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Abstract

Exercise confers profound health benefits, yet the molecular mechanisms linking physical activity
to health and longevity are incompletely known. Here we applied three mass spectrometry (MS)-
based and one aptamer-based proteomics workflows to elite athletes with contrasting metabolic
phenotypes, sampled before and after maximal exhaustive exercise. MS detected larger effect
sizes and resolved isoforms; aptamers extended proteome coverage but with unannotated
proteoform biases. Acute exercise induced coordinated platelet degranulation, neutrophil
activation, and extracellular matrix turnover, with peptide topology analysis providing direct
evidence for vesicular release. Chronic adaptations organized along two orthogonal axes: a
muscle mass gradient marked by hypertrophy signaling and attenuated systemic inflammation,
and an oxidative capacity gradient characterized by metabolic health-associated proteins
(APOA4, IGFBP2, ITLN1) and dampened IGF-I signaling. Exploratory biological age analysis
suggested younger adipose age in athletes. The plasma proteome provides an integrated readout
of exercise adaptation, linking cardiorespiratory fitness to metabolic health and healthy aging.
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Introduction

Physical activity ranks among the most potent
interventions for extending human health span.
Regular endurance or resistance exercise
substantially reduces cardiovascular disease, type
2 diabetes, cancer, and neurodegenerative disease
risk — benefits often rival or exceed those
achieved with pharmacological therapies'™.
Cardiorespiratory fitness, quantified as maximal
oxygen uptake (VO:max), is among the strongest
predictors of longevity: each 10 mL/kg/min
increase associates with a 45-day life expectancy
extension across 46 years of follow-up’.
Similarly, muscular fitness scores such as higher
grip strength are associated with reduced
mortality®. Yet the molecular mechanisms
underlying these systemic benefits remain
incompletely understood.

Blood plasma provides a unique window into the
integrated physiological state of an organism. As
the medium through which organs communicate,
plasma contains proteins secreted by virtually
every tissue — myokines from contracting muscle,
adipokines from fat, hepatokines from liver, or
exerkines as proteins secreted during exercise —
creating a circulating record of inter-organ
crosstalk’®. Exercise acutely and chronically
remodels this plasma proteome, but investigating
the scope of these changes has been constrained
by technological limitations. Mass spectrometry
(MS)-based approaches offer unbiased discovery
and the ability to distinguish protein isoforms but
face dynamic range challenges in plasma;
affinity-based platforms provide broader nominal
coverage but cannot resolve proteoforms and may
suffer from cross-reactivity. Most studies employ
only a single analytical platform, leading to a
fragmented  picture of  exercise-induced
change'®™!!,  Acute responses are frequently
dominated by abundant leakage proteins like
creatine kinase and myoglobin with chronic
adaptations inferred from targeted inflammatory
panels, and little integration across temporal and
phenotypic dimensions.

Elite athletes represent physiological extremes of
human metabolism — the anabolic state of natural
bodybuilders, the glycolytic power of sprinters,
the oxidative capacity of endurance athletes —
shaped by unique genetics or talent and years of

discipline-specific training. Whether these
divergent metabolic phenotypes manifest as
distinct circulating protein signatures that
integrate into coherent biological programs
remains unexplored.

To broadly characterize the elite athlete plasma
proteome we here applied four complementary
workflows — three MS-based approaches
(undepleted  plasma, acid  precipitation,
nanoparticle corona) and an aptamer-based
platform (Illumina/SOMAmer technology) — to
plasma from highly anabolic, glycolytic and
oxidative athletes versus recreationally active
controls sampled before and after maximal
exhaustive exercise. This multi-platform strategy
exploits the distinct physicochemical selectivity
of each method: acid precipitation implicitly
enriches lower-abundance soluble species;
nanoparticle coronas preferentially capture
membrane-associated and vesicular proteins;
aptamer arrays provide broad coverage with
orthogonal physicochemical biases!'>!3,
Integration  across  workflows  addresses
limitations that have constrained previous
studies. As an exploratory analysis, we applied
the OrganAge framework, which uses organ-
enriched plasma proteins to estimate biological
age for eleven organ systems'¥, to ask whether
athletic phenotypes associate with biological age
estimates.

Our findings reveal that acute exhaustive exercise
induces rapid plasma proteome remodeling
through platelet degranulation, neutrophil
activation, and extracellular matrix turnover.
Chronic adaptations establish distinct baseline
signatures along two orthogonal axes: a muscle
mass gradient characterized by ECM remodeling
and attenuated inflammation, and an oxidative
capacity gradient marked by metabolic health-
associated proteins. This analysis suggests
younger adipose biological age in athletes, with
convergence on proteins identified independently
by MS. The plasma proteome thus serves as an
integrated readout of exercise adaptation with
implications for understanding how physical
activity may preserve metabolic health.
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Results

Complementary proteomics workflows provide
validated coverage of the athlete plasma
proteome

We applied three complementary MS-based
plasma proteomics approaches and one aptamer-
based platform to samples from elite male
athletes — sprinters as a model for high glycolysis
(n=8), natural bodybuilders as a model for high
anabolism (n=9), and endurance athletes as a
model for high oxidative metabolism (n=11) —
including a German champions — collected before
and after a graded cycle exercise test to subjective
exhaustion; and recreationally active controls
(n=7) (Methods, Supplementary Data 1, Fig. 1a).
The proteome depths of the MS-based workflows
reflected their enrichment principles: undepleted
plasma (NEAT) analysis identified a total of
1,099 protein groups; perchloric acid enrichment
(PCA-N) extended coverage to 1,459 proteins by
precipitating high-abundance species whereas
bead-based enrichment (BEADS) achieved 2,009
protein groups through nanoparticle corona
formation. The aptamer-based Illumina Protein
Prep 6K platform (hereafter 'Illumina’) provided
6,831 targets — corresponding to 30% of protein
coding genes with bias toward secreted proteins
and extracellular domains. Note that 41% of
targets showed signal above twice the limit of
detection across all samples and that certain
analytes with non-linear behavior were excluded
from standard reporting (Supplementary Data 1,
Fig. 1b).

To validate that MS workflow-specific
enrichment translates to genuine biological signal
we examined the relationship between protein
enrichment relative to NEAT and statistical
significance in the exercise response. Significant
proteins in PCA-N were preferentially enriched
(80% versus 49% of non-significant proteins),
consistent with acid precipitation enhancing
detection of biological effects otherwise masked
by high-abundance species. These proteins — such
as functionally important glycoproteins — exhibit
lower technical variance, higher fold changes and
greater statistical power. BEADS showed a more
NEAT-like pattern, with non-enriched proteins
rarely reaching significance (75% non-enriched
among non-significant versus 44% among

significant) — reflecting the equilibrium binding
and surface competition inherent to corona
formation (Fig. 1c,d; Supplementary Data 2).

To assess cross-platform concordance, we
compared fold changes for proteins quantified by
both MS and Illumina. MS consistently detected
larger effect sizes: 65-69% of overlapping
proteins showed greater absolute fold changes (P
< 0.01, Wilcoxon test), translating directly to
increased statistical power with more MS-only
than Illumina-only significant proteins across all
workflows (15 versus 7, 19 versus 10, and 18
versus 12 for NEAT, PCA-N, and BEADS,
respectively). Proteins reaching significance on
both platforms showed complete directional
agreement and strong correlation (p up to 0.87),
establishing ground truth for target validation
(Fig. 1e, Extended Data Fig. 1a,b; Supplementary
Data 2). From this reference, we could deduce
aptamer-isoform relationships in cases of
apparent platform discordance: for POSTN,
significance of one isoform and one aptamer,
combined with their strong correlation (p = 0.78
versus 0.25-0.59 for other pairings), identified
the specific aptamer-proteoform match; for
BMP4, divergent correlations between two
aptamers and the same protein (p = 0.60 versus
0.06) revealed epitope-dependent recognition.
Where both aptamers targeted the same
proteoform, as for DLK1, all three measurements
reached significance with p > 0.81 (Fig. 1f,
Extended Data Fig. 2; Supplementary Data 2).
These findings establish that aptamer reagents are
often blind to proteoforms — information that M'S
inherently provides given sufficient peptide
coverage.

Gene ontology analysis confirmed distinct
subcellular origins across workflows (Fig. le).
All four platforms enriched extracellular and
secretory terms, as expected for plasma. NEAT
and BEADS additionally captured lipoprotein
particles, while PCA-N depleted these species but
uniquely enriched signaling receptors and cell
substrate junctions. BEADS and Illumina each
captured additional unique terms including
muscle-associated proteins. These orthogonal
enrichment profiles confirm that the workflows
provide complementary biological windows
rather than redundant depth, enabling dissection
of acute and chronic exercise responses.
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Fig. 1: Complementary proteomics workflows provide validated coverage of the athlete plasma proteome. a, Study design
schematic. Four athlete groups (controls, n=7; sprinters, n=8, bodybuilders, n=9; endurance athletes, n=11) before (Pre)
and after (Post) exercise on a cycle ergometer. Plasma was processed using three MS-based workflows — NEAT (undepleted
plasma), PCA-N (perchloric acid precipitation) and BEADS (nanoparticle-based enrichment) — and one aptamer-based
platform (lllumina). b, Proteomic depth of different plasma proteomics workflows. Protein abundance rank curves with violin
plots showing abundance distributions across workflows. ¢, Relationship between workflow-specific enrichment and statistical
significance. Protein enrichment in PCA-N (x-axis) versus BEADS (y-axis) relative to NEAT plasma expressed as Z-scores.
Teal: significant in BEADS or BEADS+NEAT; yellow: significant in PCA-N or PCA-N+NEAT; dot size: absolute enrichment
difference between workflows (|PCA-N — BEADS)). Significance based on acute exercise and chronic training models. d,
Enrichment-significance association. Proportion of proteins enriched (relative to NEAT) among significant versus non-
significant proteins. e, Cross-platform fold-change comparison for genes quantified by both MS and IPP. Fold changes based
on chronic training model. f, Spearman correlation heatmaps between MS protein isoforms and SOMAmer aptamers for multi-
mapping genes. Red labels: significant; red borders: significant in both platforms. POSTN and BMP4 (BEADS); DLKI
(PCA-N).

Acute exercise remodels the plasma proteome via > 0.5): 2 significantly altered proteins in NEAT,
platelet, matrix and immune activation 8 in PCA-N and 41 in BEADS (Fig. 2a; Extended
Data Fig. 3a,b; Supplementary Data 3). Gene
ontology enrichment revealed compartment-
specific origins: BEADS showed strong
enrichment for platelet alpha-granule and
secretory granule lumen while PCA-N
predominantly captured collagen-containing

Samples collected before and five minutes after
the cycle ergometer test revealed substantial
plasma proteome remodeling across all
workflows, with markedly different yields
following stringent filtering (q < 0.001, |log-FC|
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extracellular matrix proteins — consistent with the
capacity of nanoparticle coronas to preserve
vesicular structures that acid precipitation
disrupts (Extended Data Fig. 3c).

MS quantifies proteins by aggregating their
identified peptides, enabling investigation of
release mechanisms through topology mapping.
Of 9,160 peptides with UniProt domains
annotations across 1,398 proteins in BEADS,
73% originated from secreted proteins and 18%
from extracellular domains with similar
distributions across all three workflows (Fig. 2b;
Extended Data Fig. 3d,e). Notably, dozens of
proteins yielded peptides from both intracellular
and extracellular compartments, indicating
release of intact membrane-spanning proteins.
This is exemplified by GP1BB and F11R, single-
pass transmembrane proteins whose cytoplasmic
and extracellular peptides showed coordinate
post-exercise increases (Fig. 2c,d) — direct
evidence for release within platelet-derived
microparticles or extracellular vesicles!® rather
than purely proteolytic ectodomain shedding.

Validation in an independent cohort (n=20,
including female participants) confirmed eleven
proteins as consistently elevated after this
extremely short acute exercise — representing a
core acute response signature that generalizes
across cohorts and sexes (Fig. 2e,f, Extended
Data Fig. 3f) clustered into three functional
modules: platelet alpha-granule components
(PF4, PF4V1, PPBP, MMRNI, THBSI),
extracellular matrix factors (MMP9, CCN2,
LTBP1) and immune signaling molecules (HLA-
A, HLA-B, H4-16), as confirmed by enrichment
analysis (Extended Data Fig. 3g). The aptamer
platform independently recovered the platelet
core of this signature (PF4, PPBP, THBSI)
alongside = MMP9, providing orthogonal
confirmation of the dominant acute response
module (Extended Data Fig. 3h).

The five platelet-derived proteins indicate that
degranulation is a major contributor to the acute
exercise secretome!®!'’. PF4 and PF4V1 are
chemokines released upon activation'®; PPBP is
the precursor of beta-thromboglobulin, a classical
in vivo activation marker'’; MMRN1 binds
coagulation factor V?°; and THBSI1 activates
latent TGF-B while exerting anti-angiogenic

effects?’ 2. This signature is consistent with
exercise-induced shear stress and catecholamine-
mediated platelet activation®*°,

The ECM triad reflects initiation of matrix
turnover. MMP9 degrades type IV collagen®,
CCN2 is a mechanosensitive matricellular
protein rapidly induced by mechanical loading?’
and LTBP1 sequesters latent TGF-f in the matrix
and regulates its bioavailability?®, suggesting
engagement of TGF-B-linked remodeling
programs in post-exercise repair.

Detection of MMP9, stored in granules of
polymorphonuclear leukocytes, together with
histone H4 suggests activation of circulating
innate immune cells. Extracellular histones are
released during NETosis, whereby activated
neutrophils expel chromatin decorated with
granule proteins. Strenuous exercise induces
NET formation, with cell-free DNA originating
primarily from mature neutrophils®.

These three modules are mechanistically
interconnected. Activated platelets release
THBS1, which activates latent TGF- complexes
bound to LTBP1 — a pathway known to induce
CCN2%, Platelet-derived chemokines recruit and
activate circulating immune cells, and platelets
can directly trigger NET formation by
neutrophils. Together, this coordinated response
— balancing tissue remodeling with controlled
inflammation — prepares the organism for
subsequent repair and adaptation.
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Fig. 2: Acute exhaustive exercise rapidly remodels the plasma proteome. a, Heatmap of significantly changed proteins
following acute exhaustive exercise in the BEADS workflow (q < 0.001, |log2FC| > 0.5, 41 proteins). Rows represent proteins;
columns represent samples ordered by timepoint (pre: beige; post: brown) and group (control: red; athlete: blue). Left
annotation: peptide topology coverage by category. b, Peptide topology analysis. Circos plot shows subcellular origin of
detected peptides based on UniProt annotations. Left: peptide distribution by compartment. Right: multi-domain proteins with
peptides from multiple compartments. c,d, Dual-topology peptide detection for transmembrane proteins (c) GP1BB and (d)
FI1IR. Lefi: protein structure with detected peptides mapped by domain. TM, transmembrane domain. Right: peptide
abundance by topology and timepoint. e, f, Validation of exercise-responsive proteins across discovery and validation cohorts.
(e) Interaction network of consistently elevated proteins across MS workflows. (f) Representative proteins from each functional

module (BEADS data shown,).

Baseline plasma proteome distinguishes athlete
phenotypes along orthogonal physiological axes

Beyond acute responses, we examined whether

resting plasma reflects chronic training
adaptations. Linear mixed-effects models
comparing athletes to sedentary controls

identified 13, 20, 17 and 25 differentially
abundant proteins in NEAT, PCA-N, BEADS
and Illumina respectively (FDR < 0.05), enriched
for muscle cell differentiation, migration and
growth regulation (Extended Data Fig. 4a—g;
Supplementary Data 3).

To leverage the complementary protein coverage
of each workflow, we integrated 303 proteins
significantly associated with athlete group (35
NEAT, 48 PCA-N, 70 BEADS, 150 Illumina;
FDR < 0.05; Supplementary Data 3) using Multi-

Omics Factor Analysis (MOFA), achieving clear
phenotype separation. Bodybuilders and controls
occupied distinct regions, with endurance and
sprint athletes positioned intermediately (Fig. 3a;
Extended Data Fig. 4h; Supplementary Data 4).

Group importance scores derived from MOFA
latent factors revealed workflow-specific
contributions: MS workflows dominated the
bodybuilding, endurance and control signatures
(11, 11 and 9 of 15 top-ranked, respectively),
with BEADS and PCA-N contributing most
substantially; the sprint signature derived
exclusively from Illumina (Fig. 3b; Extended
Data Fig. 4i). The MS approach resolved distinct
isoforms — FGFR1 splice variants (P11362-16
and P11362-21) contributed independently to the
control signature, and PGLYRP2 proteoforms
(MOR2WS8 and Q96PDS5) ranked separately
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among bodybuilding-associated proteins —
information inaccessible to affinity platforms
(Extended Data Fig. 5a—d). Composite signature
scores significantly distinguished each group
from all others, with bodybuilding and control
showing the clearest separation (Fig. 3c).

These phenotype differences organized along two
orthogonal physiological axes: a muscle mass
gradient (control < endurance < sprint <
bodybuilder, based on quadriceps circumference)
and an oxidative capacity gradient (bodybuilder
< control < sprint < endurance, based on
VO:max).

Circulating proteins scale with muscle mass and
resistance training

We next examined the protein signatures defining
each axis. Linear mixed-effects modelling
identified 75 proteins increasing progressively
along the muscle mass axis (control < endurance
< sprint < bodybuilder; Fig. 3 d,e; Supplementary
Data 3), with functional enrichment for
sarcomere organization and muscle structure
development (Extended Data Fig. 4j).

The most striking finding was coordinate
elevation of fast-twitch sarcomeric components —
MYLPF, TNNI2, MYH2, ACTN2, MYOM?2 and
MYOM3; glycolytic enzymes PKM, ENO3 and
LDHA; and the muscle-specific creatine kinase
CKM?3!*2 This profile is consistent with an
increasing fraction of fast muscle fibers from
endurance athletes to bodybuilders, combined
with larger relative volume of fast compared to
slow fibers. The appearance of these intracellular
proteins in plasma likely reflects both increased
fast muscle mass and exercise-induced
sarcolemmal permeability®> — positioning the
plasma proteome as a non-invasive window into
muscle quantity and fiber type composition.
TRIM72 (MG53), which nucleates sarcolemmal
membrane repair by translocating to injury sites
and facilitating vesicle fusion, showed
progressive elevation®*; suggesting that this
gradient reflects adaptive membrane repair
capacity in response to chronic mechanical
loading.

Proteins involved in muscle stem cell regulation
and myogenesis followed the same pattern:
DLK1, critical for postnatal muscle
hypertrophy®>; BMP4 and BMP6, positive
regulators of muscle mass signaling through
Smad1/5/8%%%7; FGFR1, a regulator of satellite
cell proliferation®®*; and MARCKS, whose
calpain cleavage is required for myoblast fusion*’
— collectively, candidate biomarkers for satellite
cell activation and fusion during hypertrophy and
repair. ACE, whose D allele associates with
greater hypertrophic responses to resistance
training, also increased along the gradient*!*2,

A prominent ECM subset — FBLN1, CHRDL2,
TNXB, COL5A2, COMP, POSTN, CILP and C7
— mediates matrix assembly, collagen fibril
organization and modulation of TGF-f signaling.
Intriguingly, several of these proteins have been
independently identified as plasma biomarkers of
liver fibrosis progression, with FBLN1 showing
the strongest correlation with fibrosis stage®.
This convergence suggests that these proteins
report ECM remodeling activity rather than
tissue-specific processes, emphasizing the need
for context-dependent biological interpretation.
In athletes, elevated ECM proteins likely reflect
myotendinous  junction remodeling and
mechanical load adaptation, whereas in liver
disease they mark fibrosis. The anti-fibrotic
properties of CILP in TGF-B—driven contexts*
may contribute to maintaining adaptive rather
than pathological ECM responses.

Attenuated  inflammation — and  enhanced
metabolic efficiency characterize trained athletes

The 37 proteins that decreased along the muscle
mass axis were enriched for acute phase response,
lipid metabolism and hemostasis (Fig. 3f,g;
Extended Data Fig. 4k; Supplementary Data 3).
Innate immune components showed coordinate
suppression, including acute-phase reactants used
as biomarkers of systemic inflammation. CRP
showed the expected inverse relationship with
lean mass, consistent with anti-inflammatory
effects of chronic exercise®*. This pattern also
characterized serum amyloid P component
(APCS)Y, serum amyloid A4 (SAA4)*,
haptoglobin (HP)* and its related protein
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(HPR)*, lysozyme (LYZ)’! and peptidoglycan
recognition protein 2 (PGLYRP2)*. Proteinase 3
(PRTN3), a neutrophil serine protease whose
plasma levels correlate with cardiovascular risk
factors, and VSTMI/SIRL-1, an inhibitory
myeloid receptor regulating neutrophil oxidative
burst, similarly decreased. Athletes with greater
muscle mass thus exhibit reduced inflammatory
burden — a phenotype associated with lower
cardiometabolic risk that may represent an
underappreciated benefit of muscle mass-
increasing resistance training.

Proteins elevated in insulin-resistant states
followed the same pattern: APOC3, APOC4,
APOL1, MTTP, AFM, RETN and LIPG - each
elevated in type 2 diabetes and metabolic
syndrome>¢ — declined progressively from
controls to bodybuilders, consistent with the
dominant role of skeletal muscle in glucose
disposal®’. The liver-derived phospholipase
GPLDI, a novel prediabetes biomarker whose
plasma levels rise alongside  fasting
hyperglycemia®® | similarly decreased, as did
GALNT2, possibly reflecting its role in adipocyte
maturation®. Kynureninase (KYNU), an enzyme
of the inflammation-activated tryptophan
catabolic pathway, also decreased — consistent
with enhanced kynurenine clearance by exercise-
trained muscle®.

Six coagulation and fibrinolysis proteins (F9,
SERPIND1, SERPINF2, SERPINB2/PAI-2,
GP1BA, VTN)®"% decreased in parallel, together
with glycoprotein VI (GP6), the major platelet
collagen receptor implicated in arterial
thrombosis, suggesting reduced thrombotic
potential and enhanced fibrinolytic capacity —
cardiovascular protective adaptations consistent
with lower disease risk in physically active
populations®,

Strikingly, key negative regulators of muscle
mass converged on this axis. IGFBP4, which
sequesters IGF-I and limits its bioavailability®>-6,
showed pronounced inverse association with
muscle mass, as did activin A (INHBA) and

inhibin BC (INHBC)—TGF-f superfamily

members that signal through ActRIIB to
phosphorylate =~ SMAD2/3 and  function
synergistically with myostatin as negative

regulators of muscle mass. Pharmacological

activin blockade reverses wasting in cachexia
models and ligand traps have recently received
clinical approval®”%®, The plasma proteome thus
captures the principal relays governing muscle

mass: diminished inhibitory TGF-B/activin
signaling combined with enhanced IGF-I
bioavailability.

Oxidative capacity associates with a longevity-
like plasma signature

Orthogonal to the muscle mass axis, 35 proteins
scaled monotonically with estimated oxidative
capacity (bodybuilder < control < sprint <
endurance; Fig. 3h-k; Supplementary Data 3).
Eighteen increased and 17 decreased with
VO:max, converging on metabolic flexibility and
vascular adaptation.

Three proteins positively associated with
oxidative capacity — APOA4, IGFBP2 and
ITLNI — have each been independently linked
with human longevity. APOA4 alleles are
enriched in centenarians®~7?; ITLN1 (omentin-1)
parallels adiponectin, elevated in centenarians
and predictive of reduced mortality’’; and
IGFBP2 limits IGF-I  bioavailability’*7®,
mirroring the dampened IGF-I signaling linked to
lifespan extension across species’”®.  This
attenuation of IGF-I signaling was reinforced by
decreased GIPC2, a PDZ-domain adaptor that
facilitates IGF-I receptor signaling’® — indicating
reduced pathway activity at both ligand
(IGFBP2) and receptor-proximal (GIPC2) levels,
consistent with endocrine profiles associated with
extended lifespan in model organisms and
centenarian studies’””.

APOA4 promotes fatty acid oxidation while
enhancing glucose disposal through dual hepatic
and adipose mechanisms®, and its increase
alongside ITLN1 delineates a metabolic
flexibility signature consistent with the 'athlete's
paradox' of preserved insulin sensitivity despite
elevated intramuscular lipid stores®!. This profile
distinguishes the endurance phenotype from the
glycolytic/anabolic phenotype of bodybuilders.

Vascular adaptation markers also scaled with
oxidative capacity, consistent with higher
capillary density of slow-oxidative compared to
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fast-glycolytic muscle fibers. ESAM, an
endothelial junction molecule that promotes
capillary sprouting, and PLXNB2, the functional
receptor for angiogenin, both increased -
reflecting VEGF-driven angiogenesis during

Eight immunoglobulin components and the
acute-phase  protein  ITIH4,  Fc-binding
glycoprotein (FCGBP), and granulysin (GNLY)
decreased with increasing oxidative capacity,
consistent with lower basal inflammatory tone

endurance training. and exercise-associated immunomodulation®
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Fig. 3: Baseline plasma proteome distinguishes athlete phenotypes along orthogonal physiological axes. a, t-SNE projection
of integrated proteomics data (303 proteins across four workflows). b, Circular heatmap of top-ranked proteins per athlete
group. Inner track indicates source workflow. ¢, Composite signature scores comparing each group against all others. ***P
< 0.001. d—g, Muscle mass axis (based on quadriceps circumference). (d.f) Group ordering schematics (e) Network for 75
proteins increasing with muscle mass; circled node indicate liver fibrosis biomarker overlap®. (g) Network for 37 proteins
decreasing with muscle mass, circled proteins indicate inflammatory response components. h—k, Oxidative capacity axis
(based on VO:max). (h,j) Group ordering schematics. (i,k) Representative proteins with monotonic trends. *P < 0.05, **P <
0.01.
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Organ-specific biological age reveals distinct
effects of acute exercise and chronic training

To integrate protein-level findings into a systems-
level framework, we applied the OrganAge
models'* using Illumina (Fig. 4a; Supplementary
Data 5). This approach estimates biological age
for 11 organ systems using plasma proteins with
organ-enriched expression. Organ-specific age
gaps derived from these models have been
associated with future disease risk and mortality
in independent population-based cohorts!'*33-84,

The original models were trained on elderly
cohorts (~75 years). Given our young cohort (19—
38 years), we recalibrated age gaps using within-
cohort regression, yielding z-scored residuals
where positive values indicate biologically
"older" and negative values "younger" organ age
relative to same-aged peers. Despite the narrow
age range, predicted organ ages correlated with
chronological age (r = 0.56 for the Organismal
model; Fig. 4b,c), and low inter-organ
correlations (mean r = 0.037; Fig. 4d) confirmed
that organs age heterogeneously within
individuals — a pattern extending to young, fit
populations, with distinct profiles across training

types (Fig. 4¢).

Acute exercise most strongly affected immune
biological age (A =+0.58 SD, p <0.001, Cohen's
d=0.77; Fig. 4f), consistent with transient innate
immunity activation®® and aligning with the
post-exercise platelet and neutrophil activation
observed in our proteomic data (Fig. 2).

Chronic training effects were most pronounced
for adipose tissue: athletes exhibited significantly
younger biological age than controls (A = —0.92
SD, p = 0.043, Cohen's d = —1.05; Fig. 4g). The
Adipose OrganAge model comprises only five
adipose-enriched proteins, among them ITLNI1
(omentin-1) — which MS independently identified
as increasing along the oxidative capacity axis
(Fig. 3). This convergence of protein-level and
organ-level findings implicates adipose tissue as
a key locus of training-associated biological age
differences.
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Discussion

This study establishes the plasma proteome as an
integrated readout of both acute physiological
responses to exercise and the chronic metabolic
phenotypes that distinguish athletes as a
consequence of genetic predisposition and
discipline-specific training.

A multi-workflow proteomic
essential to resolve these effects: acid
precipitation enriched muscle-derived
intracellular proteins while depleting vesicular
structures; nanoparticle coronas preferentially
captured platelet-derived microparticles and
membrane-associated species; aptamer arrays
provided orthogonal coverage enabling organ-
level aging analysis. Direct cross-platform
comparison revealed that MS consistently
captures larger effect sizes through superior
dynamic range, while aptamer reagents exhibit
implicit  proteoform  selectivity with
concordance depending critically on isoform-
aptamer matching. That such selectivity remains
unannotated provides a path toward enhanced
aptamer characterization; that MS resolves
proteoforms inherently, combined with ongoing
advances in depth, positions mass spectrometry
to ultimately deliver both sensitivity and
comprehensive  coverage.  Matching  the
proteoform complexity of the human proteome
accessible to MS will require aptamer panels far
exceeding current gene-level coverage. No single
platform would have revealed the full scope of
exercise-induced proteome remodeling
underscoring  that  workflow selection
fundamentally shapes biological conclusions in
plasma proteomics.

strategy was

The acute response to a bout of graded cycle
exercise to exhaustion reflects coordinated
activation of interconnected systems: platelet
degranulation, neutrophil mobilization and
extracellular matrix turnover. Peptide topology
analysis provided direct molecular evidence for
vesicular release, with transmembrane proteins
yielding peptides from both cytoplasmic and
extracellular domains — a signature inconsistent
with proteolytic shedding alone®”. That this
inflammatory mobilization manifests as a
transient elevation in immune biological age
suggests that biological aging clocks may, in part,
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Fig. 4: Organ-specific biological age reveals distinct effects of acute exercise and

chronic training. a, Schematic of

OrganAge framework for 11 organ systems plus organismal and conventional models. b, Predicted versus chronological age
for the Organismal model (r = 0.56). Solid line: cohort-specific fit; dashed line: training cohort LOWESS curve. ¢, Organ
model calibration; slope of predicted versus chronological age per organ, point size indicates R> d, Inter-organ correlation
heatmap (mean r = 0.037). e, Organ age profiles by training modality. Dashed line indicates population mean. f, Acute
exercise effect on immune biological age: 4 = +0.58 SD, Cohen’s d = 0.77, ***P < 0.001. g, Chronic training effect on
adipose biological age. A = —0.92 SD, Cohen’s d = —1.05, *P = 0.043.

capture reversible immune activation states rather
than exclusively reflecting irreversible senescent
processes. This interpretation contrasts with the
chronic, unresolved inflammation characteristic
of inflammaging® and aligns with exercise as a
hormetic stimulus: an acute physiological
stressor that, through repeated cycles of
activation and efficient resolution, promotes
systemic adaptive benefits®.

Chronic training adaptations organized along two
orthogonal axes. The muscle mass gradient
captured hypertrophy signaling (DLK1, BMP4/6,
ACE), ECM remodeling and attenuated systemic
inflammation — collectively establishing a milieu
that favors anabolic adaptation while reducing
cardiometabolic risk. The coordinated reduction
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in coagulation factors and enhanced fibrinolytic
capacity provides molecular grounding for the
well-documented inverse relationship between
physical activity and cardiovascular disease®.
That several ECM proteins elevated in resistance-
trained athletes overlap with liver fibrosis
biomarkers* illustrates a central challenge in
circulating biomarker interpretation: these
proteins report generalized matrix remodeling,
with biological significance determined by
clinical context rather than the molecules
themselves.

The oxidative capacity axis yielded one of the
study's most striking findings: convergence on
molecular programs associated with human
longevity. APOA4, IGFBP2 and ITLNI1 — each
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independently linked to exceptional longevity or
reduced mortality®® "2 were elevated in
endurance athletes, alongside coordinated
attenuation of IGF-I signaling at both ligand and
receptor levels. This signature recapitulates the
hormonal profile associated with lifespan
extension across species’>”’. The organ-level
analysis reinforces this interpretation: athletes
exhibited younger adipose biological age, with
ITLN1 — a visceral adipose-derived adipokine
that enhances insulin-stimulated glucose uptake
and exerts anti-inflammatory effects %02
identified independently by MS as increasing
along the oxidative capacity axis. Circulating
ITLNI1 levels are reduced in obesity and insulin
resistance but increase following aerobic training,
even in absence of weight loss®®®. This
convergence of protein-level and organ-level
findings suggests that regular training preserves
adipose tissue in a metabolically favorable state,
providing a  plausible link  between
cardiorespiratory fitness and the slower pace of
biological aging associated with reduced
mortality®.

These findings reframe how we interpret plasma
proteomics.  Circulating  biomarkers have
traditionally served to detect pathology — elevated
CRP signals inflammation, cardiac troponins
indicate myocardial damage. Our data
demonstrate that the plasma proteome equally
identifies systems functioning exceptionally
well: longevity-associated signatures, younger
organ biological age and attenuated inflammatory
profiles represent molecular evidence of
physiological optimization. Plasma proteomics
thus provides a comprehensive readout of human
physiological status across the spectrum from
pathology to peak performance — a perspective
with implications for clinical diagnostics and
human performance optimization alike.

These findings highlight the importance of
studying  exercise and  non-pathological
phenotypes such as those of athletes to establish
the context specificity of circulating protein
biomarkers. This study directly tests whether
proteins widely interpreted as pathological
biomarkers are also influenced by athletic
training or acute exercise. Creatine kinase
illustrates this challenge: elevated levels indicate
tissue injury in myocardial infarction but also rise
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transiently after exercise due to skeletal muscle
leakage without pathological significance.
Distinguishing disease-related biomarkers from
those reflecting adaptive physiological stress is
essential for accurate interpretation of plasma
proteomic signals.

Several limitations warrant acknowledgment.
Our cohort comprised young males, limiting
generalizability; sample sizes, particularly for
controls (n=7), constrain statistical power for
subgroup analyses; and the cross-sectional design
cannot distinguish training-induced adaptations
from genetic predisposition toward both athletic
phenotype and favorable proteomic profile. The

immunoglobulin  changes associated with
oxidative capacity, while consistent with
training-induced  immunomodulation, could

reflect confounding factors in our modest sample.
The single post-exercise timepoint captures
immediate responses but not recovery dynamics,
and the OrganAge framework, while validated in
large cohorts!##38  represents an extension

beyond its original elderly training population. A

key outstanding question is the relative
contribution of genetics versus training:
longitudinal  studies  tracking  proteomic

trajectories through training initiation, detraining,
or modality switching — combined with twin
studies discordant for athletic training — would
help resolve how much of the athlete proteome
reflects acquired adaptation versus innate
predisposition, with implications for exercise
prescription in clinical populations.

The plasma proteome provides accessible,
minimally invasive readouts of systemic
adaptation state that could inform personalized
training prescription and monitor response to
exercise interventions. The identification of
longevity-associated signatures offers
mechanistic insight into the well-established
relationship between cardiorespiratory fitness
and lifespan®. Whether these proteomic patterns
predict long-term health outcomes in athletic and
general populations remains to be determined,
but the convergence of protein-level and organ-
level findings on pathways implicated in healthy
aging positions the plasma proteome as a
promising tool for understanding and
potentially optimizing — the health benefits of
physical activity.
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Methods

Study cohorts

MetaExtreme cohort. The MetaExtreme cohort
comprised healthy, trained male athletes
representing three distinct training modalities —
endurance athletes (n=11), natural bodybuilders
(n=9) and sprinters (n=8) — alongside untrained
controls (n=7). Recruitment built upon an earlier
study * and followed identical inclusion criteria
and pre-sampling protocols. All participants met
stringent inclusion criteria and followed
standardized pre-sampling protocols: adherence
to a controlled diet on the day before testing,
abstention from exercise for 24 hours, and
discontinuation of dietary supplements for 48
hours prior to sampling. The study was approved
by the Technical University of Munich ethics
committee (#356/17S); all participants provided
written informed consent.

MetaPerform validation cohort. The validation
cohort comprised 20 healthy, endurance-trained
athletes (9 women, 11 men), aged 2242 years.
Inclusion criteria required a normal body mass
index (18.5-25.0 kg/m?), a minimum of 8 hours
per week of endurance training and a VO:max
exceeding 50 ml/kg/min for women and 60
ml/kg/min for men. Female participants were
tested during the early follicular phase (days 1—
10) to minimize hormonal variation. Pre-
sampling protocols matched the MetaExtreme
cohort. The study was approved by the Technical
University of Munich ethics committee (#203/20
S-EB); all participants provided written informed
consent.

Plasma proteomics

MS-based workflows. Three complementary
mass spectrometry-based workflows were
applied to exploit distinct physicochemical
selectivity. The NEAT workflow processed
undepleted plasma (1 pL) by standard reduction,
alkylation and trypsin/LysC digestion'?. The
PCA-N  workflow wused perchloric acid
precipitation (5 upL plasma) followed by
neutralization to enrich low-abundance species
while depleting albumin and immunoglobulins'2,
The bead-based workflow employed
functionalized nanoparticles (OmniProt,
Westlake Omics) to form protein coronas that
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preferentially capture membrane-associated and
vesicular proteins'®. All workflows were semi-
automated using the Bravo liquid handling
platform (Agilent). Digested peptides (200 ng)
were loaded on Evotips following the
manufacturer's protocol and separated on an
Evosep One system (60 samples-per-day method,
21 min gradient) using an 8§ cm Aurora Rapid
column (150 um ID; IonOpticks) coupled to an
Orbitrap Astral mass spectrometer (Thermo
Fisher Scientific) operating in data-independent
acquisition (DIA) mode. The instrument was
interfaced with a FAIMS Pro device
(compensation voltage —40 V). MS1 scans (380—
980 m/z) were acquired at 240,000 resolution;
MS/MS scans used 3 Th isolation windows and a
maximum injection time of 7ms with 25%
normalized HCD collision energy.

Aptamer-based proteomics. Neat plasma samples
(55 pL) were processed using the Illumina
Protein Prep 6K workflow on an Illumina Protein
Prep Automation System (Illumina Solutions
Centre, Milan). Plasma was diluted 1:5, 1:200,
and 1:20,000 to capture proteins across the
dynamic range and incubated with SOMAmer
reagent beads (28°C, 850 r.p.m., 3.5 h).
Following incubation, beads were washed,
captured proteins biotinylated, and protein—
SOMAmer complexes photocleaved. Complexes
were recaptured on streptavidin beads in the
presence of a polyanionic competitor to reduce
non-specific binding. Eluted SOMAmers were
hybridized with sequencing probes (37°C,
overnight) and used as templates for indexed
library generation. Libraries were pooled and
sequenced on a NovaSeq 6000; read counts were
normalized and analysed using the DRAGEN
Protein Quantification pipeline (v1.8.33). Data
files were parsed using Canopy.

Data processing and statistical analysis

MS-based proteomics data processing. Raw data
were processed using DIA-NN v1.8.1 with
match-between-runs enabled and an in silico
predicted library searching against the human
TrEMBL and SwissProt FASTA database
(UniProt, November 2023, taxonomy ID 9606).
Enzyme specificity was set to Trypsin/P with one
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missed cleavage allowed. Carbamidomethylation
of cysteine was set as fixed modification;
methionine oxidation as variable modification.
Mass accuracy and MS1 accuracy were 10 ppm
with scan window radius of 6. False discovery
rate was controlled at 1% at the peptide-to-
spectrum match level. Protein inference was
performed at gene level using single-pass neural
network classification. Quantification employed
“Robust LC (high accuracy)” with RT-dependent
cross-run normalization. Protein quantification
used MaxLFQ intensities. Filtering for >20%
valid values across samples yielded 1,099
(NEAT), 1,459 (PCA-N) and 2,009 (BEADS)
proteins. For all subsequent analyses, proteins
quantified in >70% of samples were retained.
Batch effects were corrected using ComBat with
temporary imputation; original missing values
were restored post-correction. Intensities were
loga-transformed prior to analysis.

Peptide topology annotation. Peptides were
mapped to UniProt topology annotations
(transmembrane domains, topological domains)
based on sequence position. Coverage changes
between pre- and post-exercise timepoints were
calculated as the mean difference in peptide
detection frequency across subjects for each
domain.

Functional enrichment analysis. Gene set
enrichment was performed using g:Profiler with
Gene Ontology Cellular Components (excluding
electronic annotations) and Reactome as
reference databases. Significance was assessed
using the Benjamini-Hochberg procedure (FDR
<0.05). Results were visualized using
EnrichmentMap in Cytoscape. Protein interaction
networks were generated using STRING.

Linear mixed-effects modelling. To account for
the repeated-measures structure (pre- and post-
exercise samples from each individual), we
employed linear mixed-effects (LME) models
with subject as a random intercept. Models were
fitted using restricted maximum likelihood
(REML) estimation with the statsmodels package
(Python). Two model specifications addressed
distinct biological questions: (1) Acute exercise
effects: Protein ~ Timepoint + (1|Subject), testing
systematic changes from pre- to post-exercise
across all participants regardless of training
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status. (2) Chronic training adaptations: Protein ~
Group + (1|Subject), testing for differences
between groups reflecting long-term training
adaptations. This model was applied to two
grouping schemes: (a) athletes (bodybuilders,
endurance athletes, and sprinters pooled) versus
sedentary controls, and (b) the four training
modalities separately (bodybuilding, endurance,
sprint, control). For all models, p-values were
corrected using the Benjamini-Hochberg
procedure (FDR < 0.05).

Multi-omics  factor analysis. To leverage
complementary  protein  coverage  across
workflows,  significantly  group-associated
proteins were integrated using Multi-Omics
Factor Analysis (MOFA). Group importance
scores were derived from latent factor loadings,
and composite signature scores were computed
by aggregating group importance-weighted
protein abundances.

Monotonic trend analysis. Proteins with
monotonic abundance changes along
physiological axes were identified using

Spearman's rank correlation between ordered
group assignments and protein abundance. Pre-
and post-exercise measurements were averaged
per subject prior to analysis. For the muscle mass
axis, groups were ordered as control < endurance
< sprint < bodybuilder. For the oxidative capacity
axis, groups were ordered as bodybuilder <
control < sprint < endurance (based on measured
VO:max). Monotonic trends were considered
significant at FDR < 0.05 (Benjamini-Hochberg
correction) with |p| > 0.4. Proteins were classified
as "increasing" or "decreasing" based on the sign
of the correlation coefficient.

Organ-specific biological age estimation

OrganAge model application. Organ-specific
biological ages were calculated for all 70 samples
(35 subjects x 2 timepoints) using the OrganAge
framework'* and associated Python package
(https://github.com/hamiltonoh/organage),

which requires the complete set of model
proteins. Age estimates were generated for
adipose tissue, artery, brain, heart, immune
tissue, intestine, kidney, liver, lung, muscle, and
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pancreas, plus an organismal model using organ-
nonspecific proteins.

Cohort-specific age gap calculation. Age gaps
were recalibrated for our young cohort following
the package's recommended approach for cohort
effects. For each organ model, predicted age was
regressed against chronological age using
ordinary least squares, and residuals were z-score
transformed to yield cohort-adjusted age gaps.
Positive values indicate biologically older and
negative values indicate biologically younger
organ age relative to same-aged peers within the
cohort.

Statistical analysis of organ ages. Acute exercise
effect (Pre vs. Post): Linear mixed-effects models
with timepoint as fixed effect and subject as
random intercept: AgeGap ~ Timepoint +
(1|Subject). Effect sizes were calculated as
Cohen’s d for paired samples. Chronic training
effect (Athletes vs. Controls): Pre and Post values
were averaged per subject to obtain single
independent observations, avoiding pseudo-
replication. Welch’s t-test was applied given
unequal sample sizes (28 athletes vs. 7 controls).
Effect sizes were calculated as Cohen’s d with
pooled standard deviation. Statistical significance
was assessed at a = 0.05. Given that 12 organ
models were tested for each question, formal
multiple testing correction was not applied.

Software

Analyses were performed in Python 3.10 using
statsmodels v0.14 for linear mixed-effects
models, scipy vl1.11 for statistical tests,
OrganAge v1.0, and MOFA2 for multi-omics
integration.  Network  visualization  used
Cytoscape v3.9 with EnrichmentMap.
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Extended Data Fig. 1: Cross-platform comparison and functional enrichment of exercise-responsive proteins. a, Paired
fold-change comparison stratified by significance category. Asterisks indicate platform with significant proteins: Illumina
only, MS only, or both. b, Spearman correlation of protein intensities between Illumina and MS workflows for genes significant
in both platforms. ¢, Functional enrichment network of exercise-responsive proteins. Gene Ontology Cellular Component
enrichment visualized using EnrichmentMap. Node size indicates gene count; color indicates significance.
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Extended Data Fig. 2: Correlation analysis of multi-mapping genes across platforms. Spearman correlation heatmaps
between MS protein isoforms and SOMAmer aptamers for genes with multiple measurements. (@) NEAT, (b) PCA-N, (c)
BEADS. Red labels indicate significant proteins (MS) or aptamers (lllumina; red borders highlight isoform-aptamer pairs
significant in both platforms.
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Extended Data Fig. 3: Workflow-specific acute exercise responses and validation. a,b, Heatmaps of significantly changed
proteins following acute exhaustive exercise in (a)NEAT and (b) PCA-N workflows. ¢, Gene Ontology Cellular Component
enrichment of significantly changed proteins by workflow. d,e, Peptide topology analysis for (d) NEAT and (e) PCA-N
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Extended Data Fig. 4: Athlete phenotype separation by workflow and integrated analysis. a—d, Differentially abundant
proteins between athletes and controls for (a) NEAT, (b) PCA-N, (¢) BEADS and (d) Illlumina. e-g, Functional enrichment of
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