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ABSTRACT

Automated spatial segmentation models can enrich spatio-molecular omics analyses by providing a link to
relevant biological structures. We developed segmentation models that use label-free autofluorescence
(AF) microscopy to recognize multicellular functional tissue units (FTUs) (glomerulus, proximal tubule,
descending thin limb, ascending thick limb, distal tubule, and collecting duct) and gross morphological
structures (cortex, outer medulla, and inner medulla) in the human kidney. Annotations were curated using
highly specific multiplex immunofluorescence and transferred to co-registered AF for model training. All
FTUs (except the descending thin limb) and gross kidney morphology were segmented with high accuracy:
>0.85 F1-score, and Dice-Sorensen coefficients >0.80, respectively. This workflow allowed lipids, profiled
by imaging mass spectrometry, to be quantitatively associated with segmented FTUs. The segmentation
masks were also used to acquire spatial transcriptomics data from collecting ducts. Consistent with previous
literature, we demonstrated differing transcript expression of collecting ducts in the inner and outer medulla.

INTRODUCTION

Spatial omics analyses of tissue sections enable broad molecular interrogation of cells and multicellular
structures in their native context."? While the identification of genes, proteins, metabolites, and other
molecules is inherent in spatial omics assays, their in situ localizations can probe the spatial relationships
between molecules, cells, and multicellular structures.®> Compartmentalizing tissue content along
biologically, anatomically, and medically relevant spatial structures is essential to discern molecular
signatures specific to those structures. Thus, spatial omics data analysis can benefit from reliable,
automated spatial partitioning or segmentation of data across multiple modalities. There is clear biological
compartmentalization at the cell level, which aligns with the objectives of single-cell studies, but it is
important to note that such an organization also occurs at larger scales. For example, at the mesoscale,
many organs contain organized multicellular structures, referred to as functional tissue units (FTUs)3, which
act in concert to fulfill biological functions.

The nephron of the mammalian kidney is divided into FTUs that include the glomerulus and 14 different
tubular segments that selectively filter and excrete toxic waste products from the blood while reabsorbing
water and essential solutes.* In clinical pathology of the kidney, both cell and FTU morphology are
examined to make diagnoses.>”’ For instance, glomerular sclerosis is noted by examining stained
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microscopy sections for cellular and extracellular perturbations of the glomerulus, such as accumulation of
collagen.® With the increasing presence and adoption of digital pathology®'°, these mesoscale FTUs have
been an important automatic segmentation target for clinical analysis.'"'?> FTUs are also gaining recognition
in tissue atlas programs that seek to create spatio-molecular references, as they fit neatly along the spatial
ontology between gross morphology and single cells.'®'® This creates an opportunity to analyze multiple
cell types that act together, which in turn necessitates the development of computational workflows that
consider the local environment and the molecular signal of the cells."®'® For example, multiplex
immunofluorescence (MxIF) and spatial transcriptomics analyses have addressed this through cell
neighborhood analysis, which often recapitulates FTUs."®

There is clear value in linking molecular findings to distinct spatial structures in the context of tissue
interrogation; however, automatic recognition and segmentation of FTUs at scale can be challenging due
to a lack of appropriate training data and difficulty acquiring expert annotation.?®° Recently, automated spatial
segmentation models of the kidney have been developed using histological stains like PAS, H&E, or
Masson'’s Trichrome. These stains are non-specific at the FTU level and require experts for interpretation.?’
Thus, pathologists use stain color, texture, and spatial environment to discern FTUs. As expertise is often
more limited than hardware and data, annotation is a frequent bottleneck in converting scanned slide data
into actionable evidence through machine learning. Furthermore, histological stains irreversibly alter the
molecular content of tissues, limiting their compatibility with spatial-omics workflows. As similar workflows
grow in complexity and scale, it is essential to circumvent these issues to produce robust and actionable
prediction models.?? This can be achieved by utilizing complementary unstained microscopy to accurately
recognize FTUs without compromising tissue or molecular integrity and hampering the -omics analysis.
Annotation workflows utilizing ‘helper modalities’ can be developed to curate highly specific annotations by
non-experts. In this manner, high-quality reliable annotations can be produced at scale and utilized by any
co-registered imaging modality.

Here, we used label-free autofluorescence (AF) microscopy, which measures the fluorescence of
endogenous tissue fluorophores without any stains or antibodies, to deliver automated segmentation of
kidney FTUs and gross morphological structures. We demonstrated an application of this pipeline to
analyze and drive downstream collection of -omics data, enabling new multimodal analyses for molecular
histology. We employed MxIF microscopy as the highly specific ‘helper’ modality to computationally scale
human non-expert annotations on MxIF to a much larger number of training annotations on AF. Ultimately,
large training datasets were used to construct robust AF segmentation workflows, minimizing the burden
on expert pathologists, data annotators, and curators. We demonstrate how these automated annotations
can be used to analyze imaging mass spectrometry (IMS) measurements and to drive data collection with
spatial transcriptomics.

METHODS

Sample curation and tissue sectioning: Normal portions of renal cancer nephrectomies from adult
patients were studied. Deidentified macroscopically normal tissue samples and associated patient
metadata were collected following surgery by the Vanderbilt University Medical Center Cooperative Human
Tissue Network (CHTN) under the Vanderbilt University IRB protocols #181822 and #031078 (for the
CHTN). Fresh frozen tissue blocks were collected from areas distant from the tumor, confirmed by stained
microscopy of sequential sections. Tissues were sectioned to 10 um thickness using a Leica cryostat (Leica
Biosystems, Wetzlar, Germany) and thaw-mounted onto glass slides; indium tin oxide (ITO) coated glass
slides were used for MALDI IMS experiments. A list of the samples used in this manuscript is summarized
in Table S1.

Autofluorescence and Multiplex Immunofluorescence data acquisition: Autofluorescence images
were acquired using a Zeiss AxioScan.Z1 slide scanner (Carl Zeiss Microscopy GmbH, Oberkochen,
Germany) using a 10x objective, resulting in a pixel size of 0.65 ym/px. Details on the filter cube,
excitation/emission wavelengths, and exposure times can be found in Tables S$2. Immunofluorescence
microscopy was also acquired using a Zeiss AxioScan.Z1 slide scanner. A four-cycle MxIF approach was
used for the immunofluorescence experiments.?3?* Details on the immunofluorescence experiment are
provided in Table S3 and S4. Briefly, five antibodies (Podocalyxin, Aquaporin-1, Aquaporin-2, NaCl
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Cotransporter, and Uromodulin) were used to detect six FTUs (glomerulus, proximal tubule, descending
thin limb, ascending thick limb, distal tubule, and collecting duct), while Collagen-1V (a1/2) was used to stain
the basement membrane and indicate the border of each FTU in the kidney sample (Figure S1). The gross
morphological regions of the kidney, namely the cortex, inner medulla, and outer medulla, were also
described using these markers. Acquaporin-1 was used to discern cortex and medulla, while Uromodulin
was used to distinguish the outer and inner medulla, as the TAL FTU terminates at the junction of the two
medullary zones (Figure S$2).%

Whole Slide Image Registration, Annotation, and Deep-learning Segmentation Model Development:
The registration and segmentation modeling workflow was conducted in four phases, as summarized in
Figure S3. In Phase 0, all images for a single tissue section were collected separately and registered using
wsireg.?8 for cross-modality analysis. First, all MxIF images were aligned to images of the first MxIF cycle
by co-registering the DAPI channels of each cycle. The max intensity projection from all non-DAPI channels
was then used to register the MxIF and AF data. All images were transformed, resampled to a single
coordinate space, and combined into a single pyramidal OME-TIFF? file with 18 channels (AF + MxIF
images). All transforms across the graph were composed and applied when writing the finalized images,
resulting in a single nearest-neighbor interpolation being applied for resampling.

In Phase 1, kidney tissue images were manually annotated using QuPath 28 and its polygon annotation tool.
Whole slide images were used for gross morphology annotations; both were downsampled by 4x and split
into patches of 512x512px (~1331x1331 pym). Each patch was accompanied by a pixel-wise binary match
indicating where the pixel fell within the gross morphology. For FTU annotations, small rectangular regions
of approximately 30-40 tiles of size 1024x1024 pixels (665x665 ym) were manually annotated. Based on
the relevant IF channels of each image, the target FTUs were manually annotated, and the resulting labels
were exported using the GeoJSON 2° format.

In Phase 2, the manual annotations generated during Phase 1 were expanded through a transfer-learning
neural network approach. Using the Detectron2 platform.®® These manual annotations were used to fine-
tune an instance segmentation model for predicting the FTUs from the IF channels. In particular, the Mask
R-CNN model with the 101 ResNet backbone was chosen for this task because of its high segmentation
performance on open datasets. This was repeated separately for each FTU. The fine-tuned models were
then used to generate annotations for the entire tissue section, which were, in turn, manually curated to
ensure their quality, removing erroneous detections and/or improving poor detections, such as partial or
missing segmentations. Through this approach, it was possible to generate a large number of high-quality
annotations for each FTU, at a fraction of the time that would have been required to achieve this manually.
This resulted in over 10,000 annotations for each FTU (see Table S5), with the exception of the glomeruli
of which there are significantly fewer instances in each tissue section.

Finally, in Phase 3, the curated FTUs from Phase 2 were used to train a model to predict the instance
segmentations from the AF images. Similarly to the transfer-learning approach described for Phase 2, the
Detectron?2 platform was used to fine-tune Mask R-CNN model with the 101 ResNet backbone. This was
repeated separately for each FTU. For gross morphological segmentation, models that perform pixel wise
semantic segmentation were used over instance segmentation models, as the gross morphological areas
are not an instance of a repeating unit within the tissue. The cortex, outer medulla (inclusive of the inner
and outer stripe), and inner medulla were targeted. U-nets®' type models were trained using the
efficientnet-b2 encoder as implemented in the segmentation-models-pytorch package®2. Semantic
segmentation models were developed from encoders pre-trained on ImageNet. 3 In total, 17-27 MxIF whole
slide images from different tissue donors were used for training each of the 7 models of Phase 3 (6 for
FTUs and 1 for gross morphological region). These models were then tested on 7 hold-out MxIF images
(Tables S5 & S6).

MALDI Imaging Mass Spectrometry: Following AF microscopy, the matrix 1,5-Diaminonapthalene was
sprayed onto the tissue section using an HTX M5 Sprayer (HTX Technologies, Chapel Hill, NC). MALDI
IMS data were collected in negative ionization mode using a Bruker timsTOF Flex mass spectrometer
(Bruker Daltonics, Bremen, Germany) at 10 um raster spacing.3* After MALDI IMS, AF microscopy was
performed on the tissue section with the matrix still present to reveal laser ablation marks on the matrix
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layer. The image was registered to the MALDI IMS pixels using IMS MicroLink. 353 Additional AF and MxIF
microscopy was layered onto the IMS-registered image using wsireg. This approach provides
approximately 0.25-1.50 ym accuracy (~0.50-2.00 microscopy pixels in these images). Peak picking of the
dataset was performed using S/N threshold of 5 on the mean spectra; peak data and total ion current (TIC)
for each spectrum were extracted using the TIMSCONVERT python library®”. Data were normalized by TIC
and loaded into the R package Cardinal®. The Cardinal function colocalized() was used to compute the
Pearson correlation coefficient of all IMS signals to each FTU mask. Extracted ion images and
segmentations were visualized in napari.>® Putative lipid identifications (exact mass match, <5 ppm) were
made with the LIPIDMAPS database.*® Plots were generated in ggplot2 in R.

Spatially-Targeted Transcriptomics Acquisition and Analysis: Tissue sections were prepared following
the manufacturer’s protocol for fresh frozen tissue (GeoMx DSP Manual Slide Preparation, Nanostring
Technologies, Inc., Seattle, WA). Tissues were hybridized with the Nanostring human whole transcriptome
atlas probe set. Autofluorescence microscopy and region of interest (ROI) selection was performed in the
Nanostring GeoMX Digital Spatial Profiler (DSP) (Nanostring Technologies, Inc., Seattle, WA). AF
microscopy was acquired at 488, 550, and 647 nm, with 500 ms exposure times. Acquisition ROIs were
selected based on segmentation masks from the registered AF images. Libraries were prepared for NGS
following the manufacturer’'s protocol (GeoMx DSP NGS readout, Nanostring Technologies, Inc., Seattle,
WA). Sequencing was performed using an lllumina miniSeq with a high-output reagent cartridge.

Adapter trimming and deduplication were performed using the Nanostring NGS Data Analysis Pipeline to
convert fastq files to DCC files. Analysis and visualization of the spatial transcriptomics data was performed
in Nanostring GeoMX DSP software version 2.4.0.421. Probes were excluded from analysis if they failed
the Grubbs outlier test in greater than 20% of ROIs or if the ratio of geometric means in all segments to
within the target gene was < 0.1. The limit of quantitation was calculated as 2 standard deviations above
the geometric mean of the negative control probe. Q3 normalization was performed for all target groups.
ROIs were excluded from analysis if their sequencing saturation was < 50%. Pathway enrichment analysis
was performed requiring a minimum of 20% coverage for genes in each pathway and at least 5 genes in
the pathway using 10,000 permutations.

RESULTS

Performance of AF-based models for gross morphological and FTU segmentation

Performance for gross morphological segmentation, shown for one example in Figure 1a, was computed
using the Dice-Sorensen Coefficient (DSC), which measures the degree of overlap between the curated
ground truth annotations and the models’ predictions in a pixel-wise fashion. DSC values of 0 indicate the
model did not detect the structure (false negative), and 1 indicates a perfect match between the model’s
segmentation pixels and the ground truth annotation pixels. Here, gross morphological segmentation
probability maps were binarized using a threshold of 0.40. Figure 1b shows an overlay of gross
morphological segmentation results (filled color) and ground truth annotations (polygons). The mean DSC
for cortex, inner medulla, and outer medulla across the 8 test whole-slide images was >0.85 (Figure 1c).
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Figure 1. Gross morphological segmentation analysis and results. (a) Visualization of Uromodulin, a marker for
thick ascending limb (red) alongside ground truth annotations of kidney cortex (green), kidney outer medulla (magenta),
and kidney inner medulla (blue). Uromodulin is displayed because thick ascending limb starts in the outer medulla and
is not present in the inner medulla. (b) Overlay of gross morphological segmentation results (filled color) and ground
truth annotations (polygons). (c) Plot of Dice-Sorensen Coefficient of whole slide autofluorescence images gross
morphological segmentation. UMOD = Uromodulin. TAL = Thick ascending limb.

FTU segmentation performance was evaluated at the whole-slide image level. An overlay of the FTU
segmentation masks and AF microscopy image can be seen in Figure 2a. Figure 2b shows an overlay
image of the predicted and ground-truth proximal tubules. A global DSC was used to determine the absolute
pixel-wise segmentation accuracy across the test set of 8 whole-slide images, showing a mean DSC of
~0.90 for all FTUs except the descending thin limb (Figure 2c). Additionally, instance-level metrics,
including F1-score, precision (the positive predictive value), and recall (true positive rate), were evaluated
for each structure (Figure 2e-g). Each metric reports a value between 0 and 1, indicating the agreement
between the trained model and the ground truth annotation. Precision and recall metrics capture the number
of correct detections (true positives), incorrect detections (false positives), and missing detections (false
negatives). Here, segmentations with a DSC = 0.75 were treated as true positives. In total, the instance-
level F1-score closely resembled the DSC coefficient, precision was > 0.90 for all structures, and recall was
~0.80-0.85 for each structure except the descending thin limb. Supplemental Table S6 reports the count
statistics for the test set FTUs, and Tables S7 and S8 report metric values and summary statistics across
all samples.
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Figure 2. Global pixel-wise and instance-level accuracy analysis of whole slide segmentation results for autofluorescence
(AF) based functional tissue unit segmentation (FTU) of an independent test set. (a) Whole slide view of an AF image with
overlaid filled polygons for each segmented FTU. (b) Overlay of binary mask of proximal tubule segmentation and ground truth
proximal tubule annotation from kidney cortex. (¢) Global metric Dice-Sorensen coefficient calculated from the test images. (d) Visual
demonstration of local instance level true positives (TP), false negatives (FN), and false positives(FPs) are called for each instance of
an FTU. (e) Plot of F1-score for the instance level metrics for each functional tissue FTU. (f) Plot of the precision of the model at the
instance level for each FTU and diagram of how precision is calculated. (g) Plot of the recall of the model for each FTU at the instance
level and diagram of how recall is calculated. GL — Glomerulus, CD - Collecting Duct, DT - Distal Tubule, PT - Proximal Tubule, TAL
- Thick Ascending Limb, DTL - Descending Thin Limb
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Analysis of molecular imaging by MALDI IMS using automated label-free FTU
Segmentation

Automated AF-based segmentation maps can enrich MALDI IMS data analysis by providing dense pixel
labels of each FTU. Figure 3a shows the whole-slide image prediction of FTUs and the region of interest
for IMS data collection, which included both cortex (left) and medulla (right). The AF and IMS data were
registered to intersect the instance segmentations with the IMS data, providing a list of IMS pixels for each
FTU. Their degree of intersection (0-1) was calculated using the physical coordinate space, which entails
mapping each IMS pixel's bounding box and each FTU’s polygon coordinates to ym. Compared to
rasterized approaches, where each image is sampled to the same pixel dimension, this approach can
mitigate warping effects due to the mismatch in pixel spacing between microscopy (0.65 pm/px) and IMS
(10 uym/px) data. The Pearson Correlation Coefficients between all IMS peaks and FTU segmentation
masks were calculated; the top MALDI IMS lipid signals associated with each FTU are shown in Figure 3b.
Figure 3c shows the spatial distributions of the top-ranking IMS signals for four FTUs and overlays of the
FTU mask and IMS signal. The lower correlation values indicate that many species are not specific to a
single FTU. Indeed, most IMS signals are present in multiple structures (Figure 3c). For example, IMS
signals associated with the collecting duct, distal tubule, and glomerulus not only show a distinct signal in
those FTUs, but also localize to other structures in the sampled area.
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Figure 3. Analysis of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) data by functional
tissue unit (FTU) autofluorescence (AF) segmentation masks generated on the same tissue section. (a) Whole slide AF image
with FTU segmentations of different colors representing different functional tissue units. The MALDI IMS region of interest for data
acquisition is highlighted in cyan. (b) Pearson’s correlation coefficient plots of FTU masks and IMS signals. Calculations were
performed after registration of MALDI IMS with AF microscopy and intersection of microscopy FTU masks with IMS pixels. (c) Top
ranking MALDI IMS signals for 4 FTUs and overlay of FTU mask (white) with MALDI IMS signal. GL — Glomerulus, CD - Collecting
Duct, DT - Distal Tubule, PT - Proximal Tubule, TAL - Thick Ascending Limb, DTL - Descending Thin Limb
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Spatially targeted transcriptomic analysis guided by automated Ilabel-free
segmentation

Without compromising tissue or molecular integrity, label-free AF can provide segmentation maps, which
can be used for spatially targeted data collection. Here, both gross morphological and FTU level instance
segmentations (Figure 4a) were integrated to select collecting ducts from the inner and outer medulla, as
shown in Figure 4b and 4c, respectively. These segmentation maps were used for data collection by the
GeoMX Digital Spatial Profiler platform; the computational workflow can be seen in supplemental Figure
S4. After sequencing, the ROIs were quality controlled: 6 regions passed, including 3 inner and 3 outer
medulla collecting duct areas. Figure 4d shows a volcano plot of transcript targets and specifically
highlights AQP6 as being more expressed in the outer medulla. Consistent with previous literature, we
found that AQP6 was not abundantly expressed in the collecting ducts of the inner medulla.*' These results
provide simultaneous validation of the gross morphological and the FTU level segmentations. Figure S5
highlights boxplots of all AQP targets detected, showing AQP2 and AQP3 expression was universally high
across the collecting ducts of the inner and outer medulla, as expected. Figure 4e shows the pathway
analysis of collecting ducts from the inner and outer medulla, revealing statistically significant (p = 0.0087)
differential respiratory electron transport and TCA cycle pathways. This analysis yielded nearly 70% gene
coverage; Figure 4f shows the differential Z-scores for the top 64 differential markers with three major gene
families represented: ATP, COX, and NDUF.

Outer Medulla
Inner Medulla
CD Segmentation

Figure 4. Spatially targeted transcriptomics of the collecting duct
(CD) in the inner and outer medulla of a human kidney tissue
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DISCUSSION

Use of label-free autofluorescence for direct image analysis tasks and limitations
to the modeling approach

AF microscopy provides non-specific images of endogenous fluorophores without sample preparation,
making it highly suitable for integration with spatial omics assays. Previous studies have performed virtual
staining by using AF images to predict histological stains, which have convinced blinded pathologists.*?
Pseudo-staining approaches can provide crucial diagnostic information without the labor and cost
associated with histological staining procedures. However, they still require interpretation by trained
pathologists, which ultimately places a bottleneck on automated analyses. Alternatively, generating
segmentations as unambiguous outputs can be more practical for spatial omics workflows. In a recent
example, segmentation workflows of virtual stains were used to predict IF and cell segmentation masks.*344
These studies suggested that with adequate data curation and modeling, image analysis tasks
(classification, segmentation, etc.) could be performed directly from label-free data, foregoing the need for
transformation to virtual stains. Building on these studies, we used AF microscopy to accurately segment
multiple FTUs in human kidney whole-slide images and to generate masks for downstream spatial omics
data collection and analyses. Training data were developed using MxIF to label FTUs, which were
transferred to the AF microscopy. Ultimately, the models segment ~80% of the kidney tissue into 6 FTUs
based on antibody labels (Figure 2a). In contrast to other whole-slide image segmentation workflows, these
analyses were conducted on fresh-frozen samples that do not undergo chemical fixation, which affects the
molecular analysis. However, we posit adapting these models to use autofluorescence from FFPE (popular
in clinical settings) would not be challenging, as it has already been demonstrated for virtual staining
tasks.*546

Competitive performance in segmentation across gross morphological and FTU
spatial scales

We developed a large-area segmentation model to discern gross kidney tissue morphology, including the
cortex, outer medulla, and inner medulla. These regions provide valuable high-level information about the
proportions of each gross morphology and are valuable for spatial atlases that seek to go from whole organ
to single cell. Segmentation was performed using a U-net model that produces pixel-wise labels of the
whole-slide image analogous to the modeling found in the landmark digital pathology CAMELYON
challenge.*” While appropriate for discerning gross morphological regions, this approach is not ideal for
detecting repetitive multicellular structural units like the FTUs of the nephron. Therefore, an instance
segmentation model, Mask R-CNN, was used to individually segment each FTU in the section, permitting
analysis of each discrete structure. We created separate models for each FTU, decreasing the time needed
to curate the data necessary for training a performant model. Creating separate models was also
advantageous due to the relative density of different FTUs in the tissue. As shown in supplemental Tables
S5 and S6, there were far more instances of proximal tubules than glomeruli, for example. Therefore, to
train a model that is inclusive of all FTUs, a much greater number of proximal tubules would need to be
curated. All training areas would need to be labeled to avoid the model training on images containing
unlabeled areas with known FTUs. This remains a limitation of the current study, as a comparison of all-
FTU models vs per-FTU models was not made.

Segmentation performance for gross morphology used DSC to evaluate the overlap between human
annotation and machine segmentation. The cortex performed well (mean DSC >0.95), but the inner and
outer medulla were more challenging (mean DSC <0.90) to segment. Defining the transition zone from the
inner to the outer medulla precisely is difficult even in the ground truth data, as there are no explicit markers
for the two regions. Furthermore, most training samples contained cortex and medulla but only 10 of the 26
contained both inner and outer medulla, limiting the available training data and affecting performance.
Ultimately, this transition region was segmented as neither, as seen in Figure 1. Despite lower
performance, the models provided actionable information as shown in the spatial transcriptomics workflow.
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FTU segmentation evaluation was performed in two ways. First, global DSC indicates pixel-wise
performance across the entire evaluated region for each FTU. Second, instance-level metrics were
computed by first filtering structures that were well-segmented (DSC > 0.75) and treating them as true
positives (Figure 2d). In this metric, inaccurate instance segmentation was less harshly penalized, and the
segmentation was actionable for spatial omics analysis. Our results show high precision (mean precision >
0.95 for all structures) with lower recall (mean recall 0.90 for all structures except descending thin limb at
0.50). These results indicate that the model’s predictions are very accurate (high precision, few false
positives), but not always comprehensive (lower recall, more false negatives). While additional performance
gains would be valuable, the obtained few false positives, high recall, and high global DSC values were
sufficient for reliable downstream data analysis.

Our workflows performed similarly to other studies using histological stains for functional tissue unit
segmentation." For example, Jayapandin et al. reported delineation of proximal and distal tubules with
0.83 and 0.89 accuracy, respectively.'?> Because our model uses MxIF with spatially specific markers, it can
provide higher structural specificity. For example, we can further subdivide the tissue into proximal tubules,
descending thin limb, thick ascending limb, distal tubules, and collecting ducts. Each of these subdivisions
relays additional information and expands the scope of possible downstream analyses. On the other hand,
our model did not perform as strongly for the segmentation of glomeruli. This is likely due to the glomerulus
being weakly autofluorescent and thus less distinct against the background (Fig 1g). Additionally, our study
did not subdivide FTUs with evidence of disease. This could be achieved in future studies by incorporating
antibodies that mark features impacted by disease (i.e., sclerotic glomeruli) to re-train and optimize
segmentation models.

Automated molecular profiling of FTUs from MALDI IMS

AF is advantageous to guide MALDI analysis because it is performed immediately following tissue
sectioning. Therefore, the tissue is not subjected to chemical washes, MALDI matrix deposition, or on-
tissue laser ablation, which can change the appearance of histological stains and affect tissue integrity. Our
approach combines the AF and MALDI IMS to analyze molecular data (i.e., ion images) by FTUs (Figure
3). One challenge of this approach is that MALDI IMS and microscopy have a significant spatial resolution
gap. IMS is routinely performed at 10 ym spatial resolution, whereas microscopy has an estimated 15x
higher resolution (0.65 um). Therefore, it is challenging to analyze very small structures, such as FTUs,
that may be represented by only 10s of IMS pixels. To work with the multiscale nature of the data, we used
data registration®® and IMS pixel-structure deconvolution approaches*4°, which excluded IMS pixels that
overlapped less than 80% with the FTU.

Ultimately, this analysis provided visual co-localization of lipid ions to specific FTUs. The degree of
intersection of an IMS signal and a particular FTU was computed using Pearson correlation coefficients.
Overall, these values were lower than expected (top signals < 0.75), as one input is a binary vector
indicating FTU (or not FTU) and the other is a continuously varying IMS signal. Some ions showed exclusive
and unmistakable colocalization with the FTU of interest, as seen for ion m/z 892.621 (SHexCer 41:0; 30)
in the thick ascending limb (Figure 3c). More commonly, however, ions were not unique to a specific FTU.
For example, in Figure 3c, PE (34:1) (m/z 716.526) was present in the distal tubules, but was also found
in other areas, reducing the correlation coefficient. This challenge can be compounded by the dynamic
range of MALDI IMS experiments, where a small band of intensity may belong to distal tubules, but higher
intensities are partitioned to other FTUs. Furthermore, lower correlation coefficients are unsurprising given
that MALDI IMS is label-free and readily detects lipids that form important membrane structures, which exist
in multiple FTUs. This proof-of-concept work can be further enhanced by integrating advanced approaches
for cohort analysis *° or those intended to properly subdivide IMS signal bands into distinct spatial regions®’.
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Recapitulating known biology of kidney collecting ducts and differential
transcriptomic analysis of inner and outer medulla collecting ducts enabled by
segmentation and automated spatial targeting

With many spatial transcriptomics experiments using microscopy to guide acquisition or analysis, methods
that apply to label-free microscopy are well positioned to impact the burgeoning field. In our analysis, we
use the hierarchical segmentation data to nest collecting duct segmentations in the outer and inner medulla.
The segmentations were used as regions for targeted data acquisition. Differential analysis through t-tests
of 3 replicates on inner and outer medulla showed known biology and interesting effects around cellular
energy processing. We found AQP2 and AQP3 highly expressed in both inner and outer medulla. We
observed AQP6 to have a 2.45 Log2 fold change in the outer medulla versus the inner medulla,
recapitulating known kidney aquaporin biology. Pathway analysis revealed potential upregulation of
mitochondrial energy pathways related to the tricarboxylic acid (TCA) cycle with statistical significance and
high coverage. The medullary collecting duct, specifically the outer medulla segment, is populated with
mitochondria-rich intercalated cells. Enrichment of TCA cycle transcripts in the outer relative to the inner
medulla is consistent with the abundance of intercalated cells in the outer medulla®2. Interestingly,
intercalated cells express high levels of OXGR1, the receptor for 2-oxoglutarate, a TCA cycle intermediate.
OXGR1 and 2-oxoglutarate are part of a paracrine signaling loop between the proximal and distal nephron
that regulates salt reabsorption when acid-base homeostasis is perturbed>®. The precision of the collecting
duct segmentation approach allows for acquisition of multi-omic measurements of medullary intercalated
cells, thus potentially providing insight into the mechanism of intrarenal paracrine signaling events.
Understanding the cross-talk between proximal tubules and intercalated cells of the outer medullary
collecting duct during disease states is key to addressing acid-base homeostasis as well as the regulation
of fluid and electrolyte balance during stressful conditions. Leveraging the high spatial specificity of this
workflow permits investigation of particular cell types or FTU across the tissue with robust spatial resolution,
providing a foundation for comprehensive analysis of renal regulation.
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