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Abstract 

Neural representations rely on the ability of neuronal assemblies to display organized spiking 

patterns, despite being embedded within noisy networks. These structured patterns arise 

from attractor dynamics due to activity reverberation promoted by learnt assembly 

connectivity. Yet, attractor dynamics have been assessed  either under low-noise conditions 

or in highly idealized neuronal assemblies. Here, in a spiking recurrent neural network model 

displaying asynchronous irregular noise, we show that realistic spike timing-dependent 

plasticity (STDP) imposes either low controllability of attractor recall (when STDP is strong), 

low stability of attractor maintenance (when STDP is low), or both. Moreover, STDP-built 

attractors display low independence, i.e., they perturb activity in the surrounding network. 

These constraints may favor self-generated representation switches essential for cognitive 

flexibility but dampening cognitive reliability. We reveal, by contrast, that several biophysical 

mechanisms alleviate these issues through a common dynamical principle, protecting 

excitatory-driven attractorial dynamics from inhibitory-driven spontaneous fluctuations. 

Amongst biophysical determinants, intrinsic properties were most efficient to increase 

controllability, stability and independence of attractor dynamics. Specifically, spike-

triggered calcium-activated conductances improved reliability by mitigating reliance on 

connectivity, even at low conductance levels, i.e., in the absence of cell-autonomous intrinsic 

bistability. Finally, we show that the mechanisms we identify operate over a large repertoire 

of static (e.g., Hebbian or ring) and dynamic (e.g., sequences) attractors, with uni- and 

bidirectional propagation. Altogether, these results pinpoint synaptic and intrinsic synergy 

as a generic principle to regulate attractor reliability, as a function of the cognitive demand. 
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Introduction 

Neural trajectories — sequences of neural activity that propagate over time — represent local 

forms of ordered neural activity within the globally disordered awake brain regime. Neural 

trajectories act as dynamical codes across cerebral structures, supporting diverse cognitive 

operations, from motor function to working memory or navigation1–6. These trajectories do 

not simply mirror incoming time-structured sensory inputs: once triggered by a brief cue, 

neural trajectories can continue to propagate on their own.  

Although many theoretical studies have examined activity sequences under 

simplified conditions for both background conditions and underlying synaptic connectivity 7–

17, real neural activity is dominated by noise and connectivity is learned by synaptic plasticity. 

Biological noise and learned connectivity introduce three critical constraints on 

neural trajectories that are often overlooked. First, random synaptic events can 

spontaneously trigger a neural trajectory, reducing its level of controllability, defined as the 

ability to trigger neural trajectories solely when needed. Second, noise may disrupt the 

stability of activity propagation once a neural trajectory has begun. While low levels of 

controllability and stability are desirable in the context of exploration and cognitive flexibility, 

much higher levels are expected for exploitation, cognitive control, reliable decision-making 

and deterministic volition. Third, a neural trajectory may interfere with other ongoing 

computations by strongly influencing nearby neurons, perturbing the independence of 

multiple simultaneous independent neural trajectories 16.  

Understanding how biological circuits handle the levels of controllability and stability 

are to generate more or less reliable (i.e. controllable and stable) trajectories, depending on 

the cognitive demand, and how they overcome the problem of independence, is therefore a 

major objective for neuroscience. 

Existing theoretical work has largely focused on mechanisms that stabilize static bumps 

of activity, for instance in ring-shaped networks, in strongly interconnected Hebbian 

assemblies of cells 7,8 or through cell-autonomous, intrinsic mechanisms 18,19. However, 

moving bumps (that model neural trajectories observed in the awake 20–22 or sleep 23,24 

states) present additional difficulties. Models with idealized synaptic architectures, such as 

synfire chains (neurons connected along a feed-forward pathway within the network), 

asymmetric connectivity in ring models, or Hebbian phase sequences (HPS, i.e. oriented 

pathways between Hebbian assemblies) could produce moving bumps, but their stability 
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under noise, their biological plausibility or their learnability is uncertain 9,7,10,11,25,13. Recurrent 

networks trained with artificial, biologically-implausible learning rules, can generate neural 

trajectories 14,15,26 yet these approaches do not clarify how real neural circuits might learn 

such connective pathways. A more biophysically-grounded mechanism for learning oriented 

connective pathways is spike-timing dependent plasticity (STDP) 27. STDP strengthens or 

weakens synapses based on the temporal difference between pre- and postsynaptic action 

potentials 17,28. However, the way trajectories created through STDP behave when 

embedded in a noisy recurrent network remains unresolved. 

Most previous models based on idealized connectivity omit fundamental biophysical 

properties, such as distinct classes of synaptic receptors or voltage- and calcium-gated 

channels, whereas they represent  major determinants of network dynamics in their ability 

to cast spiking patterns 29,30. The rich repertoire of intrinsic properties might offer powerful 

mechanisms for stabilizing trajectories, beyond the structure of the synaptic pathway itself. 

While intrinsic conductances have been proposed to help generate static bumps when strong 

conditions (i.e., thanks to neuronal bistability) are met18,19, it is unclear whether they can also 

support propagating sequences of neural activity. 

Here, we present a dynamical and biophysical solution to control the level of  reliability 

of  neural trajectories in a detailed, data-driven cortical network operating in an 

asynchronous irregular regime. In our model, STDP and synaptic scaling produce a diversity 

of neural trajectories that differ in their stability, controllability and independence from 

surrounding chaotic dynamics. Neural trajectories emerge as a moving bump of activity 

driven by a strong, deterministic NMDA-mediated associative excitation at high firing 

frequencies. This contrasts to the network’s spontaneous state, dominated by low-frequency 

inhibitory GABA-A fluctuations. Using theoretical analysis, we identify a firing-frequency 

threshold separating spontaneous and propagating regimes. Mechanisms that increase the 

gap between these regimes improve both the controllability and stability of trajectories. We 

identify three classes of biophysical processes that widen such a gap: (1) low inhibitory 

fluctuations, (2) strong tonic feedforward inhibition combined with recurrent excitation, and 

(3) spike-triggered calcium-dependent intrinsic currents that generate 

afterhyperpolarization and afterdepolarization. Among these, intrinsic currents  provide the 

most robust and general solution, without requiring neuronal bistability.  Spike-triggered 

calcium-dependent currents not only stabilize and control neural trajectories but also 
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enhance their independence from the rest of the network, by reducing the reliance on 

synaptic mechanisms alone. These results are robust across model parameters and apply to 

many forms of neural trajectories — static, dynamic, discrete or continuous. In summary, we 

reveal a general dynamical principle — the coexistence of stochastic and deterministic 

regimes in the same network — and identify spike-triggered intrinsic currents as an efficient 

and plausible mechanism for learning and expressing neural trajectories with relevant levels 

of reliability, depending on the cognitive demand and despite the noise inherent to in vivo 

brain activity. 
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Results 

Robust STDP-induced neural trajectories in the asynchronous irregular (AI) regime 

Our goal was to understand how biophysical mechanisms help control locally ordered activity 

patterns — such as stable or moving bumps, REFs — that emerge from learned neural 

assemblies (REFs) embedded within globally noisy, vivo-like conditions (REFs) (Fig. 1a). 

Previous theoretical studies 9–15,17,25,31–34,35 showed attractor dynamics only in idealized 

network connectivity (REFs) or under low-noise conditions (REFs). Here we wanted a 

recurrent neural network model that was both noisy and with plausible connectivity, which 

would naturally emerge from synaptic plasticity applied to an initially random network.  

To keep the network model tractable 36–38 we avoided unnecessary complexities such 

as dendritic morphology or cortical layering (see Methods). We focused on biophysical 

mechanisms triggered by spikes: NMDA, AMPA and GABA synaptic currents, as well as CAN 

and AHP intrinsic currents (see Methods). Because these processes operate based on spikes, 

we used spiking integrate-and-fire models 13,39 rather than rate-based 7,31 or mean-field 10,25 

models. We did not include detailed action-potential conductances, which slow down 

simulations and are not required for modeling the spiked-triggered processes of interest (see 

Methods). Finally, because the cortex exhibits both strong noise and organized neural 

trajectories1–3,5, we constrained the initial random connectivity using statistics from cortical 

data 40–44. Importantly, we did not impose any built-in structure such as ring attractors7,10,11,25 

or pre-defined sequences of Hebbian assemblies 13. 

We first verified that our model produced the hallmarks of cortical spiking activity 

(Fig. 1b, see Methods), (1) low firing frequencies (Fig. 1c, 𝜈 < 10𝐻𝑧, Fig. S1b 45), (2) high 

irregularity (inter-spike intervals (ISIs) 𝐶𝑉~1 and 𝐶𝑉!~0.8, and 𝐿𝑉, described in Methods) Fig. 

S1c-d 46) and (3) asynchrony (average pairwise correlation < 𝜌 > ~0.01, Fig. S2b-g 47), all 

characteristic of the asynchronous-irregular regime 39 observed in behaving mammals 48. 

Accordingly, the network displayed chaotic dynamics (𝜆~0.01, Fig. S2e-j  49), arising from 

fluctuation-based spiking (Fig. 1d top). This reflects a balanced “high-conductance” state50, 

in which strong excitatory and inhibitory currents track each other (Fig. 1d bottom, and Fig. 

S1k 26).  

We next tested whether such a noisy network could learn a structured pathway 

through synaptic plasticity. Neurons were arranged on a 2D topographic map and we trained 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2026. ; https://doi.org/10.1101/2022.07.26.501548doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501548
http://creativecommons.org/licenses/by-nd/4.0/


the network with a stimulus following a circular trajectory (Fig. 2a, left). Learning emerged 

from two plausible plasticity mechanisms, Spike-Timing Dependent Plasticity (STDP) and 

synaptic scaling (see Methods), which are ubiquitous in the neocortex 51,52. Synapses were 

potentiated when postsynaptic followed presynaptic spikes (Fig. 2a, center). As a result, 

sequential neuronal activation potentiated synapses along the direction of the stimulus, 

creating an oriented “connective pathway” i.e. an engram of the stimulus (arrows, Fig. 2a, 

right). Synaptic scaling stabilized learning by keeping the total incoming weights constant 
36,51 (and thus similar across neurons, Fig. 2a, right).  

We next tested whether this learned connective pathway could propagate a neural 

trajectory (a moving bump of activity) defined as the set of co-active neurons within the 

engram (Methods). Neural trajectories in chaotic networks face distinct challenges: noise 

may disrupt bump propagation, so the connective pathway must be strong enough. But if 

synapses are too strong, random spikes can trigger uncontrolled bumps. Furthermore, 

bumps may spill over to surrounding neurons, disrupting other simultaneous neural 

trajectories. Indeed, after learning, excitatory activity amplified rapidly along the engram, 

recruiting nearby neurons and generating propagation involving ~100 neurons, affecting 

global network dynamics (Fig. 2b-e). 

Remarkably, the same network architecture could produce very different neural 

trajectories, depending on random initial connectivity before learning, or initial activity 

conditions — a consequence of chaotic dynamics. Spontaneous-persistent neural 

trajectories could emerge from noisy activity  (Fig. 2b, 2d). Evoked but unstable trajectories 

could be triggered by an initiating stimulus but then fail to propagate (red rectangle, Fig. 2c). 

Evoked and stable trajectories could occur, displaying stable propagation when triggered 

(Fig. 2e). These patterns resemble a range of physiological observations such as free replay20–

23,53 (i.e. low-rate spontaneous emergence and persistent Fig. 2d) or stimulus-triggered 

trajectories during correct task execution 2,3,5 (Fig. 2e). Thus, biologically realistic STDP can 

indeed train recurrent networks to express neural trajectories despite strong in vivo noise — 

but does not guarantee their reliability. To understand what makes trajectories reliable 

(stable, controllable, and independent) we next examined the dynamical conditions under 

which whether activity bumps do or do not propagate. 
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Bump propagation relies on the transition from inhibitory fluctuation- to excitatory 

mean current-driven spiking 

To understand how moving bumps propagate, we first examined what drives spiking in 

excitatory neurons depending on whether they belong to the moving bump (”bump neurons”) 

or not (“non-bump neurons”). 

In non-bump neurons, the membrane potential settled on a subthreshold plateau 

(~54mV, Fig. 3a, top left, arrow). The total current was near-balanced on average (Fig. 3b, 

top left, star). Spiking arose from fast voltage transients (Fig. 3a, top left, star) themselves 

caused by strong current fluctuations (Fig. 3b, bottom left, star). Among synaptic inputs, 

GABA-A inhibition fluctuated the most (Fig. 3b, bottom middle, star): brief drops in  GABA-

A current allowed the membrane potential to reach the threshold (Fig. 3a, bottom left, star). 

Thus, in non-bump neurons, spiking was mainly caused by disinhibitory fluctuations 54,55. 

In bump neurons, the membrane potential rose directly to threshold without passing 

through a plateau (Fig. 3a, top right). This happened because the total synaptic current was 

strongly depolarizing (Fig. 3b, top left, triangle), dominated by  a strong, nearly-constant 

NMDA current (Fig. 3b, top right, triangle, and Fig. 3a, right). The NMDA drive was strong 

for three reasons: 1) bump neurons fired at a high frequency (𝑓"#$%~14.5𝐻𝑧), 2) synaptic 

weights along the connective pathway had been potentiated by STDP, and 3) coincident 

pre/post-synaptic activity removed the Mg2+ block of NMDA, resulting in “associative” 

NMDA activation among bump neurons. In addition, the bump triggered weak local 

inhibition, because inhibition was global (i.e. not specific to the bump), which further 

increased the imbalance between excitation and inhibition. 

Overall, spontaneous global activity was dominated by GABA-A-fluctuations in a  low-

frequency, asynchronous-irregular regime54,55. By contrast, bump propagation relied on 

deterministic, associative NMDA excitation at high firing frequencies along the learned 

connective pathway.  We next examined what controls the transitions between these two 

regimes, in order to identify the conditions under which neural trajectories start, propagate, 

or fail. 

 

Theoretical analysis of transitions between spontaneous activity and bump propagation 

To study how activity switches between spontaneous activity and bump propagation, we 

first needed to identify where the transition between these two regimes occurs. Although 
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global spiking noise defines the asynchronous-irregular state, the clearest marker 

distinguishing bump from non-bump neurons was their firing frequency (𝑓), because firing 

rate determines the average synaptic currents and their fluctuations (Fig. 3).  

We therefore measured the firing-frequency threshold separating regimes (Fig. 4a). To do 

this, we considered a simplified one-dimensional analytical model that predicts whether 

activity from a group of neurons propagate to the next ones  along the trajectory pathway, 

as a function of 𝑓 (numerically determined across neurons and network realizations for the 

standard “Model ∅”, see Methods). This simplified “propagation-threshold model” 

qualitatively predicted that this frequency threshold 𝑓&  (Fig. 4a, left) is an unstable fixed-

point: above the threshold, activity self-amplifies and propagates, while below the threshold, 

activity extinguishes. The propagation-threshold model reproduced average currents in 

spontaneous vs propagation regimes in the network model (Fig. 4a, right); as well as the 

threshold value itself (𝑓&~10.2𝐻𝑧 – vs 𝑓&~9.2𝐻𝑧 in network simulations, see Methods).  

Based on the propagation-threshold model, we designed another simplified regime 

transition model (Fig. 4b, see Methods) to qualitatively predict how biophysical factors affect 

noise-driven transitions between the two regimes. We considered that the recurrent network 

can be summarized four key dynamical features: 1) a stable, low-frequency state 

(spontaneous activity), 2) a stable, high-frequency state (bump propagation), 3) an unstable 

threshold in between, and 4) stochastic firing-frequency fluctuations due to chaotic 

asynchronous-irregular dynamics. The simplest mathematical description capturing these 

features is a one-dimensional cubic differential equation. This regime transition model 

naturally produces two stable fixed points (𝑓'(')"#$% and 𝑓"#$%) and one unstable point (the 

threshold 𝑓& 	, Fig. 4b, left), plus a noise term that can induce transitions between states (Fig. 

4b, right). The noise term, i.e. standard deviations 𝜎'(')"#$% and 𝜎"#$%, were estimated 

from network simulations.  

The regime transition model allowed us to compute the probabilities of spontaneous 

𝑝(𝑆𝑝𝑜𝑛𝑡. ) and triggered 𝑝(𝐸𝑣𝑜𝑘𝑒𝑑) transitions toward bump propagation. We defined the 

controllability = (𝑝(𝐸𝑣𝑜𝑘𝑒𝑑) − 𝑝(𝑆𝑝𝑜𝑛𝑡. )) which captures the ability to trigger trajectories 

by the stimulus compared to spontaneous ones. To compare with numerical estimates in the 

full recurrent network, we simplify defined bump stability as the duration of evoked bump 

propagation (see Methods) rather than high–dimensional attractor (structural or marginal) 

stability measures 15,56,57.  
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From the simplified model, several qualitative principles for increased controllability 

emerged (Fig. 4c): 1) low firing rate or low firing variability in the spontaneous regime 

(𝑓'(')"#$% or 𝜎'(')"#$%) decreased 𝑝(𝑆𝑝𝑜𝑛𝑡. ) without affecting 𝑝(𝐸𝑣𝑜𝑘𝑒𝑑); 2) larger 

firing frequency (𝑓"#$%) or lower frequency variability (𝜎"#$%) in the propagation regime  

increased 𝑝(𝐸𝑣𝑜𝑘𝑒𝑑), without affecting 𝑝(𝑆𝑝𝑜𝑛𝑡. ); 3) controllability is maximal at 

intermediate 𝑓&  that initially decreases p(𝑆𝑝𝑜𝑛𝑡. )	but	eventually	p(𝐸𝑣𝑜𝑘𝑒𝑑) as well. 

In summary, the simplified model predicts that biophysical mechanisms that increase 

the separation between the two regimes -either by pushing the bump firing rate higher, by 

lowering the spontaneous firing rate, or by reducing variability- should increase 

controllability. Furthermore, stability should increase when downward transitions from the 

propagation regime are decreased (i.e. higher 𝑓"#$% or lower 𝜎"#$%, Fig. 4c, third and fourth 

panels). 

 

Biophysical mechanisms promoting stability and controllability 

The qualitative predictions from the simplified model guided us toward identifying the 

biophysical mechanisms (network architecture, synaptic and intrinsic currents) that affect 

reliable propagation in the full network model. To do this, we conducted extensive 

parametric explorations to find biophysical mechanisms that create a clear separation 

between the two activity regimes, ensuring both stability (bump propagation) and 

controllability (low probability of spontaneous bumps).  

A straightforward approach was to strengthen the connectivity within the pathway by  

increasing STDP amplitude (𝐴*+,-). This enhanced stability because it raised the bump firing 

frequency (Fig. 5a, left). However, it also increased the probability of spontaneous bumps 

because 𝑓&  shifted downward (Fig. 5a, left). As a result, controllability improved only 

marginally (Fig. 5a, middle).  

We then reasoned that reducing the fluctuations of inhibitory currents onto excitatory 

neurons -while keeping their mean constant- should selectively suppress spontaneous 

transitions. Indeed, the spontaneous regime is mostly driven by disinhibition, whereas the 

evoked regime is not. To reduce inhibitory variability, we increased the number of 𝐼 → 𝐸	

synapses while reducing their individual strength (higher 𝑝.→0, see Methods). This effectively 

lowered GABA-A current fluctuations (𝜎(𝐼12"2)2), Fig. S3a, top). As predicted, lower 

𝜎(𝐼12"2)2) decreased the firing rate in neurons outside the bump 𝑓'(')"#$% (and thus 
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𝜎'(')"#$%, Fig. 5b, left), which in turn decreased  𝑝(𝑆𝑝𝑜𝑛𝑡. ) (Fig. 5b, middle), thereby 

increasing controllability. Stability was also improved: lowering 𝑓'(')"#$% reduced the 

excitatory drive onto inhibitory neurons, which then decreased inhibition onto bump 

neurons, increasing 𝑓"#$%. A similar effect was observed when we used slower and 

proportionally weaker GABA-A currents (Fig. S3a, bottom and Fig. S3b). 

We next explored a combination of STDP and inhibition mechanisms. As shown above, 

increasing excitatory weights within the learned pathway (𝐴*+,- = 75) increased 𝑓"#$% and 

decreased 𝑓&  without modifying 𝑓'(')"#$% (Fig. 5c, left, black vertical line vs. Fig. 5a, left, 

black vertical line). This widened the separation between the two activity regimes but also 

brought 𝑓'(')"#$% closer to 𝑓&, leading to a high probability of spontaneous bumps 

𝑝(𝑆𝑝𝑜𝑛𝑡. ) (Fig. 5c, left and middle). It is possible to counteract this side-effect by increasing 

tonic feedforward (i.e. 𝜈33(.'5)), which decreased both 𝑓'(')"#$% and 𝑓"#$% by the same 

amount (while keeping 𝑓&  unchanged, Fig. 5c, left). As a result, 𝑝(𝑆𝑝𝑜𝑛𝑡. ) and 𝑝(𝐸𝑣𝑜𝑘𝑒𝑑)	

both decreased, but their difference (i.e. controllability) increased for intermediate  values, 

and stability also improved. In summary, this mechanism improves controllability by adding 

frequency-independent inhibition that suppresses spontaneous firing frequency, while 

allowing frequency-dependent to dominate during propagation. The same principle could be 

implemented in many other biophysical ways, making it a general strategy for improving 

controllability of moving bumps. For example, decreasing the leak current of inhibitory 

neurons (𝑔7(.'5)), or reducing total currents onto inhibitory neurons (𝑔8→.),	also increased 

inhibitory firing  in the spontaneous regime, and thus produced similar effects (Fig. S2c-d). 

Beyond synaptic and architectural factors, we found that two intrinsic currents were key 

determinants of controllability and stability: the calcium-activated non-specific cationic 

(CAN) and the after-hyperpolarization potassium (AHP). Both currents are activated by 

calcium entry (through voltage-dependent calcium channels), and thus both depend on firing 

frequency. We considered a combination of a slow AHP that saturates at low firing 

frequency, with a fast CAN that saturates only at high firing frequency. AHP thus dominates 

at low firing frequencies and hyperpolarization is favored, but at high frequencies, CAN 

dominates and produces more depolarization (Fig. 6b, left). Together, CAN and AHP 

produce an unstable fixed point at 𝑓′&~12.7Hz (Fig. 6b, left) at the single-cell level. Below 

this firing frequency, AHP suppresses activity and therefore prevents spontaneous bump 

initiation. Above 𝑓′&, CAN amplifies activity, stabilizing bump propagation. This intrinsic 
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mechanism greatly widened the separation between two regimes regimes at the network 

level, by lowering 𝑓'(')"#$% and raising 𝑓"#$% (Fig. 6a, left). As a result, both controllability 

and stability were improved (Fig. 6a, middle). This effect did not require strong 

conductances that would generate full intrinsic bistability (i.e. persistent activity 18,19). A 

modest CAN conductance, sufficient to yield transient bistability, was enough to achieve 

strong controllability and stability of neural trajectories (Fig. 6b, middle). 

 

Independence between trajectory and surrounding activity 

For most biophysical mechanisms considered, improving controllability and stability 

required reducing spontaneous firing rate. But doing so creates a side effect: during bump 

propagation, the firing frequency of neurons outside the trajectory engram increases, 

leading to a sharp contrast between background network dynamics at rest and during neural 

trajectories (Fig. 5b-c and Fig. 6a, right). Such strong network-wide modulation might 

interfere with parallel computations, for example if multiple trajectories need to coexist 

simultaneously. To quantify these perturbations, we defined an independence measure 𝐼 =

1 − U
9!"($%.))9!"(().)
9!"($%.):9!"(().)

U, with 𝑓'+(𝐸𝑣. ) and 𝑓'+(𝑆𝑝. )	being the firing frequency of excitatory 

neurons outside the trajectory during bump propagation and during the spontaneous 

activity, respectively (Fig. 5a-c and Fig. 6a, middle). 𝐼 = 1 means the two firing frequencies 

are identical, decreasing 𝐼 means increasing difference, and 𝐼 = 0 occurs when one of the 

frequencies is zero. In general, increasing controllability and stability decreased 

independence (down to ~50%, from a ~90% baseline). However, the CAN/AHP mechanism 

better preserved independence (down to ~70%) by reducing the contrast between 

spontaneous and trajectory-related dynamics. These results show that combining synaptic 

factors (the learned connective pathway) with intrinsic properties (CAN/AHP)38 is 

computationally advantageous. CAN-AHP combination provides individual cells with a mild, 

transient tendency toward sustained firing (Fig. 6b, middle and right), thereby lessening the 

burden on synaptic pathways to maintain stable bump propagation. 

 

Robustness of reliable neural trajectories within the asynchronous-irregular regime 

To test how general these mechanisms are, we evaluated how robust they remain under the 

wide biophysical variability observed across cerebral structures and species. We measured 
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how large the parameter ranges are, in which both reliability (controllability, stability and 

independence) and asynchronous-irregular dynamics are preserved. We performed this 

robustness analysis by systematically varying parameters for each mechanism (see Methods 

and Fig. S4a-c).  

In the standard model without any added reliability mechanism (Model ∅), controllable and 

table trajectories existed only within a moderately small parameter region (overall 

robustness ~10%). With the additional mechanisms described above, these regions 

expanded substantially (~25%), reaching a maximum with the CAN-AHP mechanism (~45%, 

Fig. 6c, left). 

However, the different reliability mechanisms did not affect independence similarly. 

Although the 𝜈33(.'5) mechanism resulted in the largest parametric regions for 

controllability and stability (when considered on its own), it reduced the parametric range for 

independence, as did 𝜎(𝐼12"2)2).	Independence robustness could fall to ~60% of the region 

width from the model ∅. In contrast,the CAN-AHP mechanism preserved ~100% of the 

independence range, and further supported intrinsic currents as generic candidates for bump 

propagation alleviating constraints on synaptic-based propagation (Fig. 6c, right). 

 

A common framework for generalized static and dynamical neural attractors 

Beyond robustness, genericity lies in the functional versatility. We thus evaluated whether 

the biophysical mechanisms for bump reliability could support the wide repertoire of 

attractor types described in the literature. Previous studies demonstrated many static and 

dynamic attractor types by using idealized engrams 13 or artificial training rules optimizing 

the connectivity 15,31,32,12,58. Here, we asked whether all these attractors could instead emerge 

with 1) activity-dependent plasticity rules and 2) the biophysical solutions for reliability 

identified above. To test this, we varied stimulus properties and STDP parameters (Fig. S4a), 

known to differ across cerebral structures 52 or neuromodulatory levels (e.g. dopamine 59). 

We then assessed to what extent the biophysical factors we uncovered (Fig. 4) support the 

controllability and stability of a broad variety of attractor types. 

A static-discrete attractor is simply a stable non-moving bump of activity: a group of 

neurons that activate each other because they are strongly interconnected (visible as square 

blocks on the diagonal of the synaptic, Fig. S4b). This is the classical “Hebbian assembly” 

(HA). . We tested whether a symmetric STDP window (Fig. 7a, center and Fig. 7b, center), 
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combined with discrete stimuli, could create such static-discrete attractors. A single discrete 

stimulus (Fig. 7a, left) formed of a single HA (Fig. 7a, right). When we added the CAN/AHP 

intrinsic mechanism, the stimulus reliably triggered persistent activity in the HA (Fig. 7c), 

showing that synaptic 8,60,61 and intrinsic 18,19 mechanisms can advantageously be combined 

to control static attractors. A stimulus that jumps between multiple discrete positions (Fig. 

7b, left) produced multiple HAs (Fig. 7b, right). Thanks to the CAN/AHP mechanism, each 

HA could be independently triggered62,63 with higher reliability (Fig. 7d). 

Unlike static attractors, dynamical-discrete attractors involve activity that moves from 

one neuronal group to the next. A classic example is the synfire chain: activity propagates 

across neurons arranged in a feedforward sequence (off-diagonal synaptic patches, Fig. 

S4c). A series of HA can also be connected  into a Hebbian Phase Sequence (HPS), where 

each assembly is strongly connected internally and to the next one (diagonal and off-

diagonal patches, Fig. S4d). In HPS, the network activity can propagate from one HA to the 

next. We tested how an asymmetric STDP window combined with a sequence of discrete 

stimuli could generate these different dynamical-discrete attractors. A stimulus moving 

step-by-step (Fig. 8a, left), with a strongly asymmetric STDP window (Fig. 8a, center), 

produced a synfire chain64 (Fig. 8c) with fast, reliable propagation, supported by 𝜎(𝐼!"#"$") 

and 𝜈%%('()) mechanisms, Fig. 8c). The same stimulus (Fig. 8b, left), learned with a weakly 

asymmetric STDP window (Fig. 8b, center) led to HAs linked by feedforward connections 

(Fig. 8b, right), i.e. a Hebbian phase sequence (ref 10) with slow sequential propagation 

between HAs (Fig. 8d). Hence, reliable synfire chains and HPS can emerge from STDP, 

without requiring hand-crafted connectivity matrices or artificial training rules 13,64. 

 

Unlike discrete attractors, continuous attractors allow activity to occupy a continuum of 

positions, and may also be static (fixed bump) or dynamic (moving bump). A classical 

example of continuous-static attractor is the ring attractor (REFS), where neurons are 

symmetrically connected to nearby neighbors (a diagonal band of strong weights, Fig. S4e). 

This supports static bumps anywhere on the ring. In our terminology, neural trajectories (the 

main focus above) corresponds to continuous-dynamic attractors. Neural trajectories can 

propagate unidirectionally or bidirectionally, depending on whether neighboring neurons 

are connected asymmetrically or symmetrically (off-diagonal bands, Fig. S4f).  

We obtained a ring-like attractor (Fig. 9a, right; 10,11,65) by presenting a continuously moving 
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stimulus (Fig. 9a, left) with symmetric STDP (Fig. 9a, center). Multiple neural trajectories 

could coexist, and drifted very slowly thanks to the CAN-AHP mechanism (Fig. 9c). Using the 

same stimulus (Fig. 9b, left) but with a broader STDP window (Fig. 9b, center) produced a 

wider symmetric connectivity (Fig. 9b, right). Combined with slowly-saturating 𝑔2;-  (see 

Methods,  Fig. 9d), the network expressed bidirectional neural trajectories. 

Altogether, these results show that the mechanisms we identified - both synaptic and 

intrinsic- provide general dynamical tools that allow the network to learn, stabilize and 

control a wide variety of dynamical representations. These include many classical attractors 

proposed for cognitive functions, suggesting a unifying biophysical framework for their 

emergence.   
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Discussion 

Using simulations and theoretical analyses of biophysically-constrained network models, we 

show how the interplay between intrinsic neuronal properties and synaptic connectivity 

enables recurrent neural networks to robustly control the reliability of attractor dynamics, 

including neural trajectories. These attractor dynamics persist despite the permanent 

disruptive influence of neural noise under the chaotic asynchronous irregular (AI) dynamics 

typical of wakefulness. Unlike classical approaches that focus on idealized synaptic 

connectivity, our work highlights the crucial role of intrinsic biophysical mechanisms -

especially calcium-dependent conductances driven by spiking activity- in supporting the 

reliable emergence and maintenance of neural trajectories.  

 

Models of learning neural trajectories 

Neural trajectories are widespread in the brain and are key to many cognitive operations 
5,21,22,66. Theoretical models have proposed several mechanisms for how these neural 

trajectories might arise and remain stable 13–15,17,28,33. Here, we focused on three key 

physiological features that are usually studied separately but not together: 1) the 

destabilizing effect of noise due to asynchronous irregular (AI) dynamics and 2) synaptic 

connectivity learned by plausible Spike-Timing Dependent Plasticity (STDP).  

Most STDP-based models do not test whether learned trajectories remain reliable 

under realistic neural noise17,28. Other models avoid these issues by using fixed, hard-crafted 

connectivity patterns (such as Hebbian phase sequence13), non-biological  (non-local) 

training rules14,15,31,58, or by assuming unrealistically quiet neural activity12,32,67. In vivo, 

however, noisy fluctuations can interact with synaptic learning in complex ways that may 

disrupt memory dynamics or generate pathological activity 36,68,69.  

We therefore examined how noise affects neural trajectories in the asynchronous-

irregular state, where spiking activity emerges from a balance between excitation and 

inhibition54,55. The asynchronous-irregular state in our model relates to the classical “spike” 

chaos - with relatively constant spiking rate - and may differ from an heterogenous form of 

asynchronous-irregular state under strong synaptic coupling, with variable spiking rates 

across time and neurons (“rate” chaos 70,71). Consistent with previous work36,69, we found that 

spike chaos can undermine attractor stability, but we further identify specific biophysical 

mechanisms that allow recurrent networks to trigger and maintain neural trajectories in a 
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plausible biological setting - connectivity learned by a STDP rule and under asynchronous-

irregular noise conditions. 

 

Models of bump stability and propagation 

Persistent “bumps” of neural activity have been studied extensively as low-dimensional 

attractors in recurrent networks. Classical bump models assume an idealized ring-like 

connectivity pattern with local excitation and surrounding inhibition10,11,65. This “Mexican-

hat” architecture is anatomically unrealistic and is not used in our study72. Instead, bumps in 

our model arise from a synaptic engram embedded within a random recurrent connectivity 

that includes significant weights outside the engram (compared to usual negligible 

weights13). Disinhibition plays a different role here than in classical models: because 

inhibition is globally dominant in the AI regime (as in 31), fluctuations in inhibitory input 

mainly determine when non-bump neurons fire. Our work also integrates  interactions 

between engrams, recurrent connectivity, feed-forward inputs31, synaptic scaling 73 and 

intrinsic properties34 - elements that have been treated separately in earlier models. We 

confirm that the strong inhibitory feedback used in formal models39,74 is  also needed for 

static bumps (e.g., working memory) in the more realistic situation modeled here. For 

moving bumps, our results instead highlight the importance of strong external excitation 

onto inhibitory interneurons yet with small inhibitory fluctuations. Unlike earlier models that 

require asymmetric10,25 or complex13 connectivity to produce unidirectional propagation of 

bumps, our results support the possibility of bidirectional propagation under symmetric 

connectivity, which is absent in symmetric ring models 7,25 or in 31. We also show that bump 

stability can be maintained despite heterogeneous synaptic weights 31,34,57,65,73 (but see 10).  

 

Relation to previous neural reduced models 

A major contribution of our work is identifying that the interaction between intrinsic and 

synaptic currents can support attractor reliability, i.e., controlability, stability and 

propagation of bumps. This is demonstrated through detailed simulations of the full model 

and  in the low-dimensional simplified model. For the design of our simplified models, we 

followed classical strategies aimed at capturing essential dynamical features of the network. 

We used average firing as an effective measure to distinguish neurons currently inside the 

moving bump from those outside it. In the propagation model, average firing frequency of 
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neurons is linked to how quickly membrane potential returns to baseline following spike 

repolarization, as classically done, in another context for theoretical frequency-intensity 

curves75. For the regime transition model, we used a one-dimensional cubic dynamical 

system, which is canonical to model two stable fixed-points separated by an unstable one. 

Such landscape is classical in computational neurosciences and explains molecular 

memory76, excitability-based bistability77 or working memory78.  Yet, in our simplified 

models, we could relate spontaneous and propagation regimes (Fig. 2) and their frequency 

threshold (Fig. 3) with underlying biophysical mechanisms, contrasting with purely 

phenomenological rate models79,78. This allows us to link bump stability propagation and 

regime transitions to biophysical mechanisms ( synaptic and ionic currents, conductances, 

gating variables, and time constants) that shape network dynamics. 

The reduced model was devised as a heuristic to identify which biophysical 

parameters are likely to influence bump propagation. It was not intended to quantitatively 

match all the details from the full recurrent dynamics – not to mention the large parameter 

exploration we performed. Instead, the simplified model offers qualitative predictions about 

how different biophysical mechanisms affect bump propagation and regime separation.  

 

Reliable trajectories beyond synaptic connectivity 

Although the full repertoire of biophysical properties has been shaped by evolution to confer 

neural circuits with solutions to cognitive demands, computational models usually focus on 

synaptic connectivity alone13–15,17,33,39. Theoretical work on neural trajectories may thus have 

overlooked the rich repertoire of neuronal mechanisms (e.g., synaptic receptors or intrinsic 

conductances18,19,29,30,38). We therefore studied how synaptic and intrinsic factors interact to 

contribute to trajectory stability, controllability, and independence. We identified general 

trends: mechanisms that increase the separation between spontaneous and propagation 

regimes improve trajectory controllability, while mechanisms reducing downward 

transitions (from propagation to spontaneous activity) increase stability.  

We further identified several biophysical ways to implement these reliability 

mechanisms. NMDA currents – known to maintain working memory (i.e., static attractor61) 

also stabilizes moving bump (dynamic attractor) propagation because of its slow, associative 

and positive feedback. Fast GABA-A currents limit unwanted initiation of spontaneous 

trajectories, and we predict that manipulating GABA-A time constant (by preserving the 
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global inhibitory drive but perturbing inhibitory fluctuations) should specifically affect 

spontaneous replays. Frequency-independent inhibition-based mechanisms also enhance 

stability. This is consistent with mediodorsal thalamic activation, which increases fast spiking 

firing frequency in rodent mPFC, promoting stable neural sequences and working memory 

performance6.  

Most notably, calcium-dependent CAN/AHP ionic conductances yielded the best 

combination of reliability (i.e., controllability, stability, and independence) and robustness. 

Our results overall suggest that spike-triggered ionic currents are essential for reliable 

attractors dynamics under noisy conditions. This aligns with previous suggestions that 

calcium-dependent conductances can support attractor dynamics, though these earlier 

relied on phenomenological descriptions34,80. Our findings generate experimental 

predictions, including whether calcium-dependent conductances mediate independent 

replay of multiple trajectories, as recently observed in the hippocampus16. 

The large space of biophysical properties remains only partially explored, with 

potential roles for short-term plasticity65 or other intrinsic properties, such as rebound after 

inhibition, delayed dynamics due to slow potassium conductance, or intrinsic oscillations29,30. 

Our framework may also help interpret pathological dynamics. For example, schizophrenia 

involves unwanted spontaneous activity and unstable attractors81; attention-deficit 

hyperactivity disorder (ADHD) was proposed to arise from impaired gain modulation in 

central networks, which may compromise the stability of neural attractors82. Calcium-

dependent conductances (CAN/AHP) might therefore constitute interesting targets in ADHD 

or schizophrenia. 

Altogether, our results demonstrate the biophysical plausibility of reliable attractors  

under the presence of several mechanisms, in particular in the presence of calcium-

dependent intrinsic currents.  Their synergy with synaptic properties appears as a generic 

solution to regulate attractor reliability, depending on cognitive demands. Low levels of 

reliability are desirable because they prompt the self-generated emergence or clearance of 

representations required when exploration, creativity and cognitive flexibility are governing 

behavior. By contrast, higher levels of reliability are expected for exploitation, cognitive 

control, reliable decision-making and deterministic volition. The neuromodulation of the 

mechanisms examined here, in particular that of calcium-dependent intrinsic currents, might 

be essential to switch between these two general types of cognitive demands. Related, a 
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major prediction of our study is that blocking the mechanisms considered (e.g., calcium-

dependent intrinsic currents) in relevant neural structures (e.g., the PFC) should  destabilise 

attractor dynamics observed experimentally62,63. 

Finally, calcium-dependent intrinsic currents alleviate the reliance on synaptic 

connectivity alone and highlight the complementarity of synaptic (STDP) and intrinsic 

(CAN/AHP) properties. Such a combined solution would not have emerged from approaches 

that optimize the connectivity (artificial training) in networks of simplified “neuronal” units. 
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Figures and Figure legends 

 

  
Figure 1. Properties related to reliability in a balanced spiking recurrent network. (a) Noise and 

spike timing-dependent plasticity (STDP) determine the degree to which activity in an attractor 

(shaded gray) 1) can be triggered – or not – by deterministic inputs (controllability, blue), 2) stably 

maintained – or not – once triggered (stability, purple), and 3) its degree of interference with other 

attractors or neurons in the surrounding network (independence, orange). Noise is globally 

deleterious to stability and controllability. STDP, by setting weights within attractors presents more 

complex effects that we study in the following. Altogether, increased levels of stability, controllability 
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and independence favor the reliability of on-going computational processes, while their decrease 

promotes the flexibility of representations. (b) Randomly connected recurrent neural network of 80% 

excitatory and 20% inhibitory neurons (14 neurons are shown, whereas the model is composed of 605 

neurons, i.e. 484 excitatory, 121 inhibitory). (c) Asynchronous irregular network activity, with spikes 

(black dots) and membrane potential of neurons across 4 seconds of simulation. (c) Subthreshold 

membrane potential and irregular spikes (top) driven by current fluctuations, since excitatory and 

inhibitory synaptic currents are balanced on average (bottom).   
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Figure 2. (a) (left) External circular trajectory stimulus (red circle), activating neurons through 

putative spatially-organized receptive fields. Example activity of neurons (background colors) 

induced by the trajectory stimulus at a given time point (black dot). (middle) Temporal window of the 

STDP learning rule, inducing LTP for positive time differences (pre- then post-synaptic spikes) and 

LTD for negative time differences (post- then pre-synaptic spikes). (right) Resulting connective 

pathway, with normalized arrows showing the direction in which outgoing weights are most 

potentiated (white to red arrow color scheme with increasing arrow magnitude), and homogeneous 

background colors showing similar sums of total incoming weights onto neurons (due to synaptic 

scaling) (b-d) Resulting connective pathways induce a variety of different trajectory replays, which 

emerge spontaneously (b & d) or can be evoked via a strong stimulus onto the first 25 neurons of the 

trajectory (red rectangle, c & e). 
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Figure 3. Bump propagation relies on a transition from GABA-A fluctuation- to NMDA mean 

current-driven deterministic spiking. (a) Membrane potential (top) and GABA-A current (bottom) 

of neurons when outside (left) and within (right) the trajectory activity bump, considered at the time 

scale of an ISI or between two spikes. Data is aggregated by normalizing time between two spikes 

(no matter the ISI duration). Background color shows the probability of individual membrane 

potentials or GABA-A currents curves (sum normalized to 1 in each time bin) across many ISI during 

one network simulation of 4 seconds, with red curves showing the average (weighted according to 

the underlying probabilities at each time bin). (b) Temporal average (top) and fluctuations (bottom) 

of total (left, black), GABA-A (middle, blue) and NMDA (right, orange) currents onto neurons when 

outside (non-Bump) or within (Bump) the trajectory activity bump, averaged across neurons. 
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Figure 4. Theoretical account of the threshold separating, and transitions between, spontaneous 

and propagation regimes (a) Propagation threshold model. (left) In a 2a reduced analytical model 

(see Methods), frequency self-amplifies above 𝑓+  and is extinguished below, i.e. as the membrane 

potential reaches (𝛥𝑉 > 0)	or not (𝛥𝑉 < 0) a fluctuation-based spiking threshold at time 𝑇 = 1/𝑓 in 

a postsynaptic neuron, given presynaptic spiking at frequency 𝑓. (right) The theoretical model (lines) 

is quantitatively consistent with network simulations ( symbols)  at the fine-grain of ionic and synaptic 

currents in both the low frequency spontaneous and the higher frequency bump regimes. (b) Regime 

transition model. (left) In a 2a reduced model of both regimes, frequency dynamics follows bistable 

dynamics with added Gaussian noise. (right) Example simulations of the regime transition model. (c) 

Probability of spontaneous and evoked transitions to the regime of bump propagation (dotted lines), 

and of controllability and stability of the bump regime (solid lines) in the regime transition model, as 

a function of parameters (non-Bump and Bump mean frequencies and standard deviations, and the 

threshold frequency). 
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Figure 5. Modulation of trajectory control by architectural and synaptic mechanisms. (a-c) 

Mechanisms for increasing trajectory replay controllability and stability, compared to the standard 

model (a),under increased GABA-A current fluctuations 𝜎(𝐼!"#"$") (via a higher number of In->Exc 

synapses, see Methods) (b), higher AMPA feedforward currents onto inhibitory neurons 𝐹𝐹'()  (c). 

STDP amplitude 𝐴,-./  was varied across the different mechanisms (𝐴,-./ = 47.5 for 𝜎(𝐼!"#"$"), 

75 for 𝐹𝐹'()), . (left) Non-Bump and Bump average frequency (+/- fluctuations) and threshold 

frequency, when varying the aforementioned parameters (X-axis). Normal parameter values (dotted 

vertical black lines), and those chosen to illustrate the mechanism’s effects on trajectory replay (solid 

vertical black lines), are indicated. (middle) Probability of spontaneous and evoked bumps (dotted 

lines), and bump controllability, propagation stability and independence (solid lines). (right) Example 

of trajectory replay with the selected illustrative mechanism parameters. The (𝐴,-./, mechanism 

parameter) value couple of each mechanism was systematically determined as that maximizing the 

product of controllability, stability and independence (all three being normalized between 0 and 1). 
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Figure 6. Improved trajectory control by intrinsic supra-threshold conductances. (a) Mechanisms 

for increasing trajectory control through increased CAN and AHP calcium-activated suprathreshold 

conductances together 𝑔0"1	&	𝑔"2/. Panels organized as in Fig. 5. (b) (left) Equilibrium values of 

CAN (red), AHP (blue) and total (CAN & AHP, black) currents of excitatory neurons, when considering 

the time-averaged calcium concentration at different spiking frequencies; (right) CAN and AHP 

calcium-activated suprathreshold conductances induced transient spiking bistability (rather than 

mono-stability, conditional bistability or absolute bistability), as defined by the protocol in 38 (see 

Methods). Solid vertical black lines indicate the chosen biophysical parameters. (c) (left) Average 

robustness of the physiological low-frequency asynchronous irregular network activity with 

controllable, stable and independent trajectory replays, to the variation of 22 of the model’s 

parameters (see Methods and Fig. S3). The standard model and its variations in Fig. 5 and 6a, and the 

standard Model (∅), are compared. (right) Contribution of the trajectory replay controllability, 

stability and independence criteria to the overall robustness score.  
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Figure 7. Discrete static attractor control with the intrinsic mechanism. In the case of discrete 

static attractors, i.e., single (a) or multiple (b) hebbian assemblies, increased supra-threshold 

conductances 𝑔0"1	&	𝑔"2/  express reliable single (c) or coexisting (d) persistent activity(ies), as 

found in working memory. In (a) and (b): (left) External trajectory stimulus (as in Fig. 2.a left). Dotted 

red lines indicate a discontinuous trajectory, jumping from one black dot to the next in a discrete 

manner (rather than continuously, as in Fig. 9). (middle) STDP temporal window (as in Fig. 2.a 

middle). (right) Resulting synaptic weight matrices between presynaptic and postsynaptic excitatory 

neurons. Neurons affected by the trajectory are regrouped and ordered according to their activation 

time within the learned trajectory stimulus. 
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Figure 8. Discrete dynamic attractor control with synaptic mechanisms. In the case of discrete 

dynamic attractors, i.e., synfire chains (a) or Hebbian phase sequences (b) architectures, the 

𝜎(𝐼!"#"$") mechanisms express reliable propagations of activity (c, d). Additional modifications 

were necessary for the synfire chain (a, c): the use of the 𝜈%%('()) mechanism, 𝑔"3/" =

0.5	𝑚𝑆. 𝑐𝑚$4, 𝑔13." = 0	𝑚𝑆. 𝑐𝑚$4 instead of 0.2	𝑚𝑆. 𝑐𝑚$4, 𝑔13." = 0.3	𝑚𝑆. 𝑐𝑚$4 for rapid 

bump propagation. (a) and (c): same organisation as in Fig. 7a, b. Dotted red lines indicate a 

discontinuous trajectory (as in Fig. 8), rather than a continuous one (as in Fig. 9).  
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Figure 9. Continuous static and dynamic attractor control with intrinsic and synaptic 

mechanisms. In the case of continuous static and dynamic attractors, i.e., static (a) and bidirectional 

(b) ring architectures, the 𝑔0"1	&	𝑔"2/  and 𝜎(𝐼!"#"$") mechanisms, respectively,  express reliable 

maintenance of static (c) or bidirectionally propagation (d) of bumps of activity. Additional 

modifications were necessary for the bidirectional ring architecture (b, d): 𝑔"3/" = 0.5	𝑚𝑆. 𝑐𝑚$4, 

𝑔13." = 0	𝑚𝑆. 𝑐𝑚$4 instead of 0.2	𝑚𝑆. 𝑐𝑚$4, 𝑔13." = 0.3	𝑚𝑆. 𝑐𝑚$4 for rapid bump propagation. 

(a) and (b): same organisation as in Fig. 7a, b. Dotted red lines indicate a continuous trajectory (rather 

than discontinuous, as in Fig. 7 and Fig. 8). 
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Supplementary Figures 

 

 
Figure S1. Distributions of network statistics over many network simulations. (a-h) Probability 

density functions of network spiking statistics, computed on 100 network simulations of 10s. 

Frequency (a), CV (b), CV2 (c), and Lv (d) of individual excitatory (red) and inhibitory (blue) neuronal 

spiking activity. Synchrony measure (e), Fano factor (f), average pairwise correlation coefficient (g), 

and Lyapunov exponent (h) of network spiking activity. (i) Chaotic network activity seen through 

sensitivity to initial conditions. A network was simulated in identical initial conditions, until a single 

randomly chosen spike at 300ms (green cross) was either kept (red spikes) or removed (blue spikes). 

Overlap in spikes between in both simulations are colored in black (notice that all spikes are identical 

and thus black before the green cross). (j) Same as (i), but average network frequency of both 

simulations (red & blue, overlap in black). (k) Stronger IPSC than EPSC balance total currents and thus 

fluctuation-based spiking. IPSC and EPSC are subdivided into their individual (AMPA, NMDA, GABA-

A, GABA-B) components. 
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Figure S2. GABA-A fluctuations and alternative effects of lowering disinhibition on replay 

quality. (a) 𝜎(𝐼!"#"$") as a function of 𝑓'→6  or 𝜏!"#"$"(678). (b-d) Same as Fig. 5a-d, but when 

varying the GABA-A current time constant of excitatory neurons 𝜏!"#"$"(678) (𝐴,-./ = 57.5) (b), 

leak conductance of inhibitory neurons 𝑔9,('()) (𝐴,-./ = 67.5) (c), and multiplicative factor 𝜌;→' 	

modulating the recurrent current conductances impinging upon inhibitory neurons 𝜌;→'  (𝐴,-./ =

60) (d). For 𝜏!"#"$"(678), 𝛥𝑝 of inhibitory to excitatory neuron synapses were modulated in order for 

average 𝑝!"#"$" to be kept approximately constant at 𝜈 = 5.5	𝐻𝑧, i.e. weakened for longer 

𝜏!"#"$"(678). To do so, 𝛥𝑝 was multiplied by the estimated average 𝑝!"#"$" value at 𝜈 = 5.5	𝐻𝑧 for 

the standard value of 𝜏!"#"$"(678) = 10	𝑚𝑠 (computed as for 𝑝2<-2**) and divided by the same 

estimate but for the chosen value of 𝜏!"#"$"(678). 
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Figure S3. Robustness to parameters. Computation of the robustness score, quantifying to what 

extent the physiological low-frequency asynchronous irregular network activity with controllable, 

stable and independent trajectory replays is robust to the variation of the model’s parameters. (a) 

Parameters varied (see Methods). (b) List of criteria that need to be simultaneously met within a 

model network simulation for it to be considered biologically plausible. (c) Detail of the robustness 

score for each individual model parameter, for the different mechanisms and standard model (∅).  
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Figure S4. Synaptic weight matrices and STDP window parametrization for the control of static 

and dynamic discrete and continuous attractors shown in Fig. 7-9 (a) Weight matrices underlying 

the different types of network attractors. White, grey and black colors indicate the strength of 

synaptic weights (white = absence of synapses, grey = moderate weights, black = strong weights). (b) 

Modulation of the asymmetric STDP window (black) when varying its symmetry (𝛼,-./ = 0, 

symmetric STDP window, blue curve) and temporal shift (𝛥𝑡 = +50𝑚𝑠, red curve). 
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 Methods 

Model of biophysical local recurrent neural network 

We built a biophysical model of a generic local recurrent neural network, endowed with 

detailed biological properties of its neurons and connections, as in 36. The network model 

contained 𝑁 neurons that were either excitatory (E) or inhibitory (I) (neurons projecting only 

glutamate or GABA, respectively 84), with probabilities 𝑝0  and 𝑝. = 1 − 𝑝0  respectively, and 
𝑝𝐸
𝑝𝐼
= 4 40. Connectivity was sparse (i.e. only a fraction of all possible connections exists, see 

𝑝0→0 , 𝑝0→. , 𝑝.→0 , 𝑝.→.  parameter values 41) with no autapses (self-connections) and EE 

connections (from E to E neurons) drawn to ensure the over-representation of bidirectional 

connections in cortical networks (four times more than randomly drawn according to a 

Bernoulli scheme 42). The synaptic weights 𝑤(>,@) of existing connections were drawn 

identically and independently from a log-normal distribution of parameters 𝜇A  and 𝜎A  42. To 

cope with simulation times required for the massive explorations ran in the parameter space, 

neurons were modeled as leaky integrate-and-fire (LIF) neurons. 

 

The membrane potential followed 

 

𝐶
𝑑𝑉(@)
𝑑𝑡 = −(𝐼.('>B(@) + 𝐼*C'.EFB(@) + 𝐼*C'.33(@))	𝑉(@) > 𝜃 → 𝑉(@) = 𝑉GFHI	 

 

where neurons spike when the membrane potential reached the threshold 𝜃, and 

repolarization to 𝑉GFHI  occurred after a refractory period 𝛥𝑡𝐴𝑃. Initial membrane potential of 

neurons were randomly drawn from a uniform distribution between 𝜃 and 𝑉GFHI. 

 

The ionic current followed 

 

𝐼.('>B(@) = 𝐼7(@) + 𝐼L2M(@) + 𝐼2;-(@)	
 

in which the leak current was  

 

𝐼7 = 𝑔7	Z𝑉(@) − 𝑉7[	
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where 𝑔7  was the maximal conductance and 𝑉7  the equilibrium potential of the leak current. 

 

The cationic non-selective (𝐼L2M) current and the medium after-hyperpolarization (𝐼2;-) 

currents, responsible for frequency adaptation and bistable discharge in pyramidal neurons, 

were taken as 

 

𝐼N = 𝑔N	𝑝N
O-Z𝑉(@) − 𝑉N[	

 

where 𝑝N  (𝑥 ∈ {𝐶𝐴𝑁, 𝐴𝐻𝑃}) corresponded to the opening probability of both currents and 𝛾N  

the gating factor of opening probabilities. Denoting the intra-somatic calcium concentration 

as 𝐶𝑎, 𝑝N  followed 

 

𝑑𝑝N
𝑑𝑡 =

(𝑝NP(𝐶𝑎) − 𝑝N)
𝜏N(𝐶𝑎)

	

 

with 

 

𝜏N(𝐶𝑎) =
1

(𝛼N𝐶𝑎 + 𝛽N)
	

 

and 

 

𝑝NP(𝐶𝑎) =
𝛼N𝐶𝑎

(𝛼N𝐶𝑎 + 𝛽N)
	

 

where 𝛼N  and 𝛽N  respectively denoted activation and deactivation kinetic constants, 

consistent with experimental data in layer 5 PFC pyramidal neurons 43,44. 

 

The intra-somatic calcium concentration evolved according to discrete spike-induced 

increments and first-order exponential decay 

 

𝑑𝐶𝑎(@)
𝑑𝑡 =

𝐶𝑎Q − 𝐶𝑎(@)
𝜏LR

+ 𝛥𝐶𝑎	𝛿Z𝑡 − 𝑡(@)S [	
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where 𝑡(@)S  was the time of the 𝑘th spike in the spike train of neuron 𝑗, 𝛿 the Dirac delta 

function, 𝜏LR  the time constant of calcium extrusion, 𝐶𝑎Q the basal calcium and 𝛥𝐶𝑎 a spike-

induced increment of calcium concentration. 

 

The recurrent synaptic current on postsynaptic neuron 𝑗, from – either excitatory or 

inhibitory – presynaptic neurons (indexed by 𝑖), was 

 

𝐼*C'.EFB(@) =i⬚
⬚

>

Z𝐼2<-2(>,@) + 𝐼M<,2(>,@)+𝐼12"2.(>,@) + 𝐼12"2/(>,@)[	

 

The delay for synaptic conduction and transmission, 𝛥𝑡𝑠𝑦𝑛, was considered uniform across 

the network 39. Synaptic recurrent currents followed 

 

𝐼N(>,@) = 𝑔N	𝑤(>,@)	𝑝N(>)Z𝑉(@) − 𝑉N[	
 

with 𝑤(>,@) the synaptic weight. The NMDA current followed 

 

𝐼M<,2(>,@) = 𝑔M<,2	𝑤(>,@)	𝑝M<,2(>)	𝑥M<,2Z𝑉(@)[Z𝑉(@) − 𝑉M<,2[	
 

incorporating the magnesium block voltage-dependence modeled 85 as 

 

𝑥M<,2(𝑉) =
1

k1 + [𝑀𝑔!:] 𝑒
)Q.QX!	Z

3.57 p
	

	

AMPA and GABA-A rise times were approximated as instantaneous 39 and bounded, 

with first-order decay  

 

𝑑𝑝N(>)
𝑑𝑡 = −

𝑝N(>)
𝜏N
[FBRC + ∆𝑝N	Z1 − 𝑝N(>)[	𝛿Z𝑡 − 𝑡(>)

S [	

 

To take into account the longer NMDA and GABA-B 86,87 rise times, opening probabilities 

followed second-order dynamics 39 
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𝑑𝑞N(>)
𝑑𝑡 = −

𝑞N(>)
𝜏NG>HF

+ 𝛥𝑞N	Z1 − 𝑞N(>)[	𝛿Z𝑡 − 𝑡(>)
S [	

𝑑𝑝N(>)
𝑑𝑡 = −

𝑝N(>)
𝜏N
[FBRC + 𝛼N	𝑞N(>)	Z1 − 𝑝N(>)[				

 

Recurrent excitatory and inhibitory currents were balanced in each postsynaptic neuron 
26, according to driving forces and the excitation/inhibition weight ratio, through 

 

𝑔12"2. = 𝑔12"2. 	
−(𝑉$FR' − 𝑉0NB)
Z𝑉$FR' − 𝑉12"2.[

	
∑ ⬚⬚
>∈0NB 𝑤(>,@)

∑ ⬚⬚
>∈.'5 𝑤(>,@)

		 ; 																					𝑔12"2/

= 𝑔12"2/ 	
−(𝑉$FR' − 𝑉0NB)
Z𝑉$FR' − 𝑉12"2/[

	
∑ ⬚⬚
>∈0NB 𝑤(>,@)

∑ ⬚⬚
>∈.'5 𝑤(>,@)

				

 

with 𝑉$FR' =
(&:Z0123)

!
 being an approximation of the average membrane potential. The 

excitation/inhibition weight ratio notably balanced the currents coming from inhibitory 

neurons with the 4x more numerous excitatory neurons (rendering inhibitory currents 4x 

stronger on average). When specified (Fig. S2.d), both excitatory and inhibitory 

conductances onto excitatory neurons were multiplied by 𝑔8→0, and onto inhibitory neurons 

by 𝑔8→.. 

 

The feed-forward synaptic current 𝐼*C'.33(@) (putatively arising from subcortical and 

cortical inputs) consisted of an AMPA component 

 

𝐼*C'.33(@) = 𝑔2<-2	𝑝2<-2** 	Z𝑉(@) − 𝑉2<-2[	
 

with a constant opening probability 𝑝2<-2**, determined as the temporal average of AMPA 

channel openings due to 𝑛33  neurons within putatively sub-cortical and cortico-cortical 

structures spiking at a given frequency 𝜈33, following 

 

𝑝2<-2** = 𝜏2<-2	𝑛33 	𝜈33
𝛥𝑝2<-2 k1 − 𝑒

)	 ]
^.45.	'**	_**p

1 + (𝛥𝑝2<-2 − 1)	𝑒
)	 ]
^.45.	'**	_**

	

 

via integration (considering regular ISI for simplification during the integration). 𝑝2<-2**  was 

considered constant so as to isolate the influence of deterministic chaos and spike 
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irregularity on trajectory replay. However, to guarantee an initial stimulation sufficiently 

strong to start network activity, feedforward AMPA inputs were stronger at first (𝑛33 = 200 

neurons, 𝜈33 = 3	𝐻𝑧) and progressively decreased during 250	𝑚𝑠 to their final value (𝜈33 =

2.315	𝐻𝑧; these initial 250	𝑚𝑠 were cut from all figures and analyses). Trajectory replay was 

evoked 2s after the initial 250ms (Fig. 2b-e, red square) when the first 25 neurons of the 

trajectory received a strong feedforward AMPA stimulation (𝑛33 = 20 neurons, 𝜈33 =

𝜈+GR@.*I>$. = 50	𝐻𝑧, emulating a strong signal coming from a few neurons). The epoch 

before this trajectory-evoking stimulus was considered “Spontaneous” and the epoch after 

“Evoked”. 

 

Learning protocol 

The neural network was subjected to "offline" learning, i.e. before the network simulation, 

during which the receptive fields of excitatory neurons were sequentially stimulated. The 

resulting neural frequency conditioned learning of synaptic weights via STDP between 

excitatory neurons. This “offline” learning procedure would correspond to the trajectory 

stimulus being learned and memorized long before the network simulation. 

Neuronal receptor fields existed in a 2D spatial area (Fig. 2a left) following non-

normalized bivariate Gaussian functions around their center points (𝑥@ , 𝑦@) organized along 

a square grid. For a stimulation point 𝑠	(𝑥H(𝑡H), 𝑦H(𝑡H)) of intensity 𝐼H at moment 𝑡H, the 

resulting neural frequency of the stimulation of the receptive field was 

 

𝜈@(𝑡H) = 𝐼H	𝑒
)`

aN6)N2(I2)b
7
:aC6)C2(I2)b

7

c8*
7 d

	
 

This stimulation was part of a dynamic spatiotemporal trajectory moving as time went by. 

The synaptic weights between neurons were then altered in proportion to their frequencies 

according to a phenomenological STDP rule (see below). A circular trajectory was chosen in 

order to study the sequence replay stability across multiple circle loops. The trajectory 

stimulus advanced by 0.05 (in the spatial area reference) every 𝑑𝑡+GR@ = 20	𝑚𝑠 time step, 

with a small overlap between the trajectory start and end to ensure looping. For discrete 

stimuli (Fig. 5), the trajectory cycled 10x through the shown sequence of black dots (with the 

same trajectory time step). Neurons were considered as belonging to the trajectory when 
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any of their stimulation-induced 𝜈@(𝑡H) > 5% of the maximum neuron frequency the 

trajectory produced. 

 

Spike-timing dependent plasticity 

We assessed various STDP temporal windows, from entirely asymmetric (𝛼*+,- = 1) to 

symmetric (𝛼*+,- = 0) and time-shifted (𝛥𝑇𝑆𝑇𝐷𝑃) functions. To modulate STDP symmetry, 

we identified two STDP functions, an asymmetric and a symmetric one (whose integrals 

equal 0, so that LTP and LTD contributions are balanced), and then performed a linear 

combination of both to obtain various degrees of STDP temporal asymmetry. However, even 

though the integral stayed null, the integral of the positive part changed, which we corrected 

by normalizing according to the asymmetric function’s integral’s positive part. As such, the 

STDP function followed 

 

𝑓RHC$(𝛥𝑡) = 𝐴*+,-	√2𝑒	
𝛥𝑡 − 𝛥𝑇*+,-

𝜏*+,-
𝑒)h

iI)i+("95
^("95

j
7

	

𝑓HC$(𝛥𝑡) = 𝐴*+,- |1 − 2k
𝛥𝑡 − 𝛥𝑇*+,-

𝜏*+,-
p
!

} 𝑒)h
iI)i+("95
^("95

j
7

	

𝑓$>NF[(𝛥𝑡) = 𝛼*+,-𝑓RHC$(𝛥𝑡) + (1 − 𝛼*+,-)𝑓HC$(𝛥𝑡)	

𝑓*+,-(𝛥𝑡) = 𝑓$>NF[(𝛥𝑡)	
∫ ⬚⬚
9:2;<(iI)kQ

𝑓RHC$(𝛥𝑡)

∫ ⬚⬚
9<=-1>(iI)kQ

𝑓$>NF[(𝛥𝑡)
	

 

where 𝛥𝑡 = 𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒 was the temporal difference between pre- and postsynaptic spikes, 

𝐴*+,-  the STDP amplitude and 𝜏*+,-  the STDP time constant. As such, taking into account 

the frequencies of pre- and postsynaptic neurons and the time difference between 

stimulation times, the weights were changed according to 

 

∆𝑤>@Z𝑡H? , 𝑡H7[ =i⬚
⬚

I2?

i⬚
⬚

I27

𝜈>Z𝑡H?[𝜈@Z𝑡H7[𝑓*+,-(𝛥𝑡)	

 

with 𝛥𝑡 = 𝑡𝑠2 − 𝑡𝑠1. A lower hardbound limit (𝑤 ≥ 0) was imposed after STDP learning, 

whereas no upper hardbound limit was imposed. The respective firing frequencies of the 

populations are taken into account as it has been shown that STDP is essentially dependent 

upon firing rate rather than spike timing under natural conditions, i.e irregular spiking 88. The 
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description employed here directly reflects the multiplicative dependance of synaptic 

modifications upon presynaptic and postsynaptic firing rates, modeled in a more detailed 

fashion (with calcium-dependent kinases and phosphatases) in our previous study 36.  

 

Synaptic scaling 

In order to keep neuronal activity within certain putative homeostatic bounds, synaptic 

weights entering a postsynaptic neuron are subjected after STDP learning to a simple 

multiplicative phenomenological form of synaptic scaling 51, potentially representing hetero-

synaptic LTD, where the sum of weights impinging upon a pyramidal neuron is kept constant 

before and after STDP. This is written 

 

𝑤*BRpF[(>,@) = 𝑤29IFG	*+,-(>,@)
∑ ⬚⬚
> 𝑤"F9(GF	*+,-(>,@)
∑ ⬚⬚
> 𝑤29IFG	*+,-(>,@)

	

 

Detection of bumps 

In order to detect propagating activity bump along the synaptic pathway, we first convolved 

neural spiking activity with a centered normalized Gaussian function where 𝜎 = 30𝑚𝑠, to 

then spatially convolute it with the bivariate Gaussian receptive field function (see above) 

centered on the discrete points of the spatiotemporal trajectory. Such smoothing 

procedures allowed us to reliably choose a frequency threshold (12.5𝐻𝑧) above which 

trajectory points were considered “active”. Conversely, from these “active” trajectory points, 

we considered trajectory neurons “active” when at least 40% of the trajectory points having 

stimulated that neuron’s receptive field (above the aforementioned 5% of maximum neuron 

frequency), weighted by the neural frequency resulting from trajectory stimulation, were 

“active”. This allowed us to define bump emergence as when at least 20 dynamically 

changing trajectory neurons were “active” on average during 500 successive milliseconds 

(ensuring activity packets were strong enough, e.g. Fig. 2b-e white spikes). 

 

Determining bump and non-bump frequency average, fluctuations or threshold 

𝑓'"  and 𝜎'"  were determined as the frequency average and fluctuations of the 

aforementioned spatially-convoluted trajectory points of neurons outside the bump during 

periods without bumps, while 𝑓"  and 𝜎"  were similarly determined but for neurons within the 
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bump during bumps. These frequency averages were done across neurons and network 

realizations. By manipulating the frequency of neurons within the trajectory 𝑓+  through 

different levels of feedforward AMPA currents, the frequency threshold 𝑓&  was determined 

as the minimal 𝑓'"  for which bumps propagate constantly (≥ 1900	𝑚𝑠 out of 2	𝑠 total, and 

𝑝*%('I ≥ 0.95). This understanding derived from the predictions of the bistable and noisy 

regime transition model, mimicking the process where the non-bump frequency 𝑓'"  stable 

fixed point increases until it coalesces with the threshold 𝑓&  unstable fixed point (as in a 

saddle-node bifurcation), in which case only the bump frequency 𝑓"  stable fixed point 

remains and bumps thus propagate constantly. As a side remark, studying the role of intrinsic 

biophysical mechanisms being the aim of the present study, using frequency observables as 

described above does not imply that our findings could have been reproduced with a rate 

model. 

 

Maximum Lyapunov Estimate 

To quantify the chaotic nature of the network’s activity, we estimated the maximum 

Lyapunov exponent 𝜆 on the one-dimensional time series of the estimated instantaneous 

spiking frequency (𝜎 = 30	𝑚𝑠) averaged across excitatory neurons 89. To do so, we 

reconstructed the phase space through time-delay embedding with heuristics agreed upon 

in the literature 90,91. The lag length was estimated as the first lag length for which the 

autocorrelation coefficient 𝐴𝐶 < 𝑒] 92. The embedding dimension was estimated via a 

MATLAB program developed by Mirwais Kizilkaya according to the false nearest neighbor 

method 92,93 as the minimal dimension with 0% false nearest neighbors as determined by 

tolerance factors (𝑅I(p = 10, 𝐴I(p = 2, 66). 

 

Spiking variability and synchrony 

Spiking variability and synchrony measures are computed as in 36. To compare spike 

variability between our model and experimental data, we quantified the coefficient of 

variation (CV) of the inter-spike interval (ISI) distribution of the spiking trains of neurons in 

the network 46 according to 

 

𝐶𝑉 =
𝜎.*.
µ.*.
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However, the CV measure assumes stationarity of the data. Since this assumption is not 

necessarily verified, we also computed the CV2 and Lv of the spike trains to evaluate the 

variability of ISIs at a local level, according to 

 

𝐶𝑉! =< 2
|𝐼𝑆𝐼S:] − 𝐼𝑆𝐼S|
𝐼𝑆𝐼S:] + 𝐼𝑆𝐼S

>S 	

𝐿𝑣 =< 3
(𝐼𝑆𝐼S − 𝐼𝑆𝐼S:])!

(𝐼𝑆𝐼S + 𝐼𝑆𝐼S:])!
>S 		

 

𝐶𝑉 = 𝐶𝑉! = 𝐿𝑣 = 1 for an ISI distribution drawn from homogeneous Poisson spike trains 

and = 0 for perfectly regular spike trains (all ISI are equal). 𝐶𝑉 typically stand around 1 to 1.5 

in vivo, while CV2 and Lv stand around 0.25 to 1.25 and 0 to 2 respectively in vivo 46. CV was 

computed on all ISI, while CV2 and Lv are computed for each neuron then averaged across 

neurons. 

Multiple synchrony measures were computed 47,94, a synchrony measure 𝑆, pairwise 

correlation coefficient averaged over all pairs of neurons < 𝜌 >, and Fano factor 𝐹, following 

 

𝑆 = �
𝑉𝑎𝑟(< 𝑓 >')
< 𝑉𝑎𝑟Z𝑓(')[ >'

	

< 𝜌 >=
1

𝑁(𝑁 − 1)/2i⬚
⬚

>

i⬚
⬚

@k>

𝑐𝑜𝑣Z𝑓(>), 𝑓(@)[

�𝑉𝑎𝑟Z𝑓(>)[𝑉𝑎𝑟Z𝑓(@)[
	

𝐹 =
𝑉𝑎𝑟Z∑ ⬚⬚

' 𝑠'[
< ∑ ⬚⬚

' 𝑠' >I
	

 

where 𝑓 was the estimated instantaneous neural spiking frequency via Gaussian convolution 

(𝜎 = 30𝑚𝑠), 𝑛 the neuron index, and 𝑠 the population sum of spike counts, where 𝑆 =
]
√M
~	0.041, < 𝜌 >= 0 and 𝐹 = 1 for perfectly asynchronous network activity, and 𝑆 =<

𝜌 >= 1 while F increases for perfectly synchronous network activity. 

 

Protocol for assessing the nature of intrinsic bistability 

The protocol for evaluating the nature of neural intrinsic bistability, taken from 38, consisted 

of a strong phasic input (of amplitude 2𝜃(' during 200	𝑚𝑠) followed by a weaker delay-

period tonic input (of amplitude 𝐼.'@  during 10𝑠), in order to reveal conditional bistability 
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activated by the phasic input but conditional on (i.e. requiring the) weaker delay-period tonic 

input. 𝜃(' corresponded to the minimal delay-period tonic input current required to induce 

sustained firing during the delay without the strong initial phasic input, and 𝜃(99  the same 

but with the strong initial phasic input. 𝜃IGR'H>F'I  was the same as 𝜃(99  but corresponded to 

the minimal delay-period tonic input required to induce unstable (rather than sustained) 

firing. Firing was considered sustained when there were three or more spikes during the last 

2	𝑠 of the tonic input with stable ISIs (determined when < .*.BC?).*.B
.*.B

>S  was inferior to 0.05). 

Otherwise, firing was considered unstable for a single spike beyond 25ms after the initial 

phasic input, or for two spikes or more during non-sustained firing. 

When 𝜃(' = 𝜃(99 = 𝜃IGR'H>F'I, the neuron was considered monostable, i.e. the strong 

initial input current did not activate any intrinsic mechanisms generating sustained firing. 

When 𝜃(' = 𝜃(99 > 𝜃IGR'H>F'I, the neuron was considered transiently bistable, the strong 

initial input inducing weak mechanisms generating unstable (but not sustained) firing. When 

𝜃(' > 𝜃(99, the neuron was considered conditionally bistable, since the delay-period input, 

weaker than the initial phasic input but non-zero, could induce sustained firing, bistability 

being thus conditional upon the delay-period input. Finally, if 𝜃(' > 0 > 𝜃(99, the neuron’s 

bistability was considered absolute, i.e. sustained neuronal firing after an initial input lasts 

until a hyperpolarizing current stops it. 

 

Estimating robustness to variability of the model’s parameters 

We studied how sensitive the phenomenon of interest (namely controlled, stable and 

independent trajectory replay with asynchronous irregular network dynamics) was to the 

variability of model parameters, since biological systems present strong variability. To do so, 

we systematically varied important parameters, and defined a list of criteria which all need 

to be met (Fig. S3), encompassing physiological peak conductance ratios (top row), spiking 

activity regime (middle row) and controllable stable independent trajectory replays (bottom 

row). Sustained network activity (middle row) was determined when the maximal duration 

without network spikes was 100ms, to exclude strongly oscillating networks prohibiting 

controllable trajectory replay. Physiological neuronal activity was determined when 

neuronal activity was 100Hz at most for 250ms (in order to exclude trivial trajectory replay 

cases where replay was actually detected as a single neuron stably firing at 100Hz during 
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500ms). CV and CV2 were determined during the spontaneous epoch (before the trajectory 

replay evoking stimulus at 2s, Fig. 2b-e). 

Parameters were varied over a range of 40 equally-spaced values, generally spanning 

�]
r
, 3�x the standard parameter value. Network simulations were repeated 5 times for each 

value (due to the potential variability of trajectory replays), with each repetition being 

evaluated independently concerning the criteria. The robustness score was computed as 

 

𝑅 =
𝛥𝑝

< 𝑝 >	

 

where < 𝑝 > represented the average correct parameter value (weighted by the proportion 

of correct repetitions), and 𝛥𝑝 the sum of correct parameter steps (once again weighted by 

the proportion of correct repetitions), where a step was the difference between the next and 

previous parameter value divided by 2, or 
|%BC?)%BD?|

!
 (values being equally spaced). 

This robustness score was conservative no matter the arbitrarily chosen range, since it is 

a biased underestimation which approaches its true maximal limit value given an optimal 

chosen range. Indeed, robustness was limited by 1) how large the parameter range 

considered was, and 2) how close parameter steps were. The robustness score decreased 

from its true maximal value with ranges which were too small and step values too large. 

Contributions of individual criteria (Fig. 6c, right) were computed as the 𝛥𝑝 when considering 

only that one criteria (with the same < 𝑝 > value still computed over all criteria, for better 

comparison of individual contributions). 

 

Numerical integration and parameters of the biophysical network model 

Models were simulated and explored using custom developed code under MATLAB and were 

numerically integrated using the forward Euler method with time-step 𝛥𝑡 = 0.5𝑚𝑠 in 

network models. The code MATLAB (tested on 2018b) is provided along the article. 

Reproducing precisely some of the figures requires loading the corresponding biophysical 

parameters that were deposited here: 

 https://datadryad.org/stash/share/i_Mz55853ZGXvi6Q1qUdLWDJtHeDqbb4sfLRTDkZP2U. 

 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2026. ; https://doi.org/10.1101/2022.07.26.501548doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501548
http://creativecommons.org/licenses/by-nd/4.0/


Unless indicated in figure legends, standard parameter values were as following. 

Concerning the network architecture, 𝑁 = 𝑛0NB + 𝑛.'5 = 605 neurons, 𝑝0NB = 0.8, so that 

𝑛0NB = 𝑁, 𝑝0NB = 484 neurons and 𝑛.'5 = 𝑁, 𝑝.'5 = 121 neurons. Concerning Integrate-

and-Fire neuron properties, 𝐶 = 1	𝜇𝐹. 𝑐𝑚)!, 𝑉GFHI = −65	𝑚𝑉, 𝜃 = −50	𝑚𝑉, 𝑉$FR' =
Z0123:&

!
= −57.5	𝑚𝑉, 𝛥𝑡𝐴𝑃 = 3	𝑚𝑠. Concerning ionic currents, 𝑔7 = 0.05	𝑚𝑆. 𝑐𝑚)!, 𝑉7 =

−70	𝑚𝑉, 𝑔L2M = 0	𝑚𝑆. 𝑐𝑚)!,	𝑉L2M = 30	𝑚𝑉,	𝛼L2M = 0.03125	𝜇𝑀)]. 𝑚𝑠)],	𝛽L2M =

0.025	𝑚𝑠)], 𝛾L2M = 1,	𝑔2;- = 0	𝑚𝑆. 𝑐𝑚)!,	𝑉2;- = −90	𝑚𝑉,	𝛼2;- =

0.125	𝜇𝑀)]. 𝑚𝑠)],	𝛽2;- = 0.025	𝑚𝑠)],	𝛾2;- = 1,	𝛥𝐶𝑎 = 0.2	𝜇𝑀,	𝐶𝑎Q = 0.1	𝜇𝑀,	𝜏LR =

100	𝑚𝑠. Concerning the weight matrix, 𝜇A = 0.03, 𝜎A = 0.015, 𝑝0→0 = 𝑝0→. = 𝑝.→. =

𝑝.→0 = 0.3. Concerning synaptic currents, 𝛥𝑡𝑠𝑦𝑛 = 0.5	𝑚𝑠,	𝑔2<-2 =

0.2	𝑚𝑆. 𝑐𝑚)!,	𝜏2<-2
[FBRC = 2.5	𝑚𝑠,	𝑔M<,2 = 0.3	𝑚𝑆. 𝑐𝑚)!,	𝛼M<,2 = 0.275	𝑚𝑠)],	𝜏M<,2G>HF =

4.65	𝑚𝑠,	𝜏M<,2
[FBRC = 75	𝑚𝑠,	[𝑀𝑔!:] = 1.5	𝑚𝑀,	𝑉2<-2 = 𝑉M<,2 = 0	𝑚𝑉,	𝑔12"2. =

0.35	𝑚𝑆. 𝑐𝑚)!,	𝜏12"2.
[FBRC = 10	𝑚𝑠,	𝑉12"2. = −70	𝑚𝑉,	𝑔12"2/ =

5.10)t	𝑚𝑆. 𝑐𝑚)!,	𝛼12"2/ = 0.015	𝑚𝑠)],	𝜏12"2/
G>HF = 90	𝑚𝑠,	𝜏12"2/

[FBRC = 160	𝑚𝑠,	𝑉12"2/ =

−90	𝑚𝑉,	𝛥𝑝2<-2 = 𝛥𝑞M<,2 = 𝛥𝑝12"2. = 𝛥𝑞12"2/ = 0.1. Concerning the learning 

procedure and STDP, 𝜎E3 = 0.13, 𝐼H = 0.02925,	𝜏*+,- = 100	𝑚𝑠, 𝐴*+,- = 50, 𝛼*+,- = 1, 

𝛥𝑇𝑆𝑇𝐷𝑃 = 0	𝑚𝑠. 

Parameters for the biophysical mechanisms (Fig. 4) were systematically determined as 

the (𝐴*+,-, mechanism parameter) value couple maximizing the product of controllability, 

stability and independence (all three being normalized between 0 and 1). 

For the bidirectional ring attractor (Fig. 5.e2), model parameters were as followed: 

𝑝.→0 = 0.4, 𝑔8→0 = 1.5, 𝑔8→. = 0.5, 𝑔2;- = 0.2	𝑚𝑆. 𝑐𝑚)!, 𝛼2;- =

0.001	𝜇𝑀)]. 𝑚𝑠)],	𝛽2;- = 0.002	𝑚𝑠)], 𝛾2;- = 2, 𝐼H = 0.03. 

 

Reduced model of bump dynamics 

We developed a reduced version of the full model to catch essential features of the regime 

of a bump of activity between neurons within the engram. Whereas noisy spiking sets 

asynchronous-irregular global dynamics, we found that the simplest observable 

distinguishing bump from non-bump neurons was their firing frequency. We therefore based 

our theoretical analysis – (see the following two sections, Propagation condition model and 
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Regime transition model) on a rate-based simplified description of collective neuronal 

dynamics, which also incorporated the effect of noisy fluctuations on bumps. This analysis 

allowed us to derive qualitative predictions regarding the effects of biophysical parameters 

on bump propagation and transitions, that were in qualitative accord with full model 

simulations (see below and Results). Frequency parameters of the reduced model were 

estimated from neural activity in simulations of the simpler version, with no additional 

biophysical mechanism of the full recurrent network model (the standard “Model ∅”). The 

reduced model was thus neither devised as a specific quantitative tool (see the text 

corresponding to Fig.4c), nor compared quantitatively against the full parameter space of 

the whole model.  

 

Propagation condition model 

Basically, propagation requires that, on average, spiking at frequency 𝑓 in (upstream) 

presynaptic neurons must induce spiking at a frequency superior or equal to 𝑓 in (down-

stream) postsynaptic neurons. Therefore, we wrote a set of equations where presynaptic 

AMPA and NMDA input currents to a postsynaptic neuron are scaled by the firing frequency 

𝑓 of the presynaptic neuron and searched for frequency conditions where postsynaptic 

neurons fire at a frequency greater or equal than	𝑓. This propagation condition model is an 

extremely simplified one-dimensional reduced representation of bump propagation within 

the local cortical recurrent network. This model is space-free and shall be considered as a 

representation of internal dynamics within the bump during its propagation, i.e. in a 

referential moving at the speed of bump propagation. Noticeably, the propagation condition 

model only considers a pre-/postsynaptic feedforward interaction, but does not take into 

account possible recurrent effects of the postsynaptic neuron on the presynaptic neurons or 

on the network. The propagation condition model nevertheless considers incoming 

excitatory and fixed inhibitory inputs from the entire network onto the postsynaptic neuron. 

These inputs are lumped together into common AMPA, NMDA and GABA-A terms that are 

quantitatively fitted on average synaptic currents impinging bump neurons in network 

simulations. The additional assumption is made that excitatory currents are essentially 

provided by upstream neurons within the bump (vs from neurons outside the bump, whether 

inside or outside the trajectory), so that AMPA and NMDA currents are scaled by 𝑓. 
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To track the problem in a deterministic way, we leveraged from the observation that, 

regardless of whether neurons spike in the spontaneous regime or within the bump, 1) ISIs 

generally terminate through rapid final depolarizing fluctuations, due to chaotic dynamics, 

and that 2) these fluctuations start 𝛥𝑡𝑓𝑙𝑢𝑐𝑡~15𝑚𝑠 before spiking. We numerically 

determined, from all ISIs during bump activity in network simulations, the mean time-to-

spiking 𝛥𝑡𝑠𝑝𝑖𝑘𝑖𝑛𝑔(𝑉, 𝑓), as a function of the membrane potential and the firing frequency of 

the current ISI. We found that 𝛥𝑡𝑠𝑝𝑖𝑘𝑖𝑛𝑔(𝑉, 𝑓) = 	𝛥𝑡𝑓𝑙𝑢𝑐𝑡 was largely independent of firing 

frequency, which allowed us to numerically estimate 𝑉*| (around -53 mV). 

We also considered, based on neuronal dynamics in the network model, that the 

membrane potential was essentially deterministically driven – before reaching 𝑉*| and the 

final fluctuation to spiking – by average input and leak currents. Thus the membrane 

potential converged exponentially to its steady state 𝑉∗ with 

 

𝑉(𝑡) = 𝑉∗(𝑓) + (𝑉E − 𝑉∗(𝑓))𝑒𝑥𝑝	(−𝑡/𝜏$(𝑓)), 

 

where 𝑉∗(𝑓) was obtained from the equilibrium of ionic currents at steady-state 

 
𝑔!"#!𝛼$%𝑓(𝑉∗ − 𝑉!"#!) + 𝑔'"(!𝛼$%𝑓𝑚(𝑉))(𝑉∗ − 𝑉'"(!) + 𝑔*!+!,!(𝑉∗ − 𝑉*!+!,!), 

+𝑔
𝐿
(𝑉∗ − 𝑉𝐿) + 𝑔

𝐴𝑀𝑃𝐴,𝐹𝐹
(𝑉∗ − 𝑉𝐴𝑀𝑃𝐴,𝐹𝐹)) = 𝑂 

 

with 𝛼9~ a conversion factor for dimensional compatibility and the non-linearity of the NMDA 

approximated to its value 𝑉|, such that one can solve explicitly in terms of 𝑉∗: 

 

𝑉∗(𝑓) = .
~
(1 + ~.E

~
𝑓))], 

 

with 

 

𝐼 = 𝑔7𝑉7 + 𝑔12"2)2𝑉12"2)2, 

 

𝑔 = 𝑔7 + 𝑔12"2)2 + 𝑔2<-2,33, 
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and 

 

𝑔2M = 𝛼9~(𝑔2<-2 + 𝑔M<,2)	
 

which could be linearized (~.E
~
𝑓 ≪ 1) to 

 

𝑉∗(𝑓) = .
~
(1 − ~.E

~
𝑓), 

 

the membrane time-constant being written 

 

𝜏$(𝑓) =
L

~.45.�FG9:~E49.�FG9$(ZH):~I./.D.:~J:~.45.D**
 , 

 

and 

 

𝑔2<-2 =	
..45.
/K<)

�FG9/K<)(〈Z/K<)〉)Z.45.)
 , 

 

𝑔M<,2 =	
.E49.
/K<)

�FG9/K<)(〈Z/K<)〉)ZE49.)
 , 

 

𝑔12"2)2 =	
.I./.D.
/K<)

(〈Z/K<)〉)ZI./.D.)
 , 

 

𝑔7 =	
.J
/K<)

(〈Z/K<)〉)ZJ)
 , 

 

𝑔2<-2,33 =	
..45.D**
/K<)

(〈Z/K<)〉)Z.45.D**)
 , 

 

being estimated from bump mean membrane potential 〈𝑉"#$%〉, mean currents (see below) 

and mean firing frequency 𝑓"#$% obtained from network simulations. 

 

As a final step of the propagation condition model, we then computed: 
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𝛥𝑉(𝑓) = 𝑉 O𝑡 = 1
𝑓P−𝑉𝑆

′ = 𝑉∗(𝑓) + (𝑉𝑅 −𝑉∗(𝑓))𝑒𝑥𝑝	(−𝑓
−1𝜏𝑚(𝑓)

−1) − 𝑉𝑆′ . 

 

A negative 𝛥𝑉(𝑓) indicates that the potential has not yet reached, at time 𝑇 = ]
9
, the 

threshold 𝑉*| yielding rapid fluctuation-driven spiking so that postsynaptic frequency is lower 

than 𝑓, the presynaptic firing frequency. Therefore, propagation fails. Conversely, a positive 

𝛥𝑉(𝑓) indicates that the postsynaptic frequency exceeded the presynaptic one, so that 

propagation continues downstream. Finding a critical frequency 𝑓&  such that 𝛥𝑉Q𝑓𝜃R = 0 

indicates that pre- and postsynaptic frequencies are equal and propagation of spiking occurs 

at frequency 𝑓&. Moreover, the slope of 𝛥𝑉(𝑓) at 𝑓& 	determines the stability of the 

propagation. A negative slope indicates a stable propagation at frequency 𝑓&  as fluctuations 

(due to chaotic network dynamics) will be quenched out by restoring forces driving the 

frequency back to 𝑓&  (frequency increases below 𝑓&  (𝛥𝑉(𝑓) > 0) and decreases above it 

(𝛥𝑉(𝑓) < 0)). A positive slope, to the contrary, indicates an unstable propagation with firing 

frequency ineluctably diverging from 𝑓&. 

 Computing the model indicated that, under our simplifying hypotheses, a single 

critical frequency 𝑓& 	was found at which the slope of the 𝛥𝑉(𝑓) was positive (see Results). 

Therefore, the propagation condition model suggested that 𝑓&  corresponded to an unstable 

fixed-point in the frequency dimension, acting as a threshold that separated, for trajectory 

neurons, the spontaneous regime (no bump propagation) from the regime of bump 

propagation. Actually, the propagation condition model predicted the value of 𝑓& 	quite well 

(see Results), with a value very close to that directly estimated from network simulations (see 

below). The quality of the propagation condition model was also evaluated by computing 

mean currents and comparing them to those found in network simulations (see Results). 

Currents were computed as: 

 

𝐼2<-2(𝑓) = 𝑔2<-2𝛼9~𝑓(〈𝑉〉(𝑓) − 𝑉2<-2), 

 

𝐼M<,2(9) = 𝑔M<,2𝛼9~𝑓(〈𝑉〉(𝑓) − 𝑉M<,2), 

 

𝐼12"2)2(𝑓) = 𝑔12"2)2(〈𝑉〉(𝑓) − 𝑉12"2)2), 
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𝐼7(𝑓) = 𝑔7(〈𝑉〉(𝑓) − 𝑉7), 

 

𝐼2<-2)33(9) = 𝑔2<-2,33(〈𝑉〉(𝑓) − 𝑉2<-2)33), 

 

where  

 

〈𝑉〉(𝑓) = 	𝑉∗(𝑓) − 𝑓𝜏$(𝑓)(𝑉E − 𝑉∗(𝑓))(𝑒𝑥𝑝 (−𝑓)]𝜏$(𝑓))]) 	− 1)	
 

Regime transition model 

Although 𝑓&  and the average currents (see Results) underlying the propagation condition 

were estimated, the model was however unable to identify the two stable frequency fixed-

points 𝑓'(')"#$% and 𝑓"#$% setting the average spiking frequency in the spontaneous 

regime and during bump propagation in network simulations. This was because the 

simplifications regarding recurrent interactions within the network between excitatory 

neurons within the bump and neurons outside the bump (i.e. excitatory neurons inside and 

outside the trajectory, and inhibitory neurons) were too strong to account for the non-

linearity ensuring negative feedbacks in the vicinity of 𝑓'(')"#$% and 𝑓"#$% stable fixed-

points. 

However, to better understand propagation of the bump within the network, we 

considered the co-existence of the unstable 𝑓&  fixed-point and of the two stable 𝑓'(')"#$% 

and 𝑓"#$% stable fixed-points to build a phenomenological one-dimensional reduced regime 

transition model. Moreover, to evaluate the ability of this simplified model in explaining 

complex propagation behavior in the whole network by a simple model based on an unstable 

fixed-point separating two spontaneous and bump propagation regimes, we included a 

stochastic component and determined to which extent the simplified propagation model 

was able to account for transition rates between the spontaneous and propagation regimes 

in trajectory neurons. Specifically, the probability of the emergence of propagating bumps 

from the spontaneous regime, 𝑝(𝑆𝑝𝑜𝑛𝑡. ), the probability of propagating evoked bumps 

𝑝(𝐸𝑣𝑜𝑘𝑒𝑑) and their duration was computed from the model. 

In the model, the firing frequency of neurons within the trajectory followed: 
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𝑑𝑓
𝑑𝑡 = −𝛼9(𝑓 − 𝑓'(')"#$%)(𝑓 − 𝑓&)Z𝑓 −	𝑓"#$%[/𝜏9 + 𝜎9√𝑑𝑡𝑥(𝑡)	

 

where 𝛼9	 is a scaling factor, 𝜏9 = 𝜏$(𝑓&) (see above), 𝑥(𝑡) is a Gaussian stochastic variable 

with mean 0 and standard deviation 1 and 𝜎9 = 𝜎'(')"#$% for 𝑓 < 𝑓BG>IFG>(' and 𝜎9 = 𝜎"#$% 

for 𝑓 ≥ 𝑓BG>IFG>('	with 𝜎'(')"#$% and 𝜎"#$% estimated from network simulations. The 

empirical estimation of 𝑓&  in the network model was obtained by finding the frequency best 

separating Bump and non-Bump frequency distributions (see above). The noise, accounting 

for stochastic state transitions, is white. This choice is very classical and not essential to our 

results . The 𝛼9  parameter allowed us to fit the order of magnitude of transition rates. Its 

exact value has no impact on the qualitative interpretation of mechanisms. Frequency 

parameters of the theoretical models were estimated only for the standard model (“model 

∅”).  

 

Parameters 

𝛼9~ = 1𝑚𝑆. 𝑐𝑚)!. 𝐻𝑧)], 𝑉*| = −53.05	𝑚𝑉, 〈𝑉"#$%〉 = −53.23𝑚𝑉, 𝑓'(')�#$% = 6.48	𝐻𝑧, 

𝑓"#$% = 14.34	𝐻𝑧, 𝑓& = 9.7	𝐻𝑧, 𝛼9 = 2𝑏 − 3	𝑠!, 𝜎'(')"#$% = 1.96	𝐻𝑧, 𝜎"#$% = 3.55	𝐻𝑧. 
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