

1 **Eye gaze is not inversion-proof: A robust,**
2 **sex-invariant gaze inversion effect**

3

4 **Daisuke Matsuyoshi^{1,2,3}, Kana Kuraguchi^{4,5}, Hiroshi Ashida⁵, Katsumi Watanabe¹**

5 ¹ Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku,
6 Tokyo 169-8555, Japan

7 ² Araya Inc., 1-11 Kanda-sakumacho, Chiyoda, Tokyo 101-0025, Japan

8 ³ Advanced Neuroimaging Center, Institute for Quantum Medical Science, National
9 Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555,
10 Japan

11 ⁴ Faculty of Social Sciences, Shitennoji University, 3-2-1 Gakuenmae, Habikino, Osaka
12 583-0868, Japan

13 ⁵ Department of Psychology, Graduate School of Letters, Kyoto University,
14 Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan

15

16 **Corresponding Author:**

17 Daisuke MATSUYOSHI
18 Advanced Neuroimaging Center, Institute for Quantum Medical Science
19 National Institutes for Quantum Science and Technology
20 Phone: +81-43-206-3249 E-mail: matsuyoshi.daisuke@qst.go.jp

21

Running title: *Gaze Inversion Effect*

1

Abstract

2 Humans are adept at distinguishing individual faces, yet inversion dramatically impairs
3 this ability. This face inversion effect is remarkably robust across observers, but evidence
4 is mixed as to whether inversion also impairs the perception of facial parts, particularly
5 the eye region. Some studies have shown that featural processing is preserved or even
6 enhanced when faces are inverted, whereas others have reported clear inversion-related
7 impairments in feature-based judgements. These mixed findings may reflect limited
8 statistical power, unbalanced participant sex ratios, and heterogeneous task designs. To
9 address these issues, we examined how strongly face inversion affects sensitivity to gaze
10 direction in a well-powered, sex-balanced sample. A total of 190 participants judged
11 whether the eyes in briefly presented upright or inverted faces were looking directly at
12 them or not. Inversion reliably reduced sensitivity to gaze direction, yielding a
13 medium-to-large effect size. Females showed modestly higher overall sensitivity than
14 males (a small-to-medium effect), whereas the inversion effect was highly similar for
15 females and males. These findings show that brief gaze judgements are not immune to
16 inversion, even in a task that could in principle be based largely on eye-region
17 information. They provide quantitative constraints that models of gaze perception should
18 accommodate, including the largely sex-invariant inversion effect.

19

20

21 **Keywords:**

22 Gaze inversion effect; Gaze perception; Sex invariance; Sex difference

23

Running title: *Gaze Inversion Effect*

1 **Acknowledgements:**

2 This study was supported by grants from the Japan Society for the Promotion of Science
3 (JP19H04433 to DM; JP22H00090 and JP25H01234 to KW). The photographed model
4 acknowledges the use of the face images in Figure 1 with written informed consent. The
5 dataset analyzed during the current study is available at GitHub:
6 https://github.com/dicemt/matsuyoshi_gaze_inversion_effect

7

8 **Abbreviation:**

9 FIE: face inversion effect; GIE: gaze inversion effect

10

11 **Competing interests:**

12 None of the authors have any potential conflicts of interest.

13

14 **Authors' contributions:**

15 All authors designed the study and wrote the manuscript. DM and KK collected stimulus
16 materials. DM collected and analyzed the data.

17

18

19

Running title: *Gaze Inversion Effect*

1

1. Introduction

2

3 Humans are experts at distinguishing and recognizing faces under various
4 conditions. People can detect subtle differences and distinguish between thousands of
5 individuals (Jenkins et al., 2018) even though typical human faces share a strikingly
6 similar overall structure (i.e., two eyes, a nose, and a mouth). However, this ability
7 deteriorates markedly when faces are inverted (Yin, 1969). Turning a face upside-down
8 makes it particularly difficult to recognise, whereas inverting many other types of objects
9 does not affect recognition performance as much.

10 This face inversion effect (FIE) is exceptionally robust across observers and tasks. It
11 has led researchers to speculate that there are *qualitative* differences between upright and
12 inverted face processing, with a shift from holistic or configural processing for upright
13 faces to more piecemeal or featural processing for inverted faces (Maurer et al., 2002).
14 From this qualitative view, perceiving a face as a coherent whole (rather than as a
15 collection of separate elements) is an idiosyncratic feature that makes face recognition
16 special (Farah et al., 1998; Moscovitch et al., 1997). A key prediction of this view is that,
17 because of the shift in processing mode, the processing of individual features should be
18 comparatively spared when a face is presented upside down. By contrast, more recent
19 studies have suggested that the differences in processing upright and inverted faces
20 are *quantitative* (i.e., a matter of degree in processing efficiency) rather than qualitative
21 (i.e., invoking distinct processing mechanisms) (Gold et al., 2012; Jiang et al., 2006;
22 Matsuyoshi et al., 2015; Sekuler et al., 2004). Sekuler et al. (2004), for example, used a
23 response-classification technique to identify the most discriminative stimulus regions that

Running title: Gaze Inversion Effect

1 drove performance and found that observers relied on similar local regions across
2 orientations but extracted information less efficiently from inverted faces. Gold et al.
3 (2012) further showed that face perception is no better than would be predicted by
4 Bayesian integration of information from individual facial features. If observers used a
5 truly holistic face representation, they should exhibit superoptimal performance for whole
6 faces (better than the sum of their parts), yet performance was comparable to the Bayesian
7 prediction derived from features presented in isolation. These findings are difficult to
8 reconcile with a strict qualitative shift and instead support a quantitative view in which
9 similar recognition strategies operate for both upright and inverted faces, albeit less
10 efficiently for the latter. At the same time, the two views are not mutually exclusive, and
11 dissociable neural pathways may still contribute to relatively holistic and more
12 feature-based mechanisms (Matsuyoshi et al., 2015).

13 The behavioural FIE itself is very strong and has been confirmed by rigorous
14 replications. However, it is less clear whether inversion impairs the perception of
15 individual facial features. In particular, whether sensitivity to information conveyed by
16 the eyes, such as gaze direction, varies with face orientation remains unclear. Several
17 studies have reported that inversion has little to no effect on the ability to distinguish
18 faces that differ only in the shape of individual features (Freire et al., 2000; Le Grand et
19 al., 2001). For example, upright faces with different hairstyles and costumes tend to be
20 perceived as different individuals even though their internal features are identical (Sinha
21 & Poggio, 1996), and composite-face paradigms (Murphy et al., 2017) have shown that
22 inversion can markedly improve the ability to identify individuals based on their internal
23 features (Hole, 1994; Young et al., 1987). Xu and Tanaka (2013) also reported that

Running title: Gaze Inversion Effect

1 inversion had little or no effect on discriminating featural and configural differences in
2 the eye region (while severely disrupting the perception of changes in the lower region of
3 the face). These results suggest that featural processing, at least for some aspects of eye
4 or gaze information, is preserved or even enhanced when faces are upside-down. By
5 contrast, numerous studies have reported the opposite pattern, namely that featural
6 processing becomes more difficult when faces are inverted. One prominent example is
7 the Thatcher illusion (Thompson, 1980), in which observers fail to notice local feature
8 changes in an inverted face, even though the changes are obvious in an upright face.
9 Other studies have suggested that isolated features presented without a full face context
10 can still produce inversion effects (Leder et al., 2001; Rakover & Teucher, 1997). Taken
11 together, the literature provides evidence for both relative preservation and clear costs of
12 inversion in processing individual features, making it difficult to reach consensus on how
13 inversion affects feature-level information.

14 Methodological differences among studies may contribute to these discrepancies.
15 Sample size, participant demographics, study design, and task settings all vary
16 substantially across the literature. In particular, sample size and participant sex
17 composition are critical factors in face processing research. Insufficient statistical power
18 due to small samples can increase the likelihood of false positives and undermine the
19 reliability of findings (Button et al., 2013; Simmons et al., 2011). Moreover, females
20 often outperform males in face processing tasks (Bayliss et al., 2005; Goodman et al.,
21 2012; Heisz et al., 2013; Matsuyoshi et al., 2014; Matsuyoshi & Watanabe, 2021;
22 McClure, 2000), yet studies have not always monitored or balanced the sex ratio unless
23 the sex differences were the primary focus. Previous inconsistencies may therefore partly

Running title: Gaze Inversion Effect

1 reflect unaccounted variance in participant demographics. Given the recurring reports of
2 a female advantage and sex as a potential moderator across diverse face processing tasks
3 (Cellerino et al., 2004; Lewin & Herlitz, 2002; Matsuyoshi et al., 2014), balancing the
4 sample for sex and explicitly testing for sex effects may help to obtain more precise
5 estimates of the inversion cost.

6 In the present study, we examined the gaze inversion effect, namely the impact of
7 face inversion on sensitivity to small deviations from direct gaze. Our primary goal was
8 to obtain a precise estimate of the extent to which face inversion affects sensitivity to
9 gaze direction under tightly controlled psychophysical conditions in a large, sex-balanced
10 sample. Observers judged whether the eyes in briefly presented faces were looking
11 directly at them, with faces shown upright or inverted. The judgement is driven primarily
12 by eye-region cues, although observers may also use broader facial context. It therefore
13 provides an informative test of whether inversion costs are confined to clearly global,
14 configural aspects of faces or also extend to eye-region-based judgements. A second,
15 more exploratory goal was to examine whether the inversion effect on gaze
16 discrimination differs between females and males, building on prior reports suggesting
17 that sex may moderate performance on tasks involving facial cues. This design allowed
18 us to quantify the magnitude of inversion costs on gaze discrimination and to assess
19 whether these costs generalise across sexes, thereby providing quantitative constraints
20 that theories of gaze perception should accommodate.

Running title: *Gaze Inversion Effect*

1

2. Materials and Methods

2

3 2.1 Participants

4 We assumed a medium-sized effect of sex on gaze direction discrimination based on
5 studies showing sex differences in face or gaze perception (Bayliss et al., 2005; Goodman
6 et al., 2012; Matsuyoshi et al., 2014; Matsuyoshi & Watanabe, 2021). To achieve a power
7 ($1 - \beta$) of 0.95 and a medium effect size (Cohen's $f = 0.25$) while assuming a high
8 correlation between the measures ($r = 0.7$ between upright and inverted gaze processing), a
9 sample of 180 (90 for each group) is required to detect a significant difference ($\alpha = 0.05$)
10 between participant sexes (Cohen, 1988; Faul et al., 2007). In addition, we conservatively
11 assumed the effect size of inversion as small-to-medium (Cohen's $f = 0.15$) because of the
12 mixed results of previous studies. A sample of 90 (45 for each group) is required to detect a
13 significant difference ($\alpha = 0.05$, $1 - \beta = 0.95$, $r = 0.7$) between upright and inverted faces
14 with a small-to-medium effect size, and a sample of 90 (45 for each group) is required to
15 detect a significant interaction ($\alpha = 0.05$, $1 - \beta = 0.95$, $r = 0.7$) between the face orientation
16 and sex with a small-to-medium effect size. Therefore, we decided to recruit a sample of
17 more than 200 participants to confirm small-to-medium-sized effects between conditions
18 and to overcome the potential loss of analyzable data, often caused by participants'
19 inappropriate responses or technical errors.

20 Two hundred and thirteen young adults participated. All had normal or
21 corrected-to-normal vision, and none reported a history of neurological or developmental
22 disorders. The study was conducted in accordance with the Declaration of Helsinki and
23 was approved by the Waseda University Ethics Committee. Each participant gave written

1 *Running title: Gaze Inversion Effect*

2 informed consent before the experiment. Twenty-three participants were excluded
3 because their proportion of ‘direct’ responses on 0° trials was below 60%. This criterion
4 also served as a basic post-hoc screen to ensure participants were engaged with the task
5 and could perform it at a minimal level of proficiency. After these exclusions, data from
6 190 participants (self-reported 92 females, 98 males; mean age: 21.3 years; range: 18-29
years) remained for analysis.

7

8 **2.2 Stimuli**

9 Face images were obtained from three male and three female models, looking either
10 directly at the camera (0°) or at 10°, 20°, or 30° to the left or right, with their faces square
11 to the camera, and were photographed by the authors (Matsuyoshi et al., 2014). Images
12 were grey-scaled and subtended approximately 12° × 17° of the visual angle. The mean
13 luminance was normalized across images. A mask stimulus was generated by
14 grid-scrambling the average face stimuli.

15

16 **2.3 Procedure**

17 Participants viewed the stimuli on a 21-inch CRT monitor at a distance of 57 cm
18 with their heads resting on a chinrest and judged whether the eyes were looking directly
19 at them (Matsuyoshi et al., 2014). All stimuli were presented against a black background.
20 Each trial began with an upright or inverted face stimulus (20 ms) followed by a brief
21 blank screen (20, 40, or 60 ms), a visual mask (100 ms), and finally, a fixation cross (until
22 response) (Fig. 1). Face images were either direct gaze (0°) or left- or right-averted gaze
23 (10°, 20°, or 30°). The vertical positions of the eyes were aligned between upright and

Running title: *Gaze Inversion Effect*

1 inverted faces and located along the vertical centre of the display. We used a variable
2 interstimulus interval (ISI) between the face and the mask to control task difficulty. Each
3 left or right angle was presented 12 times, except for 0° stimuli, which were presented 24
4 times, for each of the three ISIs for both face orientations, resulting in 576 trials in total
5 (6 gaze angles [left or right 10-30°] × 3 ISIs × 2 face orientations × 12 trials + 1 gaze
6 angle [0°] × 3 ISIs × 2 face orientations × 24 trials). The two face orientations were
7 presented separately in four alternating blocks of 144 trials each, with the order
8 counterbalanced across participants (i.e., either upright-inverted-upright-inverted or
9 inverted-upright-inverted-upright). Gaze directions and ISIs were randomised across
10 trials. Participants performed the main experiment after 30 practice trials.

11

12 **2.4 Analysis**

13 Responses from left- and right-averted gaze stimuli were pooled for each absolute
14 angle. In addition, responses from different ISIs were also pooled. The gaze threshold
15 was defined as the angle at which a 50% response was obtained, as estimated by a local
16 linear fit of a nonparametric psychometric function (Żychaluk & Foster, 2009) to each
17 observer's 'direct' responses as a function of gaze angle. This threshold represents the
18 boundary of the 'cone of direct gaze' (i.e., the range of perceived direct gaze) (Gamer &
19 Heiko, 2007; Jun et al., 2013), or the point of subjective equality for 'direct' vs. 'averted'
20 judgments, rather than a discrimination threshold between two non-zero averted gaze
21 angles as often used in typical psychophysical paradigms. A higher threshold indicated
22 lower sensitivity to gaze direction. The significance level was set at $\alpha = 0.05$.

23

Running title: *Gaze Inversion Effect*

1

3. Results

2

3 3.1 Psychometric functions

4 We performed a mixed ANOVA (with Greenhouse–Geisser correction applied
5 where sphericity was violated) on the proportion of ‘direct’ responses, with angle (0°, 10°,
6 20°, 30°) and orientation (upright, inverted) as within-subject factors and participant sex
7 (male, female) as a between-subject factor (Fig. 2a). The main effects of the angle ($F_{(1.99,$
8 $373.89)} = 4796.912, p = 9.854 \times 10^{-270}, \eta_p^2 = 0.964, \omega_G^2 = 0.881$, Cohen’s $f = 2.737$), face
9 orientation ($F_{(1, 188)} = 158.223, p = 1.007 \times 10^{-26}, \eta_p^2 = 0.457, \omega_G^2 = 0.064$, Cohen’s $f =$
10 0.091), and participant sex ($F_{(1, 188)} = 9.758, p = 0.002, \eta_p^2 = 0.049, \omega_G^2 = 0.014$,
11 Cohen’s $f = 0.044$) were significant. This pattern indicates a decrease in ‘direct’ responses
12 with increasing angle, higher ‘direct’ responses in the inverted compared to the upright
13 face condition, and higher ‘direct’ responses in male compared to female participants,
14 respectively.

15 We found significant interactions between the angle and orientation ($F_{(2.14, 402.85)} =$
16 $276.829, p = 9.499 \times 10^{-80}, \eta_p^2 = 0.596, \omega_G^2 = 0.117$, Cohen’s $f = 0.127$) and between
17 the angle and participant sex ($F_{(1.99, 373.89)} = 6.847, p = 0.001, \eta_p^2 = 0.035, \omega_G^2 = 0.009$,
18 Cohen’s $f = 0.035$), while no significant interactions were found between the orientation
19 and sex ($F_{(1, 188)} = 1.622, p = 0.204, \eta_p^2 = 0.009, \omega_G^2 = 0.000$, Cohen’s $f = 0.009$) and
20 between the angle, orientation, and sex ($F_{(2.14, 402.85)} = 0.962, p = 0.388, \eta_p^2 = 0.005, \omega_G^2$
21 $= -1.840 \times 10^{-5}$, Cohen’s $f = 0.007$). Follow-up tests revealed higher ‘direct’ responses in
22 the upright compared with the inverted face condition at an angle of 0° ($F_{(1, 188)} = 68.290$,
23 $p = 2.486 \times 10^{-14}, \eta_p^2 = 0.267, \omega_G^2 = 0.094$, Cohen’s $f = 0.325$), and higher ‘direct’

Running title: *Gaze Inversion Effect*

1 responses in the inverted compared to the upright face condition at angles between 10 and
2 30° ($F_{(1, 188)}$ values > 65.813 , p values $< 6.274 \times 10^{-14}$, η_p^2 values > 0.259 , ω_G^2 values $>$
3 Cohen's f values > 0.298). In addition, male participants showed higher 'direct'
4 responses at angles between 10 and 30° than female participants ($F_{(1, 188)}$ values > 8.673 ,
5 p values < 0.004 , η_p^2 values > 0.044 , ω_G^2 values > 0.031 , Cohen's f values > 0.165). By
6 contrast, male and female participants showed similar 'direct' responses at an angle of 0°
7 ($F_{(1, 188)} = 0.215$, $p = 0.643$, $\eta_p^2 = 0.001$, $\omega_G^2 = -0.003$, Cohen's $f = 0.027$).
8

9 **3.2 Gaze thresholds**

10 A 2 (upright, inverted) \times 2 (male, female) mixed ANOVA on the 50%
11 gaze-perception threshold (Fig. 2b) showed a significant main effect of face orientation
12 ($F_{(1, 188)} = 109.666$, $p = 1.650 \times 10^{-20}$, $\eta_p^2 = 0.368$, $\omega_G^2 = 0.111$, Cohen's $f = 0.352$) with
13 a larger threshold in the inverted compared to the upright face condition
14 (medium-to-large effect size), and a significant main effect of sex ($F_{(1, 188)} = 7.425$, $p =$
15 0.007 , $\eta_p^2 = 0.038$, $\omega_G^2 = 0.026$, Cohen's $f = 0.165$) with a larger threshold for male
16 compared to female participants (small-to-medium effect size). However, there was no
17 significant interaction between the face orientation and participant sex ($F_{(1, 188)} = 2.073$, p
18 $= 0.152$, $\eta_p^2 = 0.011$, $\omega_G^2 = 0.001$, Cohen's $f = 0.046$), showing that both sexes showed
19 comparable inversion effects (females, $t_{(91)} = 6.639$, $p = 2.244 \times 10^{-9}$, Cohen's $d = 0.692$
20 [95% CI: 0.394, 0.989]; males, $t_{(97)} = 8.174$, $p = 1.142 \times 10^{-12}$, Cohen's $d = 0.826$ [95%
21 CI: 0.533, 1.117]; females – males, $t_{(187.75)} = 1.444$, $p = 0.150$, Cohen's $d = 0.210$ [95%
22 CI: -0.076, 0.495]), whereas female participants had a higher sensitivity than male
23 participants for discriminating gaze direction irrespective of face orientation (upright,

Running title: Gaze Inversion Effect

1 $t_{(170.18)} = 2.309, p = 0.022$, Cohen's $d = 0.335$ [95% CI: 0.048, 0.621]; inverted, $t_{(177.05)} =$
2 $2.6104, p = 0.010$, Cohen's $d = 0.379$ [95% CI: 0.091, 0.666]).

3 There was a significant correlation between the upright and inverted gaze thresholds
4 (Fig. 2c; overall, $r = 0.631, p = 1.556 \times 10^{-22}$; males, $r = 0.693, p = 2.531 \times 10^{-15}$;
5 females, $r = 0.461, p = 3.844 \times 10^{-6}$), indicating that there are partly shared mechanisms
6 in upright and inverted gaze processing. The correlation was significantly greater in male
7 than in female participants ($z = 2.415, p = 0.015$). Note, however, that the difference was
8 not robust to the exclusion of two outliers (one male and one female participant with the
9 largest inverted gaze thresholds), after which it was no longer significant ($z = 1.883, p =$
10 0.060).

11

12

Running title: *Gaze Inversion Effect*

1

4. Discussion

2

3 Using a well-powered cohort with an a priori determined sample size, the present
4 study showed that inverting the face reliably impaired sensitivity to small deviations from
5 direct gaze. At the same time, we observed higher overall gaze sensitivity in females than
6 in males, while the magnitude of the inversion cost was closely comparable across sexes.

7 We recognise that gaze perception involves distinctive signalling properties, such as the
8 high contrast between the iris and sclera, which may set it apart from other facial
9 information (Kano, 2023; Kobayashi & Kohshima, 1997). It would therefore be
10 inappropriate to assume that the present results generalise automatically to all facial
11 features or that they fully resolve the broader debate between qualitative and quantitative
12 views of inversion effects. Rather, they provide a useful boundary condition for these
13 theories. Specifically, they are difficult to reconcile with a strict qualitative view that
14 treats feature-level processing as largely preserved under inversion. The fact that
15 inversion produces a clear decrement in performance for a task that can in principle be
16 supported by relatively local eye information suggests that this assumption does not hold
17 for at least one highly salient facial cue (eye gaze). Our data do not establish that all
18 feature processing is governed by purely quantitative differences, but they do show that
19 the qualitative prediction of preserved featural processing cannot be universal.

20

21 **4.1 Qualitative and quantitative views of the inversion effects**

22 Several studies have suggested that inversion preserves featural processing while
23 severely impairing holistic or configural processing, such as the distances between

Running title: Gaze Inversion Effect

1 features (Freire et al., 2000; Le Grand et al., 2001; Rossion, 2008; Tanaka & Sengco,
2 1997; Young et al., 1987). On this qualitative view, inversion is assumed to prompt a shift
3 toward feature-based encoding, so that performance on tasks driven by individual
4 features should be relatively similar for upright and inverted faces (Farah et al., 1995). In
5 particular, the eyes have sometimes been regarded as the least susceptible feature to
6 inversion. For example, Xu and Tanaka (2013) reported that inversion did not affect the
7 perception of changes in the eye region, whereas it degraded sensitivity to changes in the
8 mouth region ($N = 22$, 40% female). Although their finding appears inconsistent with
9 ours, their task presented faces for 500 ms, which is substantially longer than the 20-ms
10 exposure used here. Such long encoding durations may have attenuated or masked any
11 disadvantage for inverted relative to upright faces, and behavioural performance in their
12 study was near ceiling (about 90%), leaving limited room for inversion costs to emerge.

13 By contrast, quantitative views posit that similar mechanisms are engaged for
14 upright and inverted faces but operate less efficiently when faces are inverted (Gold et al.,
15 2012; Jiang et al., 2006; Sekuler et al., 2004). Jenkins and Langton (2003) reported that
16 inversion impaired sensitivity to gaze direction, although their study used a
17 between-participants design, a small sample size ($N = 6$ per group), and an unknown sex
18 ratio. Furthermore, Rakover and Teucher (1997) ($N = 16$, 73% female) and Leder et al.
19 (2001) ($N = 20$, 90% female) likewise found it more difficult to process individual
20 features when they were inverted. However, the limited and often unbalanced samples in
21 these studies make it difficult to draw firm conclusions about the size and robustness of
22 the effect. Our findings help clarify the extent to which inversion affects gaze perception
23 in a large, sex-balanced sample, using tightly controlled psychophysical methods.

Running title: *Gaze Inversion Effect*

1 Although prior evidence hinted that inversion can impair gaze direction sensitivity
2 (Jenkins & Langton, 2003), the strength and generality of this effect had not been firmly
3 established across paradigms and larger cohorts, leading to ambiguity in the literature.
4 The present study was designed to address this gap by quantifying the gaze inversion cost
5 with greater precision in a well-powered cohort with a balanced sex ratio.

6 It is also important to recognise that the questions of ‘qualitative versus quantitative’
7 and ‘configural versus featural’ are conceptually distinct, even though they are
8 intertwined in empirical work (Gold et al., 2012; Maurer et al., 2002; Sekuler et al., 2004).
9 The qualitative view typically links upright faces with configural processing and inverted
10 faces with featural processing. Quantitative accounts, by contrast, do not assume such an
11 orientation-dependent processing style; instead, they propose that inversion generally
12 reduces processing efficiency. Our design targeted a key implication of a *strict* qualitative
13 account: if featural processing is preserved or even enhanced for inverted faces, then
14 performance on a task based largely on information from the eye region should show
15 little or no impairment under inversion. In contrast to this prediction, we observed a clear
16 impairment in gaze discrimination when faces were inverted. This suggests that, at least
17 for gaze judgements of the sort studied here, inversion costs are not confined to clearly
18 global, configural aspects of faces but extend to tasks that can be supported largely by
19 eye-region cues.

20

21 **4.2 The effects of task settings on inversion effects**

22 Although we demonstrated an inversion-induced impairment in gaze sensitivity,
23 many other studies (Freire et al., 2000; Hole, 1994; Le Grand et al., 2001; Young et al.,

Running title: Gaze Inversion Effect

1 1987), including large-sample investigations ($N = 242\text{--}282$) (Rezlescu et al., 2017; Susilo
2 et al., 2013), have reported preserved or even improved performance when comparing
3 individual features in inverted faces. These apparent discrepancies are unlikely to result
4 from low statistical power or an imbalanced sex ratio, since both these large-sample
5 studies and the present one used sizeable cohorts, and we (48% female) and Susilo et al.
6 (2013) (52% female) achieved approximately balanced sex ratios. We suggest instead that
7 task settings may be a major source of divergence. Featural processing is sometimes
8 preserved (or enhanced) despite the diminished sensitivity, perhaps not because
9 parts-based processing is dominant for inverted faces (Farah et al., 1995; Tanaka & Farah,
10 1993), but because the tasks require discrimination between exemplars from the same
11 facial parts (e.g., comparing the eyes of different people). Thus, even though perceptual
12 sensitivity *per se* decreases, the ability to compare two signals may be relatively unlikely
13 to deteriorate because sensitivity to both signals, but not to either, decreases. Moreover,
14 the apparent dominance of feature-based processing for inverted faces may result from
15 greater difficulty decomposing facial parts in upright faces, rather than from enhanced
16 featural processing for inverted faces. Processing an upright face likely involves tight
17 integration of internal features, making it difficult to parse the face into isolated features
18 (Maurer et al., 2002); however, an inverted face is less likely to undergo this integration.
19 Under such circumstances, explicit behavioural performance may depend less on whether
20 inversion alters the underlying processing style and more on how the specific task elicits
21 comparisons between stimuli, the distribution of attention across features, and the overall
22 processing load. In this context, our finding that inversion impairs gaze sensitivity in a
23 task that emphasises brief, single-stimulus judgements complements prior work using

15 *Running title: Gaze Inversion Effect*

1 comparison tasks and suggests that different paradigms may reveal different facets of
2 how inversion affects feature-level information.

3 Note that the effect size of the GIE was smaller than that of the typical FIE. Despite
4 a huge effect of the FIE in a face recognition task ($d = 1.298$) (Matsuyoshi et al., 2015),
5 we found a medium-to-large effect of the GIE in the present study ($d = 0.761$, across all
6 participants). One reason for the tremendous difference in effect size might be that a
7 whole face accumulates the impairments in the processing of multiple facial features
8 (Gold et al., 2012). Although susceptibility to inversion may differ across parts (Rakover
9 & Teucher, 1997; Xu & Tanaka, 2013), these differences may aggregate to produce a
10 large effect size for the FIE. Alternatively, the large effect size difference may simply
11 reflect differences in processing load between the tasks. The present task encouraged
12 observers to focus on the eyes. By contrast, typical FIE tasks do not explicitly encourage
13 observers to focus on a facial feature but rather on a whole face. Encoding a whole face
14 may be more challenging than encoding a single facial feature.

15

16 **4.3 Sex differences in face and gaze processing**

17 Consistent with numerous studies reporting female advantages in face processing
18 (Bayliss et al., 2005; Goodman et al., 2012; Heisz et al., 2013; Matsuyoshi et al., 2014;
19 Matsuyoshi & Watanabe, 2021; McClure, 2000), we found that females outperformed
20 males in gaze direction sensitivity. The effect size for this female advantage in upright
21 gaze sensitivity (Cohen's $d = 0.3351$) was notably smaller than that reported for upright
22 face recognition in a previous study from our group (Cohen's $d = 0.643$, $N = 180$, 45%
23 female) (Matsuyoshi & Watanabe, 2021). This may indicate that tasks that rely more on

Running title: Gaze Inversion Effect

1 relatively local feature information, such as brief gaze judgements, are likely to manifest
2 weaker effects than whole-face processing, perhaps because this task draws primarily on
3 a single feature, so inversion-related costs may not compound across multiple features.

4 The observed female superiority in gaze sensitivity may reflect that females use
5 more efficient scanning strategies or have a lower threshold for detecting subtle social
6 signals. While the exact origin of this difference remains debated, prior work suggests
7 that both biological factors (Bölte et al., 2023; Kiesow et al., 2020; Kundakovic &
8 Tickerhoof, 2024) and psychological factors, such as internalized social norms or
9 stereotypes (Briton & Hall, 1995; Crandall et al., 2002; Gavrillets & Richerson, 2017;
10 Rutland et al., 2005), may contribute to sex and gender differences in social cognition. In
11 the present study, females showed higher baseline sensitivity, perhaps reflecting some
12 combination of these factors, but the relative cost of inversion was similar for females
13 and males. This pattern suggests that the computations supporting gaze discrimination are
14 similarly affected by inversion across sexes, even though baseline performance levels
15 differ.

16 A notable limitation of our study is that we treated sex/gender in a binary fashion,
17 and findings solely depended on self-reported sex/gender. Outcomes can vary across
18 individuals with different birth-assigned sexes and gender identities (Bölte et al., 2023;
19 Joel, 2021). Definitions of sex/gender are continually evolving, and sex/gender is now
20 understood as a spectrum rather than as simple binary categories (Ainsworth, 2015;
21 Kundakovic & Tickerhoof, 2024; Rosenthal, 2021). Future research that more fully
22 incorporates variation across the sex/gender spectrum will be necessary for understanding
23 how biological and sociocultural factors jointly shape face and gaze processing.

1
2 *Running title: Gaze Inversion Effect*

3
4 **4.4 Conclusion**

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
In conclusion, our study provides robust evidence for an inversion-induced impairment in gaze direction sensitivity (GIE). While our findings do not resolve the broader debate over the nature of the FIE, they directly challenge a strict interpretation of the qualitative view, which posits that the processing of individual facial features is preserved under inversion. Thus, they nonetheless provide a critical boundary condition for theories assuming preserved parts-based processing. Our results demonstrate that, at least for the crucial feature of eye gaze, sensitivity is significantly diminished when the face is inverted, even in a task that can in principle be supported by information within the eye region. Since we did not incorporate tasks other than discriminating gaze direction, further research is required to clarify the conditions under which processing of facial feature information is preserved or impaired by inversion. Nevertheless, our findings establish the GIE as a reliable phenomenon for brief gaze judgements and highlight the value of using well-powered, sex-balanced samples when investigating how inversion shapes both face perception and individual differences in gaze processing.

Running title: *Gaze Inversion Effect*

References

Ainsworth, C. (2015). Sex redefined. *Nature*, 518(7539), 288–291. <https://doi.org/10.1038/518288a>

Bayliss, A. P., di Pellegrino, G., & Tipper, S. P. (2005). Sex differences in eye gaze and symbolic cueing of attention. *The Quarterly Journal of Experimental Psychology Section A*, 58(4), 631–650. <https://doi.org/10.1080/02724980443000124>

Bölte, S., Neufeld, J., Marschik, P. B., Williams, Z. J., Gallagher, L., & Lai, M.-C. (2023). Sex and gender in neurodevelopmental conditions. *Nature Reviews Neurology*, 19(3), 136–159. <https://doi.org/10.1038/s41582-023-00774-6>

Briton, N. J., & Hall, J. A. (1995). Beliefs about female and male nonverbal communication. *Sex Roles*, 32(1), 79–90. <https://doi.org/10.1007/BF01544758>

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafo, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. *Nature Reviews Neuroscience*, 14(5), 365–376. <https://doi.org/10.1038/nrn3475>

Cellerino, A., Borghetti, D., & Sartucci, F. (2004). Sex differences in face gender recognition in humans. *Brain Research Bulletin*, 63(6), 443–449. <https://doi.org/10.1016/j.brainresbull.2004.03.010>

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Lawrence Erlbaum.

Crandall, C. S., Eshleman, A., & O'Brien, L. (2002). Social norms and the expression and suppression of prejudice: The struggle for internalization. *Journal of Personality*

Running title: *Gaze Inversion Effect*

and *Social Psychology*, 82(3), 359–378.

<https://doi.org/10.1037/0022-3514.82.3.359>

Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect? *Journal of Experimental Psychology: Human Perception and Performance*, 21(3), 628–634. <https://doi.org/10.1037/0096-1523.21.3.628>

Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). What is “special” about face perception? *Psychological Review*, 105(3), 482–498. <https://doi.org/10.1037/0033-295x.105.3.482>

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behavior Research Methods*, 39(2), 175–191. <https://doi.org/10.3758/BF03193146>

Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configural information: Direct evidence. *Perception*, 29(2), 159–170.

<https://doi.org/10.1068/p3012>

Gamer, M., & Heiko, H. (2007). Are you looking at me? Measuring the cone of gaze. *Journal of Experimental Psychology: Human Perception and Performance*, 33(3), 705–715.

Gavrilets, S., & Richerson, P. J. (2017). Collective action and the evolution of social norm internalization. *Proceedings of the National Academy of Sciences of the United States of America*, 114(23), 6068–6073. <https://doi.org/doi:10.1073/pnas.1703857114>

Gold, J. M., Mundy, P. J., & Tjan, B. S. (2012). The perception of a face is no more than

Running title: Gaze Inversion Effect

the sum of its parts. *Psychological Science*, 23(4), 427–434.
<https://doi.org/10.1177/0956797611427407>

Goodman, L. R., Phelan, H. L., & Johnson, S. A. (2012). Sex differences for the recognition of direct versus averted gaze faces. *Memory*, 20(3), 199–209.
<https://doi.org/10.1080/09658211.2011.651089>

Heisz, J. J., Pottruff, M. M., & Shore, D. I. (2013). Females scan more than males: a potential mechanism for sex differences in recognition memory. *Psychological Science*, 24(7), 1157–1163. <https://doi.org/10.1177/0956797612468281>

Hole, G. J. (1994). Configurational factors in the perception of unfamiliar faces. *Perception*, 23(1), 65–74. <https://doi.org/10.1068/p160747>

Jenkins, J., & Langton, S. R. H. (2003). Configural processing in the perception of eye-gaze direction. *Perception*, 32(10), 1181–1188. <https://doi.org/10.1068/p3398>

Jenkins, R., Dowsett, A. J., & Burton, A. M. (2018). How many faces do people know? *Proceedings of the Royal Society B: Biological Sciences*, 285(1888), 20181319.
<https://doi.org/10.1098/rspb.2018.1319>

Jiang, X., Rosen, E., Zeffiro, T., VanMeter, J., Blanz, V., & Riesenhuber, M. (2006). Evaluation of a shape-based model of human face discrimination using fMRI and behavioral techniques. *Neuron*, 50(1), 159–172.
<https://doi.org/10.1016/j.neuron.2006.03.012>

Joel, D. (2021). Beyond the binary: Rethinking sex and the brain. *Neuroscience & Biobehavioral Reviews*, 122, 165–175.
<https://doi.org/10.1016/j.neubiorev.2020.11.018>

Jun, Y. Y., Mareschal, I., Clifford, C. W. G., & Dadds, M. R. (2013). Cone of direct gaze

Running title: Gaze Inversion Effect

as a marker of social anxiety in males. *Psychiatry Research*, 210(1), 193–198.

Kano, F. (2023). Evolution of the uniformly white sclera in humans: critical updates. *Trends in Cognitive Sciences*, 27(1), 10–12.
<https://doi.org/10.1016/j.tics.2022.09.011>

Kiesow, H., Dunbar, R. I. M., Kable, J. W., Kalenscher, T., Vogeley, K., Schilbach, L., Marquand, A. F., Wiecki, T. V., & Bzdok, D. (2020). 10,000 social brains: Sex differentiation in human brain anatomy. *Science Advances*, 6(12), eaaz1170.
<https://doi.org/10.1126/sciadv.aaz1170>

Kobayashi, H., & Kohshima, S. (1997). Unique morphology of the human eye. *Nature*, 387(6635), 767–768.

Kundakovic, M., & Tickerhoof, M. (2024). Epigenetic mechanisms underlying sex differences in the brain and behavior. *Trends in Neurosciences*, 47(1), 18–35.
<https://doi.org/10.1016/j.tins.2023.09.007>

Le Grand, R., Mondloch, C. J., Maurer, D., & Brent, H. P. (2001). Neuroperception: Early visual experience and face processing. *Nature*, 410(6831), 890–890.
<https://doi.org/10.1038/35073749>

Leder, H., Candrian, G., Huber, O., & Bruce, V. (2001). Configural features in the context of upright and inverted faces. *Perception*, 30(1), 73–83.
<https://doi.org/10.1080/p2911>

Lewin, C., & Herlitz, A. (2002). Sex differences in face recognition—Women's faces make the difference. *Brain and Cognition*, 50(1), 121–128.
[https://doi.org/10.1016/S0278-2626\(02\)00016-7](https://doi.org/10.1016/S0278-2626(02)00016-7)

Matsuyoshi, D., Kuraguchi, K., Tanaka, Y., Uchida, S., Ashida, H., & Watanabe, K.

Running title: Gaze Inversion Effect

(2014). Individual differences in autistic traits predict the perception of direct gaze for males, but not for females. *Molecular Autism*, 5(1), 12. <https://doi.org/10.1186/2040-2392-5-12>

Matsuyoshi, D., Morita, T., Kochiyama, T., Tanabe, H. C., Sadato, N., & Kakigi, R. (2015). Dissociable cortical pathways for qualitative and quantitative mechanisms in the face inversion effect. *The Journal of Neuroscience*, 35(10), 4268–4279. <https://doi.org/10.1523/JNEUROSCI.3960-14.2015>

Matsuyoshi, D., & Watanabe, K. (2021). People have modest, not good, insight into their face recognition ability: a comparison between self-report questionnaires. *Psychological Research*, 85(4), 1713–1723. <https://doi.org/10.1007/s00426-020-01355-8>

Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. *Trends in Cognitive Sciences*, 6(6), 255–260. [https://doi.org/10.1016/S1364-6613\(02\)01903-4](https://doi.org/10.1016/S1364-6613(02)01903-4)

McClure, E. B. (2000). A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents. *Psychological Bulletin*, 126(3), 424–453. <https://doi.org/10.1037/0033-2909.126.3.424>

Moscovitch, M., Winocur, G., & Behrmann, M. (1997). What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. *Journal of Cognitive Neuroscience*, 9(5), 555–604. <https://doi.org/10.1162/jocn.1997.9.5.555>

Murphy, J., Gray, K. L. H., & Cook, R. (2017). The composite face illusion. *Psychonomic*

Running title: *Gaze Inversion Effect*

Bulletin & Review, 24(2), 245–261. <https://doi.org/10.3758/s13423-016-1131-5>

Rakover, S. S., & Teucher, B. (1997). Facial inversion effects: Parts and whole relationship. *Perception & Psychophysics*, 59(5), 752–761.
<https://doi.org/10.3758/BF03206021>

Rezlescu, C., Susilo, T., Wilmer, J. B., & Caramazza, A. (2017). The inversion, part-whole, and composite effects reflect distinct perceptual mechanisms with varied relationships to face recognition. *Journal of Experimental Psychology: Human Perception and Performance*, 43(12), 1961–1973.
<https://doi.org/10.1037/xhp0000400>

Rosenthal, S. M. (2021). Challenges in the care of transgender and gender-diverse youth: an endocrinologist’s view. *Nature Reviews Endocrinology*, 17(10), 581–591.
<https://doi.org/10.1038/s41574-021-00535-9>

Rosson, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. *Acta Psychologica*, 128(2), 274–289.
<https://doi.org/10.1016/j.actpsy.2008.02.003>

Rutland, A., Cameron, L., Milne, A., & McGeorge, P. (2005). Social norms and self-presentation: Children’s implicit and explicit intergroup attitudes. *Child Development*, 76(2), 451–466. <https://doi.org/10.1111/j.1467-8624.2005.00856.x>

Sekuler, A. B., Gaspar, C. M., Gold, J. M., & Bennett, P. J. (2004). Inversion leads to quantitative, not qualitative, changes in face processing. *Current Biology*, 14(5), 391–396. <https://doi.org/10.1016/j.cub.2004.02.028>

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything

Running title: Gaze Inversion Effect

as significant. *Psychological Science*, 22(11), 1359–1366.
<https://doi.org/10.1177/0956797611417632>

Sinha, P., & Poggio, T. (1996). I think I know that face. *Nature*, 384(6608), 404–404.
<https://doi.org/10.1038/384404a0>

Susilo, T., Rezlescu, C., & Duchaine, B. (2013). The composite effect for inverted faces is reliable at large sample sizes and requires the basic face configuration. *Journal of Vision*, 13(13), 14–14. <https://doi.org/10.1167/13.13.14>

Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. *The Quarterly Journal of Experimental Psychology Section A*, 46(2), 225–245.
<https://doi.org/10.1080/14640749308401045>

Tanaka, J. W., & Sengco, J. A. (1997). Features and their configuration in face recognition. *Memory & Cognition*, 25(5), 583–592.
<https://doi.org/10.3758/BF03211301>

Thompson, P. (1980). Margaret Thatcher: a new illusion. *Perception*, 9(4), 483–484.
<https://doi.org/10.1080/p090483>

Xu, B., & Tanaka, J. W. (2013). Does face inversion qualitatively change face processing: An eye movement study using a face change detection task. *Journal of Vision*, 13(2), 22. <https://doi.org/10.1167/13.2.22>

Yin, R. K. (1969). Looking at upside-down faces. *Journal of Experimental Psychology*, 81(1), 141–145. <https://doi.org/10.1037/h0027474>

Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. *Perception*, 16(6), 747–759. <https://doi.org/10.1080/p160747>

Żychaluk, K., & Foster, D. (2009). Model-free estimation of the psychometric function.

Running title: Gaze Inversion Effect

Attention, Perception, & Psychophysics, 71(6), 1414–1425.

<https://doi.org/10.3758/APP.71.6.1414>

Running title: Gaze Inversion Effect

Figure Legends

Figure 1. Experimental Paradigm.

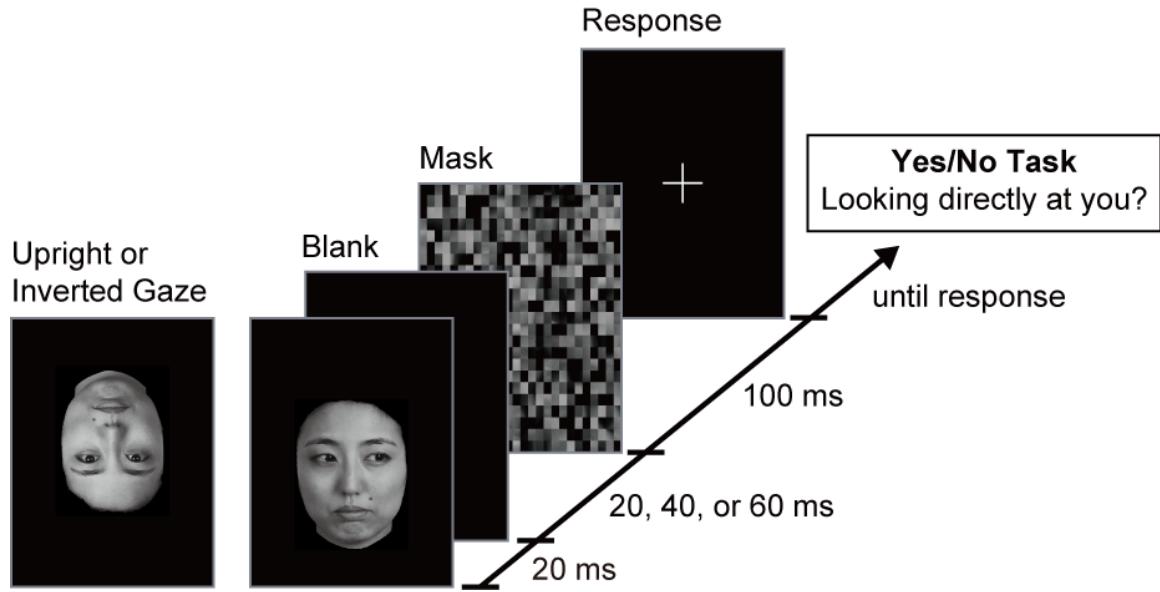

Schematic presentation of the experimental task. Upright and inverted faces were presented in different blocks (4 [2 upright + 2 inverted] blocks \times 144 trials).

Figure 2. Experimental Results.

(a) Gaze angle psychometric functions. Mean percentage of ‘direct’ responses (y-axis), plotted as a function of gaze angle (x-axis) \times participant sex (female = red, male = blue) \times face orientation (upright face = filled circle with a solid line, inverted face = open circle with dashed line). Shaded areas represent 95% confidence intervals of the mean. (b) Mean gaze threshold (angle of 50% reported as direct, which was estimated from the psychometric function) as a function of participant sex (female = red, male = blue) \times face orientation (upright face = filled, inverted face = open). Error bars represent 95% confidence intervals of the mean. (c) Scatter plot and density curves of individual upright and inverted gaze thresholds (female = red, male = blue). The grey dashed line indicates identical gaze thresholds between upright and inverted faces (i.e., no gaze inversion effect).

Running title: *Gaze Inversion Effect*

Figures

Figure 1

Running title: *Gaze Inversion Effect*

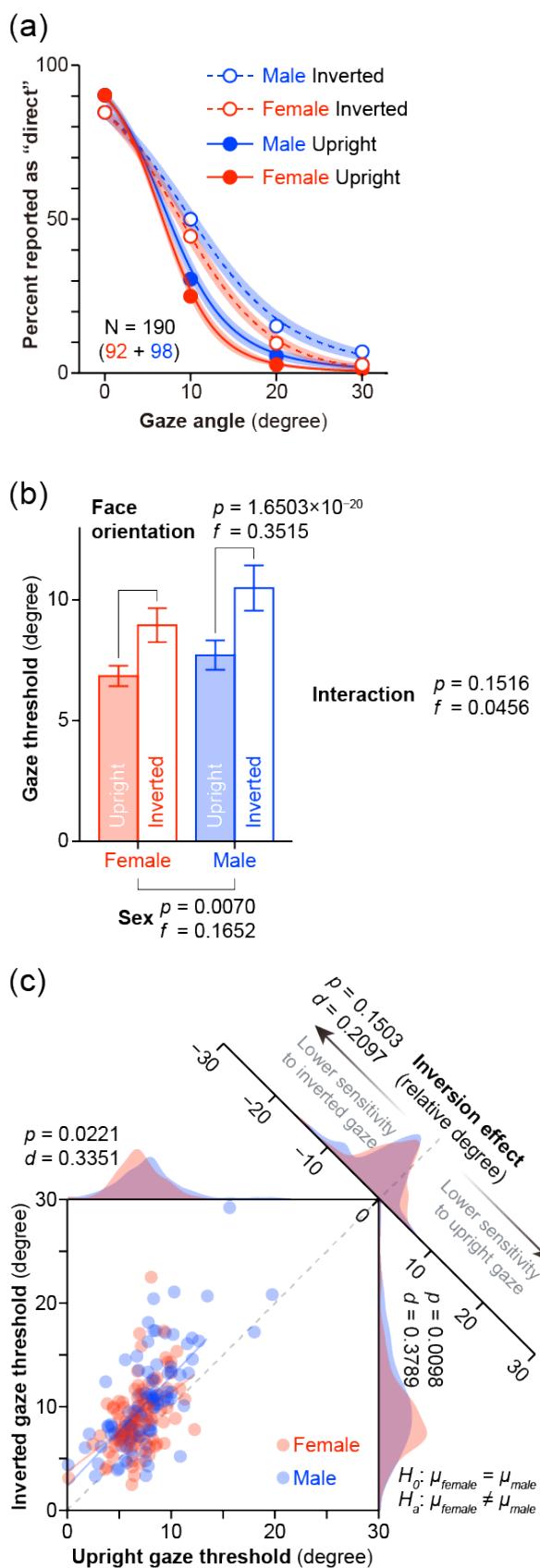


Figure 2