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Abstract

Neural representations rely on the ability of neuronal assemblies to display organized spiking
patterns, despite being embedded within noisy networks. These structured patterns arise
from attractor dynamics due to activity reverberation promoted by learnt assembly
connectivity. Yet, attractor dynamics have been assessed either under low-noise conditions
orin highly idealized neuronal assemblies. Here, in a spiking recurrent neural network model
displaying asynchronous irregular noise, we show that realistic spike timing-dependent
plasticity (STDP) imposes either low controllability of attractor recall (when STDP is strong),
low stability of attractor maintenance (when STDP is low), or both. Moreover, STDP-built
attractors display low independence, i.e., they perturb activity in the surrounding network.
These constraints may favor self-generated representation switches essential for cognitive
flexibility but dampening cognitive reliability. We reveal, by contrast, that several biophysical
mechanisms alleviate these issues through a common dynamical principle, protecting
excitatory-driven attractorial dynamics from inhibitory-driven spontaneous fluctuations.
Amongst biophysical determinants, intrinsic properties were most efficient to increase
controllability, stability and independence of attractor dynamics. Specifically, spike-
triggered calcium-activated conductances improved reliability by mitigating reliance on
connectivity, even at low conductance levels, i.e., in the absence of cell-autonomous intrinsic
bistability. Finally, we show that the mechanisms we identify operate over a large repertoire
of static (e.g., Hebbian or ring) and dynamic (e.g., sequences) attractors, with uni- and
bidirectional propagation. Altogether, these results pinpoint synaptic and intrinsic synergy

as a generic principle to regulate attractor reliability, as a function of the cognitive demand.
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Introduction

Neural trajectories —sequences of neural activity that propagate over time —represent local
forms of ordered neural activity within the globally disordered awake brain regime. Neural
trajectories act as dynamical codes across cerebral structures, supporting diverse cognitive
operations, from motor function to working memory or navigation'®. These trajectories do
not simply mirror incoming time-structured sensory inputs: once triggered by a brief cue,
neural trajectories can continue to propagate on their own.

Although many theoretical studies have examined activity sequences under
simplified conditions for both background conditions and underlying synaptic connectivity 7
"7, real neural activity is dominated by noise and connectivity is learned by synaptic plasticity.

Biological noise and learned connectivity introduce three critical constraints on
neural trajectories that are often overlooked. First, random synaptic events can
spontaneously trigger a neural trajectory, reducing its level of controllability, defined as the
ability to trigger neural trajectories solely when needed. Second, noise may disrupt the
stability of activity propagation once a neural trajectory has begun. While low levels of
controllability and stability are desirable in the context of exploration and cognitive flexibility,
much higher levels are expected for exploitation, cognitive control, reliable decision-making
and deterministic volition. Third, a neural trajectory may interfere with other ongoing
computations by strongly influencing nearby neurons, perturbing the independence of
multiple simultaneous independent neural trajectories *°.

Understanding how biological circuits handle the levels of controllability and stability
are to generate more or less reliable (i.e. controllable and stable) trajectories, depending on
the cognitive demand, and how they overcome the problem of independence, is therefore a
major objective for neuroscience.

Existing theoretical work has largely focused on mechanisms that stabilize static bumps
of activity, for instance in ring-shaped networks, in strongly interconnected Hebbian

assemblies of cells 72 or through cell-autonomous, intrinsic mechanisms 819 However,

20-22 23,24

moving bumps (that model neural trajectories observed in the awake or sleep
states) present additional difficulties. Models with idealized synaptic architectures, such as
synfire chains (neurons connected along a feed-forward pathway within the network),
asymmetric connectivity in ring models, or Hebbian phase sequences (HPS, i.e. oriented

pathways between Hebbian assemblies) could produce moving bumps, but their stability
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under noise, their biological plausibility or their learnability is uncertain 97*%***5*3 Recurrent
networks trained with artificial, biologically-implausible learning rules, can generate neural
trajectories **5*° yet these approaches do not clarify how real neural circuits might learn
such connective pathways. A more biophysically-grounded mechanism for learning oriented
connective pathways is spike-timing dependent plasticity (STDP) *. STDP strengthens or
weakens synapses based on the temporal difference between pre- and postsynaptic action

potentials 7?8

. However, the way trajectories created through STDP behave when
embedded in a noisy recurrent network remains unresolved.

Most previous models based on idealized connectivity omit fundamental biophysical
properties, such as distinct classes of synaptic receptors or voltage- and calcium-gated
channels, whereas they represent major determinants of network dynamics in their ability
to cast spiking patterns *3°. The rich repertoire of intrinsic properties might offer powerful
mechanisms for stabilizing trajectories, beyond the structure of the synaptic pathway itself.
While intrinsic conductances have been proposed to help generate static bumps when strong

conditions (i.e., thanks to neuronal bistability) are met*®*9

, itisunclear whether they can also
support propagating sequences of neural activity.

Here, we present a dynamical and biophysical solution to control the level of reliability
of neural trajectories in a detailed, data-driven cortical network operating in an
asynchronous irregular regime. In our model, STDP and synaptic scaling produce a diversity
of neural trajectories that differ in their stability, controllability and independence from
surrounding chaotic dynamics. Neural trajectories emerge as a moving bump of activity
driven by a strong, deterministic NMDA-mediated associative excitation at high firing
frequencies. This contrasts to the network’s spontaneous state, dominated by low-frequency
inhibitory GABA-A fluctuations. Using theoretical analysis, we identify a firing-frequency
threshold separating spontaneous and propagating regimes. Mechanisms that increase the
gap between these regimes improve both the controllability and stability of trajectories. We
identify three classes of biophysical processes that widen such a gap: (1) low inhibitory
fluctuations, (2) strong tonic feedforward inhibition combined with recurrent excitation, and
(3)  spike-triggered  calcium-dependent intrinsic  currents  that  generate
afterhyperpolarization and afterdepolarization. Among these, intrinsic currents provide the
most robust and general solution, without requiring neuronal bistability. Spike-triggered

calcium-dependent currents not only stabilize and control neural trajectories but also
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enhance their independence from the rest of the network, by reducing the reliance on
synaptic mechanisms alone. These results are robust across model parameters and apply to
many forms of neural trajectories — static, dynamic, discrete or continuous. In summary, we
reveal a general dynamical principle — the coexistence of stochastic and deterministic
regimes in the same network — and identify spike-triggered intrinsic currents as an efficient
and plausible mechanism for learning and expressing neural trajectories with relevant levels
of reliability, depending on the cognitive demand and despite the noise inherent to in vivo

brain activity.
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Results

Robust STDP-induced neural trajectories in the asynchronous irregular (Al) regime

Our goal was to understand how biophysical mechanisms help control locally ordered activity
patterns — such as stable or moving bumps, REFs — that emerge from learned neural
assemblies (REFs) embedded within globally noisy, vivo-like conditions (REFs) (Fig. 1a).
Previous theoretical studies 9753173435 showed attractor dynamics only in idealized
network connectivity (REFs) or under low-noise conditions (REFs). Here we wanted a
recurrent neural network model that was both noisy and with plausible connectivity, which
would naturally emerge from synaptic plasticity applied to an initially random network.

36738 \ve avoided unnecessary complexities such

To keep the network model tractable
as dendritic morphology or cortical layering (see Methods). We focused on biophysical
mechanisms triggered by spikes: NMDA, AMPA and GABA synaptic currents, as well as CAN
and AHP intrinsic currents (see Methods). Because these processes operate based on spikes,
we used spiking integrate-and-fire models *>3° rather than rate-based 73* or mean-field **>*°
models. We did not include detailed action-potential conductances, which slow down
simulations and are not required for modeling the spiked-triggered processes of interest (see
Methods). Finally, because the cortex exhibits both strong noise and organized neural
trajectories’ ™, we constrained the initial random connectivity using statistics from cortical
data “°™*. Importantly, we did not impose any built-in structure such as ring attractors”***"?
or pre-defined sequences of Hebbian assemblies *3.

We first verified that our model produced the hallmarks of cortical spiking activity
(Fig. 1b, see Methods), (1) low firing frequencies (Fig. 1¢, v < 10Hz, Fig. Sab **), (2) high
irregularity (inter-spike intervals (I1Sls) CV~1 and CV,~0.8, and LV, described in Methods) Fig.
Sac-d “°) and (3) asynchrony (average pairwise correlation < p > ~0.01, Fig. S2b-g *), all
characteristic of the asynchronous-irregular regime 3° observed in behaving mammals “°.
Accordingly, the network displayed chaotic dynamics (A~0.01, Fig. S2e-j “°), arising from
fluctuation-based spiking (Fig. 1d top). This reflects a balanced “high-conductance” state®’,
in which strong excitatory and inhibitory currents track each other (Fig. 2d bottom, and Fig.
Sak *).

We next tested whether such a noisy network could learn a structured pathway

through synaptic plasticity. Neurons were arranged on a 2D topographic map and we trained
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the network with a stimulus following a circular trajectory (Fig. 2a, left). Learning emerged
from two plausible plasticity mechanisms, Spike-Timing Dependent Plasticity (STDP) and
synaptic scaling (see Methods), which are ubiquitous in the neocortex °*>*. Synapses were
potentiated when postsynaptic followed presynaptic spikes (Fig. 2a, center). As a result,
sequential neuronal activation potentiated synapses along the direction of the stimulus,
creating an oriented “connective pathway” i.e. an engram of the stimulus (arrows, Fig. 2a,
right). Synaptic scaling stabilized learning by keeping the total incoming weights constant
365 (and thus similar across neurons, Fig. 2a, right).

We next tested whether this learned connective pathway could propagate a neural
trajectory (a moving bump of activity) defined as the set of co-active neurons within the
engram (Methods). Neural trajectories in chaotic networks face distinct challenges: noise
may disrupt bump propagation, so the connective pathway must be strong enough. But if
synapses are too strong, random spikes can trigger uncontrolled bumps. Furthermore,
bumps may spill over to surrounding neurons, disrupting other simultaneous neural
trajectories. Indeed, after learning, excitatory activity amplified rapidly along the engram,
recruiting nearby neurons and generating propagation involving ~100 neurons, affecting
global network dynamics (Fig. 2b-e).

Remarkably, the same network architecture could produce very different neural
trajectories, depending on random initial connectivity before learning, or initial activity
conditions — a consequence of chaotic dynamics. Spontaneous-persistent neural
trajectories could emerge from noisy activity (Fig. 2b, 2d). Evoked but unstable trajectories
could be triggered by an initiating stimulus but then fail to propagate (red rectangle, Fig. 2c).
Evoked and stable trajectories could occur, displaying stable propagation when triggered
(Fig. 2e). These patterns resemble a range of physiological observations such as free replay®*”
353 (i.e. low-rate spontaneous emergence and persistent Fig. 2d) or stimulus-triggered
trajectories during correct task execution **° (Fig. 2e). Thus, biologically realistic STDP can
indeed train recurrent networks to express neural trajectories despite strong in vivo noise —
but does not guarantee their reliability. To understand what makes trajectories reliable
(stable, controllable, and independent) we next examined the dynamical conditions under

which whether activity bumps do or do not propagate.
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Bump propagation relies on the transition from inhibitory fluctuation- to excitatory
mean current-driven spiking

To understand how moving bumps propagate, we first examined what drives spiking in
excitatory neurons depending on whether they belong to the moving bump (“bump neurons”)
or not (“non-bump neurons”).

In non-bump neurons, the membrane potential settled on a subthreshold plateau
(~54mV, Fig. 3a, top left, arrow). The total current was near-balanced on average (Fig. 3b,
top left, star). Spiking arose from fast voltage transients (Fig. 3a, top left, star) themselves
caused by strong current fluctuations (Fig. 3b, bottom left, star). Among synaptic inputs,
GABA-A inhibition fluctuated the most (Fig. 3b, bottom middle, star): brief dropsin GABA-
A current allowed the membrane potential to reach the threshold (Fig. 3a, bottom left, star).
Thus, in non-bump neurons, spiking was mainly caused by disinhibitory fluctuations >*°.

In bump neurons, the membrane potential rose directly to threshold without passing
through a plateau (Fig. 3a, top right). This happened because the total synaptic current was
strongly depolarizing (Fig. 3b, top left, triangle), dominated by a strong, nearly-constant
NMDA current (Fig. 3b, top right, triangle, and Fig. 3a, right). The NMDA drive was strong
for three reasons: 1) bump neurons fired at a high frequency (fpymp~14.5Hz), 2) synaptic
weights along the connective pathway had been potentiated by STDP, and 3) coincident
pre/post-synaptic activity removed the Mg** block of NMDA, resulting in “associative”
NMDA activation among bump neurons. In addition, the bump triggered weak local
inhibition, because inhibition was global (i.e. not specific to the bump), which further
increased the imbalance between excitation and inhibition.

Overall, spontaneous global activity was dominated by GABA-A-fluctuations in a low-
frequency, asynchronous-irregular regime®*>*. By contrast, bump propagation relied on
deterministic, associative NMDA excitation at high firing frequencies along the learned
connective pathway. We next examined what controls the transitions between these two
regimes, in order to identify the conditions under which neural trajectories start, propagate,

or fail.

Theoretical analysis of transitions between spontaneous activity and bump propagation
To study how activity switches between spontaneous activity and bump propagation, we

first needed to identify where the transition between these two regimes occurs. Although
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global spiking noise defines the asynchronous-irreqular state, the clearest marker
distinguishing bump from non-bump neurons was their firing frequency (f), because firing
rate determines the average synaptic currents and their fluctuations (Fig. 3).

We therefore measured the firing-frequency threshold separating regimes (Fig. 4a). To do
this, we considered a simplified one-dimensional analytical model that predicts whether
activity from a group of neurons propagate to the next ones along the trajectory pathway,
as a function of f (numerically determined across neurons and network realizations for the
standard “Model @”, see Methods). This simplified “propagation-threshold model”
qualitatively predicted that this frequency threshold fy (Fig. 4a, left) is an unstable fixed-
point: above the threshold, activity self-amplifies and propagates, while below the threshold,
activity extinguishes. The propagation-threshold model reproduced average currents in
spontaneous vs propagation regimes in the network model (Fig. 4a, right); as well as the
threshold value itself (fu~10.2Hz — vs fy~9.2Hz in network simulations, see Methods).

Based on the propagation-threshold model, we designed another simplified regime
transition model (Fig. 4b, see Methods) to qualitatively predict how biophysical factors affect
noise-driven transitions between the two regimes. We considered that the recurrent network
can be summarized four key dynamical features: 1) a stable, low-frequency state
(spontaneous activity), 2) a stable, high-frequency state (bump propagation), 3) an unstable
threshold in between, and 4) stochastic firing-frequency fluctuations due to chaotic
asynchronous-irregular dynamics. The simplest mathematical description capturing these
features is a one-dimensional cubic differential equation. This regime transition model
naturally produces two stable fixed points (fy.on—pump @nd fpump) and one unstable point (the
threshold fy , Fig. 4b, left), plus a noise term that can induce transitions between states (Fig.
4b, right). The noise term, i.e. standard deviations o,,0n—gump and ogymp, Were estimated
from network simulations.

The regime transition model allowed us to compute the probabilities of spontaneous
p(Spont.) and triggered p(Evoked) transitions toward bump propagation. We defined the
controllability = (p(Evoked) — p(Spont.)) which captures the ability to trigger trajectories
by the stimulus compared to spontaneous ones. To compare with numerical estimates in the
full recurrent network, we simplify defined bump stability as the duration of evoked bump
propagation (see Methods) rather than high—dimensional attractor (structural or marginal)

stability measures *55%57,
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From the simplified model, several qualitative principles for increased controllability
emerged (Fig. 4c): 1) low firing rate or low firing variability in the spontaneous regime
(fnon-Bump OF Onon—pump) decreased p(Spont.) without affecting p(Evoked); 2) larger
firing frequency (fpump) or lower frequency variability (ogymp) in the propagation regime
increased p(Evoked), without affecting p(Spont.); 3) controllability is maximal at
intermediate fy that initially decreases p(Spont.) but eventually p(Evoked) as well.

In summary, the simplified model predicts that biophysical mechanisms that increase
the separation between the two regimes -either by pushing the bump firing rate higher, by
lowering the spontaneous firing rate, or by reducing variability- should increase
controllability. Furthermore, stability should increase when downward transitions from the
propagation regime are decreased (i.e. higher fg,,;,, or lower oy, Fig. 4¢, third and fourth

panels).

Biophysical mechanisms promoting stability and controllability

The qualitative predictions from the simplified model guided us toward identifying the
biophysical mechanisms (network architecture, synaptic and intrinsic currents) that affect
reliable propagation in the full network model. To do this, we conducted extensive
parametric explorations to find biophysical mechanisms that create a clear separation
between the two activity regimes, ensuring both stability (bump propagation) and
controllability (low probability of spontaneous bumps).

A straightforward approach was to strengthen the connectivity within the pathway by
increasing STDP amplitude (Agsrpp)- This enhanced stability because it raised the bump firing
frequency (Fig. 5a, left). However, it also increased the probability of spontaneous bumps
because fy shifted downward (Fig. 5a, left). As a result, controllability improved only
marginally (Fig. 5a, middle).

We then reasoned that reducing the fluctuations of inhibitory currents onto excitatory
neurons -while keeping their mean constant- should selectively suppress spontaneous
transitions. Indeed, the spontaneous regime is mostly driven by disinhibition, whereas the
evoked regime is not. To reduce inhibitory variability, we increased the number of I - E
synapses while reducing their individual strength (higher p;_,z, see Methods). This effectively
lowered GABA-A current fluctuations (6(Igapa—a), Fig. S3a, top). As predicted, lower

0(Igapa-a) decreased the firing rate in neurons outside the bump f,on—pump (@nd thus
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Onon—pump: Fig. 5b, left), which in turn decreased p(Spont.) (Fig. sb, middle), thereby
increasing controllability. Stability was also improved: lowering fyon—pump reduced the
excitatory drive onto inhibitory neurons, which then decreased inhibition onto bump
neurons, increasing fpymp. A similar effect was observed when we used slower and
proportionally weaker GABA-A currents (Fig. S3a, bottom and Fig. S3b).

We next explored a combination of STDP and inhibition mechanisms. As shown above,
increasing excitatory weights within the learned pathway (Asrpp = 75) increased fgymp and
decreased fy without modifying fy,on—pump (Fig. 5¢, left, black vertical line vs. Fig. 5a, left,
black vertical line). This widened the separation between the two activity regimes but also
brought fron-pump closer to fp, leading to a high probability of spontaneous bumps
p(Spont.) (Fig. 5¢c, left and middle). It is possible to counteract this side-effect by increasing
tonic feedforward (i.e. vpp(nn)), Which decreased both fyn_pump and fpump by the same
amount (while keeping fy unchanged, Fig. s5¢, left). As a result, p(Spont.) and p(Evoked)
both decreased, but their difference (i.e. controllability) increased for intermediate values,
and stability also improved. In summary, this mechanism improves controllability by adding
frequency-independent inhibition that suppresses spontaneous firing frequency, while
allowing frequency-dependent to dominate during propagation. The same principle could be
implemented in many other biophysical ways, making it a general strategy for improving
controllability of moving bumps. For example, decreasing the leak current of inhibitory
neurons (g mn)), Or reducing total currents onto inhibitory neurons (gy_,;), also increased
inhibitory firing in the spontaneous regime, and thus produced similar effects (Fig. S2c-d).

Beyond synaptic and architectural factors, we found that two intrinsic currents were key
determinants of controllability and stability: the calcium-activated non-specific cationic
(CAN) and the after-hyperpolarization potassium (AHP). Both currents are activated by
calcium entry (through voltage-dependent calcium channels), and thus both depend on firing
frequency. We considered a combination of a slow AHP that saturates at low firing
frequency, with a fast CAN that saturates only at high firing frequency. AHP thus dominates
at low firing frequencies and hyperpolarization is favored, but at high frequencies, CAN
dominates and produces more depolarization (Fig. 6b, left). Together, CAN and AHP
produce an unstable fixed point at f'g~12.7Hz (Fig. 6b, left) at the single-cell level. Below
this firing frequency, AHP suppresses activity and therefore prevents spontaneous bump

initiation. Above f'y, CAN amplifies activity, stabilizing bump propagation. This intrinsic
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mechanism greatly widened the separation between two regimes regimes at the network
level, by lowering fron—pump and raising fg,m, (Fig. 6a, left). As a result, both controllability
and stability were improved (Fig. 6a, middle). This effect did not require strong
conductances that would generate full intrinsic bistability (i.e. persistent activity **9). A
modest CAN conductance, sufficient to yield transient bistability, was enough to achieve

strong controllability and stability of neural trajectories (Fig. 6b, middle).

Independence between trajectory and surrounding activity

For most biophysical mechanisms considered, improving controllability and stability
required reducing spontaneous firing rate. But doing so creates a side effect: during bump
propagation, the firing frequency of neurons outside the trajectory engram increases,
leading to a sharp contrast between background network dynamics at rest and during neural
trajectories (Fig. sb-c and Fig. 6a, right). Such strong network-wide modulation might
interfere with parallel computations, for example if multiple trajectories need to coexist
simultaneously. To quantify these perturbations, we defined an independence measure I =

_ fnT(Ev.) _fnT(Sp.)

, with f,r(Ev.) and f,,7(Sp.) being the firing frequency of excitatory

furEv)* nT(sp)
neurons outside the trajectory during bump propagation and during the spontaneous
activity, respectively (Fig. sa-c and Fig. 6a, middle). I = 1 means the two firing frequencies
are identical, decreasing I means increasing difference, and I = 0 occurs when one of the
frequencies is zero. In general, increasing controllability and stability decreased
independence (down to ~50%, from a ~90% baseline). However, the CAN/AHP mechanism
better preserved independence (down to ~70%) by reducing the contrast between
spontaneous and trajectory-related dynamics. These results show that combining synaptic
factors (the learned connective pathway) with intrinsic properties (CANJAHP)® is
computationally advantageous. CAN-AHP combination provides individual cells with a mild,
transient tendency toward sustained firing (Fig. 6b, middle and right), thereby lessening the

burden on synaptic pathways to maintain stable bump propagation.

Robustness of reliable neural trajectories within the asynchronous-irregular regime
To test how general these mechanisms are, we evaluated how robust they remain under the

wide biophysical variability observed across cerebral structures and species. We measured
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how large the parameter ranges are, in which both reliability (controllability, stability and
independence) and asynchronous-irregular dynamics are preserved. We performed this
robustness analysis by systematically varying parameters for each mechanism (see Methods
and Fig. S4a-c).

In the standard model without any added reliability mechanism (Model @), controllable and
table trajectories existed only within a moderately small parameter region (overall
robustness ~10%). With the additional mechanisms described above, these regions
expanded substantially (~25%), reaching a maximum with the CAN-AHP mechanism (~45%,
Fig. 6¢, left).

However, the different reliability mechanisms did not affect independence similarly.
Although the vgpgnny mechanism resulted in the largest parametric regions for
controllability and stability (when considered on its own), it reduced the parametric range for
independence, as did (Ig4p4—4)- Independence robustness could fall to ~60% of the region
width from the model @. In contrast,the CAN-AHP mechanism preserved ~100% of the
independence range, and further supported intrinsic currents as generic candidates for bump

propagation alleviating constraints on synaptic-based propagation (Fig. 6c, right).

A common framework for generalized static and dynamical neural attractors

Beyond robustness, genericity lies in the functional versatility. We thus evaluated whether
the biophysical mechanisms for bump reliability could support the wide repertoire of
attractor types described in the literature. Previous studies demonstrated many static and
dynamic attractor types by using idealized engrams * or artificial training rules optimizing

the connectivity *53%3%%58

. Here, we asked whether all these attractors could instead emerge
with 1) activity-dependent plasticity rules and 2) the biophysical solutions for reliability
identified above. To test this, we varied stimulus properties and STDP parameters (Fig. S4a),
known to differ across cerebral structures >* or neuromodulatory levels (e.g. dopamine *9).
We then assessed to what extent the biophysical factors we uncovered (Fig. 4) support the
controllability and stability of a broad variety of attractor types.

A static-discrete attractor is simply a stable non-moving bump of activity: a group of
neurons that activate each other because they are strongly interconnected (visible as square

blocks on the diagonal of the synaptic, Fig. Sgb). This is the classical “"Hebbian assembly”
(HA). . We tested whether a symmetric STDP window (Fig. 7a, center and Fig. 7b, center),
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combined with discrete stimuli, could create such static-discrete attractors. A single discrete
stimulus (Fig. 7a, left) formed of a single HA (Fig. 7a, right). When we added the CAN/AHP
intrinsic mechanism, the stimulus reliably triggered persistent activity in the HA (Fig. 7¢),

86062 and intrinsic ***° mechanisms can advantageously be combined

showing that synaptic
to control static attractors. A stimulus that jumps between multiple discrete positions (Fig.
7b, left) produced multiple HAs (Fig. 7b, right). Thanks to the CAN/AHP mechanism, each
HA could be independently triggered®*® with higher reliability (Fig. 7d).

Unlike static attractors, dynamical-discrete attractors involve activity that moves from
one neuronal group to the next. A classic example is the synfire chain: activity propagates
across neurons arranged in a feedforward sequence (off-diagonal synaptic patches, Fig.
S4c¢). A series of HA can also be connected into a Hebbian Phase Sequence (HPS), where
each assembly is strongly connected internally and to the next one (diagonal and off-
diagonal patches, Fig. S4d). In HPS, the network activity can propagate from one HA to the
next. We tested how an asymmetric STDP window combined with a sequence of discrete
stimuli could generate these different dynamical-discrete attractors. A stimulus moving
step-by-step (Fig. 8a, left), with a strongly asymmetric STDP window (Fig. 8a, center),
produced a synfire chain® (Fig. 8c) with fast, reliable propagation, supported by c(Iguz4-4)
and Veg(np) Mechanisms, Fig. 8c). The same stimulus (Fig. 8b, left), learned with a weakly
asymmetric STDP window (Fig. 8b, center) led to HAs linked by feedforward connections
(Fig. 8b, right), i.e. a Hebbian phase sequence (ref 10) with slow sequential propagation
between HAs (Fig. 8d). Hence, reliable synfire chains and HPS can emerge from STDP,

without requiring hand-crafted connectivity matrices or artificial training rules 3.

Unlike discrete attractors, continuous attractors allow activity to occupy a continuum of
positions, and may also be static (fixed bump) or dynamic (moving bump). A classical
example of continuous-static attractor is the ring attractor (REFS), where neurons are
symmetrically connected to nearby neighbors (a diagonal band of strong weights, Fig. S4e).
This supports static bumps anywhere on the ring. In our terminology, neural trajectories (the
main focus above) corresponds to continuous-dynamic attractors. Neural trajectories can
propagate unidirectionally or bidirectionally, depending on whether neighboring neurons
are connected asymmetrically or symmetrically (off-diagonal bands, Fig. S4f).

We obtained a ring-like attractor (Fig. 9a, right; ***°%) by presenting a continuously moving
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stimulus (Fig. 9a, left) with symmetric STDP (Fig. 9a, center). Multiple neural trajectories
could coexist, and drifted very slowly thanks to the CAN-AHP mechanism (Fig. 9c). Using the
same stimulus (Fig. gb, left) but with a broader STDP window (Fig. gb, center) produced a
wider symmetric connectivity (Fig. gb, right). Combined with slowly-saturating g,up (see
Methods, Fig. 9d), the network expressed bidirectional neural trajectories.

Altogether, these results show that the mechanisms we identified - both synaptic and
intrinsic- provide general dynamical tools that allow the network to learn, stabilize and
control a wide variety of dynamical representations. These include many classical attractors
proposed for cognitive functions, suggesting a unifying biophysical framework for their

emergence.
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Discussion

Using simulations and theoretical analyses of biophysically-constrained network models, we
show how the interplay between intrinsic neuronal properties and synaptic connectivity
enables recurrent neural networks to robustly control the reliability of attractor dynamics,
including neural trajectories. These attractor dynamics persist despite the permanent
disruptive influence of neural noise under the chaotic asynchronous irregular (Al) dynamics
typical of wakefulness. Unlike classical approaches that focus on idealized synaptic
connectivity, our work highlights the crucial role of intrinsic biophysical mechanisms -
especially calcium-dependent conductances driven by spiking activity- in supporting the

reliable emergence and maintenance of neural trajectories.

Models of learning neural trajectories
Neural trajectories are widespread in the brain and are key to many cognitive operations
5212286 Thaeoretical models have proposed several mechanisms for how these neural
trajectories might arise and remain stable 37572833 Here, we focused on three key
physiological features that are usually studied separately but not together: 1) the
destabilizing effect of noise due to asynchronous irregular (Al) dynamics and 2) synaptic
connectivity learned by plausible Spike-Timing Dependent Plasticity (STDP).

Most STDP-based models do not test whether learned trajectories remain reliable

under realistic neural noise*%, Other models avoid these issues by using fixed, hard-crafted

connectivity patterns (such as Hebbian phase sequence®), non-biological (non-local)

14115/31158 12,32,67

training rules , or by assuming unrealistically quiet neural activity . In vivo,

however, noisy fluctuations can interact with synaptic learning in complex ways that may
disrupt memory dynamics or generate pathological activity 3%%9,

We therefore examined how noise affects neural trajectories in the asynchronous-
irregular state, where spiking activity emerges from a balance between excitation and
inhibition®*>>. The asynchronous-irregular state in our model relates to the classical “spike”
chaos - with relatively constant spiking rate - and may differ from an heterogenous form of
asynchronous-irregular state under strong synaptic coupling, with variable spiking rates
across time and neurons (“rate” chaos 7*7*). Consistent with previous work36'69, we found that

spike chaos can undermine attractor stability, but we further identify specific biophysical

mechanisms that allow recurrent networks to trigger and maintain neural trajectories in a
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plausible biological setting - connectivity learned by a STDP rule and under asynchronous-

irregular noise conditions.

Models of bump stability and propagation

Persistent “bumps” of neural activity have been studied extensively as low-dimensional
attractors in recurrent networks. Classical bump models assume an idealized ring-like
connectivity pattern with local excitation and surrounding inhibition*®**®5. This “Mexican-
hat” architecture is anatomically unrealistic and is not used in our study’*. Instead, bumps in
our model arise from a synaptic engram embedded within a random recurrent connectivity
that includes significant weights outside the engram (compared to usual negligible
weights™). Disinhibition plays a different role here than in classical models: because
inhibition is globally dominant in the Al regime (as in 3%, fluctuations in inhibitory input
mainly determine when non-bump neurons fire. Our work also integrates interactions
between engrams, recurrent connectivity, feed-forward inputs®, synaptic scaling * and
intrinsic properties® - elements that have been treated separately in earlier models. We
confirm that the strong inhibitory feedback used in formal models**’* is also needed for
static bumps (e.g., working memory) in the more realistic situation modeled here. For
moving bumps, our results instead highlight the importance of strong external excitation
onto inhibitory interneurons yet with small inhibitory fluctuations. Unlike earlier models that
require asymmetric*>*> or complex™ connectivity to produce unidirectional propagation of
bumps, our results support the possibility of bidirectional propagation under symmetric
connectivity, which is absent in symmetric ring models 7*° or in 3*. We also show that bump

stability can be maintained despite heterogeneous synaptic weights 3345757 (hyt see *°).

Relation to previous neural reduced models

A major contribution of our work is identifying that the interaction between intrinsic and
synaptic currents can support attractor reliability, i.e., controlability, stability and
propagation of bumps. This is demonstrated through detailed simulations of the full model
and in the low-dimensional simplified model. For the design of our simplified models, we
followed classical strategies aimed at capturing essential dynamical features of the network.
We used average firing as an effective measure to distinguish neurons currently inside the

moving bump from those outside it. In the propagation model, average firing frequency of
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neurons is linked to how quickly membrane potential returns to baseline following spike
repolarization, as classically done, in another context for theoretical frequency-intensity
curves’. For the regime transition model, we used a one-dimensional cubic dynamical
system, which is canonical to model two stable fixed-points separated by an unstable one.
Such landscape is classical in computational neurosciences and explains molecular
memory’®, excitability-based bistability” or working memory’®. Yet, in our simplified
models, we could relate spontaneous and propagation regimes (Fig. 2) and their frequency
threshold (Fig. 3) with underlying biophysical mechanisms, contrasting with purely
phenomenological rate models’®’. This allows us to link bump stability propagation and
regime transitions to biophysical mechanisms ( synaptic and ionic currents, conductances,
gating variables, and time constants) that shape network dynamics.

The reduced model was devised as a heuristic to identify which biophysical
parameters are likely to influence bump propagation. It was not intended to quantitatively
match all the details from the full recurrent dynamics — not to mention the large parameter
exploration we performed. Instead, the simplified model offers qualitative predictions about

how different biophysical mechanisms affect bump propagation and regime separation.

Reliable trajectories beyond synaptic connectivity

Although the full repertoire of biophysical properties has been shaped by evolution to confer
neural circuits with solutions to cognitive demands, computational models usually focus on
synaptic connectivity alone®™>*7333% Theoretical work on neural trajectories may thus have
overlooked the rich repertoire of neuronal mechanisms (e.g., synaptic receptors or intrinsic

1819.20.3038) ‘\We therefore studied how synaptic and intrinsic factors interact to

conductances
contribute to trajectory stability, controllability, and independence. We identified general
trends: mechanisms that increase the separation between spontaneous and propagation
regimes improve trajectory controllability, while mechanisms reducing downward
transitions (from propagation to spontaneous activity) increase stability.

We further identified several biophysical ways to implement these reliability
mechanisms. NMDA currents — known to maintain working memory (i.e., static attractorGl)
also stabilizes moving bump (dynamic attractor) propagation because of its slow, associative

and positive feedback. Fast GABA-A currents limit unwanted initiation of spontaneous

trajectories, and we predict that manipulating GABA-A time constant (by preserving the
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global inhibitory drive but perturbing inhibitory fluctuations) should specifically affect
spontaneous replays. Frequency-independent inhibition-based mechanisms also enhance
stability. This is consistent with mediodorsal thalamic activation, which increases fast spiking
firing frequency in rodent mPFC, promoting stable neural sequences and working memory
performance®.

Most notably, calcium-dependent CAN/AHP ionic conductances yielded the best
combination of reliability (i.e., controllability, stability, and independence) and robustness.
Our results overall suggest that spike-triggered ionic currents are essential for reliable
attractors dynamics under noisy conditions. This aligns with previous suggestions that
calcium-dependent conductances can support attractor dynamics, though these earlier
relied on phenomenological descriptions3*®. Our findings generate experimental
predictions, including whether calcium-dependent conductances mediate independent
replay of multiple trajectories, as recently observed in the hippocampus®.

The large space of biophysical properties remains only partially explored, with
potential roles for short-term plasticity® or other intrinsic properties, such as rebound after
inhibition, delayed dynamics due to slow potassium conductance, or intrinsic oscillations*3°.
Our framework may also help interpret pathological dynamics. For example, schizophrenia
involves unwanted spontaneous activity and unstable attractors®™; attention-deficit
hyperactivity disorder (ADHD) was proposed to arise from impaired gain modulation in
central networks, which may compromise the stability of neural attractors®. Calcium-
dependent conductances (CAN/AHP) might therefore constitute interesting targets in ADHD
or schizophrenia.

Altogether, our results demonstrate the biophysical plausibility of reliable attractors
under the presence of several mechanisms, in particular in the presence of calcium-
dependent intrinsic currents. Their synergy with synaptic properties appears as a generic
solution to regulate attractor reliability, depending on cognitive demands. Low levels of
reliability are desirable because they prompt the self-generated emergence or clearance of
representations required when exploration, creativity and cognitive flexibility are governing
behavior. By contrast, higher levels of reliability are expected for exploitation, cognitive
control, reliable decision-making and deterministic volition. The neuromodulation of the
mechanisms examined here, in particular that of calcium-dependent intrinsic currents, might

be essential to switch between these two general types of cognitive demands. Related, a
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major prediction of our study is that blocking the mechanisms considered (e.g., calcium-
dependent intrinsic currents) in relevant neural structures (e.g., the PFC) should destabilise
attractor dynamics observed experimentally®*®.

Finally, calcium-dependent intrinsic currents alleviate the reliance on synaptic
connectivity alone and highlight the complementarity of synaptic (STDP) and intrinsic

(CAN/AHP) properties. Such a combined solution would not have emerged from approaches

|ll

that optimize the connectivity (artificial training) in networks of simplified “neuronal” units.
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Figure 1. Properties related to reliability in a balanced spiking recurrent network. (a) Noise and
spike timing-dependent plasticity (STDP) determine the degree to which activity in an attractor
(shaded gray) 1) can be triggered — or not — by deterministic inputs (controllability, blue), 2) stably
maintained — or not — once triggered (stability, purple), and 3) its degree of interference with other
attractors or neurons in the surrounding network (independence, orange). Noise is globally
deleterious to stability and controllability. STDP, by setting weights within attractors presents more

complex effects that we study in the following. Altogether, increased levels of stability, controllability
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and independence favor the reliability of on-going computational processes, while their decrease
promotes the flexibility of representations. (b) Randomly connected recurrent neural network of 80%
excitatory and 20% inhibitory neurons (14 neurons are shown, whereas the model is composed of 605
neurons, i.e. 484 excitatory, 121 inhibitory). (c) Asynchronous irregular network activity, with spikes
(black dots) and membrane potential of neurons across 4 seconds of simulation. (c) Subthreshold
membrane potential and irreqular spikes (top) driven by current fluctuations, since excitatory and

inhibitory synaptic currents are balanced on average (bottom).
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Figure 2. (a) (left) External circular trajectory stimulus (red circle), activating neurons through
putative spatially-organized receptive fields. Example activity of neurons (background colors)
induced by the trajectory stimulus at a given time point (black dot). (middle) Temporal window of the
STDP learning rule, inducing LTP for positive time differences (pre- then post-synaptic spikes) and
LTD for negative time differences (post- then pre-synaptic spikes). (right) Resulting connective
pathway, with normalized arrows showing the direction in which outgoing weights are most
potentiated (white to red arrow color scheme with increasing arrow magnitude), and homogeneous
background colors showing similar sums of total incoming weights onto neurons (due to synaptic
scaling) (b-d) Resulting connective pathways induce a variety of different trajectory replays, which
emerge spontaneously (b & d) or can be evoked via a strong stimulus onto the first 25 neurons of the

trajectory (red rectangle, c & e).
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Figure 3. Bump propagation relies on a transition from GABA-A fluctuation- to NMDA mean
current-driven deterministic spiking. (a) Membrane potential (top) and GABA-A current (bottom)
of neurons when outside (left) and within (right) the trajectory activity bump, considered at the time
scale of an ISI or between two spikes. Data is aggregated by normalizing time between two spikes
(no matter the ISI duration). Background color shows the probability of individual membrane
potentials or GABA-A currents curves (sum normalized to 1 in each time bin) across many ISI during
one network simulation of 4 seconds, with red curves showing the average (weighted according to
the underlying probabilities at each time bin). (b) Temporal average (top) and fluctuations (bottom)
of total (left, black), GABA-A (middle, blue) and NMDA (right, orange) currents onto neurons when

outside (non-Bump) or within (Bump) the trajectory activity bump, averaged across neurons.
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Figure 4. Theoretical account of the threshold separating, and transitions between, spontaneous
and propagation regimes (a) Propagation threshold model. (left) In a 2a reduced analytical model
(see Methods), frequency self-amplifies above fy and is extinguished below, i.e. as the membrane
potential reaches (4V > 0) or not (4V < 0) a fluctuation-based spiking threshold attime T = 1/f in
a postsynaptic neuron, given presynaptic spiking at frequency f. (right) The theoretical model (lines)
is quantitatively consistent with network simulations ( symbols) at the fine-grain of ionic and synaptic
currents in both the low frequency spontaneous and the higher frequency bump regimes. (b) Regime
transition model. (left) In a 2a reduced model of both regimes, frequency dynamics follows bistable
dynamics with added Gaussian noise. (right) Example simulations of the regime transition model. (c)
Probability of spontaneous and evoked transitions to the regime of bump propagation (dotted lines),
and of controllability and stability of the bump regime (solid lines) in the regime transition model, as
a function of parameters (non-Bump and Bump mean frequencies and standard deviations, and the

threshold frequency).
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Figure 5. Modulation of trajectory control by architectural and synaptic mechanisms. (a-c)
Mechanisms for increasing trajectory replay controllability and stability, compared to the standard
model (a),under increased GABA-A current fluctuations 0 (Igapa—4) (via a higher number of In->Exc
synapses, see Methods) (b), higher AMPA feedforward currents onto inhibitory neurons FFy,; (c).
STDP amplitude Agrpp was varied across the different mechanisms (Asrpp = 47.5 for 0(Igapa—a),
75 for FFpy), . (left) Non-Bump and Bump average frequency (+/- fluctuations) and threshold
frequency, when varying the aforementioned parameters (X-axis). Normal parameter values (dotted
vertical black lines), and those chosen to illustrate the mechanism'’s effects on trajectory replay (solid
vertical black lines), are indicated. (middle) Probability of spontaneous and evoked bumps (dotted
lines), and bump controllability, propagation stability and independence (solid lines). (right) Example
of trajectory replay with the selected illustrative mechanism parameters. The (Asrpp, mechanism
parameter) value couple of each mechanism was systematically determined as that maximizing the

product of controllability, stability and independence (all three being normalized between o and 1).
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Figure 6. Improved trajectory control by intrinsic supra-threshold conductances. (a) Mechanisms
for increasing trajectory control through increased CAN and AHP calcium-activated suprathreshold
conductances together gcan & ganp- Panels organized as in Fig. 5. (b) (left) Equilibrium values of
CAN (red), AHP (blue) and total (CAN & AHP, black) currents of excitatory neurons, when considering
the time-averaged calcium concentration at different spiking frequencies; (right) CAN and AHP
calcium-activated suprathreshold conductances induced transient spiking bistability (rather than
mono-stability, conditional bistability or absolute bistability), as defined by the protocol in 3 (see
Methods). Solid vertical black lines indicate the chosen biophysical parameters. (c) (left) Average
robustness of the physiological low-frequency asynchronous irregular network activity with
controllable, stable and independent trajectory replays, to the variation of 22 of the model’s
parameters (see Methods and Fig. S3). The standard model and its variations in Fig. 5 and 6a, and the
standard Model (@), are compared. (right) Contribution of the trajectory replay controllability,

stability and independence criteria to the overall robustness score.
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Figure 7. Discrete static attractor control with the intrinsic mechanism. In the case of discrete
static attractors, i.e., single (a) or multiple (b) hebbian assemblies, increased supra-threshold
conductances gcan & gaup express reliable single (c) or coexisting (d) persistent activity(ies), as
found in working memory. In (@) and (b): (left) External trajectory stimulus (as in Fig. 2.a left). Dotted
red lines indicate a discontinuous trajectory, jumping from one black dot to the next in a discrete
manner (rather than continuously, as in Fig. 9). (middle) STDP temporal window (as in Fig. 2.a
middle). (right) Resulting synaptic weight matrices between presynaptic and postsynaptic excitatory
neurons. Neurons affected by the trajectory are regrouped and ordered according to their activation

time within the learned trajectory stimulus.
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Figure 8. Discrete dynamic attractor control with synaptic mechanisms. In the case of discrete
dynamic attractors, i.e., synfire chains (a) or Hebbian phase sequences (b) architectures, the
0(Izaga—a) mechanisms express reliable propagations of activity (c, d). Additional modifications
were necessary for the synfire chain (a, c): the use of the Vgpnn) mechanism, gampa =

2 instead of 0.2mS.cm™2, gympa = 0.3 mS.cm™2 for rapid

0.5mS.cm™2, gympa = 0mS.cm™
bump propagation. (a) and (c): same organisation as in Fig. 7a, b. Dotted red lines indicate a

discontinuous trajectory (as in Fig. 8), rather than a continuous one (as in Fig. g).
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Figure 9. Continuous static and dynamic attractor control with intrinsic and synaptic
mechanisms. In the case of continuous static and dynamic attractors, i.e., static (a) and bidirectional
(b) ring architectures, the gcan & ganp and a(Igapa—4) Mmechanisms, respectively, express reliable
maintenance of static (c) or bidirectionally propagation (d) of bumps of activity. Additional

modifications were necessary for the bidirectional ring architecture (b, d): gappa = 0.5mS.cm™2,

Zinstead of 0.2 mS.cm™2, gyypa = 0.3 mS.cm™2 for rapid bump propagation.

gNMDA =0mS.cm™
(a) and (b): same organisation as in Fig. 7a, b. Dotted red lines indicate a continuous trajectory (rather

than discontinuous, as in Fig. 7 and Fig. 8).
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Supplementary Figures

network statistics
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Figure Sa. Distributions of network statistics over many network simulations. (a-h) Probability
density functions of network spiking statistics, computed on 100 network simulations of 1o0s.
Frequency (a), CV (b), CV2 (c), and Lv (d) of individual excitatory (red) and inhibitory (blue) neuronal
spiking activity. Synchrony measure (e), Fano factor (f), average pairwise correlation coefficient (g),
and Lyapunov exponent (h) of network spiking activity. (i) Chaotic network activity seen through
sensitivity to initial conditions. A network was simulated in identical initial conditions, until a single
randomly chosen spike at 300ms (green cross) was either kept (red spikes) or removed (blue spikes).
Overlap in spikes between in both simulations are colored in black (notice that all spikes are identical
and thus black before the green cross). (j) Same as (i), but average network frequency of both
simulations (red & blue, overlap in black). (k) Stronger IPSCthan EPSC balance total currents and thus
fluctuation-based spiking. IPSC and EPSC are subdivided into their individual (AMPA, NMDA, GABA-
A, GABA-B) components.


https://doi.org/10.1101/2022.07.26.501548
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.26.501548; this version posted February 5, 2026. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

a GABA-A b . population frequencies 1 Bump function 5
fluctuations ' LS— ! T] = — =
- : N
20 . 9 - —Control’~. 315
—f 1 —hto, 05( D(Eh]: —Stabilty
03 10k S o —fptho, | 2 —Indep. L |31
: - :
— T o T N
";‘}‘E 0.25} B 0 035 03 025 0.2 0.15 0 035 03 025 02 0.15 05
52 02 c O(lghn.a) (HA.CTIZ) O(lagn) (MA.CTNZ) 525
63 e 1 30 : . 1 . r
N . .
01511 1 1 z -
03 04 05 06 5 20F -
Pre 5 0.5f 65
04 1o i :
] [ —T] i 4 i
1 S 0.045 0.05 Sz 0.045 0.05
b d ) (mS.cm?) 9L(inh) (mS.cm?) \/-57‘5
] 30— ————1—— 1 = 2 . mv)
0.1 1|0| 1 |2|0| P 20l* }’___ﬁ ".. s
Tonanatese) (MS) 10k J 03 11
=37 06 08 1 12 %57 05 o8 1 1220
9y (@u) Oy (@u)

Figure S2. GABA-A fluctuations and alternative effects of lowering disinhibition on replay
quality. (@) 0(Igapa-a) as a function of fi_g or Teapa—a(exc)- (b-d) Same as Fig. 5a-d, but when
varying the GABA-A current time constant of excitatory neurons Tgaga—a(exc) (Astop = 57.5) (b),
leak conductance of inhibitory neurons g, nn) (Astpp = 67.5) (c), and multiplicative factor py_,;
modulating the recurrent current conductances impinging upon inhibitory neurons px_,; (Asrpp =
60) (d). For Tgapa—a(exc): 4p of inhibitory to excitatory neuron synapses were modulated in order for
average Pgapa-a to be kept approximately constant at v = 5.5 Hz, i.e. weakened for longer
TGaBa—A(Exc)- 10 doso, Ap was multiplied by the estimated average pgapa—a value atv = 5.5 Hz for
the standard value of Tgapa—a(Exc) = 10 ms (computed as for paypa,) and divided by the same

estimate but for the chosen value of Tgapa—a(Exc)-
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Figure S3. Robustness to parameters. Computation of the robustness score, quantifying to what

extent the physiological low-frequency asynchronous irregular network activity with controllable,

stable and independent trajectory replays is robust to the variation of the model’s parameters. (a)

Parameters varied (see Methods). (b) List of criteria that need to be simultaneously met within a

model network simulation for it to be considered biologically plausible. (c) Detail of the robustness

score for each individual model parameter, for the different mechanisms and standard model (@).
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Figure S4. Synaptic weight matrices and STDP window parametrization for the control of static
and dynamic discrete and continuous attractors shown in Fig. 7-g9 (a) Weight matrices underlying
the different types of network attractors. White, grey and black colors indicate the strength of
synaptic weights (white = absence of synapses, grey = moderate weights, black = strong weights). (b)
Modulation of the asymmetric STDP window (black) when varying its symmetry (asrpp = 0,

symmetric STDP window, blue curve) and temporal shift (At = +50ms, red curve).
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Methods

Model of biophysical local recurrent neural network

We built a biophysical model of a generic local recurrent neural network, endowed with
detailed biological properties of its neurons and connections, as in 3°. The network model
contained N neurons that were either excitatory (E) or inhibitory (I) (neurons projecting only
glutamate or GABA, respectively ®), with probabilities p; and p; = 1 — pj respectively, and

Z—E = 4 %°_ Connectivity was sparse (i.e. only a fraction of all possible connections exists, see
1

Pe—E» PE—D PI-E» PI>; Parameter values **) with no autapses (self-connections) and EE
connections (from E to E neurons) drawn to ensure the over-representation of bidirectional
connections in cortical networks (four times more than randomly drawn according to a
Bernoulli scheme *). The synaptic weights w; ;, of existing connections were drawn
identically and independently from a log-normal distribution of parameters u, and g, **. To
cope with simulation times required for the massive explorations ran in the parameter space,

neurons were modeled as leaky integrate-and-fire (LIF) neurons.
The membrane potential followed

dViy

C dt - _(Ilonic(j) + ISyn.Rec(j) + ISyn.FF(j)) V(j) >0 - V(j) = Vrest

where neurons spike when the membrane potential reached the threshold 6, and
repolarization to V.. occurred after a refractory period 4t4p. Initial membrane potential of

neurons were randomly drawn from a uniform distribution between 6 and V...

The ionic current followed

lionic(jy = Iy + leangy + lanr(

in which the leak current was

I =g (Vo) - V1)
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where g; was the maximal conductance and V; the equilibrium potential of the leak current.

The cationic non-selective (Ic4y) current and the medium after-hyperpolarization (I45p)
currents, responsible for frequency adaptation and bistable discharge in pyramidal neurons,

were taken as

I = gx 0" (Vi) — Vi)

where p, (x € {CAN, AHP}) corresponded to the opening probability of both currentsand y,
the gating factor of opening probabilities. Denoting the intra-somatic calcium concentration

as Ca, p,, followed

dpx _ (pr’(Ca) —px)

dt 7,(Ca)
with
(Ca) = ——
= @ Ca+ B
and
©(Ca) = a,Ca
P = e Ca+ By)

where a, and B respectively denoted activation and deactivation kinetic constants,

consistent with experimental data in layer 5 PFC pyramidal neurons %4,

The intra-somatic calcium concentration evolved according to discrete spike-induced

increments and first-order exponential decay

dCayy Cay — Cagy

_tk
T -~ +ACa 5(t — tf5))
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where té"'j) was the time of the kw spike in the spike train of neuron j, § the Dirac delta

function, 7, the time constant of calcium extrusion, Ca, the basal calcium and ACa a spike-

induced increment of calcium concentration.

The recurrent synaptic current on postsynaptic neuron j, from — either excitatory or

inhibitory — presynaptic neurons (indexed by i), was

IsynRec(j) = ) i (Lampacijy + InmpacpFHleasanij + leasaga,j)

The delay for synaptic conduction and transmission, Ats,,, was considered uniform across

the network . Synaptic recurrent currents followed

Leti,jy = Gx Wei ) Px(i) (V(j) - Vx)

with w(; ;) the synaptic weight. The NMDA current followed

Inmpag,j) = Inmpa W(i,j) PNMDA() xNMDA(V(j))(V(j) - VNMDA)

incorporating the magnesium block voltage-dependence modeled * as

1

Xympa(V) =
(1+mg77)

2—0.062V
“57)

AMPA and GABA-A rise times were approximated as instantaneous * and bounded,

with first-order decay

dpx(i) Px(i)
dt - -[decay + Apx (1 - px(i)) 5(t B t(ki))
X

To take into account the longer NMDA and GABA-B 2% rise times, opening probabilities

followed second-order dynamics *°
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10 Dx( 270 Px(i)
dt = — ,l.TiSE + ACIx (1 - qX(l)) 6(t - t(kl)) dt = — Tdecay + a, qx(L) (1 - px(l))
X

X

Recurrent excitatory and inhibitory currents were balanced in each postsynaptic neuron

*® ‘according to driving forces and the excitation/inhibition weight ratio, through

g =g _(Vmean - VExc) ZlEEXC W(i,j) g
GABAy, — YGABA FTE e ) GABA
- 4 4 (Vmean - VGABAA) Ziélnh """ W(i,j) N ’

with V,eqn = (QL;Q“) being an approximation of the average membrane potential. The
excitation/inhibition weight ratio notably balanced the currents coming from inhibitory
neurons with the 4x more numerous excitatory neurons (rendering inhibitory currents 4x
stronger on average). When specified (Fig. S2.d), both excitatory and inhibitory
conductances onto excitatory neurons were multiplied by gx_,z, and onto inhibitory neurons

by gx-1-

The feed-forward synaptic current Is,, rp(jy (putatively arising from subcortical and

cortical inputs) consisted of an AMPA component

Isyn rr(j) = Gampa PaMPApg (Vijy = Vampa)

with a constant opening probability p4ypa,,, determined as the temporal average of AMPA

channel openings due to ngr neurons within putatively sub-cortical and cortico-cortical

structures spiking at a given frequency v, following

1
ApAMPA <1 — e TAMPATNFF VFF)
Pamparr = Tampa NFF VFF 1
14+ (APAMPA — 1) e TAMPATFFVFF

via integration (considering regular ISI for simplification during the integration). payp 4., Was

considered constant so as to isolate the influence of deterministic chaos and spike
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irregularity on trajectory replay. However, to guarantee an initial stimulation sufficiently
strong to start network activity, feedforward AMPA inputs were stronger at first (nzr = 200
neurons, vpr = 3 Hz) and progressively decreased during 250 ms to their final value (vpr =
2.315 Hz; these initial 250 ms were cut from all figures and analyses). Trajectory replay was
evoked 2s after the initial 250ms (Fig. 2b-e, red square) when the first 25 neurons of the
trajectory received a strong feedforward AMPA stimulation (ngr = 20 neurons, vpp =
Vrrajstim. = 50 Hz, emulating a strong signal coming from a few neurons). The epoch
before this trajectory-evoking stimulus was considered “"Spontaneous” and the epoch after

“Evoked”.

Learning protocol
The neural network was subjected to "offline" learning, i.e. before the network simulation,
during which the receptive fields of excitatory neurons were sequentially stimulated. The
resulting neural frequency conditioned learning of synaptic weights via STDP between
excitatory neurons. This “offline” learning procedure would correspond to the trajectory
stimulus being learned and memorized long before the network simulation.

Neuronal receptor fields existed in a 2D spatial area (Fig. 2a left) following non-
normalized bivariate Gaussian functions around their center points (x;, y;) organized along
a square grid. For a stimulation point s (x4(ts), ys(ts)) of intensity I; at moment ¢, the

resulting neural frequency of the stimulation of the receptive field was

_<(x]'_xs(ts))2+(yj_y5(t5))2>
2
Vj(ts) =Ie ORF

This stimulation was part of a dynamic spatiotemporal trajectory moving as time went by.
The synaptic weights between neurons were then altered in proportion to their frequencies
according to a phenomenological STDP rule (see below). A circular trajectory was chosen in
order to study the sequence replay stability across multiple circle loops. The trajectory
stimulus advanced by 0.05 (in the spatial area reference) every dtr,,; = 20 ms time step,
with a small overlap between the trajectory start and end to ensure looping. For discrete
stimuli (Fig. 5), the trajectory cycled 10x through the shown sequence of black dots (with the

same trajectory time step). Neurons were considered as belonging to the trajectory when


https://doi.org/10.1101/2022.07.26.501548
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.26.501548; this version posted February 5, 2026. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

any of their stimulation-induced v;(t;) > 5% of the maximum neuron frequency the

trajectory produced.

Spike-timing dependent plasticity

We assessed various STDP temporal windows, from entirely asymmetric (agrpp = 1) to
symmetric (agrpp = 0) and time-shifted (4T srpp) functions. To modulate STDP symmetry,
we identified two STDP functions, an asymmetric and a symmetric one (whose integrals
equal o, so that LTP and LTD contributions are balanced), and then performed a linear
combination of both to obtain various degrees of STDP temporal asymmetry. However, even
though the integral stayed null, the integral of the positive part changed, which we corrected
by normalizing according to the asymmetric function’s integral’s positive part. As such, the

STDP function followed

At - ATSTDP e_(At_ATSTDP)Z

fasym (A t) = ASTDP VZ2e TSTDP
Tstpp , ,
At — AT, _(At=ATsrpp
fsym(At) = ASTDP (1 - 2 <J) > e ( TSTDP )
Tstpp

fmixed (At) = 6}:STDPfasym(m?: + (1 - 6}:STDP)fsym (At)

[ L freym (4t)
fasym(4)>0 asy
fstop(At) = frixea(4t) —= -

where At = t,,,5t — tyre Was the temporal difference between pre- and postsynaptic spikes,
Agrpp the STDP amplitude and 75rpp the STDP time constant. As such, taking into account
the frequencies of pre- and postsynaptic neurons and the time difference between

stimulation times, the weights were changed according to

tsy s,

with At = t, — t;,. A lower hardbound limit (w = 0) was imposed after STDP learning,
whereas no upper hardbound limit was imposed. The respective firing frequencies of the
populations are taken into account as it has been shown that STDP is essentially dependent

upon firing rate rather than spike timing under natural conditions, i.e irreqular spiking ®®. The
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description employed here directly reflects the multiplicative dependance of synaptic
modifications upon presynaptic and postsynaptic firing rates, modeled in a more detailed

fashion (with calcium-dependent kinases and phosphatases) in our previous study 3°.

Synaptic scaling

In order to keep neuronal activity within certain putative homeostatic bounds, synaptic
weights entering a postsynaptic neuron are subjected after STDP learning to a simple
multiplicative phenomenological form of synaptic scaling **, potentially representing hetero-
synaptic LTD, where the sum of weights impinging upon a pyramidal neuron is kept constant

before and after STDP. This is written

£ Wgefore STDP(i,))

Wscaled(i,j) = Wafter STDP(i,j) SO Wastor STOPGLS

Detection of bumps

In order to detect propagating activity bump along the synaptic pathway, we first convolved
neural spiking activity with a centered normalized Gaussian function where o = 30ms, to
then spatially convolute it with the bivariate Gaussian receptive field function (see above)
centered on the discrete points of the spatiotemporal trajectory. Such smoothing
procedures allowed us to reliably choose a frequency threshold (12.5Hz) above which
trajectory points were considered “active”. Conversely, from these “active” trajectory points,
we considered trajectory neurons “active” when at least 40% of the trajectory points having
stimulated that neuron’s receptive field (above the aforementioned 5% of maximum neuron
frequency), weighted by the neural frequency resulting from trajectory stimulation, were
“active”. This allowed us to define bump emergence as when at least 20 dynamically
changing trajectory neurons were “active” on average during 500 successive milliseconds

(ensuring activity packets were strong enough, e.g. Fig. 2b-e white spikes).

Determining bump and non-bump frequency average, fluctuations or threshold
fug and o, were determined as the frequency average and fluctuations of the
aforementioned spatially-convoluted trajectory points of neurons outside the bump during

periods without bumps, while fz and o5 were similarly determined but for neurons within the


https://doi.org/10.1101/2022.07.26.501548
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.26.501548; this version posted February 5, 2026. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

bump during bumps. These frequency averages were done across neurons and network
realizations. By manipulating the frequency of neurons within the trajectory fr through
different levels of feedforward AMPA currents, the frequency threshold fy was determined
as the minimal f;,5 for which bumps propagate constantly (= 1900 ms out of 2 s total, and
Dspont = 0.95). This understanding derived from the predictions of the bistable and noisy
regime transition model, mimicking the process where the non-bump frequency f,,5 stable
fixed point increases until it coalesces with the threshold f, unstable fixed point (as in a
saddle-node bifurcation), in which case only the bump frequency fz stable fixed point
remains and bumps thus propagate constantly. As a side remark, studying the role of intrinsic
biophysical mechanisms being the aim of the present study, using frequency observables as
described above does not imply that our findings could have been reproduced with a rate

model.

Maximum Lyapunov Estimate

To quantify the chaotic nature of the network’s activity, we estimated the maximum
Lyapunov exponent 1 on the one-dimensional time series of the estimated instantaneous
spiking frequency (o = 30 ms) averaged across excitatory neurons ®. To do so, we
reconstructed the phase space through time-delay embedding with heuristics agreed upon
in the literature °*. The lag length was estimated as the first lag length for which the

autocorrelation coefficient AC < el 9?

. The embedding dimension was estimated via a
MATLAB program developed by Mirwais Kizilkaya according to the false nearest neighbor
method °*9 as the minimal dimension with 0% false nearest neighbors as determined by

tolerance factors (R;; = 10, Az = 2, ).

Spiking variability and synchrony

Spiking variability and synchrony measures are computed as in 3°. To compare spike
variability between our model and experimental data, we quantified the coefficient of
variation (CV) of the inter-spike interval (ISl) distribution of the spiking trains of neurons in

the network “° according to
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However, the CV measure assumes stationarity of the data. Since this assumption is not
necessarily verified, we also computed the CV2 and Lv of the spike trains to evaluate the

variability of ISIs at a local level, according to

ISl 1 — ISIi|
CV, =<2 >
2 ISl +1SI, ~F

Ly =< 3 (ISI = IST41)? -
(Sl + ISL,.1)? ¥

CV = CV, = Lv = 1 for an ISI distribution drawn from homogeneous Poisson spike trains
and = 0 for perfectly regular spike trains (all ISl are equal). CV typically stand around 1 to 1.5
in vivo, while CV2 and Lv stand around 0.25 to 1.25 and o to 2 respectively in vivo *°. CV was
computed on all ISI, while CV2 and Lv are computed for each neuron then averaged across
neurons.

Multiple synchrony measures were computed “°%, a synchrony measure S, pairwise

correlation coefficient averaged over all pairs of neurons < p >, and Fano factor F, following

Var(< f >,)

where f was the estimated instantaneous neural spiking frequency via Gaussian convolution

(0 = 30ms), n the neuron index, and s the population sum of spike counts, where § =

\/iﬁ~ 0.041, < p >= 0 and F = 1 for perfectly asynchronous network activity, and S =<

p >= 1 while F increases for perfectly synchronous network activity.

Protocol for assessing the nature of intrinsic bistability
The protocol for evaluating the nature of neural intrinsic bistability, taken from 3 consisted
of a strong phasic input (of amplitude 26,,, during 200 ms) followed by a weaker delay-

period tonic input (of amplitude I;,; during 10s), in order to reveal conditional bistability
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activated by the phasicinput but conditional on (i.e. requiring the) weaker delay-period tonic
input. 8,, corresponded to the minimal delay-period tonic input current required to induce
sustained firing during the delay without the strong initial phasic input, and 8, the same
but with the strong initial phasic input. 8;rqnsient Was the same as 6, ¢ but corresponded to
the minimal delay-period tonic input required to induce unstable (rather than sustained)

firing. Firing was considered sustained when there were three or more spikes during the last

151k+1—151k

> was inferiorto 0.05).
18Iy,

2 s of the tonic input with stable ISIs (determined when <

Otherwise, firing was considered unstable for a single spike beyond 25ms after the initial
phasic input, or for two spikes or more during non-sustained firing.

When 60,y = 0555 = Otransient, the neuron was considered monostable, i.e. the strong
initial input current did not activate any intrinsic mechanisms generating sustained firing.
When 0,, = 0,5 > Oransient, the neuron was considered transiently bistable, the strong
initial input inducing weak mechanisms generating unstable (but not sustained) firing. When
8on > 0,5, the neuron was considered conditionally bistable, since the delay-period input,
weaker than the initial phasic input but non-zero, could induce sustained firing, bistability
being thus conditional upon the delay-period input. Finally, if 6,, > 0 > 6, the neuron’s
bistability was considered absolute, i.e. sustained neuronal firing after an initial input lasts

until a hyperpolarizing current stops it.

Estimating robustness to variability of the model’s parameters

We studied how sensitive the phenomenon of interest (namely controlled, stable and
independent trajectory replay with asynchronous irregular network dynamics) was to the
variability of model parameters, since biological systems present strong variability. To do so,
we systematically varied important parameters, and defined a list of criteria which all need
to be met (Fig. S3), encompassing physiological peak conductance ratios (top row), spiking
activity regime (middle row) and controllable stable independent trajectory replays (bottom
row). Sustained network activity (middle row) was determined when the maximal duration
without network spikes was 10o0ms, to exclude strongly oscillating networks prohibiting
controllable trajectory replay. Physiological neuronal activity was determined when
neuronal activity was 100Hz at most for 250ms (in order to exclude trivial trajectory replay

cases where replay was actually detected as a single neuron stably firing at 200Hz during
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sooms). CV and CV2 were determined during the spontaneous epoch (before the trajectory
replay evoking stimulus at 2s, Fig. 2b-e).

Parameters were varied over a range of 40 equally-spaced values, generally spanning
G, 3)x the standard parameter value. Network simulations were repeated 5 times for each

value (due to the potential variability of trajectory replays), with each repetition being

evaluated independently concerning the criteria. The robustness score was computed as

Ap
<p>

R =

where < p > represented the average correct parameter value (weighted by the proportion
of correct repetitions), and 4p the sum of correct parameter steps (once again weighted by

the proportion of correct repetitions), where a step was the difference between the next and

|Pr+1—Pr—1l (

previous parameter value divided by 2, or values being equally spaced).

This robustness score was conservative no matter the arbitrarily chosen range, since it is
a biased underestimation which approaches its true maximal limit value given an optimal
chosen range. Indeed, robustness was limited by 1) how large the parameter range
considered was, and 2) how close parameter steps were. The robustness score decreased
from its true maximal value with ranges which were too small and step values too large.
Contributions of individual criteria (Fig. 6¢, right) were computed as the Ap when considering
only that one criteria (with the same < p > value still computed over all criteria, for better

comparison of individual contributions).

Numerical integration and parameters of the biophysical network model

Models were simulated and explored using custom developed code under MATLAB and were
numerically integrated using the forward Euler method with time-step At = 0.5ms in
network models. The code MATLAB (tested on 2018b) is provided along the article.
Reproducing precisely some of the figures requires loading the corresponding biophysical
parameters that were deposited here:

https://datadryad.org/stash/share/i Mz558537ZGXvi6QigUdLWDJtHeDgbb4sfLRTDkZP2U.
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Unless indicated in figure legends, standard parameter values were as following.
Concerning the network architecture, N = ngy. + nj,n, = 605 neurons, pgx. = 0.8, so that
Ngxe = N, Pgxc = 484 neurons and n;,, = N, ppn = 121 neurons. Concerning Integrate-

and-Fire neuron properties, C =1 uF.cm™2, V,ooe = —65mV, 0 = =50mV, Viyeqn =

Yrestt® — 575 mV, Atyp = 3 ms. Concerning ionic currents, g, = 0.05mS.cm™2, V, =
—-70 mV, Jean = 0mS.cm™2, Veuy = 30 mV, acay = 0.03125 uM~t.ms™1, Beany =
0.025ms™ 1, Vean = L Ganp = 0mS.cm™2, Vayp = =90 mV, ayupp =

0.125 uM~t.ms™1, Bupyp = 0.025ms™ 2, yyup = 1, 4Ca = 0.2 uM, Cay = 0.1 uM, T, =
100 ms. Concerning the weight matrix, u, = 0.03, 0, = 0.015, pg_g = P = P11 =
pi-g = 0.3. Concerning synaptic currents, Aty = 0.5 ms, gampa =

5 d _ 1 _ri
0.2mS.cm™, Tyypa = 2.5ms, gyypa = 0.3 mS.cm™, ayypa = 0.275ms ™, TifiHa =

4.65 ms, Tﬁ%ﬁ = 75ms, [Mg**] = 1.5mM, Vaypa = Vumpa = 0 MV, ggapa, =

0.35mS.cm™?, nggf‘f; =10 ms, Voapa, = =70 MV, Ggapa, =

_ _ 1 7 a
5.107* mS.cm™?, agapa, = 0.015ms ™, 1555, = 90ms, Tgupy = 160 ms, Veapa, =

—90mV, Apampa = Aqnmpa = APcapa, = Aqcapay = 0.1. Concerning the learning
procedure and STDP, ogzr = 0.13, I = 0.02925, t5rpp = 100 ms, Agrpp = 50, asrpp = 1,
AT grpp = 0 ms.

Parameters for the biophysical mechanisms (Fig. 4) were systematically determined as
the (Asrpp, mechanism parameter) value couple maximizing the product of controllability,
stability and independence (all three being normalized between o and 1).

For the bidirectional ring attractor (Fig. 5.e2), model parameters were as followed:

pr-g = 0.4, 9x-g = 1.5, 9x-1 = 0.5, Ganp = 0.2mS.cm™2, Apnp =

0.001 uM~t.ms™L, Buyp = 0.002 ms~1 =2,1, = 0.03.

1Y anp
Reduced model of bump dynamics

We developed a reduced version of the full model to catch essential features of the regime
of a bump of activity between neurons within the engram. Whereas noisy spiking sets
asynchronous-irregular global dynamics, we found that the simplest observable
distinguishing bump from non-bump neurons was their firing frequency. We therefore based

our theoretical analysis — (see the following two sections, Propagation condition model and
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Regime transition model) on a rate-based simplified description of collective neuronal
dynamics, which also incorporated the effect of noisy fluctuations on bumps. This analysis
allowed us to derive qualitative predictions regarding the effects of biophysical parameters
on bump propagation and transitions, that were in qualitative accord with full model
simulations (see below and Results). Frequency parameters of the reduced model were
estimated from neural activity in simulations of the simpler version, with no additional
biophysical mechanism of the full recurrent network model (the standard “Model @"). The
reduced model was thus neither devised as a specific quantitative tool (see the text
corresponding to Fig.4c), nor compared quantitatively against the full parameter space of

the whole model.

Propagation condition model

Basically, propagation requires that, on average, spiking at frequency f in (upstream)
presynaptic neurons must induce spiking at a frequency superior or equal to f in (down-
stream) postsynaptic neurons. Therefore, we wrote a set of equations where presynaptic
AMPA and NMDA input currents to a postsynaptic neuron are scaled by the firing frequency
f of the presynaptic neuron and searched for frequency conditions where postsynaptic
neurons fire at a frequency greater or equal than f. This propagation condition model is an
extremely simplified one-dimensional reduced representation of bump propagation within
the local cortical recurrent network. This model is space-free and shall be considered as a
representation of internal dynamics within the bump during its propagation, i.e. in a
referential moving at the speed of bump propagation. Noticeably, the propagation condition
model only considers a pre-/postsynaptic feedforward interaction, but does not take into
account possible recurrent effects of the postsynaptic neuron on the presynaptic neurons or
on the network. The propagation condition model nevertheless considers incoming
excitatory and fixed inhibitory inputs from the entire network onto the postsynaptic neuron.
These inputs are lumped together into common AMPA, NMDA and GABA-A terms that are
quantitatively fitted on average synaptic currents impinging bump neurons in network
simulations. The additional assumption is made that excitatory currents are essentially
provided by upstream neurons within the bump (vs from neurons outside the bump, whether

inside or outside the trajectory), so that AMPA and NMDA currents are scaled by f.
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To track the problem in a deterministic way, we leveraged from the observation that,
regardless of whether neurons spike in the spontaneous regime or within the bump, 1) ISls
generally terminate through rapid final depolarizing fluctuations, due to chaotic dynamics,
and that 2) these fluctuations start Ats,.~15ms before spiking. We numerically
determined, from all ISIs during bump activity in network simulations, the mean time-to-
spiking Atpiking(V, f), as a function of the membrane potential and the firing frequency of
the current ISI. We found that Atepiking(V, f) = Atspe was largely independent of firing
frequency, which allowed us to numerically estimate Vg (around -53 mV).

We also considered, based on neuronal dynamics in the network model, that the
membrane potential was essentially deterministically driven — before reaching Vg and the
final fluctuation to spiking — by average input and leak currents. Thus the membrane

potential converged exponentially to its steady state V* with

V() =V (f) + (Vr =V (f)exp (=t/tm(f)),
where I*(f) was obtained from the equilibrium of ionic currents at steady-state

ampa®sgf (V' = Vaupa) + gNMDAafgfm(V’)(V* — Vampa) + 9oapa-a(V" = Vapa-a),

Tg V' -V)+yg v - Vampars)) = 0
=L —AMPAFF

with a4 a conversion factor for dimensional compatibility and the non-linearity of the NMDA

approximated to its value V', such that one can solve explicitly in terms of V*:

Vi) =S+ T,
with

I'=g.V, + gcapa-aVeapa-a

9 =9+ Ygcapa-a t Gamparr,
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and

gan = Arg(Gampa + Gnmpa)

which could be linearized (g%f K 1)to

V() ==,

the membrane time-constant being written

C

tm(f) =

gampadsgf+gnmpadsgfm(V)+gcapa-a+gr+tgampa-rr'

and

IBump
AMPA

AfgfBump (vBUmP)—V appa)

Jampa =

Bump
NMDA

afgfBump((VBY™P)~VNppa) '’

1

Inmpa =

IBump
GABA-A

(VBYmPY)—Viapa_a)'

9caBa-4 =

IBump
— L
g1 = (wBump)-v )

IBump

_ AMPA—FF
AMPAFF —

9 (VBY™MPY—V sppa—rpr) '

being estimated from bump mean membrane potential (V2¥™P) mean currents (see below)

and mean firing frequency fgym, obtained from network simulations.

As a final step of the propagation condition model, we then computed:
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=1

AV =V (t=2)=Vs=V' () + Ve~V (Mexp (—f ' tm(N ) = Vs.

A negative AV (f) indicates that the potential has not yet reached, at time T = ]lc the

threshold Vg yielding rapid fluctuation-driven spiking so that postsynaptic frequency is lower
than f, the presynaptic firing frequency. Therefore, propagation fails. Conversely, a positive
AV (f) indicates that the postsynaptic frequency exceeded the presynaptic one, so that
propagation continues downstream. Finding a critical frequency fy such that AV(fB) =0
indicates that pre- and postsynaptic frequencies are equal and propagation of spiking occurs
at frequency fy. Moreover, the slope of AV(f) at f, determines the stability of the
propagation. A negative slope indicates a stable propagation at frequency fy as fluctuations
(due to chaotic network dynamics) will be quenched out by restoring forces driving the
frequency back to fy (frequency increases below fy (AV(f) > 0) and decreases above it
(AV(f) < 0)). A positive slope, to the contrary, indicates an unstable propagation with firing
frequency ineluctably diverging from fj.

Computing the model indicated that, under our simplifying hypotheses, a single
critical frequency fy was found at which the slope of the AV (f) was positive (see Results).
Therefore, the propagation condition model suggested that fy corresponded to an unstable
fixed-point in the frequency dimension, acting as a threshold that separated, for trajectory
neurons, the spontaneous regime (no bump propagation) from the regime of bump
propagation. Actually, the propagation condition model predicted the value of fy quite well
(see Results), with a value very close to that directly estimated from network simulations (see
below). The quality of the propagation condition model was also evaluated by computing
mean currents and comparing them to those found in network simulations (see Results).

Currents were computed as:
Limpa(f) = QAMPA“fgf((VKf) — Vampa),
Inmpacr) = QNMDAafgf((V)(f) — VNmpa),

Igapa-a(f) = 9oapa-a(V)(f) = Voapa-a),
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I(f) = 9.V = V1),

Lampa-rr(f) = QAMPA,FF((V)(]C ) — Vampa—rr),

where

M) = V') = frm(NDWVe =V (N (exp (—f Tt (H™) -1

Regime transition model

Although fy and the average currents (see Results) underlying the propagation condition
were estimated, the model was however unable to identify the two stable frequency fixed-
points fron-pump and feump setting the average spiking frequency in the spontaneous
regime and during bump propagation in network simulations. This was because the
simplifications regarding recurrent interactions within the network between excitatory
neurons within the bump and neurons outside the bump (i.e. excitatory neurons inside and
outside the trajectory, and inhibitory neurons) were too strong to account for the non-
linearity ensuring negative feedbacks in the vicinity of f,,n—pump and feump stable fixed-
points.

However, to better understand propagation of the bump within the network, we
considered the co-existence of the unstable fy fixed-point and of the two stable f;,on—pump
and fpymyp stable fixed-points to build a phenomenological one-dimensional reduced regime
transition model. Moreover, to evaluate the ability of this simplified model in explaining
complex propagation behavior in the whole network by a simple model based on an unstable
fixed-point separating two spontaneous and bump propagation regimes, we included a
stochastic component and determined to which extent the simplified propagation model
was able to account for transition rates between the spontaneous and propagation regimes
in trajectory neurons. Specifically, the probability of the emergence of propagating bumps
from the spontaneous regime, p(Spont.), the probability of propagating evoked bumps
p(Evoked) and their duration was computed from the model.

In the model, the firing frequency of neurons within the trajectory followed:
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d
d_]; = —(lf(f - fnon—Bump)(f - fG)(f - fBump)/Tf + O'f\/EX(t)

where a; is a scaling factor, 7y = 7,,(fp) (see above), x(t) is a Gaussian stochastic variable
with mean o and standard deviation1and oy = Opon—pump fOr f < feriterion aNd 05 = Opymyp
for f = feriterion With Gnon—pump and opymp estimated from network simulations. The
empirical estimation of fy in the network model was obtained by finding the frequency best
separating Bump and non-Bump frequency distributions (see above). The noise, accounting
for stochastic state transitions, is white. This choice is very classical and not essential to our
results . The ay parameter allowed us to fit the order of magnitude of transition rates. Its
exact value has no impact on the qualitative interpretation of mechanisms. Frequency
parameters of the theoretical models were estimated only for the standard model (*model

@").

Parameters
apg = 1mS.cm™2. Hz™', Vg = =53.05 mV, (VB¥"™P) = —53.23mV, fron—bump = 6.48 Hz,
fBump = 1434 Hz, fg = 9.7 Hz, ar = 2b—3 sz, Onon—Bump = 1.96 Hz, Ogump = 3.55 Hz.
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