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Summary
Genome-wide association studies (GWASSs) have identified many sources of genetic variation
associated with bone mineral density (BMD), a clinical predictor of fracture risk and
osteoporosis. Aside from the identification of causal genes, other difficult challenges to
informing GWAS include characterizing the roles of predicted causal genes in disease and
providing additional functional context, such as the cell type predictions or biological pathways
in which causal genes operate. Leveraging single-cell transcriptomics (SCRNA-seq) can assist in
informing BMD GWAS by linking disease-associated variants to genes and providing a cell type
context for which these causal genes drive disease. Here, we use large-scale sScRNA-seq data
from bone marrow—derived stromal cells cultured under osteogenic conditions (BMSC-OBSs)
from Diversity Outbred (DO) mice to generate cell type-specific networks and contextualize
BMD GWAS-implicated genes. Using trajectories inferred from the sScRNA-seq data that map
cell state transitions, we identify networks enriched with genes that exhibit the most dynamic
changes in expression across tragjectories. We discover 21 network driver genes, which are likely
to be causal for human BMD GWAS associations that colocalize with expression/splicing
guantitative trait loci (eQTL/SQTL). These driver genes, including Fgfrl1 and Tpx2, along with
their associated networks, are predicted to be novel regulators of BMD via their roles in the
differentiation of mesenchymal lineage cells. In this work, we showcase the use of single-cell
transcriptomics from mouse bone-relevant cells to inform human BMD GWAS and prioritize

genetic targets with potential causal roles in the development of osteoporosis.
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Introduction
Osteoporosis is a complex disease characterized by low bone mineral density (BMD),
bone fragility, and an increased risk of fracture’. BMD, ahighly heritable trait, is one of the most
important clinical predictors of osteoporotic fracture”*. Increasing our understanding of the
genetic basis of BMD is critical for the development of approaches for the treatment and
prevention of osteoporosis. In recent years, genome-wide association studies (GWAS) have
made great progress in unraveling BMD genetics by identifying over 1,100 independent
associations’. Now the challenge lies in pinpointing causal genes, which is necessary for the
tranglation of genetic findings into novel therapies.
A number of approaches exist to identify genes responsible for GWAS associations™ .
Most rely on population-based “-omics’ data’, which are scarce for human bone, to connect
associations to causal genes. Our group has used co-expression networks generated from mouse
bone transcriptomic datasets to assist in the identification of genes likely responsible for BMD
associations. One significant advantage of this approach is its ability to utilize the network
connections of candidate genes to predict how these candidate genes may affect BMD. For
example, we generated co-expression networks from bone tissue and primary osteoblasts in
mouse genetic reference populations and identified multiple co-expression modules enriched
with genes located in BMD associations™®*!. We then cross-referenced genes in these modules
with those regulated by co-localizing expression quantitative trait loci (eQTLsS) from the Gene-

Tissue Expression project (GTEx)***3

to identify "high priority" genes. Recently, we expanded
our analyses to include directed networks generated via a Bayesian approach using cortical bone

RNA-seq data from 192 Diversity Outbred (DO) mice. By combining key driver analysis and
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GTEx eQTL colocalization data, we identified 19 novel genes, such as SERTAD4 and GLT8D2,
which are likely causal for human BMD GWAS associations™.

To date, our analyses have been reliant on networks generated from heterogeneous bulk
transcriptomics (RNA-seq) datasets from mouse bone and primary bone cells. However,
leveraging single-cell transcriptomics (scRNA-seq) data would offer the added benefit of
resolving the transcriptomic profiles of discrete cell types. Additionally, using scRNA-seq data
has the potential to provide context by predicting the specific cell types in which causal genes
and their associated networks operate. In recent work, we demonstrated the utility of bone
marrow-derived stromal cells cultured under osteogenic condition (BMSC-OB) for the
generation of population-scale sScRNA-seq data on bone relevant cell types'™. The BMSC-OB
model effectively enriches for mesenchymal lineage cells (e.g., mesenchymal progenitors,
osteoblasts, osteocyte-like cells) that are highly relevant to the regulation of BMD.

In this work, our goal was to prioritize and contextualize genes implicated by BMD
GWAS using an expanded large-scale (N=80) BM SC-OB scRNA-seq dataset on bone cell types.
We accomplished this by first generating co-expression and Bayesian networks™ for each
BMSC-OB mesenchymal cell type. We subsequently prioritized networks based on ther
enrichment for genes exhibiting the most dynamic changes in expression across trajectories
inferred from the scRNA-seq data, thus highlighting networks likely associated with the
differentiation of BM SC-OBs. We then used these networks linked to osteogenic differentiation
to prioritize genes with eQTL and/or splicing quantitative trait loci (SQTL) which colocalize with
BMD GWAS associations°. In doing so, this analysis provides additional support for a role of
these genes in the regulation of BMD and highlights their potential rolesin differentiation of cell

types essential to skeletal health.
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91

92

93 Results

94

95 BMSC-OBsderived from DO miceyield diver se cell typesthat areenriched for

96 mesenchymal lineage cells:

gg We cultured BMSCs from a total of 80 Diversity Outbred (DO) mice, a genetically
99 diverse outbred mouse population'’*® (N=75 from the current study and N=5 from"®; N 1=149
100 maeand N =131 females). We cultured BM SCs under osteogenic conditions and subsequently
101 performed scRNA-seq, as described in®™. After stringent processing and quality control
102 (Materials and Methods), the dataset consisted of 21,831 expressed genes across 139,392 cells.
103  We manually annotated 15 clusters ranging in size from 270 to 27,291 cells and identified cell
104 types of the mesenchymal lineage as well as various other cel types (Figure 1A,
105 Supplementary File 1a, Figure 1-figure supplement 1).

106 Based on our prior BMSC-OB scRNA-seq study™, we expected to identify a large
107  proportion of mesenchymal cells and a smaller fraction of non-mesenchymal cell types.
108 Consigtent with this hypothesis, clusters associated with mesenchymal lineages accounted for
109 74.1% of al cells (Figure 1A). These included mesenchymal progenitor cells (MPCs), late
110 mesenchymal progenitors (LMPs), osteoblast progenitors (OBPs), two mature osteoblast
111 populations (OB1 and OB2), osteocyte-like cels (Ocy), and marrow adipogenic lineage
112  progenitors (MALPs). The non-mesenchymal cell types observed included macrophages,
113  monocytes, granulocytes, T-cells, B-cdlls, endothelial cells, and osteoclast-like cells (Figure
114 1A). With regards to the mesenchymal cell types, the only differences in cell clusters relative to
115  our previous report™ were the presence of MPCs and two mature osteoblast clusters. Upon

116  comparing the two distinct osteoblast clusters, OB1 and OB2 (Figure 1A), both clusters had

117  ubiquitous expression of genes associated with mature osteoblasts (e.g., Collal, Bglap, Sparc,
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118 and lbsp) (Supplementary File 1a) while many of the “canonical” osteoblast markers were
119  more highly expressed in OB1 compared to OB2 (Supplementary File 1b). Interestingly, MPCs
120 did not have transcriptomic profiles similar to other mesenchymal progenitor cells previously
121  identified by our group or others™™. All other mesenchymal cell types demonstrated specific
122  expression of canonical marker genes (Figure 1A, B).
123 We next assessed the variability in cell type frequencies across DO mice by quantifying
124  the proportions of each annotated mesenchymal cell type. All other clusters, which mainly
125 consisted of immune cells of hematopoietic origin, were aggregated into one group (Hem) for
126  each mouse. We observed high variability in the raw proportional abundances of cell types
127  derived from each mouse (Figure 1C, Supplementary File 1c). For example, the proportions of
128 osteoblasts (OB1 and OB2) varied significantly among individual DO mice (Figure 1D). All
129  mice used in the current experiment had been extensively phenotyped for a wide range of bone
130 traits (microCT, histomorphometry, biomechanical bone properties, etc.) as part of a previous
131 genetic analysis of bone strength™. We correlated cell type frequencies with bone traits,
132  however, none of the cell type proportions were strongly correlated with any bone trait

133  (Supplementary File 1d-e).
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Figure 1. Analysisof single cell RNA-seq (scRNA-seq) data for BM SC-OBs derived from
80 Diversity Outbred (DO) mice.
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136 Mesenchymal lineage cellsareenriched in BMD heritability:
137
138 The primary goal of this work was to prioritize and contextualize genes implicated by

139 BMD GWAS. Asafirst step towards this goal, we sought to determine which cell types were the
140 most relevant to the genetics of BMD. Using the BMD GWAS and the BMSC-OB scRNA-seq
141  data, we performed a CELLECT® cell type prioritization analysis to identify cell clusters
142  enriched for BMD heritability. We observed that OB1, Ocy, and MALP cell clusters were
143 significantly enriched (Pag < 0.05, red dashed line) for BMD heritability (Pa = 0.018, 0.010,
144 0.006, respectively) (Figure 1E, Supplementary File 1f). None of the non-mesenchymal cells
145 identified were significant (P > 0.05) (Figure 1E). As aresult, all downstream efforts focused
146  solely on using data on mesenchymal cell types to inform GWAS.

147

148  Generating mesenchymal cell type-specific Bayesian networksto inform BMD GWAS:

1451(9) We have previously shown that network-based approaches using bulk RNA-seq are
151  powerful tools for the identification of putative causal genes from BMD GWAS data'®***. Here,
152  our goal was to apply these same approaches using the BM SC-OB scRNA-seq data to prioritize
153  and contextualize genes we previously identified as having a colocalizing expression quantitative
154  trait locus (eQTL; N=512) or splicing QTL (sQTL; N=732) in atissue from the Genotype-Tissue
155 Expression (GTEX) project’***. Genes identified in each study (or both) yielded a list of high
156  priority target genes (N = 1,037). While GTEx does not currently contain data for bone tissue,
157 eQTL can be shared across many tissues and may exert their effects in cell types resident to
158  bone?. Therefore, utilizing our previous work, we hypothesized that generating cell type-specific
159 networks would yield more biologically relevant representations of processes occurring within

160 particular mesenchymal cell types. Additionally, by integrating GWAS, cell type-specific
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161 networks, and dynamic gene expression as a function of differentiation, we anticipated we would
162 identify points of intervention in which genetic variation impacts genes involved in the
163 differentiation process.
164 Our network analysis begins by partitioning genes into groups based on co-expression by
165  applying iterative weighted gene co-expression network analysis (iterativeWGCNA)? to each
166  mesenchymal cell type (Step 1, Figure 2). In total, 535 modules were identified from the BM SC-
167 OB scRNA-seq data, and the number of modules identified for each mesenchymal cell cluster
168 ranged from 26 to 153 with an average of 76 modules per cluster (Supplementary File 1g-h).
169 We sought to infer causal relationships between genes in each cell type-specific co-expression
170  module and subsequently identify networks involved in processes relevant to BMSC-OB
171 differentiation. To this end, we generated Bayesian networks for each co-expression module,
172  thusenabling usto model directed interactions between co-expressed genes based on conditional
173  independence' (Step 2, Figure 2).

174
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177
178 Identifying putative driversof mesenchymal cell differentiation:
179
180 We hypothesized that many genes impacting BMD do so by influencing osteogenic

181 differentiation or possibly bone marrow adipogenic differentiation of key mesenchymal cdll
182  types, as suggested by the CELLECT analysis above. Therefore, the next step of our network
183 analysis was to identify cell type-specific Bayesian networks enriched for genes potentially
184  driving mesenchymal differentiation (Step 3, Figure 2). To accomplish this, wefirst performed a
185 pseudotime trajectory analysis to infer paths of differentiation in the mesenchymal lineage cells.

186  We resolved three pseudotime trajectories (two osteogenic, one adipogenic) originating from the
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187 MPC cel cluster and ending in either Ocy, OB2, or MALP cell fates (Figure 3A). It isimportant
188  to note that given the identification of multiple skeletal stem cells”>®, we do not view these
189 trgectories as lineages, but rather “differentiation paths’ (progenitor to mature and/or terminally
190 differentiated cells) that are likely traversed by different subsets of skeletal stem cdlls.

191 To identify genes likely impacting BMSC-OB differentiation, we used tradeSeq to
192 identify genes that exhibit dynamic changes in expression along pseudotime®. Prior to
193 peforming the tradeSeq analysis, we parsed the pseudotime trgectories into regions that
194  encompass cells associated with each cell type along their respective trgectories (Figure 3B).
195 We defined multiple cell type boundaries (nine in total) using pseudotime values, which
196 represent points along a trgectory. The tradeSeq analysis was performed for each boundary
197 (Supplementary File 2a). For example, trajectories bifurcate in the LMP cell cluster (Figure
198 3A); therefore, cells belonging to the LMP cluster can map to adipogenic and/or osteogenic
199 trgjectories depending on their placement along pseudotime. Between a cdll type boundary, cells
200 gpanning a specific cluster (e.g., LMP) and mapping to a specific trgectory (e.g., osteogenic
201 tragjectory) are used as input to analyze gene expression between the start and end points of the
202  cell type boundary (e.g., LMP_to OBP). We analyzed gene expression within the established
203  cel type boundaries for all trajectories and identified genes that exhibit the most significant
204  differences in expression between the start and end points of the cell type boundaries. The total
205 number of significant trajectory-specific tradeSeq genes (P < 0.05) ranged from 87 to 1,697
206 across the 9 cel type boundaries (Supplementary File 2a, 2b-d). The expression of
207  representative marker genes for all cell types as a function of pseudotime were consistent with
208  boundaries defined for each cdll type (Figure 3C).

209
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212 We sought to identify tradeSeq genes that may have an associated expression quantitative
213 trait locus (eQTL) and hypothesized that eQTLs that perturb their expression would also impact
214  the proportion of cells at different stages along the cell tragjectories. We performed a cell type-
215  gspecific eQTL analysis for each mesenchymal cell type from the 80 DO mice scRNA-seq data.
216 We identified 563 genes (eGenes) regulated by a significant cis-eQTL in specific cell types of
217 the BMSC-OB scRNA-seq data. Despite being significantly underpowered for this analysis due
218 toour relatively smaller sample size (N = 80), we identified two cell type-specific eGenes where
219 the genotype responsible for the cis-eQTL effect was also associated with cell type proportions.
220 The first of these genes was Pyruvate Kinase, muscle (Pkm), which was identified as a
221  significant global tradeSeq gene (P = 8.35 X 10°%, Supplementary File 2¢) associated with the
222  trangtion from LMPs to OBPs along an osteogenic trajectory (Figure 4A). Moreover, Pkm
223  served as an eGene in the LMP cédll cluster (LOD = 9.72; Figure 4B, Supplementary File 2f).
224 Mice inheriting at least one PWK allele at this locus (N = 15) demonstrated lower Pkm
225 expression (Figure 4C) and a notable reduction in mature osteoblasts (OB1) and osteocyte-like
226  cels (Ocy) proportions (P = 0.030 and P = 0.026, respectively), while LMP proportions were
227 unaffected (Figure 4D, Supplementary File 2g).
228 Similarly, S100 calcium binding protein A1 (S100al) was an OBP to OB1 transtion
229  tradeSeq gene (Py = 0.023; Figure 4A, Supplementary File 2e) and an eGene in the OBP cell
230 cluster (LOD = 10.12; Figure 4B, Supplementary File 2f). Mice inheriting at least one 129
231 allele at thislocus (N = 30) had higher S100al expression, while the opposite was observed for
232  miceinheriting NZO alleles (N = 14) (Figure 4C). Additionally, mice inheriting at |east one 129
233  allele showed a significant decrease in LMP proportion and increase in OB1 proportion (P =

234  0.008 and P = 0.016, respectively) (Figure 4D, Supplementary File 2g), while no significant
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235 differences were observed in cell type proportions among mice inheriting NZO alleles at this
236  locus (Figure 4-figure supplement 1, Supplementary File 2g).

237
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239 Figure 4. TradeSeg-identified genes associated with BMSC-OB differentiation exhibit
240 eQTL effects.
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241  ldentification of differentiation driver genes (DDG):
242
243 In order to discover BMSC-OB differentiation genes potentially responsible for BMD

244  GWAS associations, the next step of our network analysis leveraged the trgectory-specific
245  tradeSeq genes identified for each cell type boundary (Supplementary Table File 2b-d) to
246  identify differentiation driver genes (DDGs) (Step 3, Figure 2). We identified DDGs by
247  extracting subnetworks (i.e., large 3-step neighborhoods; see Methods) for each genein each cell
248  type-specific Bayesian network and identifying those subnetworks enriched (Pag1<[10.05) for
249  tragjectory-specific tradeSeq genes for the cell type boundary. The analysis identified 408
250  significant DDGs (Supplementary File 2h-k). We performed a PANTHER?® Gene Ontology
251 (GO) analysis for the cell type boundaries yielding a sufficient number of DDGs and found that
252 DDGs for the osteogenic cdl type boundaries (LMP_to OBP, OBP to OB1, OBP to OB2)
253  were enriched for genes associated with the cell cycle (GO:0007049; N = 23, 18, 23; P=1.12 x
254 10° 1.29 x 10" 1.0 x 10, respectively) (Supplementary File 3a-c). The DDGs for the
255 adipogenic cel type boundary (LMP_to MALP, MALP_to end) were enriched for genes
256  associated with extracellular matrix organization (GO:0030198; N = 10; P = 1.62 x 10) and
257  lipid metabolic processes (GO:0006629; N = 25; P = 1.83 x 10™), respectively (Supplementary
258 File 3d-e). Across all 408 DDGs, 49 (12%) were identified in one or more cell type boundaries
259  asgenes with asignificant alteration (P < 0.05) of whole-body BMD when knocked-out/down in
260 mice, as reported by the International Mouse Knockout Consortium (IMPC)® (Supplementary
261  File2i-k).

262 We used our previously generated list of potentially causal BMD GWAS genes
263  (N=1,037) to subsequently prioritize the DDGs (Step 4, Figure 2). Of the 408 DDGs, 21 DDGs

264 in one or more cell type boundaries were genes that have BMD GWAS associations that
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265 colocalize with sQTL/eQTL (Table 1). The majority of these DDGs were identified in LMPs
266  aong both the osteogenic (LMP_to_OBP) and adipogenic (LMP_to MALP) tragjectories (N = 10
267 and 6, respectively; Supplementary File 2h, Supplementary File 3f). The remaining DDGs
268 wereidentified in OBPs along both osteoblast trgjectories (OBP_to_OB1, OBP_to OB2; N =1
269 and 3, respectively) and MALPs (MALP_to_end; N = 6). Additionally, 3 of the 21 DDGs (Tet1,
270  Tpx2, Timp2) are IMPC genes that exhibit a significant alteration of BMD (Supplementary File
271  2h, Supplementary File 3f).
272 Table 1. Prioritized Differentiation Driver Genes (DDGs) that have BMD GWAS
273 associations that colocalize with splicing/expression QTL (eQTL/sQTL) identified in a
274  Genotype-Tissue Expresson project (GTEX) tissue. The tissue with the most significant
275  colocalization (RCP and/or H4PP) is listed for each DGG (26 total, 21 distinct), as determined
276  from Al-Barghouthi et al. (2022) and Abood et al. (2023) for eQTL and SQTL, respectively’*.
277 RCP = Regiona Colocalization Probability (GWAS and eQTL colocalization). H4PP = H4
278  Posterior Probability (GWAS and sQTL colocalization).
GTEX Tissue with GTEX Tissue with . s
eGeneidentified
. Céll type strongest eQTL strongest sQTL
Trajectory boundary DDG colocalization colocalization fr?rr]n zCOR[')\l(')A‘SSQ of
(RCP) (H4PP) € mice
Adipose (Viscera);
1 LMP to OBP Tetl 03101
1 LMPtoOBP | Tpx2 g%‘;*l
Pituitary;
1 LMP to OBP Cdk1 0.7795
1 LMPtoOBP | Ttyh3 5%%6
Artery (Aorta);
1 LMPtoOBP | Olfmi3 0.8048
Brain
1 LMP to OBP |zumo4 (Hypothalamus);
0.9182
Nerve (Tibial);
1 LMPtoOBP | Sec24d 0.2677
Adipose Cultured cells
1 LMPtoOBP | Tmem263 (Subcutaneous); (fibroblasts);
0.5704 0.9716
Adrenal Gland;
1 LMP to OBP Lmf2 0.8181
Esophagus
1 LMPto OBP TIn2 (Muscularis);
0.9697
Heart (Left
1 OBPtoOB1 | Kremenl Ventricle);
0.8686
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Heart (Left
2 OBPtoOB2 | Kremenl Ventricle); - -
0.8686
Testis;
2 OBPto OB2 Ebfl - 0.8760 -
Pancress;
2 OBPto OB2 Lrp4 0.7943 - -
Liver;
3 LMPto MALP Ttyh3 - 0.9350 -
Cultured cells
3 LMPto MALP Fofrll (fibroblasts); - -
0.1611
Testis,
3 LMPto MALP Ebf1l - 0.8760 -
i Nerve (Tibial); i
3 LMPto MALP | Ppplri2b 0.8807
Cultured cells .
3 LMPtoMALP |  Rnoj (fibroblasts); DT i
0.352 '
Esophagus
3 LMPto MALP TIn2 (Muscularis); - -
0.9697
Esophagus
3 MALPtoend | Adhl . (Gastroesophageal i
Junction);
0.9999
Cultured cells
3 MALPtoend Fafrl1 (fibroblasts); - -
0.1611
Esophagus
i (Gastroesophagea i
3 MALPtoend Adcy5 Junction);
0.8456
_ Spleen _
3 MALPto end Cnn2 0.7743
Pituitary;
3 MALPtoend Mxra8 - 0.7545 -
. Testis;
3 MALPto end Timp2 - 0.9429 -
279
280 Network analysispredict Fgfrl1 and Tpx2 as novel regulators of BMD:
281
282 Here we highlight two DDGs that putatively impact human BMD via their rolesin LMP

283 differentiation along either an adipogenic (Fgfrll) or osteogenic (Tpx2) traectory, which are
284  genes with potential roles that have been minimally characterized in the context of human BMD.
285  Based on our previous work’, Fgfrl1 (fibroblast growth factor receptor-like 1) was identified as a

286 DDG with significant human BMD GWAS associations that also colocalized with eQTL
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287  identified in the cultured fibroblast GTEx tissue (RCP = 0.1611, Table 1). The Fgfrl1 network
288  was enriched for tradeSeg-identified genes (N = 6 genes, P = 7.5 X 10% for LMPs along an
289  adipogenic trgectory (Figure 5A). An increase in the expression of all tradeSeg-identified genes
290 for the Fgfrl1 network was observed (Figure 5B, Supplementary File 2d). Importantly, the
291 expression pattern for the tradeSeg-identified genes were consistent with the cell type boundaries
292  established for LMPs differentiating along the adipogenic trgectory toward the MALP cell state
293  (Figure 5B). Furthermore, in the surrounding Fgfrll network, two genes (Plpp3 and Cfapl100)
294  have significant human BMD GWAS associations that also colocalized with sQTL in GTEX
295 tissues, as reported in our previous study™. In the Fgfrl1 network, many other genes can be
296 associated with adipocyte function (e.g., Lpl, Plpp3, 1gfbp4)**>>? and the maintenance of cilia
297  (eg., Cfapl00, S5 (Denn2b), Mark1)®*.

298 The other network we identified, the Tpx2 network, was identified for LMPs along an
299 osteogenic trgectory (Figure 5C). Tpx2 (TPX2, microtubule-associated) is a DDG with
300 significant human BMD GWAS associations that also colocalized with eQTL identified in the
301 Testis GTEX tissue (RCP = 0.2031, Table 1). The network was enriched for tradeSeg-identified
302 genes (N =9 genes, Pyg = 5.7 X 10" for LMPs differentiating along the osteogenic trajectory
303  (Figure 5C). Furthermore, the expression of the tradeSeg-identified genes for the Tpx2 network
304 were consistent with the cell type boundaries established for LMPs differentiating along the
305 osteogenic trgectory toward the OBP (osteoblast progenitor) cell state (Figure 5D;
306 Supplementary File 2b). The expression of these genes increase as LMPs differentiate into
307 OBPs and subsequently decrease upon reaching an OBP cell state. Additionally, Tpx2 exhibited
308 asignificant alteration of BMD in both male and female mutant mice (Genotype P-value = 1.03

309 x 10 from IMPC (Figure 5E). In regards to the constituents of the Tpx2 network, additional
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310 genes have been tested by the IMPC and result in a significant impact on BMD, such as Ube2c,
311 Top2a, and Papssl. Many other genes in the Tpx2 network can be associated with cellular
312 divison and proliferation, including four of the genes of the kinesin family (Kif) motor protein
313  genes™: Kif4, Kifl1, Kif15, Kif23.

314
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315  Figure 5. Fgfrlland Tpx2 areprioritized DDGs and putative drivers of mesenchymal
316 differentiation.
317


https://doi.org/10.1101/2024.05.20.594981
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.20.594981; this version posted February 8, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

22
318 Discussion
319
320 BMD GWAS has been successful at identifying thousands of SNPs associated with

321 disease; however, the identification of causal genes and defining their functional role in disease
322  remains challenging. The integration of “-omics’ data, particularly transcriptomics, can assist in
323  overcoming this challenge. Leveraging transcriptomics data has proven invaluable to informing
324 GWAS, as demonstrated in studies that use these data to perform eQTL mapping, transcriptome-
325 wide association studies (TWASS), and co-expression/gene regulatory network reconstruction.
326 GWAS associations can colocalize with predicted sources of genetic variation that perturb causal
327  gene function or expression, thus providing a potential mechanism through which associations
328 impact disease. While bulk RNA-seq data has been the foundation of such analyses, SCRNA-seq
329 datacan provide valuable biological context by predicting the cell type in which causal genes are
330 affected. To inform BMD GWAS, the generation of population-scale transcriptomics data at
331 single-cel resolution in bone-relevant cell types can assist in the discovery of novel gene targets.
332 Here, we perform scRNA-seq on 80 DO mice to generate single-cell transcriptomics data of
333 mesenchymal cell types relevant to bone. Using these data, our goal was to prioritize putative
334  causal genes and provide biological context in which these genes potentially influence disease, at
335 cdl type-specific resolution. Through our pseudotemporal gene expression and network
336 analyses, we identified 21 networks governed by predicted differentiation driver genes (DDGs)
337 that have corresponding human BMD GWAS associations colocalizing with eQTL/sQTL in a
338 GTExtissue

339 We demonstrate that the BMSC-OB model serves as an effective method to enrich for
340 mesenchymal lineage cells, particularly bone-relevant cells. We characterized cells from 80 mice

341 and identified both osteogenic and adipogenic cells derived from the mesenchymal lineage, such
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342  astwo populations of osteoblasts (OB1 and OB2), osteocyte-like cells (Ocy), and MALPs. Our
343 trgjectory inference analysis identified three distinct trajectories in which mesenchymal
344  progenitor cells give rise to both osteogenic and adipogenic cell types, thus portraying
345 Dbiologically relevant and known paths of differentiation of mesenchymal progenitor cells.
346  Pseudotemporal gene expression was analyzed along each trajectory, in a cel type-specific
347 fashion, to identify genes that were changing the most as a function of pseudotime (tradeSeg-
348 identified genes). Subsequent cis-eQTL analysis indicated that the expression of some tradeSeg-
349 identified genes were associated with the relative proportion of cell types. While instances such
350 asthese were rare, they illustrate that the potential consequence of genetic variation impacting
351 the expression of tradeSeg-identified genes may impact differentiation and the abundances of
352 certain cel types along atrgectory.

353 To inform BMD GWAS, we utilized the scRNA-seq data in a network analysis to
354  contextualize causal genes (and their associated networks) by predicting the cell types through
355  which these genes are likely acting. Towards this goal, we generated cell type-specific Bayesian
356 networks from our BMSC-OB scRNA-seq data. Our approach was similar to our previous
357 network analyses where bulk RNA-seq data was leveraged to identify genes with strong
358  evidence of playing central rolesin networks'®**, In contrast, here we utilized sScRNA-seq data
359 to identify DDGs and prioritize networks based on the likelihood that they are involved in the
360 differentiation of mesenchymal lineage cells (based on network connections enriched for
361 tradeSeg-identified genes determined from inferred trgjectories). Leveraging our previous
362  work"*®, we prioritized DDGs if they were genes with BMD GWAS associations colocalizing
363  with human eQTL/sQTL in a GTEX tissue. Together, a gene being both a DDG and having BMD

364 GWAS associations that colocalize with eQTL/SQTL is strong support of causality.
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365 We identified 21 DDGs and associated networks, some of which have little to no known
366 prior connection to bone. We contextualize these causal genes and their networks by not only
367 providing cell type predictions in which they likely operate, but also providing information
368 regarding the biological processes they likely affect. For example, the Tpx2 network was
369 identified in LMPs differentiating along an osteogenic tragjectory. Tpx2 is a microtubule assembly
370  factor that interacts with spindle microtubules during cellular division®’. The expression of Tpx2
371 and its regulation is associated with osteosarcoma, as well as other cancers®. In our previous
372  study, Tpx2 was identified as a gene that has BMD GWAS associations that colocalize with
373  eQTL in the Testis GTEXx tissue’. While GTEx does not maintain bone tissue, eQTL are shared
374  across many tissues™; therefore, non-bone eQTL may exert their effects in cell types associated
375 with bone, such as LMPs, and evidence of a human eQTL effect indicates that genetic variation
376  can modulate the expression of Tpx2. Additionally, when knocked out by IMPC, Tpx2 exhibited
377 a significant increase in whole body BMD in mice, thus providing strong support for Tpx2
378 influencing the regulation of BMD in humans. In the surrounding gene neighborhood of the Tpx2
379  network, other genes can be associated with cellular division as well, such as Topoisomerase 2A
380 (Top2a) and the kinesin family (Kif) genes®®*°. Taken together, these results indicate a potential
381 role of Tpx2 as a mediator of BMD and genetic variation altering its expression could affect
382  microtubule maintenance during the expansion of osteogenic cell populations.

383 Additionally, the Fgfrl1 network was identified in LMPs differentiating along an
384  adipogenic trgectory. Fibroblast growth factor receptor-like 1 (Fgfril) is presumed to function
385 as adecoy receptor that interacts with FGF ligands necessary for FGF signaling™** and Fgfrl1
386 expression is suggested to play a role in both adipogenic and osteogenic differentiation*. Our

387  previous study also identified Fgfrl1, which has BMD GWAS associations that colocalize with
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388  eQTL in the cultured fibroblasts GTEx tissue™. In the neighborhood of the Fgfrl1 network, Lpl,
389  Plpp3, Igfbp4 have well-established roles in adipocyte function and metabolism® =2 however,
390 other genes can be associated with cilia, such as Cfap100, S5 (Denn2b), Mark1*™
391 Interestingly, the maintenance and remodeling of cilia is essential to the differentiation of
392  mesenchymal stem cells and pre-adipocytes (e.g., MALPS) while mature adipocytes lack cilia®.
393  Moreover, the inactivation of FGF signaling is associated with the length of primary cilia™.
394  Thus, genetic variation altering the expression of expression of Fgfrl1 may affect FGF signaling
395 to impact the maintenance of cilia and adipogenic differentiation. Additionally, given the
396 prioritization of MALPs in the CELLECT analysis and the well-established inverse relationship
397  between marrow adiposity and BMD**, skewed balance of LMP differentiation toward marrow
398 adipogenic cell fates may affect BMD. In summary, the Fgfrl1 network harbors genes involved
399 in adipogenic function, including cilia maintenance, which may contribute to LMP
400 differentiation along an adipogenic trgjectory. Together, these results indicate a potential role of
401  Fgfrl1 asamediator of BMD viaitsrolein adipogenic differentiation and maintenance of cilia.

402 Analyses performed here are not without limitations to consider. Our in vitro culturing
403 approach and the preparation of single cells for scRNA-seq could be sources of technical
404  variation in our study. Additionally, a pitfall of sScRNA-seq is the sparsity of the resulting data,
405 which yields an increased frequency of zero values for the expression of some genes in a
406  proportion of cells, also known as “drop-outs’’. While statistical approaches can be employed to
407  impute missing data, the accuracy of such methods and whether or not the resulting improvement
408 in transcriptomic signal recovery is enough to warrant such intervention is contentious™®*.
409 However, thisissue may be partially offset given the larger scale of the sScRNA-seq performed in

410 this study and the average expression approach performed for network and eQTL analysis.
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411  Another limitation of this study is that read alignment of the sScRNA-seq data did not account for
412 DO founder genetic variation in RNA transcripts, which could affect read mapping and gene
413  expression measurements. An additional limitation is that the BMSC-OB model does not capture
414  osteoclasts, another cell type associated with bone tissue. Importantly, results from our
415 CELLECT analysisindicate that BMD heritability was not enriched for genes whose expression
416 was more specific to osteoclast-like cells, however, these cdls likely represent immature
417  osteoclasts, as mature multinucleated cells would be too large to be captured for sequencing.
418 Lastly, while our study employed 80 DO mice, the issue of statistical power is still a limitation;
419  however, we demonstrate that the BMSC-OB modd is amenable to high throughput and the
420 inclusion of hundreds of mice, thus statistical power will be improved in future studies.

421 In summary, we showcase the use of large-scale scRNA-seq data to inform GWAS by
422  performing a network analysis to contextualize BMD GWAS associations. Through the use of
423  multiple single-cell analyses, we have expanded upon our understanding of the genetics of BMD.
424  Our work exemplifies the power of single-cell transcriptomics from large populations of
425  genetically diverse samples and our network approach for data analysis may guide future studies
426  to consder systems genetics strategies for the discovery of genetic determinants of disease.

427
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428 Methods
429
430 Sample preparation and scCRNA-seq
431
432 All animal procedures were conducted in compliance with the National Institutes of

433  Health Guide for the Care and Use of Laboratory Animals. The protocol for studies involving
434  Diversity Outbred mice (Protocol Number 3741) was reviewed and approved by the Institutional
435 Animal Care and Use Committee (IACUC) at the University of Virginia. We prepared our
436  samplesin the same fashion as performed previously in Al-Barghouthi and colleagues™. In brief,
437  bone marrow was extracted from the femurs of initially 77 DO mice (The Jackson Laboratory,
438  Strain: 009376) . BMSCs were grown to confluence after 3 days of incubation in 48-well plates
439  and then underwent in vitro osteoblast differentiation for 10 days with osteogenic differentiation
440 media(apha MEM, 10% FBS, 1% pen/strep, 1% Glutamax, 501ug/uL ascorbic acid [Sigma, St.
441  Louis, MO, USA], 100 InM B-glycerophosphate [Sigma], 10/ nM dexamethasome [Sigma)).
442  After differentiation, single cells were liberated from mineralizing cultures via incubations with
443 60CmM ethylenediaminetetraacetic acid pH 7.4 (EDTA [Thermo Fisher Scientific], made in
444  DPBS), 8'img/mL collagenase (Gibco) in HBSS4imM CaCl2 (Fisher), and 0.25% trypsin—
445 EDTA (Gibco). After single-cell isolation, cells from mice were pooled into groups containing
446  cdls from four to five mice total and concentrated to 800 cells/uL in PBS supplemented with
447  0.1% BSA (bovine serum albumin). Pooled single cells were prepared for sequencing using the
448  10x Chromium Controller (10x Genomics, Pleasanton, CA, USA) with the Single Cell 3" v2
449  reagent kit, according to the manufacturer’s protocol. Libraries were sequenced on the
450  NextSeg500 (Illumina, San Diego, CA, USA).

451

452  scRNA-seq analysis pipeline
453
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454 The data was subsequently processed using the 10x Genomics Cell Ranger toolkit
455 (version 5.0.0) using the GRCm38 reference genome™®. Using Seurat™ (version 4.1.0), a
456  combined Seurat object containing all cells was generated with the inclusion of features detected
457  inat least three cells and cells with at least 200 features detected. We used Souporcell® (version
458  2.0.0) to deconvolve the genotypes of all mice and to remove doublet cells. Cells were assigned
459  to their associated DO mouse by making a pairwise comparison between alele calls made by the
460 shared variants captured between Souporcell and GigaMUGA genotype arrays generated for all
461 mice in the cohort, as previous performed in Dillard and colleagues™. Cell derived from two
462  mice (176 and 244) were removed in some analyses due to poor genotyping of their respective
463  Souporcell clusters, thusyielding atotal of 75 DO mice from this study and 5 DO mice from our
464  previous study™ for atotal of 80 DO mouse biological replicates. We filtered out cells with more
465  than 6200 reads and less than 400 reads, as well as those cells with more than 10% mitochondrial
466 reads. Further, cells were removed if they expressed greater than 20% Rpl and 15% Rps reads,
467  which equates to cells approximately exceeding the 98 percentile. After filtering, 139,392 cells
468 remained and the resulting object underwent standard normalization, scaling, and the top 3000
469 features were modeled from a variance stabilizing transformation (V ST) using Seurat. Cell-cycle
470  markers based on Tirosh and colleagues™ were regressed out using the “CellCycleScoring” and
471  scaling functions. For subsequent dimensionality reduction, 15 principal components (PCs) were
472  summarized. Then, a kNN (kJ="120) graph was created and the Louvain algorithm was used to
473  cluster cells at a resolution of 0.5. Annotation of cell type clusters was performed manually
474  based on differential gene expression analysis using the Seurat “FindAllIMarkers’ function

475  (Supplementary File 1a).
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476 For subsequent WGCNA and eQTL mapping, transcriptomic profiles for each cell type
477 cluster were generated for each sample using a mean expression approach, as performed
478 similarly by others®. For each sample contributing at least 5 cells to a given cluster,
479  unnormalized unique molecular identifier (UMI) counts of gene expression for all cells in the
480 cluster for the sample were averaged and then rounded to the nearest hundredth decimal place. A
481  total of 80, 80, 77, 67, 50, 76, 80 mice contributed enough cells to the MPC, LMP, OBP, OB1,
482 0OB2, Ocy, and MALP cell type clusters, respectively. Genes with non-zero expression valuesin
483  fewer than 15 samples were removed. A total of 11971, 15162, 14857, 13674, 13825, 14136, and
484 14534 genes remained for the MPC, LMP, OBP, OB1, OB2, Ocy, and MALP clusters,
485  respectively. Samples were normalized by computing CPMs (counts per million) without log
486 transformation for each gene using edgeR> (version 4.0.7), then transformed via VST using

487 DESeq2” (version 1.42.0), and quantile normalized using preprocessCore (version 1.60.2).

488

489 Trajectory and tradeSeq Analysis

490

491 Trajectory inference analysis was performed using Slingshot™® (version 1.8.0) on the

492  mesenchymal lineage cell clusters (seven total) of the BMSC-OB scRNA-seq data. The starting
493  cluster was set as the MPC cluster upon the removal of a small outlier population of cells.
494  Trajectories were inferred using 15 PCs. TradeSeq®’ (version 1.4.0) was used to analyze gene
495  expression along the trajectories by fitting a negative binomial generalized additive model (NB-
496 GAM) to each gene using the “fitGAM” function with nknots = 10, which was determined by
497  using the “evaluateK” function. Prior to performing the tradeSeq analysis, the sScRNA-seq data
498 was downsampled to reduce the size of the dataset to approximately 10,000 cells (sampled at

499  random across all seven clusters).
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500 All cell type boundaries were established to encompass on average 78% of cells of a cell
501 cluster (Supplementary File 2a). To identify genes significantly changing between boundaries
502 in atrgectory-specific fashion, we first performed tradeSeq to compare gene expression within
503 each trgectory (two osteogenic, one adipogenic) to highlight genes with a significant difference
504  in expression between boundaries using the “startVsEndTest” function (Supplementary File 2a-
505 d). Next, we performed a global test with tradeSeq to compare gene expression between
506 trajectoriesin order to highlight genes exhibiting a significant difference in expression using the
507 “startVsEndTest” function (Supplementary File 2a, Supplementary File 2€). All tests were
508 performed with the log, fold change threshold (12fc) = 0.5. For all global and tragectory-specific
509 tests, the P-values associated with each gene were adjusted to control the false discovery rate
510 using the “p.adjust” function from the stats (version 4.2.1) R package and genes were filtered to

511 includethose with a P, < 0.05.

512

513 CELLECT Analyss

514

515 CELLECT® (CELL-type Expression-specific integration for Complex Traits) (version

516 1.1.0) was used to identify likely etiologic cell types underlying complex traits of both the
517 BMSC-OBs scRNA-seq data (Figure 1E, Supplementary File 1f). CELLECT P-values were
518 adjusted using the Bonferroni correction. CELLECT quantifies the association between the
519 GWAS signal and cdl type expression specificity using the S-.LDSC genetic prioritization
520 model®. Summary statistics from the UK Biobank eBMD and Fracture GWAS (Data Release
521 2018) and cell type annotations from each scRNA-seq data set were used as input. Cell type
522  expression specificities were estimated using CELLEX? (CELL-type EXpression-specificity)

523 (version 1.2.1) (Supplementary File 3g).
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524
525 ~WGCNA
526
527 Cdl type-specific mean expression matrices (as obtained above) were used as input to

528  generate signed co-expression network modules (Supplementary File 1g-h). IterativeWGCNA?
529  (version 1.1.6) was used from a Singularity container built from a Docker hub image™. A soft
530 threshold (power) of 14, which exceeded a R? threshold of 0.85 for al cell type clusters, was
531 sdected for module construction (Figure 2-figure supplement 1). Modules were generated
532 using iterativeWGCNA with default parameters for the “blockwiseModules’ function, a

533  minimum module size of 20 genes, minCoreKME = 0.7, and minKMEtoStay = 0.5.

534

535 Bayesan network learning

536

537 Bayesian networks were learned from each of the cell type-specific modules of co-

538  expressed genes with the bnlearn (version 4.8.3). Gene expression matrices containing the genes
539 for each module were used as input to the “mmhc” function which employs the Max-Min Hill
540 Climbing algorithm (MMHC) algorithm® to learn the underlying structure of the Bayesian
541 network. From the generated networks, igraph (version 1.6.0) was used to resolve 3-step
542  neighborhoods®. Nodes (genes) that were unconnected to a neighborhood or connected to only
543  one neighbor were removed. Neighborhoods were filtered to include those with a size greater
544  than 1 standard deviation from the mean across all neighborhoods generated for the network.

545 DDGs (differentiation driver genes) are genes that yield large 3-step neighborhoods that
546 are enriched (Py < 0.05) with tradeSeg-identified genes for a given cell type boundary. We
547 calculated whether each neighborhood contained more tradeSeg-identified genes (for the
548 neighborhoods associated cell type boundary) than would be expected by chance using the

549  hypergeometric distribution (“phyper” function) from the stats (version 4.2.1) R package. The
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550 arguments were as follows: g: (number of neighbors in a neighborhood that are also tradeSeg-
551 identified genesfor agiven cell type boundary) — 1; m: total number of tradeSeg-identified genes
552 for a given cel type boundary; n: (total number of identified neighborhoods) — m; k:
553 neighborhood size (total number of neighbors); lower.tail = false. P-values were adjusted to
554  control the false discovery rate using the “p.adjust” function from the stats (version 4.2.1) R
555  package. These pruning steps resulted in atotal of 408 DDGs and associated networks for all cell
556 types (Supplementary File 2h-k).
557 DO eQTL mapping
558
559 Prior to performing the eQTL analysis, DNA was extracted from the tails of the 80 DO
560 mice, using the PureLink Genomic DNA mini kit (Invitrogen) and genotyped using the
561 GigaMUGA array by Neogen Genomics (GeneSeek; Lincoln, NE). Processing and quality
562  control of genotype data, including calculation of genotype/allele probabilities, was performed
563  as previously described in Al-Barghouthi and colleagues™. Cell type-specific mean expression
564  matrices (as obtained above) for mesenchymal lineage clusters were used as input for the eQTL
565 mapping, which was performed using a linear mixed model (LMM) via the “scanl” function
566  from the qtl2® (version 0.30) R package with allowances for the following covariates: sex, age at
567 sacrifice (in days), weight, length, and DO mouse generation. To identify significant eQTL, we
568 calculated a LOD (logarithm of the odds) threshold; for each cell type cluster, we chose 50 genes
569 at random and then permuted them 1000 times using the “scanlperm” function from qtl2. We
570 established the LOD threshold of 9.68 and 9.49 for the autosomal chromosomes and X
571 chromosome, respectively, by taking the average of the median LOD across each cell type. A
572 total of 563 eQTL exceeded the LOD thresholds and were no more than 1[1Mbp from the

573 transcription start Site of the associated eGene (Supplementary File 2f).
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574
575 Cell type proportion analysis
576
577 To account for technical sources of variation often retained in scCRNA-seq, cell type

578 proportions were transformed using the arcsn (asin) square root transformation from the
579  speckle® R package (version 0.0.3). Tests of statistical significance were performed using the
580 propéller t-test and ANOVA functions with default parameters. Sex of the mice and the batch
581  each mouse was associated with for sequencing were modeled as covariates. Transformed values
582  were used as input for computing tests of statistical differences of cell type proportions between
583 mice, aswell as correlation to phenotypic traits (Supplementary File 1c-e).

584
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585 Data Availability Statement
586
587 The data that support the findings of this study are openly available in NCBI Gene

588 Expression Omnibus database with accession codes GSE152806 and GSE269583. Processed
589 scRNA-seq dataavailable on Zenodo at https.//zenodo.org/records/15299631.

590
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593 Codefor analysisis available on GitHub at https://github.com/Farber-Lab/DO80_project.
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607 Figure Legends

608

609 Figure 1. Analysisof single cell RNA-seq (scRNA-seq) data for BM SC-OBs derived from
610 80 Diversity Outbred (DO)

611  (A) Uniform Manifold Approximation and Projection (UMAP) of 139,392 single cells (BMSC-
612 OBs). Cell numbers and corresponding percentages for the fifteen (15) annotated cell clusters are
613 listed in parenthesis to the right of the annotated cluster name. (B) Dot plot®® portraying
614 representative and highly expressed genes for all annotated cell clusters. Dot color indicates the
615 scaled gene expression while the size of the dot corresponds to the percentage of cells of a given
616 cluster that express a given gene. (C) The raw proportional abundances of seven (7)
617 mesenchymal cell clusters and one (1) cluster (Hem) representing the remain cells (i.e., mainly
618 hematopoietic immune cells) across all 80 DO mice. (D) UMAP plots for mesenchymal lineage
619 cell clusters for DO mouse 50 and DO mouse 233. (E) CELLECT (CELL-type Expression-
620 gpecific integration for Complex Traits) cell type prioritization results displaying the Bonferroni
621 adjusted P-values for the cel clusters. The OB1, Ocy, and MALP cell clusters (red) were
622  significantly enriched (Pa < 0.05, red dashed line) for BMD heritability (Px = 0.018, 0.010,
623  0.006, respectively).

624

625 Figure 2. Overview of the network analysis pipeline

626 Sep 1: For al seven (7) of the mesenchymal lineage cell clusters (MPC, LMP, OBP, OB1, OB2,
627 Ocy, MALP), cell type-specific co-expression modules were generated using iterative Weighted
628 Gene Co-expression Network Analysis (iterativeWGCNA). Step 2: Bayesian networks were
629 learned to generate directed networks and model causal interactions between co-expressed genes.
630 Sep 3: Differentiation Driver Genes (DDGs) were identified by extracting subnetworks (i.e.,
631 large 3-step neighborhood) for each gene in each cell type-specific Bayesian network and
632 highlighting those subnetworks that were enriched (Pag 1<[10.05) for trajectory-specific
633 tradeSeq genes for the cell type boundary. Step 4. DDGs (and associated networks) were
634 prioritized if the DDG was identified previously as an expression/splicing quantitative trait loci
635 (eQTL/sQTL) that colocalized with BMD GWAS associations. Created with Biorender.com.

636

637 Figure 3. Pseudotime Trajectory Inference analyss and establishment of cel type
638 boundariesfor tradeSeq analysis

639 (A) Three (3) trgjectories (two adipogenic, one adipogenic) were inferred from the mesenchymal
640 cdl clusters of the BMSC-OB scRNA-seq data using Slingshot. All trajectories originate from
641 the MPC and end in either osteogenic (Ocy, OB2) or adipogenic (MALP) cell fates. (B) For each
642 of the traectories, cell type boundaries were generated using pseudotime values along the
643 traectories, which encompass the majority of cells of a cell type mapping to their respective
644  trgectory. (C) Normalized gene expression of select genes associated with each cluster are
645 represented in feature plots (top) and each gene plotted as a function of pseudotime (bottom) for
646 all pseudotime trgectories (color corresponds to cell type annotation observed throughout).
647 Vertical lines (red) represent the cell type (pseudotime) boundaries established for each cell type
648 (label). The cell type boundary for OB1 and OB2 are represented as one red line/label for
649  visualization purposes.

650

651

652
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653 Figure 4. TradeSeg-identified genes associated with BM SC-OB differentiation exhibit

654 eQTL effects.

655 (A) Pkm was identified as a significant global tradeSeg-identified gene (Py = 8.35 x 10°®) for
656 LMP cdls along an osteogenic trgjectory (LMP_to OBP) (left). S100al was identified as a
657 significant global tradeSeg-identified gene (P.g = 0.023) for OBP cells along osteogenic
658 trgectory 1 (OBP_to OB1) (right). (B) Plots indicating the cell type-specific expression
659 quantitative trait loci (eQTL) signal for both Pkm and S100al. A negative eQTL effect on Pkm
660 expression was observed in LMPs for Diversity Outbred (DO) mice with a PWK haplotype
661 background at the Pkm locus (left). A positive eQTL effect on the expression of S100al was
662 observed in OBPs for DO mice with a 129 haplotype background at the S100al locus, while a
663 negative effect was observed for NZO mice (right). (C) The expression of Pkm and S100al
664 based on DO mouse (expression values transformed via variance stabilizing transformation
665 (VST), as described in Methods). Genotype abbreviations correspond to DO haplotype
666 background (legend) at the respective gene locus. Mice with at least one PWK allele (genotype
667  abbreviation G) tend to have decreased expression of Pkm (left). Mice with at least one 129 allele
668 (genotype abbreviation C) tend to have increased expression of Sl100al, while NZO mice
669 (genotype abbreviation E) have decreased expression (right). (D) PWK mice had a significant
670 reduction in mature osteoblasts (OB1) and osteocyte-like cells (Ocy) proportions relative to other
671 mice (P = 0.030 and P = 0.026, respectively; t-test), while LMP proportions were unaffected.
672 Asterisks represent any of the other haplotype backgrounds. 129 mice showed a significant
673 decrease in LMP proportion and increase in OB1 proportion (P = 0.008 and P = 0.016,
674  respectively; t-test), but OBP proportions were unaffected. No significant effects on cell type
675  proportions were observed in NZO mice (Figure 4-figure supplement 1).

676

677 Figure 5. Fgfrl1 and Tpx2 are prioritized DDGs and putative driver s of mesenchymal

678 differentiation.

679 (A) Fofrll was identified as a Differentiation Driver Gene (DDG) of a network for LMPs
680 differentiating along an adipogenic trajectory. The network is enriched (P = 7.5 X 10 for
681 traectory-specific tradeSeg-identified genes for the LMP_to MALP céll type boundary (Hnnt,
682 S5, Igfbp4, Cyplbl, Pdzrn4, Markl). Fgfrl1 was previous identified as a gene that has BMD
683 GWAS associations that colocalize with an eQTL in the cultured fibroblast GTEX tissue. (B) An
684 increase in the expression of tradeSeg-identified genes coincides with the LMP_to MALP cell
685 type boundary in which they were identified as significant. (C) Tpx2 was identified asa DDG of
686 anetwork for LMPs differentiating along an osteogenic trajectory. The network is enriched (Pag
687 = 5.7 x 107) for tradeSeg-identified genes for the LMP_to OBP cell type boundary (Tpx2,
688 Top2a, Kif4, lqgap3, Prcl, Kifll, Ect2, Sgo2a, Ube2c). Tpx2 is both a tradeSeq gene and
689 previoudy identified as a gene that has BMD GWAS associations that colocalize with an eQTL
690 in the Testis GTEXx tissue. (D) An increase in the expression of tradeSeg-identified genes
691 coincides with the LMP_to OBP cell type boundary in which they were identified as significant.
692 (E) Box plot displaying whole-body bone mineral density (BMD) measurements (excluding
693  skull) from the International Mouse Knockout Consortium (IMPC) for Tpx2 mutant mice, which
694  exhibited a significant increase in BMD (Genotype P-value = 1.03 x 10 in both male and
695 femalemice (N =8 (M) and 8 (F) mutants; N = 2574 (M) and 2633 (F) controls)

696
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Supplementary Figure Legends

Figure 1-figure supplement 1: Plots displaying the distribution of the total number of cells from
each mouse (N = 80). A) Density plot portraying the distribution of the total number of cells
from each mouse after processing of the scRNA-seq data. B) Boxplot displaying the distribution
of the total number of cells for each mouse (Min: 723, 1st Qu: 1316, Median: 1690, Mean: 1742,
3rd Qu: 2118, Max: 3652). C) Quantile-quantile plot (Q-Q plot) with 95% confidence interval.
Shapiro-Wilk normality test: p-value = 0.1061; W = 0.97425.

Figure 2-figure supplement 1. Scale Free Topology and Mean Connectivity graphsfor the cell
type-specific iterativeWGCNA analysis. A soft thresholding power of 14 was selected for the
generation of all co-expression modules for al clusters, which was the point at which R2
exceeded athreshold of 0.85

Figure 4-figure supplement 1: Tests of significance for cell type proportions for NZO mice.
Mice with at least one NZO allele at the S100al locus (N = 14) had no significant difference in
cell type proportions (P > 0.05; t-test) as compared mice with other DO haplotype background at
thislocus. Asterisks represent any of the other haplotype backgrounds.
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717 Supplementary File L egends

718

719  Supplementary File 1a: Differentially Expressed Genes (DEGs) for all clusters of the BMSC-
720 OB scRNA-seq cell clusters. DEGs were calculated on all clusters of the BMSC-OB scRNA-seq
721  datausing the FindAlIMarkers function from the Seurat R package.

722

723  Supplementary File 1b: Differentially Expressed Genes (DEGS) between the OB1 and OB2
724  clusters of the scRNA-seq data. DEGs were calculated using the FindM arkers function from the
725  Seurat R package. Positive values for average 1og2 fold change (avg_log2FC) indicate that a
726  geneismore highly expressed in OB1.

727

728  Supplementary File 1c: BMSC-OB cell type proportion analysis for the 80 DO mice. The raw
729  proportions (top) and asi n-transformed proportions (bottom) of each of the BMSC-OB cell types
730 werecalculated from the total number of cells contributed by each mouse using the Propeller R
731 package. All non-mesenchymal lineage cell types (i.e., Hematopoietic lineage cells) are

732  aggregated as a group (Hem) for each mouse.

733

734  Supplementary File 1d: Correlation of cell proportions to bone trait metrics captured from the
735 80 DO mice. Raw (top) and transformed (bottom) cell type proportions were correlated using
736  Pearson and Spearman to bone trait metrics (55 total) captured on all mice from the 80 DO mice.
737

738  Supplementary File 1e: Bonetrait abbreviations and units of measurement.

739

740  Supplementary File 1f: CELLECT cell type prioritization table. Betais regression effect size
741  estimate for given annotation. Beta SE is the standard error for the regression coefficient. Thep
742  valueisthe one-sided test (beta > 0) association between bone mineral density (BMD) genome
743  wide association study (GWAS) signal heritability and each annotated cell type. P values were
744  adjusted using the Bonferroni correction method. MALP = marrow adipogenic lineage

745  precursors; Ocy = osteocyte-like cell; OB1 = osteoblast population 1; MPC = mesenchymal

746  progenitor cell; LMP = late mesenchymal progenitor; OBP = osteoblast progenitor; OB2 =

747  osteoblast population 2; EC = endothelial cell; MF1 = macrophage population 1, MO =

748  Monocyte;, BC = B-cdll; GC = granulocyte; OC = osteoclast-like cell; TC = T-cdll; MF2 =

749  macrophage population 2.

750

751 Supplementary File 1g: Summary of results from the iterativeWGCNA analysis. A total of 535
752  co-expression modules were generated using the mesenchymal lineage cell clusters (7 total) of
753 the BMSC-OB stRNA-seq data, yielding an average of 76 modules per cell cluster. A total of
754 8810 Bayesian networks were generated from the co-expression modules.

755

756  Supplementary File 1h: Genes within each module generated from the iterativeWGCNA
757 anaysis.

758

759  Supplementary File 2a: Summary of tradeSeg-identified genes. For each cell type (pseudotime)
760  boundary associated with a specific trajectory (9 total), a global and trajectory- specific test was
761 performed using the startVsEndTest function from the tradeSeq R Package. The number of genes
762 identified for each test and for each boundary are displayed, as well as the number of tradeSeg-
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763  identified genes that were also identified as eGenes from the eQTL mapping of the 80 DO mice
764  (73tota).

765

766  Supplementary File 2b: TradeSeg-identified genes from the trajectory-specific analysis for
767  Osteogenic Trajectory 1. All significant trgectory-specific tradeSeg-identified genes

768 (P 1<110.05) across all cell type boundaries (5 total; MPC, LMP, OBP, OB1, Ocy) associated
769  with Osteogenic Trgectory 1. Associated eQTL information is also displaced for the geneif it
770  wasan eGeneidentified in the cell type from the cell type-specific eQTL analysis (if “NA” is
771  present, the gene was not identified as an eGene).

772

773  Supplementary File 2c: TradeSeg-identified genes from the trajectory-specific analysis for
774  Osteogenic Trajectory 2. All significant trgectory-specific tradeSeg-identified genes

775  (Pag1<[10.05) across all cell type boundaries (2 total; OBP, OB2) associated with Osteogenic
776  Traectory 2. Associated eQTL information is also displaced for the geneiif it was an eGene
777  identified in the cell type from the cell type-specific eQTL analysis (if “NA” is present, the gene
778  wasnot identified as an eGene).

779

780 Supplementary File 2d: TradeSeg-identified genes from the trajectory-specific analysis for the
781  Adipogenic Trajectory. All significant tragectory-specific tradeSeg-identified genes

782  (Paj 1<[10.05) across all cell type boundaries (2 total; LMP, MALP) associated with the

783  Adipogenic Trajectory. Associated eQTL information is also displaced for the geneif it was an
784  eGeneidentified in the cell type from the cell type-specific eQTL analysis (if “NA” is present,
785  the gene was not identified as an eGene).

786

787  Supplementary File 2e: TradeSeg-identified genes from the global analysis. All significant
788  global tradeSeg-identified genes (Pag /<[10.05) across al cell type (pseudotime) boundaries (9
789 total). Associated eQTL information is also displaced for the geneif it was an eGene identified
790 inthe cdl type from the cdll type-specific eQTL analysis (if “NA” is present, the gene was not
791 identified asan eGene).

792

793  Supplementary File 2f: Results from the cell type-specific eQTL analysis on the mesenchymal
794 lineage cdll typesidentified in the sScCRNA-seq data from the 80 DO mice. All significant eQTL
795 (LOD > 9.68 for autosomal chromosomes; LOD > 9.49 for X chromosome) and eGenes for the
796  mesenchymal cell clusters (563 total). Chr = chromosome of eQTL, Pos=eQTL peak position,
797  LOD =logarithm of the odds score, ci (low/hi) = LOD support intervals, Start = start position of
798 gene (GRCm38), End = end position of gene (GRCm38), dist_start = distance of eQTL to start.
799

800 Supplementary File 2g: Results from tests of significance for cell type proportions. Tests of
801 significance on the transformed cell type proportions were performed using the Propeller R

802 package and nominal p-values are reported. Sample batch (pool containing cells from micein
803  preparation for sScRNA-seq) and sex were modeled as covariates. For the Pkm example, a T-test
804  was performed for all mice with at least one PWK haplotype background (PWK/*; asterisk

805 meaning any DO haplotype) at a Pkm locus (n = 15) against all remaining mice (n = 65). For the
806 S100al example, a one-way ANOV A was performed on four groups: mice with at least one
807  129/* haplotype background (n = 26) or NZO/* (n = 10), heterozygous for both (129/NOZ, n =
808 4), or any other DO haplotype background at the locus (n = 40). Additionally, T-tests were
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809 performed on the 129/* and NZO/* haplotype background individually against al other mice
810 aggregated as a group.

811

812 Supplementary File 2h: Summary of Differentiation Driver Gene (DDG) network analysis. The
813  number of DDGs and associated networks that were enriched (Py! /<[ 10.05) with more genesin
814 thetrgectory-specific tradeSeq genes for each cell type boundary (408 total). The number of
815 DDGsthat had a corresponding human homolog with a human BMD GWAS association (that
816  colocalizes with expression and/or splicing quantitative trait loci (eQTL/sQTL) from the

817  Genotype-Tissue Expression (GTEX) Project) are also displayed (26 total, 21 distinct). Three of
818 the DDGswere aso tested by the IMPC and had a significant BMD phenotype when knocked
819 out.

820

821 Supplementary File 2i: All significant DDG network analysis for Osteogenic trgjectory 1 (178
822 total). The enrichment of each DDG Bayesian network for tradeSeg-identified genes (identified
823  for each cdl type boundary along Osteogenic Linage 1) are displayed as nominal and adjusted P-
824  values, aswell asthe co-expression module in which the DDG was identified. The data can be
825 filtered to highlight DDGs that are: a tradeSeg-identified gene for the cell boundary, a gene that
826 wasidentified by Al-Barghouthi et al. (2022) as having eQTL that also colocalizes with BMD
827 GWAS associations, a gene that was identified by Abood et al. (2023) as having sQTL that also
828  colocalizes with BMD GWAS associations, a gene that was tested by the IMPC and had a

829 dignificant effect on BMD when knocked out, or gene that was identified here as an eGene in the
830 cdl type-specific eQTL analysis using the 80 DO scRNA-seq data. Other columns of the data
831 contain information at the network level: Number_neighbors = number of nodes (genes) in

832 Bayesian network, Number_tradeSeq gene neighbors = number of genes that were al'so

833 tradeSeg-identified genes for the cell type boundary, All network neighbors = all genesin

834 network, Neighbors eQTL_Al Barghouthi = all genesin the network that were identified from
835 Al-Barghouthi et al. (2022), Neighbors sQTL_Abood = all genesin the network that were

836 identified from Abood et a. (2023), Neighbors IMPC_BMD_gene = all genesin the network
837 that weretested by the IMPC and had a significant effect on BMD when knocked out,

838 Neighbors DO_eGene = al genesin the network that was identified here as an eGene in the cell
839 type-specific eQTL analysis using the 80 DO scRNA-seq data,

840 Neighbors tradeSeq gene for_boundary = all genes that were also tradeSeg-identified genes for
841 thecdl type boundary.

842

843  Supplementary File 2j: All significant DDG network analysis for Osteogenic trajectory 2 (55
844  total). The enrichment of each DDG Bayesian network for tradeSeg-identified genes (identified
845 for cell type boundary along Osteogenic Linage 2) are displayed as nominal and adjusted P-

846  values, aswell asthe co-expression module in which the DDG was identified. The data can be
847 filtered to highlight DDGs that are: a tradeSeg-identified gene for the cell boundary, a gene that
848 wasidentified by Al-Barghouthi et al. (2022) as having eQTL that also colocalizes with BMD
849 GWAS associations, a gene that was identified by Abood et al. (2023) as having sQTL that also
850 colocalizes with BMD GWAS associations, a gene that was tested by the IMPC and had a

851 significant effect on BMD when knocked out, or gene that was identified here as an eGenein the
852  cdll type-specific eQTL analysis using the 80 DO scRNA-seq data. Other columns of the data
853  contain information at the network level: Number_neighbors = number of nodes (genes) in

854  Bayesian network, Number_tradeSeq gene neighbors = number of genes that were also
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855 tradeSeg-identified genes for the cell type boundary, All network neighbors = all genesin

856 network, Neighbors eQTL_Al_ Barghouthi = all genesin the network that were identified from
857  Al-Barghouthi et al. (2022), Neighbors sQTL_Abood = all genesin the network that were

858 identified from Abood et a. (2023), Neighbors IMPC_BMD_gene = all genesin the network
859 that weretested by the IMPC and had a significant effect on BMD when knocked out,

860 Neighbors DO_eGene = al genesin the network that was identified here as an eGenein the cell
861 type-specific eQTL analysis using the 80 DO scRNA-seq data,

862 Neighbors tradeSeq gene for_boundary = all genes that were also tradeSeg-identified genes for
863 the cdl type boundary

864

865 Supplementary File 2k: All significant DDG network analysis for the Adipogenic trajectory
866 (175total). The enrichment of each DDG Bayesian network for tradeSeg-identified genes

867  (identified for cell type boundary along the Adipogenic trajectory) are displayed as nominal and
868 adjusted P-values, aswell as the co-expression module in which the DDG was identified. The
869 datacan befiltered to highlight DDGs that are: a tradeSeg-identified gene for the cell boundary,
870 agenethat wasidentified by Al-Barghouthi et a. (2022) as having eQTL that also colocalizes
871 with BMD GWAS associations, agene that was identified by Abood et al. (2023) as having

872  SQTL that also colocalizes with BMD GWAS associations, a gene that was tested by the IMPC
873 and had asignificant effect on BMD when knocked out, or gene that was identified here as an
874  eGeneinthe cdl type-specific eQTL analysis using the 80 DO scRNA-seq data. Other columns
875  of the data contain information at the network level: Number_neighbors = number of nodes

876  (genes) in Bayesian network, Number_tradeSeq gene neighbors = number of genesthat were
877  also tradeSeg-identified genes for the cell type boundary, All network neighbors = all genesin
878 network, Neighbors eQTL_Al_Barghouthi = al genesin the network that were identified from
879  Al-Barghouthi et al. (2022), Neighbors sQTL_Abood = all genesin the network that were

880 identified from Abood et al. (2023), Neighbors IMPC_BMD _gene = all genesin the network
881 that weretested by the IMPC and had a significant effect on BMD when knocked out,

882 Neighbors DO_eGene = al genesin the network that was identified here as an eGenein the cell
883 type-specific eQTL analysis using the 80 DO scRNA-seq data,

884 Neighbors tradeSeq gene for_boundary = all genes that were also tradeSeg-identified genes for
885  the cdl type boundary

886

887  Supplementary File 3a: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs

888 identified for the LMP to OBP cdll type boundary (Osteogenic trajectory 1).

889

890 Supplementary File 3b: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs

891 identified for the OBP to OB1 cell type boundary (Osteogenic trajectory 1).

892

893  Supplementary File 3c: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs

894 identified for the OBPto OB2 cell type boundary (Osteogenic trgjectory 2).

895

896 Supplementary File 3d: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs

897 identified for the LMPto MALP cell type boundary (Adipogenic trajectory).

898

899  Supplementary File 3e: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs

900 identified for the MALP to the end (of the trajectory) cell type boundary (Adipogenic trgectory).
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Supplementary File 3f: Prioritized DDG network analysis for the Adipogenic trajectory (26
total, 21 digtinct). The enrichment of each prioritized DDG Bayesian network for
tradeSeqidentified genes (identified for the cell type boundary along the associated trajectory)
are displayed as nominal and adjusted P-values, as well as the co-expression module in which the
DDG was identified. The data can befiltered to highlight DDGs that are: a tradeSeg-identified
gene for the cell boundary, a gene that was identified by Al-Barghouthi et al. (2022) as having
eQTL that also colocalizes with BMD GWAS associations, a gene that was identified by Abood
et al. (2023) as having sQTL that also colocalizes with BMD GWAS associations, a gene that
was tested by the IMPC and had a significant effect on BM D when knocked out, or gene that
was identified here as an eGenein the cell type-specific eQTL analysis using the 80 DO
scRNAseq data. Other columns of the data contain information at the network level:
Number_neighbors = number of nodes (genes) in Bayesian network,
Number_tradeSeq _gene neighbors = number of genes that were also tradeSeqg-identified genes
for the cell type boundary, All network neighbors = all genes in network,

Neighbors eQTL_Al_Barghouthi = all genesin the network that were identified from Al-
Barghouthi et al. (2022), Neighbors sQTL_Abood = all genes in the network that were identified
from Abood et a. (2023), Neighbors IMPC_BMD_gene = all genesin the network that were
tested by the IMPC and had a significant effect on BMD when knocked out,
Neighbors DO _eGene = all genes in the network that was identified here as an eGenein the cell
type-specific eQTL analysis using the 80 DO scRNA-seq data,

Neighbors _tradeSeq gene for_boundary = all genes that were also tradeSeg-identified genes for
the cell type boundary

Supplementary File 3g: Expression Specificity scores (ESu) scores for each gene for each cell
cluster of the BMSC-OB scRNA-seq data for the 80 DO mice. ESu scores are generated during
the CELLEX portion of the CELLECT analysis pipeline. ESu values rangefrom 0 to 1 and are a
gene’ s marginal likelihood of being specifically expressed in agiven cell type, where 1 isthe
most specific and 0 is not specific.
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