

1 RESEARCH ARTICLE

2 RUNNING HEAD: Morning training enhances endurance adaptations in mice.

3 **Morning endurance training induces superior**
4 **performance adaptations compared to afternoon**
5 **training in mice**

6 Stuart J. Hesketh,^{1,2,3*} Collin M. Douglas,^{1,2} Xiping Zhang,^{1,2} Christopher A. Wolff,^{1,2} Casey L.
7 Sexton^{1,2,4} Elizabeth S. Nowicki^{1,2}, Karyn A. Esser^{1,2*}

8 ¹Department of Physiology and Aging, University of Florida, Gainesville, FL, USA

9 ²Myology Institute, University of Florida, Gainesville, FL, USA

10 ³Current address: School of Medicine, University of Lancashire, Preston, UK

11 ⁴Current address: Troy University, Troy, Alabama, USA

12

13 * Corresponding Authors: Stuart Hesketh: University of Lancashire, Victoria Street, Harrington Building,
14 Preston, UK, PR1 2HE, e:SHesketh5@lancashire.ac.uk t:01772896338; Karyn Esser: University of Florida,
15 1600 SW Archer Road M554, Gainesville, FL, USA, 32610-0274, e:kaesser@ufl.edu t:352-273-5728

16

17 **ABSTRACT**

18 Endurance performance exhibits time-of-day variation in both humans and rodents, peaking in the late
19 active-phase. However, whether the timing of endurance training influences performance adaptations
20 remains unclear.

21 To investigate, female mice were trained 5-d/week for 6-weeks at either ZT13 or ZT22, using treadmill
22 running at 70% of each animal's maximal capacity. Endurance performance was assessed at baseline,
23 week-3, and week-6. Secondary outcomes included blood glucose and lactate, cage activity, body
24 composition, liver and skeletal muscle glycogen content, mitochondrial and contractile protein
25 expression.

26 At baseline, late-active phase (ZT22)-tested mice exhibited significantly higher endurance capacity than
27 early-active phase (ZT13)-tested mice ($P<0.05$). Following 6 weeks of training, ZT13-trained mice
28 demonstrated a greater rate of improvement, with endurance increasing by 132% ($P<0.05$), compared to
29 45% in afternoon ZT22-trained mice. By week 6, performance improved but was similar between groups
30 ($P>0.05$), despite lower absolute training volumes in the ZT13 group. Both training groups reduced fat-
31 mass (ZT13: -31%, ZT22: -32%; $P<0.05$ vs. control), with no differences in lean mass, food intake or muscle
32 and liver glycogen content ($P>0.05$). In skeletal muscle, ZT13-trained mice were associated with increased
33 ($P<0.05$) COXIV protein expression, citrate synthase activity, and shifts in MyHC isoform expression,
34 without changes ($P>0.05$) in mitochondrial content.

35 ZT13-training elicited superior performance adaptations despite lower absolute workloads, indicating
36 enhanced training efficiency. These findings identify exercise timing as a biologically relevant factor
37 influencing endurance adaptation and variability in exercise responses.

38 **NEW & NOTEWORTHY**

39 This study demonstrates that endurance training in the early active phase induces greater performance
40 adaptations than late active phase training in mice, resulting in overcoming diurnal differences in exercise
41 performance, despite lower absolute training volumes. These findings reveal exercise timing influences
42 training efficiency, likely via circadian regulation of skeletal muscle metabolism. This work identifies time-
43 of-day as a biologically relevant and underappreciated variable contributing to the heterogeneity of
44 exercise responses, even in tightly controlled preclinical models.

45
46 **Keywords:** Circadian rhythm; exercise training; exercise timing; mitochondrial adaptation; skeletal muscle
47

48 **INTRODUCTION**

49 Exercise is a remarkable stimulus that can profoundly affect whole body physiology and
50 specifically alter skeletal muscle phenotype. Each coordinated exercise bout elicits an integrative systemic
51 response to the subsequent increase in metabolic demands, driving chronic adaptations across multiple
52 tissues (1, 2). Exercise capacity, therefore, relies on the orchestration of both physiological and metabolic
53 responses among various tissues (1). Many of the metabolic health benefits associated with exercise
54 center around skeletal muscle adaptations; for example, skeletal muscle is considered the largest
55 metabolic tissue and a critical site for glucose disposal both at rest and during exercise (3, 4).

56 Endurance exercise performance varies by time-of-day in both humans and rodents, with better
57 performance typically observed in the afternoon or later in the active period (5–9). In mice, these
58 differences are dependent on a functional circadian clock. For example, genetic disruption of clock genes
59 eliminates time-of-day differences in endurance capacity (7, 10). Previously, Adamovich et al., (7) have
60 linked performance differences to liver glycogen availability, which is known to fluctuate with feeding and
61 circadian rhythms. In this study, they implemented time-of-day-restricted exercise and found that the
62 differences in performance were still evident after two weeks of training suggesting that timing may have
63 less impact with adaptation. However, two-weeks is a very short duration for an exercise training study
64 and longer-term time-of-day training studies, are lacking.

65 The circadian clock mechanism is an evolutionarily conserved transcription translational feedback
66 mechanism that exists in virtually all cells, allowing organisms to align physiological functions with the 24-
67 hour day. The core clock operates through a feedback loop of gene expression, where transcription factors
68 BMAL1 and CLOCK regulate expression of genes *Period1/2* and *Cryptochrome1/2* which then feedback to
69 inhibit their own expression and reset the cycle (11–15). While this molecular mechanism is conserved
70 across tissues, the functional outputs of the clock are tissue-specific and critically shape physiology
71 throughout the day. In skeletal muscle, for example, circadian rhythms influence maximum isometric
72 strength and mitochondrial function, with peak performance and metabolic activity occurring at specific
73 times of day (9, 16, 17). Disruption of the clock, either environmentally or genetically, impairs these time-
74 of-day-dependent functions, as shown by reduced grip strength in mice lacking core clock components
75 (18). Thus, understanding how the clock programs time-of-day variations in muscle function has important
76 implications for optimizing health and performance.

77 Despite well-established time-of-day differences in acute exercise performance, relatively little is
78 known about how the timing of exercise training influences long-term physiological adaptations and
79 performance. Previous studies suggest that exercise can act as a non-photic time cue, capable of shifting
80 the phase of peripheral clocks, particularly in skeletal muscle (19–22). However, it remains uncertain
81 whether training at specific times of day enhances or impairs adaptation or performance. Understanding
82 whether consistent training during the early versus late active period differentially impacts endurance
83 capacity, metabolic outcomes, or body composition, and phenotype is not only critical for understanding
84 the influence of exercise-timing has on the heterogeneity of the exercise response, but for optimizing
85 exercise prescriptions in both health and disease contexts.

86 Herein, we investigated how the timing of endurance training influences performance and muscle
87 tissue adaptations in mice. Using a 6-week treadmill training protocol, we compared mice trained at the
88 beginning (ZT13) or end (ZT22) of their active phase at workloads matched for relative exercise intensity.
89 We assessed maximal endurance performance before training, mid-training (3wk) and post-training (6wk)
90 and evaluated secondary outcomes, including blood glucose and lactate responses, voluntary cage
91 activity, body composition, and muscle biochemistry. Our primary objective was to determine whether
92 consistent training in the early active phase versus the late active phase confers differential performance
93 adaptations with selected targeted physiological and metabolic outcomes. Our results demonstrate that
94 mice trained in the early active phase exhibited greater performance adaptations compared to those
95 trained in the late active phase. These differences in training efficiency resulted in the mice trained in the
96 early active phase achieving the same maximum endurance performance as those in the late active phase
97 by 6 weeks of training. It was interesting to note that this was not evident until after 3 weeks of training,
98 suggesting that the tissue and systemic adaptations to support improved performance required a
99 significant duration of training to be realized. We did not detect differences between exercise groups in
100 resting levels of muscle or liver glycogen after training; however, markers of skeletal muscle oxidative
101 metabolism and modest shifts in contractile protein expression were observed in ZT13 compared with
102 ZT22 runners. We posit that time-of-day-dependent adaptations to endurance run training may act
103 directly through the molecular clock mechanism in muscle and potentially other organ systems to support
104 differential efficiency of performance adaptations.

105 MATERIALS AND METHODS

106 Ethical approval

107 All animal procedures in this study were conducted in accordance with the guidelines of the University of
108 Florida for the care and use of laboratory animals (IACUC #201809136). The use of animals for exercise
109 protocols was in accordance with guidelines established by the US Public Health Service Policy on Humane
110 Care and Use of Laboratory Animals.

111

112 Animals

113 Eighteen female PERIOD2::LUCIFERASE (PER2::LUC) mice on a C57/Bl6J background (23) aged 5 months
114 (22 ± 1 g body weight) were bred in-house from mice originally received as a gift from Dr. Joseph
115 Takahashi. Previous data from our laboratory reported no sex-specific effects of exercise training on
116 muscle circadian PER2::LUC phase (19), so female mice were selected, as they are known to run more
117 than their male counterparts (24). Mice were initially housed (12hr light:12hr darkness; ZT0 = time of
118 lights on/ rest phase, ZT12 = time of lights off/ active phase) in a controlled climate (23 ± 1.5 °C, 58 ± 5.8

119 % relative humidity) and had *ad libitum* access to water and standard rodent chow (Envigo Teklad 2918,
120 Indianapolis, IN, USA). Mice were then moved to single housing with the same light, climate, and
121 nutritional conditions prior to starting the experimental protocol. All experiments took place during the
122 dark/ active phase, and all treadmill testing and training took place in the dark, under red light, on a Panlab
123 treadmill (Harvard Apparatus, Holliston, MA). All mice were anaesthetized using isoflurane and
124 euthanized by cervical dislocation under red light, ~3 days after the last bout of exercise training at ZT17.
125 All tissues analysed were collected at the same time-of-day and included the gastrocnemius and liver
126 which were isolated and cleaned of fat and connective tissue then frozen in liquid nitrogen and stored at
127 -80°C pending further analysis. We collected tissues for real-time PER:LUC bioluminescence data capture
128 but unforeseen circumstances resulted in these data being lost prior to submission.
129

130 **Maximal Endurance Capacity Testing**

131 Each maximal endurance capacity testing session was performed, similar to that described in Maier et al.,
132 (5). Briefly, animals began at a speed of 10 cm/s at 10° incline for a 5 min warm-up period. The incline was
133 increased to 15° and the treadmill speed was increased by 3 cm/s every 2 min until exhaustion. The
134 treadmill was operated with the electrical shock grid turned off and sponges were placed at the back of
135 the treadmill to reduce the risk of injury. Mice were deemed exhausted when they remained in contact
136 with the sponge >10 s and could not be encouraged to continue by several air puffs from a compressed
137 air container. All mice were tested at the time which corresponded to their group (i.e., either ZT13 or
138 ZT22). The sedentary control group (n = 6) were split so that half (n = 3) were handled at ZT13 in the same
139 manner as the early active phase training group, and the other half were handled at ZT22 identically to
140 the late active phase training group. This involved being moved from the housing suite into the treadmill
141 room for the duration of each exercise session, here they maintained a sedentary state in their cages and
142 were positioned next to the treadmill.
143

144 **Maximal Endurance Testing Schedule**

145 This study is focused on time of training and the training times used were a) the early active phase which
146 is defined by occurring at 1hr after lights off in the animal facility (ZT13) and b) the late active phase which
147 is defined by occurring at 10hrs after lights off (ZT22). Initially, mice were randomized into two groups for
148 pilot maximal endurance capacity testing, an early active phase group (ZT13, n = 9) and a late active phase
149 group (ZT22, n = 9). This was to confirm that there were measurable time-of-day differences in exercise
150 capacity which were consistent with prior reports (6, 25). Immediately prior to the pre-training trial, mice
151 were subjected to three days of treadmill familiarization as in previously described methods (25). Briefly,
152 during the first day of familiarization the speed of the treadmill was set to 10 cm/s for 5 min at 0° incline.
153 The incline was then adjusted to 5° and speed was ramped up by 2 cm/s every 2 min up to 20 cm/s. The
154 second day consisted of an increase in speed every 3 min by 3 cm/s from 10 cm/s to 24 cm/s at an incline
155 of 10°. The final familiarization session was the same as the second day but performed on a 15° incline.
156 On the day after the third familiarization session, maximal endurance capacity testing was performed.
157 This was followed by a 10 day washout period where mice were acclimated to new housing. Mice were
158 continuously monitored for daily cage activity using wireless, infrared activity monitoring (Actimetrics,
159 Wilmette, IL, USA; analyzed using ClockLab software). Mice were then re-randomized into three
160 experimental groups where they remained for the 6-week time-of-day training: i) training at ZT13 (n = 6),
161 ii) training at ZT22 (n = 6), or iii) sedentary control (CON, n = 6). These groupings denoted the time-of-day
162 in which testing and training occurred. Similar to the pilot testing the CON group was split so that half (n

163 = 3) were handled at the same time as the early active phase group, and the other half were handled with
164 the late active phase group. This involved being moved from the housing suite into the treadmill room for
165 the duration of each exercise session, where they were maintained sedentary in their cages and
166 positioned next to the treadmill. Mice had their food removed 1 hour prior to exercise testing and were
167 assessed for their maximal endurance capacity before, after 3 weeks, and after 6 weeks of time-of-day
168 training. Endurance capacity testing conducted after 3 weeks was used to scale exercise intensity to
169 account for training adaptations and assess a time course for improvements. A schematic of the study
170 design is shown in Figure 1.

171

172 **Endurance Training Program**

173 The training program consisted of 5 exercise bouts per week, over the 6 weeks of training (30 individual
174 exercise bouts), all bouts were consistently performed at the assigned time-of-day training group times
175 (i.e., ZT13 or ZT22). Each training bout consisted of 1 hour of treadmill running at a consistent slope of 15°
176 and a speed corresponding to 70 % of work done during maximal endurance testing, calculated similar to
177 equations from Avila et al., (26) and shown in equation 1 below.

178

179 *Equation1*

$$180 \quad \text{work done} = M \cdot D \cdot \sin\theta$$

181

182 Were M is the mass (g) of the animal, D is the distance (m) ran in the maximal capacity test and θ is the
183 slope (°) of the treadmill. Work done is measured in arbitrary units (AU).

184

185 **Blood collection and body composition**

186 Tail blood glucose (Accu-Chek, Roche) and blood lactate (Lactate Plus meter, Nova Biomedical) values
187 were determined immediately prior to the maximal exercise capacity test and immediately post, within 1
188 min after physical exhaustion. Blood glucose and lactate was also taken on the third session of each week
189 both pre and post. Body composition was assessed by nuclear magnetic resonance (Echo MRI-100 Body
190 Composition Analyzer; Echo Medical Systems, Houston, TX) and was conducted in the middle of the active
191 phase at ZT17, on the days immediately prior to maximal testing.

192

193 **Muscle and liver glycogen**

194 Small (~10 mg) frozen pieces from the gastrocnemius muscle and liver were used to detect tissue glycogen
195 content. Care was taken to ensure the same location of each tissue was sampled across replicates. Tissue
196 samples were weighed and homogenized in 100 μ l of glycogen hydrolysis buffer in a bullet blender
197 (BBY24M, Next Advance, NY, USA). Homogenates were centrifuged at 12000 rpm for 5 mins at 4 °C.
198 Muscle glycogen concentrations were then quantified from the supernatant using a commercially
199 available kit (K2144, ApexBio, Houston TX, USA) according to manufacturer's instructions. Glycogen
200 concentrations were plotted against a standard curve and background glucose was subtracted to calculate
201 glycogen content which was expressed normalized to tissue weight.

202

203 **Western blot**

204 Muscle lysates were prepared using cryo-pulverized samples from the quadriceps muscle group. Cryo-
205 pulverization was used instead of selected tissue sampling to minimize potential for regional variation
206 from this large muscle group. Samples were prepared for western blots and protein loading ranged from

207 4 ug/sample for MyHC gels to 20 ug protein/sample for mitochondrial proteins. Our SDS-PAGE gels for
208 protein separation were either 7 % or myosin heavy chain and citrate synthase proteins or 10 % gels for
209 the smaller proteins. Proteins were transferred to PVDF membranes following standard procedures in the
210 lab (27) and following transfer, membranes were blocked with blocking buffer (5 % non-fat dry milk in 0.1
211 % TBS-T; Blotto, Santa Cruz Biotechnology sc-2324) for 1 hour at room temperature. Following blocking,
212 membranes were incubated overnight at 4°C with primary antibodies specific to Type I, IIa, IIb, and IIx
213 MyHC, citrate synthase, VDAC, COX IV, and gamma-tubulin (Developmental Studies Hybridoma Bank
214 antibodies BA-D5 Type I MyHC 1:500, SC-71 Type IIa MyHC, 1:500 BF-F3 Type IIb, MyHC 1:1000, Invitrogen
215 PA5-31466 1:1000; Invitrogen PA5-22126 1:2000; Cell Signaling 4661 1:1000; Cell Signaling 4850 1:1000;
216 Millipore Sigma Anti-gamma-tubulin antibody T6557) in 1:1 diluted blocking buffer with 0.1 % TBS-T
217 before incubation with secondary HRP conjugated secondaries for 1 hour at room temperature in diluted
218 blocking buffer. Following secondary antibody incubation, membranes were washed 3x5 minutes with 0.1
219 % TBS-T and 1x5 minutes with ultrapure water, prior to incubation with ECL reagent followed by imaging.
220

221 **Citrate Synthase Activity**

222 Entire quadriceps muscle was cryo-pulverized and mixed over liquid nitrogen to obtain a homogenous
223 sample, and a ~20 mg aliquot was taken for analysis of citrate synthase activity. Cryo-pulverized tissue
224 was homogenized in 20 volumes (weight/volume) of buffer consisting of 20mM Tris-HCl, 137mM NaCl,
225 1% Triton X-100, 2mM EDTA, and protease inhibitor cocktail (mini-cComplete EDTA-free, Roche). Protein
226 concentrations of homogenized samples were obtained using the RCDC Protein Assay (Bio-Rad),
227 performed to the manufacturer's specifications. Citrate synthase activity was then obtained using the
228 MitoCheck® Citrate Synthase Activity Assay Kit (Cayman Chemical), performed to the manufacturer's
229 specifications. In brief, 30 uL of homogenate was used as input, and absorbance was recorded per
230 manufacturer's specifications via plate reader set at 412 nm and 25°C for 10 min. Citrate synthase activity
231 was then calculated per provided formula using protein concentrations of skeletal muscle homogenates,
232 and plotted as nmol/min/mg of skeletal muscle tissue.

233

234 **Statistical analysis**

235 Unless stated otherwise, data are presented as mean \pm standard deviation and all statistical analyses were
236 conducted in GraphPad Prism 9.1.2 (GraphPad Prism, RRID:SCR_002798). For multiple comparisons, data
237 were analyzed using one or two factor analysis of variance (ANOVA) followed by Tukey's multiple
238 comparisons test. To assess differences between exercise training groups only, two-tailed independent
239 student t-tests were performed to evaluate statistical differences. All statistically significant thresholds
240 were considered at the level of P<0.05. All raw data that support the findings of this study are available
241 from the corresponding author upon reasonable request.

242 **RESULTS**

243 ***Early active phase runners exhibited enhanced adaptations compared to late active phase runners.***

244 To evaluate the effects of time-of-day treadmill training on maximal endurance performance, we
245 first performed a maximal endurance capacity test prior to training at two distinct times during the active
246 period. In accordance with previous work in humans (28) and mice (6). We established that mice tested
247 in the late active period: ZT22 exhibited significantly greater treadmill endurance capacities than those
248 tested in the early active period: ZT13 (Figure 2A). To allow for comparisons among the mice, we

249 calculated treadmill work done which considers the treadmill speed, incline, duration, and individual
250 mouse bodyweight. We determined that the late active phase runners completed 85% more treadmill
251 work than the early active phase runners (2552 ± 260 arbitrary units (AU) vs. 1381 ± 354 AU) ($P < 0.001$;
252 Figure 2A). Additionally, mice tested in the ZT22 achieved an 83% further distance ($P < 0.001$; Figure S1A)
253 and spent 57% longer duration on the treadmill ($P < 0.001$; Figure S1B) than their ZT13 testing
254 counterparts.

255 Ten days following pre-testing, mice were randomly assigned to complete 6 weeks of scheduled
256 run training during the early active phase or late active phase. Maximum endurance capacity was tested
257 at 3 timepoints; i) prior to the onset of training, ii) after 3 weeks of training, and iii) after 6 weeks of
258 training. Within each time-of-training group, we found that the ZT13 mice exhibited significant increases
259 in endurance capacity from onset to 3 weeks ($P = 0.040$) and 3 weeks to 6 weeks of training ($P = 0.005$). In
260 contrast, the ZT22 training group demonstrated a significant change in endurance performance when
261 comparing between the pre-test to 6 weeks ($P = 0.043$), but endurance capacity at 3 weeks was not
262 statistically different from either onset ($P = 0.205$) or week 6 values ($P = 0.064$) (Figure 2B). The plotted
263 trajectory of individual mouse endurance time is provided in supplemental data (Figure S2) which suggests
264 that rate of change in endurance capacity is greater in the early active phase trained compared to the late
265 active phase trained mice.

266 In Figure 2C we compared maximum endurance capacity (work done) between each time-of-
267 training group for each maximal test. After 3 weeks of training, the ZT22 mice continued to perform
268 significantly better, completing more treadmill work (47%; $P = 0.004$) compared to those tested at ZT13.
269 However, following 6 weeks of run training, the endurance performance of mice that trained during the
270 early active phase increased and was not different from those that trained during the late active phase
271 ($P = 0.218$) (ZT13 runners: 3214 ± 384 AU vs ZT22 runners: 3708 ± 481 AU; Figure 2C). Together, these
272 endurance performance results indicate that mice in the early active phase training group exhibited a
273 greater rate of adaptation in endurance performance compared to the mice trained in the late active
274 phase. By week 6, ZT13 runners exhibited no difference in treadmill performance compared to the ZT22
275 runners.

276 Lastly, since both groups of mice were trained at the same relative training intensity, we wanted
277 to examine the differences in absolute work done during training between early active phase runners and
278 late active phase runners to understand how differences in the average amount of total work done may
279 have affected maximal performance adaptations (Figure 2D). We show work done on average across
280 weeks 1 to 3 ($P < 0.001$) and weeks 4 to 6 ($P < 0.001$) of training was significantly greater for ZT22 runners
281 compared to ZT13 runners. Given that ZT13 and ZT22 runners showed no difference in maximal endurance
282 capacity at max test 3, but ZT13 runners did less work on average across weeks 4-6, we asked if the ZT13
283 runners experienced significantly outsized adaptations to training (Figure 2E). We calculated the change
284 in performance between week 3 (Max test 2) and week 6 (Max test 3) to assess adaptation during the
285 second half of the training program, and discovered that the change in performance per average work
286 done across weeks 4 to 6 was significantly greater ($P = 0.029$) for ZT13 runners compared to ZT22 runners.
287 Therefore, ZT13 runners were subjected to less absolute work, while training at equal relative workloads.
288 This means that runners in the early active phase demonstrated greater adaptation per the amount of
289 work completed during training, i.e. enhanced efficiency of performance adaptations.

290
291 ***Blood glucose, blood lactate response to exercise and tissue glycogen content with training show no***
292 ***time-of-day differences.***

293 To begin to try and identify potential markers of time-of-day exercise capacity outcomes, we
294 tested well-established markers of acute exercise and training responses. To interrogate the acute
295 response during maximal endurance exercise we measured blood glucose and blood lactate immediately
296 before and after each maximum endurance test. We observed significantly higher measures of blood
297 glucose ($P < 0.001$) and blood lactate ($P < 0.001$) immediately after each maximum capacity test (Figure 3A
298 & 3B). However, there was no difference ($P > 0.05$) between ZT13 and ZT22 runners for either measure,
299 and there was no change ($P > 0.05$) with training. Thus, the acute glucose and/or lactate response to a
300 maximal graded exercise test does not differ between time-of-training groups and does not show any
301 pattern that associates with differences during any endurance capacity tests.

302 Muscle and liver glycogen levels are also well associated with exercise training and performance
303 (7, 29, 30). Consistent with sampling strategies performed in the MoTrPAC initiative (31), we performed
304 assays for glycogen on muscle and liver tissues collected 72 hours after the last bout of exercise at a
305 common timepoint midway between the time of early active phase and late active phase training, ZT17.
306 It is well known that endurance training results in increased glycogen storage in both muscle and liver (32,
307 33). After 6 weeks of training, we determined that skeletal muscle increased glycogen content in both
308 ZT13 and ZT22 training groups but that there was no difference ($P > 0.05$) between the groups. We also
309 determined that liver glycogen levels at ZT17 were not different with exercise training between groups
310 and these levels were not different compared to the sedentary controls. However, we did note, that there
311 is a trend for a difference in liver glycogen across the groups ($P = 0.061$) but with the high variability in the
312 liver glycogen levels for the early active phase exercise group we were underpowered to have confidence
313 in the outcomes. Thus, we did not detect any time-of-day training effects on the magnitude of glycogen
314 storage in muscle or liver.

315 (34)

316 ***Increased Daily Cage Activity and Body Composition during Exercise Training***

317 We next asked if there were differences in the daily cage activity in the mice in the ZT13 or ZT22
318 training groups. For these experiments we used infrared motion sensors in the home cage to track 24 h
319 movement around the cage. We found that mice from both training groups exhibited increased
320 movement in their home cages compared to the control mice throughout the 6 weeks of training (Figure
321 4A). We noted that the activity of the mice was largely limited to the normal active period (dark phase)
322 with no indication of altered activity in the light or rest phase of the day (Figure S4). We did detect cage
323 activity differences between the early active phase and late active phase training groups with the late
324 active phase runners showing more daily cage activity in the first week ($P = 0.002$), while the early active
325 phase runners had more cage activity in the last week of training ($P < 0.001$). It is important to note that
326 these measures are reflecting behavioral changes based on movement in the cage, but these measures
327 do not provide distance travelled.

328 We also sought to investigate if time-of-training elicited differential changes in body mass and/or
329 body composition and if there were any alterations that associated with the differences in work done
330 during treadmill running. We measured weekly food consumption in all mice and found there were no
331 significant differences in the amount of food consumed across all 3 groups (Figure S3). We tracked body
332 weight and body composition at weeks 1, 3, and 6 following training in all groups. There were no
333 significant differences between sedentary control, early active phase runners, or late active phase runners
334 in body mass (Figure 4B) or percent lean mass (Figure 4C). However, percent fat mass was significantly
335 reduced at 6 weeks in both early active phase ($P = 0.001$) and late active phase runners ($P = 0.001$)
336 compared to sedentary controls (Figure 4D). These results indicate that time-of-day training over 6-weeks

337 did not significantly alter body mass or lean mass but did reduce fat mass in both training groups. Because
338 there are no differences between time-of-day training groups, we suggest changes in fat mass do not
339 correlate with the time of training performance differences. However, it is interesting to note that the
340 ZT13 runners did less absolute physical work than the ZT22 runners yet the fat mass reduction with
341 training was not different.

342

343 ***Muscle mitochondrial enzyme activity and protein expression and myosin heavy chain isoform expression*** 344 ***following time-of-day training***

345 Increased citrate synthase activity has been well studied as an adaptation to endurance training
346 (34), often being utilized as a marker for aerobic capacity (35) and mitochondrial volume density (36).
347 Therefore, we measured citrate synthase protein content and enzyme activity in quadriceps muscle
348 homogenates to ask if there are differences in the muscle of early active phase or late active phase runners
349 (Figure 5H-I). Citrate synthase protein levels showed no difference ($p > 0.05$) between any of the groups
350 (Figure 5H). However, consistent with the literature for citrate synthase activity (Figure 5I) analysis
351 identified a significant difference ($P = 0.001$) between the control group (8.159 ± 0.693 nmol/min/mg), and
352 both trained groups; ZT13 runners (10.810 ± 0.439 nmol/min/mg), and ZT22 runners (6.339 ± 1.729
353 nmol/min/mg). However, there were no differences in citrate synthase activity between the trained
354 groups.

355 To further explore potential mechanisms underlying the superior performance adaptations in the
356 early active phase group, we examined mitochondrial and myosin heavy chain isoform protein expression
357 in quadriceps muscle homogenates. Cytochrome c Oxidase Subunit IV (COX IV) protein abundance, a key
358 component of complex IV (Figure 5F) was significantly higher in early active phase trained mice compared
359 with controls ($p < 0.05$) and was not different ($p > 0.05$) in the late active phase group, whereas Voltage-
360 Dependent Anion Channel (VDAC) content (Figure 5G) which is a protein in the mitochondria outer
361 membrane did not differ between any of the groups. Analysis of myosin heavy chain isoforms found that
362 between exercise groups there were no significant differences observed in Type I, IIa, IIb or IIX myosin
363 heavy chain (MyHC) isoform expression (Figure 5B-E). However, greater ($p > 0.05$) levels of Type I and IIa
364 MyHC were detected in ZT13/early runners, but not in ZT22/late runners Type I MyHC was the only
365 elevated isoform when compared to non-exercised control animals. Together, these findings suggest that
366 large-scale changes in content of mitochondria or composition of myosin heavy chain isoforms are unlikely
367 to fully explain the observed performance differences. Rather, the COXIV data are consistent with changes
368 in key components of metabolic capacity that may preferentially occur with early active phase training.

369 **DISCUSSION**

370 Our study provides novel insight into the effects of exercise timing on long-term performance and
371 physiological adaptations to endurance training in mice. We have demonstrated that while mice initially
372 exhibited superior endurance exercise performance in the late active phase, consistent early active phase
373 training over six weeks resulted in greater improvements in endurance capacity compared to late active
374 phase training (Figure 2E). Remarkably, these adaptations occurred despite both groups training at the
375 same relative intensity, so a greater magnitude of performance was attained by the ZT13 group despite
376 performing less absolute treadmill work. This provides evidence suggesting that time of exercise is a
377 modifiable aspect of a training program focused on enhanced endurance performance outcomes. Of note,
378 we also found that the ZT13 runners lost similar fat mass to ZT22 runners with no change in lean mass

379 (Figure 4D) even though the absolute workload was less, suggesting differential reliance on exercise
380 substrates linked to time of exercise. Lastly, we identified the mitochondrial marker, COX IV protein
381 (Figure 5F), as a potential factor linking the early active phase training to the enhanced performance
382 efficiency.

383 Cytochrome c oxidase subunit IV (COX IV) was selected for analysis as a functionally relevant and
384 dynamically regulated component of mitochondrial complex IV. COX IV is a nuclear-encoded subunit that
385 modulates electron flux through the catalytic core of complex IV and plays a critical role in matching
386 mitochondrial respiration to cellular energy demand via ATP- and ADP-dependent regulation. Importantly,
387 prior studies have demonstrated time-of-day variation in maximal oxygen consumption and mitochondrial
388 oxidative capacity in both humans (9) and rodents (37), implicating circadian regulation of electron
389 transport chain function. Moreover, circadian oscillations in mitochondrial protein abundance, including
390 components of oxidative phosphorylation complexes, have been reported in mouse liver (38), consistent
391 with clock-controlled regulation at the protein level rather than through large changes in mitochondrial
392 content. COX IV is also characterized by a relatively short protein half-life, making it particularly amenable
393 to circadian modulation. In support of this concept, rhythmic variation in complex IV activity has been
394 demonstrated in *Drosophila* (39), further suggesting that complex IV represents a node through which
395 circadian timing can influence mitochondrial efficiency.

396 In the present study, COX IV protein abundance was selectively increased in early active phase
397 (ZT13) trained mice despite no detectable differences in VDAC abundance (Figure 5), indicating that early
398 active phase training may promote qualitative, enzyme-level enhancements in mitochondrial oxidative
399 capacity rather than increased mitochondrial content. Notably, COX IV was assessed 72 hours after the
400 final training session indicating that the increase in COX IV reflected a steady state change with early active
401 phase training. However, our analysis was only done at one time of day, ZT17 and we cannot determine
402 if COX IV protein levels are changing over time of day. If protein levels do change over time of day, the
403 difference between the early vs. late active phase runners may reflect changes in circadian clock setting
404 leading to a different temporal pattern of peak COX VI protein. Future studies incorporating longitudinal
405 sampling across training and across time of day will be necessary to establish the temporal relationship
406 between mitochondrial enzyme regulation and performance adaptation.

407 Western blot analyses of quadriceps muscle did not reveal statistically significant differences in
408 overall myosin heavy chain (MyHC) isoform composition between early and late active phase training
409 groups (Figure 5). However, differences were evident when each group was compared with non-exercised
410 controls. Specifically, Type I MyHC protein abundance was increased in both early and late active phase
411 trained mice, whereas a modest increase in Type IIa MyHC was observed only in the early active phase
412 group. Interpretation of these findings requires consideration of the quadriceps muscle group, which in
413 mice is predominantly composed of fast, glycolytic fibres (Type IIB and IIX), with more oxidative fibres
414 localized to specific regions such as the rectus femoris and vastus intermedius. Thus, small changes in
415 oxidative MyHC isoforms detected in whole-muscle homogenates likely reflect subtle, regionally
416 constrained adaptations rather than large-scale fibre-type remodeling. These observations are consistent
417 with prior work (40, 41) demonstrating that endurance training can induce gradual and localized increases
418 in oxidative MyHC expression without necessitating overt fibre-type transitions, particularly when
419 assessed at the whole-muscle level. Collectively, these data suggest that early active phase training may
420 favor modest shifts toward a more oxidative contractile phenotype that complement mitochondrial
421 adaptations, potentially contributing to enhanced training efficiency without major structural remodeling.

422 (38)Endurance exercise capacity in mice has been shown by our lab and others to be lower during
423 the hours of the early active phase compared to the late active phase hours (5–7, 25). In this study, we
424 used genetically similar mice and carefully controlled for age, sex and, relative exercise training intensity
425 to better isolate the effect of training time on adaptation. Despite the initial performance disadvantage,
426 ZT13-trained mice, exhibited a steeper trajectory of performance improvement compared to ZT22-trained
427 mice (Figure 2E), ultimately achieving equivalent performances by week six (Figure 2C). This greater
428 adaptation per unit of work means that the early active phase runners exhibited enhanced efficiency with
429 training to yield improved maximal performance outcomes. The observation of differential training
430 efficiency has not previously been documented. We suggest that our use of tight controls over many
431 parameters of this study were necessary to demonstrate the time-of-day training differences in mice.

432 Notably, these performance improvements in the ZT13-trained mice were not detectable after 3
433 weeks of training, indicating that overcoming time-of-day performance differences requires an extended
434 training duration. Our results align with prior observations from Adamovich et al., (7), who reported
435 persistent diurnal performance differences after 2 weeks of time-of-day specific run training in mice. In
436 our study, only after 3 weeks, did the early active phase group close the diurnal performance gap. Our
437 observations are further consistent with findings from Souissi and colleagues who demonstrated 6 weeks
438 of resistance training in humans was sufficient to overcome time-of-day maximal strength differences,
439 with effects persisting at 2 weeks post-training (42). Together, these data suggest that while early active
440 phase training may be less optimal for acute performance, it can elicit robust long-term adaptations at a
441 lower absolute workload, provided the training is sustained more than 3 weeks.

442 Our results raise an important question about the mechanism(s) that underly the enhanced
443 endurance performance outcomes as well as the enhanced fat loss per amount of treadmill work found
444 in the early active phase training mice. We hypothesize that changes in the circadian clock mechanisms in
445 skeletal muscle contribute to enhanced metabolic shifts that support the increased efficiency of
446 performance adaptation in the early active period runners. The evidence for this model starts with studies
447 that link time of exercise, the muscle clock and mitochondrial function. Specifically, Wolff & Esser, (19)
448 demonstrated that time of exercise training was sufficient to shift the steady state phase of skeletal
449 muscle clocks ~4hrs after 6 weeks of training in the light/inactive phase. Beyond keeping time, the
450 circadian clock regulates a time-of-day pattern of gene expression, and several groups have demonstrated
451 that mitochondrial structure and function vary over time-of-day with higher function in the late active
452 phase (8, 9, 43–46). This places the improved mitochondrial function at a time when endurance
453 performance is highest. Thus, based on our citrate synthase data, it is possible that robust muscle clock
454 phase shifts in the early active phase runners drives a phase shift in circadian clock directed gene
455 expression leading to an earlier time-of-day enhanced mitochondrial function to support enhance
456 performance adaptations. It is important to note that in the present study we did not directly measure
457 skeletal muscle circadian phase or rhythmic mitochondrial function, and thus these proposed mechanisms
458 remain hypothetical and require direct experimental confirmation in future work.

459 This model is also consistent with the outcomes from Xin and colleagues, (10) which
460 demonstrated that endurance exercise performance can be improved, without training, through shifting
461 the muscle clock with time restricted feeding. In Xin et al., (10) the authors found that 3 weeks of time
462 restricted feeding during the rest phase in female mice was sufficient to significantly enhance endurance
463 performance in the early light/inactive phase (ZT2). They went on to show that these endurance effects
464 of time restricted required an intact circadian clock and implicate shifted rhythms in mitochondrial and
465 lipid metabolic genes for this outcome. There is much still to be tested, but this model implicates the

466 circadian clock system as a modifier of endurance performance adaptations. We also note that the
467 different substrate metabolism required during ZT13 vs. ZT22 training also likely contributed to our
468 observation that the early active phase runners lost the same amount of body fat as the late active phase
469 runners with no impact on lean mass, even though the absolute training volume was significantly lower.

470 Finally, our findings may hold importance for understanding a new factor that may contribute to
471 the growing efforts focused on understanding the heterogeneity of exercise responses, a major challenge
472 in both human and translational research (47–49). Our study design implemented tight controls including
473 inbred mice and clearly defined exercise training intensities and durations allowing us to identify exercise
474 timing and performance outcomes. We do not suggest that exercise timing will solely explain exercise
475 heterogeneity, but we do suggest that exercise timing is a variable that has been an underappreciated,
476 yet biologically relevant, source of variability in exercise outcomes and should be a consideration in
477 experimental designs.

478 This study is not without limitations. A relatively small sample size, combined with only female
479 mice were used, which limits the generalizability of these data across sexes. Mitochondrial function,
480 biogenesis, and stress responses have been shown to exhibit sexual dimorphism in both physiological and
481 pathological [contexts \(50\)](#), [raising](#) the possibility that male mice could respond differently to time-of-day
482 training. Replication of these findings in males will be important to determine the extent to which the
483 observed effects are sex-specific. Also, we used an inbred C57BL/6 strain of mice, which was part of our
484 control, but it also needs to be noted as a limitation as the application across more diverse genetic
485 backgrounds remains to be tested. We also acknowledge that the western blot analyses were conducted
486 in quadriceps muscle rather than gastrocnemius. Nonetheless, these datasets are consistent with
487 enzymatic and performance outcomes, providing complementary but preliminary evidence that early
488 active phase training promotes modest mitochondrial, contractile, and metabolic adaptations.
489 Additionally, the study focused solely on endurance-type exercise training; resistance or high-intensity
490 interval training may yield different time-of-day responses. Finally, all testing was performed at each
491 group's specific training time. Thus, we do not know if or by how much performance at different times of
492 day might be impacted. Nevertheless, these findings have significant implications for exercise scheduling
493 in both animal studies and human training regimens, as well as considerations for exercise performance
494 following significant athlete travel. Optimizing training time to align the intrinsic muscle circadian rhythms
495 may enhance the effectiveness of exercise interventions aimed at improving performance or metabolic
496 health. However, additional studies are needed to clarify the molecular mechanisms at play, and to
497 determine whether similar effects are observed across sexes, exercise modalities, and in different
498 circadian contexts.

499 In conclusion, we report a minimum of 6 weeks of early active phase at ZT13 endurance training
500 confers superior adaptive benefits compared to late active phase at ZT22 run training in mice, despite
501 lower absolute training volumes. The greater adaptation per unit of work in ZT13-trained mice highlights
502 a potential efficiency advantage tied to the timing of training, rather than total volume. Surprisingly, we
503 also found that the early active phase runners exhibited the same magnitude of fat mass loss with training
504 at a lower absolute training volume. These results suggest that the timing of exercise can significantly
505 influence training efficiency and physiological adaptation, potentially via circadian regulation of skeletal
506 muscle metabolism. We hypothesize that this enhanced adaptation to early active phase training may be
507 due to shifts in the phase of the muscle clock, allowing for better alignment of the muscle's metabolic
508 capacity with exercise demands. While exercise is known to exert a myriad of positive health effects, the
509 concept that these benefits may be advanced, in part, through changes in circadian rhythmicity, remains

510 under studied. There is still much more work to be done in preclinical models to mechanistically test the
511 exercise-induced changes in muscle circadian clock phase, mitochondrial capacity, substrate metabolism
512 and endurance performance. It is also important to test the translation of these findings as they hold
513 significant implications for athletic performance, experimental exercise-research design, as well as
514 restoring functional deficits in individuals with circadian clock disruption e.g., type 2 diabetes and aging
515 (51–54).

516 **DATA AVAILABILITY**

517 The data that support the findings of this study are available on request from the corresponding author.

518 **SUPPLEMENTAL MATERIAL**

519 Supplemental Figures. S1-S5: DOI.10.6084/m9.figshare.29476850
520

521 **GRANTS**

522 NIH:NIAMS R01AR079220 to KAE; NIH:NIA U01AG055137 to KAE; Wu Tsai Human Performance Alliance
523 AGR00023600 to KAE.

524 **DISCLOSURES**

525 The authors declare that they have no competing interests, financial or otherwise.

526 **AUTHOR CONTRIBUTIONS**

527 SJ Hesketh and KA Esser conceived and designed the research; SJ Hesketh, CM Douglas, X Zhang, CA Wolff
528 ES Nowicki and CL Sexton performed the research and acquired the data. SJ Hesketh CA Wolff, and CL
529 Sexton analyzed and interpreted the data. SJ Hesketh drafted the manuscript, and all authors were
530 involved in editing and approved the final version.

531 **REFERENCES**

- 532 1. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. *Cell* 159: 738–
533 749, 2014. doi: 10.1016/j.cell.2014.10.029.
- 534 2. Gabriel BM, Zierath JR. The Limits of Exercise Physiology: From Performance to Health. *Cell Metab* 25: 1000–1011, 2017. doi: 10.1016/j.cmet.2017.04.018.
- 536 3. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle
537 adaptation. *Cell Metab* 17: 162–184, 2013. doi: 10.1016/j.cmet.2012.12.012.
- 538 4. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The Effect of Insulin on the
539 Disposal of Intravenous Glucose Results from Indirect Calorimetry and Hepatic and Femoral
540 Venous Catheterization. .
- 541 5. Maier G, Delezio J, Westermark PO, Santos G, Ritz D, Handschin C. Transcriptomic, proteomic and
542 phosphoproteomic underpinnings of daily exercise performance and Zeitgeber activity of training
543 in mouse muscle. *J Physiol* 2, 2021. doi: 10.1113/jp281535.

544 6. Ezagouri S, Zwighaft Z, Sobel J, Baillieul S, Doutreleau S, Ladeux B, Golik M, Verges S, Asher G.
545 Physiological and Molecular Dissection of Daily Variance in Exercise Capacity. *Cell Metab* 30: 78-
546 91.e4, 2019. doi: 10.1016/j.cmet.2019.03.012.

547 7. Adamovich Y, Dandavate V, Ezagouri S, Manella G, Zwighaft Z, Sobel J, Kuperman Y, Golik M,
548 Auerbach A, Itkin M, Malitsky S, Asher G. Clock proteins and training modify exercise capacity in a
549 daytime-dependent manner. *Proceedings of the National Academy of Sciences* 118:
550 e2101115118, 2021. doi: 10.1073/pnas.2101115118.

551 8. Gemmink A, Daemen S, Wefers J, Hansen J, van Moorsel D, Astuti P, Jorgensen JA, Kornips E,
552 Schaat G, Hoeks J, Schrauwen P, Hesselink MKC. Twenty-four hour rhythmicity in mitochondrial
553 network connectivity and mitochondrial respiration; a study in human skeletal muscle biopsies of
554 young lean and older individuals with obesity. *Mol Metab* 72, 2023. doi:
555 10.1016/j.molmet.2023.101727.

556 9. van Moorsel D, Hansen J, Havekes B, Scheer FAJL, Jörgensen JA, Hoeks J, Schrauwen-Hinderling
557 VB, Duez H, Lefebvre P, Schaper NC, Hesselink MKC, Staels B, Schrauwen P. Demonstration of a
558 day-night rhythm in human skeletal muscle oxidative capacity. *Mol Metab* 5: 635–645, 2016. doi:
559 10.1016/j.molmet.2016.06.012.

560 10. Xin H, Huang R, Zhou M, Chen J, Zhang J, Zhou T, Ji S, Liu X, Tian H, Lam SM, Bao X, Li L, Tong S,
561 Deng F, Shui G, Zhang Z, Wong CCL, Li MD. Daytime-restricted feeding enhances running
562 endurance without prior exercise in mice. *Nat Metab* 5: 1236–1251, 2023. doi: 10.1038/s42255-
563 023-00826-7.

564 11. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. *Hum Mol Genet*
565 15, 2006. doi: 10.1093/HMG/DDL207.

566 12. McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, Walker JR,
567 Hogenesch JB, Takahashi JS, Esser KA. Identification of the circadian transcriptome in adult
568 mouse skeletal muscle. *Physiol Genomics* 31: 86–95, 2007. doi:
569 10.1152/physiolgenomics.00066.2007.

570 13. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. *Physiol Rev* 90: 1063–1102,
571 2010. doi: 10.1152/PHYSREV.00009.2009.

572 14. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. *Annu
573 Rev Neurosci* 35: 445–462, 2012. doi: 10.1146/annurev-neuro-060909-153128.

574 15. Partch CL, Green CB, Takahashi JS. Molecular Architecture of the Mammalian Circadian Clock.
575 *Trends Cell Biol* 24: 90–99, 2014. doi: 10.1016/j.tcb.2013.07.002.

576 16. Douglas CM, Hesketh SJ, Esser KA. Time of Day and Muscle Strength: A Circadian Output?
577 *Physiology (Bethesda)* 36: 44–51, 2021. doi: 10.1152/physiol.00030.2020.

578 17. Hesketh SJ, Esser KA. The clockwork of champions: Influence of circadian biology on exercise
579 performance. *Free Radic Biol Med* 224 Elsevier Inc.: 78–87, 2024.

580 18. Schroder EA, Harfmann BD, Zhang X, Srikuera R, England JH, Hodge BA, Wen Y, Riley LA, Yu Q,
581 Christie A, Smith JD, Seward T, Wolf Horrell EM, Mula J, Peterson CA, Butterfield TA, Esser KA.

582 18. Intrinsic muscle clock is necessary for musculoskeletal health. *Journal of Physiology* 593: 5387–
583 5404, 2015. doi: 10.1113/JP271436.

584 19. Wolff G, Esser KA. Scheduled exercise phase shifts the circadian clock in skeletal Muscle. *Med Sci
585 Sports Exerc* 44: 1663–1670, 2012. doi: 10.1249/MSS.0b013e318255cf4c.

586 20. Sasaki H, Hattori Y, Ikeda Y, Kamagata M, Iwami S, Yasuda S, Tahara Y, Shibata S. Forced rather
587 than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in
588 PER2::LUC mice. *Sci Rep* 6: 1–15, 2016. doi: 10.1038/srep27607.

589 21. Nakao R, Nikawa T, Oishi K. The skeletal muscle circadian clock: current insights.
590 *ChronoPhysiology and Therapy* Volume 7: 47–57, 2017. doi: 10.2147/cpt.s116569.

591 22. Kemler D, Wolff CA, Esser KA. Time-of-day dependent effects of contractile activity on the phase
592 of the skeletal muscle clock. *Journal of Physiology* 598: 3631–3644, 2020. doi: 10.1113/JP279779.

593 23. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo
594 OJ, Menaker M, Takahashi JS. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics
595 reveals persistent circadian oscillations in mouse peripheral tissues. *Proc Natl Acad Sci U S A* 101:
596 5339–5346, 2004. doi: 10.1073/pnas.0308709101.

597 24. Rosenfeld C. Sex-Dependent Differences in Voluntary Physical Activity Cheryl. *Physiol Behav* 176:
598 100–106, 2017. doi: 10.1002/jnr.23896.Sex-Dependent.

599 25. Sato S, Basse AL, Schönke M, Chen S, Samad M, Altıntaş A, Laker RC, Dalbram E, Barrès R, Baldi P,
600 Treebak JT, Zierath JR, Sassone-Corsi P. Time of Exercise Specifies the Impact on Muscle
601 Metabolic Pathways and Systemic Energy Homeostasis. *Cell Metab* 30: 92–110.e4, 2019. doi:
602 10.1016/j.cmet.2019.03.013.

603 26. Avila JJ, Kim SK, Massett MP. Differences in exercise capacity and responses to training in 24
604 inbred mouse strains. *Front Physiol* 8: 1–12, 2017. doi: 10.3389/fphys.2017.00974.

605 27. Gutierrez-Monreal MA, Wolff CA, Rijos EE, Viggars MR, Douglas CM, Pagala V, Peng J, Hunt LC,
606 Ding H, Huo Z, Demontis F, Esser KA. Targeted Bmal1 restoration in muscle prolongs lifespan with
607 systemic health effects in aging model. *JCI Insight* 9, 2024. doi: 10.1172/jci.insight.174007.

608 28. Küüsmaa M, Schumann M, Sedliak M, Kraemer WJ, Newton RU, Malinen JP, Nyman K, Häkkinen
609 A, Häkkinen K. Effects of morning versus evening combined strength and endurance training on
610 physical performance, muscle hypertrophy, and serum hormone concentrations. *Applied
611 Physiology, Nutrition and Metabolism* 41: 1285–1294, 2016. doi: 10.1139/apnm-2016-0271.

612 29. Vigh-Larsen JF, Ørtenblad N, Spriet LL, Overgaard K, Mohr M. Muscle Glycogen Metabolism and
613 High-Intensity Exercise Performance: A Narrative Review. *Sports Medicine* 51 Springer Science
614 and Business Media Deutschland GmbH: 1855–1874, 2021.

615 30. Knuiman P, Hopman MTE, Mensink M. Glycogen availability and skeletal muscle adaptations with
616 endurance and resistance exercise. *Nutr Metab (Lond)* 12 BioMed Central Ltd.: 2015.

617 31. Amar D, Gay NR, Jean-Beltran PM, Bae D, Dasari S, Dennis C, Evans CR, Gaul DA, Ilkayeva O,
618 Ivanova AA, Kachman MT, Keshishian H, Lanza IR, Lira AC, Muehlbauer MJ, Nair VD, Piehowski

619 PD, Rooney JL, Smith KS, Stowe CL, Zhao B, Clark NM, Jimenez-Morales D, Lindholm ME, Many
620 GM, Sanford JA, Smith GR, Vetr NG, Zhang T, Almagro Armenteros JJ, Avila-Pacheco J, Bararpour
621 N, Ge Y, Hou Z, Marwaha S, Presby DM, Natarajan Raja A, Savage EM, Steep A, Sun Y, Wu S, Zhen
622 J, Bodine SC, Esser KA, Goodyear LJ, Schenk S, Montgomery SB, Fernández FM, Sealfon SC, Snyder
623 MP, Adkins JN, Ashley E, Burant CF, Carr SA, Clish CB, Cutter G, Gerszten RE, Kraus WE, Li JZ,
624 Miller ME, Nair KS, Newgard C, Ortlund EA, Qian WJ, Tracy R, Walsh MJ, Wheeler MT, Dalton KP,
625 Hastie T, Hershman SG, Samdarshi M, Teng C, Tibshirani R, Cornell E, Gagne N, May S, Bouverat
626 B, Leeuwenburgh C, Lu CJ, Pahor M, Hsu FC, Rushing S, Walkup MP, Nicklas B, Rejeski WJ,
627 Williams JP, Xia A, Albertson BG, Barton ER, Booth FW, Caputo T, Cicha M, De Sousa LGO, Farrar
628 R, Hevener AL, Hirshman MF, Jackson BE, Ke BG, Kramer KS, Lessard SJ, Makarewicz NS, Marshall
629 AG, Nigro P, Powers S, Ramachandran K, Rector RS, Richards CZT, Thyfault J, Yan Z, Zang C, Amper
630 MAS, Balci AT, Chavez C, Chikina M, Chiu R, Gritsenko MA, Guevara K, Hansen JR, Hennig KM,
631 Hung CJ, Hutchinson-Bunch C, Jin CA, Liu X, Maner-Smith KM, Mani DR, Marjanovic N, Monroe
632 ME, Moore RJ, Moore SG, Mundorff CC, Nachun D, Nestor MD, Nudelman G, Pearce C, Petyuk
633 VA, Pincas H, Ramos I, Raskind A, Rirak S, Robbins JM, Rubenstein AB, Ruf-Zamojski F, Sagendorf
634 TJ, Seenarine N, Soni T, Uppal K, Vangeti S, Vasoya M, Vornholt A, Yu X, Zaslavsky E, Zebarjadi N,
635 Bamman M, Bergman BC, Bessesen DH, Buford TW, Chambers TL, Coen PM, Cooper D, Haddad F,
636 Gadde K, Goodpaster BH, Harris M, Huffman KM, Jankowski CM, Johannsen NM, Kohrt WM,
637 Lester B, Melanson EL, Moreau KL, Musi N, Newton RL, Radom-Aizik S, Ramaker ME, Rankinen T,
638 Rasmussen BB, Ravussin E, Schauer IE, Schwartz RS, Sparks LM, Thalacker-Mercer A, Trappe S,
639 Trappe TA, Volpi E. Temporal dynamics of the multi-omic response to endurance exercise
640 training. *Nature* 629: 174–183, 2024. doi: 10.1038/s41586-023-06877-w.

641 32. Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Liver glycogen metabolism during and after
642 prolonged endurance-type exercise. *Am J Physiol Endocrinol Metab* 311: E543–E553, 2016. doi:
643 10.1152/ajpendo.00232.2016.

644 33. Greiwe JS, Hickner RC, Hansen PA, Racette SB, Chen MM, Holloszy JO, Han-sen PA. Effects of
645 endurance exercise training on muscle glycogen accumulation in humans [Online].
646 <http://www.jap.org>.

647 34. Reitzner SM, Emanuelsson EB, Arif M, Kaczkowski B, Kwon AT, Mardinoglu A, Arner E, Chapman
648 MA, Sundberg CJ. Molecular profiling of high-level athlete skeletal muscle after acute endurance
649 or resistance exercise – A systems biology approach. *Mol Metab* 79, 2024. doi:
650 10.1016/j.molmet.2023.101857.

651 35. Vigelsø A, Andersen NB, Dela F. The relationship between skeletal muscle mitochondrial citrate
652 synthase activity and whole body oxygen uptake adaptations in response to exercise training
653 [Online]. www.ijppp.org.

654 36. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge
655 JW, Dela F, Hey-Mogensen M. Biomarkers of mitochondrial content in skeletal muscle of healthy
656 young human subjects. *Journal of Physiology* 590: 3349–3360, 2012. doi:
657 10.1113/jphysiol.2012.230185.

658 37. Khatri S, Das S, Singh A, Ahmad S, Kashiv M, Laxman S, Kolthur-Seetharam U. Diurnal variation in
659 skeletal muscle mitochondrial function dictates time-of-day-dependent exercise capacity. *FASEB Journal* 39, 2025. doi: 10.1096/fj.202402930R.

661 38. Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B, Nir D, Rousso-Noori
662 L, Kuperman Y, Golik M, Mann M, Asher G. Circadian control of oscillations in mitochondrial rate-
663 limiting enzymes and nutrient utilization by PERIOD proteins. *Proc Natl Acad Sci U S A* 113:
664 E1673–E1682, 2016. doi: 10.1073/pnas.1519650113.

665 39. Weinrich TW, Kam JH, Ferrara BT, Thompson EP, Mitrofanis J, Jeffery G. A day in the life of
666 mitochondria reveals shifting workloads. *Sci Rep* 9, 2019. doi: 10.1038/s41598-019-48383-y.

667 40. Schiaffino S, Reggiani C. Fiber Types in Mammalian Skeletal Muscles. *Physiol Rev* 91: 1447–1531,
668 2011. doi: 10.1152/physrev.00031.2010.

669 41. Pette D, Straron. Mammalian skeletal muscle fiber type transistions. 1997.

670 42. Souissi N, Gauthier A, Sesboüé B, Larue J, Davenne D. Effects of regular training at the same time
671 of day on diurnal fluctuations in muscular performance. *J Sports Sci* 20: 929–937, 2002. doi:
672 10.1080/026404102320761813.

673 43. Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1 α integrates the mammalian
674 clock and energy metabolism. *Nature* 447: 477–481, 2007. doi: 10.1038/nature05767.

675 44. Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. *Mol Cell
676 Endocrinol* 366: 163–169, 2013.

677 45. Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL,
678 Gangl MR, Mair WB, Lee CH. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and
679 promotes metabolic fitness. *Cell Metab* 22: 709–720, 2015. doi: 10.1016/j.cmet.2015.08.006.

680 46. Puig LS, Valera-Alberni M, Cantó C, Pillon NJ. Circadian rhythms and mitochondria: Connecting
681 the dots. *Front Genet* 9: 1–8, 2018. doi: 10.3389/fgene.2018.00452.

682 47. Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, Rao DC, Rankinen T. Genomic
683 predictors of the maximal O₂ uptake response to standardized exercise training programs. *J Appl
684 Physiol* 110: 1160–1170, 2011. doi: 10.1152/japplphysiol.00973.2010.-Low.

685 48. Hecksteden A, Kraushaar J, Scharhag-Rosenberger F, Theisen D, Senn S, Meyer T. Individual
686 response to exercise training - a statistical perspective. *J Appl Physiol* 118: 1450–1459, 2015. doi:
687 10.1152/japplphysiol.00714.2014.-In.

688 49. Mann TN, Lamberts RP, Lambert MI. High responders and low responders: Factors associated
689 with individual variation in response to standardized training. *Sports Medicine* 44 Springer
690 International Publishing: 1113–1124, 2014.

691 50. Miotto PM, Mcglory C, Holloway TM, Phillips SM, Holloway GP. Sex differences in mitochondrial
692 respiratory function in human skeletal muscle. *Am J Physiol Regul Integr Comp Physiol* 314: 909–
693 915, 2018. doi: 10.1152/ajpregu.00025.2018.-Mitochondrial.

694 51. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human
695 adipocytes after experimental sleep restriction: A randomized, crossover study. *Ann Intern Med*
696 157: 549–557, 2012. doi: 10.7326/0003-4819-157-8-201210160-00005.

697 52. Panagiotou M, Michel S, Meijer JH, Deboer T. The aging brain: sleep, the circadian clock and
698 exercise. *Biochem Pharmacol* 191 Elsevier Inc.: 2021.

699 53. Savikj M, Gabriel BM, Alm PS, Smith J, Caidahl K, Björnholm M, Fritz T, Krook A, Zierath JR,
700 Wallberg-Henriksson H. Afternoon exercise is more efficacious than morning exercise at
701 improving blood glucose levels in individuals with type 2 diabetes: a randomised crossover trial.
702 *Diabetologia* 62: 233–237, 2019. doi: 10.1007/s00125-018-4767-z.

703 54. de Alencar Silva BS, Uzeloto JS, Lira FS, Pereira T, Coelho-E-silva MJ, Caseiro A. Exercise as a
704 peripheral circadian clock resynchronizer in vascular and skeletal muscle aging. *Int J Environ Res
705 Public Health* 18 MDPI: 2021.

706

707 **FIGURE LEGENDS**

708 **Figure 1. Study Design**

709 A schematic of the experimental design is presented to show the time-line of testing, grouping, and
710 training. Mice were randomized for pilot testing, re-randomized into their experimental training groups
711 ZT13 (early active phase runners) or ZT22 (late active runners), then 10 days later mice were re-tested
712 (Max Test 1), and the 6 weeks of training began. d = days, h = hours, wk = week, ZT = zeitgeber time.

713

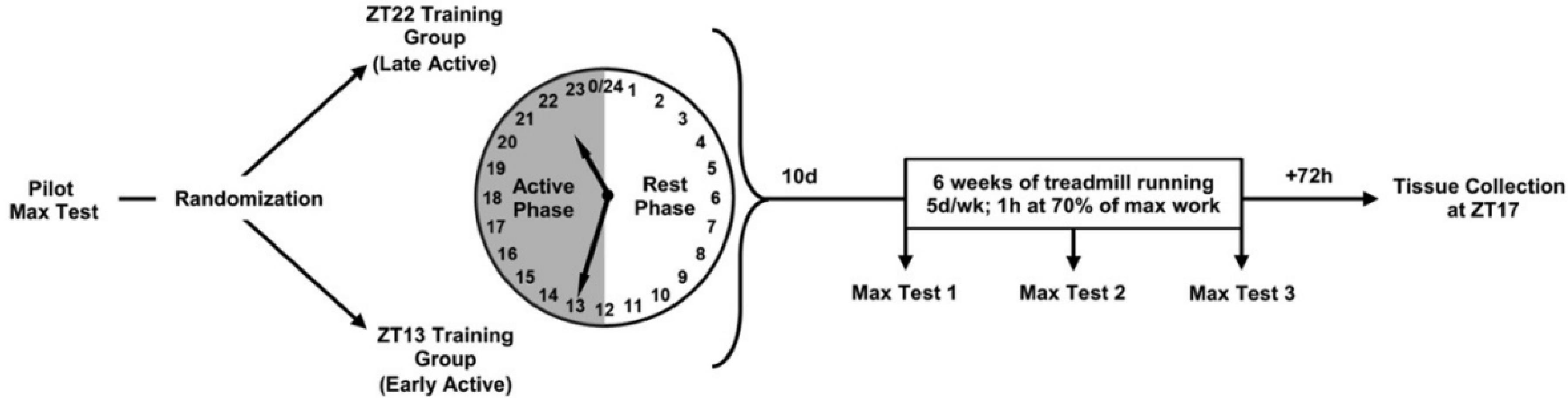
714 **Figure 2. Time of exercise training reduces diurnal differences in exercise performance.**

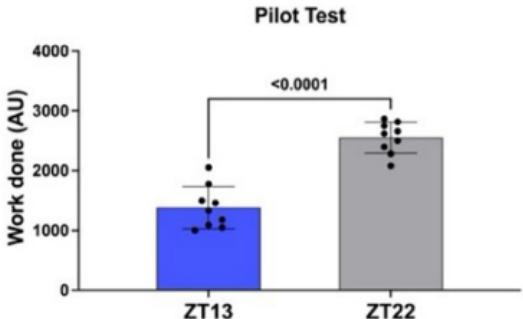
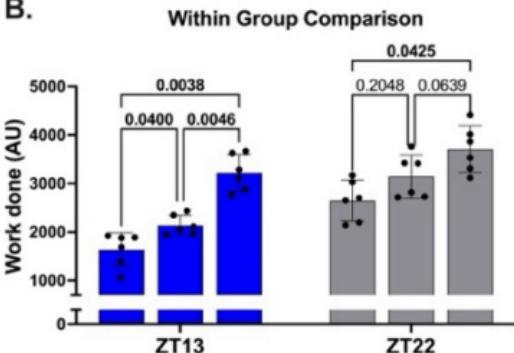
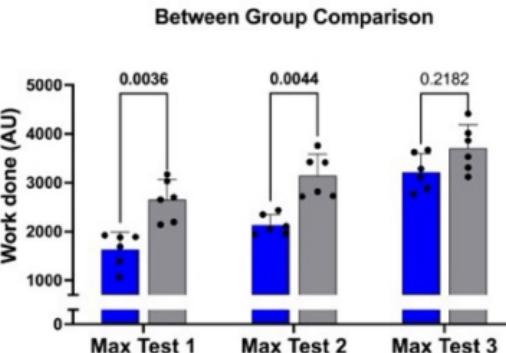
715 All data are presented as MEAN \pm SD with individual values plotted, and significant P-values are bolded in
716 the figure for identification. Each maximal test was conducted at ZT13 (blue bars) for the early active
717 phase runners and at ZT22 (gray bars) for the late active phase runners. **A**) Ten days prior to the onset of
718 training, a pilot test was conducted to confirm if diurnal differences in maximal run performance existed
719 for early active phase runners (n = 9) and late active phase runners (n = 9). **B, C**) Maximal endurance
720 capacity testing was conducted prior to (Max test 1), 3 weeks after (Max test 2), and 6 weeks after (Max
721 test 3) the onset of training (ZT13 runners: n = 6; ZT22 runners: n = 6). **D**) The average work done per
722 training session for ZT13 and ZT22 runners was compared across weeks 1-3 and weeks 4-6. **E**) Change in
723 run performance between Max Test 2 and Max Test 3, divided by the average work done per session from
724 week 4 to 6 was compared between ZT13 and ZT22 runners. One and two factor analysis of variance were
725 used to assess statistical significance, apart from panels A and E were two-tailed independent T-tests were
726 performed. Post-hoc comparisons of ZT13 and ZT22 runners are also shown through within-group and
727 between-group comparisons. All statistically significant thresholds were considered at the level of P<0.05.

728

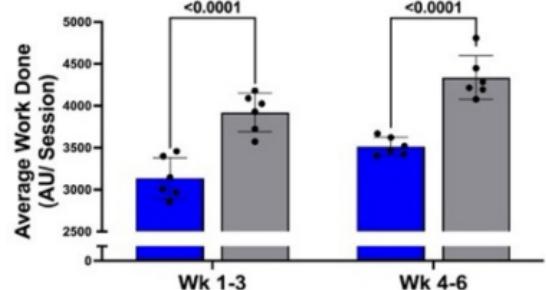
729 **Figure 3. Maximal capacity test blood markers and basal tissue glycogen content.**

730 All data are presented as MEAN \pm SD with individual values plotted, and significant P-values are bolded
731 for identification. Each maximal test in A and B was conducted at ZT13 for the early active phase runners
732 (blue bars), (n = 6), and at ZT22 for the late active phase runners (gray bars), (n = 6). **A, B**) Acute blood
733 markers of glucose and lactate were collected both pre and post each maximal testing session. **C, D**) Show
734 the tissues used for glycogen content analysis, liver (μ g/mg of tissue) and skeletal muscle (μ g/mg of
735 tissue), samples collected 72h after the last exercise bout. Two-tailed independent T-tests were

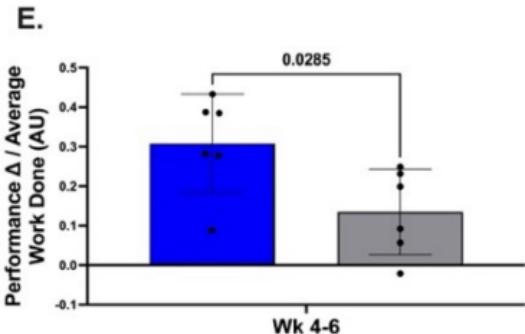

736 performed to assess statistical significance between pre and post measures in panel A and B, and two-
737 way analysis of variance were used to assess interaction. One way analysis of variance and Tukey's
738 multiple comparisons test were used to assess between group differences in panel C-D. Statistically
739 significant thresholds were considered at the level of $P < 0.05$ for all.
740




741 **Figure 4. Mouse cage activity and body composition profiles.**

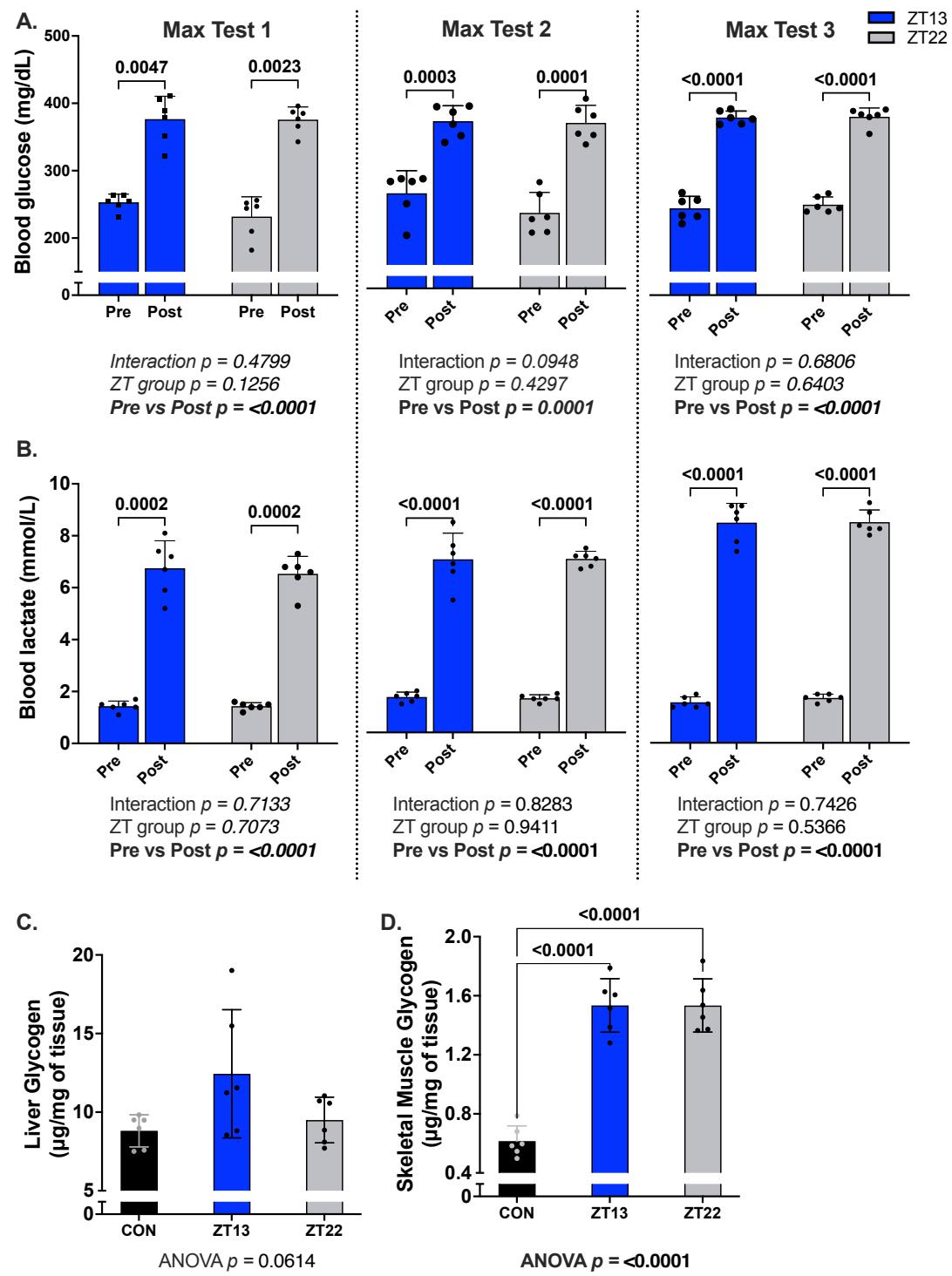
742 Unless stated otherwise, data are displayed as $MEAN \pm SD$ with individual values plotted, and significant
743 P-values bolded for identification. Mice were individually housed for the duration of the time-of-day
744 training program, and all animals were evaluated at weeks 1, 3, and 6 for cage activity and body
745 composition. The sedentary control group is shown in black ($n = 6$), the ZT13 early active phase runners in
746 blue bars ($n = 6$), and the ZT22 late active phase runners are shown in grey bars ($n = 6$). **A**) Shows average
747 data for each group for daily cage activity using wireless, infrared monitors in counts per minute. **B**)
748 Displays total body mass over time. **C, D**) Show percent lean mass, and percent fat mass, respectively.
749 Measured at ZT17 each week immediately prior to maximal testing using Echo MRI. One way analysis of
750 variance and Tukey's multiple comparisons test were used to assess between group differences and
751 interaction. Statistically significant thresholds were considered at the level of $P < 0.05$.
752

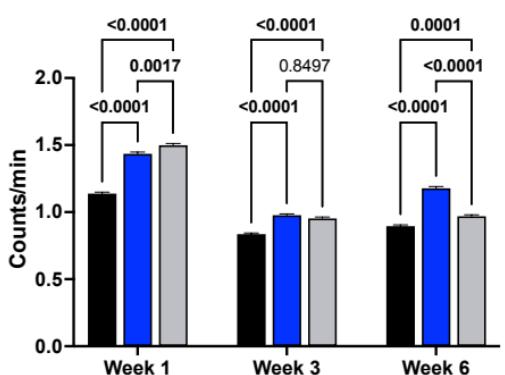

753 **Figure 5. Time-of-day specific effects of endurance training on mitochondrial and myofibrillar protein
754 expression in quadriceps muscle.**

755 Data are presented as mean \pm SEM. Control (CON, $n = 4$), early active phase trained (ZT13, $n = 4$), and late
756 active phase trained (ZT22, $n = 4$) groups are shown. Effects of early and late active phase endurance
757 training on mitochondrial and myofibrillar protein expression in quadriceps muscle. Quadriceps muscles
758 were collected 72 h after the final training session, cryopulverized, and analyzed by immunoblotting. **A**)
759 Representative immunoblots for myosin heavy chain (MyHC) isoforms (Type I, Type IIa, Type IIb, and total
760 MyHC), citrate synthase, COX IV, and VDAC, with γ -tubulin used as a loading control. Data plotted is
761 relative to control average. **B-E**) Quantification of Type I, Type IIa, Type IIb, and total MyHC protein
762 abundance, normalized to γ -tubulin and expressed relative to non-exercised control animals. Data plotted
763 is relative to control average. **F**) COX IV protein abundance normalized to γ -tubulin. **G**) VDAC protein
764 abundance normalized to γ -tubulin. **H**) Quantification of citrate synthase activity. **I**) Quantification of
765 citrate synthase protein normalized to γ -tubulin. Data plotted is relative to control average. Statistical
766 comparisons were performed using one-way ANOVA with Tukey's post hoc test. $P < 0.05$, $P < 0.01$; absent
767 comparisons were not statistically significant.

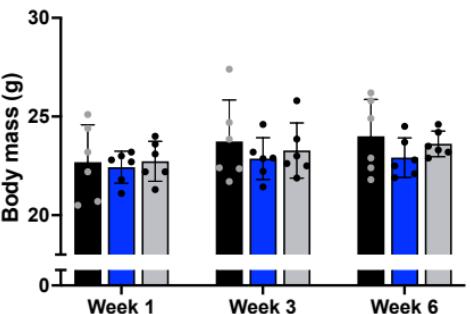


A.**B.****C.**

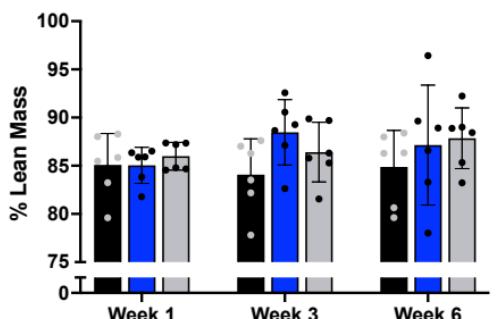

Interaction $p = 0.2049$
 ZT group $p < 0.0001$
 Time $p < 0.0001$


D.

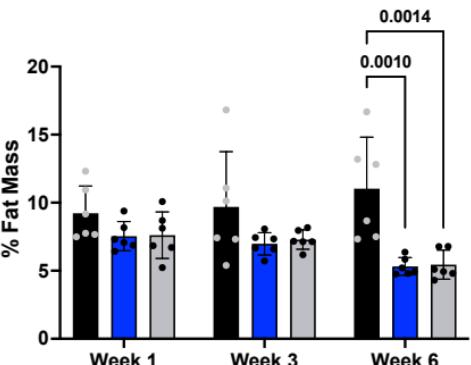
Interaction $p = 0.8274$
 ZT group $p = 0.0003$
 Time $p < 0.0001$


E.

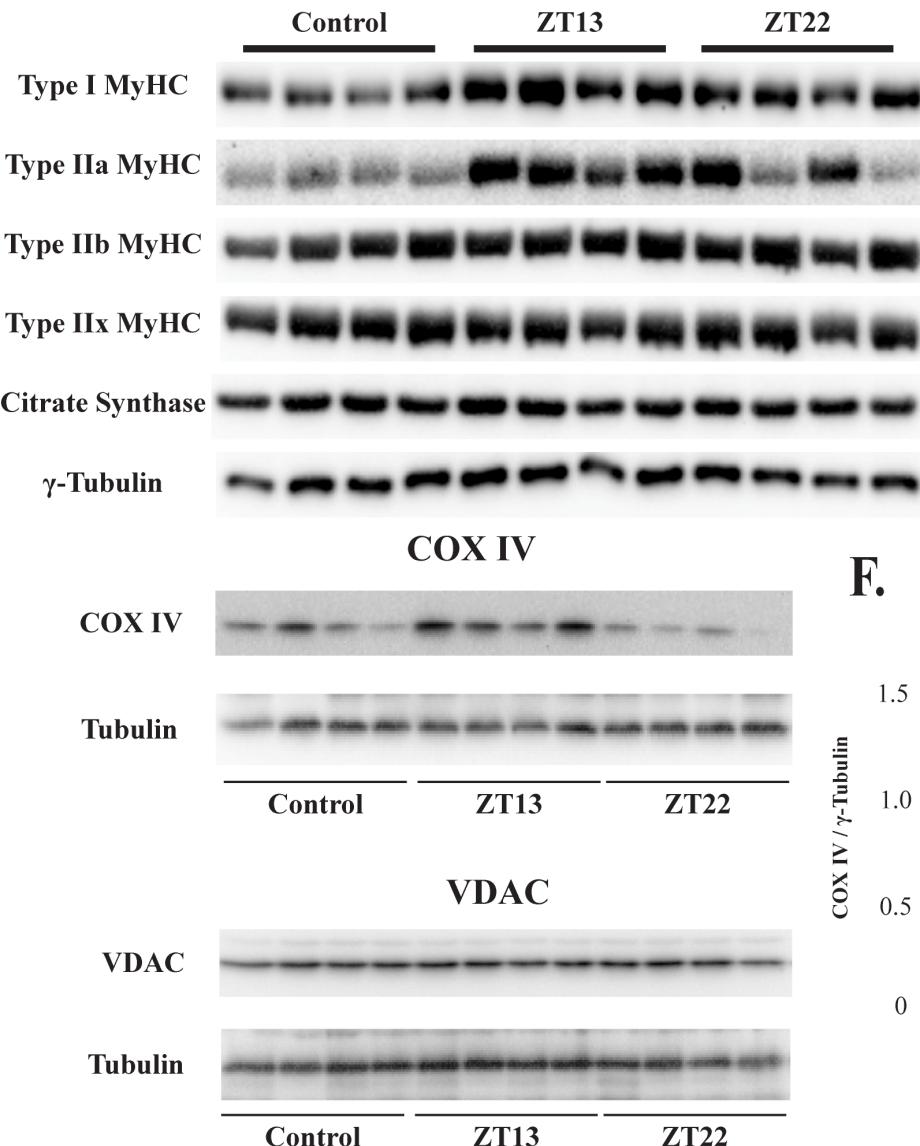
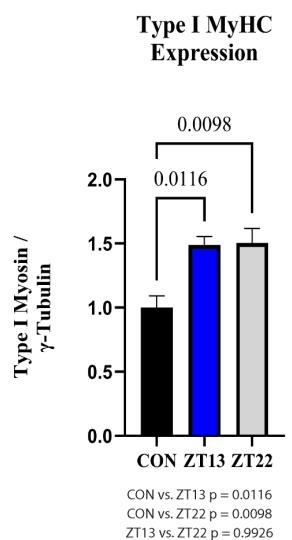
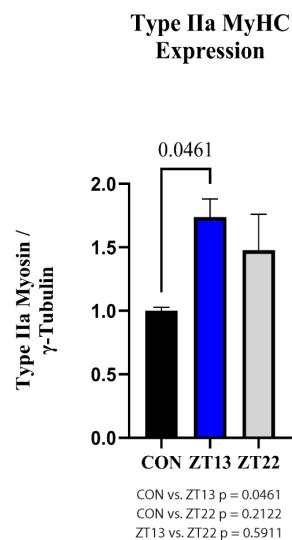
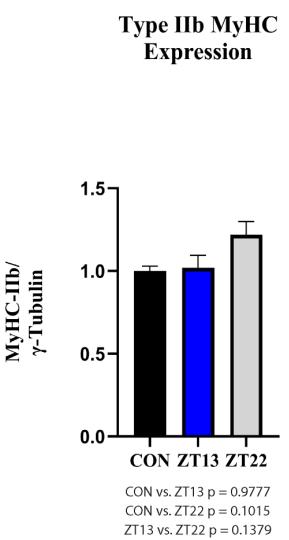
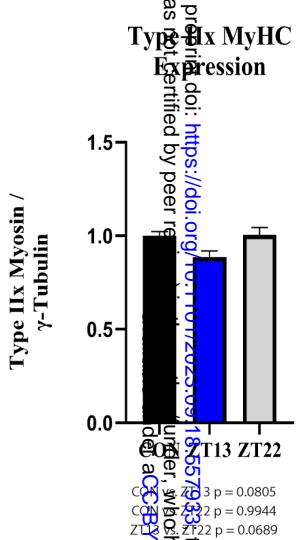
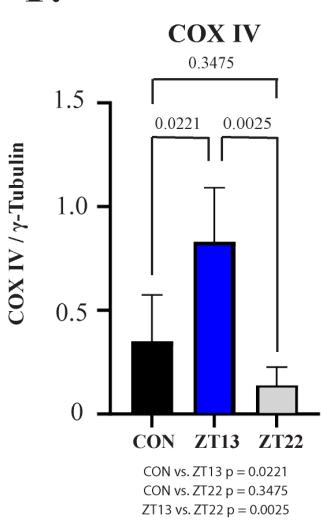
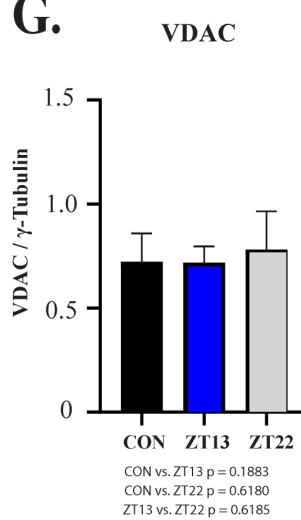
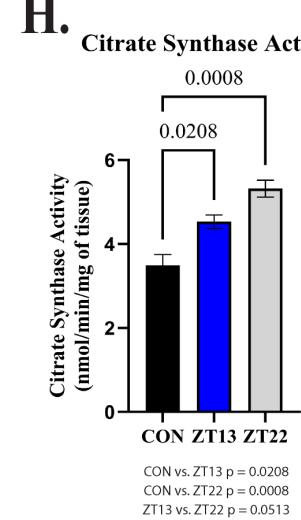
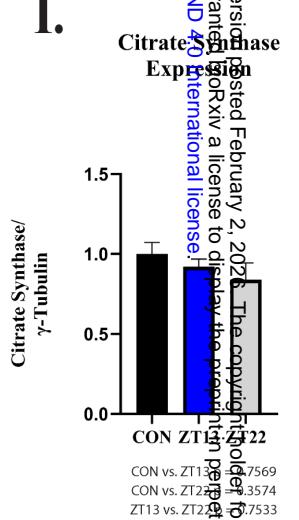
■ ZT13
 ■ ZT22



A.


Interaction $p < 0.0001$
 ZT group $p < 0.0001$
 Time $p < 0.0001$

B.










Interaction $p = 0.9598$
 ZT group $p = 0.2936$
 Time $p = 0.1485$

C.

Interaction $p = 0.6003$
 ZT group $p = 0.1253$
 Time $p = 0.5493$

D.

Interaction $p = 0.1246$
 ZT group $p < 0.0001$
 Time $p = 0.4413$

A.**B.****C.****D.****E.****F.****G.****H.****I.**

bioRxiv preprint doi: <https://doi.org/10.1101/2022.07.26.525520>; this version posted July 26, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).