashader v0.18.282,170 [8]. 

The number of taxa shared between the synthetic metagenome and BaseData digestive 
system samples was identified using Kraken2 classifications of all full-length contigs, 
independent of the length-based filtering applied to create the UMAP embedding. 

K-mer frequencies (k=4-6) were calculated using Jellyfish v2.3.1 for the synthetic 
metagenomic contigs and all contigs 7-10kbp in length for the BaseData sample used to 
fine-tune EDEN, to verify the sequences of the synthetic contigs diverged from the contigs in the 
fine-tuned sample168. A UMAP of Euclidean distances for the k-mer frequencies was then 
calculated using the UMAP function of umap-learn v0.5.9 with options n_neighbors=20, 
n_epochs=1000 and min_dist=0169. The embeddings of the UMAP were colored by the Lineage 
3 MGnify biome of the source sample and plotted using Datashader v0.18.2169,170. 
 
Distant ORF sequence analysis 
 

Generated sequences used pyrodigal (3.0.0) to predict genes172. Sequences were length 
filtered between 250 -1500aa. Further filtering was made using hard masking results from 
tantan default parameters (version 51)177. Candidates were then aligned against BaseData, 
NCBI (2024-02-07), UniProtKB/SwissProt (Release 2025_04 of 08-Oct-2025) and MGnify 
(v2024_04) using Diamond Blast (v2.1.6) with minimum percentID of 10% and coverage of 
0.760,82,149,189. ESMFold (3B V1) was used to solve structures with a length shorter than 600aa66. 
TMAlign (20190822) was used to align the structures of the generated sequences against the 
highest scoring target from each database190. Foldseek (9.427df8a) was then used to identify 
structural homologous folds from the databases af_proteome and af_swissprot v4, cath50 
(v4.3.0), esmatlas30 (v01718804519), pdb (240101), Uniprot50 (v4)51,60,66,191,192. MGnify and 
NCBI peptide records were viewed on December 3, 202582,149. 
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 Supplementary Information 

 Supplementary  Figure  1:  We’re  showing  scaling  behaviour  for  the  EDEN  family  of  models  between  100 
 million  and  28  billion  parameters.  EDEN-100M,  EDEN-1B,  and  EDEN-7B  were  trained  on  350  billion  tokens 
 from  BaseData.  EDEN-28B  was  trained  on  9.7  trillion  tokens  from  BaseData.The  diagram  displays  FLOPS  vs 
 validation loss for the various models. 
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 Supplementary  Figure  2:  Leventhstein  identity  of  generated  sequences  vs  wild-type  LSR  from 
 prompt.  Distribution  of  sequence  similarity  between  LSRs.  Histograms  show  the  distribution  of 
 Levenshtein  identity  between  LSR  sequences  generated  from  wild-type  prompts  and  their  corresponding 
 parent  (prompting)  wild-type  LSRs  (green),  and  between  each  parent  wild-type  LSR  and  all  wild-type  LSR 
 cluster  representatives  (gray;  n  =  24,330),  providing  a  comparison  between  model-generated  variation 
 and natural sequence diversity. Levenshtein identity = 1 - distance(seq1, seq2) / max_len(seq1, seq2). 
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 Supplementary  Figure  3:  Integration  activity  of  PRT075  in  K562  cells.  Human  K562  cells  were 
 transfected  with  mRNA  expressing  WT  PRT075  along  with  a  plasmid  DNA  template  containing  the 
 corresponding  att  sequence.  At  5  days  post  transfection,  DNA  was  harvested  and  integration  at  Safe 
 Harbor 1 - chr7 pseudo site was quantified using dPCR. 
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 Supplementary  Figure  4:  Fold  change  in  the  generation  rate  of  EDEN-BR  relative  to  EDEN-28B 
 (calculated as EDEN-BR / EDEN-28B). 
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 Supplementary  Figure  5:  Heatmap  showing  the  results  of  activity  validation  assays  confirming  antimicrobial 
 activity of BaseData peptides against 16 clinically bacterial strains. 
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 Supplementary  Figure  6:  The  property  distribution  of  EDEN  generated  AMPs  and  natural  AMPs  from 
 BaseData  and  DRAMP  databases  for  A  amino  acid  composition  B  hydrophobicity  C  hydrophobic  moment 
 D  charge  E  isoelectric point. 
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