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Summary 22 
 23 
Genome-wide association studies (GWASs) have identified many sources of genetic variation 24 

associated with bone mineral density (BMD), a clinical predictor of fracture risk and 25 

osteoporosis. Aside from the identification of causal genes, other difficult challenges to 26 

informing GWAS include characterizing the roles of predicted causal genes in disease and 27 

providing additional functional context, such as the cell type predictions or biological pathways 28 

in which causal genes operate. Leveraging single-cell transcriptomics (scRNA-seq) can assist in 29 

informing BMD GWAS by linking disease-associated variants to genes and providing a cell type 30 

context for which these causal genes drive disease. Here, we use large-scale scRNA-seq data 31 

from bone marrow–derived stromal cells cultured under osteogenic conditions (BMSC-OBs) 32 

from Diversity Outbred (DO) mice to generate cell type-specific networks and contextualize 33 

BMD GWAS-implicated genes. Using trajectories inferred from the scRNA-seq data that map 34 

cell state transitions, we identify networks enriched with genes that exhibit the most dynamic 35 

changes in expression across trajectories. We discover 21 network driver genes, which are likely 36 

to be causal for human BMD GWAS associations that colocalize with expression/splicing 37 

quantitative trait loci (eQTL/sQTL). These driver genes, including Fgfrl1 and Tpx2, along with 38 

their associated networks, are predicted to be novel regulators of BMD via their roles in the 39 

differentiation of mesenchymal lineage cells. In this work, we showcase the use of single-cell 40 

transcriptomics from mouse bone-relevant cells to inform human BMD GWAS and prioritize 41 

genetic targets with potential causal roles in the development of osteoporosis. 42 

 43 

  44 
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Introduction 45 
 46 

Osteoporosis is a complex disease characterized by low bone mineral density (BMD), 47 

bone fragility, and an increased risk of fracture1. BMD, a highly heritable trait, is one of the most 48 

important clinical predictors of osteoporotic fracture2,3. Increasing our understanding of the 49 

genetic basis of BMD is critical for the development of approaches for the treatment and 50 

prevention of osteoporosis. In recent years, genome-wide association studies (GWAS) have 51 

made great progress in unraveling BMD genetics by identifying over 1,100 independent 52 

associations4. Now the challenge lies in pinpointing causal genes, which is necessary for the 53 

translation of genetic findings into novel therapies.  54 

A number of approaches exist to identify genes responsible for GWAS associations5–8. 55 

Most rely on population-based “-omics” data9, which are scarce for human bone, to connect 56 

associations to causal genes. Our group has used co-expression networks generated from mouse 57 

bone transcriptomic datasets to assist in the identification of genes likely responsible for BMD 58 

associations. One significant advantage of this approach is its ability to utilize the network 59 

connections of candidate genes to predict how these candidate genes may affect BMD. For 60 

example, we generated co-expression networks from bone tissue and primary osteoblasts in 61 

mouse genetic reference populations and identified multiple co-expression modules enriched 62 

with genes located in BMD associations10,11. We then cross-referenced genes in these modules 63 

with those regulated by co-localizing expression quantitative trait loci (eQTLs) from the Gene-64 

Tissue Expression project (GTEx)12,13 to identify "high priority" genes. Recently, we expanded 65 

our analyses to include directed networks generated via a Bayesian approach using cortical bone 66 

RNA-seq data from 192 Diversity Outbred (DO) mice. By combining key driver analysis and 67 
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GTEx eQTL colocalization data, we identified 19 novel genes, such as SERTAD4 and GLT8D2, 68 

which are likely causal for human BMD GWAS associations14. 69 

To date, our analyses have been reliant on networks generated from heterogeneous bulk 70 

transcriptomics (RNA-seq) datasets from mouse bone and primary bone cells. However, 71 

leveraging single-cell transcriptomics (scRNA-seq) data would offer the added benefit of 72 

resolving the transcriptomic profiles of discrete cell types. Additionally, using scRNA-seq data 73 

has the potential to provide context by predicting the specific cell types in which causal genes 74 

and their associated networks operate. In recent work, we demonstrated the utility of bone 75 

marrow-derived stromal cells cultured under osteogenic condition (BMSC-OB) for the 76 

generation of population-scale scRNA-seq data on bone relevant cell types15. The BMSC-OB 77 

model effectively enriches for mesenchymal lineage cells (e.g., mesenchymal progenitors, 78 

osteoblasts, osteocyte-like cells) that are highly relevant to the regulation of BMD.  79 

In this work, our goal was to prioritize and contextualize genes implicated by BMD 80 

GWAS using an expanded large-scale (N=80) BMSC-OB scRNA-seq dataset on bone cell types. 81 

We accomplished this by first generating co-expression and Bayesian networks14 for each 82 

BMSC-OB mesenchymal cell type. We subsequently prioritized networks based on their 83 

enrichment for genes exhibiting the most dynamic changes in expression across trajectories 84 

inferred from the scRNA-seq data, thus highlighting networks likely associated with the 85 

differentiation of BMSC-OBs. We then used these networks linked to osteogenic differentiation 86 

to prioritize genes with eQTL and/or splicing quantitative trait loci (sQTL) which colocalize with 87 

BMD GWAS associations7,16. In doing so, this analysis provides additional support for a role of 88 

these genes in the regulation of BMD and highlights their potential roles in differentiation of cell 89 

types essential to skeletal health. 90 
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 91 
 92 
Results 93 
 94 
BMSC-OBs derived from DO mice yield diverse cell types that are enriched for 95 
mesenchymal lineage cells: 96 
 97 

We cultured BMSCs from a total of 80 Diversity Outbred (DO) mice, a genetically 98 

diverse outbred mouse population17,18 (N=75 from the current study and N=5 from15; N�=�49 99 

male and N�=�31 females). We cultured BMSCs under osteogenic conditions and subsequently 100 

performed scRNA-seq, as described in15. After stringent processing and quality control 101 

(Materials and Methods), the dataset consisted of 21,831 expressed genes across 139,392 cells. 102 

We manually annotated 15 clusters ranging in size from 270 to 27,291 cells and identified cell 103 

types of the mesenchymal lineage as well as various other cell types (Figure 1A, 104 

Supplementary File 1a, Figure 1-figure supplement 1). 105 

Based on our prior BMSC-OB scRNA-seq study15, we expected to identify a large 106 

proportion of mesenchymal cells and a smaller fraction of non-mesenchymal cell types. 107 

Consistent with this hypothesis, clusters associated with mesenchymal lineages accounted for 108 

74.1% of all cells (Figure 1A). These included mesenchymal progenitor cells (MPCs), late 109 

mesenchymal progenitors (LMPs), osteoblast progenitors (OBPs), two mature osteoblast 110 

populations (OB1 and OB2), osteocyte-like cells (Ocy), and marrow adipogenic lineage 111 

progenitors (MALPs). The non-mesenchymal cell types observed included macrophages, 112 

monocytes, granulocytes, T-cells, B-cells, endothelial cells, and osteoclast-like cells (Figure 113 

1A). With regards to the mesenchymal cell types, the only differences in cell clusters relative to 114 

our previous report15 were the presence of MPCs and two mature osteoblast clusters. Upon 115 

comparing the two distinct osteoblast clusters, OB1 and OB2 (Figure 1A), both clusters had 116 

ubiquitous expression of genes associated with mature osteoblasts (e.g., Col1a1, Bglap, Sparc, 117 
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and Ibsp) (Supplementary File 1a) while many of the “canonical” osteoblast markers were 118 

more highly expressed in OB1 compared to OB2 (Supplementary File 1b). Interestingly, MPCs 119 

did not have transcriptomic profiles similar to other mesenchymal progenitor cells previously 120 

identified by our group or others15,19. All other mesenchymal cell types demonstrated specific 121 

expression of canonical marker genes (Figure 1A, B).  122 

We next assessed the variability in cell type frequencies across DO mice by quantifying 123 

the proportions of each annotated mesenchymal cell type. All other clusters, which mainly 124 

consisted of immune cells of hematopoietic origin, were aggregated into one group (Hem) for 125 

each mouse. We observed high variability in the raw proportional abundances of cell types 126 

derived from each mouse (Figure 1C, Supplementary File 1c). For example, the proportions of 127 

osteoblasts (OB1 and OB2) varied significantly among individual DO mice (Figure 1D). All 128 

mice used in the current experiment had been extensively phenotyped for a wide range of bone 129 

traits (microCT, histomorphometry, biomechanical bone properties, etc.) as part of a previous 130 

genetic analysis of bone strength14. We correlated cell type frequencies with bone traits, 131 

however, none of the cell type proportions were strongly correlated with any bone trait 132 

(Supplementary File 1d-e). 133 
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Figure  1. Analysis of single cell RNA-seq (scRNA-seq) data for BMSC-OBs derived from134 
80 Diversity Outbred (DO) mice. 135 

7
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Mesenchymal lineage cells are enriched in BMD heritability: 136 
 137 

The primary goal of this work was to prioritize and contextualize genes implicated by 138 

BMD GWAS. As a first step towards this goal, we sought to determine which cell types were the 139 

most relevant to the genetics of BMD.  Using the BMD GWAS and the BMSC-OB scRNA-seq 140 

data, we performed a CELLECT20 cell type prioritization analysis to identify cell clusters 141 

enriched for BMD heritability. We observed that OB1, Ocy, and MALP cell clusters were 142 

significantly enriched (Padj < 0.05, red dashed line) for BMD heritability (Padj = 0.018, 0.010, 143 

0.006, respectively) (Figure 1E, Supplementary File 1f). None of the non-mesenchymal cells 144 

identified were significant (Padj > 0.05) (Figure 1E). As a result, all downstream efforts focused 145 

solely on using data on mesenchymal cell types to inform GWAS. 146 

 147 

Generating mesenchymal cell type-specific Bayesian networks to inform BMD GWAS: 148 
 149 

We have previously shown that network-based approaches using bulk RNA-seq are 150 

powerful tools for the identification of putative causal genes from BMD GWAS data10,11,14. Here, 151 

our goal was to apply these same approaches using the BMSC-OB scRNA-seq data to prioritize 152 

and contextualize genes we previously identified as having a colocalizing expression quantitative 153 

trait locus (eQTL; N=512) or splicing QTL (sQTL; N=732) in a tissue from the Genotype-Tissue 154 

Expression (GTEx) project7,13,16. Genes identified in each study (or both) yielded a list of high 155 

priority target genes (N = 1,037). While GTEx does not currently contain data for bone tissue, 156 

eQTL can be shared across many tissues and may exert their effects in cell types resident to 157 

bone21. Therefore, utilizing our previous work, we hypothesized that generating cell type-specific 158 

networks would yield more biologically relevant representations of processes occurring within 159 

particular mesenchymal cell types. Additionally, by integrating GWAS, cell type-specific 160 
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networks, and dynamic gene expression as a function of differentiation, we anticipated we would 161 

identify points of intervention in which genetic variation impacts genes involved in the 162 

differentiation process. 163 

Our network analysis begins by partitioning genes into groups based on co-expression by 164 

applying iterative weighted gene co-expression network analysis (iterativeWGCNA)22 to each 165 

mesenchymal cell type (Step 1, Figure 2). In total, 535 modules were identified from the BMSC-166 

OB scRNA-seq data, and the number of modules identified for each mesenchymal cell cluster 167 

ranged from 26 to 153 with an average of 76 modules per cluster (Supplementary File 1g-h). 168 

We sought to infer causal relationships between genes in each cell type-specific co-expression 169 

module and subsequently identify networks involved in processes relevant to BMSC-OB 170 

differentiation. To this end, we generated Bayesian networks for each co-expression module, 171 

thus enabling us to model directed interactions between co-expressed genes based on conditional 172 

independence14 (Step 2, Figure 2). 173 

174 
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 175 
Figure  2. Overview of the network analysis pipeline 176 
 177 

Identifying putative drivers of mesenchymal cell differentiation: 178 
  179 

We hypothesized that many genes impacting BMD do so by influencing osteogenic180 

differentiation or possibly bone marrow adipogenic differentiation of key mesenchymal cell181 

types, as suggested by the CELLECT analysis above. Therefore, the next step of our network182 

analysis was to identify cell type-specific Bayesian networks enriched for genes potentially183 

driving mesenchymal differentiation (Step 3, Figure 2). To accomplish this, we first performed a184 

pseudotime trajectory analysis to infer paths of differentiation in the mesenchymal lineage cells.185 

We resolved three pseudotime trajectories (two osteogenic, one adipogenic) originating from the186 
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MPC cell cluster and ending in either Ocy, OB2, or MALP cell fates (Figure 3A). It is important 187 

to note that given the identification of multiple skeletal stem cells23–26, we do not view these 188 

trajectories as lineages, but rather “differentiation paths” (progenitor to mature and/or terminally 189 

differentiated cells) that are likely traversed by different subsets of skeletal stem cells.  190 

To identify genes likely impacting BMSC-OB differentiation, we used tradeSeq to 191 

identify genes that exhibit dynamic changes in expression along pseudotime27. Prior to 192 

performing the tradeSeq analysis, we parsed the pseudotime trajectories into regions that 193 

encompass cells associated with each cell type along their respective trajectories (Figure 3B). 194 

We defined multiple cell type boundaries (nine in total) using pseudotime values, which 195 

represent points along a trajectory. The tradeSeq analysis was performed for each boundary 196 

(Supplementary File 2a).  For example, trajectories bifurcate in the LMP cell cluster (Figure 197 

3A); therefore, cells belonging to the LMP cluster can map to adipogenic and/or osteogenic 198 

trajectories depending on their placement along pseudotime. Between a cell type boundary, cells 199 

spanning a specific cluster (e.g., LMP) and mapping to a specific trajectory (e.g., osteogenic 200 

trajectory) are used as input to analyze gene expression between the start and end points of the 201 

cell type boundary (e.g., LMP_to_OBP). We analyzed gene expression within the established 202 

cell type boundaries for all trajectories and identified genes that exhibit the most significant 203 

differences in expression between the start and end points of the cell type boundaries. The total 204 

number of significant trajectory-specific tradeSeq genes (Padj < 0.05) ranged from 87 to 1,697 205 

across the 9 cell type boundaries (Supplementary File 2a, 2b-d). The expression of 206 

representative marker genes for all cell types as a function of pseudotime were consistent with 207 

boundaries defined for each cell type (Figure 3C). 208 

  209 
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Figure  3. Pseudotime Trajectory Inference analysis and establishment of cell type210 
boundaries for tradeSeq analysis 211 

12
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We sought to identify tradeSeq genes that may have an associated expression quantitative 212 

trait locus (eQTL) and hypothesized that eQTLs that perturb their expression would also impact 213 

the proportion of cells at different stages along the cell trajectories. We performed a cell type-214 

specific eQTL analysis for each mesenchymal cell type from the 80 DO mice scRNA-seq data. 215 

We identified 563 genes (eGenes) regulated by a significant cis-eQTL in specific cell types of 216 

the BMSC-OB scRNA-seq data. Despite being significantly underpowered for this analysis due 217 

to our relatively smaller sample size (N = 80), we identified two cell type-specific eGenes where 218 

the genotype responsible for the cis-eQTL effect was also associated with cell type proportions. 219 

The first of these genes was Pyruvate Kinase, muscle (Pkm), which was identified as a 220 

significant global tradeSeq gene (Padj = 8.35 x 10-8; Supplementary File 2e) associated with the 221 

transition from LMPs to OBPs along an osteogenic trajectory (Figure 4A). Moreover, Pkm 222 

served as an eGene in the LMP cell cluster (LOD = 9.72; Figure 4B, Supplementary File 2f). 223 

Mice inheriting at least one PWK allele at this locus (N = 15) demonstrated lower Pkm 224 

expression (Figure 4C) and a notable reduction in mature osteoblasts (OB1) and osteocyte-like 225 

cells (Ocy) proportions (P = 0.030 and P = 0.026, respectively), while LMP proportions were 226 

unaffected (Figure 4D, Supplementary File 2g).  227 

Similarly, S100 calcium binding protein A1 (S100a1) was an OBP to OB1 transition 228 

tradeSeq gene (Padj = 0.023; Figure 4A, Supplementary File 2e) and an eGene in the OBP cell 229 

cluster (LOD = 10.12; Figure 4B, Supplementary File 2f). Mice inheriting at least one 129 230 

allele at this locus (N = 30) had higher S100a1 expression, while the opposite was observed for 231 

mice inheriting NZO alleles (N = 14) (Figure 4C). Additionally, mice inheriting at least one 129 232 

allele showed a significant decrease in LMP proportion and increase in OB1 proportion (P = 233 

0.008 and P = 0.016, respectively) (Figure 4D, Supplementary File 2g), while no significant 234 
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differences were observed in cell type proportions among mice inheriting NZO alleles at this 235 

locus (Figure 4-figure supplement 1, Supplementary File 2g).  236 

237 
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 238 
Figure  4. TradeSeq-identified genes associated with BMSC-OB differentiation exhibit239 
eQTL effects.  240 

15
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Identification of differentiation driver genes (DDG): 241 
 242 

In order to discover BMSC-OB differentiation genes potentially responsible for BMD 243 

GWAS associations, the next step of our network analysis leveraged the trajectory-specific 244 

tradeSeq genes identified for each cell type boundary (Supplementary Table File 2b-d) to 245 

identify differentiation driver genes (DDGs) (Step 3, Figure 2). We identified DDGs by 246 

extracting subnetworks (i.e., large 3-step neighborhoods; see Methods) for each gene in each cell 247 

type-specific Bayesian network and identifying those subnetworks enriched (Padj�<�0.05) for 248 

trajectory-specific tradeSeq genes for the cell type boundary. The analysis identified 408 249 

significant DDGs (Supplementary File 2h-k). We performed a PANTHER28 Gene Ontology 250 

(GO) analysis for the cell type boundaries yielding a sufficient number of DDGs and found that 251 

DDGs for the osteogenic cell type boundaries (LMP_to_OBP, OBP_to_OB1, OBP_to_OB2) 252 

were enriched for genes associated with the cell cycle (GO:0007049; N = 23, 18, 23; P = 1.12 x 253 

10-6, 1.29 x 10-13, 1.0 x 10-14, respectively) (Supplementary File 3a-c). The DDGs for the 254 

adipogenic cell type boundary (LMP_to_MALP, MALP_to_end) were enriched for genes 255 

associated with extracellular matrix organization (GO:0030198; N = 10; P = 1.62 x 10-7) and 256 

lipid metabolic processes (GO:0006629; N = 25; P = 1.83 x 10-11), respectively (Supplementary 257 

File 3d-e). Across all 408 DDGs, 49 (12%) were identified in one or more cell type boundaries 258 

as genes with a significant alteration (P < 0.05) of whole-body BMD when knocked-out/down in 259 

mice, as reported by the International Mouse Knockout Consortium (IMPC)29 (Supplementary 260 

File 2i-k).  261 

We used our previously generated list of potentially causal BMD GWAS genes 262 

(N=1,037) to subsequently prioritize the DDGs (Step 4, Figure 2). Of the 408 DDGs, 21 DDGs 263 

in one or more cell type boundaries were genes that have BMD GWAS associations that 264 
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colocalize with sQTL/eQTL (Table 1). The majority of these DDGs were identified in LMPs 265 

along both the osteogenic (LMP_to_OBP) and adipogenic (LMP_to_MALP) trajectories (N = 10 266 

and 6, respectively; Supplementary File 2h, Supplementary File 3f). The remaining DDGs 267 

were identified in OBPs along both osteoblast trajectories (OBP_to_OB1, OBP_to_OB2; N = 1 268 

and 3, respectively) and MALPs (MALP_to_end; N = 6). Additionally, 3 of the 21 DDGs (Tet1, 269 

Tpx2, Timp2) are IMPC genes that exhibit a significant alteration of BMD (Supplementary File 270 

2h, Supplementary File 3f).  271 

Table 1: Prioritized Differentiation Driver Genes (DDGs) that have BMD GWAS 272 
associations that colocalize with splicing/expression QTL (eQTL/sQTL) identified in a 273 
Genotype-Tissue Expression project (GTEx) tissue. The tissue with the most significant 274 
colocalization (RCP and/or H4PP) is listed for each DGG (26 total, 21 distinct), as determined 275 
from Al-Barghouthi et al. (2022) and Abood et al. (2023) for eQTL and sQTL, respectively7,16. 276 
RCP = Regional Colocalization Probability (GWAS and eQTL colocalization). H4PP = H4 277 
Posterior Probability (GWAS and sQTL colocalization).  278 

Trajectory Cell type 
boundary DDG 

GTEx Tissue with 
strongest eQTL 
colocalization  

(RCP) 

GTEx Tissue with 
strongest sQTL 
colocalization  

(H4PP) 

eGene identified 
from scRNA-seq of 

the 80 DO mice 

1 LMP to OBP Tet1 
Adipose (Visceral);  

0.3191 
- - 

1 LMP to OBP Tpx2 
Testis; 
0.2031 

- - 

1 LMP to OBP Cdk1 - 
Pituitary; 
0.7795 

- 

1 LMP to OBP Ttyh3 - 
Liver; 
0.9350 

- 

1 LMP to OBP Olfml3 
Artery (Aorta);  

0.8048 
- - 

1 LMP to OBP Izumo4 - 
Brain 

(Hypothalamus); 
0.9182 

- 

1 LMP to OBP Sec24d 
Nerve (Tibial);  

0.2677 
 - 

1 LMP to OBP Tmem263 
Adipose 

(Subcutaneous);  
0.5704 

Cultured cells 
(fibroblasts);  

0.9716 
- 

1 LMP to OBP Lmf2 - 
Adrenal Gland; 

0.8181 
- 

1 LMP to OBP Tln2 
Esophagus 

(Muscularis);  
0.9697 

- - 

1 OBP to OB1 Kremen1 
Heart (Left 
Ventricle); 

0.8686 
- - 
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2 OBP to OB2 Kremen1 
Heart (Left 
Ventricle); 

0.8686 
- - 

2 OBP to OB2 Ebf1 - 
Testis; 
0.8760 

- 

2 OBP to OB2 Lrp4 
Pancreas; 

0.7943 
- - 

3 LMP to MALP Ttyh3 - 
Liver; 
0.9350 

- 

3 LMP to MALP Fgfrl1 
Cultured cells 
(fibroblasts);  

0.1611 
- - 

3 LMP to MALP Ebf1 - 
Testis; 
0.8760 

- 

3 LMP to MALP Ppp1r12b - 
Nerve (Tibial); 

0.8807 
- 

3 LMP to MALP Rhoj 
Cultured cells 
(fibroblasts); 

0.352 

Breast; 
0.7844 

- 

3 LMP to MALP Tln2 
Esophagus 

(Muscularis);  
0.9697 

- - 

3 MALP to end Adh1 - 

Esophagus  
(Gastroesophageal 

Junction); 
0.9999 

- 

3 MALP to end Fgfrl1 
Cultured cells 
(fibroblasts);  

0.1611 
- - 

3 MALP to end Adcy5 - 

Esophagus 
(Gastroesophageal 

Junction); 
0.8456 

- 

3 MALP to end Cnn2 - 
Spleen; 
0.7743 

- 

3 MALP to end Mxra8 - 
Pituitary; 
0.7545 

- 

3 MALP to end Timp2 - 
Testis; 
0.9429 

- 

 279 

Network analysis predict Fgfrl1 and Tpx2 as novel regulators of BMD: 280 
 281 

Here we highlight two DDGs that putatively impact human BMD via their roles in LMP 282 

differentiation along either an adipogenic (Fgfrl1) or osteogenic (Tpx2) trajectory, which are 283 

genes with potential roles that have been minimally characterized in the context of human BMD. 284 

Based on our previous work7, Fgfrl1 (fibroblast growth factor receptor-like 1) was identified as a 285 

DDG with significant human BMD GWAS associations that also colocalized with eQTL 286 
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identified in the cultured fibroblast GTEx tissue (RCP = 0.1611, Table 1). The Fgfrl1 network 287 

was enriched for tradeSeq-identified genes (N = 6 genes, Padj = 7.5 x 10-3) for LMPs along an 288 

adipogenic trajectory (Figure 5A). An increase in the expression of all tradeSeq-identified genes 289 

for the Fgfrl1 network was observed (Figure 5B, Supplementary File 2d). Importantly, the 290 

expression pattern for the tradeSeq-identified genes were consistent with the cell type boundaries 291 

established for LMPs differentiating along the adipogenic trajectory toward the MALP cell state 292 

(Figure 5B). Furthermore, in the surrounding Fgfrl1 network, two genes (Plpp3 and Cfap100) 293 

have significant human BMD GWAS associations that also colocalized with sQTL in GTEx 294 

tissues, as reported in our previous study16. In the Fgfrl1 network, many other genes can be 295 

associated with adipocyte function (e.g., Lpl, Plpp3, Igfbp4)30–32 and the maintenance of cilia 296 

(e.g., Cfap100, St5 (Denn2b), Mark1)33–35. 297 

The other network we identified, the Tpx2 network, was identified for LMPs along an 298 

osteogenic trajectory (Figure 5C). Tpx2 (TPX2, microtubule-associated) is a DDG with 299 

significant human BMD GWAS associations that also colocalized with eQTL identified in the 300 

Testis GTEx tissue (RCP = 0.2031, Table 1). The network was enriched for tradeSeq-identified 301 

genes (N = 9 genes, Padj = 5.7 x 10-7) for LMPs differentiating along the osteogenic trajectory 302 

(Figure 5C). Furthermore, the expression of the tradeSeq-identified genes for the Tpx2 network 303 

were consistent with the cell type boundaries established for LMPs differentiating along the 304 

osteogenic trajectory toward the OBP (osteoblast progenitor) cell state (Figure 5D; 305 

Supplementary File 2b). The expression of these genes increase as LMPs differentiate into 306 

OBPs and subsequently decrease upon reaching an OBP cell state. Additionally, Tpx2 exhibited 307 

a significant alteration of BMD in both male and female mutant mice (Genotype P-value = 1.03 308 

x 10-3) from IMPC (Figure 5E). In regards to the constituents of the Tpx2 network, additional 309 
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genes have been tested by the IMPC and result in a significant impact on BMD, such as Ube2c, 310 

Top2a, and Papss1. Many other genes in the Tpx2 network can be associated with cellular 311 

division and proliferation, including four of the genes of the kinesin family (Kif) motor protein 312 

genes36: Kif4, Kif11, Kif15, Kif23.  313 

  314 
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 Figure  5. Fgfrl1 and Tpx2 are prioritized DDGs and putative drivers of mesenchymal 315 
differentiation. 316 
  317 

21
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Discussion 318 
 319 

BMD GWAS has been successful at identifying thousands of SNPs associated with 320 

disease; however, the identification of causal genes and defining their functional role in disease 321 

remains challenging. The integration of “-omics” data, particularly transcriptomics, can assist in 322 

overcoming this challenge. Leveraging transcriptomics data has proven invaluable to informing 323 

GWAS, as demonstrated in studies that use these data to perform eQTL mapping, transcriptome-324 

wide association studies (TWASs), and co-expression/gene regulatory network reconstruction. 325 

GWAS associations can colocalize with predicted sources of genetic variation that perturb causal 326 

gene function or expression, thus providing a potential mechanism through which associations 327 

impact disease. While bulk RNA-seq data has been the foundation of such analyses, scRNA-seq 328 

data can provide valuable biological context by predicting the cell type in which causal genes are 329 

affected. To inform BMD GWAS, the generation of population-scale transcriptomics data at 330 

single-cell resolution in bone-relevant cell types can assist in the discovery of novel gene targets. 331 

Here, we perform scRNA-seq on 80 DO mice to generate single-cell transcriptomics data of 332 

mesenchymal cell types relevant to bone. Using these data, our goal was to prioritize putative 333 

causal genes and provide biological context in which these genes potentially influence disease, at 334 

cell type-specific resolution. Through our pseudotemporal gene expression and network 335 

analyses, we identified 21 networks governed by predicted differentiation driver genes (DDGs) 336 

that have corresponding human BMD GWAS associations colocalizing with eQTL/sQTL in a 337 

GTEx tissue.   338 

We demonstrate that the BMSC-OB model serves as an effective method to enrich for 339 

mesenchymal lineage cells, particularly bone-relevant cells. We characterized cells from 80 mice 340 

and identified both osteogenic and adipogenic cells derived from the mesenchymal lineage, such 341 
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as two populations of osteoblasts (OB1 and OB2), osteocyte-like cells (Ocy), and MALPs. Our 342 

trajectory inference analysis identified three distinct trajectories in which mesenchymal 343 

progenitor cells give rise to both osteogenic and adipogenic cell types, thus portraying 344 

biologically relevant and known paths of differentiation of mesenchymal progenitor cells. 345 

Pseudotemporal gene expression was analyzed along each trajectory, in a cell type-specific 346 

fashion, to identify genes that were changing the most as a function of pseudotime (tradeSeq-347 

identified genes). Subsequent cis-eQTL analysis indicated that the expression of some tradeSeq-348 

identified genes were associated with the relative proportion of cell types. While instances such 349 

as these were rare, they illustrate that the potential consequence of genetic variation impacting 350 

the expression of tradeSeq-identified genes may impact differentiation and the abundances of 351 

certain cell types along a trajectory.  352 

To inform BMD GWAS, we utilized the scRNA-seq data in a network analysis to 353 

contextualize causal genes (and their associated networks) by predicting the cell types through 354 

which these genes are likely acting. Towards this goal, we generated cell type-specific Bayesian 355 

networks from our BMSC-OB scRNA-seq data. Our approach was similar to our previous 356 

network analyses where bulk RNA-seq data was leveraged to identify genes with strong 357 

evidence of playing central roles in networks10,11,14. In contrast, here we utilized scRNA-seq data 358 

to identify DDGs and prioritize networks based on the likelihood that they are involved in the 359 

differentiation of mesenchymal lineage cells (based on network connections enriched for 360 

tradeSeq-identified genes determined from inferred trajectories). Leveraging our previous 361 

work7,16, we prioritized DDGs if they were genes with BMD GWAS associations colocalizing 362 

with human eQTL/sQTL in a GTEx tissue. Together, a gene being both a DDG and having BMD 363 

GWAS associations that colocalize with eQTL/sQTL is strong support of causality.  364 
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We identified 21 DDGs and associated networks, some of which have little to no known 365 

prior connection to bone. We contextualize these causal genes and their networks by not only 366 

providing cell type predictions in which they likely operate, but also providing information 367 

regarding the biological processes they likely affect. For example, the Tpx2 network was 368 

identified in LMPs differentiating along an osteogenic trajectory. Tpx2 is a microtubule assembly 369 

factor that interacts with spindle microtubules during cellular division37. The expression of Tpx2 370 

and its regulation is associated with osteosarcoma, as well as other cancers38. In our previous 371 

study, Tpx2 was identified as a gene that has BMD GWAS associations that colocalize with 372 

eQTL in the Testis GTEx tissue7. While GTEx does not maintain bone tissue, eQTL are shared 373 

across many tissues21; therefore, non-bone eQTL may exert their effects in cell types associated 374 

with bone, such as LMPs, and evidence of a human eQTL effect indicates that genetic variation 375 

can modulate the expression of Tpx2. Additionally, when knocked out by IMPC, Tpx2 exhibited 376 

a significant increase in whole body BMD in mice, thus providing strong support for Tpx2 377 

influencing the regulation of BMD in humans. In the surrounding gene neighborhood of the Tpx2 378 

network, other genes can be associated with cellular division as well, such as Topoisomerase 2A 379 

(Top2a) and the kinesin family (Kif) genes36,39. Taken together, these results indicate a potential 380 

role of Tpx2 as a mediator of BMD and genetic variation altering its expression could affect 381 

microtubule maintenance during the expansion of osteogenic cell populations. 382 

Additionally, the Fgfrl1 network was identified in LMPs differentiating along an 383 

adipogenic trajectory. Fibroblast growth factor receptor-like 1 (Fgfrl1) is presumed to function 384 

as a decoy receptor that interacts with FGF ligands necessary for FGF signaling40,41 and Fgfrl1 385 

expression is suggested to play a role in both adipogenic and osteogenic differentiation42. Our 386 

previous study also identified Fgfrl1, which has BMD GWAS associations that colocalize with 387 
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eQTL in the cultured fibroblasts GTEx tissue14. In the neighborhood of the Fgfrl1 network, Lpl, 388 

Plpp3, Igfbp4 have well-established roles in adipocyte function and metabolism30–32; however, 389 

other genes can be associated with cilia, such as Cfap100, St5 (Denn2b), Mark133–35. 390 

Interestingly, the maintenance and remodeling of cilia is essential to the differentiation of 391 

mesenchymal stem cells and pre-adipocytes (e.g., MALPs) while mature adipocytes lack cilia43. 392 

Moreover, the inactivation of FGF signaling is associated with the length of primary cilia44. 393 

Thus, genetic variation altering the expression of expression of Fgfrl1 may affect FGF signaling 394 

to impact the maintenance of cilia and adipogenic differentiation. Additionally, given the 395 

prioritization of MALPs in the CELLECT analysis and the well-established inverse relationship 396 

between marrow adiposity and BMD45,46, skewed balance of LMP differentiation toward marrow 397 

adipogenic cell fates may affect BMD. In summary, the Fgfrl1 network harbors genes involved 398 

in adipogenic function, including cilia maintenance, which may contribute to LMP 399 

differentiation along an adipogenic trajectory. Together, these results indicate a potential role of 400 

Fgfrl1 as a mediator of BMD via its role in adipogenic differentiation and maintenance of cilia. 401 

Analyses performed here are not without limitations to consider. Our in vitro culturing 402 

approach and the preparation of single cells for scRNA-seq could be sources of technical 403 

variation in our study. Additionally, a pitfall of scRNA-seq is the sparsity of the resulting data, 404 

which yields an increased frequency of zero values for the expression of some genes in a 405 

proportion of cells, also known as “drop-outs”47. While statistical approaches can be employed to 406 

impute missing data, the accuracy of such methods and whether or not the resulting improvement 407 

in transcriptomic signal recovery is enough to warrant such intervention is contentious48,49. 408 

However, this issue may be partially offset given the larger scale of the scRNA-seq performed in 409 

this study and the average expression approach performed for network and eQTL analysis. 410 
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Another limitation of this study is that read alignment of the scRNA-seq data did not account for 411 

DO founder genetic variation in RNA transcripts, which could affect read mapping and gene 412 

expression measurements. An additional limitation is that the BMSC-OB model does not capture 413 

osteoclasts, another cell type associated with bone tissue. Importantly, results from our 414 

CELLECT analysis indicate that BMD heritability was not enriched for genes whose expression 415 

was more specific to osteoclast-like cells; however, these cells likely represent immature 416 

osteoclasts, as mature multinucleated cells would be too large to be captured for sequencing. 417 

Lastly, while our study employed 80 DO mice, the issue of statistical power is still a limitation; 418 

however, we demonstrate that the BMSC-OB model is amenable to high throughput and the 419 

inclusion of hundreds of mice, thus statistical power will be improved in future studies.  420 

In summary, we showcase the use of large-scale scRNA-seq data to inform GWAS by 421 

performing a network analysis to contextualize BMD GWAS associations. Through the use of 422 

multiple single-cell analyses, we have expanded upon our understanding of the genetics of BMD. 423 

Our work exemplifies the power of single-cell transcriptomics from large populations of 424 

genetically diverse samples and our network approach for data analysis may guide future studies 425 

to consider systems genetics strategies for the discovery of genetic determinants of disease. 426 

  427 
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Methods 428 
 429 
Sample preparation and scRNA-seq 430 
 431 

All animal procedures were conducted in compliance with the National Institutes of 432 

Health Guide for the Care and Use of Laboratory Animals. The protocol for studies involving 433 

Diversity Outbred mice (Protocol Number 3741) was reviewed and approved by the Institutional 434 

Animal Care and Use Committee (IACUC) at the University of Virginia. We prepared our 435 

samples in the same fashion as performed previously in Al-Barghouthi and colleagues15. In brief, 436 

bone marrow was extracted from the femurs of initially 77 DO mice (The Jackson Laboratory, 437 

Strain: 009376) . BMSCs were grown to confluence after 3 days of incubation in 48-well plates 438 

and then underwent in vitro osteoblast differentiation for 10 days with osteogenic differentiation 439 

media (alpha MEM, 10% FBS, 1% pen/strep, 1% Glutamax, 50�μg/μL ascorbic acid [Sigma, St. 440 

Louis, MO, USA], 10�nM B-glycerophosphate [Sigma], 10�nM dexamethasome [Sigma]). 441 

After differentiation, single cells were liberated from mineralizing cultures via incubations with 442 

60�mM ethylenediaminetetraacetic acid pH�7.4 (EDTA [Thermo Fisher Scientific], made in 443 

DPBS), 8�mg/mL collagenase (Gibco) in HBSS/4�mM CaCl2 (Fisher), and 0.25% trypsin–444 

EDTA (Gibco). After single-cell isolation, cells from mice were pooled into groups containing 445 

cells from four to five mice total and concentrated to 800 cells/μL in PBS supplemented with 446 

0.1% BSA (bovine serum albumin). Pooled single cells were prepared for sequencing using the 447 

10× Chromium Controller (10× Genomics, Pleasanton, CA, USA) with the Single Cell 3’ v2 448 

reagent kit, according to the manufacturer’s protocol. Libraries were sequenced on the 449 

NextSeq500 (Illumina, San Diego, CA, USA). 450 

 451 

scRNA-seq analysis pipeline 452 
 453 
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The data was subsequently processed using the 10× Genomics Cell Ranger toolkit 454 

(version 5.0.0) using the GRCm38 reference genome50. Using Seurat51 (version 4.1.0), a 455 

combined Seurat object containing all cells was generated with the inclusion of features detected 456 

in at least three cells and cells with at least 200 features detected. We used Souporcell52 (version 457 

2.0.0) to deconvolve the genotypes of all mice and to remove doublet cells. Cells were assigned 458 

to their associated DO mouse by making a pairwise comparison between allele calls made by the 459 

shared variants captured between Souporcell and GigaMUGA genotype arrays generated for all 460 

mice in the cohort, as previous performed in Dillard and colleagues15. Cell derived from two 461 

mice (176 and 244) were removed in some analyses due to poor genotyping of their respective 462 

Souporcell clusters, thus yielding a total of 75 DO mice from this study and 5 DO mice from our 463 

previous study15 for a total of 80 DO mouse biological replicates. We filtered out cells with more 464 

than 6200 reads and less than 400 reads, as well as those cells with more than 10% mitochondrial 465 

reads. Further, cells were removed if they expressed greater than 20% Rpl and 15% Rps reads, 466 

which equates to cells approximately exceeding the 98 percentile. After filtering, 139,392 cells 467 

remained and the resulting object underwent standard normalization, scaling, and the top 3000 468 

features were modeled from a variance stabilizing transformation (VST) using Seurat. Cell-cycle 469 

markers based on Tirosh and colleagues53 were regressed out using the “CellCycleScoring” and 470 

scaling functions. For subsequent dimensionality reduction, 15 principal components (PCs) were 471 

summarized. Then, a kNN (k�=�20) graph was created and the Louvain algorithm was used to 472 

cluster cells at a resolution of 0.5. Annotation of cell type clusters was performed manually 473 

based on differential gene expression analysis using the Seurat “FindAllMarkers” function 474 

(Supplementary File 1a). 475 
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For subsequent WGCNA and eQTL mapping, transcriptomic profiles for each cell type 476 

cluster were generated for each sample using a mean expression approach, as performed 477 

similarly by others54,55. For each sample contributing at least 5 cells to a given cluster, 478 

unnormalized unique molecular identifier (UMI) counts of gene expression for all cells in the 479 

cluster for the sample were averaged and then rounded to the nearest hundredth decimal place. A 480 

total of 80, 80, 77, 67, 50, 76, 80 mice contributed enough cells to the MPC, LMP, OBP, OB1, 481 

OB2, Ocy, and MALP cell type clusters, respectively. Genes with non-zero expression values in 482 

fewer than 15 samples were removed. A total of 11971, 15162, 14857, 13674, 13825, 14136, and 483 

14534 genes remained for the MPC, LMP, OBP, OB1, OB2, Ocy, and MALP clusters, 484 

respectively. Samples were normalized by computing CPMs (counts per million) without log 485 

transformation for each gene using edgeR56 (version 4.0.7), then transformed via VST using 486 

DESeq257 (version 1.42.0), and quantile normalized using preprocessCore (version 1.60.2).  487 

 488 
Trajectory and tradeSeq Analysis 489 
 490 

Trajectory inference analysis was performed using Slingshot58 (version 1.8.0) on the 491 

mesenchymal lineage cell clusters (seven total) of the BMSC-OB scRNA-seq data. The starting 492 

cluster was set as the MPC cluster upon the removal of a small outlier population of cells. 493 

Trajectories were inferred using 15 PCs. TradeSeq27 (version 1.4.0) was used to analyze gene 494 

expression along the trajectories by fitting a negative binomial generalized additive model (NB-495 

GAM) to each gene using the “fitGAM” function with nknots = 10, which was determined by 496 

using the “evaluateK” function. Prior to performing the tradeSeq analysis, the scRNA-seq data 497 

was downsampled to reduce the size of the dataset to approximately 10,000 cells (sampled at 498 

random across all seven clusters). 499 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2026. ; https://doi.org/10.1101/2024.05.20.594981doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.20.594981
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

All cell type boundaries were established to encompass on average 78% of cells of a cell 500 

cluster (Supplementary File 2a). To identify genes significantly changing between boundaries 501 

in a trajectory-specific fashion, we first performed tradeSeq to compare gene expression within 502 

each trajectory (two osteogenic, one adipogenic) to highlight genes with a significant difference 503 

in expression between boundaries using the “startVsEndTest” function (Supplementary File 2a-504 

d). Next, we performed a global test with tradeSeq to compare gene expression between 505 

trajectories in order to highlight genes exhibiting a significant difference in expression using the 506 

“startVsEndTest” function (Supplementary File 2a, Supplementary File 2e). All tests were 507 

performed with the log2 fold change threshold (l2fc) = 0.5. For all global and trajectory-specific 508 

tests, the P-values associated with each gene were adjusted to control the false discovery rate 509 

using the “p.adjust” function from the stats (version 4.2.1) R package and genes were filtered to 510 

include those with a Padj < 0.05.  511 

 512 

CELLECT Analysis 513 
 514 

CELLECT20 (CELL-type Expression-specific integration for Complex Traits) (version 515 

1.1.0) was used to identify likely etiologic cell types underlying complex traits of both the 516 

BMSC-OBs scRNA-seq data (Figure 1E, Supplementary File 1f). CELLECT P-values were 517 

adjusted using the Bonferroni correction. CELLECT quantifies the association between the 518 

GWAS signal and cell type expression specificity using the S-LDSC genetic prioritization 519 

model59. Summary statistics from the UK Biobank eBMD and Fracture GWAS (Data Release 520 

2018) and cell type annotations from each scRNA-seq data set were used as input. Cell type 521 

expression specificities were estimated using CELLEX20 (CELL-type EXpression-specificity) 522 

(version 1.2.1) (Supplementary File 3g).  523 
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 524 
WGCNA 525 
 526 

Cell type-specific mean expression matrices (as obtained above) were used as input to 527 

generate signed co-expression network modules (Supplementary File 1g-h). IterativeWGCNA22 528 

(version 1.1.6) was used from a Singularity container built from a Docker hub image60. A soft 529 

threshold (power) of 14, which exceeded a R2 threshold of 0.85 for all cell type clusters, was 530 

selected for module construction (Figure 2-figure supplement 1). Modules were generated 531 

using iterativeWGCNA with default parameters for the “blockwiseModules” function, a 532 

minimum module size of 20 genes, minCoreKME = 0.7, and minKMEtoStay = 0.5. 533 

 534 
Bayesian network learning 535 
 536 

Bayesian networks were learned from each of the cell type-specific modules of co-537 

expressed genes with the bnlearn (version 4.8.3). Gene expression matrices containing the genes 538 

for each module were used as input to the “mmhc” function which employs the Max-Min Hill 539 

Climbing algorithm (MMHC) algorithm61 to learn the underlying structure of the Bayesian 540 

network. From the generated networks, igraph (version 1.6.0) was used to resolve 3-step 541 

neighborhoods62. Nodes (genes) that were unconnected to a neighborhood or connected to only 542 

one neighbor were removed. Neighborhoods were filtered to include those with a size greater 543 

than 1 standard deviation from the mean across all neighborhoods generated for the network.  544 

DDGs (differentiation driver genes) are genes that yield large 3-step neighborhoods that 545 

are enriched (Padj < 0.05) with tradeSeq-identified genes for a given cell type boundary. We 546 

calculated whether each neighborhood contained more tradeSeq-identified genes (for the 547 

neighborhoods’ associated cell type boundary) than would be expected by chance using the 548 

hypergeometric distribution (“phyper” function) from the stats (version 4.2.1) R package. The 549 
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arguments were as follows: q: (number of neighbors in a neighborhood that are also tradeSeq-550 

identified genes for a given cell type boundary) – 1; m: total number of tradeSeq-identified genes 551 

for a given cell type boundary; n: (total number of identified neighborhoods) – m; k: 552 

neighborhood size (total number of neighbors); lower.tail = false. P-values were adjusted to 553 

control the false discovery rate using the “p.adjust” function from the stats (version 4.2.1) R 554 

package. These pruning steps resulted in a total of 408 DDGs and associated networks for all cell 555 

types (Supplementary File 2h-k).  556 

DO eQTL mapping 557 
 558 

Prior to performing the eQTL analysis, DNA was extracted from the tails of the 80 DO 559 

mice, using the PureLink Genomic DNA mini kit (Invitrogen) and genotyped using the 560 

GigaMUGA array by Neogen Genomics (GeneSeek; Lincoln, NE). Processing and quality 561 

control of genotype data, including calculation of genotype/allele probabilities, was  performed  562 

as previously described in Al-Barghouthi and colleagues14. Cell type-specific mean expression 563 

matrices (as obtained above) for mesenchymal lineage clusters were used as input for the eQTL 564 

mapping, which was performed using a linear mixed model (LMM) via the “scan1” function 565 

from the qtl263 (version 0.30) R package with allowances for the following covariates: sex, age at 566 

sacrifice (in days), weight, length, and DO mouse generation. To identify significant eQTL, we 567 

calculated a LOD (logarithm of the odds) threshold; for each cell type cluster, we chose 50 genes 568 

at random and then permuted them 1000 times using the “scan1perm” function from qtl2. We 569 

established the LOD threshold of 9.68 and 9.49 for the autosomal chromosomes and X 570 

chromosome, respectively, by taking the average of the median LOD across each cell type. A 571 

total of 563 eQTL exceeded the LOD thresholds and were no more than 1�Mbp from the 572 

transcription start site of the associated eGene (Supplementary File 2f).  573 
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 574 

Cell type proportion analysis 575 
 576 

To account for technical sources of variation often retained in scRNA-seq, cell type 577 

proportions were transformed using the arcsin (asin) square root transformation from the 578 

speckle64 R package (version 0.0.3). Tests of statistical significance were performed using the 579 

propeller t-test and ANOVA functions with default parameters. Sex of the mice and the batch 580 

each mouse was associated with for sequencing were modeled as covariates. Transformed values 581 

were used as input for computing tests of statistical differences of cell type proportions between 582 

mice, as well as correlation to phenotypic traits (Supplementary File 1c-e).  583 

  584 
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Data Availability Statement 585 
 586 
 The data that support the findings of this study are openly available in NCBI Gene 587 

Expression Omnibus database with accession codes GSE152806 and GSE269583. Processed 588 

scRNA-seq data available on Zenodo at https://zenodo.org/records/15299631. 589 

 590 
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Figure Legends 607 
 608 
Figure  1. Analysis of single cell RNA-seq (scRNA-seq) data for BMSC-OBs derived from 609 
80 Diversity Outbred (DO) 610 
 (A) Uniform Manifold Approximation and Projection (UMAP) of 139,392 single cells (BMSC-611 
OBs). Cell numbers and corresponding percentages for the fifteen (15) annotated cell clusters are 612 
listed in parenthesis to the right of the annotated cluster name. (B) Dot plot65 portraying 613 
representative and highly expressed genes for all annotated cell clusters. Dot color indicates the 614 
scaled gene expression while the size of the dot corresponds to the percentage of cells of a given 615 
cluster that express a given gene. (C) The raw proportional abundances of seven (7) 616 
mesenchymal cell clusters and one (1) cluster (Hem) representing the remain cells (i.e., mainly 617 
hematopoietic immune cells) across all 80 DO mice. (D) UMAP plots for mesenchymal lineage 618 
cell clusters for DO mouse 50 and DO mouse 233. (E) CELLECT (CELL-type Expression-619 
specific integration for Complex Traits) cell type prioritization results displaying the Bonferroni 620 
adjusted P-values for the cell clusters. The OB1, Ocy, and MALP cell clusters (red) were 621 
significantly enriched (Padj < 0.05, red dashed line) for BMD heritability (Padj = 0.018, 0.010, 622 
0.006, respectively). 623 
 624 
Figure  2. Overview of the network analysis pipeline 625 
Step 1: For all seven (7) of the mesenchymal lineage cell clusters (MPC, LMP, OBP, OB1, OB2, 626 
Ocy, MALP), cell type-specific co-expression modules were generated using iterative Weighted 627 
Gene Co-expression Network Analysis (iterativeWGCNA). Step 2: Bayesian networks were 628 
learned to generate directed networks and model causal interactions between co-expressed genes. 629 
Step 3: Differentiation Driver Genes (DDGs) were identified by extracting subnetworks (i.e., 630 
large 3-step neighborhood) for each gene in each cell type-specific Bayesian network and 631 
highlighting those subnetworks that were enriched (Padj�<�0.05) for trajectory-specific 632 
tradeSeq genes for the cell type boundary. Step 4: DDGs (and associated networks) were 633 
prioritized if the DDG was identified previously as an expression/splicing quantitative trait loci 634 
(eQTL/sQTL) that colocalized with BMD GWAS associations. Created with Biorender.com. 635 
 636 
Figure 3. Pseudotime Trajectory Inference analysis and establishment of cell type 637 
boundaries for tradeSeq analysis 638 
(A) Three (3) trajectories (two adipogenic, one adipogenic) were inferred from the mesenchymal 639 
cell clusters of the BMSC-OB scRNA-seq data using Slingshot. All trajectories originate from 640 
the MPC and end in either osteogenic (Ocy, OB2) or adipogenic (MALP) cell fates. (B) For each 641 
of the trajectories, cell type boundaries were generated using pseudotime values along the 642 
trajectories, which encompass the majority of cells of a cell type mapping to their respective 643 
trajectory. (C) Normalized gene expression of select genes associated with each cluster are 644 
represented in feature plots (top) and each gene plotted as a function of pseudotime (bottom) for 645 
all pseudotime trajectories (color corresponds to cell type annotation observed throughout). 646 
Vertical lines (red) represent the cell type (pseudotime) boundaries established for each cell type 647 
(label). The cell type boundary for OB1 and OB2 are represented as one red line/label for 648 
visualization purposes. 649 
 650 
 651 
 652 
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Figure  4. TradeSeq-identified genes associated with BMSC-OB differentiation exhibit 653 
eQTL effects.  654 
(A) Pkm was identified as a significant global tradeSeq-identified gene (Padj = 8.35 x 10-8) for 655 
LMP cells along an osteogenic trajectory (LMP_to_OBP) (left). S100a1 was identified as a 656 
significant global tradeSeq-identified gene (Padj = 0.023) for OBP cells along osteogenic 657 
trajectory 1 (OBP_to_OB1) (right). (B) Plots indicating the cell type-specific expression 658 
quantitative trait loci (eQTL) signal for both Pkm and S100a1. A negative eQTL effect on Pkm 659 
expression was observed in LMPs for Diversity Outbred (DO) mice with a PWK haplotype 660 
background at the Pkm locus (left). A positive eQTL effect on the expression of S100a1 was 661 
observed in OBPs for DO mice with a 129 haplotype background at the S100a1 locus, while a 662 
negative effect was observed for NZO mice (right). (C) The expression of Pkm and S100a1 663 
based on DO mouse (expression values transformed via variance stabilizing transformation 664 
(VST), as described in Methods). Genotype abbreviations correspond to DO haplotype 665 
background (legend) at the respective gene locus. Mice with at least one PWK allele (genotype 666 
abbreviation G) tend to have decreased expression of Pkm (left). Mice with at least one 129 allele 667 
(genotype abbreviation C) tend to have increased expression of S100a1, while NZO mice 668 
(genotype abbreviation E) have decreased expression (right). (D) PWK mice had a significant 669 
reduction in mature osteoblasts (OB1) and osteocyte-like cells (Ocy) proportions relative to other 670 
mice (P = 0.030 and P = 0.026, respectively; t-test), while LMP proportions were unaffected. 671 
Asterisks represent any of the other haplotype backgrounds. 129 mice showed a significant 672 
decrease in LMP proportion and increase in OB1 proportion (P = 0.008 and P = 0.016, 673 
respectively; t-test), but OBP proportions were unaffected. No significant effects on cell type 674 
proportions were observed in NZO mice (Figure 4-figure supplement 1). 675 
 676 
Figure  5. Fgfrl1 and Tpx2 are prioritized DDGs and putative drivers of mesenchymal 677 
differentiation. 678 
(A) Fgfrl1 was identified as a Differentiation Driver Gene (DDG) of a network for LMPs 679 
differentiating along an adipogenic trajectory. The network is enriched (Padj = 7.5 x 10-3) for 680 
trajectory-specific tradeSeq-identified genes for the LMP_to_MALP cell type boundary (Hnmt, 681 
St5, Igfbp4, Cyp1b1, Pdzrn4, Mark1). Fgfrl1 was previous identified as a gene that has BMD 682 
GWAS associations that colocalize with an eQTL in the cultured fibroblast GTEx tissue. (B) An 683 
increase in the expression of tradeSeq-identified genes coincides with the LMP_to_MALP cell 684 
type boundary in which they were identified as significant. (C) Tpx2 was identified as a DDG of 685 
a network for LMPs differentiating along an osteogenic trajectory. The network is enriched (Padj 686 
= 5.7 x 10-7) for tradeSeq-identified genes for the LMP_to_OBP cell type boundary (Tpx2, 687 
Top2a, Kif4, Iqgap3, Prc1, Kif11, Ect2, Sgo2a, Ube2c). Tpx2 is both a tradeSeq gene and 688 
previously identified as a gene that has BMD GWAS associations that colocalize with an eQTL 689 
in the Testis GTEx tissue. (D) An increase in the expression of tradeSeq-identified genes 690 
coincides with the LMP_to_OBP cell type boundary in which they were identified as significant. 691 
(E) Box plot displaying whole-body bone mineral density (BMD) measurements (excluding 692 
skull) from the International Mouse Knockout Consortium (IMPC) for Tpx2 mutant mice, which 693 
exhibited a significant increase in BMD (Genotype P-value = 1.03 x 10-3) in both male and 694 
female mice (N = 8 (M) and 8 (F) mutants; N = 2574 (M) and 2633 (F) controls) 695 

696 
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Supplementary Figure Legends 697 
 698 

Figure 1-figure supplement 1: Plots displaying the distribution of the total number of cells from 699 
each mouse (N = 80). A) Density plot portraying the distribution of the total number of cells 700 
from each mouse after processing of the scRNA-seq data. B) Boxplot displaying the distribution 701 
of the total number of cells for each mouse (Min: 723, 1st Qu: 1316, Median: 1690, Mean: 1742, 702 
3rd Qu: 2118, Max: 3652). C) Quantile-quantile plot (Q-Q plot) with 95% confidence interval. 703 
Shapiro-Wilk normality test: p-value = 0.1061; W = 0.97425. 704 
 705 
Figure 2-figure supplement 1: Scale Free Topology and Mean Connectivity graphs for the cell 706 
type-specific iterativeWGCNA analysis. A soft thresholding power of 14 was selected for the 707 
generation of all co-expression modules for all clusters, which was the point at which R2 708 
exceeded a threshold of 0.85 709 
 710 
Figure 4-figure supplement 1: Tests of significance for cell type proportions for NZO mice. 711 
Mice with at least one NZO allele at the S100a1 locus (N = 14) had no significant difference in 712 
cell type proportions (P > 0.05; t-test) as compared mice with other DO haplotype background at 713 
this locus. Asterisks represent any of the other haplotype backgrounds. 714 
 715 
  716 
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Supplementary File Legends 717 
 718 

Supplementary File 1a: Differentially Expressed Genes (DEGs) for all clusters of the BMSC-719 
OB scRNA-seq cell clusters. DEGs were calculated on all clusters of the BMSC-OB scRNA-seq 720 
data using the FindAllMarkers function from the Seurat R package.  721 
 722 
Supplementary File 1b: Differentially Expressed Genes (DEGs) between the OB1 and OB2 723 
clusters of the scRNA-seq data. DEGs were calculated using the FindMarkers function from the 724 
Seurat R package. Positive values for average log2 fold change (avg_log2FC) indicate that a 725 
gene is more highly expressed in OB1.  726 
 727 
Supplementary File 1c: BMSC-OB cell type proportion analysis for the 80 DO mice. The raw 728 
proportions (top) and asin-transformed proportions (bottom) of each of the BMSC-OB cell types 729 
were calculated from the total number of cells contributed by each mouse using the Propeller R 730 
package. All non-mesenchymal lineage cell types (i.e., Hematopoietic lineage cells) are 731 
aggregated as a group (Hem) for each mouse.  732 
 733 
Supplementary File 1d: Correlation of cell proportions to bone trait metrics captured from the 734 
80 DO mice. Raw (top) and transformed (bottom) cell type proportions were correlated using 735 
Pearson and Spearman to bone trait metrics (55 total) captured on all mice from the 80 DO mice.  736 
 737 
Supplementary File 1e: Bone trait abbreviations and units of measurement.  738 
 739 
Supplementary File 1f: CELLECT cell type prioritization table. Beta is regression effect size 740 
estimate for given annotation. Beta SE is the standard error for the regression coefficient. The p 741 
value is the one-sided test (beta > 0) association between bone mineral density (BMD) genome 742 
wide association study (GWAS) signal heritability and each annotated cell type. P values were 743 
adjusted using the Bonferroni correction method. MALP = marrow adipogenic lineage 744 
precursors; Ocy = osteocyte-like cell; OB1 = osteoblast population 1; MPC = mesenchymal 745 
progenitor cell; LMP = late mesenchymal progenitor; OBP = osteoblast progenitor; OB2 = 746 
osteoblast population 2; EC = endothelial cell; MF1 = macrophage population 1; MO = 747 
Monocyte; BC = B-cell; GC = granulocyte; OC = osteoclast-like cell; TC = T-cell; MF2 = 748 
macrophage population 2.  749 
 750 
Supplementary File 1g: Summary of results from the iterativeWGCNA analysis. A total of 535 751 
co-expression modules were generated using the mesenchymal lineage cell clusters (7 total) of 752 
the BMSC-OB scRNA-seq data, yielding an average of 76 modules per cell cluster. A total of 753 
8810 Bayesian networks were generated from the co-expression modules.  754 
 755 
Supplementary File 1h: Genes within each module generated from the iterativeWGCNA 756 
analysis.  757 
 758 
Supplementary File 2a: Summary of tradeSeq-identified genes. For each cell type (pseudotime) 759 
boundary associated with a specific trajectory (9 total), a global and trajectory- specific test was 760 
performed using the startVsEndTest function from the tradeSeq R Package. The number of genes 761 
identified for each test and for each boundary are displayed, as well as the number of tradeSeq-762 
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identified genes that were also identified as eGenes from the eQTL mapping of the 80 DO mice 763 
(73 total).  764 
 765 
Supplementary File 2b: TradeSeq-identified genes from the trajectory-specific analysis for 766 
Osteogenic Trajectory 1. All significant trajectory-specific tradeSeq-identified genes 767 
(Padj�≤�0.05) across all cell type boundaries (5 total; MPC, LMP, OBP, OB1, Ocy) associated 768 
with Osteogenic Trajectory 1. Associated eQTL information is also displaced for the gene if it 769 
was an eGene identified in the cell type from the cell type-specific eQTL analysis (if “NA” is 770 
present, the gene was not identified as an eGene).  771 
 772 
Supplementary File 2c: TradeSeq-identified genes from the trajectory-specific analysis for 773 
Osteogenic Trajectory 2. All significant trajectory-specific tradeSeq-identified genes 774 
(Padj�≤�0.05) across all cell type boundaries (2 total; OBP, OB2) associated with Osteogenic 775 
Trajectory 2. Associated eQTL information is also displaced for the gene if it was an eGene 776 
identified in the cell type from the cell type-specific eQTL analysis (if “NA” is present, the gene 777 
was not identified as an eGene).  778 
 779 
Supplementary File 2d: TradeSeq-identified genes from the trajectory-specific analysis for the 780 
Adipogenic Trajectory. All significant trajectory-specific tradeSeq-identified genes 781 
(Padj�≤�0.05) across all cell type boundaries (2 total; LMP, MALP) associated with the 782 
Adipogenic Trajectory. Associated eQTL information is also displaced for the gene if it was an 783 
eGene identified in the cell type from the cell type-specific eQTL analysis (if “NA” is present, 784 
the gene was not identified as an eGene).  785 
 786 
Supplementary File 2e: TradeSeq-identified genes from the global analysis. All significant 787 
global tradeSeq-identified genes (Padj�≤�0.05) across all cell type (pseudotime) boundaries (9 788 
total). Associated eQTL information is also displaced for the gene if it was an eGene identified 789 
in the cell type from the cell type-specific eQTL analysis (if “NA” is present, the gene was not 790 
identified as an eGene).  791 
 792 
Supplementary File 2f: Results from the cell type-specific eQTL analysis on the mesenchymal 793 
lineage cell types identified in the scRNA-seq data from the 80 DO mice. All significant eQTL 794 
(LOD > 9.68 for autosomal chromosomes; LOD > 9.49 for X chromosome) and eGenes for the 795 
mesenchymal cell clusters (563 total). Chr = chromosome of eQTL, Pos = eQTL peak position, 796 
LOD = logarithm of the odds score, ci (low/hi) = LOD support intervals, Start = start position of 797 
gene (GRCm38), End = end position of gene (GRCm38), dist_start = distance of eQTL to start.  798 
 799 
Supplementary File 2g: Results from tests of significance for cell type proportions. Tests of 800 
significance on the transformed cell type proportions were performed using the Propeller R 801 
package and nominal p-values are reported. Sample batch (pool containing cells from mice in 802 
preparation for scRNA-seq) and sex were modeled as covariates. For the Pkm example, a T-test 803 
was performed for all mice with at least one PWK haplotype background (PWK/*; asterisk 804 
meaning any DO haplotype) at a Pkm locus (n = 15) against all remaining mice (n = 65). For the 805 
S100a1 example, a one-way ANOVA was performed on four groups: mice with at least one 806 
129/* haplotype background (n = 26) or NZO/* (n = 10), heterozygous for both (129/NOZ, n = 807 
4), or any other DO haplotype background at the locus (n = 40). Additionally, T-tests were 808 
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performed on the 129/* and NZO/* haplotype background individually against all other mice 809 
aggregated as a group.  810 
 811 
Supplementary File 2h: Summary of Differentiation Driver Gene (DDG) network analysis. The 812 
number of DDGs and associated networks that were enriched (Padj�≤�0.05) with more genes in 813 
the trajectory-specific tradeSeq genes for each cell type boundary (408 total). The number of 814 
DDGs that had a corresponding human homolog with a human BMD GWAS association (that 815 
colocalizes with expression and/or splicing quantitative trait loci (eQTL/sQTL) from the 816 
Genotype-Tissue Expression (GTEx) Project) are also displayed (26 total, 21 distinct). Three of 817 
the DDGs were also tested by the IMPC and had a significant BMD phenotype when knocked 818 
out.  819 
 820 
Supplementary File 2i: All significant DDG network analysis for Osteogenic trajectory 1 (178 821 
total). The enrichment of each DDG Bayesian network for tradeSeq-identified genes (identified 822 
for each cell type boundary along Osteogenic Linage 1) are displayed as nominal and adjusted P-823 
values, as well as the co-expression module in which the DDG was identified. The data can be 824 
filtered to highlight DDGs that are: a tradeSeq-identified gene for the cell boundary, a gene that 825 
was identified by Al-Barghouthi et al. (2022) as having eQTL that also colocalizes with BMD 826 
GWAS associations, a gene that was identified by Abood et al. (2023) as having sQTL that also 827 
colocalizes with BMD GWAS associations, a gene that was tested by the IMPC and had a 828 
significant effect on BMD when knocked out, or gene that was identified here as an eGene in the 829 
cell type-specific eQTL analysis using the 80 DO scRNA-seq data. Other columns of the data 830 
contain information at the network level: Number_neighbors = number of nodes (genes) in 831 
Bayesian network, Number_tradeSeq_gene_neighbors = number of genes that were also 832 
tradeSeq-identified genes for the cell type boundary, All network neighbors = all genes in 833 
network, Neighbors_eQTL_Al_Barghouthi = all genes in the network that were identified from 834 
Al-Barghouthi et al. (2022), Neighbors_sQTL_Abood = all genes in the network that were 835 
identified from Abood et al. (2023), Neighbors_IMPC_BMD_gene = all genes in the network 836 
that were tested by the IMPC and had a significant effect on BMD when knocked out, 837 
Neighbors_DO_eGene = all genes in the network that was identified here as an eGene in the cell 838 
type-specific eQTL analysis using the 80 DO scRNA-seq data, 839 
Neighbors_tradeSeq_gene_for_boundary = all genes that were also tradeSeq-identified genes for 840 
the cell type boundary.  841 
 842 
Supplementary File 2j: All significant DDG network analysis for Osteogenic trajectory 2 (55 843 
total). The enrichment of each DDG Bayesian network for tradeSeq-identified genes (identified 844 
for cell type boundary along Osteogenic Linage 2) are displayed as nominal and adjusted P-845 
values, as well as the co-expression module in which the DDG was identified. The data can be 846 
filtered to highlight DDGs that are: a tradeSeq-identified gene for the cell boundary, a gene that 847 
was identified by Al-Barghouthi et al. (2022) as having eQTL that also colocalizes with BMD 848 
GWAS associations, a gene that was identified by Abood et al. (2023) as having sQTL that also 849 
colocalizes with BMD GWAS associations, a gene that was tested by the IMPC and had a 850 
significant effect on BMD when knocked out, or gene that was identified here as an eGene in the 851 
cell type-specific eQTL analysis using the 80 DO scRNA-seq data. Other columns of the data 852 
contain information at the network level: Number_neighbors = number of nodes (genes) in 853 
Bayesian network, Number_tradeSeq_gene_neighbors = number of genes that were also 854 
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tradeSeq-identified genes for the cell type boundary, All network neighbors = all genes in 855 
network, Neighbors_eQTL_Al_Barghouthi = all genes in the network that were identified from 856 
Al-Barghouthi et al. (2022), Neighbors_sQTL_Abood = all genes in the network that were 857 
identified from Abood et al. (2023), Neighbors_IMPC_BMD_gene = all genes in the network 858 
that were tested by the IMPC and had a significant effect on BMD when knocked out, 859 
Neighbors_DO_eGene = all genes in the network that was identified here as an eGene in the cell 860 
type-specific eQTL analysis using the 80 DO scRNA-seq data, 861 
Neighbors_tradeSeq_gene_for_boundary = all genes that were also tradeSeq-identified genes for 862 
the cell type boundary  863 
 864 
Supplementary File 2k: All significant DDG network analysis for the Adipogenic trajectory 865 
(175 total). The enrichment of each DDG Bayesian network for tradeSeq-identified genes 866 
(identified for cell type boundary along the Adipogenic trajectory) are displayed as nominal and 867 
adjusted P-values, as well as the co-expression module in which the DDG was identified. The 868 
data can be filtered to highlight DDGs that are: a tradeSeq-identified gene for the cell boundary, 869 
a gene that was identified by Al-Barghouthi et al. (2022) as having eQTL that also colocalizes 870 
with BMD GWAS associations, a gene that was identified by Abood et al. (2023) as having 871 
sQTL that also colocalizes with BMD GWAS associations, a gene that was tested by the IMPC 872 
and had a significant effect on BMD when knocked out, or gene that was identified here as an 873 
eGene in the cell type-specific eQTL analysis using the 80 DO scRNA-seq data. Other columns 874 
of the data contain information at the network level: Number_neighbors = number of nodes 875 
(genes) in Bayesian network, Number_tradeSeq_gene_neighbors = number of genes that were 876 
also tradeSeq-identified genes for the cell type boundary, All network neighbors = all genes in 877 
network, Neighbors_eQTL_Al_Barghouthi = all genes in the network that were identified from 878 
Al-Barghouthi et al. (2022), Neighbors_sQTL_Abood = all genes in the network that were 879 
identified from Abood et al. (2023), Neighbors_IMPC_BMD_gene = all genes in the network 880 
that were tested by the IMPC and had a significant effect on BMD when knocked out, 881 
Neighbors_DO_eGene = all genes in the network that was identified here as an eGene in the cell 882 
type-specific eQTL analysis using the 80 DO scRNA-seq data, 883 
Neighbors_tradeSeq_gene_for_boundary = all genes that were also tradeSeq-identified genes for 884 
the cell type boundary  885 
 886 
Supplementary File 3a: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs 887 
identified for the LMP to OBP cell type boundary (Osteogenic trajectory 1).  888 
 889 
Supplementary File 3b: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs 890 
identified for the OBP to OB1 cell type boundary (Osteogenic trajectory 1).  891 
 892 
Supplementary File 3c: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs 893 
identified for the OBP to OB2 cell type boundary (Osteogenic trajectory 2).  894 
 895 
Supplementary File 3d: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs 896 
identified for the LMP to MALP cell type boundary (Adipogenic trajectory).  897 
 898 
Supplementary File 3e: PANTHER Gene Ontology (GO) Enrichment analysis for DDGs 899 
identified for the MALP to the end (of the trajectory) cell type boundary (Adipogenic trajectory).  900 
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 901 
Supplementary File 3f: Prioritized DDG network analysis for the Adipogenic trajectory (26 902 
total, 21 distinct). The enrichment of each prioritized DDG Bayesian network for 903 
tradeSeqidentified genes (identified for the cell type boundary along the associated trajectory) 904 
are displayed as nominal and adjusted P-values, as well as the co-expression module in which the 905 
DDG was identified. The data can be filtered to highlight DDGs that are: a tradeSeq-identified 906 
gene for the cell boundary, a gene that was identified by Al-Barghouthi et al. (2022) as having 907 
eQTL that also colocalizes with BMD GWAS associations, a gene that was identified by Abood 908 
et al. (2023) as having sQTL that also colocalizes with BMD GWAS associations, a gene that 909 
was tested by the IMPC and had a significant effect on BMD when knocked out, or gene that 910 
was identified here as an eGene in the cell type-specific eQTL analysis using the 80 DO 911 
scRNAseq data. Other columns of the data contain information at the network level: 912 
Number_neighbors = number of nodes (genes) in Bayesian network, 913 
Number_tradeSeq_gene_neighbors = number of genes that were also tradeSeq-identified genes 914 
for the cell type boundary, All network neighbors = all genes in network, 915 
Neighbors_eQTL_Al_Barghouthi = all genes in the network that were identified from Al-916 
Barghouthi et al. (2022), Neighbors_sQTL_Abood = all genes in the network that were identified 917 
from Abood et al. (2023), Neighbors_IMPC_BMD_gene = all genes in the network that were 918 
tested by the IMPC and had a significant effect on BMD when knocked out, 919 
Neighbors_DO_eGene = all genes in the network that was identified here as an eGene in the cell 920 
type-specific eQTL analysis using the 80 DO scRNA-seq data, 921 
Neighbors_tradeSeq_gene_for_boundary = all genes that were also tradeSeq-identified genes for 922 
the cell type boundary  923 
 924 
Supplementary File 3g: Expression Specificity scores (ESµ) scores for each gene for each cell 925 
cluster of the BMSC-OB scRNA-seq data for the 80 DO mice. ESµ scores are generated during 926 
the CELLEX portion of the CELLECT analysis pipeline. ESµ values range from 0 to 1 and are a 927 
gene’s marginal likelihood of being specifically expressed in a given cell type, where 1 is the 928 
most specific and 0 is not specific. 929 
 930 
  931 
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