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Abstract

The ability to interpret, modify, and design DNA has driven many of the most significant advances
in modern medicine, from diagnostics, biologics, and vaccines to cell and gene therapies. However, the
inherent complexity of biological systems means that most modern medicines are still engineered using
bespoke, labor-intensive processes.

To address the need for a generalisable and programmable approach to therapeutic design, we
introduce the EDEN (environmentally-derived evolutionary network) family of metagenomic foundation
models, including a 28 billion parameter model trained on 9.7 trillion nucleotide tokens from BaseData'.
This dataset, at the time of training, contained more than 10 billion novel genes from over 1 million new
species, and is intentionally enriched for environmental and host-associated metagenomes, phage
sequences, and mobile genetic elements, enabling the model to learn from diverse and novel
cross-species evolutionary mechanisms and apply them to key challenges in human health.

EDEN achieves state-of-the-art performance across a series of predictive and generative
genomic and protein benchmarks. To demonstrate the models’ broad applicability across biology, we
evaluate EDEN'’s capacity for programmable therapeutic design by challenging a single architecture to
design biological novelty across three distinct therapeutic modalities, disease areas and biological scales:
(i) large gene insertion, (ii) antibiotic peptide design, and (iii) microbiome design.

First, we demonstrate Al-programmable Gene Insertion (aiPGl), in which EDEN designs de novo
large serine recombinases (LSRs) capable of inserting large pieces of DNA at desired target sites in the
human genome when prompted only on 30 nucleotides of DNA sequence from the desired target site. In
low-N experimental validation, EDEN generated multiple active recombinases for all tested
disease-associated genomic loci (ATM, DMD, F9, FANCC, GALC, IDS, P4HA1, PHEX, RYR2, USH2A)
and 4 potential safe harbor sites in the human genome. EDEN achieves an overall functional hit rate of
63.2% across diverse DNA prompts when prompted on only 30bp of DNA from outside the training data.

50% of EDEN-generated LSRs were active in human cells, achieving therapeutically relevant
levels of CAR insertion in primary human T cells. We also show that EDEN can generate active bridge
recombinases when prompted on the associated guide RNA alone, with sequence identities to training
and public data as low as 65%. These results pave the way for a new generation of cell and gene
therapies by opening the door to rapid, programmable and site-specific integration of large genetic
payloads without double-strand breaks. This offers an alternative to the safety, efficiency and payload
limitations inherent in viral or nuclease-based editing at thousands of currently intractable human
therapeutic targets.

Second, we use the same model to generate a focused low-N library of novel antimicrobial
peptides where 97% showed activity, with top candidates achieving single-digit micromolar potency
against critical-priority multidrug-resistant pathogens.

Third, to demonstrate that EDEN captures inter-genomic features, we design a gigabase-scale
microbiome with over 94,000 synthetic metagenomic assemblies, including prophage genomes and
correct cross-species metabolic pathway completions. The EDEN-generated synthetic microbiome covers
9,067 species with a biome-specific taxonomic accuracy of 99%. Over 1,500 of the generated species
were outside the fine-tuning dataset while retaining the correct microecological properties and biome
association, thus significantly expanding genetic and taxonomic diversity.

Together, these results establish a new strategic direction for Al-programmable therapeutics, in
which a single foundation model architecture designs candidate therapeutics across diverse modalities
and disease areas. This suggests that the combination of billions of years of evolutionary data with
specific therapeutic records offers a clear, scaling-driven path to making therapeutic design a predictable
engineering discipline.
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Introduction

Background & motivation

The ability to generalisably and predictably design therapeutics holds the potential to
transform human health, offering the ability to address complex pathologies with speed, efficacy
and precision. However, despite decades of progress in genomic engineering and the
foundational premise of systems biology that biological systems are non-random, logical and
inherently computable, the systematic programming of biological outcomes has so far remained
largely intractable. Moving therapeutic design towards a deterministic engineering discipline
represents a major, and still largely unrealized, opportunity in modern medicine.

This paper frames the current intractability of biological programming as an engineering
bottleneck arising from the profound information asymmetry between the complexity of
biological systems?®, and two interlinked technical deficits: (a) the scarcity of diverse primary
biological information and (b) the lack of computational systems capable of translating this
information into medicine*®. These deficits arise from the limitations of physical laboratories as
the primary tool for large scale data collection and human cognition as the primary engine for
data interpretation; neither of which has the capacity to match the scale or complexity resulting
from four billion years of evolution.

In previous work’, the authors presented a new approach for surmounting the first deficit;
a new, globally scaled and partnership based supply chain of evolutionary genomic data. The
resulting dataset, BaseData, contained nearly 10 billion genes from over 1 million new species
at the time of publication, and is capable of growing at over 2 billion genes per month.

Al models offer a promising new paradigm for surmounting the latter deficit; by learning
statistical patterns within large biological datasets, generative foundation models are unlocking
increasingly sophisticated and generalisable biological design capabilities — generating
functional proteins, regulatory elements and even complete genomes in response to complex
queries, often without the need for exhaustive experimental screening®'®. However, as detailed
in our previous work’, the full potential of these models for biological design could likely be
enhanced significantly by leveraging additional diverse biological sequence data, especially
those derived from the complex interplay between hosts, mobile genetic elements and their
environments.

On this basis, we hypothesize that progress towards true programmable biology will
require expanding the training datasets of generative models to include increasingly large
quantities of diverse evolutionary data, far beyond the constraints of current publicly available
resources. If this hypothesis is true, we would expect these models to learn increasingly
universal design principles from this data and progressively improve the predictability, accuracy,
and controllability of the computational design of biological code.

To test this hypothesis, we introduce the EDEN (Environmentally-Derived Evolutionary
Network) family of foundation models, the largest of which was trained on 9.7 trillion
evolutionary nucleotide tokens from BaseData', with no human, lab or clinical data in the
pre-training dataset. We evaluate EDEN'’s capacity for programmable therapeutic design by
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challenging a single architecture to design biological novelty across three distinct therapeutic
modalities, disease areas and biological scales: (i) large gene insertion, (ii) antibiotic peptide
design, and (iii) microbiome design.

Through this, we demonstrate that a single foundation model, learning from a greater
diversity of genomic evolution than previously available, can drive the design of novel potential
medicines in response to a range of therapeutically-relevant queries. Together, these results
open the path and indicate a route towards unified Al systems capable of designing therapeutic
candidates across diverse disease areas and modalities.

The evolution of biological design

The treatment of biology as a designable system represents the culmination of a
century-long shift from viewing life as a “vital force” to seeing it as a modular information
technology. This trajectory began with Darwin and Mendel, who established the optimization
logic (natural selection) and the discrete units of inheritance (genes) that allow life to operate as
a set of defined, logical systems''S. The theoretical convergence of physics and information
theory saw Schrddinger predict the molecular storage for this code, while Shannon, Turing and
von Neumann provided the mathematical framework that formalized biological self-replication as
a computable process'®8,

In parallel to these theoretical insights, our rapidly improving ability to physically read,
write and design DNA has driven decades of progress in medicine and biotechnology'®'%%.
Recombinant DNA technology now underpins the production of therapeutic proteins, including
hormones, peptides, antibiotics, and antibodies used to treat diseases such as diabetes, cancer,
bacterial infections and autoimmune disorders?'-%.

More recently, the field has moved beyond simple protein production towards the editing
and engineering of more complex multi-component systems: for example, genome editing
technologies like CRISPR/Cas9 have moved from research to clinic within a decade®?.
Already, CRISPR-based therapies are curing genetic diseases in clinical trials (for example, ex
vivo edited hematopoietic cells for B-thalassemia and sickle cell disease) and have recently
proven effective in a rapidly developed personalized therapy for an infant with CPS1 deficiency,
an ultra-rare genetic metabolic disease?"?

Moving up the ladder of complexity, engineered cell therapies such as CAR-T cells —
T-cells genetically modified with synthetic receptors — have achieved unprecedented success in
refractory leukemias, with seven therapies approved by early 2026%*%. Simultaneously, the
maturation of mMRNA platforms has introduced a high-velocity modality, enabling the
“programming” of personalized cancer vaccines that translate patient-specific tumor mutations
directly into therapeutic instructions®'-3,

However, despite these breakthroughs, biological engineering remains a comparatively
artisanal endeavor when compared to true systematic engineering disciplines. It is still common
for complex therapeutic development to depend on labor-intensive, stochastic screening
campaigns®34, This bespoke, trial-and-error approach is (a) functionally unscalable, (b) largely
restricted to “low-hanging fruit” targets where natural proteins can be easily repurposed, and (c)
fundamentally incapable of addressing the vast majority of complex polygenic or multi-factoral
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pathologies. Consequently, the immense therapeutic potential of programmable biology remains
largely latent, constrained by our inability to design de novo function.

The hypothesis within this paper is that the current constraints in therapeutic design
arise from a profound disparity between the information content within biological systems and
the processing bandwidth of our engineering tools. Evolution operates on a timescale of eons
across a planetary-scale ‘laboratory’, optimizing fitness within an extremely high-dimensional
combinatorial landscape that dwarfs laboratory capacity and human cognition.

Physical laboratories, while essential for validation, act as comparatively low-throughput
filters for data collection. Even the most advanced high-throughput screening campaigns
capture only an infinitesimal fraction of the theoretical sequence space, leaving the vast majority
of the “design universe” unexplored. The authors have discussed this extensively in previous
work'. Compounding this data sparsity is a cognitive limit: the rules governing biological
function, defined by high-order epistasis, long-range interactions, and environmental context,
are too subtle and multidimensional for human intuition alone to decipher.

Consequently, therapeutic development stays in a cycle of iterative screening. As this
laboratory-intensive approach scales linearly, it is fundamentally incapable of matching the
exponential complexity of disease biology. This bottleneck necessitates a need for generalisable
and programmable biological design — algorithms or computational systems that can learn
evolutionary grammar at a scale sufficient for designing novel therapeutic constructs on demand
across diverse modalities and disease areas, in response to specific, and, ultimately,
personalized therapeutic queries.

Foundation models in biology

In parallel to the advancements in genomic engineering, foundation models - large-scale
deep learning models trained on broad, multi-billion to trillion-token scale datasets - offer the
field a way past the cognitive bottlenecks outlined above. These models, trained on massive
and heterogeneous datasets, often using self-supervised objectives, exhibit the capacity to
generalize across a wide range of downstream tasks without task-specific retraining® and have
revolutionized domains including natural language, computer vision and robotics.

As model architectures matured - with the introduction of the Transformer in 2017 —
foundation models advanced further through rapid growth in available compute and the
assembly of large-scale datasets®*’. Together, efficient architectures, abundant data, and
increased computational resources enabled more systematic study of how empirical
performance varies with model and dataset scale. These studies, often referred to as scaling
laws, show that, across broad regimes, performance improvements are well approximated by
power-law relationships in model size, dataset size, and training compute, thereby reframing
model progress as an engineering problem of allocating capacity, data, and computation
effectively®*'.

Empirical studies demonstrated that training models on increasingly large datasets
produced emergent behaviors such as in-context learning and compositional reasoning*. This
principle guided the development of large language models such as the Llama and GPT families
of large language model**#4, trained on datasets of hundreds of billions to trillions of tokens
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derived from diverse web, book, and code sources. These models have had a profound societal
impact, transforming how we interact with machines and enabling breakthroughs in software
development, education and healthcare, through enhanced personalisation and automation*>7.

In turn, the application of large Al models to biological problems has transformed
computational biology and our understanding of molecular design and properties, with use
cases spanning industrial processes, synthetic biology, and therapeutic applications*. This is
exemplified by AlphaFold2, which, when trained on multiple sequence alignments,
3-dimensional protein structures, and atomic-coordinate  supervision, achieved
near-experimental accuracy in protein structure prediction, work that was ultimately awarded the
2024 Nobel Prize in Chemistry**®'. Building on this, AlphaFold3 expands training to
protein—protein, protein—nucleic-acid, and protein—ligand complexes and uses diffusion-inspired
refinement to improve interaction and assembly accuracy, while other biomolecular foundation
models such as those from the Chai or Boltz family combine generative, diffusion-based, and
graph-neural approaches to enable joint sequence—structure generation and functional binding
design®.

In addition to this, language modeling has been an additional major driving force in
biological foundation modeling, especially in protein and DNA design. Protein language models
treat amino-acid sequences as unlabeled data for self-supervised learning, supporting
downstream tasks such as supervised fitness prediction, domain annotation, mutation effect
prediction, structure prediction, and sequence generation. Early autoregressive models trained
on UniProt/UniRef, including ProGen and ProtGPT2, showed that de novo samples can
preserve natural amino-acid propensities®'®-'2¢°, ZymCTRL added Enzyme Commission label
conditioning to steer sequences toward specific catalytic functions, and PoET then framed
protein families as “sequences-of-sequences,” using family-aware transformers to improve
zero-shot variant effect prediction and controllable family-conditioned generation'®6'%2,
Diffusion-based models such as EvoDiff and DPLM enabled order-agnostic generation, while
ProGen3 and Dayhoff demonstrated that training on metagenomic data increases the quality
and diversity of generated sequences''®**°. Meanwhile, ESM models demonstrated that
massively scaled self-supervised training on protein sequences yields embeddings capturing
structural grammars®'¢266¢7  However, it remains difficult to precisely steer these models for
desired functions, such as DNA-protein interactions or antimicrobial activity, as most models do
not consider genomic or community context.

Beyond proteins and molecular interactions, genomic language models have extended
to entire genomes by treating the genome as a learnable language whose syntax encodes
regulatory function beyond individual Open Reading Frames (ORFs)®%. Encoder-only models
such as DNABERT first demonstrated that transformers pretrained on k-merized genomic
sequences could learn promoter and splice-site grammars across species’®’". Subsequent DNA
foundation models expanded training data or context, such as the Nucleotide Transformer
enabling zero-shot predictions of regulatory elements or HyenaDNA expanding genomic
modelling context to the megabase scale’®”®. Genome-scale generative models such as Evo
and Evo2 further unified molecular-to-genome modeling across long-range genomic
interactions, supporting variant effect inference and realistic genome synthesis®’. Impressively,
Evo2 has done so by scaling the training data to all known domains of life’. AlphaGenome
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extends this paradigm to multimodal prediction, coupling sequence inputs with chromatin and
structural readouts’™.

Across the various design tasks, whether based on protein- or genomic foundation
models, the prediction and design of protein-DNA interactions have proven to be particularly
challenging™. In particular, at a molecular level, DNA's primarily sequence-independent
double-helix structure complicates accurate modeling and design of protein interactions with
specific DNA sequences. Compared to protein-small molecule, or protein-protein interactions,
protein-DNA interactions often score worse across the most recent protein-ligand design
models®*~%, In this domain, significant progress has been made, for example with the design of
sequence-specific DNA-binding proteins with helix-turn-helix domains using RFDiffusion’®.
However, while various design campaigns based on biological deep learning models have
indeed generated functional DNA-binders or -editors, there is room for further improvement and
generalisation: their design from biological deep learning models has relied on high-throughput
experimentation in the millions of variants range, prompting on the entire protein itself, up to ten
epochs of fine-tuning, as well as the restriction to specific subfamilies®’”"8,

In this paper, we suggest that heavy dependence of current models on extensive
experimental iteration and the inability of current models to reliably execute complex tasks
necessary for multi-modality therapeutic design may arise from a fundamental deficit in the
scale and diversity of the available training data, whether that be sequence-specific, structural,
or otherwise°"79-82,

Effective modeling of complex therapeutic modalities depends on models’ ability to learn
higher-order biological interactions, for example cross-species DNA-protein interactions,
host-pathogen interactions, and other multi-species co-evolutionary signals, especially when
designing more complex therapeutic modalities such as peptides or cell and gene therapies®-%°.
For example, modeling Cas9 nucleases or Large Serine Recombinases (LSRs) necessitates
sourcing immense quantities of high quality, diverse primary data on the proteins and their
associated non-coding elements, including guide RNAs and attachment sites, which dictate
target specificity™"’.

In this context, deep learning models in this space have frequently relied on the usage of
reference genomes, often derived from cultured isolates®”’®. Whilst these are valuable
resources for microbial genomics, public biological sequence databases frequently fail to
capture the natural evolution within microecological complex environments (metagenomes,
microbiomes) at scale that give rise to vast, otherwise unmapped parts of the tree of life’~%.
This data sparsity has consequences for models’ ability to learn the higher-order biological
interactions discussed above, and thus is one of the key limits on progress towards true
programmable therapeutic design.

Introducing EDEN: learning from evolution

Returning to our central hypothesis, that a path to programmable biology lies in
expanding training data distributions of generative models to capture broader evolutionary
context — we face two interlinked technical challenges: the lack of known biological information
and the lack of cognitive bandwidth necessary to fully interpret the information that we do have.
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From this hypothesis, it follows that, if these deficits could be systematically addressed, an
improvement in the predictability, accuracy, and controllability of computational biological design
would be observed.

To address the first of these challenges, the authors previously published BaseData'
which has increased the known non-redundant sequence diversity both globally and across key
gene editing protein families of interest, contextualized with over 4 times the genomic context
and over a million new species compared to comparable public biological sequence
databases™'"#1:82,

Now, to address the second of these challenges, we introduce the EDEN
(Environmentally-Derived Evolutionary Network) family of foundation models trained on up to
9.7 trillion nucleotide tokens from BaseData. EDEN uses a Llama3-style architecture, scaling
from 100 million to 28 billion parameters. Trained on up to 1.95x10%* FLOPs, the EDEN models
are some of the largest foundation models ever trained and achieve state-of-the-art
performance across a range of predictive and generative genomic and protein benchmarks.

To evaluate EDEN’s ability to learn from evolution to predictably, accurately, and
controllably design therapeutic modalities, we moved beyond traditional benchmarks to test the
models on three distinct design challenges that span a range of modalities, disease areas and
biological scales: (a) large gene insertion, (b) peptide design and (c) synthetic microbiomes.

In the next section, we discuss the background and motivation of each of these
therapeutic tests, establishing the existing benchmarks and the technical and medical
implications of these achievements.

EDEN designs therapeutics across scales, modalities, and disease areas

Al-Programmable Gene Insertion (aiPGl)

Despite major advances in genome engineering, current technologies still fall short of
delivering programmable, scalable solutions for repairing or rewriting the human genome.
CRISPR nucleases, base editors, and reverse-transcriptase-based editors have enabled
targeted correction of single-nucleotide changes or short indels, but these strategies remain
inherently mutation-specific?®®. In practice, this means a therapeutic edit must be uniquely
designed for the exact pathogenic variant a patient carries. Even within a single disease,
different patients often carry distinct mutations, and in many disorders the pathogenic landscape
spans hundreds to thousands of allelic variants®~*. Consequently, CRISPR-based correction
scales poorly: each patient, or small patient subgroup, requires its own bespoke edit, limiting
both clinical generalisability and the feasibility of broad therapeutic deployment®.

Programmable Gene Insertion (PGI), the ability to efficiently insert large pieces of DNA
into specific genomic locations, is a significant challenge for the gene editing field. PGI has the
potential to address many limitations of current gene therapy and gene editing systems, such as
treating very heterogenous genetic diseases with a single therapy, insertional oncogenesis (due
to random integration), non-native gene expression (using safe harbor sites), and loss of
episomal expression over time (particularly in pediatric patients). In addition to increasing the
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safety and efficacy of current cell therapy approaches (e.g. CAR-T engineering), PGl enables
the insertion of healthy copies of genes into their correct endogenous locations in patients with
genetic disease. This would enable native regulation, (avoiding over or under-expression), a
single product that will treat most if not all patients (mutation agnostic), and allow for a one-time
cure that grows with the patient.

Large Serine Recombinases (LSRs) are an abundant class of enzymes found in nature
that have many properties that make them attractive for PGI applications. They are very small,
can efficiently integrate large pieces of DNA (>30 kb%), have a predictable integration profile®,
and are not reliant on DNA damage or host DNA repair pathways, meaning they are efficient in
both dividing and quiescent cells.

The key challenge with developing recombinases for human therapeutics is that each
natural LSR has evolved to integrate into a unique bacterial DNA sequence, none of which are
at sites relevant for human therapeutics. While there have been efforts to re-direct LSRs to
novel sites®® ¢ most efforts use laborious wet-lab evolution and/or involve appending additional
domains to the LSR, which can have a negative effect on both efficiency and size.
LSR-mediated PGl has indeed shown to be feasible in a non-human primate model®, however
this approach was limited by complexity and manufacturing challenges since it required a Cas9
nickase and reverse transcriptase in order to make LSR-mediated insertion programmable.

An elegant solution would be to be able to design programmability directly into the
recombinase itself. However, addressing this inverse design problem - mapping a desired DNA
target back to a functional protein sequence - requires a generative model that understands the
high-dimensional evolutionary logic coupling LSR amino acid sequences to their specific DNA
targets.

To validate EDEN'’s capacity for Al-Programmable Gene Insertion (aiPGl), we use EDEN
to generate de novo large serine recombinase proteins when prompted with only the desired
genomic target site. Recombinase design serves as a rigorous benchmark for programmable
biology by testing the model's capacity for writing complex biological instructions from a
comparatively small prompt, whilst simultaneously optimizing DNA-binding specificity and
catalytic efficiency.

We show that, when prompted with only 30 nucleotides of DNA representing the desired
attB genomic target site, EDEN generates multiple active recombinase proteins for all tested
disease-associated human genomic loci (ATM, DMD, F9, FANCC, GALC, IDS, P4HA1, PHEX,
RYR2, USH2A) and four potential safe harbor sites in the human genome. Over all prompts,
EDEN achieves a functional hit rate of 53.6%. Top tier variants exhibit biochemical activity on
par with any natural recombinases screened to date and several high-performing candidates
shared as little as 52% sequence identity with the parental protein, indicating that EDEN is
learning biological ‘grammar’ and efficiently navigating the vast evolutionary sequence
landscape.

In parallel to attachment-site-prompted LSR design, we showcase EDEN’s ability to
address aiPGl in an orthogonal approach by designing active bridge recombinases (BRs) which
have recently been studied and developed as an RNA-programmable alternative to LSRs
(Durrant et al. 2024; Perry et al. 2025). EDEN-generated BRs were prompted solely on their
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corresponding non-coding RNA sequence and exhibit sequence identity to the training and any
public BRs as low as 65%.

By enabling the site-specific integration of large genetic payloads in a single protein
without the genotoxicity associated with double-strand breaks and without the requirement for a
guide RNA, these results suggest that EDEN has the potential to systematically address the
complexity, safety and payload limitations of current viral and nuclease-based editing in gene
therapy, paving the way for new generations of complex and curative cell and gene therapies to
treat a much broader range of indications than is currently accessible.

While these de novo designs are potent functional hits, it is important to acknowledge
that they will require downstream optimization before becoming clinic-ready medicines.
Nonetheless, as the EDEN models continue to improve, this capability opens the door to a
programmable toolkit for safe, large-payload gene integration and is a powerful proof point on
the route to designing personalized therapeutics within the complex requirements of clinical
intervention.

Al-based antimicrobial peptide design

The escalation of antimicrobial resistance (AMR) has created an urgent imperative for
new therapeutics, as drug-resistant “superbugs” are now recognized among the World Health
Organization’s top global health threats'®'%. In particular, critical-priority multidrug-resistant
pathogens — exemplified by the ESKAPE bacteria (e.g. carbapenem-resistant Acinetobacter
baumannii) — pose imminent dangers that could usher in a post-antibiotic era without effective
countermeasures'®'%, Motivated by recent findings that Al can be used to accelerate antibiotic
discovery'®, and that antimicrobial peptides (AMP) can be discovered from biology, including
within microbiomes®®'%’, the human proteome'®, and ancient biology'®""", we envisioned using
EDEN for the generative design thereof.

Biologically, AMPs constitute a diverse class of short peptides produced by a wide range
of organisms, as well as identified in numerous environmental microbiomes, and many display
broad-spectrum activity through mechanisms that are less prone to conventional resistance??%.
Yet AMP discovery and design, whilst showing successes both from existing genomic resources
as well as through machine-learning methods"'*"'?, could be scaled significantly by widening the
phylogenetic and environmental diversity beyond what is represented in public resources, which
are otherwise limiting the ability of machine learning models to generalize fully across the
antimicrobial sequence landscape towards programmably targeting the most relevant pathogens.

To validate EDEN’s ability to design functional therapeutic candidates within near-infinite
sequence spaces, we applied the model to the de novo design of AMPs. Experimental
validation revealed that 32 of the 33 EDEN designed peptides (97%) were functional,
demonstrating high potency against WHO critical-priority  pathogens, including
multidrug-resistant Acinetobacter baumannii’®'%". By achieving such high precision without
iterative experimental cycles, we show the potential of an Al-driven framework for responding to
the global antimicrobial resistance crisis. While these de novo peptides exhibit potent activity,
they remain early-stage candidates requiring further optimization for stability, toxicity, and
pharmacokinetic properties before clinical application.
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Synthetic microbiome

The ultimate frontier in programmable biology lies in understanding complex multi-species
biological systems such as microbiomes, and developing the ability to programmably generate
them. Their design requires accounting for emergent properties including metabolic
cross-feeding, niche competition, and trophic stability that are absent at the single-genome
level™*"7 One example for such multi-species systems include host-associated microbiomes
which are well-established in their role in human metabolic health and carcinogenesis''®'?', with
precision microbiome editing having recently shown promise for human health and disease
applications'2. Modeling this higher-order logic represents a distinct challenge from molecular
design, requiring the internalization of ecological rather than just structural syntax.

While previous generative biological foundation models have achieved success in
designing open-reading frames, mobile genetic elements, and even whole genomes, they have
largely stopped at the organismal boundary”'®. Current approaches fail to capture the "dark
matter" of interactions that dictate community survival. Without modeling the cross-species
dependencies inherent in natural environments, the de novo design of a stable, functional
microbiome remains out of reach for models trained on isolated reference genomes.

To validate EDEN’s capacity for design beyond the individual genome, we challenged
the model to generate a fully synthetic, gigabase-scale microbiome. Leveraging the
cross-species evolutionary information inherent in its metagenomic training, EDEN generated a
synthetic host-associated community containing phage genomes and biome-specific metabolic
pathway completions across different synthetic assemblies. 99% of generated species had the
correct biome association. By generating a microbiome that coheres at the gigabase scale, we
show that EDEN captures statistical regularities at the metagenome level. While these synthetic
microbiomes require experimental instantiation and validation, the in silico results suggest the
feasibility of moving from the design of individual molecules or genomes to a larger scale at the
biological community level.

Toward a unified model for programmable therapeutics

By validating the EDEN models across three different biological scales, disease areas
and therapeutic modalities, we demonstrate that a single foundation model, learning from a
higher diversity of genomic evolution than previous models, can drive towards more predictable
engineering of novel potential therapeutic candidates in response to sophisticated and specific
therapeutically-relevant queries.

Together, these results indicate that training on more evolutionary data is an important
and likely underappreciated part of the path towards unified Al systems capable of designing
therapeutic candidates across multiple diverse disease areas and modalities. If this trajectory
continues, these systems hold the potential to evolve from predicting properties to designing full
curative therapeutic interventions, bringing currently intractable pathologies within the reach of
personalized and programmable medicine.
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Results

Training the EDEN model family

EDEN was trained on BaseData, a training data corpus enriched for environmental and
host-associated metagenomes and purpose-built for foundation model training’. We have
previously shown how BaseData expands the known sequence space compared to several
public resources, and include the comparison between BaseData and the metagenomic portion
of OpenGenome-2 (0G2), the dataset used for training the frontier Evo2 genomic foundation
model’ (Figure 1A). The range of environmental features BaseData has been sourced from is
also shown, representing the genomic sequence space as it relates to the sample biome (Figure
1B) and pH (Figure 1C). This type of metadata is largely not consistently captured in public
resources. Beyond the sequence space itself, we show the distribution of contig nucleotide
length and ORF count (Figure 1D-E), with BaseData assemblies showing significantly larger
genomic context compared to those from the metagenomic portion of OG2.

The EDEN family of models was trained on BaseData using a next-token prediction
objective and a context length of 8192 tokens using a Llama3.1-style architecture#*'% (Figure
1F, Methods). Quality-aware scaling laws extrapolate how much computation is required to
achieve a desired performance threshold*’. These scaling laws model the test loss as a function
of model size, data volume, and an effective data-quality parameter, with higher-quality data
increasing the useful information per token and thereby reducing the computational resources
required to reach a performance target.

To explore how different metagenomic datasets influence model performance during
scaling, we trained three pairs of EDEN models with 100M, 1B, and 7B parameters on a
randomly sampled subset of contigs covering 350 billion nucleotides from the metagenomic
portion of OpenGenome2 (OG2; mean contig length = 4 kbp) and BaseData (mean contig length
= 18 kbp). To ensure a fair comparison, all models were matched by the number of non-padding
nucleotide tokens, and padding-related compute overhead was explicitly corrected when
constructing the FLOPs axis in Figure 1G (Methods). Fitting a power law between training
FLOPs and test perplexity shows that perplexity decreases more rapidly with compute on
BaseData. (Figure 1G).

Consistent with this, while the 100M parameter model trained on OG2 performs better
than the 100M model trained on BaseData, the 7B model trained on BaseData achieves lower
test perplexity than its OG2 counterpart. This crossover supports a quality-aware interpretation:
small models underfit the longer-range structure in the longer metagenomic assemblies in
BaseData, while larger models have sufficient capacity to exploit it, extracting more useful
information per token*'. We therefore hypothesize that the observed difference in scaling
behavior reflects intrinsic information structure: OG2 seldom presents contiguous genomic
context beyond ~4 kbp, whereas BaseData routinely provides multi-kilobase neighborhoods
within a single window. This richer long-range context offers a plausible explanation for the
steeper scaling exponent observed for BaseData, consistent with frameworks in which data
quality and long-range information content modulate compute efficiency'®.
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Figure 1: The EDEN model family. A UMAP of metagenomic assemblies from BaseData and the
metagenomic portion of OpenGenome2. B UMAP of metagenomic assemblies from BaseData colored by
biome origin. C UMAP of metagenomic assemblies from BaseData colored by pH. D Distribution of contig
lengths across metagenomic databases, showing a median contig length of 18.6 kb for BaseData and 4.0kb for
0OG2 (metagenomic). E Distribution of ORF number per contig across metagenomic databases, showing a
median of 4.9 ORFs per assembly in OG2 (metagenomic) and 20.2 in BaseData. F Llama3.1-like architecture
used for EDEN training. G Test perplexity vs FLOPs across the EDEN family of models at 100 million, 1 billion,
and 7 billion parameters, utilized as a basis for the decision to scale the EDEN model family to a 28 billion
parameter model trained on the entirety of BaseData. H Distribution of EDEN-28B-generated large serine
recombinase (LSR) pLDDT when prompted with 30% of the 5” end of the ORF across the pretraining course.
On the right we show example structures of EDEN-generated LSRs from various points (token counts 1 trillion,
5 trillion, and 9 trillion) across the pretraining run.

This observation also motivates a curriculum-learning strategy. Recent work on continual
pretraining suggests that training first with shorter context windows and then transitioning to
longer contexts can achieve similar final performance at lower computational cost, consistent
with rapid adaptation once long-range dependencies are introduced'. In our setting, a
short-to-long curriculum could further improve BaseData’s compute efficiency by learning local
sequence regularities during an inexpensive short-context phase, then allocating long-context
compute to the multi-kilobase genomic neighborhood signal that BaseData frequently contains
but OG2 rarely provides.
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Motivated by the scaling trends observed (Figure 1G), we trained a 28 billion parameter
model, EDEN-28B, on the entirety of BaseData (9.7 trillion nucleotide tokens at the time of
training). EDEN-28B attains the lowest test perplexity and falls near the extrapolation of the
scaling fit from the smaller models, indicating that EDEN continues to scale efficiently and
predictably when trained on the entire dataset (Supplementary Figure 1). In addition to tracking
pre-training loss, we periodically evaluated EDEN-28B on biologically relevant downstream
tasks, including semantic mining autocompletion and LSR generation. During pre-training, we
saved model checkpoints every 1250 steps and, at each checkpoint, generated large serine
recombinase (LSR) proteins and assessed them using an in silico evaluation pipeline
(Methods). We show that the proportion of generated LSR sequences with high pLDDT values
increases monotonically across the pretraining run up to the final 9.7 trillion token point (Figure
1H-1). This proportion increases steadily over the course of pre-training, indicating that, as the
model is exposed to more data, optimisation progress is accompanied by consistent
improvements in a task-aligned confidence metric for the generated proteins.

EDEN model evaluations

We investigated EDEN’s zero-shot performance on a range of biologically relevant
predictive and generative tasks. First, we tested the ability of EDEN to predict mutational effects
on protein-coding gene function leveraging deep mutational scanning (DMS) studies, a method
commonly used by protein language models and more recently DNA language models'*'%¢,
DMS involves generating a comprehensive library of sequence variants and experimentally
assessing how each mutation influences one or more fitness readouts that reflect the functional
performance of the molecule. The likelihood or pseudolikelihood computed by a language model
for a DNA or protein sequence can be used to predict its experimental fithess.

EDEN displays state-of-the art performance across genomic and RNA foundation
models for this benchmark when averaging across prokaryotic protein-coding genes (Figure
2A). In particular, EDEN achieves higher performance than all other models on -lactamase E.
coli, even though this task heavily overlaps with the training data of existing DNA and protein
language models, whereas EDEN is trained solely on diverse environmental sequences.

We moved on to evaluate EDEN'’s generative capabilities, and compared these to the
capabilities of Evo2 40B. First, we studied the quality of genomic generations of conserved
genes from model organisms. We prompted EDEN and Evo2 40B with the 5’ end of the gene
(20% of the ORF) and evaluated the ability of each model to generate the remainder. Both
models demonstrated the ability to autocomplete the correct gene reliably (Figure 2B).

Notably, EDEN generated genes that were further apart in sequence space while
remaining structurally consistent, with TM-score values exceeding 0.8. We also compared large
serine recombinase proteins designed by EDEN and Evo2, using 30% of the 5’ end of the gene
as prompts (Figure 2C), showing both overlap and unique sequence space coverage between
the two generative models.

We then moved beyond single-gene generation to evaluating multiple-gene and
long-context generations. Using the well-conserved ribosomal S10 operon as a case study, EDEN
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consistently generated sequences with coding densities greater than 0.7, beyond the 8192
nucleotide context-length used in model training (Figure 2D).

A B Bacillus subtils str 168 Streptomyces coelicolor A23 Escherichia coli str K-12 MG1655 C
RecA SecY FtsZ
<
2
k- o - _ — 4
§ < w.:«.’ ’ '4 )I Fy
< .t i 11 ."0
8 - o A e : o i3 P ‘j
g 094 M <
& . 3
g o ’ >
=
H ¥
2 0.8+ 1
<
g ez sz 3 5 W
§d4da2 3§ P52
z & ooy s E § .- P
8 i & =2 © 074 . . % o EDEN-28B
w Evo2-40B
40 60 80 100 40 60 80 100 40 80 80 100
% Sequence Identity to Natural Protein 10 0 10
EDEN-28B Evo2-40B UMAP 1
100.0
b b By il Y g s
— <
z . T 2 950
5 E s
a =l
g g 90.0
° @ 875
8 &
o 2 g0 R
5 — Reference
o 825 == EDEN-288
ol e ——— e . 3 T Evo2a0B.8K
] 2 4 6 8 10 12 —————— 4,000 Nt ———— 800 0 2 4 6 8 10 12
Window Start Position (kbp)
Window Start Position (kbp)

SN ModC

W / &P & pLooT: 904
ModB DOSE & vz 09531
pLDDT:95.7 Qplh é RMSD: 1.60

TM2: 0.9943 e, © w47 @

RPL4
pLDDT: 87.9
TM2: 0.9540
RMSD: 1.26
% ID: 57.2

RPS8
pLDDT: 85.2
TM2: 0.9919

RPS4 -

RMSD: 0.39 -
pLDDT: 91.2 % I NG
TM2: 0.9519 7 1D:66.2 p =
RMSD: 1.36 )

% ID: 56.8 ;QD

Figure 2: EDEN model evaluations. A Mutation effect prediction for prokaryotic protein coding genes based
on RNAGym DMS datasets, with EDEN showing state of the art performance. B Protein recovery of conserved
bacterial genes using a 30% sequence prompt shows high diversity in sequence space but conserved
structural homology for EDEN model (n = 100). C UMAP of LSRs generated by EDEN and Evo2, showing both
overlap and expansion across sequence space. D Coding density of reference genome, EDEN, and Evo2
across S10 operon covering 14,000 bp. E Exemplary syntenies of S10 operons and the downstream conserved
SPC operon across exemplary EDEN generations. F Sequence complexity across 14,000 bp visualized as
percentage unmasked for the reference, EDEN-generated, and Evo2-generated S10 operon (same reference
and generations as in D). G 8 exemplary protein superimpositions between EDEN-28B generations and natural
counterparts, indicating a range of sequence identities whilst maintaining high structural homology.
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Genes generated downstream of the prompt appeared in the expected order and
orientation, reflecting the canonical organization of ribosomal operons (Figure 2E). This
demonstrates that EDEN can model patterns of gene synteny and operon structure from
sequence data alone, without relying on explicit annotations. In addition, generated sequences
maintained high DUST complexity across the entire 13kbp length (Figure 2F).

Across multiple operons tested, the model generated the subsequent proteins with high
TM-scores and pLDDT values, while still retaining substantial sequence diversity (Figure 2G).
Overall, the results suggest that EDEN captures information from across the dataset to generate
novel diversity that preserves the structural constraints of the encoded proteins.
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Al-Programmable Gene Insertion (aiPGIl) with EDEN

As discussed above, a programmable strategy for site-specific integration of
multi-gene-length DNA into the human genome would enable precise replacement of
pathogenic alleles with healthy copies of the gene and support the construction of complex,
multicomponent genetic circuits for cell-based therapies targeting cancer and autoimmune
disease.

Among existing gene-integration platforms, large serine recombinases (LSRs) are
distinguished by their compact size (~500 amino acids), the ability to insert large DNA cargos of
arbitrary length in specific genomic locations without generating double-strand breaks or
requiring host DNA repair pathways, a broad repertoire of target specificities shaped by
extensive phage—host co-evolution, and highly reproducible integration profiles that enable
systematic de-risking of off-target events®®’.

EDEN was pretrained on a large dataset of metagenomic sequences, including
sequences that preserve a direct record of phage insertion into host genomes. These
sequences provide an explicit link between phage-encoded genes required for precise genomic
targeting and their corresponding DNA target sequences. In the case of LSRs, the relationship
between bacterial and phage attachment sites (attB and attP, respectively) and the LSR coding
sequence defines a grammar of DNA—protein interactions (Figure 3A) that, if learned, could
enable an Al programmed approach to large gene insertion.

The ultimate goal of doing this is to prompt on a therapeutically relevant target sequence
from the human genome and generate high performing recombinases that integrate large DNA
payloads specifically at that target site.

Having first demonstrated that EDEN can generate diverse LSRs when prompted with
the first 30% of a protein sequence (Figure 1H, 2C), we sought to extend this capability to the
design of site-specific recombinases guided by a short DNA prompt containing only the desired
genomic target site.

Although EDEN acquires broad evolutionary principles during pretraining, targeted
fine-tuning enables the model to focus on specific structure—function relationships, here defined
by ground-truth attachment site-LSR pairings. To this end, millions of LSR-attachment site pairs
(Figure 3B) were mined from unlabelled metagenomic sequences in BaseData using a
bioinformatics pipeline which yielded att sites that could further be used as reference sequences
to identify additional LSR-att pairs from public databases. The resulting paired LSR-att-site
dataset forms a complex sparse graph structure (Figure 3B). For fine-tuning, attachment sites
were reoriented to the attL configuration (attBoP' or attB-half) and concatenated with the
corresponding LSR ORF, with control tokens inserted at the termini of both the attachment site
and ORF sequences (Figure 3C).

The best-performing fine-tuned model, EDEN-LSR, was derived from the 28B-parameter
EDEN architecture fine-tuned on millions of curated att-LSR sequences, until convergence on a
held-out validation set of attachment site-LSR pairs. To evaluate EDEN-LSR, we assembled a
benchmark comprising 46 phylogenetically distant attachment site-LSR pairs from BaseData
that had been previously validated for activity in a biochemical assay. These LSRs spanned a
wide range of similarity to sequences in the training set, including several with no homologs
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exceeding 70% sequence identity. For each benchmark example, the model was prompted with
either a 60-bp core attL (attBoP’) or a 30-bp half-core attB (attB-half) sequence and tasked with
generating up to 2,600 nucleotides. Generated nucleotide sequences were translated and
assessed for domain content using HMMER, and all LSR-containing ORFs were evaluated for
sequence similarity to both the ground-truth LSR corresponding to the attachment site prompt
and the nearest homolog present in the training set.

Across model variants trained with increasing parameter counts and progressively larger
pretraining and fine-tuning datasets, we observed a strong scaling relationship between model
and data size and performance (Figure 3D).

Under both prompting schemes (attBoP' or attB-half sequence), EDEN-LSR consistently
generated full-length LSR ORFs, with more than 74% of all generations having the correct
domain architecture (resolvase, recombinase, and zinc beta ribbon). The majority of these
sequences also exhibited high predicted foldability, with ESMFold pLDDT scores comparable to
those of native LSR sequences.

Next, we investigated the global conditionality of generated sequences within the natural
LSR sequence space, using an orthogonal protein language model (ESM2-650M) to generate
embeddings for both native and generated protein sequences and visualizing their distribution
on a UMAP projection (Figure 3E). We observed that while generated sequences are frequently
represented in the vicinity (>70% sequence identity) of the native LSR for the paired wild-type
attachment site (5.9% of all generated sequences), many generated sequences occupy more
distant regions, indicative of the broad diversity of generated LSR sequences for any given
prompt. The near-native generation rate varied substantially across prompts and tended to
correlate with the abundance of the corresponding LSR in the BaseData training set, as
measured by cluster size (Supplementary Figure 2). For one of the most highly represented
LSR clusters, here named “PRT075”, 34% of generated sequences exceeded 70% sequence
identity when prompted on the wild-type attBoP’ site.

To evaluate the activity of generated LSRs under experimental conditions, we developed
a rapid biochemical recombination assay, encoding LSR ORFs within double-stranded DNA
fragments containing a T7 promoter and flanked by attB and attP attachment sites. Incubation of
these fragments in an in vitro transcription—translation (IVTT) system produces the
corresponding LSR protein; if active, the enzyme catalyzes recombination between the
attachment sites to generate a circularized DNA product, which is subsequently quantified by
gPCR.

First, we evaluated LSRs using attBoP' and attB-half prompts derived from nine active
native LSRs in BaseData. EDEN-LSR was prompted with the corresponding native attBoP' or
attB-half sequence. To prioritize EDEN-LSR-generated proteins for experimental testing, we
selected in silico generations exhibiting 50-90% sequence identity to the native LSR associated
with each prompt. We further filtered candidates to limit similarity to any sequence in the training
set and to enforce diversity among generated sequences using an all-by-all distance criterion.
This procedure yielded 818 candidate LSRs, from which 176 were selected for experimental
testing.
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Figure 3: Utilization of EDEN for Al-programmable gene insertion (aiPGl). A Diagram of Large Serine
Recombinase (LSR) mechanism including oligomerisation and a visualisation of LSR monomer bound to DNA.
B Multi-million-node graph of LSRs (green, clustered at 80% sequence identity) connected to their paired
attachment sites (blue) after bioinformatic mining. LSR dotsize (green) is proportional to the cluster size. 100%
of att-LSR dataset (left) and 10% subsample of att-LSR dataset (right). C EDEN fine-tuning procedure yielding
the EDEN-LSR model used for aiPGI applications. D For EDEN-LSR, scaling the basemodel token (up to 10
trillion) and parameter counts (up to 28 billion) yields higher model performance in silico towards better LSR
generation (measured by protein domain presence) across log scales. E UMAP showing the distribution of
generated LSRs in ESM2-embedded space when prompted on the wild-type site from one of the most
abundant LSR clusters (PRT075). F Experimental recombination activity of 176 LSRs generated by EDEN
when prompted on the wild-type sites of nine active natural LSRs (across each of the nine plots). Orange bars
show wild-type LSR activity within each group. G Experimental activity vs sequence identity to wild-typeLSR for
selected LSR prompts. AttBoP’ prompts are shown as triangles, attB-half prompts as circles, and wild-type
LSRs as stars. H Example Boltz-folded structures of functionally active generated LSRs (various colors)
superimposed with their corresponding wild-type LSRs (green), covering a range of sequence identities. | CD19
CAR integration in primary human T cells mediated by PRT075-based Al generated LSR variants. Integration
percentage was measured by anti-CD19 flow cytometry; wild-type LSR (orange) and EDEN-generated LSRs
(green). J Experimental recombination activity of LSRs generated by EDEN when prompted on therapeutically
relevant target sites (30bp) in the human genome and not found in EDEN’s training data. First eleven plots
show results from prompting on 11 loci in introns in disease-relevant genes, latter four show results from
prompting on 4 putative safe-harbor sites. K Activity vs sequence ID to PRTO75 for selected pseudosite
prompts, with all LSRs generated from attB-half prompts and shown as open circles. L Example Boltz-folded
structures of active generated LSRs (green) conditioned on pseudosite prompts superimposed with
wild-typePRTO075 structure (orange).

In total, 53.6% of generated LSRs exhibited significant recombination activity, with
similar success rates using attBoP' and attB-half prompts (48.1% and 63.2% respectively)
(Figure 3F). In this biochemical assay, across all prompts, 23 tested LSRs (13%) exhibit activity
levels similar to the native LSR from the corresponding prompt. EDEN-generated LSRs also
exhibit significant sequence diversity — the most divergent active LSR had only 52% sequence
identity to its matched native LSR (Figure 3G). Despite low sequence identity, the generated
LSRs adopt folds closely resembling the corresponding wild-type LSR structures, as predicted
by Boltz-2 (Figure 3H)>.

To evaluate activity in a therapeutically relevant system, we selected twenty
EDEN-generated LSRs based on PRT075 and evaluated them for CD19 CAR insertion into
primary human T cells. Using mRNA to express the LSR and a plasmid template containing the
cognate attP sequence and CD19 CAR expression cassette, we found that 50% of
EDEN-generated LSRs were capable of CAR insertion into T cells (significantly higher activity
than that of the empty cargo control, p<0.05), with one candidate having equivalent activity to
the WT parental protein (Figure 31). Future work is planned to investigate the specificity of these
LSRs. Together, these data show that EDEN-LSR is capable of generating active, sequence
diverse LSRs when prompted with wild-type bacterial att-sites, and are capable of achieving
therapeutically relevant levels of gene insertion in human T cells.

Next, we set out to generate functional LSRs by conditioning the model on
pseudo—attachment sites from the human genome. These pseudo-sites are not found in the
training data and include sites in disease-relevant genomic locations. We focused on a native
LSR from BaseData (PRT075) that exhibited a high success rate with the native attB prompt
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(Figure 3F), and demonstrated therapeutically relevant levels (~40%) of integration in human
cells (K562) (Supplementary Figure 3). We identified fourteen therapeutically relevant target
pseudosites for this LSR spanning a range of genomic contexts, including 4 putative safe-harbor
and 10 loci in early introns in disease-relevant genes (ATM, DMD, F9, FANCC, GALC, IDS,
P4HA1, PHEX, RYR2, USH2A). These pseudosite sequences had a 54-75% sequence identity
relative to the closest native bacterial attB site in the training data. We prompted EDEN-LSR
with the 30-bp attB-half sequence of these therapeutically relevant pseudosites and sampled
approximately 10 generated sequences per target for experimental testing, using a sequence
identity threshold of >50% vs native PRT075 to select candidates. Pseudosites were then tested
for recombination with the native attP sequence.

Notably, despite being prompted using only a short (30bp) DNA target sequence
completely outside the training data, EDEN generated multiple successful LSRs for every
targeted pseudosite (Figure 3J). For the most successful prompts (safe harbor 2-chr13, safe
harbor 3-chr13, and safe harbor 4-chr8), 66% of tested LSRs had significant recombination
activity on the pseudosite; others exhibited a lower success rate, with 20% of LSRs generated
from DMD-intron 9 displaying significant activity. Across all prompts, 48% of the generated LSRs
tested positive for recombination on the corresponding pseudosite, with 27 LSRs (16%)
exhibiting activity similar to the native PRT075, including proteins with as low as 76% sequence
identity to PRTO75 (Figure 3K). Further work is planned to validate the activity of these
psuedo-site prompted LSRs in relevant human cell models, building on the success in cells of
the wild-type prompted LSRs above.

In summary, these results demonstrate that EDEN-LSR is capable of generating diverse,
active LSRs when prompted directly with short (30bp) genomic target sites, including
therapeutically relevant sequences from the human genome that were absent from the training
data. As natural LSRs in BaseData have been experimentally shown to integrate at over 10,000
disease-relevant sites in the human genome (data not shown), this establishes a powerful new
approach for engineering therapeutic LSRs with activity at defined genomic sites.

While initial findings indicate successful on-target activity, realizing the full potential of
safe, programmable recombinases for large-payload medical applications will require further
model optimization and experimental validation. Future work will integrate reinforcement
learning to refine control over activity and specificity, alongside comprehensive assessment of
integration efficiencies and off-target profiles in relevant human cell populations.

EDEN designs active and novel bridge recombinases

In contrast to LSRs, where DNA targeting is programmed entirely by the amino acid
sequence of the protein, bridge recombinases (BRs) offer an RNA-programmable protein
complex that is capable of genetic insertion and excision in the context of the human genome'®,
positioning it as an emerging gene editing technology for potential therapeutic applications.

The BR system consists of a transposase protein of diverse classes (of which the 1S110
and 1S1111 classes are the most well-studied), and a ncRNA element, termed bridge
recombinase guide (bRNA), that is either upstream (i.e. left element or LE) or downstream (i.e.
right element or RE) of the transposase (Figure 4A). The bRNA folds into a secondary
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double-loop structure, each of which binds to the donor and target sequence based on
sequence-specific guide motifs’*®'3'. Physical interactions between the BR and the bRNA
ultimately facilitate the joining of the target and donor sequences and subsequent recombination
events'2,

The EDEN-28B base model demonstrates that prompting with as short as 50% of the
upstream guide RNA sequence was sufficient to generate the downstream recombinase gene
encoding BR proteins unique to public and BaseData natural sequences. These generated
proteins bear the RuvC-like domain with the DEDD catalytic residues, as well as the Tnp
domain with its conserved serine residue.

EDEN-BR was created by fine-tuning the base model on over six million BR-containing
genomic regions from BaseData, (Figure 4B and Methods). EDEN-BR improved the generation
of BR proteins by over eight-fold when the complete guide was used as prompt (Supplementary
Figure 4).
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Figure 4: EDEN designs active and novel bridge recombinases. A Diagram of bridge recombinase system
displaying the bridge RNA, target DNA, donor DNA, and recombinase components. B Fine-tuning strategy
using EDEN-28B and BaseData bridge recombinase systems for EDEN-BR. C Density of pairwise sequence
identity of EDEN-generated bridge recombinases. D Density of sequence identities of EDEN-generated bridge
recombinases compared to training data. E pLDDT and sequence identity distributions of EDEN-generated
BRs for different fractions of guide RNA prompts. F IVTT assay results of EDEN-generated and wild-type BRs.
G Structural superimpositions of EDEN-generated, active BRs compared to ISCro4.
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For 99 bridges the fine-tuning increased the number of guide prompts giving rise to
downstream coding sequences with the expected functional annotations. At the same time,
within a given prompt, fine-tuned generations maintained a spread of diversity with respect to
other generated BR proteins (Figure 4C). Significantly, the fine-tuned EDEN-BR model
generated more diverse BR proteins with reference to those observed in the training data
(Figure 4D), as well as the natural recombinase protein associated with the bRNA prompt that
was used in the generation (Figure 4E). Overall, for both base and fine-tuned models,
generated BR proteins maintained highly confident structure predictions despite the wide
sequence diversity spread (Figure 4E). Pilot biochemical, cell free validation assays were
conducted on a small set of 49 sequences generated by EDEN-BR with 100% length bRNA.
These tests demonstrated recombinase activity for two sequences, named DF3873 and DF3851
(Figure 4F).

These two active Al designed BRs are no more than 85% identical in sequence to any
BaseData or public sequences (Table 1). Importantly, these generated proteins present high
structural homologies to ISCro4, the best characterized BR protein to date'®, despite being no
more than 35% similar in sequence to ISCro4 (Figure 4G).

Table 1. Sequence identity between DF3873/DF3851 and BaseData and public databases

Database Closest Match to DF3873 (%)* Closest Match to DF3851 (%)*
BaseData Proprietary Sequence A (84.7) Proprietary Sequence B (82.4)
NCBI HMK23979.1 (57.9) MBW2541154.1 (55.0)
MGnify MGYP003941236639 (57.6) MGYP003449954008 (79.9)
UniProt AOA2U3KKS4 (57.8) ADA2Z5GAY9 (52.2)
EMBL Patent USPTO:WFL37734 (40.2) USPTO:AA095525 (33.6)

*hits above 90% coverage based on query sequence

Overall, we show successful design of novel, active bridge recombinases by EDEN
when only prompted on the non-coding bridge RNA sequence, and in some cases, even only a
fraction thereof. We further show significant divergence of the EDEN-generated BRs from both
training data as well as public BRs. Viewing these as an orthogonal approach to LSR design for
programmable gene insertion, we show that EDEN is a foundation model capable of designing
candidate therapeutic molecules across different modalities and protein families.

EDEN designs potent antimicrobial peptides

First, we screened BaseData for antimicrobial peptide (AMP) activity to confirm that the
pretraining data contained active AMPs. For this, we conducted a search for small open reading
frames (smORFs) with all assembled sequences in BaseData. After size filtering, over 300
million peptide sequences were evaluated using the APEX pathogen prediction model'?, which
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generated minimum inhibitory concentration (MIC, umol L") predictions across a training set of
pathogens; lower MIC values correspond to stronger inhibitory activity. The median MIC across
individual pathogen-specific predictions was used for downstream analysis (Figure 5B). Using a
cutoff of 64 ymol L-1, the dataset was prioritized to over 20,000 sequences. These candidates
were further analyzed through comparisons to the DRAMP v4.0 database'*, taxonomic
annotation, physicochemical property profiling, and representative clustering. One peptide could
not be synthesized; however, all remaining 34 candidates inhibited growth across a panel of 20
gram-positive and gram-negative pathogenic strains, with MIC values < 64 ymol L. Notably,
several candidates exhibited strong activity at low concentrations (<2umol L") against
approximately 80% of the tested strains. (Supplementary Figure 5).
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Figure 5: EDEN designs potent antimicrobial peptides. A Fine-tuning and prompting strategy for
antimicrobial peptide generation. B Predicted individual pathogen MIC values across all smORFs in BaseData
using APEX pathogen. C Heatmap showing the results of activity validation assays confirming antimicrobial
activity of EDEN generated peptides against 16 clinically relevant pathogen strains. D UMAP visualization of
EDEN generated AMPs against the training data and DRAMP. Activity range is the same as indicated in
subfigure C. EF Sequence similarity distributions of generated peptides relative to BaseData and DRAMP.
Context fine-tuning yields higher similarity to reference datasets, whereas control-tag fine-tuning produces
more divergent, novel sequences.

We then developed a fine-tuning and prompting strategy in order to generate synthetic
AMPs (Figure 5A). Leveraging EDEN-28B, we developed two fine-tuned models using distinct
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but complementary datasets, built from analyses and results produced from the natural
BaseData AMP activity exercise. The first, a context fine-tuned model, was trained on genomic
sequences capturing the local contextual neighborhoods of smORFs encoding putative AMPs.
This training set comprised over 15,000 sequences, totaling approximately 115 million tokens.

For the second model, we introduced control tags. This was trained on peptide
sequences represented with explicit start and stop tokens and prefixed pathogen-specific
control tags to enable conditional generation. Control tag conditioning has been explored in
generative language modeling and is emerging in biological sequence models to steer
generation toward desired properties’. The control-tag training dataset comprised over 1.5
million sequences, totaling approximately 64 million tokens.

Prompting strategies for both fine-tuned models are shown in Figure 5A. For the context
fine-tuned model, prompts of varying lengths derived from sequence upstream of the smORF
were used to generate over 80,000 peptide sequences. The control tag fine-tuned model
generated over 400,000 sequences by prompting on pathogen-specific control tags or in an
unconditional manner using the start tag alone.

Given the scale and diversity of the generated sequences, additional in silico selection
was required prior to experimental testing. We therefore subjected the predicted AMPs to further
confirmation analyses. Leveraging predicted MIC scores on the generated sequences using
APEX pathogen, we first showed that effective antimicrobial peptide design can be achieved
with EDEN directly from a genomic context. Additionally, by adding predicted pathogen tags to
the training data, we generated peptides with lower predicted MIC values for certain pathogens
including increasing the number of predicted AMPs by approximately 16-fold for E. coli ATCC
11775 compared to unconditional generation. We were able to generate predicted AMPs for 10
out of 11 strains. In particular, generation of AMPs predicted to be activated against A.
baumannii ATCC 19606 was highly successful, with over 15,000 predicted AMPs generated
across both fine-tuning strategies. Through the two models we have built a collection of
predicted AMPs of over 25,000 sequences using a stringent activity threshold of predicted MIC
of <32 for at least one pathogen and a length threshold of 8 - 50 amino acids.

To assess novelty, we compared the predicted AMPs to known AMP sequences using
sequence similarity metrics. By calculating a Striped Smith-Waterman similarity score to the
natural AMPs for the fine-tuning dataset of each model and the DRAMP database, we were able
to confirm substantial novelty to both the training data and publicly available AMPs (Figure 5E,
4F). In particular, a large proportion of EDEN generated peptides have a similarity of below 0.7
to any natural AMP. These results indicate that the generated peptides are not close variants of
sequences in the training data or public AMP databases, but instead exhibit low pairwise
similarity to known AMPs.

Additionally, the EDEN generated predicted AMPs exhibit amino-acid compositions and
physicochemical property distributions that globally overlap with those of natural AMPs
(Supplementary Figure 6A-E). In particular, a substantial fraction of peptides fall within the
canonical cationic charge range associated with AMP activity (+2 to +9). For example, 49.6% of
peptides in the DRAMP reference set and 58.7% of fine-tuning peptides fall within this range,
compared with 28.0% of the EDEN generated predicted AMPs. While the charge distribution of
generated peptides is not identical to that of natural AMPs, this partial overlap indicates that
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EDEN captures key physicochemical trends relevant to antimicrobial function. This is consistent
with a noticeable enrichment of lysine (K) in comparison to natural AMPs, a pattern previously
seen in generated peptides'™.The hydrophobicity distributions of the generated peptides
overlap substantially with those of natural antimicrobial peptides. DRAMP peptides show
near-neutral median hydrophobicity (median —0.02), while fine-tuning peptides (median -0.19)
and Eden-generated peptides (median —0.41) span a similar overall range of values. Although
the generated peptides are modestly shifted toward lower hydrophobicity, their distributions
retain broad overlap with natural AMPs.

ESM650M embeddings were used to project the predicted AMPs into UMAP space
alongside AMPs from the fine-tuning dataset and DRAMP (Figure 5D). The generated peptides
broadly overlap with known antimicrobial sequence space while also extending into less densely
populated regions, indicating that EDEN can produce sequences consistent with established
AMP characteristics while introducing sequence diversity. EDEN therefore recapitulates key
chemical features of natural AMP distributions while significantly expanding coverage and
sequence novelty beyond known examples from public data. Both the similarity scores and the
UMAP projections demonstrate that the sequences exhibited substantial novelty, highlighting the
model’s ability to design towards broader sequence space and enable realistic yet diverse AMP
generation.

To test the potency of EDEN’s AMP generations we synthesized and tested 33
generated AMPs in vitro against a panel of pathogenic bacteria. The panel consisted of six
gram-negative species (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae,
Pseudomonas aeruginosa, Salmonella enterica, Enterobacter cloacae) and four gram-positive
species (Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Enterococcus
faecium), and included both drug-susceptible strains and multidrug-resistant clinical isolates.

97% of the selected EDEN-generated peptides demonstrated antimicrobial activity
inhibiting bacterial growth at concentrations <64 ymol L in wet-lab assays, confirming that
EDEN'’s in silico designs translate into experimentally validated function (Figure 5C). In
particular, several generated AMPs showed broad activity across multiple strains, with 27 AMPs
active across five or more strains. The antimicrobial activity of the tested AMPs was stronger
across the gram-negative strains, and all Acinetobacter, Escherichia, Klebsiella, and Salmonella
strains had MICs of 1 - 4 ymol L for at least one tested AMP. This observation is of particular
interest, as gram-negative bacteria present unique structural barriers to AMPs, including a
lipopolysaccharide-rich outer membrane and specialized resistance mechanisms that impede
peptide permeation and activity, rendering them intrinsically more difficult targets than
gram-positive organisms'’. The tested peptides covered diverse regions of the AMP sequence
space and were highly divergent, all tested sequences had a similarity score below 0.7 and
strong activity observed for sequences exhibiting high novelty (similarity < 0.4).

In summary, we show that EDEN can generate potent antibiotics for a range of
drug-resistant pathogens, significantly expanding beyond the training data and publicly known
peptides. To our knowledge, this marks the first instance a DNA foundation model has been
used directly for peptide and antibiotics design with proven potency in ground-truth experiments
against targets of interest.

26


https://paperpile.com/c/bMLzsa/PejJ
https://paperpile.com/c/bMLzsa/mZi5
https://doi.org/10.64898/2026.01.12.699009
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.64898/2026.01.12.699009; this version posted February 9, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

EDEN designs multi-species synthetic microbiomes

With previous generative biological foundation models showing successful design on the
open-reading frame, mobile genetic element, and genome level”'?®, we sought to leverage
EDEN for design tasks beyond individual genomes and generate a fully synthetic microbiome.
The motivation behind this lies in the recent development of therapeutic solutions in chronic
diseases through the engineering of microbial consortia for chronic diseases such as
immune-mediated colitis'™®. To assess this design potential, samples in BaseData were
characterized to find annotation signatures specific to the biome where it was collected. This
was conducted to curate a set of biome specific prompts, create a baseline of metrics used to
evaluate sequences and to identify a well characterized sample for fine-tuning (Figure 6A-B).

The specific biome that was chosen for this assessment was “digestive system”
(following MGnify biome hierarchy) due to its unique set of KEGG annotations and well defined
sequence profile (Figure 6B)%'¥. Digestive systems were particularly enriched in KEGG
annotations such as K04029 (ethanolamine utilization protein) and K02791 (maltose/glucose PTS
system EIICB component), had a GC profile range between 47-55% (Figure 6B), and a coding
density of approximately 82%, which is a the slightly lower end of the traditionally reported
prokaryotic coding density range of 80-95%'4%"41. A single digestive system microbiome sample
containing over 160,000 contigs was selected from BaseData and used to fine-tune EDEN for
1.5 epochs. We designed prompts based on the context that is adjacent or at digestive system
annotations specifically extracting sequences of length ranging 500 bp to the length of a full
gene. Using a vLLM inference engine (Methods) paired with the fine-tuned model, these
prompts generated more than 100,000 sequences of 10 kb each, totaling a gigabase scale
synthetic microbiome (Figure 6A)'*2.

We then characterized the synthetic microbiome at a global scale according to sequence
space and taxonomic constitution. Encouragingly, the synthetic microbiome generated by EDEN
recapitulates and expands beyond the sequence space of the digestive system fine-tuning
sample (Figure 6C). When annotating the synthetic microbiome with kraken2, we identified 9067
taxonomic units, 7533 (83%) of which were shared with the sample used for fine-tuning and
9006 (99%) were shared with other samples from the same biome, suggesting that EDEN,
when generating the synthetic microbiome, captures cross-species biological consistencies
beyond the explicit taxonomic make-up of the fine-tuning data. When representing the synthetic
sample within a UMAP with samples from BaseData based on taxonomic breakdown, the
synthetic microbiome is placed in taxonomic space consistent with natural digestive system
samples (Figure 6D).

In order to study inter- and intra-genomic functional features of the synthetic microbiome,
we analysed metabolic pathway abundance across natural samples, identifying a set of 16
pathways with significantly higher proportions in digestive system samples compared to others
(Figure 6E). We further show that for all of these 16 pathways identified, we observe a
significant enrichment of these within the synthetic microbiome, all of which at completion rates
above 60% (Figure 6 E). We note that several of the pathways listed here are commonly
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completed across, and not within species in microbiome environments, such as the
superpathway of coenzyme A biosynthesis'.
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Figure 6 Towards multi-species synthetic microbiomes. (A) Strategy for generating a synthetic
metagenome. BaseData™ was used to identify appropriate sample(s) of digestive systems which was used to
fine-tune the EDEN base model. This fine-tuned model was used to generate a population of sequences seen
in a digestive system sample. (B) All samples from biomes in BaseData™ were characterized to identify KEGG
annotation signatures for use in downstream evaluation metrics and to construct appropriate prompts. Shown
are biome wise scaled KEGG gene enrichment and GC%. (C) UMAP projection of training and synthetic
metagenome sequences based on k-mer composition, illustrating their distribution and overlap in reduced
dimensional space. (D) UMAP of BaseData™, training sample and synthetic metagenome sample based on
Jaccard distances of taxon presence—absence profiles, colored by biomes. (E) Overview of a selection of top
16 metabolic pathways significantly enriched in the synthetic metagenome, showing scaled counts of pathway
genes between sequences (left) and their corresponding natural enrichment in BaseData™: digestive systems
versus other biomes (right). All 16 pathways show = 60% completion in the generated synthetic metagenome
(F) A generated sequence from the synthetic metagenome outlining a prophage-like sequence and its genetic
architecture. (G) An 11 kb generated genomic sequence encoding multiple ORFs, highlighting the tenth ORF
with minimal detectable sequence homology to the training set and public databases. Despite low sequence
identity, the predicted protein adopts a well-formed fold with high structural similarity, indicating preservation of
genomic context beyond the prompt region.
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A metagenomic sample represents a population of organisms at a given time. This may
include but is not limited to microeukaryotes (in environmental samples), bacteria and
bacteriophages. We observe that a portion (21,561) of our generated and filtered sequences
have been annotated as phage using geNomad'*, including sequences that may contain phage
fragments. We also observe prophage annotations, where geNomad has annotated a portion of
the sequence as a prophage, and the remaining sequence as host. We performed a second
round of generations (Methods) producing a prophage annotation flanked by its host genome,
indicating that the underlying phage architecture is preserved rather than fragmented (Figure
6F). This is confirmed using geNomad annotating a prophage between the region coordinates of
5 kbp and 12 kbp within the 21 kbp generated sequence with a score of 0.9988. It also classifies
the prophage sequence as Caudioviricetes, a common class of phages found in gut
metagenomes'.

Whilst our prophage annotation has a confident geNomad score, it is important to note
that geNomad, like many common prophage annotation tools, approximates boundaries of
prophages but does not identify exact start and end attachment sites™*.Thus we also
investigated the prophage genome architecture . Gene prediction tools such as Prodigal,
Glimmer and GeneMark failed to correctly predict any genes in a synthetic phage genome'®, so
we used pharokka'® and phold'’ to annotate genes and determine more precise prophage-host
boundaries. We identify phage tail and holin gene on the prophage (Figure 6F). Holins are small
hydrophobic proteins common in bacteriophages, especially tailed double-stranded DNA
phages'® like those found in the Caudioviricetes class. These tools did not annotate all ORFs
and a diamond blast against the NCBI database revealed low identity, high coverage matches to
proteins found in gut metagenome samples. To confirm whether the host sequence flanking the
prophage came from the same organism, we ran Kraken2 on the sequence upstream and
downstream the prophage and they were both classified within the Streptomyces genus. We
foresee further analysis of a de novo generated phage like this would benefit from likely even
more sensitive functional annotation methods to have all required phage ORFs fully annotated.

In addition to demonstrating that EDEN generates functional proteins and mobile genetic
elements, we further assess whether the model can preserve a biome-aware biological signal
across longer context when prompting with only a sequence fragment. Using the same
prompting strategy as indicated above, gene prediction/ORF calling was run on the generated
sequences. After filtering by length, sequence complexity and presence of metabolic pathway
annotation, a subset of the ORFs were mapped against BaseData, NCBI protein, UniProt and
MGnify databases to evaluate the closest member using strict identity and coverage
thresholds®%%2'49, To illustrate candidates with low sequence homology but functional and
biome-related conservation, we investigate further BCR-SM-481-10, an ORF of length 286 aa.
BCR-SM-481-10 was called at 8938 to 9798 of an 11.3 kb generated sequence, representing
the 10th ORF out of 11 predicted genes (Figure 6G).

To understand whether BCR-SM-481-10 was generated with a level of variability not
found in the training dataset, an alignment against BaseData revealed the closest match to a
protein sourced from an animal faeces sample with sequence identity of 30.5%. We
characterize BCR-SM-481-10 on the sequence level revealing a xylose isomerase-like TIM
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barrel PFAM domain but no KEGG annotations. TIM barrels (triose-phosphate isomerase) are
one of the most common structural motifs found in enzymes'®. We used ESMFold to predict the
structure of BCR-SM-481-10 (Figure 6G) to reveal a structure highly similar to the canonical TIM
barrel like structure with 8 sheets in the barrel®. We then compared BCR-SM-481-10 with public
databases. The top match from any public database was a protein from a Firmicutes bacterium
taken from an anaerobic digester metagenome sample (ncbi) with a sequence identity of 29.6%.
The fact that the top matches originate from anaerobic, digestive system environments supports
the idea that the model is capturing contextual signals, consistent with BCR-SM-481-10 being
generated from a digestive system derived prompt (Figure 6G). Taking this top match, we
structurally aligned the ncbi hit to BCR-SM-481-10 using TMAIign and visualized using Pymol.
Both matches showed strong alignment with TM scores at 0.83 (Figure 6G).

Overall, we show that EDEN, when generating long context sequences from a
digestive-system prompt, produces ORFs with low sequence identity to public databases yet
with structurally plausible folds, and importantly, maintains beyond-species, biological contextual
signals far beyond the prompt region. Given the large number of sequences and variety of
analytical approaches that can be applied to a system like this, the EDEN-generated synthetic
microbiome will be further analyzed and characterized with additional taxonomic (such as
marker gene based annotation"'%?), functional, and genomic insights. The concept presented
here could point towards a proof-of-principle deserving of a) further validation, including that of
experimental nature, and b) broader applicability towards different biomes.

Discussion

In this paper, we set out to evaluate the hypothesis that progress towards true
programmable biology will require expanding the training datasets of generative models to
include increasingly large quantities of diverse evolutionary data, far beyond the constraints of
current publicly available resources. If this hypothesis is true, we would expect these models to
learn increasingly universal design principles from this data and progressively improve the
predictability, accuracy, and controllability of the computational design of biological code.

To test this hypothesis, we build on our previous publication of BaseData' and introduce
the EDEN (Environmentally-Derived Evolutionary Network) family of foundation models, the
largest of which was trained on 9.7 trillion evolutionary nucleotide tokens from BaseData', with
no human, lab or clinical data in the pre-training dataset. In this paper, we demonstrate EDEN'’s
capacity for programmable therapeutic design by challenging a single architecture to design
biological novelty across three distinct therapeutic modalities, disease areas and biological
scales: (i) large gene insertion, (ii) antibiotic peptide design, and (iii) microbiome design.

As a result of this, we observe three key points worthy of a more extensive discussion:
(1) the EDEN training data and how training was conducted; (2) the various therapeutic
applications, their successes and their limitations; and (3) the wider implications of these
findings for the field.
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The role of evolutionary data in biological foundation models

Our results suggest that the path towards programmable biology lies in altering both the
nature and scale of the pre-training and fine-tuning data of generative models, combined with
scaling of the models themselves.

The EDEN model family has been developed in a wider field of recent and impressive
achievements, but a gap remains in the training of models on data representing cross-species
selective & evolutionary pressures that give rise to therapeutically relevant molecule classes at
the 10 trillion token-scale and beyond. For instance, Evo2 introduced a 40B-parameter model
with a 1 million basepair context window that achieves remarkable long-range genomic
modeling capabilities across prokaryotes and eukaryotes’. Evo2's 9.3 ftrillion token dataset
contained ~854 billion tokens (9%) from metagenomic sources, with the vast majority derived
from eukaryotic reference genomes (e.g. >5 trillion tokens from Animalia alone). Similarly, while
the gLM2 model was explicitly designed for metagenomics using the 3.1 trillion basepair OMG
corpus, the resulting 650M parameter model was trained on ~315 billion tokens - a training
corpus similar in scale to the metagenomic portion of 0G2%'.

EDEN complements this work with a deliberate and exclusive focus on large-scale novel
evolutionary data from metagenomic sources- training on 9.7 trillion tokens derived entirely from
BaseData. By incorporating environmental and host-associated DNA, phage sequences, mobile
genetic elements and transposons often absent from curated reference genomes at the
trillion-token scale, we imbued EDEN with an especially rich repertoire of evolutionary
mechanisms (such as phage-host interactions and microbiome-derived antibiotic genes) that
other biological training datasets may capture to a lesser extent.

This focus on evolutionary diversity capturing inter-species signals also yielded an
important insight regarding quality-aware scaling laws for biological foundation models. We
observed that models trained on BaseData exhibited a steeper scaling exponent compared to
those trained on curated public metagenomic datasets, achieving lower perplexity as compute
increased. We attribute this to the higher quality of the evolutionary signal in BaseData -
specifically the preservation of longer-range inter and intra genomic context. This provides
validation to our hypothesis that expanding training data to include high-quality, diverse
evolutionary context allows models to extract more useful information per token, thereby
improving the predictability of biological design.

Since the EDEN models are trained on BaseData, we note that they have several key
features that can be considered unique or rare in biological foundation model development:
orthogonality, consistency in data collection, and consent & data governance. First, as
previously stated, BaseData contains over a million previously undiscovered species,
demonstrating that state-of-the art biological foundation models can be built on the basis of
novel and orthogonal data outside of what is publicly known about the tree of life'®”. Second,
each nucleotide token used to train EDEN has been derived from rigorously consistent data
collection, sequencing and bioinformatics annotation pipelines which contrasts with the vast
range of methodologies and protocols used in the compilation of public sequence
databases®-#2%°_ Third, and uniquely for a model of this scale, each token used for pretraining
EDEN has been derived from explicit stakeholder consent and benefit sharing agreements,
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establishing a new standard for ethical Al development in biology (see Stakeholder Best
Practices section below).

Finally, while we acknowledge the utility of megabase-scale contexts for whole-genome
modeling, we found that a context length of 8,192 tokens was sufficient to capture the necessary
functional logic for our applications. By evaluating different options for the context length during
pretraining we note the quality of generations remained high for several thousands of basepairs
beyond the context length of 8,192 tokens (Figure 2). EDEN consistently maintained correct
gene architectures and operon synteny (not just sequence quality or ORF density) beyond
10,000 basepairs and successfully generated complex systems like prophages by using
selected regions of previous generations as prompts. This suggests that for programmable
therapeutics, where the goal is often the precise engineering of functional modules in the
context of accurate biological grammar, rather than entire chromosomes; a targeted,
high-quality, multi-gene context window offers an efficient path to predictable biological novelty.

Programmable therapeutic design across modalities, biological scales and
disease areas

To evaluate the therapeutic utility of training models on this expanded scale of
evolutionary data distribution, we tested EDEN on a series of therapeutically relevant design
tasks (large gene insertion, antibiotic peptide design, and microbiome design) and
demonstrated a range of new capabilities with major potential medical implications. In the
context of Al-based, generative approaches for gene editing, previous work has shown
impressive design outcomes, for example generating active Cas9 nucleases®”’. We
complement these successes by using EDEN to design large serine recombinases (LSRs) and
bridge recombinases (BRs) to enable programmable large gene insertion. We show that EDEN
solves the inverse design problem outlined earlier in this paper by mapping directly from DNA
target to a functional protein: successful designs only require prompting with the desired
attachment site (in the case of LSRs) or non-coding bridge RNA (in the case of BRs).

We show that, when prompted with only 30 nucleotides of DNA representing the desired
human attB genomic target site, EDEN generates multiple active LSR proteins for all tested
disease-associated human genomic loci (ATM, DMD, F9, FANCC, GALC, IDS, P4HA1, PHEX,
RYR2, USH2A) and four potential safe harbor sites in the human genome.

We further demonstrated the EDEN models’ flexibility by designing active Bridge
Recombinases using only non-coding guide RNA sequences as prompts. These generated
enzymes exhibited sequence identities as low as 65% relative to training data, confirming that
EDEN generates novel functional machinery rather than merely retrieving memorized
sequences.

Prior research and reviews have discussed the potential for Al to provide a solution for
the repurposing of drugs across several rare diseases, providing additional scale in treatments,
but not providing a generalizable solution to the vast diversity of rare diseases's®. Other more
recent work has shown a novel prime-editing-installed suppressor tRNA approach for
disease-agnostic gene editing that could theoretically be applied to conditions caused by
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nonsense mutations, which make up a significant fraction of genetic human diseases'*'%.
However, with the ability to generate active LSRs upon a specified attachment site used as
prompt at inference time, we see that our aiPGI approach has the potential to scale even further
in breadth and programmability of applications across cell and gene therapies.

For patients, this scalability is evidenced by the fact that EDEN generated active
recombinases for all tested disease-associated loci and potential safe harbor sites, suggesting
that thousands of currently intractable genomic targets are now within reach. Furthermore, this
capability could significantly improve cell therapies by enabling the predictable insertion of large,
multi-component genetic circuits into safe harbors, unlocking the sophisticated cellular logic
required to tackle complex cancers and autoimmune diseases. This represents the beginning of
a potentially transformative shift toward ‘mutation-agnostic’ medicines, where a single
therapeutic product could treat heterogeneous genetic diseases, offering a potentially safer,
one-time cure that overcomes the payload and genotoxicity limitations of current viral or
nuclease-based editing.

On top of this, we show that the same model can design antimicrobial peptides (AMPs)
with high prospective hit rates - 97% of tested AMPs showed activity, with top candidates
achieving single-digit micromolar potency against critical-priority multidrug-resistant pathogens.
To our knowledge, this is the first time a nucleotide-based foundation model has been used for
the design of antibiotic peptides. Crucially, we demonstrate that this process is programmabile:
by prompting the model with pathogen-specific control tags, we steered generation toward
specific targets, increasing the yield of high-confidence candidates against E. coli by
approximately 16-fold compared to unconditional generation.

For patients facing the growing threat of antimicrobial resistance, this suggests a
potential future capability where, in response to a resistant outbreak or a patient with a
refractory infection like Acinetobacter baumannii, we can rapidly 'dial in' the specific target
pathogen to generate bespoke, structurally novel antibiotic candidates on demand.

Finally, we extended the model's capabilities beyond the organismal boundary to
systems-level engineering. EDEN generated a gigabase-scale synthetic microbiome in silico
that retained metabolic pathway completeness and complex host-phage relationships. This
capability could open up the potential to engineer stable, multi-species consortia capable of
correcting the dysbiosis underlying complex metabolic and immunological disorders.

Collectively, we believe that these results could represent an inflection point in
generative biology. It is rare for a single foundation model to demonstrate, with robust wet-lab
validation, the ability to design candidate therapeutic molecules across biochemically distinct
regimes: By successfully spanning the small, amphipathic structures of antimicrobial peptides,
the complex, multi-domain architecture of DNA-editing enzymes, and the gigabase-scale,
metabolic logic of synthetic microbiomes, EDEN demonstrates that it has moved beyond narrow,
task-specific optimization and is emerging as a versatile tool for generating effective therapeutic
candidates across distinct modalities and disease areas.

We note that for therapeutic applications, the EDEN designed candidates will require
continued validation in relevant human cells, and be profiled for site specificity with downstream
optimisation through reinforcement learning or otherwise in order to increase activity and
increase specificity. However, the ftransition from stochastic screening to predictable,
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prompt-based generation in response to therapeutically-relevant queries represents a
meaningful shift in how we approach the engineering of biological systems.

Toward a unified paradigm for predictable therapeutic design

When discussing the wider implications of biological foundation models targeted towards
therapeutic design tasks, it is crucial to consider the potential of such models to address the
most pressing issues in modern medicine. Modern day healthcare systems face a convergence
of serious challenges: first and foremost the explosion of overall healthcare cost and the
prohibitive expense of individual therapeutic discovery and development campaigns, occurring
alongside a noticeable decline in pharmaceutical R&D efficiency known as Eroom’s law'"~"%°,
Simultaneously humanity faces significant biological threats, typified by the rise of antimicrobial
resistance across a range of critical pathogens,'® and the systemic, growing burdens of cancer,
genetic disorders, and autoimmune disease.

Given these harsh economic realities and biological threats, we argue that a scalable
solution lies in the prospect of building unified Al systems that can design effective therapeutic
candidates across modalities and molecule types, in a disease-agnostic, on-demand, and
personalisable manner. To achieve this at scale, we return to our central hypothesis: that
progress towards true programmable biology will require expanding the training datasets of
generative models to include increasingly large quantities of diverse evolutionary data, far
beyond the constraints of current publicly available resources.

Here, with our work on EDEN, we believe we have presented an early step that points
towards that vision, with a single model demonstrating experimentally validated design
capabilities across diverse modalities, molecule types, and disease areas, from small peptides
to multiple complex gene insertion systems.

By demonstrating that state-of-the-art designs of therapeutic candidate molecules can be
achieved using evolutionary priors alone, without human or clinical data in pre-training, these
results support a shift in how biological foundation models can be constructed and applied.
Crucially, this shift is enabled by overcoming a crucial data limitation that constrains models
trained on public sequence data. While public databases face diminishing returns in high-quality,
non-redundant diversity, BaseData’s purpose-built supply chain expands access to evolutionary
& valuable cross-species sequence data at a scale supporting continuous model improvement
and application range. In this respect, just as language models leveraged the vastness of the
web to learn linguistic structure, biological models may increasingly leverage large-scale
evolutionary data to learn and apply transferable biological principles towards increasingly
complex and more therapeutically-aligned design tasks.

This suggests that a possible route to general-purpose biological intelligence lies not in
generating massive amounts of clinical data, but in a hybrid approach: using large, scalable
evolutionary datasets to learn universal design principles, which then act as a robust foundation
for fine-tuning on smaller, high-value clinical datasets. Ultimately, we project that it will be this
combination of billions of years of evolutionary data with specific therapeutic records that offers
a potential scaling-driven path to making therapeutic design a predictable engineering discipline.
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Biosafety

The development and deployment of the EDEN generative foundation model family has
been guided by rigorous biosafety and biosecurity considerations. All major applications of
EDEN - from de novo recombinase engineering for gene insertion, to antimicrobial peptide
generation and synthetic microbiome design — were accompanied by proactive risk
considerations and oversight. Training data was stringently curated to exclude potentially
hazardous sequences, notably filtering out all known eukaryotic viral genomes to prevent the
inadvertent generation of pathogenic elements. Dual-use concerns have been carefully
evaluated, particularly in relation to EDEN’s capacity to design genome-editing proteins and
novel antimicrobials. For example, the World Health Organization’s 2022 Global Guidance
Framework for the Responsible Use of Life Sciences emphasizes comprehensive biorisk
management spanning laboratory biosafety, biosecurity, and oversight of dual-use research and
the U.S. National Science Advisory Board for Biosecurity (NSABB, 2023) has similarly called for
integrated oversight of life science research with potential biosecurity risks'"'%2, EDEN'’s
development and evaluations adheres to all these principles. All laboratory work (such as
validating EDEN-designed recombinases and peptides) was conducted under appropriate
containment and institutional oversight, in accordance with NIH Guidelines for recombinant DNA
research and institutional biosafety committee (IBC) review'®?,

Stakeholder Best Practices for Equitable Data

All data used in EDEN pre-training has been collected with Prior Informed Consent
(PIC), Material Transfer Agreements (MTA) and Mutually Agreed Terms (MAT) through Access
and Benefit-Sharing (ABS) and knowledge-sharing partnerships that Basecamp Research has
established across five continents. This means that each of the 9.7 trillion tokens used in EDEN
pretraining can be traced back to stakeholder consent. Sample access is facilitated through 208
country-specific permits and 10 Access and Benefit-Sharing (ABS) collaboration agreements,
which cover 28 countries in total, each explicitly defining the permission for the
commercialisation of digital sequencing information (DSI) and describing the intended uses of
the data - including downstream model training and other commercial applications - prior to
collection. This approach ensures that consent is informed, freely given, and that the data is
equitably sourced. Basecamp Research’s database provides full traceability of consent and
permissions from the point of collection to downstream utilization, ensuring regulatory
compliance and enabling the appropriate distribution of royalties back to Genetic Resource (GR)
providers.
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Methods

BaseData and OG2 curation

We applied stringent filtering criteria to retain only high-quality contigs. We first required
contigs to be longer than 2 kb and to exhibit a predicted gene density greater than 20%. In
addition, contigs were required to have a minimum mean sequencing depth of at least 4X.
Low-complexity contigs shorter than 10 kb and containing more than 50% low-complexity
sequence, as quantified with DUSTmasker (v2.15.0), were removed'®®. Finally, contigs with hits
to known eukaryotic viruses, as identified by GeNomad (v1.7.6) annotation, were excluded from
the final dataset*. For the 100M, 1B, and 7B parameter models trained on BaseData, we fixed
the random seed and used an identical data split across all training runs, training each model on
up to 350B tokens, whereas the 28B parameter model was trained on the entirety of BaseData.
We used the metagenomic portion of the OG2 dataset for the training of the 100M, 1B, and 7B
models and followed the same training procedure as we did for BaseData by fixing a random
seed and using an identical data split across training runs.

EDEN architecture

Table 2: Overview of the key hyperparameters of EDEN. We display settings for 100M, 1B
and 7B and 28B models.

Hyperparameter 100M 1B 7B 28B
Layers 12 16 32 48
Model Dimension 512 2048 4096 6144
FFN Dimension 2048 8192 14336 26368
Attention Heads 8 16 32 48
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The EDEN model family adopts a decoder-only Transformer architecture. The largest
configuration uses up to 48 layers with a hidden dimension of 6,144 and 48 attention heads.
Across all model scales (100M, 1B, 7B, and 28B parameters), we use 8 key-value heads,
SwiGLU activation, a vocabulary size of 512, and set the RoPE base frequency hyperparameter
to 500,000. We use the Llama 3.1 implementation in BioNemo (using NeMo 2.0 and
Megatron-LM™*). (Table 2).

Pre-training

EDEN-28B was pre-trained using the AdamW optimizer (81 =0.9, f2=0.95,¢=1 x 107,
weight decay = 0.01) with global norm gradient clipping set to 1.0. The learning rate schedule
followed cosine decay with an initial linear warmup for the first 2,500 steps, peaking at 3 x 10°°
and annealing to a minimum of 6 x 107 over a total of 640,920 optimizer steps. Training was
performed using bfloat16 mixed precision, with FP8 hybrid mode enabled. A global batch size of
2,016 sequences was used (micro-batch size of 1, gradient accumulation 4, data parallelism
504), each with a sequence length of 8,192, resulting in approximately 16.52 million tokens
processed per update. The parallel training setup consisted of tensor parallelism = 2, with
sequence parallelism enabled, utilizing 1,008 GPUs deployed across 126 nodes (data parallel =
504).

In accordance with the stabilization method proposed by Takase and Kiyono (2025), the
embedding layer was initialized from a normal distribution, N(0,1.0)'®* while the remaining
model parameters used standard Megatron initialization. For efficiency and robustness, the
training process included overlapped gradient reduction, asynchronous checkpointing, and
preemption support; fp32 residual connections were disabled. Training remained stable
throughout and, although occasional loss spikes were detected, no intervention was required to
correct for model training divergence.

Dataloading

EDEN tokenizes DNA sequences at single-nucleotide resolution, using a byte-level
tokenizer with an effective vocabulary of four tokens, one per base, from a total vocabulary of
512 characters. We employed a sliding window dataloader to process genomic sequences of
arbitrary length. Each sequence was partitioned into overlapping windows of 8,192 tokens with
a stride of 7,992 tokens, resulting in 200 bp overlap between consecutive windows. This overlap
preserves local context at window boundaries. Each window is formatted as: BOS token,
followed by optional control tags, a SEP token, the sequence, and an EOS token.

Compute

EDEN-28B was trained on 1,008 H200 GPUs, each running at 700W TDP with 141GB
HBM3e memory. Each server is equipped with eight GPUs, within a server the GPUs are
connected with NVLink, servers are interconnected to each other with NVIDIA Quantum-2
InfiniBand at 400Gb/s. Training jobs are scheduled with the Kubeflow Pytorch Operator on
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Kubernetes. For storage we used the Nebius Shared Filesystem storage fabric, backed by
all-flash NVMe drives and served over NFS. For Networking EDEN used a NVIDIA Quantum-2
InfiniBand fabric at 400 Gb/s between nodes

Inference

EDEN inference was performed using two inference backends: the inference pipeline
from the NVIDIA BioNeMo framework (v2.6.3)'®® and the vLLM OpenAl-compatible server
(v0.11.0)"2. For vLLM, optimized implementations for Llama 3.1 were used, with FlashInfer
(v0.4.1)"*® enabled to support efficient attention computation. vLLM was utilized as an alternative
inference engine due to its optimisations for language-model inference and ease of deployment.
Evo2 inference was performed using the Evo2 NVIDIA NIM (NVIDIA Inference Microservices)
(v2.1.0)'%" following the deployment guidelines from NVIDIA. EDEN and Evo2 inference was
performed on NVIDIA H200 GPUs.

Scaling laws

To characterise scaling behavior across model capacities, we trained the EDEN models
at three parameter scales (100M, 1B and 7B). For comparability, training used randomly
sampled subsets matched for total nucleotide budget (350 billion nucleotides per dataset).
Cumulative training compute was estimated from empirical throughput statistics. Raw
floating-point operations (FLOPs) were derived as the product of total training steps, measured
GPU throughput, and step duration. Given the variable sequence lengths between datasets, we
normalized raw compute to effective FLOPs to account for padding overhead in the absence of
sequence packing. We empirically determined the fraction of loss-contributing tokens by
randomly sampling five global batches from each dataset (approximately 84 million tokens). This
correction ensures that scaling metrics reflect compute allocated strictly to valid biological
signals.

Model performance was assessed via test perplexity (on a held-out test set from both
datasets) at checkpoints matched for total nucleotide exposure. To quantify data efficiency, we
modeled the relationship between perplexity and effective compute as a power law. The scaling
parameters exponent was estimated via linear regression in log-log space. We observed fitted
scaling exponents of »=0.058 for BaseData and »=0.047 for OG2. Within the range of model
sizes we tested, the BaseData models exhibit a steeper scaling exponent and lower perplexity
at high FLOPs/model size than the OG2 models. This provides evidence that BaseData is
effectively “higher quality” in the scaling-law sense: as compute and capacity increase,
perplexity decreases faster for BaseData than for OG2.

BaseData genomic uniform manifold approximation and projection (UMAP)

K-mer frequencies (k=4-6) were calculated for all BaseData contigs using Jellyfish
v2.3.1"%_ A maximum of 10,000 contigs were selected from each sample and a metadata-based
scaling factor was then applied using the Lineage 3 MGnify biome for the sample to visually
separate contigs with different biome metadata®. A UMAP of Euclidean distances for the scaled
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k-mer frequencies was calculated using the UMAP function of umap-learn v0.5.9'° with
parameters n_neighbors=20, min_dist=0.1 using a random subset of 10,000,000 contigs. The
UMAP embeddings were plotted using Datashader v0.18.2"7°.

Gene autocompletion

Prompt sets were constructed from conserved genes recA from Bacillus subtilis, secY
from Streptomyces coelicolor, and ftsZ from Escherichia coli using 20% of each native DNA
sequence as the prompt. Sequence generation produced 1500 bp outputs with top k 4 and
temperature 0.9. The generated DNA sequences were translated into protein sequences and
percentage identity to the corresponding natural proteins was calculated using global alignment
implemented in Biopython. Translated proteins were folded using ESMFold and TM-score
against the native protein was calculated using USalign, normalising to the length of the
reference structure®'7",

Additionally, prompt sets comprising 30% of large serine recombinase sequences from
BaseData were generated and used to produce 2500 bp sequences. The prompts were
prepended to the generated DNA sequences, which were then translated into protein
sequences, and ESM embeddings were computed and projected using UMAP.

Operon autocompletion

Prompt sets for trp operon and modABC operon from E. coli K-12 (NC_000913.3) were
generated using the full coding sequences of each gene in the operon, including reverse
complement sequences for bi-directional generation. For each prompt, sequences of length
2500 nt were generated using generation parameters top k 4 and temperature 0.9. After gene
prediction using pyrodigal (version 3.6.0), predicted proteins were folded using ESMFold and
TM-score against the native protein was calculated using USalign, normalising to the length of
the reference structure™>'"'72. Native and generated protein structures were subsequently
visualized using PyMOL.

Evaluation of long context generations

A prompt set targeting the bacterial S10 operon was curated using ten publicly available
NCBI RefSeq assemblies (Table 3). The start coordinates of the operon in each reference was
determined by annotating the assemblies with Bakta v1.8.1""% and light database v2025-02-24.
Samtools v1.22.1"* was used to extract the first 1000bp of the operon in each reference as a
prompt set, and 14,000bp downstream of the start of each was extracted as a point of
reference. EDEN-28b and evo2-40b-8k were prompted with each of the ten sequences,
specifying 100 generations per prompt at 13,000 tokens with top-k=4, top-p=1 and
temperature=0.9. Coding densities were calculated by predicting ORFs in each generated
sequence with Pyrodigal v3.6.3 with option -p meta'’?. The proportion of nucleotides occurring
within ORFs was calculated across a sliding window of 100bp across each generated
sequence. The percentages of unmasked bases across each 100bp window was calculated as
100 minus the percentage of bases masked using pydustmasker v1.0.3 with default
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light database v2025-02-24 and arrow plots of the operons created using lovis4u v0.1.6'73175,
Predicted proteins were folded using ESMFold and TM-score against the native protein was
calculated using USalign, normalising to the length of the reference structure' and visualized
using PyMOL.

Table 3: Public prompts used in the long-context generations

RefSeq accession | Genomic coordinates (start, end) | Orientation
CP026387 2875037, 2876036 Forward
CP028915 877336, 878335 Forward
NC_000913 3452271, 3453270 Reverse complement
NC_003197 3595538, 3596537 Reverse complement
NC_003198 4232972, 4233971 Forward
NC_004547 4502338, 4501337 Reverse complement
NC_009436 4054414, 4053413 Reverse complement
NC_009792 4350639, 4351638 Reverse complement
NC_013592 4267630, 4268629 Reverse complement
NC_017390 3682075, 3683074 Reverse complement

Protein mutational effect prediction

We used published deep mutational scanning (DMS) datasets to benchmark EDEN
against RNA and DNA models in their ability to predict the functional consequences of
mutations. Specifically, we used the prokaryotic datasets curated in RNAGym'’® to evaluate
mutational effect prediction performance for coding genes. When scoring sequences with
EDEN-28B, a BOS token was prepended to the start of each sequence. In addition to the
results reported in RNAGym, we evaluated Evo2-40B on all datasets, with an EOS token
prepended to each sequence.
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EDEN fine-tuning with LSRs

Prior to training, paired LSR-attachment site sequences were clustered at a 70%
sequence identity threshold using MMseqs2, with cluster singletons held out as an independent
validation set. EDEN was fine-tuned using a batch size of 32 and the model checkpoint with the
lowest cross entropy loss on the validation set was retained for evaluation. For fine-tuning,
clusters were sampled uniformly, irrespective of their size, and individual LSR-attachment site
pairs were selected from each cluster. Training employed the Adam optimizer. The learning rate
was increased from zero to a maximum of 9e-6 and decayed according to a cosine annealing
schedule. The model was trained to optimise the cross entropy loss over the next token
distribution.

EDEN synthetic LSR generation

LSR generation was prompted with either full attBoP' (60 nucleotides) or attB-half (30 nt)
context from active LSR-attachment site pairs. Generated DNA sequences were first translated
into amino acid sequences with Biopython, and InterProScan (v5.75-106.0) was run to assign
putative LSRs by the sequential presence of PF00239 (Resolvase, N terminal domain),
PF07508 (Recombinase), and PF13408 (Recombinase zinc beta ribbon domain). Synthetic
LSRs with fewer than 700aa, high sequence complexity (computed by tantan and sequence
entropy), and at least 50% Levenshtein sequence identity to the wildtype LSR for a given
attachment site were selected as candidates for wet lab experimentation'”’. For determination of
genomic sites in putative safe harbors, we used previous literature information'”®

LSR production and quantitative PCR recombination assay

Double-stranded DNA (dsDNA) substrates were synthesized in arrayed format (Twist
Bioscience). Each substrate contained, in linear order, an attB site, a T7 promoter, the
recombinase ORF, and an attP site. Large serine recombinase (LSR) protein was expressed
from the dsDNA template using PURExpress® In Vitro Protein Synthesis Kit (NEB catalog
#E6800). Unless otherwise indicated, the final concentration of the LSR template in IVTT
reactions was 10 nM.

Recombination was assayed by self-circularization of the dsDNA template mediated by
intramolecular attB—attP recombination. Circularization juxtaposes primer binding sites that are
oriented away from one another on the linear template but face each other following
recombination. Reaction products were quantified by quantitative PCR (QPCR) (NEB catalog
#M3003) using primers (IDT or Azenta) specific to the recombined junction.

All gqPCR assays were performed in technical duplicate, alongside a single
no-IVTT dsDNA negative control lacking transcription—translation reagents. Quantification
was based on relative cycle threshold (Cq) values using a fixed reference point applied
uniformly across all reactions, such that larger ACq values reflected greater accumulation
of recombined product. The threshold was selected such that all positive samples had a
one-sided tail probability of approximately p=0.01 under a Gaussian assumption, with
ACq values from negative-control measurements used to define the null distribution.
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Multiplexed quantitative PCR recombination assay

Nine pseudosite substrates were designed, each consisting of an attH sequence, a
spacer region, and an attP sequence (Twist Bioscience). One of three unique primer pair
binding site and TagMan probe binding site combinations was embedded within the spacer
region of each substrate to enable multiplexed detection of circularized recombination products.
Each combination/assay was assigned a unique fluorophore in combination with a
ZEN™/TAO™ internal quencher and/or 3’ lowa Black™ FQ/RQ quencher (IDT). A wild-type
attB—attP substrate (under a unique primer/probe set and fluorescent channel) was included as
an internal reference in all reactions.

Substrates were pooled into three multiplex reactions, each containing three pseudosite
substrates and the wild-type substrate for a total of four substrates per pool. LSR-coding gene
fragments (Twist Bioscience) were incubated with each substrate pool (3) in separate reactions
for 15 minutes at 37°C using PURExpress® In Vitro Protein Synthesis Kit (NEB catalog #E6800)
followed by 1:20 dilution in ultra-pure water before multiplexed quantitative PCR alongside
no-IVTT pooled-substrate dsDNA negative controls (3; one per pool) using PrimeTime™ Gene
Expression Master Mix (IDT catalog #1055772) on a QuantStudio™ 6 Pro Real-Time PCR
System (ThermoFisher). Primer concentrations were empirically adjusted to balance
amplification maxima between wild-type and pseudosite substrates.

Recombination efficiency for each substrate was quantified based on Cq values obtained
from the corresponding fluorescence channel. Quantification was based on relative cycle
threshold (Cq) values using a fixed reference point applied uniformly across all reactions.
Quantification was based on relative cycle threshold (Cq) values using a fixed reference point
applied uniformly across all reactions, such that larger ACq values reflected greater
accumulation of recombined product. The threshold was selected such that all positive samples
had a one-sided tail probability of approximately p=0.01 under a Gaussian assumption, with
ACq values from LSR reactions with low/no detectable amplification (presumed negative) used
to define the null distribution.

IVTT-based cryptic sequence recombination assay

The pseudosite recombination discovery assay was adapted from the previously
described Cryptic-Seq protocol . Recombinase protein was produced by IVTT from linear
dsDNA templates encoding the corresponding ORFs using PURExpress® In Vitro Protein
Synthesis Kit (NEB catalog #E6800). Human male (XY) genomic DNA (Millipore Sigma catalog
#70572) was prepared as an integration target background via enzymatic fragmentation and
next-generation sequencing adapter ligation (custom; P7-only 5 overhang with UMI) using
NEBNext® Ultra™ Il FS DNA Library Prep Kit for lllumina (NEB catalog #E7805).

Linear dsDNA donor fragments containing candidate cryptic recombination sites were
incubated with NGS-adaptor-ligated gDNA libraries and recombinase protein IVTT product at
37°C overnight. Libraries of integrated donor DNA junctions were amplified via nested
target-enrichment PCR and sequenced on an lllumina MiSeq i100+ platform using paired-end
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sequencing. Sequencing data were processed using a custom bioinformatics pipeline designed
to detect split reads spanning junctions between donor fragments and human genomic DNA,;
reads containing one segment mapping to the donor fragment and a second segment mapping
to the human genome were classified as recombination events and used to identify cryptic
recombination sites.

Human cell activity assay

K562 cells were maintained in RPMI 1640 Medium (Gibco 11875093) with 10% FBS
(Gibco A3840201) at 37C 5% CO2. 100,000 cells per condition were electroplated using the
Neon™ NxT Electroporation System in a 10uL total volume to introduce 2ug mRNA encoding
the LSR (PRTQ75) and 2ug cargo plasmid containing the corresponding attP sequence. After 5
days in culture, genomic DNA was extracted using QuickExtract (QE09050) according to the
manufacturer protocol. dPCR was run on 10ng of DNA for each condition (QuantStudio
Absolute Q) to quantify the integration at a pseudosite on chromosome 7. RNaseP was used as
a housekeeping gene for normalization. T cells were isolated from a Leukopak using negative
selection using EasySep™ Human T Cell Isolation Kit (STEMCELL 17951), banked and stored
in LN2. At day -3, cells were thawed into ImmunoCult™-XF T Cell Expansion Medium
(STEMCELL 10981) supplemented with 10ng/mL Human Recombinant IL-2 (STEMCELL
78145) and activated with Dynabeads™ Human T-Activator CD3/CD28 for T Cell Expansion
and Activation (11161D) for 3 days. On DO, the Dynabeads were removed and 100,000 cells
were electroplated using the Neon™ NxT Electroporation System in a 10uL total volume to
introduce 1.5ug mMRNA encoding the LSRs (WT LSR and 20 EDEN generated LSR's) and 1ug
cargo plasmid with EF1a driving the expression of a CD19 CAR and containing the
corresponding attP sequence. 3 days after transfection, cells were stained with LIVE/DEAD™
Fixable Violet Dead Cell Stain (Thermo L34964) and PE-Labeled Human CD19 and analyzed
on the Attune NxT Flow Cytometer. Percent integration in live cells was quantified using a cargo
only control as the negative gate.

EDEN fine-tuning with bridge recombinase (BR) systems

EDEN-28B was fine-tuned using a dataset of putative Bridge Recombinase (BR)
systems, which included both the bDNA and the bridge recombinase protein sequences. This
dataset, consisting of 6,183,225 sequences, specifically focused on ORFs containing the
PF01548 (DEDD Tnp IS110) and PF02371 (Transposase_20) protein domains, along with 1
kilobase of sequence both upstream and downstream (Fig. 4B).

To prevent data leakage, amino acid sequences were clustered at 80% identity using
mmseqgs2 (v15.6f452)'"°. The resulting clusters were then split into training, validation, and test
sets at a ratio of 80%, 10%, and 10%, respectively. Fine-tuning was performed using the
bionemo codebase over 21500 steps. Model evaluation utilized a set of 239 BR sequences,
comprising a mix of 72 publicly available'® and 167 proprietary sequences. The sequences
comprising the benchmark were not utilized in the fine-tuning process. For each sequence in the
benchmark, four prompts were generated, corresponding to 25%, 50%, 75%, and 100% of the
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bDNA sequence. One hundred sequences were generated for each prompt condition. Valid
generations were selected using the same parameters defined in the base model section.

Computational evaluation of generated BRs

Generation (for both zero-shot and fine-tuned models) was prompted using either 25%,
50%, 75% or 100% of the bridge guide upstream of the recombinase coding sequence.
Generated DNA sequences were first translated into ORFs with prodigal (metagenomics mode),
proteins between 300-500aa and starting with a methionine were retained for downstream
analysis. InterProScan was run to assign ORFs as putative BRs by presence of PF01548
(DEDD_Tnp_IS110) and PF02371 (Transposase_20) domains. In addition, those with DEDD
residues and the conserved serine residue corresponding to position 241 in 1S621 underwent
structure prediction using BaseFold'. Predicted structures bearing a pLDDT score between
70-90, and those sharing structural similarity (i.e. RMSD < 3 over 300aa) to 1S621 or 1S622 are
nominated for in vitro validation. With the exception of the 100% guide prompt, the generation of
guide fragments necessitates evaluation of the completion of the guide via CMsearch based on
a covariate model containing guide sequences of 1S621 and related public and BaseData
sequences, and matching systems with an e-value of < 0.01 were considered for manual
detection of putative target and donor-binding and handshake residues'®.

Laboratory validation and evaluation of activity in generated BR systems

Double-stranded DNA (dsDNA) fragments of bridge recombinases, bridge RNA and
cargo were synthesized in arrayed format from IDT or Twist Biosciences. The bridge
recombinase dsDNA fragment contained in linear order a T7 promoter, 5' UTR, recombinase
ORF and 3’ UTR. The bridge RNA dsDNA contained a T7 promoter, the bridge RNA sequence
containing target and donor loops. The cargo fragment contained target and donor sequences
and outward facing. Primers were synthesized by IDT to amplify each dsDNA fragment.
Amplifications were carried out using Platinum™ SuperFi™ PCR Master Mix (Invitrogen,
Catalog# 12358050) and PCR product was purified using AMPure XP Beads (Beckman Coulter,
Catalog# A63881). Concentrations were measured using Qubit DNA BR kit (Thermo Fisher
Scientific, Catalog# Q33266). IVTT reaction was carried out using PURExpress® In Vitro
Protein Synthesis Kit (New England Biolabs, Catalog# E6800) with dsDNA fragment of bridge
recombinase and bridge RNA. dsDNA cargo fragment was incubated with the IVTT product,
followed by heat inactivation. For quantification of circularisation, outward facing primers on the
cargo dsDNA fragment that detect recombined circular products (similar to the LSR quantitative
PCR recombination assay) were used. qPCR for samples were set up using Luna qPCR Master
Mix (New England Biolabs, Catalog# M3003) in technical replicates alongside a single no-IVTT
dsDNA negative control lacking transcription translation reagents. Cq values were assessed to
determine abundance of circular products. ACq values were calculated based on their
respective controls and used to determine activity of the recombinase system, where higher
ACq value represents higher accumulation of recombination products.
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Antimicrobial peptide discovery

ORFs/smORFs were mined from assemblies in the Basecamp Research BaseData'
database. After filtering for candidates <=50aa, APEX-pathogen'3® (version taken Apr 22, 2025)
was run on candidate ORF/peptide sequences. For each peptide, we calculate the median
predicted MIC (uM) across strains as a holistic metric for classifying antibiotic activity. A
threshold of 64 (uM) was used to filter candidates . This subset of candidates were compared
against the DRAMP database (v4.0)"* using a StripedSmithWaterman local alignment and
BLOSUMS50 scoring matrix and a 0.7 similarity cutoff for novel classification. Additional
annotation for taxonomy using the underlying contig the candidate ORF is on was done using
kraken2(v2.1.3)'®" taxonomic classifier.

From the filtered AMP discovery candidates, mmseqs2 (v15.6f452)'° cluster was run
with sequence ID and coverage cutoffs of 0.9. A custom script was written to return the best
representative for each cluster according to the median predicted MIC value. Representatives
were broken down to three tiers based on predicted median MIC cutoffs. Candidates were
chosen from those with a median MIC cutoff of 32 (uM). These candidates were then filtered
and selected based on sequence composition and likelihood of synthesis success.

EDEN synthetic antimicrobial peptides generation

Two fine-tuning datasets were curated from BaseData based on predicted MIC values
using apex-pathogen (version taken Apr 22, 2025)'®. The first dataset comprised ORFs with a
predicted median MIC below 64 uM and included 8 kb of surrounding genomic context. The
second dataset comprised ORFs that have a predicted MIC of less than 64 uM for any
pathogen, and AMP-specific start and end tags and tags pertaining to the predicted pathogens it
targets were added to the sequences. Each dataset was split into training, validation, and test
sets using an 80%, 10%, and 10% partition, respectively. Using these splits, two models were
derived from the EDEN-28B base model via full-parameter fine-tuning (Figure 5A): one trained
on the 8 kb context window dataset and the other trained on the pathogen-tagged ORF dataset.

Generation of antimicrobial peptides was conducted using the fine-tuned 8Kb context
model and the fine-tuned pathogen tag model. The prompt strategy involving genomic context
sequences were constructed using either 300 bp or 1 kb of upstream sequence, with or without
including a start codon. Source sequences were drawn from three sets: AMP-containing contigs
chosen at random curated from BaseData, contigs containing AMPs with a predicted MIC below
32 uM, and representatives from the top 20 sequence clusters. Sequence generation was
performed via a vLLM code inference endpoint, producing 100 sequences per prompt.
Generation using the fine-tuned tag model was conducted by prompting on the specific
pathogen or start tag using a custom script leveraging the bionemo framework.

Generated sequences were translated using biopython, filtered to only include
sequences under 50 amino acids, and apex-pathogen was used to predict the per-strain MIC.
Peptides with a predicted MIC of < 32 uM for at least one strain were retained for downstream
analyses. Physicochemical properties (charge, isoelectric point, hydrophobicity, and
hydrophobic moment) of the generated AMPs were calculated using modIAMP (v 4.3.2)'82. To
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compare EDEN-generated AMPs with reference AMP collections, sequence similarity scores
were computed against entries in the DRAMP (v4.0) database'** and BaseData AMPs used to
fine-tune the models. Sequences were aligned against the target database using the
Smith-Waterman local alignment algorithm with the BLOSUMS50 substitution matrix. The
sequence similarity score between these two peptides was defined as the normalized alignment
score as defined previously'®"? Additionally, peptides from DRAMP, BaseData, and EDEN
were embedded with the ESM-2 650M model and projected into two dimensions using UMAP
(cosine distance; n_neighbors = 15; min_dist = 0.1) for visualisation. Lab-tested peptides were
matched to their embeddings and overlaid on the same projection.

Additional annotations for filtering of candidates for experimental validation included,
charge (+2 to +8 net for 25 to 40-mers) and hydrophobicity of residue counts (35-60%
hydrophobic/aliphatic residues), presence of aggregation patterns (>2 aromatics in a row, >4
hydrophobics in a 6-residue window, or highly repetitive triads) and similarity to training data.
This set was then filtered with a length cutoff of <40aa. Candidates were additionally clustered
at 80% using mmseqs2 (v15.6f452)'"° Candidates that passed this initial filtering were then
analysed for simple repeats and low complexity regions using tantan default parameters
(version 51)"7. Percent of masked regions were then calculated for each candidate sequence.
Sequences over 20% repeat across the length were excluded. Focus on the predicted MIC
scores for pathogens A. baumannii ATCC 19606, E. coli AIC221, E. coli AIC222 activity was
prioritized as the predicted results for these pathogens show stronger predictive values for
activity. A Smith-Waterman similarity score threshold of 0.7 was used, with only sequences
scoring below this threshold advanced to wet-lab validation.

Peptide synthesis and characterization

Peptides were synthesized on an automated peptide synthesizer (Symphony X, Gyros
Protein Technologies) by standard 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase
peptide synthesis (SPPS) on Fmoc-protected amino acid-Wang resins (100—200 mesh). In
addition to preloaded resins, standard Fmoc-protected amino acids were employed for chain
elongation. N,N-Dimethylformamide (DMF) was used as the primary solvent throughout
synthesis. Stock solutions included: 500 mmol L' Fmoc-protected amino acids in DMF, a
coupling mixture of HBTU (450 mmol L") and N-methylmorpholine (NMM, 900 mmol L) in
DMF, and 20% (v/v) piperidine in DMF for Fmoc deprotection. After synthesis, peptides were
deprotected and cleaved from the resin using a cleavage cocktail of trifluoroacetic
(TFA)/triisopropylsilane (TIS)/dithiothreitol (DTT)/water (92.8% v/v, 1.1% v/v, 0.9% w/v, 4.8%,
w/w) for 2.5 hours with stirring at room temperature. The resin was removed by vacuum
filtration, and the peptide-containing solution was collected. Crude peptides were precipitated
with cold diethyl ether and incubated for 20 min at -20 °C, pelleted by centrifugation, and
washed once more with cold diethyl ether. The resulting pellets were dissolved in 0.1% (v/v)
aqueous formic acid and incubated overnight at -20 °C, followed by lyophilization to obtain dried
peptides.

For characterization, peptides were dried, reconstituted in 0.1% formic acid, and
quantified spectrophotometrically. Peptide separations were performed on a Waters XBridge C
column (46 x 50 mm, 3.5 um, 120 A) at room temperature using a conventional
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high-performance liquid chromatography (HPLC) system. Mobile phases were water with 0.1%
formic acid (solvent A) and acetonitrile with 0.1% formic acid (solvent B). A linear gradient of
1-95% B over 7 min was applied at 1.5 mL min™. UV detection was monitored at 220 nm.
Eluates were analyzed on Waters SQ Detector 2 with electrospray ionization in positive mode.
Full scan spectra were collected over m/z 100-2,000. Selected lon Recording (SIR) was used
for targeted peptides. Source conditions were capillary voltage 3.0 kV, cone voltage 25-40 V,
source temperature 120 °C, and desolvation temperature 350 °C. Mass spectra were processed
with MassLynx software. Observed peptide masses were compared with theoretical values, and
quantitative analysis was based on integrated SIR peak areas.

Bacterial strains and growth conditions

The bacterial panel utilized in this study consisted of the following pathogenic strains:
Acinetobacter baumannii ATCC 19606; A. baumannii ATCC BAA-1605 (resistant to ceftazidime,
gentamicin, ticarcillin, piperacillin, aztreonam, cefepime, ciprofloxacin, imipenem, and
meropenem); Escherichia coli ATCC 11775; E. coli AlC221 [MG1655 phnE_2::FRT,
polymyxin-sensitive  control]; E. coli AlIC222 [MG1655 pmrA53 phnE_2::FRT,
polymyxin-resistant]; E. coli ATCC BAA-3170 (resistant to colistin and polymyxin B); E. coli K-12
BW25113; Enterobacter cloacae ATCC 13047; Klebsiella pneumoniae ATCC 13883; K.
pneumoniae ATCC BAA-2342 (resistant to ertapenem and imipenem); Pseudomonas
aeruginosa PAO1; P. aeruginosa PA14; P. aeruginosa ATCC BAA-3197 (resistant to
fluoroquinolones, B-lactams, and carbapenems); Salmonella enterica ATCC 9150; S. enterica
subsp. enterica Typhimurium ATCC 700720; Bacillus subtilis ATCC 23857; Staphylococcus
aureus ATCC 12600; S. aureus ATCC BAA-1556 (methicillin-resistant); Enterococcus faecalis
ATCC 700802 (vancomycin-resistant); and Enterococcus faecium ATCC 700221
(vancomycin-resistant). P. aeruginosa strains were propagated on Pseudomonas lIsolation Agar,
whereas all other species were maintained on Luria-Bertani (LB) agar and broth. For each
assay, cultures were initiated from single colonies, incubated overnight at 37 °C, and
subsequently diluted 1:100 into fresh medium to obtain cells in mid-logarithmic phase.

AMP Minimal Inhibitory Concentration (MIC) determination

MIC values were established using the standard broth microdilution method in untreated
96-well plates. Test peptides were dissolved in sterile water and prepared as twofold serial
dilutions ranging from 1 to 64 umol L. Each dilution was combined at a 1:1 ratio with LB broth
containing 4 x 105 CFU mL™" of the target bacterial strain. Plates were incubated at 37 °C for 24
h, and the MIC was defined as the lowest peptide concentration that completely inhibited visible
bacterial growth. All experiments were conducted independently in triplicate.

Synthetic metagenomes: fine-tuning, generation, and characterization

Characterization of biomes based on annotations was conducted on assembled contigs
contained in BaseData. Digestive system specific annotations were identified and used as
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markers for sequence collection. GC and coding density were also used to characterize biomes.
Biome labels are based on MGnify names and lineages®?'%.

Before large scale sequence generation, EDEN was fine-tuned for 1.5 epochs on
160,885 assembled contigs from a single digestive-system microbiome sample in BaseData.For
synthetic microbiome generation, we identified prompts from curated digestive system
sequences which fell into three categories: sequences from the beginning of BaseData digestive
system sample contigs, genes enriched in BaseData digestive system samples, and genes
within 5kb neighborhoods known to co-occur with other conserved genes in BaseData digestive
system samples. Source of sequence prompts were from BaseData. Each category of prompt
contained between 150-200 carefully curated sequences between 1000 bp to the length of an
entire gene to generate 10kb sequences. Generation was facilitated using a custom script
leveraging the specific vLLM code inference endpoint.

Generated sequences of 10kb were initially filtered using length and low complexity
criteria. This subset was then run through an internally developed custom annotation pipeline.
This pipeline characterizes genes, proteins and pathways. The generated sequences were run
through pyrodigal (3.6.0) to call ORFs'2. Diamond (v2.1.14) was used to align ORFs against the
kegg database (2011)"*. InterProScan (v5.76-107.0local) was used for functional annotation of
domains using PFAMs'™4. Skani (v0.3.0) was used to compare generated sequences with
BaseData'®. We aligned the source short reads from the sample used in fine tuning against all
generated sequences using strobealign (v0.16.1)'®. Viral and phage annotation was conducted
using geNomad (v1.11.1)"4,

A list of ORFs with KEGG annotations across all contigs were run through GSEApy
(v1.1.10) package’s enrichr function using a custom gmt pathway database curated from BioCyc
and annotated with KEGG ids'®'%7188 The list of resulting enriched pathways were filtered to
keep pathways with adjusted p-value <= 0.05.

For prophage generation, we leveraged our fine tuned model to run a second round of
generations prompting it on the end of our generations from the first set that were categorized
as a viral contig or as containing a pro-phage by genomad (v1.9.4, database v1.9)™4. We then
concatenated the original sequence and new sequence to obtain a sequence 21kb in length and
ran this through genomad (v1.9.4, database v1.9) to obtain a 7kb pro-phage like sequence with
viral score > 0.9 and taxonomy assigned to Caudoviricetes flanked by sequences from the
host genome (Streptomyces on both ends) Sequences were then annotated with pharokka
v1.8.2 and phold v1.1.0 to create consensus annotations, and visualisations of prophage
candidates created using phold plot and lovis4u v0.1.6"46:147:175,

Taxonomic UMAP

BaseData samples were sub-sampled to contigs between 7-10kbp in length to match the
length distribution of contigs in the synthetic metagenome. Taxonomic profiling of the synthetic
metagenome and all filtered BaseData samples was then conducted using Kraken2 v2.17.1 with
option —use-names''. A binary matrix of taxon ID presence and absence in each sample was
created and used as input into the UMAP function of umap-learn v0.5.9 with metric jaccard and
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parameters n_neighbors=50, min_dist=0.1'%°. The embeddings of the UMAPs were colored by
the Lineage 3 MGnify biome of the samples and plotted using Datashader v0.18.282170 [8].

The number of taxa shared between the synthetic metagenome and BaseData digestive
system samples was identified using Kraken2 classifications of all full-length contigs,
independent of the length-based filtering applied to create the UMAP embedding.

K-mer frequencies (k=4-6) were calculated using Jellyfish v2.3.1 for the synthetic
metagenomic contigs and all contigs 7-10kbp in length for the BaseData sample used to
fine-tune EDEN, to verify the sequences of the synthetic contigs diverged from the contigs in the
fine-tuned sample'®. A UMAP of Euclidean distances for the k-mer frequencies was then
calculated using the UMAP function of umap-learn v0.5.9 with options n_neighbors=20,
n_epochs=1000 and min_dist=0"%. The embeddings of the UMAP were colored by the Lineage
3 MGnify biome of the source sample and plotted using Datashader v0.18.216%170,

Distant ORF sequence analysis

Generated sequences used pyrodigal (3.0.0) to predict genes'’?. Sequences were length
filtered between 250 -1500aa. Further filtering was made using hard masking results from
tantan default parameters (version 51)'”7. Candidates were then aligned against BaseData,
NCBI (2024-02-07), UniProtKB/SwissProt (Release 2025 04 of 08-Oct-2025) and MGnify
(v2024_04) using Diamond Blast (v2.1.6) with minimum percentID of 10% and coverage of
0.76082149.189 'ESMFold (3B V1) was used to solve structures with a length shorter than 600aa®.
TMAlign (20190822) was used to align the structures of the generated sequences against the
highest scoring target from each database'®. Foldseek (9.427df8a) was then used to identify
structural homologous folds from the databases af proteome and af swissprot v4, cath50
(v4.3.0), esmatlas30 (v01718804519), pdb (240101), Uniprot50 (v4)>:6066.191.192 “MGnify and
NCBI peptide records were viewed on December 3, 202582149,
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Supplementary Figure 1: We're showing scaling behaviour for the EDEN family of models between 100
million and 28 billion parameters. EDEN-100M, EDEN-1B, and EDEN-7B were trained on 350 billion tokens
from BaseData. EDEN-28B was trained on 9.7 trillion tokens from BaseData.The diagram displays FLOPS vs

validation loss for the various models.
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Supplementary Figure 2: Leventhstein identity of generated sequences vs wild-type LSR from
prompt. Distribution of sequence similarity between LSRs. Histograms show the distribution of
Levenshtein identity between LSR sequences generated from wild-type prompts and their corresponding
parent (prompting) wild-type LSRs (green), and between each parent wild-type LSR and all wild-type LSR
cluster representatives (gray; n = 24,330), providing a comparison between model-generated variation
and natural sequence diversity. Levenshtein identity = 1 - distance(seq1, seg2) / max_len(seq1, seq2).
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Supplementary Figure 3: Integration activity of PRT075 in K562 cells. Human K562 cells were
transfected with mRNA expressing WT PRTO075 along with a plasmid DNA template containing the
corresponding att sequence. At 5 days post transfection, DNA was harvested and integration at Safe
Harbor 1 - chr7 pseudo site was quantified using dPCR.

69


https://doi.org/10.64898/2026.01.12.699009
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.64898/2026.01.12.699009; this version posted February 9, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

100% prompt

75% prompt

50% prompt

0 2 4 6 8

Fold change

Supplementary Figure 4: Fold change in the generation rate of EDEN-BR relative to EDEN-28B
(calculated as EDEN-BR / EDEN-28B).
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Supplementary Figure 5: Heatmap showing the results of activity validation assays confirming antimicrobial
activity of BaseData peptides against 16 clinically bacterial strains.
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Supplementary Figure 6: The property distribution of EDEN generated AMPs and natural AMPs from
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