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Abstract 

Exercise confers profound health benefits, yet the molecular mechanisms linking physical activity 
to health and longevity are incompletely known. Here we applied three mass spectrometry (MS)-
based and one aptamer-based proteomics workflows to elite athletes with contrasting metabolic 
phenotypes, sampled before and after maximal exhaustive exercise. MS detected larger effect 
sizes and resolved isoforms; aptamers extended proteome coverage but with unannotated 
proteoform biases. Acute exercise induced coordinated platelet degranulation, neutrophil 
activation, and extracellular matrix turnover, with peptide topology analysis providing direct 
evidence for vesicular release. Chronic adaptations organized along two orthogonal axes: a 
muscle mass gradient marked by hypertrophy signaling and attenuated systemic inflammation, 
and an oxidative capacity gradient characterized by metabolic health-associated proteins 
(APOA4, IGFBP2, ITLN1) and dampened IGF-I signaling. Exploratory biological age analysis 
suggested younger adipose age in athletes. The plasma proteome provides an integrated readout 
of exercise adaptation, linking cardiorespiratory fitness to metabolic health and healthy aging.

 

   

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2026. ; https://doi.org/10.64898/2026.02.05.704017doi: bioRxiv preprint 

https://doi.org/10.64898/2026.02.05.704017
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Introduction 

Physical activity ranks among the most potent 
interventions for extending human health span. 
Regular endurance or resistance exercise 
substantially reduces cardiovascular disease, type 
2 diabetes, cancer, and neurodegenerative disease 
risk – benefits often rival or exceed those 
achieved with pharmacological therapies1–4. 
Cardiorespiratory fitness, quantified as maximal 
oxygen uptake (VO₂max), is among the strongest 
predictors of longevity: each 10 mL/kg/min 
increase associates with a 45-day life expectancy 
extension across 46 years of follow-up5. 
Similarly, muscular fitness scores such as higher 
grip strength are associated with reduced 
mortality6. Yet the molecular mechanisms 
underlying these systemic benefits remain 
incompletely understood. 

Blood plasma provides a unique window into the 
integrated physiological state of an organism. As 
the medium through which organs communicate, 
plasma contains proteins secreted by virtually 
every tissue – myokines from contracting muscle, 
adipokines from fat, hepatokines from liver, or 
exerkines as proteins secreted during exercise – 
creating a circulating record of inter-organ 
crosstalk7–9. Exercise acutely and chronically 
remodels this plasma proteome, but investigating 
the scope of these changes has been constrained 
by technological limitations. Mass spectrometry 
(MS)-based approaches offer unbiased discovery 
and the ability to distinguish protein isoforms but 
face dynamic range challenges in plasma; 
affinity-based platforms provide broader nominal 
coverage but cannot resolve proteoforms and may 
suffer from cross-reactivity. Most studies employ 
only a single analytical platform, leading to a 
fragmented picture of exercise-induced 
change10,11. Acute responses are frequently 
dominated by abundant leakage proteins like 
creatine kinase and myoglobin with chronic 
adaptations inferred from targeted inflammatory 
panels, and little integration across temporal and 
phenotypic dimensions. 

Elite athletes represent physiological extremes of 
human metabolism – the anabolic state of natural 
bodybuilders, the glycolytic power of sprinters, 
the oxidative capacity of endurance athletes – 
shaped by unique genetics or talent and years of 

discipline-specific training. Whether these 
divergent metabolic phenotypes manifest as 
distinct circulating protein signatures that 
integrate into coherent biological programs 
remains unexplored. 

To broadly characterize the elite athlete plasma 
proteome we here applied four complementary 
workflows – three MS-based approaches 
(undepleted plasma, acid precipitation, 
nanoparticle corona) and an aptamer-based 
platform (Illumina/SOMAmer technology) – to 
plasma from highly anabolic, glycolytic and 
oxidative athletes versus recreationally active 
controls sampled before and after maximal 
exhaustive exercise. This multi-platform strategy 
exploits the distinct physicochemical selectivity 
of each method: acid precipitation implicitly 
enriches lower-abundance soluble species; 
nanoparticle coronas preferentially capture 
membrane-associated and vesicular proteins; 
aptamer arrays provide broad coverage with 
orthogonal physicochemical biases12,13. 
Integration across workflows addresses 
limitations that have constrained previous 
studies. As an exploratory analysis, we applied 
the OrganAge framework, which uses organ-
enriched plasma proteins to estimate biological 
age for eleven organ systems14, to ask whether 
athletic phenotypes associate with biological age 
estimates. 

Our findings reveal that acute exhaustive exercise 
induces rapid plasma proteome remodeling 
through platelet degranulation, neutrophil 
activation, and extracellular matrix turnover. 
Chronic adaptations establish distinct baseline 
signatures along two orthogonal axes: a muscle 
mass gradient characterized by ECM remodeling 
and attenuated inflammation, and an oxidative 
capacity gradient marked by metabolic health-
associated proteins. This analysis suggests 
younger adipose biological age in athletes, with 
convergence on proteins identified independently 
by MS. The plasma proteome thus serves as an 
integrated readout of exercise adaptation with 
implications for understanding how physical 
activity may preserve metabolic health. 
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Results 

Complementary proteomics workflows provide 
validated coverage of the athlete plasma 
proteome 

We applied three complementary MS-based 
plasma proteomics approaches and one aptamer-
based platform to samples from elite male 
athletes – sprinters as a model for high glycolysis 
(n=8), natural bodybuilders as a model for high 
anabolism (n=9), and endurance athletes as a 
model for high oxidative metabolism (n=11) – 
including a German champions – collected before 
and after a graded cycle exercise test to subjective 
exhaustion; and recreationally active controls 
(n=7) (Methods, Supplementary Data 1, Fig. 1a). 
The proteome depths of the MS-based workflows 
reflected their enrichment principles: undepleted 
plasma (NEAT) analysis identified a total of 
1,099 protein groups; perchloric acid enrichment 
(PCA-N) extended coverage to 1,459 proteins by 
precipitating high-abundance species whereas 
bead-based enrichment (BEADS) achieved 2,009 
protein groups through nanoparticle corona 
formation. The aptamer-based Illumina Protein 
Prep 6K platform (hereafter 'Illumina') provided 
6,831 targets – corresponding to 30% of protein 
coding genes with bias toward secreted proteins 
and extracellular domains. Note that 41% of 
targets showed signal above twice the limit of 
detection across all samples and that certain 
analytes with non-linear behavior were excluded 
from standard reporting (Supplementary Data 1, 
Fig. 1b). 

To validate that MS workflow-specific 
enrichment translates to genuine biological signal 
we examined the relationship between protein 
enrichment relative to NEAT and statistical 
significance in the exercise response. Significant 
proteins in PCA-N were preferentially enriched 
(80% versus 49% of non-significant proteins), 
consistent with acid precipitation enhancing 
detection of biological effects otherwise masked 
by high-abundance species. These proteins – such 
as functionally important glycoproteins – exhibit 
lower technical variance, higher fold changes and 
greater statistical power. BEADS showed a more 
NEAT-like pattern, with non-enriched proteins 
rarely reaching significance (75% non-enriched 
among non-significant versus 44% among 

significant) – reflecting the equilibrium binding 
and surface competition inherent to corona 
formation (Fig. 1c,d; Supplementary Data 2). 

To assess cross-platform concordance, we 
compared fold changes for proteins quantified by 
both MS and Illumina. MS consistently detected 
larger effect sizes: 65–69% of overlapping 
proteins showed greater absolute fold changes (P 
< 0.01, Wilcoxon test), translating directly to 
increased statistical power with more MS-only 
than Illumina-only significant proteins across all 
workflows (15 versus 7, 19 versus 10, and 18 
versus 12 for NEAT, PCA-N, and BEADS, 
respectively). Proteins reaching significance on 
both platforms showed complete directional 
agreement and strong correlation (ρ up to 0.87), 
establishing ground truth for target validation 
(Fig. 1e, Extended Data Fig. 1a,b; Supplementary 
Data 2). From this reference, we could deduce 
aptamer-isoform relationships in cases of 
apparent platform discordance: for POSTN, 
significance of one isoform and one aptamer, 
combined with their strong correlation (ρ = 0.78 
versus 0.25–0.59 for other pairings), identified 
the specific aptamer-proteoform match; for 
BMP4, divergent correlations between two 
aptamers and the same protein (ρ = 0.60 versus 
0.06) revealed epitope-dependent recognition. 
Where both aptamers targeted the same 
proteoform, as for DLK1, all three measurements 
reached significance with ρ > 0.81 (Fig. 1f, 
Extended Data Fig. 2; Supplementary Data 2). 
These findings establish that aptamer reagents are 
often blind to proteoforms – information that MS 
inherently provides given sufficient peptide 
coverage.  

Gene ontology analysis confirmed distinct 
subcellular origins across workflows (Fig. 1e). 
All four platforms enriched extracellular and 
secretory terms, as expected for plasma. NEAT 
and BEADS additionally captured lipoprotein 
particles, while PCA-N depleted these species but 
uniquely enriched signaling receptors and cell 
substrate junctions. BEADS and Illumina each 
captured additional unique terms including 
muscle-associated proteins. These orthogonal 
enrichment profiles confirm that the workflows 
provide complementary biological windows 
rather than redundant depth, enabling dissection 
of acute and chronic exercise responses. 
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Acute exercise remodels the plasma proteome via 
platelet, matrix and immune activation 

Samples collected before and five minutes after 
the cycle ergometer test revealed substantial 
plasma proteome remodeling across all 
workflows, with markedly different yields 
following stringent filtering (q < 0.001, |log₂FC| 

≥ 0.5): 2 significantly altered proteins in NEAT, 
8 in PCA-N and 41 in BEADS (Fig. 2a; Extended 
Data Fig. 3a,b; Supplementary Data 3). Gene 
ontology enrichment revealed compartment-
specific origins: BEADS showed strong 
enrichment for platelet alpha-granule and 
secretory granule lumen while PCA-N 
predominantly captured collagen-containing 

Fig. 1: Complementary proteomics workflows provide validated coverage of the athlete plasma proteome. a, Study design 
schematic. Four athlete groups (controls, n=7; sprinters, n=8; bodybuilders, n=9; endurance athletes, n=11) before (Pre) 
and after (Post) exercise on a cycle ergometer. Plasma was processed using three MS-based workflows – NEAT (undepleted 
plasma), PCA-N (perchloric acid precipitation) and BEADS (nanoparticle-based enrichment) – and one aptamer-based 
platform (Illumina). b, Proteomic depth of different plasma proteomics workflows. Protein abundance rank curves with violin 
plots showing abundance distributions across workflows. c, Relationship between workflow-specific enrichment and statistical 
significance. Protein enrichment in PCA-N (x-axis) versus BEADS (y-axis) relative to NEAT plasma expressed as Z-scores. 
Teal: significant in BEADS or BEADS+NEAT; yellow: significant in PCA-N or PCA-N+NEAT; dot size: absolute enrichment 
difference between workflows (|PCA-N – BEADS|). Significance based on acute exercise and chronic training models. d, 
Enrichment-significance association. Proportion of proteins enriched (relative to NEAT) among significant versus non-
significant proteins. e, Cross-platform fold-change comparison for genes quantified by both MS and IPP. Fold changes based 
on chronic training model. f, Spearman correlation heatmaps between MS protein isoforms and SOMAmer aptamers for multi-
mapping genes. Red labels: significant; red borders: significant in both platforms. POSTN and BMP4 (BEADS); DLK1 
(PCA-N). 
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extracellular matrix proteins – consistent with the 
capacity of nanoparticle coronas to preserve 
vesicular structures that acid precipitation 
disrupts (Extended Data Fig. 3c). 

MS quantifies proteins by aggregating their 
identified peptides, enabling investigation of 
release mechanisms through topology mapping. 
Of 9,160 peptides with UniProt domains 
annotations across 1,398 proteins in BEADS, 
73% originated from secreted proteins and 18% 
from extracellular domains with similar 
distributions across all three workflows (Fig. 2b; 
Extended Data Fig. 3d,e). Notably, dozens of 
proteins yielded peptides from both intracellular 
and extracellular compartments, indicating 
release of intact membrane-spanning proteins. 
This is exemplified by GP1BB and F11R, single-
pass transmembrane proteins whose cytoplasmic 
and extracellular peptides showed coordinate 
post-exercise increases (Fig. 2c,d) – direct 
evidence for release within platelet-derived 
microparticles or extracellular vesicles15 rather 
than purely proteolytic ectodomain shedding. 

Validation in an independent cohort (n=20, 
including female participants) confirmed eleven 
proteins as consistently elevated after this 
extremely short acute exercise – representing a 
core acute response signature that generalizes 
across cohorts and sexes (Fig. 2e,f, Extended 
Data Fig. 3f) clustered into three functional 
modules: platelet alpha-granule components 
(PF4, PF4V1, PPBP, MMRN1, THBS1), 
extracellular matrix factors (MMP9, CCN2, 
LTBP1) and immune signaling molecules (HLA-
A, HLA-B, H4-16), as confirmed by enrichment 
analysis (Extended Data Fig. 3g). The aptamer 
platform independently recovered the platelet 
core of this signature (PF4, PPBP, THBS1) 
alongside MMP9, providing orthogonal 
confirmation of the dominant acute response 
module (Extended Data Fig. 3h). 

The five platelet-derived proteins indicate that 
degranulation is a major contributor to the acute 
exercise secretome16,17. PF4 and PF4V1 are 
chemokines released upon activation18; PPBP is 
the precursor of beta-thromboglobulin, a classical 
in vivo activation marker19; MMRN1 binds 
coagulation factor V20; and THBS1 activates 
latent TGF-β while exerting anti-angiogenic 

effects21–23. This signature is consistent with 
exercise-induced shear stress and catecholamine-
mediated platelet activation24,25. 

The ECM triad reflects initiation of matrix 
turnover. MMP9 degrades type IV collagen26, 
CCN2 is a mechanosensitive matricellular 
protein rapidly induced by mechanical loading27 
and LTBP1 sequesters latent TGF-β in the matrix 
and regulates its bioavailability28, suggesting 
engagement of TGF-β-linked remodeling 
programs in post-exercise repair. 

Detection of MMP9, stored in granules of 
polymorphonuclear leukocytes, together with 
histone H4 suggests activation of circulating 
innate immune cells. Extracellular histones are 
released during NETosis, whereby activated 
neutrophils expel chromatin decorated with 
granule proteins. Strenuous exercise induces 
NET formation, with cell-free DNA originating 
primarily from mature neutrophils29.  

These three modules are mechanistically 
interconnected. Activated platelets release 
THBS1, which activates latent TGF-β complexes 
bound to LTBP1 – a pathway known to induce 
CCN230. Platelet-derived chemokines recruit and 
activate circulating immune cells, and platelets 
can directly trigger NET formation by 
neutrophils. Together, this coordinated response 
– balancing tissue remodeling with controlled 
inflammation – prepares the organism for 
subsequent repair and adaptation. 
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Baseline plasma proteome distinguishes athlete 
phenotypes along orthogonal physiological axes 

Beyond acute responses, we examined whether 
resting plasma reflects chronic training 
adaptations. Linear mixed-effects models 
comparing athletes to sedentary controls 
identified 13, 20, 17 and 25 differentially 
abundant proteins in NEAT, PCA-N, BEADS 
and Illumina respectively (FDR < 0.05), enriched 
for muscle cell differentiation, migration and 
growth regulation (Extended Data Fig. 4a–g; 
Supplementary Data 3). 

To leverage the complementary protein coverage 
of each workflow, we integrated 303 proteins 
significantly associated with athlete group (35 
NEAT, 48 PCA-N, 70 BEADS, 150 Illumina; 
FDR < 0.05; Supplementary Data 3) using Multi-

Omics Factor Analysis (MOFA), achieving clear 
phenotype separation. Bodybuilders and controls 
occupied distinct regions, with endurance and 
sprint athletes positioned intermediately (Fig. 3a; 
Extended Data Fig. 4h; Supplementary Data 4).  

Group importance scores derived from MOFA 
latent factors revealed workflow-specific 
contributions: MS workflows dominated the 
bodybuilding, endurance and control signatures 
(11, 11 and 9 of 15 top-ranked, respectively), 
with BEADS and PCA-N contributing most 
substantially; the sprint signature derived 
exclusively from Illumina (Fig. 3b; Extended 
Data Fig. 4i). The MS approach resolved distinct 
isoforms – FGFR1 splice variants (P11362-16 
and P11362-21) contributed independently to the 
control signature, and PGLYRP2 proteoforms 
(M0R2W8 and Q96PD5) ranked separately 

Fig. 2: Acute exhaustive exercise rapidly remodels the plasma proteome. a, Heatmap of significantly changed proteins 
following acute exhaustive exercise in the BEADS workflow (q < 0.001, |log₂FC| ≥ 0.5; 41 proteins). Rows represent proteins; 
columns represent samples ordered by timepoint (pre: beige; post: brown) and group (control: red; athlete: blue). Left 
annotation: peptide topology coverage by category. b, Peptide topology analysis. Circos plot shows subcellular origin of 
detected peptides based on UniProt annotations. Left: peptide distribution by compartment. Right: multi-domain proteins with 
peptides from multiple compartments. c,d, Dual-topology peptide detection for transmembrane proteins (c) GP1BB and (d) 
F11R. Left: protein structure with detected peptides mapped by domain. TM, transmembrane domain. Right: peptide 
abundance by topology and timepoint. e, f, Validation of exercise-responsive proteins across discovery and validation cohorts. 
(e) Interaction network of consistently elevated proteins across MS workflows. (f) Representative proteins from each functional 
module (BEADS data shown). 
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among bodybuilding-associated proteins – 
information inaccessible to affinity platforms 
(Extended Data Fig. 5a–d). Composite signature 
scores significantly distinguished each group 
from all others, with bodybuilding and control 
showing the clearest separation (Fig. 3c). 

These phenotype differences organized along two 
orthogonal physiological axes: a muscle mass 
gradient (control < endurance < sprint < 
bodybuilder, based on quadriceps circumference) 
and an oxidative capacity gradient (bodybuilder 
< control < sprint < endurance, based on 
VO₂max). 

 

Circulating proteins scale with muscle mass and 
resistance training 

We next examined the protein signatures defining 
each axis. Linear mixed-effects modelling 
identified 75 proteins increasing progressively 
along the muscle mass axis (control < endurance 
< sprint < bodybuilder; Fig. 3 d,e; Supplementary 
Data 3), with functional enrichment for 
sarcomere organization and muscle structure 
development (Extended Data Fig. 4j). 

The most striking finding was coordinate 
elevation of fast-twitch sarcomeric components – 
MYLPF, TNNI2, MYH2, ACTN2, MYOM2 and 
MYOM3; glycolytic enzymes PKM, ENO3 and 
LDHA; and the muscle-specific creatine kinase 
CKM31,32. This profile is consistent with an 
increasing fraction of fast muscle fibers from 
endurance athletes to bodybuilders, combined 
with larger relative volume of fast compared to 
slow fibers. The appearance of these intracellular 
proteins in plasma likely reflects both increased 
fast muscle mass and exercise-induced 
sarcolemmal permeability33 – positioning the 
plasma proteome as a non-invasive window into 
muscle quantity and fiber type composition. 
TRIM72 (MG53), which nucleates sarcolemmal 
membrane repair by translocating to injury sites 
and facilitating vesicle fusion, showed 
progressive elevation34; suggesting that this 
gradient reflects adaptive membrane repair 
capacity in response to chronic mechanical 
loading. 

Proteins involved in muscle stem cell regulation 
and myogenesis followed the same pattern: 
DLK1, critical for postnatal muscle 
hypertrophy35; BMP4 and BMP6, positive 
regulators of muscle mass signaling through 
Smad1/5/836,37; FGFR1, a regulator of satellite 
cell proliferation38,39; and MARCKS, whose 
calpain cleavage is required for myoblast fusion40 
– collectively, candidate biomarkers for satellite 
cell activation and fusion during hypertrophy and 
repair. ACE, whose D allele associates with 
greater hypertrophic responses to resistance 
training, also increased along the gradient41,42. 

A prominent ECM subset – FBLN1, CHRDL2, 
TNXB, COL5A2, COMP, POSTN, CILP and C7 
– mediates matrix assembly, collagen fibril 
organization and modulation of TGF-β signaling. 
Intriguingly, several of these proteins have been 
independently identified as plasma biomarkers of 
liver fibrosis progression, with FBLN1 showing 
the strongest correlation with fibrosis stage43. 
This convergence suggests that these proteins 
report ECM remodeling activity rather than 
tissue-specific processes, emphasizing the need 
for context-dependent biological interpretation. 
In athletes, elevated ECM proteins likely reflect 
myotendinous junction remodeling and 
mechanical load adaptation, whereas in liver 
disease they mark fibrosis. The anti-fibrotic 
properties of CILP in TGF-β–driven contexts44 
may contribute to maintaining adaptive rather 
than pathological ECM responses. 

 

Attenuated inflammation and enhanced 
metabolic efficiency characterize trained athletes 

The 37 proteins that decreased along the muscle 
mass axis were enriched for acute phase response, 
lipid metabolism and hemostasis (Fig. 3f,g; 
Extended Data Fig. 4k; Supplementary Data 3). 
Innate immune components showed coordinate 
suppression, including acute-phase reactants used 
as biomarkers of systemic inflammation. CRP 
showed the expected inverse relationship with 
lean mass, consistent with anti-inflammatory 
effects of chronic exercise45,46. This pattern also 
characterized serum amyloid P component 
(APCS)47, serum amyloid A4 (SAA4)48, 
haptoglobin (HP)49 and its related protein 
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(HPR)50, lysozyme (LYZ)51 and peptidoglycan 
recognition protein 2 (PGLYRP2)52. Proteinase 3 
(PRTN3), a neutrophil serine protease whose 
plasma levels correlate with cardiovascular risk 
factors, and VSTM1/SIRL-1, an inhibitory 
myeloid receptor regulating neutrophil oxidative 
burst, similarly decreased. Athletes with greater 
muscle mass thus exhibit reduced inflammatory 
burden – a phenotype associated with lower 
cardiometabolic risk that may represent an 
underappreciated benefit of muscle mass-
increasing resistance training.  

Proteins elevated in insulin-resistant states 
followed the same pattern: APOC3, APOC4, 
APOL1, MTTP, AFM, RETN and LIPG – each 
elevated in type 2 diabetes and metabolic 
syndrome53–56 – declined progressively from 
controls to bodybuilders, consistent with the 
dominant role of skeletal muscle in glucose 
disposal57. The liver-derived phospholipase 
GPLD1, a novel prediabetes biomarker whose 
plasma levels rise alongside fasting 
hyperglycemia58 , similarly decreased, as did 
GALNT2, possibly reflecting its role in adipocyte 
maturation59. Kynureninase (KYNU), an enzyme 
of the inflammation-activated tryptophan 
catabolic pathway, also decreased – consistent 
with enhanced kynurenine clearance by exercise-
trained muscle60. 

Six coagulation and fibrinolysis proteins (F9, 
SERPIND1, SERPINF2, SERPINB2/PAI-2, 
GP1BA, VTN)61–63 decreased in parallel, together 
with glycoprotein VI (GP6), the major platelet 
collagen receptor implicated in arterial 
thrombosis, suggesting reduced thrombotic 
potential and enhanced fibrinolytic capacity – 
cardiovascular protective adaptations consistent 
with lower disease risk in physically active 
populations64. 

Strikingly, key negative regulators of muscle 
mass converged on this axis. IGFBP4, which 
sequesters IGF-I and limits its bioavailability65,66, 
showed pronounced inverse association with 
muscle mass, as did activin A (INHBA) and 
inhibin βC (INHBC)—TGF-β superfamily 
members that signal through ActRIIB to 
phosphorylate SMAD2/3 and function 
synergistically with myostatin as negative 
regulators of muscle mass. Pharmacological 

activin blockade reverses wasting in cachexia 
models and ligand traps have recently received 
clinical approval67,68. The plasma proteome thus 
captures the principal relays governing muscle 
mass: diminished inhibitory TGF-β/activin 
signaling combined with enhanced IGF-I 
bioavailability. 

 

Oxidative capacity associates with a longevity-
like plasma signature 

Orthogonal to the muscle mass axis, 35 proteins 
scaled monotonically with estimated oxidative 
capacity (bodybuilder < control < sprint < 
endurance; Fig. 3h–k; Supplementary Data 3). 
Eighteen increased and 17 decreased with 
VO₂max, converging on metabolic flexibility and 
vascular adaptation. 

Three proteins positively associated with 
oxidative capacity – APOA4, IGFBP2 and 
ITLN1 – have each been independently linked 
with human longevity. APOA4 alleles are 
enriched in centenarians69–72; ITLN1 (omentin-1) 
parallels adiponectin, elevated in centenarians 
and predictive of reduced mortality73; and 
IGFBP2 limits IGF-I bioavailability74–76, 
mirroring the dampened IGF-I signaling linked to 
lifespan extension across species77,76. This 
attenuation of IGF-I signaling was reinforced by 
decreased GIPC2, a PDZ-domain adaptor that 
facilitates IGF-I receptor signaling78 – indicating 
reduced pathway activity at both ligand 
(IGFBP2) and receptor-proximal (GIPC2) levels, 
consistent with endocrine profiles associated with 
extended lifespan in model organisms and 
centenarian studies77,79. 

APOA4 promotes fatty acid oxidation while 
enhancing glucose disposal through dual hepatic 
and adipose mechanisms80, and its increase 
alongside ITLN1 delineates a metabolic 
flexibility signature consistent with the 'athlete's 
paradox' of preserved insulin sensitivity despite 
elevated intramuscular lipid stores81. This profile 
distinguishes the endurance phenotype from the 
glycolytic/anabolic phenotype of bodybuilders. 

Vascular adaptation markers also scaled with 
oxidative capacity, consistent with higher 
capillary density of slow-oxidative compared to 
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fast-glycolytic muscle fibers. ESAM, an 
endothelial junction molecule that promotes 
capillary sprouting, and PLXNB2, the functional 
receptor for angiogenin, both increased – 
reflecting VEGF-driven angiogenesis during 
endurance training.  

 

Eight immunoglobulin components and the 
acute-phase protein ITIH4, Fc-binding 
glycoprotein (FCGBP), and granulysin (GNLY) 
decreased with increasing oxidative capacity, 
consistent with lower basal inflammatory tone 
and exercise-associated immunomodulation82.  

 

Fig. 3: Baseline plasma proteome distinguishes athlete phenotypes along orthogonal physiological axes. a, t-SNE projection 
of integrated proteomics data (303 proteins across four workflows). b, Circular heatmap of top-ranked proteins per athlete 
group. Inner track indicates source workflow. c, Composite signature scores comparing each group against all others. ***P 
< 0.001. d–g, Muscle mass axis (based on quadriceps circumference). (d,f) Group ordering schematics (e) Network for 75 
proteins increasing with muscle mass; circled node indicate liver fibrosis biomarker overlap43. (g) Network for 37 proteins 
decreasing with muscle mass; circled proteins indicate inflammatory response components. h–k, Oxidative capacity axis 
(based on VO₂max). (h,j) Group ordering schematics. (i,k) Representative proteins with monotonic trends. *P < 0.05, **P < 
0.01. 
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Organ-specific biological age reveals distinct 
effects of acute exercise and chronic training 

To integrate protein-level findings into a systems-
level framework, we applied the OrganAge 
models14 using Illumina (Fig. 4a; Supplementary 
Data 5). This approach estimates biological age 
for 11 organ systems using plasma proteins with 
organ-enriched expression. Organ-specific age 
gaps derived from these models have been 
associated with future disease risk and mortality 
in independent population-based cohorts14,83,84. 

The original models were trained on elderly 
cohorts (~75 years). Given our young cohort (19–
38 years), we recalibrated age gaps using within-
cohort regression, yielding z-scored residuals 
where positive values indicate biologically 
"older" and negative values "younger" organ age 
relative to same-aged peers. Despite the narrow 
age range, predicted organ ages correlated with 
chronological age (r = 0.56 for the Organismal 
model; Fig. 4b,c), and low inter-organ 
correlations (mean r = 0.037; Fig. 4d) confirmed 
that organs age heterogeneously within 
individuals – a pattern extending to young, fit 
populations, with distinct profiles across training 
types (Fig. 4e). 

Acute exercise most strongly affected immune 
biological age (Δ = +0.58 SD, p < 0.001, Cohen's 
d = 0.77; Fig. 4f), consistent with transient innate 
immunity activation85,86 and aligning with the 
post-exercise platelet and neutrophil activation 
observed in our proteomic data (Fig. 2). 

Chronic training effects were most pronounced 
for adipose tissue: athletes exhibited significantly 
younger biological age than controls (Δ = −0.92 
SD, p = 0.043, Cohen's d = −1.05; Fig. 4g). The 
Adipose OrganAge model comprises only five 
adipose-enriched proteins, among them ITLN1 
(omentin-1) – which MS independently identified 
as increasing along the oxidative capacity axis 
(Fig. 3). This convergence of protein-level and 
organ-level findings implicates adipose tissue as 
a key locus of training-associated biological age 
differences.  

 

 

 

Discussion 

This study establishes the plasma proteome as an 
integrated readout of both acute physiological 
responses to exercise and the chronic metabolic 
phenotypes that distinguish athletes as a 
consequence of genetic predisposition and 
discipline-specific training. 

A multi-workflow proteomic strategy was 
essential to resolve these effects: acid 
precipitation enriched muscle-derived 
intracellular proteins while depleting vesicular 
structures; nanoparticle coronas preferentially 
captured platelet-derived microparticles and 
membrane-associated species; aptamer arrays 
provided orthogonal coverage enabling organ-
level aging analysis. Direct cross-platform 
comparison revealed that MS consistently 
captures larger effect sizes through superior 
dynamic range, while aptamer reagents exhibit 
implicit proteoform selectivity – with 
concordance depending critically on isoform-
aptamer matching. That such selectivity remains 
unannotated provides a path toward enhanced 
aptamer characterization; that MS resolves 
proteoforms inherently, combined with ongoing 
advances in depth, positions mass spectrometry 
to ultimately deliver both sensitivity and 
comprehensive coverage. Matching the 
proteoform complexity of the human proteome 
accessible to MS will require aptamer panels far 
exceeding current gene-level coverage. No single 
platform would have revealed the full scope of 
exercise-induced proteome remodeling – 
underscoring that workflow selection 
fundamentally shapes biological conclusions in 
plasma proteomics. 

The acute response to a bout of graded cycle 
exercise to exhaustion reflects coordinated 
activation of interconnected systems: platelet 
degranulation, neutrophil mobilization and 
extracellular matrix turnover. Peptide topology 
analysis provided direct molecular evidence for 
vesicular release, with transmembrane proteins 
yielding peptides from both cytoplasmic and 
extracellular domains – a signature inconsistent 
with proteolytic shedding alone87. That this 
inflammatory mobilization manifests as a 
transient elevation in immune biological age 
suggests that biological aging clocks may, in part, 
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capture reversible immune activation states rather 
than exclusively reflecting irreversible senescent 
processes. This interpretation contrasts with the 
chronic, unresolved inflammation characteristic 
of inflammaging88 and aligns with exercise as a 
hormetic stimulus: an acute physiological 
stressor that, through repeated cycles of 
activation and efficient resolution, promotes 
systemic adaptive benefits89. 

Chronic training adaptations organized along two 
orthogonal axes. The muscle mass gradient 
captured hypertrophy signaling (DLK1, BMP4/6, 
ACE), ECM remodeling and attenuated systemic 
inflammation – collectively establishing a milieu 
that favors anabolic adaptation while reducing 
cardiometabolic risk. The coordinated reduction 

in coagulation factors and enhanced fibrinolytic 
capacity provides molecular grounding for the 
well-documented inverse relationship between 
physical activity and cardiovascular disease64. 
That several ECM proteins elevated in resistance-
trained athletes overlap with liver fibrosis 
biomarkers43 illustrates a central challenge in 
circulating biomarker interpretation: these 
proteins report generalized matrix remodeling, 
with biological significance determined by 
clinical context rather than the molecules 
themselves. 

The oxidative capacity axis yielded one of the 
study's most striking findings: convergence on 
molecular programs associated with human 
longevity. APOA4, IGFBP2 and ITLN1 – each 

Fig. 4: Organ-specific biological age reveals distinct effects of acute exercise and chronic training. a, Schematic of 
OrganAge framework for 11 organ systems plus organismal and conventional models. b, Predicted versus chronological age 
for the Organismal model (r = 0.56). Solid line: cohort-specific fit; dashed line: training cohort LOWESS curve. c, Organ 
model calibration; slope of predicted versus chronological age per organ, point size indicates R². d, Inter-organ correlation 
heatmap (mean r = 0.037). e, Organ age profiles by training modality. Dashed line indicates population mean. f, Acute 
exercise effect on immune biological age: Δ = +0.58 SD, Cohen’s d = 0.77, ***P < 0.001. g, Chronic training effect on 
adipose biological age. Δ = −0.92 SD, Cohen’s d = −1.05, *P = 0.043. 
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independently linked to exceptional longevity or 
reduced mortality69–72 – were elevated in 
endurance athletes, alongside coordinated 
attenuation of IGF-I signaling at both ligand and 
receptor levels. This signature recapitulates the 
hormonal profile associated with lifespan 
extension across species73,77. The organ-level 
analysis reinforces this interpretation: athletes 
exhibited younger adipose biological age, with 
ITLN1 – a visceral adipose-derived adipokine 
that enhances insulin-stimulated glucose uptake 
and exerts anti-inflammatory effects 90–92 – 
identified independently by MS as increasing 
along the oxidative capacity axis. Circulating 
ITLN1 levels are reduced in obesity and insulin 
resistance but increase following aerobic training, 
even in absence of weight loss93,94. This 
convergence of protein-level and organ-level 
findings suggests that regular training preserves 
adipose tissue in a metabolically favorable state, 
providing a plausible link between 
cardiorespiratory fitness and the slower pace of 
biological aging associated with reduced 
mortality95. 

These findings reframe how we interpret plasma 
proteomics. Circulating biomarkers have 
traditionally served to detect pathology – elevated 
CRP signals inflammation, cardiac troponins 
indicate myocardial damage. Our data 
demonstrate that the plasma proteome equally 
identifies systems functioning exceptionally 
well: longevity-associated signatures, younger 
organ biological age and attenuated inflammatory 
profiles represent molecular evidence of 
physiological optimization. Plasma proteomics 
thus provides a comprehensive readout of human 
physiological status across the spectrum from 
pathology to peak performance – a perspective 
with implications for clinical diagnostics and 
human performance optimization alike. 

These findings highlight the importance of 
studying exercise and non-pathological 
phenotypes such as those of athletes to establish 
the context specificity of circulating protein 
biomarkers. This study directly tests whether 
proteins widely interpreted as pathological 
biomarkers are also influenced by athletic 
training or acute exercise. Creatine kinase 
illustrates this challenge: elevated levels indicate 
tissue injury in myocardial infarction but also rise 

transiently after exercise due to skeletal muscle 
leakage without pathological significance. 
Distinguishing disease-related biomarkers from 
those reflecting adaptive physiological stress is 
essential for accurate interpretation of plasma 
proteomic signals.  

Several limitations warrant acknowledgment. 
Our cohort comprised young males, limiting 
generalizability; sample sizes, particularly for 
controls (n=7), constrain statistical power for 
subgroup analyses; and the cross-sectional design 
cannot distinguish training-induced adaptations 
from genetic predisposition toward both athletic 
phenotype and favorable proteomic profile. The 
immunoglobulin changes associated with 
oxidative capacity, while consistent with 
training-induced immunomodulation, could 
reflect confounding factors in our modest sample. 
The single post-exercise timepoint captures 
immediate responses but not recovery dynamics, 
and the OrganAge framework, while validated in 
large cohorts14,83,84, represents an extension 
beyond its original elderly training population. A 
key outstanding question is the relative 
contribution of genetics versus training: 
longitudinal studies tracking proteomic 
trajectories through training initiation, detraining, 
or modality switching – combined with twin 
studies discordant for athletic training – would 
help resolve how much of the athlete proteome 
reflects acquired adaptation versus innate 
predisposition, with implications for exercise 
prescription in clinical populations. 

The plasma proteome provides accessible, 
minimally invasive readouts of systemic 
adaptation state that could inform personalized 
training prescription and monitor response to 
exercise interventions. The identification of 
longevity-associated signatures offers 
mechanistic insight into the well-established 
relationship between cardiorespiratory fitness 
and lifespan4. Whether these proteomic patterns 
predict long-term health outcomes in athletic and 
general populations remains to be determined, 
but the convergence of protein-level and organ-
level findings on pathways implicated in healthy 
aging positions the plasma proteome as a 
promising tool for understanding – and 
potentially optimizing – the health benefits of 
physical activity. 
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Methods 

Study cohorts 

MetaExtreme cohort. The MetaExtreme cohort 
comprised healthy, trained male athletes 
representing three distinct training modalities – 
endurance athletes (n=11), natural bodybuilders 
(n=9) and sprinters (n=8) – alongside untrained 
controls (n=7). Recruitment built upon an earlier 
study 96 and followed identical inclusion criteria 
and pre-sampling protocols. All participants met 
stringent inclusion criteria and followed 
standardized pre-sampling protocols: adherence 
to a controlled diet on the day before testing, 
abstention from exercise for 24 hours, and 
discontinuation of dietary supplements for 48 
hours prior to sampling. The study was approved 
by the Technical University of Munich ethics 
committee (#356/17S); all participants provided 
written informed consent. 

MetaPerform validation cohort. The validation 
cohort comprised 20 healthy, endurance-trained 
athletes (9 women, 11 men), aged 22–42 years. 
Inclusion criteria required a normal body mass 
index (18.5–25.0 kg/m²), a minimum of 8 hours 
per week of endurance training and a VO₂max 
exceeding 50 ml/kg/min for women and 60 
ml/kg/min for men. Female participants were 
tested during the early follicular phase (days 1–
10) to minimize hormonal variation. Pre-
sampling protocols matched the MetaExtreme 
cohort. The study was approved by the Technical 
University of Munich ethics committee (#203/20 
S-EB); all participants provided written informed 
consent. 

Plasma proteomics 

MS-based workflows. Three complementary 
mass spectrometry-based workflows were 
applied to exploit distinct physicochemical 
selectivity. The NEAT workflow processed 
undepleted plasma (1 μL) by standard reduction, 
alkylation and trypsin/LysC digestion12. The 
PCA-N workflow used perchloric acid 
precipitation (5 μL plasma) followed by 
neutralization to enrich low-abundance species 
while depleting albumin and immunoglobulins12. 
The bead-based workflow employed 
functionalized nanoparticles (OmniProt, 
Westlake Omics) to form protein coronas that 

preferentially capture membrane-associated and 
vesicular proteins13. All workflows were semi-
automated using the Bravo liquid handling 
platform (Agilent). Digested peptides (200 ng) 
were loaded on Evotips following the 
manufacturer's protocol and separated on an 
Evosep One system (60 samples-per-day method, 
21 min gradient) using an 8 cm Aurora Rapid 
column (150 μm ID; IonOpticks) coupled to an 
Orbitrap Astral mass spectrometer (Thermo 
Fisher Scientific) operating in data-independent 
acquisition (DIA) mode. The instrument was 
interfaced with a FAIMS Pro device 
(compensation voltage −40 V). MS1 scans (380–
980 m/z) were acquired at 240,000 resolution; 
MS/MS scans used 3 Th isolation windows and a 
maximum injection time of 7 ms with 25% 
normalized HCD collision energy. 

Aptamer-based proteomics. Neat plasma samples 
(55 μL) were processed using the Illumina 
Protein Prep 6K workflow on an Illumina Protein 
Prep Automation System (Illumina Solutions 
Centre, Milan). Plasma was diluted 1:5, 1:200, 
and 1:20,000 to capture proteins across the 
dynamic range and incubated with SOMAmer 
reagent beads (28°C, 850 r.p.m., 3.5 h). 
Following incubation, beads were washed, 
captured proteins biotinylated, and protein–
SOMAmer complexes photocleaved. Complexes 
were recaptured on streptavidin beads in the 
presence of a polyanionic competitor to reduce 
non-specific binding. Eluted SOMAmers were 
hybridized with sequencing probes (37°C, 
overnight) and used as templates for indexed 
library generation. Libraries were pooled and 
sequenced on a NovaSeq 6000; read counts were 
normalized and analysed using the DRAGEN 
Protein Quantification pipeline (v1.8.33). Data 
files were parsed using Canopy. 

 

Data processing and statistical analysis 

MS-based proteomics data processing. Raw data 
were processed using DIA-NN v1.8.1 with 
match-between-runs enabled and an in silico 
predicted library searching against the human 
TrEMBL and SwissProt FASTA database 
(UniProt, November 2023, taxonomy ID 9606). 
Enzyme specificity was set to Trypsin/P with one 
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missed cleavage allowed. Carbamidomethylation 
of cysteine was set as fixed modification; 
methionine oxidation as variable modification. 
Mass accuracy and MS1 accuracy were 10 ppm 
with scan window radius of 6. False discovery 
rate was controlled at 1% at the peptide-to-
spectrum match level. Protein inference was 
performed at gene level using single-pass neural 
network classification. Quantification employed 
“Robust LC (high accuracy)” with RT-dependent 
cross-run normalization. Protein quantification 
used MaxLFQ intensities. Filtering for ≥20% 
valid values across samples yielded 1,099 
(NEAT), 1,459 (PCA-N) and 2,009 (BEADS) 
proteins. For all subsequent analyses, proteins 
quantified in ≥70% of samples were retained. 
Batch effects were corrected using ComBat with 
temporary imputation; original missing values 
were restored post-correction. Intensities were 
log₂-transformed prior to analysis. 

Peptide topology annotation. Peptides were 
mapped to UniProt topology annotations 
(transmembrane domains, topological domains) 
based on sequence position. Coverage changes 
between pre- and post-exercise timepoints were 
calculated as the mean difference in peptide 
detection frequency across subjects for each 
domain. 

Functional enrichment analysis. Gene set 
enrichment was performed using g:Profiler with 
Gene Ontology Cellular Components (excluding 
electronic annotations) and Reactome as 
reference databases. Significance was assessed 
using the Benjamini-Hochberg procedure (FDR 
<0.05). Results were visualized using 
EnrichmentMap in Cytoscape. Protein interaction 
networks were generated using STRING. 

Linear mixed-effects modelling. To account for 
the repeated-measures structure (pre- and post-
exercise samples from each individual), we 
employed linear mixed-effects (LME) models 
with subject as a random intercept. Models were 
fitted using restricted maximum likelihood 
(REML) estimation with the statsmodels package 
(Python). Two model specifications addressed 
distinct biological questions: (1) Acute exercise 
effects: Protein ~ Timepoint + (1|Subject), testing 
systematic changes from pre- to post-exercise 
across all participants regardless of training 

status. (2) Chronic training adaptations: Protein ~ 
Group + (1|Subject), testing for differences 
between groups reflecting long-term training 
adaptations. This model was applied to two 
grouping schemes: (a) athletes (bodybuilders, 
endurance athletes, and sprinters pooled) versus 
sedentary controls, and (b) the four training 
modalities separately (bodybuilding, endurance, 
sprint, control). For all models, p-values were 
corrected using the Benjamini-Hochberg 
procedure (FDR < 0.05). 

Multi-omics factor analysis. To leverage 
complementary protein coverage across 
workflows, significantly group-associated 
proteins were integrated using Multi-Omics 
Factor Analysis (MOFA). Group importance 
scores were derived from latent factor loadings, 
and composite signature scores were computed 
by aggregating group importance-weighted 
protein abundances. 

Monotonic trend analysis. Proteins with 
monotonic abundance changes along 
physiological axes were identified using 
Spearman's rank correlation between ordered 
group assignments and protein abundance. Pre- 
and post-exercise measurements were averaged 
per subject prior to analysis. For the muscle mass 
axis, groups were ordered as control < endurance 
< sprint < bodybuilder. For the oxidative capacity 
axis, groups were ordered as bodybuilder < 
control < sprint < endurance (based on measured 
VO₂max). Monotonic trends were considered 
significant at FDR < 0.05 (Benjamini-Hochberg 
correction) with |ρ| ≥ 0.4. Proteins were classified 
as "increasing" or "decreasing" based on the sign 
of the correlation coefficient. 

 

Organ-specific biological age estimation 

OrganAge model application. Organ-specific 
biological ages were calculated for all 70 samples 
(35 subjects × 2 timepoints) using the OrganAge 
framework14 and associated Python package 
(https://github.com/hamiltonoh/organage), 
which requires the complete set of model 
proteins. Age estimates were generated for 
adipose tissue, artery, brain, heart, immune 
tissue, intestine, kidney, liver, lung, muscle, and 
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pancreas, plus an organismal model using organ-
nonspecific proteins. 

Cohort-specific age gap calculation. Age gaps 
were recalibrated for our young cohort following 
the package's recommended approach for cohort 
effects. For each organ model, predicted age was 
regressed against chronological age using 
ordinary least squares, and residuals were z-score 
transformed to yield cohort-adjusted age gaps. 
Positive values indicate biologically older and 
negative values indicate biologically younger 
organ age relative to same-aged peers within the 
cohort. 

Statistical analysis of organ ages. Acute exercise 
effect (Pre vs. Post): Linear mixed-effects models 
with timepoint as fixed effect and subject as 
random intercept: AgeGap ~ Timepoint + 
(1|Subject). Effect sizes were calculated as 
Cohen’s d for paired samples. Chronic training 
effect (Athletes vs. Controls): Pre and Post values 
were averaged per subject to obtain single 
independent observations, avoiding pseudo-
replication. Welch’s t-test was applied given 
unequal sample sizes (28 athletes vs. 7 controls). 
Effect sizes were calculated as Cohen’s d with 
pooled standard deviation. Statistical significance 
was assessed at α = 0.05. Given that 12 organ 
models were tested for each question, formal 
multiple testing correction was not applied. 

Software 

Analyses were performed in Python 3.10 using 
statsmodels v0.14 for linear mixed-effects 
models, scipy v1.11 for statistical tests, 
OrganAge v1.0, and MOFA2 for multi-omics 
integration. Network visualization used 
Cytoscape v3.9 with EnrichmentMap. 
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Supplementary Figures

 
Extended Data Fig. 1: Cross-platform comparison and functional enrichment of exercise-responsive proteins. a, Paired 
fold-change comparison stratified by significance category. Asterisks indicate platform with significant proteins: Illumina 
only, MS only, or both. b, Spearman correlation of protein intensities between Illumina and MS workflows for genes significant 
in both platforms. c, Functional enrichment network of exercise-responsive proteins. Gene Ontology Cellular Component 
enrichment visualized using EnrichmentMap. Node size indicates gene count; color indicates significance. 
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Extended Data Fig. 2: Correlation analysis of multi-mapping genes across platforms. Spearman correlation heatmaps 
between MS protein isoforms and SOMAmer aptamers for genes with multiple measurements. (a) NEAT, (b) PCA-N, (c) 
BEADS. Red labels indicate significant proteins (MS) or aptamers (Illumina; red borders highlight isoform-aptamer pairs 
significant in both platforms. 
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Extended Data Fig. 3: Workflow-specific acute exercise responses and validation. a,b, Heatmaps of significantly changed 
proteins following acute exhaustive exercise in (a)NEAT and (b) PCA-N workflows. c, Gene Ontology Cellular Component 
enrichment of significantly changed proteins by workflow. d,e, Peptide topology analysis for (d) NEAT and (e) PCA-N  
workflows. Left: peptide distribution by compartment. Right: multi-domain proteins with peptides from multiple compartments. 
f, Validation of exercise-responsive proteins across discovery and validation cohorts for NEAT, PCA-N and BEADS 
workflows. ***P < 0.001. g, Functional enrichment of eleven consistently elevated proteins. h, Cross-platform validation of 
acute exercise-responsive proteins in the discovery cohort. Paired comparison of protein abundance (pre versus post) for 
Illumina and MS workflows (NEAT, PCA-N, BEADS). ***P < 0.001. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2026. ; https://doi.org/10.64898/2026.02.05.704017doi: bioRxiv preprint 

https://doi.org/10.64898/2026.02.05.704017
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Extended Data Fig. 4: Athlete phenotype separation by workflow and integrated analysis. a–d, Differentially abundant 
proteins between athletes and controls for (a) NEAT, (b) PCA-N, (c) BEADS and (d) Illumina. e-g, Functional enrichment of 
proteins distinguishing athletes from controls for (e) PCA-N, (f) BEADS and (g) Illumina. h, t-SNE projections using workflow-
specific proteins NEAT (35 proteins), PCA-N (48 proteins), BEADS (70 proteins) and Illumina (150 proteins). i, Top 15 
proteins by group importance score for control, bodybuilding, sprint and endurance signatures. Bar color indicates source 
workflow; proteins detected in multiple workflows indicated with “•2”. j,k, Functional enrichment of proteins along the muscle 
mass axis: (j) increasing and (k) decreasing with muscle mass.  
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Extended Data Fig. 5: MOFA factor contribution to group-specific protein signatures. a–d, Protein contributions to group 
separation for (a) bodybuilding, (b) control, (c) endurance, and (d) sprint. Rows: proteins significant in at least one workflow 
(153 proteins; FDR < 0.05); columns: latent factors. Color indicates factor–group t-statistic × protein loading. Left track 
indicates source workflow. Proteins ordered by descending absolute group importance. 
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