

1 **Cell type-specific network analysis in Diversity Outbred mice identifies genes**
2 **potentially responsible for human bone mineral density GWAS associations**

3
4 Luke J Dillard¹, Gina M Calabrese¹, Larry D Mesner^{1,2}, Charles R Farber^{1,2,3}

5
6 ¹Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville,
7 VA 22908

8 ²Department of Public Health Sciences, School of Medicine, University of Virginia,
9 Charlottesville, VA 22908

10 ³Department of Biochemistry and Molecular Genetics, School of Medicine, University of
11 Virginia, Charlottesville, VA 22908

12
13 Correspondence to:

14
15 Charles R. Farber
16 E-mail: crf2s@virginia.edu
17 Center for Public Health Genomics
18 University of Virginia
19 P.O. Box 800717
20 Charlottesville, VA 22908, USA

21 Tel. 434-243-8584

22 **Summary**

23

24 Genome-wide association studies (GWASs) have identified many sources of genetic variation

25 associated with bone mineral density (BMD), a clinical predictor of fracture risk and

26 osteoporosis. Aside from the identification of causal genes, other difficult challenges to

27 informing GWAS include characterizing the roles of predicted causal genes in disease and

28 providing additional functional context, such as the cell type predictions or biological pathways

29 in which causal genes operate. Leveraging single-cell transcriptomics (scRNA-seq) can assist in

30 informing BMD GWAS by linking disease-associated variants to genes and providing a cell type

31 context for which these causal genes drive disease. Here, we use large-scale scRNA-seq data

32 from bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs)

33 from Diversity Outbred (DO) mice to generate cell type-specific networks and contextualize

34 BMD GWAS-implicated genes. Using trajectories inferred from the scRNA-seq data that map

35 cell state transitions, we identify networks enriched with genes that exhibit the most dynamic

36 changes in expression across trajectories. We discover 21 network driver genes, which are likely

37 to be causal for human BMD GWAS associations that colocalize with expression/splicing

38 quantitative trait loci (eQTL/sQTL). These driver genes, including *Fgfrl1* and *Tpx2*, along with

39 their associated networks, are predicted to be novel regulators of BMD via their roles in the

40 differentiation of mesenchymal lineage cells. In this work, we showcase the use of single-cell

41 transcriptomics from mouse bone-relevant cells to inform human BMD GWAS and prioritize

42 genetic targets with potential causal roles in the development of osteoporosis.

43

44

45 **Introduction**

46

47 Osteoporosis is a complex disease characterized by low bone mineral density (BMD),

48 bone fragility, and an increased risk of fracture¹. BMD, a highly heritable trait, is one of the most

49 important clinical predictors of osteoporotic fracture^{2,3}. Increasing our understanding of the

50 genetic basis of BMD is critical for the development of approaches for the treatment and

51 prevention of osteoporosis. In recent years, genome-wide association studies (GWAS) have

52 made great progress in unraveling BMD genetics by identifying over 1,100 independent

53 associations⁴. Now the challenge lies in pinpointing causal genes, which is necessary for the

54 translation of genetic findings into novel therapies.

55 A number of approaches exist to identify genes responsible for GWAS associations⁵⁻⁸.

56 Most rely on population-based “-omics” data⁹, which are scarce for human bone, to connect

57 associations to causal genes. Our group has used co-expression networks generated from mouse

58 bone transcriptomic datasets to assist in the identification of genes likely responsible for BMD

59 associations. One significant advantage of this approach is its ability to utilize the network

60 connections of candidate genes to predict how these candidate genes may affect BMD. For

61 example, we generated co-expression networks from bone tissue and primary osteoblasts in

62 mouse genetic reference populations and identified multiple co-expression modules enriched

63 with genes located in BMD associations^{10,11}. We then cross-referenced genes in these modules

64 with those regulated by co-localizing expression quantitative trait loci (eQTLs) from the Gene-

65 Tissue Expression project (GTEx)^{12,13} to identify "high priority" genes. Recently, we expanded

66 our analyses to include directed networks generated via a Bayesian approach using cortical bone

67 RNA-seq data from 192 Diversity Outbred (DO) mice. By combining key driver analysis and

68 GTEEx eQTL colocalization data, we identified 19 novel genes, such as *SERTAD4* and *GLT8D2*,
69 which are likely causal for human BMD GWAS associations¹⁴.

70 To date, our analyses have been reliant on networks generated from heterogeneous bulk
71 transcriptomics (RNA-seq) datasets from mouse bone and primary bone cells. However,
72 leveraging single-cell transcriptomics (scRNA-seq) data would offer the added benefit of
73 resolving the transcriptomic profiles of discrete cell types. Additionally, using scRNA-seq data
74 has the potential to provide context by predicting the specific cell types in which causal genes
75 and their associated networks operate. In recent work, we demonstrated the utility of bone
76 marrow-derived stromal cells cultured under osteogenic condition (BMSC-OB) for the
77 generation of population-scale scRNA-seq data on bone relevant cell types¹⁵. The BMSC-OB
78 model effectively enriches for mesenchymal lineage cells (e.g., mesenchymal progenitors,
79 osteoblasts, osteocyte-like cells) that are highly relevant to the regulation of BMD.

80 In this work, our goal was to prioritize and contextualize genes implicated by BMD
81 GWAS using an expanded large-scale (N=80) BMSC-OB scRNA-seq dataset on bone cell types.
82 We accomplished this by first generating co-expression and Bayesian networks¹⁴ for each
83 BMSC-OB mesenchymal cell type. We subsequently prioritized networks based on their
84 enrichment for genes exhibiting the most dynamic changes in expression across trajectories
85 inferred from the scRNA-seq data, thus highlighting networks likely associated with the
86 differentiation of BMSC-OBs. We then used these networks linked to osteogenic differentiation
87 to prioritize genes with eQTL and/or splicing quantitative trait loci (sQTL) which colocalize with
88 BMD GWAS associations^{7,16}. In doing so, this analysis provides additional support for a role of
89 these genes in the regulation of BMD and highlights their potential roles in differentiation of cell
90 types essential to skeletal health.

91

92

93 Results

94

95 **BMSC-OBs derived from DO mice yield diverse cell types that are enriched for** 96 **mesenchymal lineage cells:**

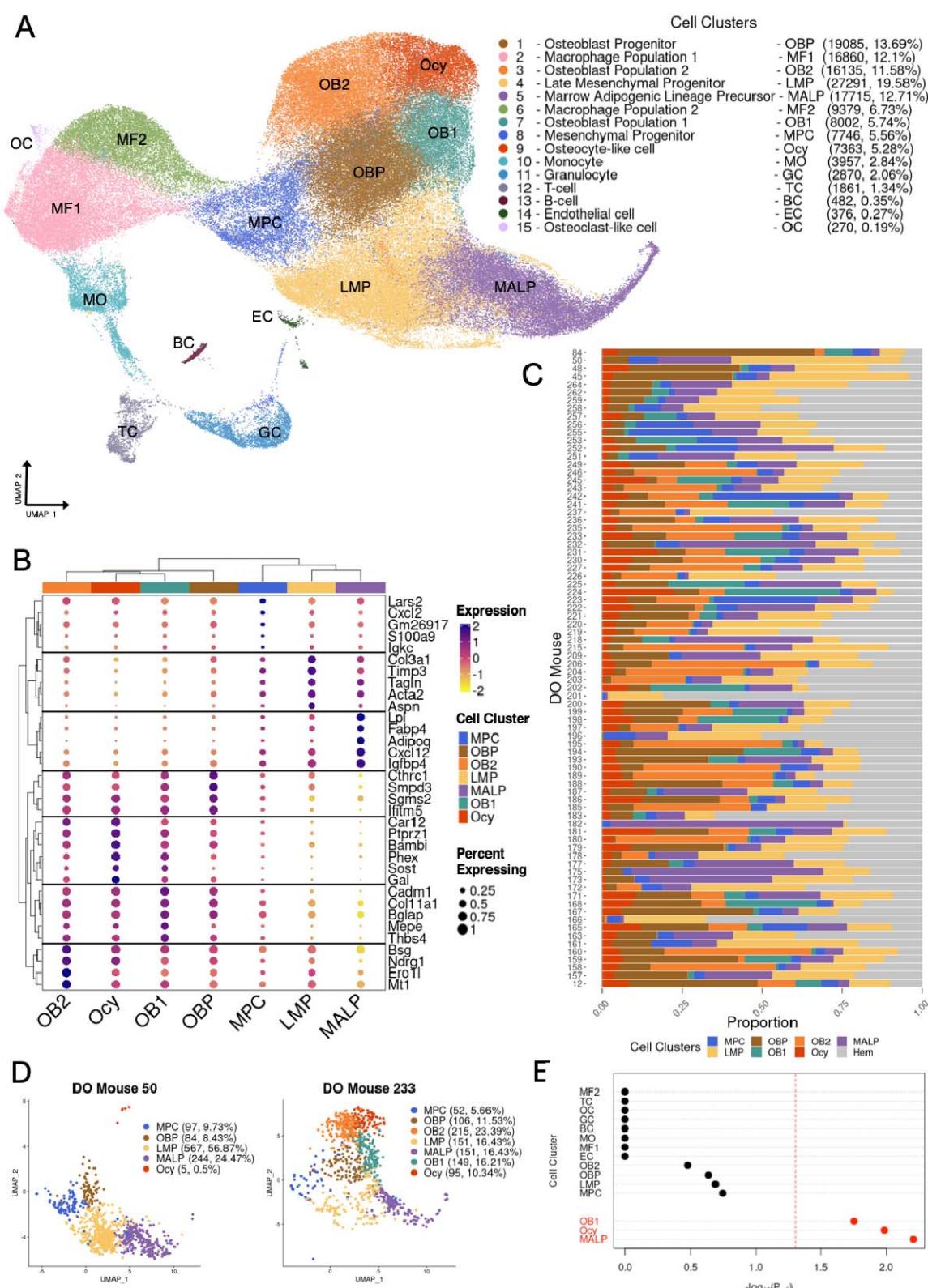
97

98 We cultured BMSCs from a total of 80 Diversity Outbred (DO) mice, a genetically
99 diverse outbred mouse population^{17,18} (N=75 from the current study and N=5 from¹⁵; N□=□49
100 male and N□=□31 females). We cultured BMSCs under osteogenic conditions and subsequently
101 performed scRNA-seq, as described in¹⁵. After stringent processing and quality control
102 (Materials and Methods), the dataset consisted of 21,831 expressed genes across 139,392 cells.
103 We manually annotated 15 clusters ranging in size from 270 to 27,291 cells and identified cell
104 types of the mesenchymal lineage as well as various other cell types (**Figure 1A**,
105 **Supplementary File 1a, Figure 1-figure supplement 1**).

106 Based on our prior BMSC-OB scRNA-seq study¹⁵, we expected to identify a large
107 proportion of mesenchymal cells and a smaller fraction of non-mesenchymal cell types.
108 Consistent with this hypothesis, clusters associated with mesenchymal lineages accounted for
109 74.1% of all cells (**Figure 1A**). These included mesenchymal progenitor cells (MPCs), late
110 mesenchymal progenitors (LMPs), osteoblast progenitors (OBPs), two mature osteoblast
111 populations (OB1 and OB2), osteocyte-like cells (Ocy), and marrow adipogenic lineage
112 progenitors (MALPs). The non-mesenchymal cell types observed included macrophages,
113 monocytes, granulocytes, T-cells, B-cells, endothelial cells, and osteoclast-like cells (**Figure**
114 **1A**). With regards to the mesenchymal cell types, the only differences in cell clusters relative to
115 our previous report¹⁵ were the presence of MPCs and two mature osteoblast clusters. Upon
116 comparing the two distinct osteoblast clusters, OB1 and OB2 (**Figure 1A**), both clusters had
117 ubiquitous expression of genes associated with mature osteoblasts (e.g., *Colla1*, *Bglap*, *Sparc*,

118 and *Ibsp*) (**Supplementary File 1a**) while many of the “canonical” osteoblast markers were
119 more highly expressed in OB1 compared to OB2 (**Supplementary File 1b**). Interestingly, MPCs
120 did not have transcriptomic profiles similar to other mesenchymal progenitor cells previously
121 identified by our group or others^{15,19}. All other mesenchymal cell types demonstrated specific
122 expression of canonical marker genes (**Figure 1A, B**).

123 We next assessed the variability in cell type frequencies across DO mice by quantifying
124 the proportions of each annotated mesenchymal cell type. All other clusters, which mainly
125 consisted of immune cells of hematopoietic origin, were aggregated into one group (Hem) for
126 each mouse. We observed high variability in the raw proportional abundances of cell types
127 derived from each mouse (**Figure 1C, Supplementary File 1c**). For example, the proportions of
128 osteoblasts (OB1 and OB2) varied significantly among individual DO mice (**Figure 1D**). All
129 mice used in the current experiment had been extensively phenotyped for a wide range of bone
130 traits (microCT, histomorphometry, biomechanical bone properties, etc.) as part of a previous
131 genetic analysis of bone strength¹⁴. We correlated cell type frequencies with bone traits,
132 however, none of the cell type proportions were strongly correlated with any bone trait
133 (**Supplementary File 1d-e**).



134 **Figure 1. Analysis of single cell RNA-seq (scRNA-seq) data for BMSC-OBs derived from**
135 **80 Diversity Outbred (DO) mice.**

136 **Mesenchymal lineage cells are enriched in BMD heritability:**

137
138 The primary goal of this work was to prioritize and contextualize genes implicated by
139 BMD GWAS. As a first step towards this goal, we sought to determine which cell types were the
140 most relevant to the genetics of BMD. Using the BMD GWAS and the BMSC-OB scRNA-seq
141 data, we performed a CELLECT²⁰ cell type prioritization analysis to identify cell clusters
142 enriched for BMD heritability. We observed that OB1, Ocy, and MALP cell clusters were
143 significantly enriched ($P_{adj} < 0.05$, red dashed line) for BMD heritability ($P_{adj} = 0.018, 0.010,$
144 0.006, respectively) (**Figure 1E, Supplementary File 1f**). None of the non-mesenchymal cells
145 identified were significant ($P_{adj} > 0.05$) (**Figure 1E**). As a result, all downstream efforts focused
146 solely on using data on mesenchymal cell types to inform GWAS.

147

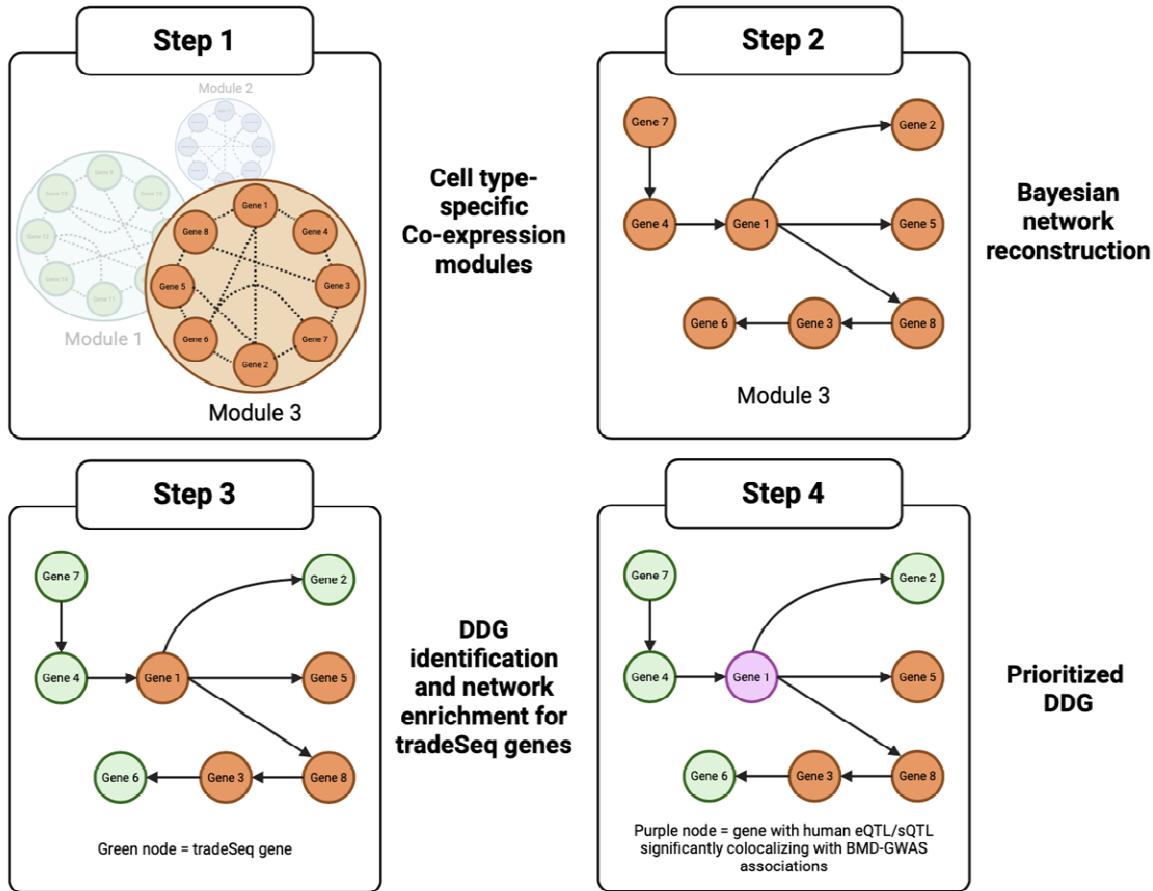
148 **Generating mesenchymal cell type-specific Bayesian networks to inform BMD GWAS:**

149
150 We have previously shown that network-based approaches using bulk RNA-seq are
151 powerful tools for the identification of putative causal genes from BMD GWAS data^{10,11,14}. Here,
152 our goal was to apply these same approaches using the BMSC-OB scRNA-seq data to prioritize
153 and contextualize genes we previously identified as having a colocalizing expression quantitative
154 trait locus (eQTL; N=512) or splicing QTL (sQTL; N=732) in a tissue from the Genotype-Tissue
155 Expression (GTEx) project^{7,13,16}. Genes identified in each study (or both) yielded a list of high
156 priority target genes (N = 1,037). While GTEx does not currently contain data for bone tissue,
157 eQTL can be shared across many tissues and may exert their effects in cell types resident to
158 bone²¹. Therefore, utilizing our previous work, we hypothesized that generating cell type-specific
159 networks would yield more biologically relevant representations of processes occurring within
160 particular mesenchymal cell types. Additionally, by integrating GWAS, cell type-specific

161 networks, and dynamic gene expression as a function of differentiation, we anticipated we would
162 identify points of intervention in which genetic variation impacts genes involved in the
163 differentiation process.

164 Our network analysis begins by partitioning genes into groups based on co-expression by
165 applying iterative weighted gene co-expression network analysis (iterativeWGCNA)²² to each
166 mesenchymal cell type (Step 1, **Figure 2**). In total, 535 modules were identified from the BMSC-
167 OB scRNA-seq data, and the number of modules identified for each mesenchymal cell cluster
168 ranged from 26 to 153 with an average of 76 modules per cluster (**Supplementary File 1g-h**).
169 We sought to infer causal relationships between genes in each cell type-specific co-expression
170 module and subsequently identify networks involved in processes relevant to BMSC-OB
171 differentiation. To this end, we generated Bayesian networks for each co-expression module,
172 thus enabling us to model directed interactions between co-expressed genes based on conditional
173 independence¹⁴ (Step 2, **Figure 2**).

174



175
176 **Figure 2. Overview of the network analysis pipeline**
177

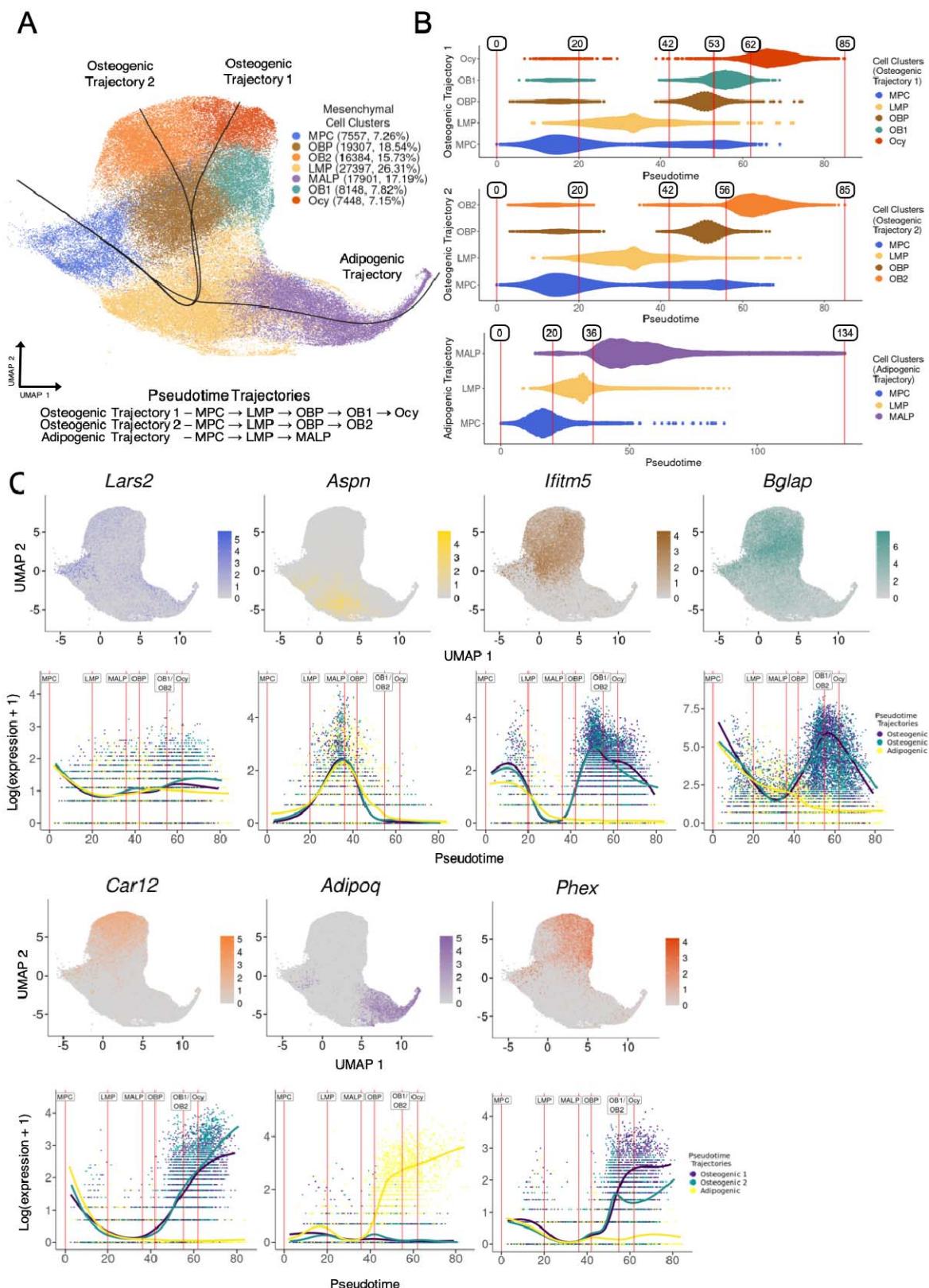
178 **Identifying putative drivers of mesenchymal cell differentiation:**

179
180 We hypothesized that many genes impacting BMD do so by influencing osteogenic
181 differentiation or possibly bone marrow adipogenic differentiation of key mesenchymal cell
182 types, as suggested by the CELLECT analysis above. Therefore, the next step of our network
183 analysis was to identify cell type-specific Bayesian networks enriched for genes potentially
184 driving mesenchymal differentiation (Step 3, **Figure 2**). To accomplish this, we first performed a
185 pseudotime trajectory analysis to infer paths of differentiation in the mesenchymal lineage cells.
186 We resolved three pseudotime trajectories (two osteogenic, one adipogenic) originating from the

187 MPC cell cluster and ending in either Ocy, OB2, or MALP cell fates (**Figure 3A**). It is important
188 to note that given the identification of multiple skeletal stem cells^{23–26}, we do not view these
189 trajectories as lineages, but rather “differentiation paths” (progenitor to mature and/or terminally
190 differentiated cells) that are likely traversed by different subsets of skeletal stem cells.

191 To identify genes likely impacting BMSC-OB differentiation, we used tradeSeq to
192 identify genes that exhibit dynamic changes in expression along pseudotime²⁷. Prior to
193 performing the tradeSeq analysis, we parsed the pseudotime trajectories into regions that
194 encompass cells associated with each cell type along their respective trajectories (**Figure 3B**).
195 We defined multiple cell type boundaries (nine in total) using pseudotime values, which
196 represent points along a trajectory. The tradeSeq analysis was performed for each boundary
197 (**Supplementary File 2a**). For example, trajectories bifurcate in the LMP cell cluster (**Figure**
198 **3A**); therefore, cells belonging to the LMP cluster can map to adipogenic and/or osteogenic
199 trajectories depending on their placement along pseudotime. Between a cell type boundary, cells
200 spanning a specific cluster (e.g., LMP) and mapping to a specific trajectory (e.g., osteogenic
201 trajectory) are used as input to analyze gene expression between the start and end points of the
202 cell type boundary (e.g., LMP_to_OBP). We analyzed gene expression within the established
203 cell type boundaries for all trajectories and identified genes that exhibit the most significant
204 differences in expression between the start and end points of the cell type boundaries. The total
205 number of significant trajectory-specific tradeSeq genes ($P_{adj} < 0.05$) ranged from 87 to 1,697
206 across the 9 cell type boundaries (**Supplementary File 2a, 2b-d**). The expression of
207 representative marker genes for all cell types as a function of pseudotime were consistent with
208 boundaries defined for each cell type (**Figure 3C**).

209



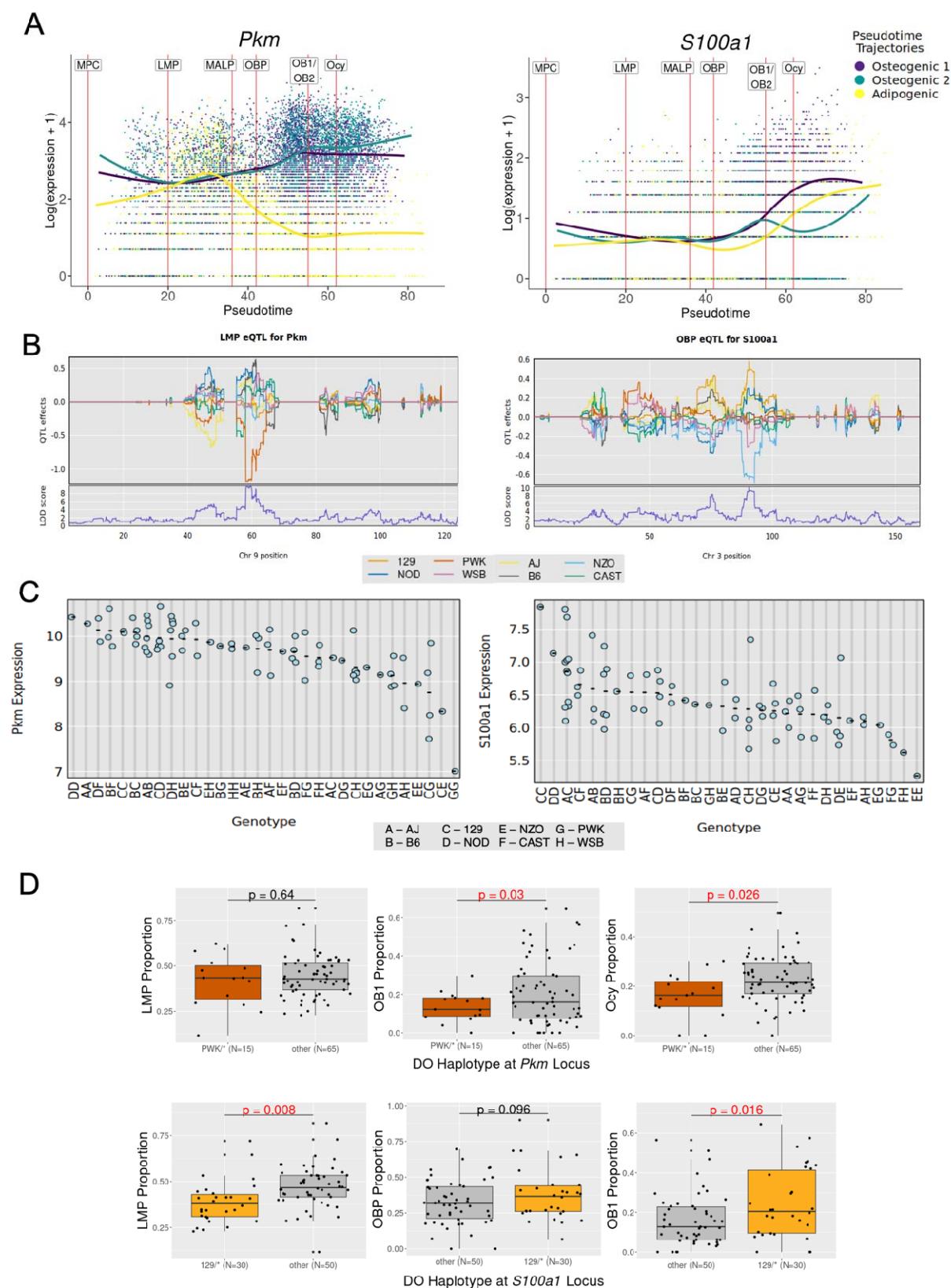
210 **Figure 3. Pseudotime Trajectory Inference analysis and establishment of cell type**
 211 **boundaries for tradeSeq analysis**

212 We sought to identify tradeSeq genes that may have an associated expression quantitative
213 trait locus (eQTL) and hypothesized that eQTLs that perturb their expression would also impact
214 the proportion of cells at different stages along the cell trajectories. We performed a cell type-
215 specific eQTL analysis for each mesenchymal cell type from the 80 DO mice scRNA-seq data.
216 We identified 563 genes (eGenes) regulated by a significant *cis*-eQTL in specific cell types of
217 the BMSC-OB scRNA-seq data. Despite being significantly underpowered for this analysis due
218 to our relatively smaller sample size (N = 80), we identified two cell type-specific eGenes where
219 the genotype responsible for the *cis*-eQTL effect was also associated with cell type proportions.
220 The first of these genes was Pyruvate Kinase, muscle (*Pkm*), which was identified as a
221 significant global tradeSeq gene ($P_{adj} = 8.35 \times 10^{-8}$; **Supplementary File 2e**) associated with the
222 transition from LMPs to OBPs along an osteogenic trajectory (**Figure 4A**). Moreover, *Pkm*
223 served as an eGene in the LMP cell cluster ($LOD = 9.72$; **Figure 4B, Supplementary File 2f**).
224 Mice inheriting at least one PWK allele at this locus (N = 15) demonstrated lower *Pkm*
225 expression (**Figure 4C**) and a notable reduction in mature osteoblasts (OB1) and osteocyte-like
226 cells (Ocy) proportions ($P = 0.030$ and $P = 0.026$, respectively), while LMP proportions were
227 unaffected (**Figure 4D, Supplementary File 2g**).

228 Similarly, S100 calcium binding protein A1 (*S100a1*) was an OBP to OB1 transition
229 tradeSeq gene ($P_{adj} = 0.023$; **Figure 4A, Supplementary File 2e**) and an eGene in the OBP cell
230 cluster ($LOD = 10.12$; **Figure 4B, Supplementary File 2f**). Mice inheriting at least one 129
231 allele at this locus (N = 30) had higher *S100a1* expression, while the opposite was observed for
232 mice inheriting NZO alleles (N = 14) (**Figure 4C**). Additionally, mice inheriting at least one 129
233 allele showed a significant decrease in LMP proportion and increase in OB1 proportion ($P =$
234 0.008 and $P = 0.016$, respectively) (**Figure 4D, Supplementary File 2g**), while no significant

235 differences were observed in cell type proportions among mice inheriting NZO alleles at this
236 locus (**Figure 4-figure supplement 1, Supplementary File 2g**).

237



238

239

240

Figure 4. TradeSeq-identified genes associated with BMSC-OB differentiation exhibit eQTL effects.

241 **Identification of differentiation driver genes (DDG):**

242
243 In order to discover BMSC-OB differentiation genes potentially responsible for BMD
244 GWAS associations, the next step of our network analysis leveraged the trajectory-specific
245 tradeSeq genes identified for each cell type boundary (**Supplementary Table File 2b-d**) to
246 identify differentiation driver genes (DDGs) (Step 3, **Figure 2**). We identified DDGs by
247 extracting subnetworks (i.e., large 3-step neighborhoods; see Methods) for each gene in each cell
248 type-specific Bayesian network and identifying those subnetworks enriched ($P_{adj} < 0.05$) for
249 trajectory-specific tradeSeq genes for the cell type boundary. The analysis identified 408
250 significant DDGs (**Supplementary File 2h-k**). We performed a PANTHER²⁸ Gene Ontology
251 (GO) analysis for the cell type boundaries yielding a sufficient number of DDGs and found that
252 DDGs for the osteogenic cell type boundaries (LMP_to_OBP, OBP_to_OB1, OBP_to_OB2)
253 were enriched for genes associated with the cell cycle (GO:0007049; N = 23, 18, 23; P = 1.12 x
254 10^{-6} , 1.29×10^{-13} , 1.0×10^{-14} , respectively) (**Supplementary File 3a-c**). The DDGs for the
255 adipogenic cell type boundary (LMP_to_MALP, MALP_to_end) were enriched for genes
256 associated with extracellular matrix organization (GO:0030198; N = 10; P = 1.62×10^{-7}) and
257 lipid metabolic processes (GO:0006629; N = 25; P = 1.83×10^{-11}), respectively (**Supplementary**
258 **File 3d-e**). Across all 408 DDGs, 49 (12%) were identified in one or more cell type boundaries
259 as genes with a significant alteration (P < 0.05) of whole-body BMD when knocked-out/down in
260 mice, as reported by the International Mouse Knockout Consortium (IMPC)²⁹ (**Supplementary**
261 **File 2i-k**).

262 We used our previously generated list of potentially causal BMD GWAS genes
263 (N=1,037) to subsequently prioritize the DDGs (Step 4, **Figure 2**). Of the 408 DDGs, 21 DDGs
264 in one or more cell type boundaries were genes that have BMD GWAS associations that

265 colocalize with sQTL/eQTL (**Table 1**). The majority of these DDGs were identified in LMPs
266 along both the osteogenic (LMP_to_OBP) and adipogenic (LMP_to_MALP) trajectories (N = 10
267 and 6, respectively; **Supplementary File 2h, Supplementary File 3f**). The remaining DDGs
268 were identified in OBPs along both osteoblast trajectories (OBP_to_OB1, OBP_to_OB2; N = 1
269 and 3, respectively) and MALPs (MALP_to_end; N = 6). Additionally, 3 of the 21 DDGs (*Tet1*,
270 *Tpx2*, *Tim2*) are IMPC genes that exhibit a significant alteration of BMD (**Supplementary File**
271 **2h, Supplementary File 3f**).

272 **Table 1: Prioritized Differentiation Driver Genes (DDGs) that have BMD GWAS**
273 **associations that colocalize with splicing/expression QTL (eQTL/sQTL) identified in a**
274 **Genotype-Tissue Expression project (GTEx) tissue.** The tissue with the most significant
275 colocalization (RCP and/or H4PP) is listed for each DGG (26 total, 21 distinct), as determined
276 from Al-Barghouthi *et al.* (2022) and Abood *et al.* (2023) for eQTL and sQTL, respectively^{7,16}.
277 RCP = Regional Colocalization Probability (GWAS and eQTL colocalization). H4PP = H4
278 Posterior Probability (GWAS and sQTL colocalization).

Trajectory	Cell type boundary	DDG	GTEX Tissue with strongest eQTL colocalization (RCP)	GTEX Tissue with strongest sQTL colocalization (H4PP)	eGene identified from scRNA-seq of the 80 DO mice
1	LMP to OBP	<i>Tet1</i>	Adipose (Visceral); 0.3191	-	-
1	LMP to OBP	<i>Tpx2</i>	Testis; 0.2031	-	-
1	LMP to OBP	<i>Cdk1</i>	-	Pituitary; 0.7795	-
1	LMP to OBP	<i>Ttyh3</i>	-	Liver; 0.9350	-
1	LMP to OBP	<i>Olfml3</i>	Artery (Aorta); 0.8048	-	-
1	LMP to OBP	<i>Izumo4</i>	-	Brain (Hypothalamus); 0.9182	-
1	LMP to OBP	<i>Sec24d</i>	Nerve (Tibial); 0.2677	-	-
1	LMP to OBP	<i>Tmem263</i>	Adipose (Subcutaneous); 0.5704	Cultured cells (fibroblasts); 0.9716	-
1	LMP to OBP	<i>Lmf2</i>	-	Adrenal Gland; 0.8181	-
1	LMP to OBP	<i>Tln2</i>	Esophagus (Muscularis); 0.9697	-	-
1	OBP to OB1	<i>Kremen1</i>	Heart (Left Ventricle); 0.8686	-	-

2	OBP to OB2	<i>Kremen1</i>	Heart (Left Ventricle); 0.8686	-	-
2	OBP to OB2	<i>Ebf1</i>	-	Testis; 0.8760	-
2	OBP to OB2	<i>Lrp4</i>	Pancreas; 0.7943	-	-
3	LMP to MALP	<i>Ttyh3</i>	-	Liver; 0.9350	-
3	LMP to MALP	<i>Fgfrl1</i>	Cultured cells (fibroblasts); 0.1611	-	-
3	LMP to MALP	<i>Ebf1</i>	-	Testis; 0.8760	-
3	LMP to MALP	<i>Ppp1rl2b</i>	-	Nerve (Tibial); 0.8807	-
3	LMP to MALP	<i>Rhoj</i>	Cultured cells (fibroblasts); 0.352	Breast; 0.7844	-
3	LMP to MALP	<i>Tln2</i>	Esophagus (Muscularis); 0.9697	-	-
3	MALP to end	<i>Adh1</i>	-	Esophagus (Gastroesophageal Junction); 0.9999	-
3	MALP to end	<i>Fgfrl1</i>	Cultured cells (fibroblasts); 0.1611	-	-
3	MALP to end	<i>Adcy5</i>	-	Esophagus (Gastroesophageal Junction); 0.8456	-
3	MALP to end	<i>Cnn2</i>	-	Spleen; 0.7743	-
3	MALP to end	<i>Mxra8</i>	-	Pituitary; 0.7545	-
3	MALP to end	<i>Timp2</i>	-	Testis; 0.9429	-

279

280 **Network analysis predict *Fgfrl1* and *Tpx2* as novel regulators of BMD:**

281

282 Here we highlight two DDGs that putatively impact human BMD via their roles in LMP

283 differentiation along either an adipogenic (*Fgfrl1*) or osteogenic (*Tpx2*) trajectory, which are

284 genes with potential roles that have been minimally characterized in the context of human BMD.

285 Based on our previous work⁷, *Fgfrl1* (fibroblast growth factor receptor-like 1) was identified as a

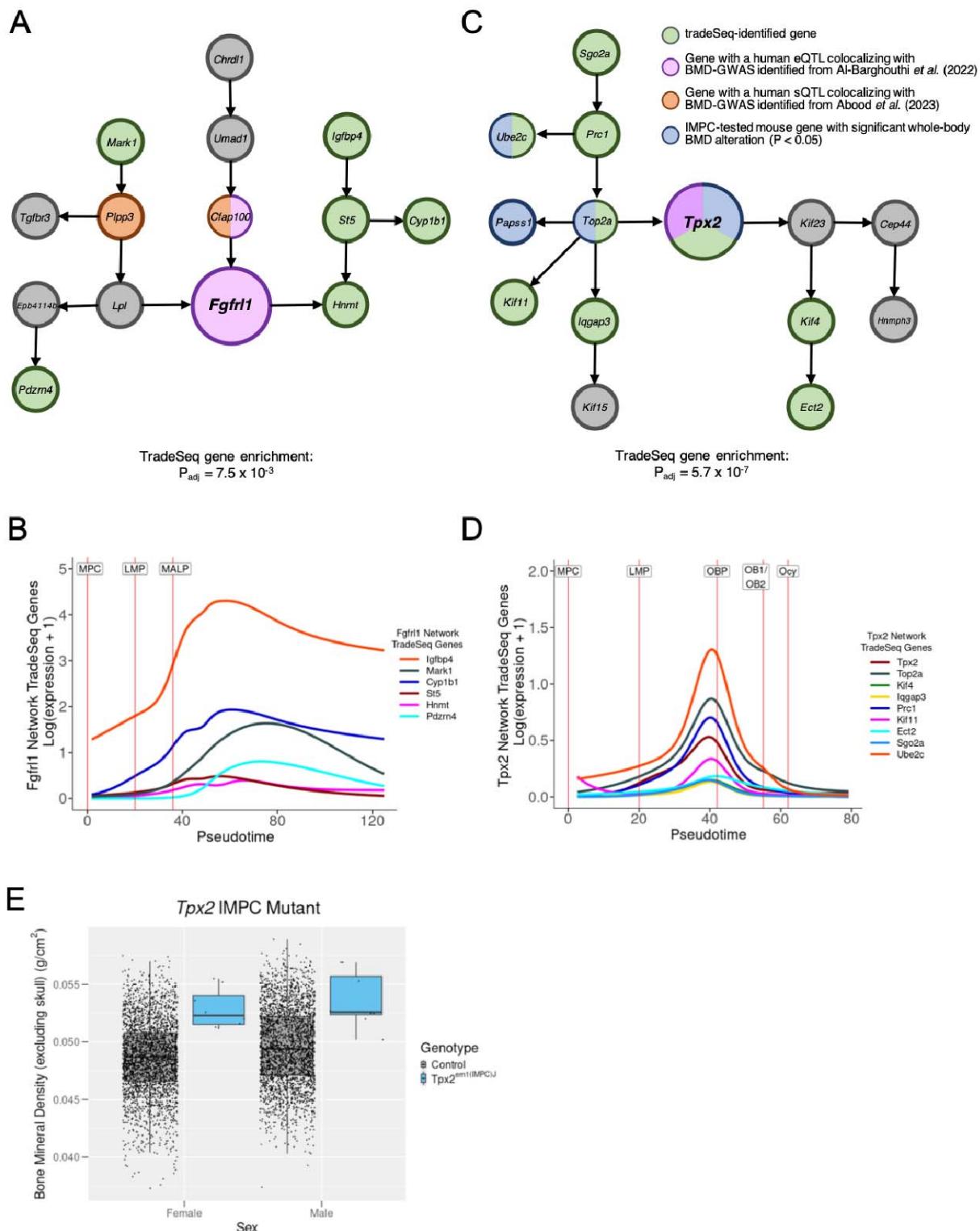
286 DDG with significant human BMD GWAS associations that also colocalized with eQTL

287 identified in the cultured fibroblast GTEx tissue (RCP = 0.1611, **Table 1**). The *Fgfrl1* network
288 was enriched for tradeSeq-identified genes (N = 6 genes, $P_{adj} = 7.5 \times 10^{-3}$) for LMPs along an
289 adipogenic trajectory (**Figure 5A**). An increase in the expression of all tradeSeq-identified genes
290 for the *Fgfrl1* network was observed (**Figure 5B, Supplementary File 2d**). Importantly, the
291 expression pattern for the tradeSeq-identified genes were consistent with the cell type boundaries
292 established for LMPs differentiating along the adipogenic trajectory toward the MALP cell state
293 (**Figure 5B**). Furthermore, in the surrounding *Fgfrl1* network, two genes (*Plpp3* and *Cfap100*)
294 have significant human BMD GWAS associations that also colocalized with sQTL in GTEx
295 tissues, as reported in our previous study¹⁶. In the *Fgfrl1* network, many other genes can be
296 associated with adipocyte function (e.g., *Lpl*, *Plpp3*, *Igfbp4*)³⁰⁻³² and the maintenance of cilia
297 (e.g., *Cfap100*, *St5 (Denn2b)*, *Mark1*)³³⁻³⁵.

298 The other network we identified, the *Tpx2* network, was identified for LMPs along an
299 osteogenic trajectory (**Figure 5C**). *Tpx2* (TPX2, microtubule-associated) is a DDG with
300 significant human BMD GWAS associations that also colocalized with eQTL identified in the
301 Testis GTEx tissue (RCP = 0.2031, **Table 1**). The network was enriched for tradeSeq-identified
302 genes (N = 9 genes, $P_{adj} = 5.7 \times 10^{-7}$) for LMPs differentiating along the osteogenic trajectory
303 (**Figure 5C**). Furthermore, the expression of the tradeSeq-identified genes for the *Tpx2* network
304 were consistent with the cell type boundaries established for LMPs differentiating along the
305 osteogenic trajectory toward the OBP (osteoblast progenitor) cell state (**Figure 5D; Supplementary File 2b**). The expression of these genes increase as LMPs differentiate into
306 OBPs and subsequently decrease upon reaching an OBP cell state. Additionally, *Tpx2* exhibited
307 a significant alteration of BMD in both male and female mutant mice (Genotype P-value = 1.03
308 $\times 10^{-3}$) from IMPC (**Figure 5E**). In regards to the constituents of the *Tpx2* network, additional

310 genes have been tested by the IMPC and result in a significant impact on BMD, such as *Ube2c*,
311 *Top2a*, and *Papss1*. Many other genes in the *Tpx2* network can be associated with cellular
312 division and proliferation, including four of the genes of the kinesin family (*Kif*) motor protein
313 genes³⁶: *Kif4*, *Kif11*, *Kif15*, *Kif23*.

314



315 **Figure 5. *Fgf11* and *Tpx2* are prioritized DDGs and putative drivers of mesenchymal
 316 differentiation.**

317

318 **Discussion**

319

320 BMD GWAS has been successful at identifying thousands of SNPs associated with
321 disease; however, the identification of causal genes and defining their functional role in disease
322 remains challenging. The integration of “-omics” data, particularly transcriptomics, can assist in
323 overcoming this challenge. Leveraging transcriptomics data has proven invaluable to informing
324 GWAS, as demonstrated in studies that use these data to perform eQTL mapping, transcriptome-
325 wide association studies (TWASs), and co-expression/gene regulatory network reconstruction.
326 GWAS associations can colocalize with predicted sources of genetic variation that perturb causal
327 gene function or expression, thus providing a potential mechanism through which associations
328 impact disease. While bulk RNA-seq data has been the foundation of such analyses, scRNA-seq
329 data can provide valuable biological context by predicting the cell type in which causal genes are
330 affected. To inform BMD GWAS, the generation of population-scale transcriptomics data at
331 single-cell resolution in bone-relevant cell types can assist in the discovery of novel gene targets.
332 Here, we perform scRNA-seq on 80 DO mice to generate single-cell transcriptomics data of
333 mesenchymal cell types relevant to bone. Using these data, our goal was to prioritize putative
334 causal genes and provide biological context in which these genes potentially influence disease, at
335 cell type-specific resolution. Through our pseudotemporal gene expression and network
336 analyses, we identified 21 networks governed by predicted differentiation driver genes (DDGs)
337 that have corresponding human BMD GWAS associations colocalizing with eQTL/sQTL in a
338 GTEx tissue.

339 We demonstrate that the BMSC-OB model serves as an effective method to enrich for
340 mesenchymal lineage cells, particularly bone-relevant cells. We characterized cells from 80 mice
341 and identified both osteogenic and adipogenic cells derived from the mesenchymal lineage, such

342 as two populations of osteoblasts (OB1 and OB2), osteocyte-like cells (Ocy), and MALPs. Our
343 trajectory inference analysis identified three distinct trajectories in which mesenchymal
344 progenitor cells give rise to both osteogenic and adipogenic cell types, thus portraying
345 biologically relevant and known paths of differentiation of mesenchymal progenitor cells.
346 Pseudotemporal gene expression was analyzed along each trajectory, in a cell type-specific
347 fashion, to identify genes that were changing the most as a function of pseudotime (tradeSeq-
348 identified genes). Subsequent *cis*-eQTL analysis indicated that the expression of some tradeSeq-
349 identified genes were associated with the relative proportion of cell types. While instances such
350 as these were rare, they illustrate that the potential consequence of genetic variation impacting
351 the expression of tradeSeq-identified genes may impact differentiation and the abundances of
352 certain cell types along a trajectory.

353 To inform BMD GWAS, we utilized the scRNA-seq data in a network analysis to
354 contextualize causal genes (and their associated networks) by predicting the cell types through
355 which these genes are likely acting. Towards this goal, we generated cell type-specific Bayesian
356 networks from our BMSC-OB scRNA-seq data. Our approach was similar to our previous
357 network analyses where bulk RNA-seq data was leveraged to identify genes with strong
358 evidence of playing central roles in networks^{10,11,14}. In contrast, here we utilized scRNA-seq data
359 to identify DDGs and prioritize networks based on the likelihood that they are involved in the
360 differentiation of mesenchymal lineage cells (based on network connections enriched for
361 tradeSeq-identified genes determined from inferred trajectories). Leveraging our previous
362 work^{7,16}, we prioritized DDGs if they were genes with BMD GWAS associations colocalizing
363 with human eQTL/sQTL in a GTEx tissue. Together, a gene being both a DDG and having BMD
364 GWAS associations that colocalize with eQTL/sQTL is strong support of causality.

365 We identified 21 DDGs and associated networks, some of which have little to no known
366 prior connection to bone. We contextualize these causal genes and their networks by not only
367 providing cell type predictions in which they likely operate, but also providing information
368 regarding the biological processes they likely affect. For example, the *Tpx2* network was
369 identified in LMPs differentiating along an osteogenic trajectory. *Tpx2* is a microtubule assembly
370 factor that interacts with spindle microtubules during cellular division³⁷. The expression of *Tpx2*
371 and its regulation is associated with osteosarcoma, as well as other cancers³⁸. In our previous
372 study, *Tpx2* was identified as a gene that has BMD GWAS associations that colocalize with
373 eQTL in the Testis GTEx tissue⁷. While GTEx does not maintain bone tissue, eQTL are shared
374 across many tissues²¹; therefore, non-bone eQTL may exert their effects in cell types associated
375 with bone, such as LMPs, and evidence of a human eQTL effect indicates that genetic variation
376 can modulate the expression of *Tpx2*. Additionally, when knocked out by IMPC, *Tpx2* exhibited
377 a significant increase in whole body BMD in mice, thus providing strong support for *Tpx2*
378 influencing the regulation of BMD in humans. In the surrounding gene neighborhood of the *Tpx2*
379 network, other genes can be associated with cellular division as well, such as Topoisomerase 2A
380 (*Top2a*) and the kinesin family (*Kif*) genes^{36,39}. Taken together, these results indicate a potential
381 role of *Tpx2* as a mediator of BMD and genetic variation altering its expression could affect
382 microtubule maintenance during the expansion of osteogenic cell populations.

383 Additionally, the *Fgfrl1* network was identified in LMPs differentiating along an
384 adipogenic trajectory. Fibroblast growth factor receptor-like 1 (*Fgfrl1*) is presumed to function
385 as a decoy receptor that interacts with FGF ligands necessary for FGF signaling^{40,41} and *Fgfrl1*
386 expression is suggested to play a role in both adipogenic and osteogenic differentiation⁴². Our
387 previous study also identified *Fgfrl1*, which has BMD GWAS associations that colocalize with

388 eQTL in the cultured fibroblasts GTEx tissue¹⁴. In the neighborhood of the *Fgfrl1* network, *Lpl*,
389 *Plpp3*, *Igfbp4* have well-established roles in adipocyte function and metabolism^{30–32}; however,
390 other genes can be associated with cilia, such as *Cfap100*, *St5* (*Denn2b*), *Mark1*^{33–35}.
391 Interestingly, the maintenance and remodeling of cilia is essential to the differentiation of
392 mesenchymal stem cells and pre-adipocytes (e.g., MALPs) while mature adipocytes lack cilia⁴³.
393 Moreover, the inactivation of FGF signaling is associated with the length of primary cilia⁴⁴.
394 Thus, genetic variation altering the expression of expression of *Fgfrl1* may affect FGF signaling
395 to impact the maintenance of cilia and adipogenic differentiation. Additionally, given the
396 prioritization of MALPs in the CELLECT analysis and the well-established inverse relationship
397 between marrow adiposity and BMD^{45,46}, skewed balance of LMP differentiation toward marrow
398 adipogenic cell fates may affect BMD. In summary, the *Fgfrl1* network harbors genes involved
399 in adipogenic function, including cilia maintenance, which may contribute to LMP
400 differentiation along an adipogenic trajectory. Together, these results indicate a potential role of
401 *Fgfrl1* as a mediator of BMD via its role in adipogenic differentiation and maintenance of cilia.

402 Analyses performed here are not without limitations to consider. Our *in vitro* culturing
403 approach and the preparation of single cells for scRNA-seq could be sources of technical
404 variation in our study. Additionally, a pitfall of scRNA-seq is the sparsity of the resulting data,
405 which yields an increased frequency of zero values for the expression of some genes in a
406 proportion of cells, also known as “drop-outs”⁴⁷. While statistical approaches can be employed to
407 impute missing data, the accuracy of such methods and whether or not the resulting improvement
408 in transcriptomic signal recovery is enough to warrant such intervention is contentious^{48,49}.
409 However, this issue may be partially offset given the larger scale of the scRNA-seq performed in
410 this study and the average expression approach performed for network and eQTL analysis.

411 Another limitation of this study is that read alignment of the scRNA-seq data did not account for
412 DO founder genetic variation in RNA transcripts, which could affect read mapping and gene
413 expression measurements. An additional limitation is that the BMSC-OB model does not capture
414 osteoclasts, another cell type associated with bone tissue. Importantly, results from our
415 CELLECT analysis indicate that BMD heritability was not enriched for genes whose expression
416 was more specific to osteoclast-like cells; however, these cells likely represent immature
417 osteoclasts, as mature multinucleated cells would be too large to be captured for sequencing.
418 Lastly, while our study employed 80 DO mice, the issue of statistical power is still a limitation;
419 however, we demonstrate that the BMSC-OB model is amenable to high throughput and the
420 inclusion of hundreds of mice, thus statistical power will be improved in future studies.

421 In summary, we showcase the use of large-scale scRNA-seq data to inform GWAS by
422 performing a network analysis to contextualize BMD GWAS associations. Through the use of
423 multiple single-cell analyses, we have expanded upon our understanding of the genetics of BMD.
424 Our work exemplifies the power of single-cell transcriptomics from large populations of
425 genetically diverse samples and our network approach for data analysis may guide future studies
426 to consider systems genetics strategies for the discovery of genetic determinants of disease.

427

428 **Methods**

429

430 **Sample preparation and scRNA-seq**

431

432 All animal procedures were conducted in compliance with the National Institutes of
433 Health Guide for the Care and Use of Laboratory Animals. The protocol for studies involving
434 Diversity Outbred mice (Protocol Number 3741) was reviewed and approved by the Institutional
435 Animal Care and Use Committee (IACUC) at the University of Virginia. We prepared our
436 samples in the same fashion as performed previously in Al-Barghouthi and colleagues¹⁵. In brief,
437 bone marrow was extracted from the femurs of initially 77 DO mice (The Jackson Laboratory,
438 Strain: 009376) . BMSCs were grown to confluence after 3 days of incubation in 48-well plates
439 and then underwent *in vitro* osteoblast differentiation for 10 days with osteogenic differentiation
440 media (alpha MEM, 10% FBS, 1% pen/strep, 1% Glutamax, 50 μ g/ μ L ascorbic acid [Sigma, St.
441 Louis, MO, USA], 10 μ nM B-glycerophosphate [Sigma], 10 μ nM dexamethasone [Sigma]).
442 After differentiation, single cells were liberated from mineralizing cultures via incubations with
443 60 μ mM ethylenediaminetetraacetic acid pH 7.4 (EDTA [Thermo Fisher Scientific], made in
444 DPBS), 8 μ g/mL collagenase (Gibco) in HBSS/4 μ mM CaCl₂ (Fisher), and 0.25% trypsin–
445 EDTA (Gibco). After single-cell isolation, cells from mice were pooled into groups containing
446 cells from four to five mice total and concentrated to 800 cells/ μ L in PBS supplemented with
447 0.1% BSA (bovine serum albumin). Pooled single cells were prepared for sequencing using the
448 10 \times Chromium Controller (10 \times Genomics, Pleasanton, CA, USA) with the Single Cell 3' v2
449 reagent kit, according to the manufacturer's protocol. Libraries were sequenced on the
450 NextSeq500 (Illumina, San Diego, CA, USA).

451

452 **scRNA-seq analysis pipeline**

453

454 The data was subsequently processed using the 10 \times Genomics Cell Ranger toolkit
455 (version 5.0.0) using the GRCm38 reference genome⁵⁰. Using Seurat⁵¹ (version 4.1.0), a
456 combined Seurat object containing all cells was generated with the inclusion of features detected
457 in at least three cells and cells with at least 200 features detected. We used Souporcell⁵² (version
458 2.0.0) to deconvolve the genotypes of all mice and to remove doublet cells. Cells were assigned
459 to their associated DO mouse by making a pairwise comparison between allele calls made by the
460 shared variants captured between Souporcell and GigaMUGA genotype arrays generated for all
461 mice in the cohort, as previous performed in Dillard and colleagues¹⁵. Cell derived from two
462 mice (176 and 244) were removed in some analyses due to poor genotyping of their respective
463 Souporcell clusters, thus yielding a total of 75 DO mice from this study and 5 DO mice from our
464 previous study¹⁵ for a total of 80 DO mouse biological replicates. We filtered out cells with more
465 than 6200 reads and less than 400 reads, as well as those cells with more than 10% mitochondrial
466 reads. Further, cells were removed if they expressed greater than 20% *Rpl* and 15% *Rps* reads,
467 which equates to cells approximately exceeding the 98 percentile. After filtering, 139,392 cells
468 remained and the resulting object underwent standard normalization, scaling, and the top 3000
469 features were modeled from a variance stabilizing transformation (VST) using Seurat. Cell-cycle
470 markers based on Tirosh and colleagues⁵³ were regressed out using the “CellCycleScoring” and
471 scaling functions. For subsequent dimensionality reduction, 15 principal components (PCs) were
472 summarized. Then, a kNN ($k=20$) graph was created and the Louvain algorithm was used to
473 cluster cells at a resolution of 0.5. Annotation of cell type clusters was performed manually
474 based on differential gene expression analysis using the Seurat “FindAllMarkers” function
475 (**Supplementary File 1a**).

476 For subsequent WGCNA and eQTL mapping, transcriptomic profiles for each cell type
477 cluster were generated for each sample using a mean expression approach, as performed
478 similarly by others^{54,55}. For each sample contributing at least 5 cells to a given cluster,
479 unnormalized unique molecular identifier (UMI) counts of gene expression for all cells in the
480 cluster for the sample were averaged and then rounded to the nearest hundredth decimal place. A
481 total of 80, 80, 77, 67, 50, 76, 80 mice contributed enough cells to the MPC, LMP, OBP, OB1,
482 OB2, Ocy, and MALP cell type clusters, respectively. Genes with non-zero expression values in
483 fewer than 15 samples were removed. A total of 11971, 15162, 14857, 13674, 13825, 14136, and
484 14534 genes remained for the MPC, LMP, OBP, OB1, OB2, Ocy, and MALP clusters,
485 respectively. Samples were normalized by computing CPMs (counts per million) without log
486 transformation for each gene using edgeR⁵⁶ (version 4.0.7), then transformed via VST using
487 DESeq2⁵⁷ (version 1.42.0), and quantile normalized using preprocessCore (version 1.60.2).

488
489 **Trajectory and tradeSeq Analysis**
490

491 Trajectory inference analysis was performed using Slingshot⁵⁸ (version 1.8.0) on the
492 mesenchymal lineage cell clusters (seven total) of the BMSC-OB scRNA-seq data. The starting
493 cluster was set as the MPC cluster upon the removal of a small outlier population of cells.
494 Trajectories were inferred using 15 PCs. TradeSeq²⁷ (version 1.4.0) was used to analyze gene
495 expression along the trajectories by fitting a negative binomial generalized additive model (NB-
496 GAM) to each gene using the “fitGAM” function with nknots = 10, which was determined by
497 using the “evaluateK” function. Prior to performing the tradeSeq analysis, the scRNA-seq data
498 was downsampled to reduce the size of the dataset to approximately 10,000 cells (sampled at
499 random across all seven clusters).

500 All cell type boundaries were established to encompass on average 78% of cells of a cell
501 cluster (**Supplementary File 2a**). To identify genes significantly changing between boundaries
502 in a trajectory-specific fashion, we first performed tradeSeq to compare gene expression within
503 each trajectory (two osteogenic, one adipogenic) to highlight genes with a significant difference
504 in expression between boundaries using the “startVsEndTest” function (**Supplementary File 2a-**
505 **d**). Next, we performed a global test with tradeSeq to compare gene expression between
506 trajectories in order to highlight genes exhibiting a significant difference in expression using the
507 “startVsEndTest” function (**Supplementary File 2a, Supplementary File 2e**). All tests were
508 performed with the \log_2 fold change threshold ($l2fc$) = 0.5. For all global and trajectory-specific
509 tests, the P-values associated with each gene were adjusted to control the false discovery rate
510 using the “p.adjust” function from the stats (version 4.2.1) R package and genes were filtered to
511 include those with a $P_{adj} < 0.05$.

512

513 **CELLECT Analysis**

514

515 CELLECT²⁰ (CELL-type Expression-specific integration for Complex Traits) (version
516 1.1.0) was used to identify likely etiologic cell types underlying complex traits of both the
517 BMSC-OBs scRNA-seq data (**Figure 1E, Supplementary File 1f**). CELLECT P-values were
518 adjusted using the Bonferroni correction. CELLECT quantifies the association between the
519 GWAS signal and cell type expression specificity using the S-LDSC genetic prioritization
520 model⁵⁹. Summary statistics from the UK Biobank eBMD and Fracture GWAS (Data Release
521 2018) and cell type annotations from each scRNA-seq data set were used as input. Cell type
522 expression specificities were estimated using CELLEX²⁰ (CELL-type EXpression-specificity)
523 (version 1.2.1) (**Supplementary File 3g**).

524

525 WGCNA

526

527 Cell type-specific mean expression matrices (as obtained above) were used as input to
528 generate signed co-expression network modules (**Supplementary File 1g-h**). IterativeWGCNA²²
529 (version 1.1.6) was used from a Singularity container built from a Docker hub image⁶⁰. A soft
530 threshold (power) of 14, which exceeded a R^2 threshold of 0.85 for all cell type clusters, was
531 selected for module construction (**Figure 2-figure supplement 1**). Modules were generated
532 using iterativeWGCNA with default parameters for the “blockwiseModules” function, a
533 minimum module size of 20 genes, minCoreKME = 0.7, and minKMEtoStay = 0.5.

534

535 Bayesian network learning

536

537 Bayesian networks were learned from each of the cell type-specific modules of co-
538 expressed genes with the bnlearn (version 4.8.3). Gene expression matrices containing the genes
539 for each module were used as input to the “mmhc” function which employs the Max-Min Hill
540 Climbing algorithm (MMHC) algorithm⁶¹ to learn the underlying structure of the Bayesian
541 network. From the generated networks, igraph (version 1.6.0) was used to resolve 3-step
542 neighborhoods⁶². Nodes (genes) that were unconnected to a neighborhood or connected to only
543 one neighbor were removed. Neighborhoods were filtered to include those with a size greater
544 than 1 standard deviation from the mean across all neighborhoods generated for the network.

545

546 DDGs (differentiation driver genes) are genes that yield large 3-step neighborhoods that
547 are enriched ($P_{adj} < 0.05$) with tradeSeq-identified genes for a given cell type boundary. We
548 calculated whether each neighborhood contained more tradeSeq-identified genes (for the
549 neighborhoods’ associated cell type boundary) than would be expected by chance using the
hypergeometric distribution (“phyper” function) from the stats (version 4.2.1) R package. The

550 arguments were as follows: q : (number of neighbors in a neighborhood that are also tradeSeq-
551 identified genes for a given cell type boundary) – 1; m : total number of tradeSeq-identified genes
552 for a given cell type boundary; n : (total number of identified neighborhoods) – m ; k :
553 neighborhood size (total number of neighbors); lower.tail = false. P-values were adjusted to
554 control the false discovery rate using the “p.adjust” function from the stats (version 4.2.1) R
555 package. These pruning steps resulted in a total of 408 DDGs and associated networks for all cell
556 types (**Supplementary File 2h-k**).

557 **DO eQTL mapping**

558
559 Prior to performing the eQTL analysis, DNA was extracted from the tails of the 80 DO
560 mice, using the PureLink Genomic DNA mini kit (Invitrogen) and genotyped using the
561 GigaMUGA array by Neogen Genomics (GeneSeek; Lincoln, NE). Processing and quality
562 control of genotype data, including calculation of genotype/allele probabilities, was performed
563 as previously described in Al-Barghouthi and colleagues¹⁴. Cell type-specific mean expression
564 matrices (as obtained above) for mesenchymal lineage clusters were used as input for the eQTL
565 mapping, which was performed using a linear mixed model (LMM) via the “scan1” function
566 from the qtl2⁶³ (version 0.30) R package with allowances for the following covariates: sex, age at
567 sacrifice (in days), weight, length, and DO mouse generation. To identify significant eQTL, we
568 calculated a LOD (logarithm of the odds) threshold; for each cell type cluster, we chose 50 genes
569 at random and then permuted them 1000 times using the “scan1perm” function from qtl2. We
570 established the LOD threshold of 9.68 and 9.49 for the autosomal chromosomes and X
571 chromosome, respectively, by taking the average of the median LOD across each cell type. A
572 total of 563 eQTL exceeded the LOD thresholds and were no more than 1 Mbp from the
573 transcription start site of the associated eGene (**Supplementary File 2f**).

574

575 **Cell type proportion analysis**

576

577 To account for technical sources of variation often retained in scRNA-seq, cell type
578 proportions were transformed using the arcsin (asin) square root transformation from the
579 speckle⁶⁴ R package (version 0.0.3). Tests of statistical significance were performed using the
580 propeller t-test and ANOVA functions with default parameters. Sex of the mice and the batch
581 each mouse was associated with for sequencing were modeled as covariates. Transformed values
582 were used as input for computing tests of statistical differences of cell type proportions between
583 mice, as well as correlation to phenotypic traits (**Supplementary File 1c-e**).

584

585 **Data Availability Statement**

586
587 The data that support the findings of this study are openly available in NCBI Gene
588 Expression Omnibus database with accession codes GSE152806 and GSE269583. Processed
589 scRNA-seq data available on Zenodo at <https://zenodo.org/records/15299631>.

590
591 **Code Availability Statement**

592
593 Code for analysis is available on GitHub at https://github.com/Farber-Lab/DO80_project.

594
595
596 **Acknowledgements**
597
598 Research reported in this publication was supported in part by the National Institute of
599 Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award
600 numbers R01AR68345, R01AR082880, and R01AR077992 to CRF.

601
602 **Disclosures**
603
604 The authors declare no competing interests.

605
606

607
608

Figure Legends

609
610

Figure 1. Analysis of single cell RNA-seq (scRNA-seq) data for BMSC-OBs derived from 80 Diversity Outbred (DO)

611
612
613
614
615
616
617
618
619
620
621
622
623

(A) Uniform Manifold Approximation and Projection (UMAP) of 139,392 single cells (BMSC-OBs). Cell numbers and corresponding percentages for the fifteen (15) annotated cell clusters are listed in parenthesis to the right of the annotated cluster name. (B) Dot plot⁶⁵ portraying representative and highly expressed genes for all annotated cell clusters. Dot color indicates the scaled gene expression while the size of the dot corresponds to the percentage of cells of a given cluster that express a given gene. (C) The raw proportional abundances of seven (7) mesenchymal cell clusters and one (1) cluster (Hem) representing the remain cells (i.e., mainly hematopoietic immune cells) across all 80 DO mice. (D) UMAP plots for mesenchymal lineage cell clusters for DO mouse 50 and DO mouse 233. (E) CELLECT (CELL-type Expression-specific integration for Complex Traits) cell type prioritization results displaying the Bonferroni adjusted P-values for the cell clusters. The OB1, Ocy, and MALP cell clusters (red) were significantly enriched ($P_{adj} < 0.05$, red dashed line) for BMD heritability ($P_{adj} = 0.018, 0.010, 0.006$, respectively).

624

625

Figure 2. Overview of the network analysis pipeline

626
627
628
629
630
631
632
633
634
635

Step 1: For all seven (7) of the mesenchymal lineage cell clusters (MPC, LMP, OBP, OB1, OB2, Ocy, MALP), cell type-specific co-expression modules were generated using iterative Weighted Gene Co-expression Network Analysis (iterativeWGCNA). Step 2: Bayesian networks were learned to generate directed networks and model causal interactions between co-expressed genes. Step 3: Differentiation Driver Genes (DDGs) were identified by extracting subnetworks (i.e., large 3-step neighborhood) for each gene in each cell type-specific Bayesian network and highlighting those subnetworks that were enriched ($P_{adj} < 0.05$) for trajectory-specific tradeSeq genes for the cell type boundary. Step 4: DDGs (and associated networks) were prioritized if the DDG was identified previously as an expression/splicing quantitative trait loci (eQTL/sQTL) that colocalized with BMD GWAS associations. Created with Biorender.com.

636

637
638

Figure 3. Pseudotime Trajectory Inference analysis and establishment of cell type boundaries for tradeSeq analysis

639
640
641
642
643
644
645
646
647
648
649

(A) Three (3) trajectories (two adipogenic, one adipogenic) were inferred from the mesenchymal cell clusters of the BMSC-OB scRNA-seq data using Slingshot. All trajectories originate from the MPC and end in either osteogenic (Ocy, OB2) or adipogenic (MALP) cell fates. (B) For each of the trajectories, cell type boundaries were generated using pseudotime values along the trajectories, which encompass the majority of cells of a cell type mapping to their respective trajectory. (C) Normalized gene expression of select genes associated with each cluster are represented in feature plots (*top*) and each gene plotted as a function of pseudotime (*bottom*) for all pseudotime trajectories (color corresponds to cell type annotation observed throughout). Vertical lines (red) represent the cell type (pseudotime) boundaries established for each cell type (label). The cell type boundary for OB1 and OB2 are represented as one red line/label for visualization purposes.

650
651
652

653 **Figure 4. TradeSeq-identified genes associated with BMSC-OB differentiation exhibit**
654 **eQTL effects.**

655 (A) *Pkm* was identified as a significant global tradeSeq-identified gene ($P_{adj} = 8.35 \times 10^{-8}$) for
656 LMP cells along an osteogenic trajectory (LMP_to_OBP) (left). *S100a1* was identified as a
657 significant global tradeSeq-identified gene ($P_{adj} = 0.023$) for OBP cells along osteogenic
658 trajectory 1 (OBP_to_OB1) (right). (B) Plots indicating the cell type-specific expression
659 quantitative trait loci (eQTL) signal for both *Pkm* and *S100a1*. A negative eQTL effect on *Pkm*
660 expression was observed in LMPs for Diversity Outbred (DO) mice with a PWK haplotype
661 background at the *Pkm* locus (left). A positive eQTL effect on the expression of *S100a1* was
662 observed in OBPs for DO mice with a 129 haplotype background at the *S100a1* locus, while a
663 negative effect was observed for NZO mice (right). (C) The expression of *Pkm* and *S100a1*
664 based on DO mouse (expression values transformed via variance stabilizing transformation
665 (VST), as described in Methods). Genotype abbreviations correspond to DO haplotype
666 background (legend) at the respective gene locus. Mice with at least one PWK allele (genotype
667 abbreviation G) tend to have decreased expression of *Pkm* (left). Mice with at least one 129 allele
668 (genotype abbreviation C) tend to have increased expression of *S100a1*, while NZO mice
669 (genotype abbreviation E) have decreased expression (right). (D) PWK mice had a significant
670 reduction in mature osteoblasts (OB1) and osteocyte-like cells (Ocy) proportions relative to other
671 mice ($P = 0.030$ and $P = 0.026$, respectively; t-test), while LMP proportions were unaffected.
672 Asterisks represent any of the other haplotype backgrounds. 129 mice showed a significant
673 decrease in LMP proportion and increase in OB1 proportion ($P = 0.008$ and $P = 0.016$,
674 respectively; t-test), but OBP proportions were unaffected. No significant effects on cell type
675 proportions were observed in NZO mice (Figure 4-figure supplement 1).

676

677 **Figure 5. *Fgfrl1* and *Tpx2* are prioritized DDGs and putative drivers of mesenchymal**
678 **differentiation.**

679 (A) *Fgfrl1* was identified as a Differentiation Driver Gene (DDG) of a network for LMPs
680 differentiating along an adipogenic trajectory. The network is enriched ($P_{adj} = 7.5 \times 10^{-3}$) for
681 trajectory-specific tradeSeq-identified genes for the LMP_to_MALP cell type boundary (*Hnmt*,
682 *St5*, *Igfbp4*, *Cyp1b1*, *Pdzrn4*, *Mark1*). *Fgfrl1* was previously identified as a gene that has BMD
683 GWAS associations that colocalize with an eQTL in the cultured fibroblast GTEx tissue. (B) An
684 increase in the expression of tradeSeq-identified genes coincides with the LMP_to_MALP cell
685 type boundary in which they were identified as significant. (C) *Tpx2* was identified as a DDG of
686 a network for LMPs differentiating along an osteogenic trajectory. The network is enriched (P_{adj}
687 = 5.7×10^{-7}) for tradeSeq-identified genes for the LMP_to_OBP cell type boundary (*Tpx2*,
688 *Top2a*, *Kif4*, *Iqgap3*, *Prc1*, *Kif11*, *Ect2*, *Sgo2a*, *Ube2c*). *Tpx2* is both a tradeSeq gene and
689 previously identified as a gene that has BMD GWAS associations that colocalize with an eQTL
690 in the Testis GTEx tissue. (D) An increase in the expression of tradeSeq-identified genes
691 coincides with the LMP_to_OBP cell type boundary in which they were identified as significant.
692 (E) Box plot displaying whole-body bone mineral density (BMD) measurements (excluding
693 skull) from the International Mouse Knockout Consortium (IMPC) for *Tpx2* mutant mice, which
694 exhibited a significant increase in BMD (Genotype P-value = 1.03×10^{-3}) in both male and
695 female mice (N = 8 (M) and 8 (F) mutants; N = 2574 (M) and 2633 (F) controls)

696

697
698

Supplementary Figure Legends

699
700
701
702
703
704
705

Figure 1-figure supplement 1: Plots displaying the distribution of the total number of cells from each mouse (N = 80). A) Density plot portraying the distribution of the total number of cells from each mouse after processing of the scRNA-seq data. B) Boxplot displaying the distribution of the total number of cells for each mouse (Min: 723, 1st Qu: 1316, Median: 1690, Mean: 1742, 3rd Qu: 2118, Max: 3652). C) Quantile-quantile plot (Q-Q plot) with 95% confidence interval. Shapiro-Wilk normality test: p-value = 0.1061; W = 0.97425.

706
707
708
709
710

Figure 2-figure supplement 1: Scale Free Topology and Mean Connectivity graphs for the cell type-specific iterativeWGCNA analysis. A soft thresholding power of 14 was selected for the generation of all co-expression modules for all clusters, which was the point at which R² exceeded a threshold of 0.85

711
712
713
714
715
716

Figure 4-figure supplement 1: Tests of significance for cell type proportions for NZO mice. Mice with at least one NZO allele at the *S100a1* locus (N = 14) had no significant difference in cell type proportions (P > 0.05; t-test) as compared mice with other DO haplotype background at this locus. Asterisks represent any of the other haplotype backgrounds.

717
718

Supplementary File Legends

719
720
721
722

Supplementary File 1a: Differentially Expressed Genes (DEGs) for all clusters of the BMSC-OB scRNA-seq cell clusters. DEGs were calculated on all clusters of the BMSC-OB scRNA-seq data using the FindAllMarkers function from the Seurat R package.

723
724
725
726

Supplementary File 1b: Differentially Expressed Genes (DEGs) between the OB1 and OB2 clusters of the scRNA-seq data. DEGs were calculated using the FindMarkers function from the Seurat R package. Positive values for average log2 fold change (avg_log2FC) indicate that a gene is more highly expressed in OB1.

727
728
729
730
731
732

Supplementary File 1c: BMSC-OB cell type proportion analysis for the 80 DO mice. The raw proportions (top) and asin-transformed proportions (bottom) of each of the BMSC-OB cell types were calculated from the total number of cells contributed by each mouse using the Propeller R package. All non-mesenchymal lineage cell types (i.e., Hematopoietic lineage cells) are aggregated as a group (Hem) for each mouse.

733
734
735
736
737

Supplementary File 1d: Correlation of cell proportions to bone trait metrics captured from the 80 DO mice. Raw (top) and transformed (bottom) cell type proportions were correlated using Pearson and Spearman to bone trait metrics (55 total) captured on all mice from the 80 DO mice.

738
739

Supplementary File 1e: Bone trait abbreviations and units of measurement.

740
741
742
743
744
745
746
747
748
749
750

Supplementary File 1f: CELLECT cell type prioritization table. Beta is regression effect size estimate for given annotation. Beta SE is the standard error for the regression coefficient. The p value is the one-sided test ($\beta > 0$) association between bone mineral density (BMD) genome wide association study (GWAS) signal heritability and each annotated cell type. P values were adjusted using the Bonferroni correction method. MALP = marrow adipogenic lineage precursors; Ocy = osteocyte-like cell; OB1 = osteoblast population 1; MPC = mesenchymal progenitor cell; LMP = late mesenchymal progenitor; OBP = osteoblast progenitor; OB2 = osteoblast population 2; EC = endothelial cell; MF1 = macrophage population 1; MO = Monocyte; BC = B-cell; GC = granulocyte; OC = osteoclast-like cell; TC = T-cell; MF2 = macrophage population 2.

751
752
753
754
755

Supplementary File 1g: Summary of results from the iterativeWGCNA analysis. A total of 535 co-expression modules were generated using the mesenchymal lineage cell clusters (7 total) of the BMSC-OB scRNA-seq data, yielding an average of 76 modules per cell cluster. A total of 8810 Bayesian networks were generated from the co-expression modules.

756
757
758

Supplementary File 1h: Genes within each module generated from the iterativeWGCNA analysis.

759
760
761
762

Supplementary File 2a: Summary of tradeSeq-identified genes. For each cell type (pseudotime) boundary associated with a specific trajectory (9 total), a global and trajectory- specific test was performed using the startVsEndTest function from the tradeSeq R Package. The number of genes identified for each test and for each boundary are displayed, as well as the number of tradeSeq-

763 identified genes that were also identified as eGenes from the eQTL mapping of the 80 DO mice
764 (73 total).

765
766 **Supplementary File 2b:** TradeSeq-identified genes from the trajectory-specific analysis for
767 Osteogenic Trajectory 1. All significant trajectory-specific tradeSeq-identified genes
768 ($P_{adj} \leq 0.05$) across all cell type boundaries (5 total; MPC, LMP, OBP, OB1, Ocy) associated
769 with Osteogenic Trajectory 1. Associated eQTL information is also displaced for the gene if it
770 was an eGene identified in the cell type from the cell type-specific eQTL analysis (if “NA” is
771 present, the gene was not identified as an eGene).

772
773 **Supplementary File 2c:** TradeSeq-identified genes from the trajectory-specific analysis for
774 Osteogenic Trajectory 2. All significant trajectory-specific tradeSeq-identified genes
775 ($P_{adj} \leq 0.05$) across all cell type boundaries (2 total; OBP, OB2) associated with Osteogenic
776 Trajectory 2. Associated eQTL information is also displaced for the gene if it was an eGene
777 identified in the cell type from the cell type-specific eQTL analysis (if “NA” is present, the gene
778 was not identified as an eGene).

779
780 **Supplementary File 2d:** TradeSeq-identified genes from the trajectory-specific analysis for the
781 Adipogenic Trajectory. All significant trajectory-specific tradeSeq-identified genes
782 ($P_{adj} \leq 0.05$) across all cell type boundaries (2 total; LMP, MALP) associated with the
783 Adipogenic Trajectory. Associated eQTL information is also displaced for the gene if it was an
784 eGene identified in the cell type from the cell type-specific eQTL analysis (if “NA” is present,
785 the gene was not identified as an eGene).

786
787 **Supplementary File 2e:** TradeSeq-identified genes from the global analysis. All significant
788 global tradeSeq-identified genes ($P_{adj} \leq 0.05$) across all cell type (pseudotime) boundaries (9
789 total). Associated eQTL information is also displaced for the gene if it was an eGene identified
790 in the cell type from the cell type-specific eQTL analysis (if “NA” is present, the gene was not
791 identified as an eGene).

792
793 **Supplementary File 2f:** Results from the cell type-specific eQTL analysis on the mesenchymal
794 lineage cell types identified in the scRNA-seq data from the 80 DO mice. All significant eQTL
795 (LOD > 9.68 for autosomal chromosomes; LOD > 9.49 for X chromosome) and eGenes for the
796 mesenchymal cell clusters (563 total). Chr = chromosome of eQTL, Pos = eQTL peak position,
797 LOD = logarithm of the odds score, ci (low/hi) = LOD support intervals, Start = start position of
798 gene (GRCm38), End = end position of gene (GRCm38), dist_start = distance of eQTL to start.

799
800 **Supplementary File 2g:** Results from tests of significance for cell type proportions. Tests of
801 significance on the transformed cell type proportions were performed using the Propeller R
802 package and nominal p-values are reported. Sample batch (pool containing cells from mice in
803 preparation for scRNA-seq) and sex were modeled as covariates. For the Pkm example, a T-test
804 was performed for all mice with at least one PWK haplotype background (PWK/*; asterisk
805 meaning any DO haplotype) at a Pkm locus ($n = 15$) against all remaining mice ($n = 65$). For the
806 S100a1 example, a one-way ANOVA was performed on four groups: mice with at least one
807 129/* haplotype background ($n = 26$) or NZO/* ($n = 10$), heterozygous for both (129/NOZ, $n =$
808 4), or any other DO haplotype background at the locus ($n = 40$). Additionally, T-tests were

809 performed on the 129/* and NZO/* haplotype background individually against all other mice
810 aggregated as a group.
811

812 **Supplementary File 2h:** Summary of Differentiation Driver Gene (DDG) network analysis. The
813 number of DDGs and associated networks that were enriched ($P_{adj} \leq 0.05$) with more genes in
814 the trajectory-specific tradeSeq genes for each cell type boundary (408 total). The number of
815 DDGs that had a corresponding human homolog with a human BMD GWAS association (that
816 colocalizes with expression and/or splicing quantitative trait loci (eQTL/sQTL) from the
817 Genotype-Tissue Expression (GTEx) Project) are also displayed (26 total, 21 distinct). Three of
818 the DDGs were also tested by the IMPC and had a significant BMD phenotype when knocked
819 out.
820

821 **Supplementary File 2i:** All significant DDG network analysis for Osteogenic trajectory 1 (178
822 total). The enrichment of each DDG Bayesian network for tradeSeq-identified genes (identified
823 for each cell type boundary along Osteogenic Linage 1) are displayed as nominal and adjusted P-
824 values, as well as the co-expression module in which the DDG was identified. The data can be
825 filtered to highlight DDGs that are: a tradeSeq-identified gene for the cell boundary, a gene that
826 was identified by Al-Barghouthi et al. (2022) as having eQTL that also colocalizes with BMD
827 GWAS associations, a gene that was identified by Abood et al. (2023) as having sQTL that also
828 colocalizes with BMD GWAS associations, a gene that was tested by the IMPC and had a
829 significant effect on BMD when knocked out, or gene that was identified here as an eGene in the
830 cell type-specific eQTL analysis using the 80 DO scRNA-seq data. Other columns of the data
831 contain information at the network level: Number_neighbors = number of nodes (genes) in
832 Bayesian network, Number_tradeSeq_gene_neighbors = number of genes that were also
833 tradeSeq-identified genes for the cell type boundary, All network neighbors = all genes in
834 network, Neighbors_eQTL_Al_Barghouthi = all genes in the network that were identified from
835 Al-Barghouthi et al. (2022), Neighbors_sQTL_Abood = all genes in the network that were
836 identified from Abood et al. (2023), Neighbors_IMPC_BMD_gene = all genes in the network
837 that were tested by the IMPC and had a significant effect on BMD when knocked out,
838 Neighbors_DO_eGene = all genes in the network that was identified here as an eGene in the cell
839 type-specific eQTL analysis using the 80 DO scRNA-seq data,
840 Neighbors_tradeSeq_gene_for_boundary = all genes that were also tradeSeq-identified genes for
841 the cell type boundary.
842

843 **Supplementary File 2j:** All significant DDG network analysis for Osteogenic trajectory 2 (55
844 total). The enrichment of each DDG Bayesian network for tradeSeq-identified genes (identified
845 for cell type boundary along Osteogenic Linage 2) are displayed as nominal and adjusted P-
846 values, as well as the co-expression module in which the DDG was identified. The data can be
847 filtered to highlight DDGs that are: a tradeSeq-identified gene for the cell boundary, a gene that
848 was identified by Al-Barghouthi et al. (2022) as having eQTL that also colocalizes with BMD
849 GWAS associations, a gene that was identified by Abood et al. (2023) as having sQTL that also
850 colocalizes with BMD GWAS associations, a gene that was tested by the IMPC and had a
851 significant effect on BMD when knocked out, or gene that was identified here as an eGene in the
852 cell type-specific eQTL analysis using the 80 DO scRNA-seq data. Other columns of the data
853 contain information at the network level: Number_neighbors = number of nodes (genes) in
854 Bayesian network, Number_tradeSeq_gene_neighbors = number of genes that were also

855 tradeSeq-identified genes for the cell type boundary, All network neighbors = all genes in
856 network, Neighbors_eQTL_Al_Barghouthi = all genes in the network that were identified from
857 Al-Barghouthi et al. (2022), Neighbors_sQTL_Abood = all genes in the network that were
858 identified from Abood et al. (2023), Neighbors_IMPC_BMD_gene = all genes in the network
859 that were tested by the IMPC and had a significant effect on BMD when knocked out,
860 Neighbors_DO_eGene = all genes in the network that was identified here as an eGene in the cell
861 type-specific eQTL analysis using the 80 DO scRNA-seq data,
862 Neighbors_tradeSeq_gene_for_boundary = all genes that were also tradeSeq-identified genes for
863 the cell type boundary
864

865 **Supplementary File 2k:** All significant DDG network analysis for the Adipogenic trajectory
866 (175 total). The enrichment of each DDG Bayesian network for tradeSeq-identified genes
867 (identified for cell type boundary along the Adipogenic trajectory) are displayed as nominal and
868 adjusted P-values, as well as the co-expression module in which the DDG was identified. The
869 data can be filtered to highlight DDGs that are: a tradeSeq-identified gene for the cell boundary,
870 a gene that was identified by Al-Barghouthi et al. (2022) as having eQTL that also colocalizes
871 with BMD GWAS associations, a gene that was identified by Abood et al. (2023) as having
872 sQTL that also colocalizes with BMD GWAS associations, a gene that was tested by the IMPC
873 and had a significant effect on BMD when knocked out, or gene that was identified here as an
874 eGene in the cell type-specific eQTL analysis using the 80 DO scRNA-seq data. Other columns
875 of the data contain information at the network level: Number_neighbors = number of nodes
876 (genes) in Bayesian network, Number_tradeSeq_gene_neighbors = number of genes that were
877 also tradeSeq-identified genes for the cell type boundary, All network neighbors = all genes in
878 network, Neighbors_eQTL_Al_Barghouthi = all genes in the network that were identified from
879 Al-Barghouthi et al. (2022), Neighbors_sQTL_Abood = all genes in the network that were
880 identified from Abood et al. (2023), Neighbors_IMPC_BMD_gene = all genes in the network
881 that were tested by the IMPC and had a significant effect on BMD when knocked out,
882 Neighbors_DO_eGene = all genes in the network that was identified here as an eGene in the cell
883 type-specific eQTL analysis using the 80 DO scRNA-seq data,
884 Neighbors_tradeSeq_gene_for_boundary = all genes that were also tradeSeq-identified genes for
885 the cell type boundary
886

887 **Supplementary File 3a:** PANTHER Gene Ontology (GO) Enrichment analysis for DDGs
888 identified for the LMP to OBP cell type boundary (Osteogenic trajectory 1).
889

890 **Supplementary File 3b:** PANTHER Gene Ontology (GO) Enrichment analysis for DDGs
891 identified for the OBP to OB1 cell type boundary (Osteogenic trajectory 1).
892

893 **Supplementary File 3c:** PANTHER Gene Ontology (GO) Enrichment analysis for DDGs
894 identified for the OBP to OB2 cell type boundary (Osteogenic trajectory 2).
895

896 **Supplementary File 3d:** PANTHER Gene Ontology (GO) Enrichment analysis for DDGs
897 identified for the LMP to MALP cell type boundary (Adipogenic trajectory).
898

899 **Supplementary File 3e:** PANTHER Gene Ontology (GO) Enrichment analysis for DDGs
900 identified for the MALP to the end (of the trajectory) cell type boundary (Adipogenic trajectory).

901
902 **Supplementary File 3f:** Prioritized DDG network analysis for the Adipogenic trajectory (26
903 total, 21 distinct). The enrichment of each prioritized DDG Bayesian network for
904 tradeSeq-identified genes (identified for the cell type boundary along the associated trajectory)
905 are displayed as nominal and adjusted P-values, as well as the co-expression module in which the
906 DDG was identified. The data can be filtered to highlight DDGs that are: a tradeSeq-identified
907 gene for the cell boundary, a gene that was identified by Al-Barghouthi et al. (2022) as having
908 eQTL that also colocalizes with BMD GWAS associations, a gene that was identified by Abood
909 et al. (2023) as having sQTL that also colocalizes with BMD GWAS associations, a gene that
910 was tested by the IMPC and had a significant effect on BMD when knocked out, or gene that
911 was identified here as an eGene in the cell type-specific eQTL analysis using the 80 DO
912 scRNAseq data. Other columns of the data contain information at the network level:
913 Number_neighbors = number of nodes (genes) in Bayesian network,
914 Number_tradeSeq_gene_neighbors = number of genes that were also tradeSeq-identified genes
915 for the cell type boundary, All network neighbors = all genes in network,
916 Neighbors_eQTL_Al_Barghouthi = all genes in the network that were identified from Al-
917 Barghouthi et al. (2022), Neighbors_sQTL_Abood = all genes in the network that were identified
918 from Abood et al. (2023), Neighbors_IMPC_BMD_gene = all genes in the network that were
919 tested by the IMPC and had a significant effect on BMD when knocked out,
920 Neighbors_DO_eGene = all genes in the network that was identified here as an eGene in the cell
921 type-specific eQTL analysis using the 80 DO scRNA-seq data,
922 Neighbors_tradeSeq_gene_for_boundary = all genes that were also tradeSeq-identified genes for
923 the cell type boundary
924
925 **Supplementary File 3g:** Expression Specificity scores ($ES\mu$) scores for each gene for each cell
926 cluster of the BMSC-OB scRNA-seq data for the 80 DO mice. $ES\mu$ scores are generated during
927 the CELLEX portion of the CELLECT analysis pipeline. $ES\mu$ values range from 0 to 1 and are a
928 gene's marginal likelihood of being specifically expressed in a given cell type, where 1 is the
929 most specific and 0 is not specific.
930
931

932
933

References

934 1. Lin, J. T. & Lane, J. M. Osteoporosis: a review. *Clin. Orthop. Relat. Res.* 126–134 (2004).

935 2. Peacock, M., Turner, C. H., Econs, M. J. & Foroud, T. Genetics of osteoporosis. *Endocr. Rev.* **23**, 303–326 (2002).

936 3. Johnell, O. *et al.* Predictive value of BMD for hip and other fractures. *J. Bone Miner. Res.* **20**, 1185–1194 (2005).

937 4. Morris, J. A. *et al.* An atlas of genetic influences on osteoporosis in humans and mice. *Nat. Genet.* **51**, 258–266 (2019).

938 5. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease
939 traits with global gene expression. *Nat. Rev. Genet.* **10**, 184–194 (2009).

940 6. Wen, X., Pique-Regi, R. & Luca, F. Integrating molecular QTL data into genome-wide
941 genetic association analysis: Probabilistic assessment of enrichment and colocalization.
942 *PLoS Genet.* **13**, e1006646 (2017).

943 7. Al-Barghouthi, B. M. *et al.* Transcriptome-wide association study and eQTL colocalization
944 identify potentially causal genes responsible for human bone mineral density GWAS
945 associations. *Elife* **11**, (2022).

946 8. Li, B. & Ritchie, M. D. From GWAS to Gene: Transcriptome-Wide Association Studies
947 and Other Methods to Functionally Understand GWAS Discoveries. *Front. Genet.* **12**,
948 713230 (2021).

949 9. Akiyama, M. Multi-omics study for interpretation of genome-wide association study. *J.*
950 *Hum. Genet.* **66**, 3–10 (2020).

951 10. Calabrese, G. M. *et al.* Integrating GWAS and Co-expression Network Data Identifies Bone
952 Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. *Cell Syst* **4**, 46–59.e4 (2017).

953 11. Sabik, O. L., Calabrese, G. M., Taleghani, E., Ackert-Bicknell, C. L. & Farber, C. R.
954 Identification of a Core Module for Bone Mineral Density through the Integration of a Co-
955 expression Network and GWAS Data. *Cell Rep.* **32**, 108145 (2020).

956 12. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. *Nat. Genet.* **45**, 580–
957 585 (2013).

958 13. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human
959 tissues. *Science* **369**, 1318–1330 (2020).

960 14. Al-Barghouthi, B. M. *et al.* Systems genetics in diversity outbred mice inform BMD GWAS
961 and identify determinants of bone strength. *Nat. Commun.* **12**, 3408 (2021).

962 15. Dillard, L. J. *et al.* Single-Cell Transcriptomics of Bone Marrow Stromal Cells in Diversity
963 Outbred Mice: A Model for Population-Level scRNA-Seq Studies. *J. Bone Miner. Res.* **38**,
964 1350–1363 (2023).

965 16. Abood, A. *et al.* Long-read proteogenomics to connect disease-associated sQTLs to the
966 protein isoform effectors of disease. *bioRxiv* 2023.03.17.531557 (2023)
967 doi:10.1101/2023.03.17.531557.

968 17. Bogue, M. A., Churchill, G. A. & Chesler, E. J. Collaborative Cross and Diversity Outbred
969 data resources in the Mouse Phenome Database. *Mamm. Genome* **26**, 511–520 (2015).

970 18. Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The Diversity Outbred
971 mouse population. *Mamm. Genome* **23**, 713–718 (2012).

972 19. Zhong, L. *et al.* Single cell transcriptomics identifies a unique adipose lineage cell
973 population that regulates bone marrow environment. *Elife* **9**, (2020).

974

975

976

977

978 20. Timshel, P. N., Thompson, J. J. & Pers, T. H. Genetic mapping of etiologic brain cell types
979 for obesity. *Elife* **9**, (2020).

980 21. GTEx Consortium *et al.* Genetic effects on gene expression across human tissues. *Nature*
981 **550**, 204–213 (2017).

982 22. Greenfest-Allen, E., Cartailler, J.-P., Magnuson, M. A. & Stoeckert, C. J. iterativeWGCNA:
983 iterative refinement to improve module detection from WGCNA co-expression networks.
984 *bioRxiv* 234062 (2017) doi:10.1101/234062.

985 23. Chan, C. K. F. *et al.* Identification of the Human Skeletal Stem Cell. *Cell* **175**, 43-56.e21
986 (2018).

987 24. Mizuhashi, K. *et al.* Resting zone of the growth plate houses a unique class of skeletal stem
988 cells. *Nature* **563**, 254–258 (2018).

989 25. Debnath, S. *et al.* Discovery of a periosteal stem cell mediating intramembranous bone
990 formation. *Nature* **562**, 133–139 (2018).

991 26. Matsushita, Y. *et al.* A Wnt-mediated transformation of the bone marrow stromal cell
992 identity orchestrates skeletal regeneration. *Nat. Commun.* **11**, 332 (2020).

993 27. Van den Berge, K. *et al.* Trajectory-based differential expression analysis for single-cell
994 sequencing data. *Nat. Commun.* **11**, 1201 (2020).

995 28. Thomas, P. D. *et al.* PANTHER: Making genome-scale phylogenetics accessible to all.
996 *Protein Sci.* **31**, 8–22 (2022).

997 29. Groza, T. *et al.* The International Mouse Phenotyping Consortium: comprehensive
998 knockout phenotyping underpinning the study of human disease. *Nucleic Acids Res.* **51**,
999 D1038–D1045 (2023).

1000 30. Enerbäck, S., Ohlsson, B. G., Samuelsson, L. & Bjursell, G. Characterization of the human
1001 lipoprotein lipase (LPL) promoter: evidence of two cis-regulatory regions, LP-alpha and
1002 LP-beta, of importance for the differentiation-linked induction of the LPL gene during
1003 adipogenesis. *Mol. Cell. Biol.* **12**, 4622–4633 (1992).

1004 31. Federico, L. *et al.* Lipid phosphate phosphatase 3 regulates adipocyte sphingolipid
1005 synthesis, but not developmental adipogenesis or diet-induced obesity in mice. *PLoS One*
1006 **13**, e0198063 (2018).

1007 32. Maridas, D. E., DeMambro, V. E., Le, P. T., Mohan, S. & Rosen, C. J. IGFBP4 Is Required
1008 for Adipogenesis and Influences the Distribution of Adipose Depots. *Endocrinology* **158**,
1009 3488–3500 (2017).

1010 33. Sigg, M. A. *et al.* Evolutionary Proteomics Uncovers Ancient Associations of Cilia with
1011 Signaling Pathways. *Dev. Cell* **43**, 744-762.e11 (2017).

1012 34. Kumar, R. *et al.* A cell-based GEF assay reveals new substrates for DENN domains and a
1013 role for DENND2B in primary ciliogenesis. *Sci Adv* **8**, eabk3088 (2022).

1014 35. Fumoto, K. *et al.* Mark1 regulates distal airspace expansion through type I pneumocyte
1015 flattening in lung development. *J. Cell Sci.* **132**, (2019).

1016 36. Miki, H., Setou, M., Kaneshiro, K. & Hirokawa, N. All kinesin superfamily protein, KIF,
1017 genes in mouse and human. *Proc. Natl. Acad. Sci. U. S. A.* **98**, 7004–7011 (2001).

1018 37. Zhang, R., Roostalu, J., Surrey, T. & Nogales, E. Structural insight into TPX2-stimulated
1019 microtubule assembly. *Elife* **6**, (2017).

1020 38. Zhu, D., Xu, X., Zhang, M. & Wang, T. TPX2 regulated by miR-29c-3p induces cell
1021 proliferation in osteosarcoma via the AKT signaling pathway. *Oncol. Lett.* **23**, 143 (2022).

1022 39. Uusküla-Reimand, L. & Wilson, M. D. Untangling the roles of TOP2A and TOP2B in
1023 transcription and cancer. *Sci Adv* **8**, eadd4920 (2022).

1024 40. Trueb, B. Biology of FGFR1, the fifth fibroblast growth factor receptor. *Cell. Mol. Life*
1025 *Sci.* **68**, 951–964 (2011).

1026 41. Steinberg, F. *et al.* The FGFR1 receptor is shed from cell membranes, binds fibroblast
1027 growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos. *J. Biol. Chem.*
1028 **285**, 2193–2202 (2010).

1029 42. Kähkönen, T. E. *et al.* Role of fibroblast growth factor receptors (FGFR) and FGFR like-1
1030 (FGFR1) in mesenchymal stromal cell differentiation to osteoblasts and adipocytes. *Mol.*
1031 *Cell. Endocrinol.* **461**, 194–204 (2018).

1032 43. Hilgendorf, K. I. Primary Cilia Are Critical Regulators of White Adipose Tissue Expansion.
1033 *Front. Physiol.* **12**, 769367 (2021).

1034 44. Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W. & Yost, H. J. FGF
1035 signalling during embryo development regulates cilia length in diverse epithelia. *Nature*
1036 **458**, 651–654 (2009).

1037 45. Fazeli, P. K. *et al.* Marrow fat and bone--new perspectives. *J. Clin. Endocrinol. Metab.* **98**,
1038 935–945 (2013).

1039 46. Veldhuis-Vlug, A. G. & Rosen, C. J. Clinical implications of bone marrow adiposity. *J.*
1040 *Intern. Med.* **283**, 121–139 (2018).

1041 47. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell
1042 RNA-sequencing for biomedical research and clinical applications. *Genome Med.* **9**, 75
1043 (2017).

1044 48. Cheng, Y., Ma, X., Yuan, L., Sun, Z. & Wang, P. Evaluating imputation methods for single-
1045 cell RNA-seq data. *BMC Bioinformatics* **24**, 302 (2023).

1046 49. Yu, X., Abbas-Aghababazadeh, F., Chen, Y. A. & Fridley, B. L. Statistical and
1047 Bioinformatics Analysis of Data from Bulk and Single-Cell RNA Sequencing Experiments.
1048 *Methods Mol. Biol.* **2194**, 143–175 (2021).

1049 50. Church, D. M. *et al.* Lineage-specific biology revealed by a finished genome assembly of
1050 the mouse. *PLoS Biol.* **7**, e1000112 (2009).

1051 51. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573–3587.e29
1052 (2021).

1053 52. Heaton, H. *et al.* Souporcell: robust clustering of single-cell RNA-seq data by genotype
1054 without reference genotypes. *Nat. Methods* **17**, 615–620 (2020).

1055 53. Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by single-
1056 cell RNA-seq. *Science* **352**, 189–196 (2016).

1057 54. Neavin, D. *et al.* Single cell eQTL analysis identifies cell type-specific genetic control of
1058 gene expression in fibroblasts and reprogrammed induced pluripotent stem cells. *Genome*
1059 *Biol.* **22**, 76 (2021).

1060 55. van der Wijst, M. G. P. *et al.* Single-cell RNA sequencing identifies celltype-specific cis-
1061 eQTLs and co-expression QTLs. *Nat. Genet.* **50**, 493–497 (2018).

1062 56. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
1063 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140
1064 (2010).

1065 57. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
1066 for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

1067 58. Street, K. *et al.* Slingshot: cell lineage and pseudotime inference for single-cell
1068 transcriptomics. *BMC Genomics* **19**, 477 (2018).

1069 59. Finucane, H. K. *et al.* Partitioning heritability by functional annotation using genome-wide
1070 association summary statistics. *Nat. Genet.* **47**, 1228–1235 (2015).

1071 60. Cartailler, J. P. *Iterativewgcna*. (2022).

1072 61. Tsamardinos, I., Brown, L. E. & Aliferis, C. F. The max-min hill-climbing Bayesian
1073 network structure learning algorithm. *Mach. Learn.* **65**, 31–78 (2006).

1074 62. Porter, M. D. & Smith, R. Network neighborhood analysis. in *2010 IEEE International
1075 Conference on Intelligence and Security Informatics* (IEEE, 2010).
1076 doi:10.1109/isi.2010.5484781.

1077 63. Broman, K. W. *et al.* R/qtl2: Software for Mapping Quantitative Trait Loci with High-
1078 Dimensional Data and Multiparent Populations. *Genetics* **211**, 495–502 (2019).

1079 64. Phipson, B. *et al.* propeller: testing for differences in cell type proportions in single cell
1080 data. *Bioinformatics* **38**, 4720–4726 (2022).

1081 65. Marsh, S., Salmon, M. & Hoffman, P. *Custom Visualizations & Functions for Streamlined
1082 Analyses of Single Cell Sequencing*. (2023). doi:10.5281/zenodo.7534950.