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Abstract 
Scientific progress depends on reliable and reproducible results. Progress can be accelerated 
when data are shared and re-analyzed to address new questions. Current approaches to storing 
and analyzing neural data involve bespoke formats and software that make replication and reuse 
of data difficult. To address these challenges, we created Spyglass, an open-source data 
management and analysis framework written in Python. Spyglass provides reproducible pipelines 
for common neuroscience analyses and sharing of raw data, intermediate analyses, and final 
results within and across labs. Spyglass uses the Neurodata Without Borders (NWB) standard 
and includes pipelines for spectral filtering, spike sorting, pose tracking, and neural decoding. 
Spyglass can be extended to apply existing and newly developed pipelines to datasets from 
multiple sources. We demonstrate these features in the context of a cross-laboratory replication 
by applying advanced state space decoding algorithms to publicly available data. 
 
New users can try out Spyglass on a Jupyter Hub hosted by HHMI and 2i2c: 
https://spyglass.hhmi.2i2c.cloud/. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint 

mailto:loren.frank@ucsf.edu
https://spyglass.hhmi.2i2c.cloud/
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/


   
 

  2 
 

Introduction 
A central goal of neuroscience is to understand how the structure and dynamics of neural activity 
relate to the internal states of the organism and the external world. This understanding is derived 
from analyzing complex, multi-modal datasets. While the community has improved tools and 
algorithms for data collection and analysis1–6, extracting consistent and reproducible insights from 
data remains a complex and time-consuming task. Often, researchers take years to collect and 
organize data, which is then transformed through a complicated series of analyses using custom 
scripts. This begins with preprocessing that isolates specific signals from the data, followed by 
multiple subsequent analyses that quantify properties of these signals. The outputs of these 
analyses are then synthesized across datasets, and when they are consistent upon limited 
replication, they are reported in the scientific literature—with the data and analysis scripts 
documented to varying degrees. 
 
Ideally, it would be possible for another group to take the same raw datasets, apply the analyses, 
and rapidly and reliably reproduce the findings. In practice, this is often exceptionally challenging. 
Raw data are seldom shared and metadata critical for understanding the data are often not 
included, posing a significant challenge to replication. Essential components of the analysis 
pipelines, such as the manual curation of sorted spikes and artifact rejection, are often 
irretrievable from the written reports. Similarly, the full set of parameters used for each of the 
analyses are not shared or hidden in cryptic analysis scripts. Efforts to reproduce findings are 
also hampered by idiosyncratic data and code organization, poor documentation, and missing 
vital details, including computational hardware requirements7. In collaborations among multiple 
scientists, these problems are exacerbated due to the variability in how each participant carries 
out analysis. Consequently, the full validation of a result usually requires repeating the experiment 
and reconstructing the analysis from scratch. 
 
These difficulties in replication of analyses incur significant costs in time and effort. A new trainee 
might struggle to analyze existing data because they do not understand critical details. A scientist 
who downloads the data from a previous study may find that the analyses they wanted to carry 
out are impossible because the raw data is not available. Alternatively, raw data may be available, 
but the scientist may need intermediate results (e.g. spike waveforms) that are not included. 
Similarly, shared code, including visualizations, is most often not standardized or documented, 
causing multiple teams to duplicate efforts and implement the same tools.  
 
A system that addresses these challenges therefore should enable: 

● compilation of raw data with sufficient metadata for analysis and reuse 
● sharing of data and all intermediate analysis results in an accessible format 
● reproducible analysis via well-documented, organized, and searchable pipelines 
● generation of shareable visualizations to facilitate communication and collaboration 
● easy use by scientists with minimal formal training in data management. 

Achieving these goals would represent a major step towards meeting the FAIR guiding principles 
for findable, accessible, interoperable, and reusable8 data and analysis pipelines9. For example, 
it would become possible to easily find publicly available data, analyze it with a standardized 
pipeline that keeps track of all the parameters, and generate a visualization to share the results 
over the web—a stark contrast to how science is practiced today. 
  
In pursuit of this vision, many organizations, such as the Allen Institute for Brain Science (AIBS), 
Johns Hopkins Applied Physics Lab (APL), and the International Brain Laboratory (IBL), have 
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made strides by standardizing and sharing data and analyses10–12. However, these efforts have 
not fully resolved the issues related to data sharing and reproducible analysis. For instance, a 
lack of raw data often precludes reproduction of early stages of the analysis, and many steps of 
the processing pipeline (e.g. the criteria used for manual or automatic curation of spike sorting) 
that can significantly affect the results13 are omitted. Some of the technologies used, such as 
cloud computing services (e.g., CodeOcean) and sophisticated databases and APIs11,14,15, can 
be cost prohibitive or require specialized software engineering expertise that is beyond the reach 
of most labs. Furthermore, these existing efforts tend to be focused on the needs of specific 
projects, data types, and behavioral paradigms, limiting their scope. Thus, while these efforts 
mark important advances, there remains a need for user-friendly, integrated solutions that can be 
widely adopted across individual labs in the neuroscience community. 
 
To address this need, we developed Spyglass, an open-source neuroscience data management 
and analysis framework written in Python. Spyglass builds on widely available community-
developed tools and adopts the Neurodata Without Borders (NWB) as the standardized format16,17. 
It uses DataJoint5,18 to manage reproducible analysis pipelines with a relational database and 
incorporates novel software tools (e.g. Kachery and Figurl) for sharing data and web-based 
visualizations to enable collaboration within and across labs. This includes methods for exporting 
and uploading all raw data and intermediate results used to produce a manuscript, which, along 
with sharing of code, enables full replication of results. Spyglass is Python-based and thus can 
accommodate pipelines that use a wide array of analysis packages that have been developed by 
the community, including SpikeInterface19, GhostiPy20, DeepLabCut2, and Pynapple21. Spyglass 
also offers ready-to-use pipelines for analyzing behavior and electrophysiological data, including 
spectral analysis of local field potential (LFP), spike sorting, video processing to extract position, 
and decoding neural data. Spyglass can be extended to support additional pipelines for behavioral, 
intracellular, optical physiology data, or other data types that can be stored in the NWB format. In 
addition to extensive documentation and tutorials, new users can try out a demo version of 
Spyglass hosted on the web by HHMI and 2i2c as a Jupyter Hub instance. Here we describe the 
structure of Spyglass and demonstrate its potential by applying the same analysis pipelines to 
NWB files from different labs and comparing the results.  

Results 
Overview of Spyglass 
Spyglass is an open-source Python-based software framework for reproducible analysis of 
neuroscience data and sharing of the results with collaborators and the broader community 
(Figure 1). It is designed to be used by everyone in a laboratory who works with the data, both as 
a general-purpose tool to enable the development of new analysis pipelines and a tool that allows 
those pipelines and associated results to be frozen and packaged to enable reproducibility. It can 
be run locally or in the cloud. Analyzing data with Spyglass begins with raw data and experimental 
metadata stored in the NWB format16,22. These NWB files are ingested into a relational database 
and processed using DataJoint-enabled pipelines. Existing pipelines are built around common 
neuroscience tasks such as spectral filtering, spike sorting, pose tracking, and neural decoding 
and each user can extend these pipelines to carry out the specific sets of analyses needed for 
their project. DataJoint stores parameters of each analysis and tracks the intermediate analysis 
results, which are also stored as NWB files to maintain a shareable standardized data format. 
Spyglass enables sharing results and interactive visualization of the data over the web via 
Kachery and Figurl. Finally, Spyglass supports exporting specific parts of the database required 
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to reproduce the results and figures of a manuscript and the upload of the associated raw data 
and analysis outputs to a public repository. In the following sections, we provide detailed 
descriptions of these components and the design decisions behind them. 

The NWB format as data specification 
Why NWB? 
A typical neuroscience experiment consists of multiple data streams stored in different formats. 
Managing such heterogeneous data in a shareable and accessible manner is challenging. A 
practical solution is to save the data in a community-supported format like NWB, which is 
emerging as a standard for neurophysiology and behavior data16,22. We have chosen NWB as the 
data specification in Spyglass for the following reasons:  

● The versatility of NWB accommodates various data types and allows metadata to be 
saved with the data in a single self-annotated file. 

● NWB files are immediately shareable. 
● Public data archives like DANDI23–26 accept the NWB format and provide APIs to easily 

stream file contents for local analysis. 
● Tools developed for NWB files are immediately accessible to users.  

Conversion to NWB can be done using software tools developed by the community, such as the 
NeuroConv package or NWB GUIDE, a desktop app for converting data to NWB without having 
to write code. 

Importantly, Spyglass requires all raw data—including neurophysiology, behavioral task, 
interaction with the environment— to be in the NWB format prior to any analysis. This ensures 
reproducibility of all subsequent analyses by sharing the NWB file containing the raw data and 
the analysis pipelines. Furthermore, Spyglass stores virtually all intermediate results from 
downstream analysis pipelines in NWB. This ensures that all data associated with the analysis 
can be shared and read using the same software tools. 

Spyglass-specific NWB requirements 
NWB allows some flexibility in the specification of data to accommodate a broad range of 
experiments and lab-specific requirements. For example, the name of data types within the NWB 
file can differ from those expected by Spyglass. We have fully described the Spyglass-specific 
NWB conventions in the documentation website. To further accommodate NWB files from many 
sources, we have also developed a system that makes it possible to ingest NWB files into 
Spyglass even when they do not adhere to our naming conventions or best practices by including 
a configuration yaml file (see Methods and Table 1, 02_Insert_data).  

Relational database as analysis pipelines 
Why a relational database? 
One significant challenge with data analysis is in managing its complexity. Most results derive 
from an extended series of steps, including “preprocessing” (e.g. spike sorting for 
electrophysiological data, region-of-interest identification for optical physiological data, video 
processing for behavioral data, etc.) and downstream analyses. Each step depends on a different 
algorithm with a specific set of parameters and generates distinct intermediate data. Tracking 
these numerous components is difficult, and understanding how another scientist has managed 
them can be even more daunting. This complexity hinders collaboration, verification of results, 
and data reuse. 
 
These issues motivated our use of a formal software system: the relational database, a well-
established data structure that uses tables to organize data. To construct an analysis pipeline, we 
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use DataJoint27,28 to define a series of database tables with a dependency structure. Associated 
with the database tables is code that carries out an analysis using a specific set of parameters 
and a specific part of the data. This code then stores the results as a new row in the table with a 
pointer to the results stored on disk as an NWB file. Creating a new table row is referred to as 
“populating” the table. Thus, data analysis becomes a matter of populating and interacting with 
the database. This style of data analysis offers many advantages:  

● It lowers effort for users seeking to apply the same analysis to multiple datasets, as they 
only need to specify the data and parameters for computation ("what") independent of the 
execution details ("how").  

● It provides a structure to organize and systematize the analysis parameters, data, and 
outputs into different tables. This contrasts with user-generated configuration files where 
each user could adopt their own idiosyncratic approach to specifying parameters and data. 

● It enables easy access to multiple datasets via queries (e.g. to find all datasets with 
recordings from a particular brain region or that used a particular behavioral paradigm). 

● It is concurrently accessible to multiple users. 
Because DataJoint binds the code for running the computation with the table that will store the 
result, populating the same table will execute the same code. DataJoint also provides additional 
features for reproducible data analysis, such as maintaining data integrity of the database (e.g. 
deleting a table entry causes cascading deletion of dependent entries in downstream tables) and 
the files containing the results (e.g. by checksum verification). 

How does Spyglass differ from DataJoint? 
While Spyglass is based on DataJoint, it offers many useful features that DataJoint lacks. These 
include: 

• A tight integration with the NWB format: When the NWB file is ingested into Spyglass, 
pointers to the data types appear as rows in a set of predefined tables. These serve as 
the starting point for analyses and an interface for the users to access the raw data within 
Spyglass. We provide the mapping between NWB data types and corresponding Spyglass 
tables in the documentation website. 

• Extending table types: Spyglass provides a mix-in class, which allows different tables to 
inherit shared behaviors without duplicating code, for defining table types that are not 
included in DataJoint or extending the function of existing table types. This is used to 
implement many key table types such as Merge tables, which allow multiple upstream 
pipelines to feed into the same downstream pipeline. This example is illustrated in the 
description of the spike sorting pipeline below. 

• Permission-based delete: Spyglass enables the deletion of individual rows in a table 
based on pre-defined user permission. This is not naturally supported by MySQL, the 
underlying relational database management system used by DataJoint.  

• Improved searching based on restrictions on non-primary keys: Spyglass allows the users 
to conveniently track the provenance of a particular row in a downstream table across 
multiple upstream tables with only partial information. 

• Export system for publishing: Spyglass provides a convenient way to export only the part 
of the database used for generating results and figures for a publication. This is done by 
caching the information about tables that are accessed when generating figures. 

• The inclusion of various helper functions, which are detailed on the Spyglass 
documentation website. 
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Setup and hardware requirement 
Spyglass can be installed in any setting that can support Python via the Python Package Index 
(PyPI). We provide detailed installation instructions on the documentation website, including a 
complete list of software requirements. In addition to the Python package, using Spyglass requires 
running a relational database (currently MySQL backend is supported). In our laboratory, we run 
this from a Docker container provided by DataJoint on a lab-wide server and grant access to it to 
members of the lab and other collaborators. This local configuration is recommended for use 
cases involving ~ 10 users. For a larger scale deployment, one could also run the Spyglass 
database in the cloud using services such as AWS.  

Practical use cases and extensions 
Spyglass comes with many pre-defined pipelines that implement common analysis tasks for 
electrophysiological and behavioral data. For users interested in using these pipelines, they can 
do so as soon as they ingest their NWB files into the database. Spyglass can also serve as a 
jumping off point for exploratory data analysis. For example, the user can conveniently read 
specific data types from the NWB file by first ingesting it into Spyglass and accessing database 
tables with Spyglass functions (e.g. fetch_nwb) or load those objects in a format compatible 
with Pynapple21 (fetch_pynapple). If they need to pre-process the data first, they can do so by 
running the relevant pipelines. Once the user has decided to formalize a particular analysis that 
is not yet supported by Spyglass, they can extend Spyglass and create user-generated custom 
pipelines. These could include data types from NWB files not currently supported by Spyglass 
(e.g. photometry, optical physiology, etc.) or build on existing Spyglass pipelines. Because the 
raw data and intermediate results are in NWB format, the custom pipelines can take advantage 
of analysis software packages within the NWB ecosystem.  
 

 
Figure	1:	Overview	of	Spyglass.	The	raw	data—consisting	of	information	about	the	animal,	the	behavioral	
task,	 the	neurophysiological	data,	etc.—is	converted	to	 the	NWB	format	(yellow	box)	and	 ingested	 into	the	
Spyglass	database.	The	pipelines	(dark	green	box)	operate	on	pointers	to	specific	data	objects	in	the	NWB	file	
(tan	box).	 The	 raw	and	processed	data	 are	 then	 shared	with	 the	 community	 by	depositing	 them	 to	public	
archives	like	DANDI	or	shared	with	collaborators	via	Kachery.	Visualizations	of	key	analysis	steps	can	be	shared	
over	the	web	via	Figurl.	Code	is	shared	by	hosting	the	codebase	for	Spyglass	and	project-specific	pipelines	on	
online	 repositories	 like	GitHub.	Finally,	 the	populated	database	may	be	 shared	by	exporting	 it	 to	 a	Docker	
container.		
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Organization of analysis pipelines 
Here we delve deeper into the design and organization of analysis pipelines in Spyglass. As 
mentioned previously, the analysis pipelines are defined as a set of tables in the relational 
database. Specifically, Spyglass uses DataJoint syntax to define tables as Python classes (see 
online documentation on Custom Pipelines and this video for examples). The code for executing 
the analysis is associated with these tables as class methods, enabling a tight integration of the 
database structure with the code for populating it. We refer the reader to the DataJoint 
documentation for more details on specific commands to interact with the database.  
 
When an NWB file is first ingested into Spyglass, pointers to the data types in the NWB file are 
stored in database tables of the Common module. Each Common table corresponds to a data object 
in the NWB file and serves as an interface to retrieve it with simple function calls (fetch_nwb). 
The retrieval is “lazy” in the sense that only a specific part of the data is loaded for analysis instead 
of the entire NWB file. 
 
An analysis pipeline consists of sets of tables downstream of the Common tables. In each step in 
the analysis, the user populates one of four table types (Figure 2A): 

● Data tables contain pointers to data objects in either the original NWB file or ones 
generated by an upstream analysis. 

● Parameter tables contain a list of the parameters needed to fully specify the desired 
analysis.  

● Selection tables allow users to select and pair a data entry and a parameter entry, 
defining the input to the Compute table. 

● Compute tables execute the computations to carry out the analysis using the Data and 
Parameters specified in the Selection table entry. These results are then stored and 
can serve as Data for downstream analysis.  

This design has multiple features that we have found to be beneficial. First, Parameter tables 
store the full set of parameters needed to specify a given analysis. For example, a Parameter 
table entry for a firing rate analysis of a single neuron might specify the bin size and smoothing to 
be used for that analysis. Multiple such entries can be defined, allowing a user to select the most 
appropriate one for the question being addressed. Second, because Selection tables specify 
which Parameter table entry was used for a given analysis on the associated Data table entry, 
they provide the key information needed to know which parameters were used to generate the 
entry in the downstream Compute table. Third, it is simple to associate a given Data table entry 
with multiple Parameter table entries and then re-run the analysis on those pairs. This enables 
a user to understand how their choice of parameters impacts their results, something that is 
otherwise difficult to manage and track.  
  
Spyglass includes pipelines for a diverse range of analysis tasks in systems neuroscience, such 
as the analysis of LFP, spike sorting, video and position processing, and fitting state-space 
models for decoding neural data. Tutorials for all pipelines are available on the Spyglass 
documentation website (Table 1). Our goal was take advantage of other open source packages, 
and we have therefore integrated support for Pynapple21, a general purpose neural data analysis 
package. We also built our pipelines to take advantage of other community-developed, open-
source packages, like GhostiPy20, SpikeInterface19, DeepLabCut2 and Moseq29. These pipelines 
store a complete record of the analysis and simplify the application of these tools. Furthermore, 
multiple versions of the pipelines can co-exist to apply different algorithms to a single data set, 
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making it easy to probe the robustness of the results (see Merge motif below). Finally, the 
pipelines are modular as long as they process different kinds of data stored in the NWB files.  
 
Next we provide a detailed description about the implementation of three common analysis tasks 
in Spyglass pipelines: (i) filtering broadband extracellular voltage traces to extract the lower-
frequency LFP bands; (ii) detecting discrete events (e.g. sharp-wave ripples, a hippocampal event 
marking the time of bursts of population activity) in the LFP signals; and (iii) spike sorting and 
curation. 

Example 1: LFP extraction (Figure 2B) 
To extract the LFP signal (below 400 Hz), we use the pipeline shown in Figure 2B. First, we select 
a row from the Raw table, a Data table that points to an ElectricalSeries object in the NWB 
file. We then specify the parameters of the analysis in the Parameter tables: the list of channels 
for which LFP should be extracted (LFPElectrodeGroup), the time interval for the LFP 
extraction (IntervalList), and the coefficients for the filter that will be used on the data 
(FIRFilterParameters). These parameters are associated with the entry in the  Raw table by 
defining a Python dictionary object that specifies the Data and Parameter entries and inserting 
it into a Selection table (LFPSelection) by calling the LFPSelection.insert1 method 
(Figure 2B). Finally, we apply the filter to the selected data over the selected interval using the 
LFP table (a Compute table) by calling the LFP.populate method. The resulting filtered data 
is saved to disk in the NWB format, and the object ID associated with the LFP object within the 
NWB file is also stored in the LFP table for easy retrieval. Thus, the corresponding entry in the 
LFP table contains all the details about the data and the parameters, allowing a user to fully track 
the provenance of the output. 

Example 2: Sharp-wave ripple detection (Figure 2C) 
Once the LFP extraction is completed, we can build on the results by applying another filter to 
isolate a specific frequency band and identifying sharp-wave ripples (SWRs), a prominent LFP 
event within hippocampal data. This pipeline is illustrated in Figure 2C. It applies two additional 
steps to a row in the LFP table: another band-pass filter to isolate the 150-250 Hz band and a 
subsequent detection of SWR events. Each step uses the same basic scheme shown in Figure 
2A. These include defining a specific band-pass filter in the Parameter tables; selecting a time 
interval for the bandpass filtering; and adding an entry to LFPBandSelection table that binds 
both the filter parameters and the time interval with a row in the LFP table. A call to 
LFPBand.populate generates an NWB file containing the ripple-band data and an entry in the 
LFPBand table with information about which data and parameters were used. Next, the user 
selects an entry in RippleParameters to define the parameters for detecting the ripple events 
(e.g. threshold over the spectral power) and associates it with filtered data in LFPBand in the 
RippleLFPSelection table. Finally, the RippleTimes table is populated (by 
RippleTimes.populate), which identifies the start and end times of each ripple event and 
saves these to a new NWB file. 
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Figure	2:	Analysis	pipelines	in	Spyglass.	(A)	A	general	structure	for	a	Spyglass	pipeline.	(B)	Example	1:	LFP	
extraction.	Note	the	correspondence	to	the	pipeline	structure	in	(A)	as	shown	by	the	color	scheme.	The	trace	
next	to	the	Raw	table	is	raw	voltage	data	sampled	at	30	kHz	and	is	represented	by	a	row	in	the	Raw	table.	This,	
along	with	parameters	from	LFPElectrodeGroup,	IntervalList,	and	FIRFilterParameters	tables	
(red	arrow),	are	defined	in	a	Python	dictionary	and	the	LFPSelection.insert()	call	is	used	to	insert	the	
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reference	to	the	raw	data	and	the	now	associated	parameters	into	LFPSelection	table.	When	the	populate	
method	is	called	on	the	LFP	table,	the	filtering	is	initiated	and	the	output	is	inserted	into	the	database.	The	
results	(e.g.	the	trace	above	LFP	table)	are	stored	in	NWB	format	and	its	object	ID	within	the	file	is	also	stored	
as	a	row	in	LFP	table,	enabling	easy	retrieval.	(C)	Example	2:	Sharp-wave	ripple	(SWR)	detection.	Note	that	the	
key	specification,	insert,	and	populate	calls	are	omitted	for	simplicity.	This	pipeline	is	downstream	of	the	LFP	
extraction	pipeline	and	consists	of	two	steps:	(i)	further	extraction	of	a	frequency	band	for	SWR	(LFPBand);	
and	(ii)	detection	of	SWR	events	in	that	band	(RippleTimes).	Note	that	the	output	of	LFP	extraction	serves	
as	the	input	data	for	the	SWR	detection	pipeline	and	can	thus	be	thought	of	as	both	Compute	and	Data	types.	
As	in	(B),	for	each	step,	the	results	are	saved	in	NWB	files	and	the	object	ID	of	the	analysis	result	within	the	
NWB	file	are	stored	as	rows	in	the	corresponding	Compute	tables.	The	trace	above	the	RippleTimes	table	is	
the	SWR-filtered	LFP	around	the	time	of	a	single	SWR	event	(pink	shade).	In	each	table,	columns	in	bold	are	the	
primary	keys.	Arrows	depict	dependency	structure	within	the	pipeline.	

Example 3: Spike sorting and curation (Figure 3) 
The spike sorting pipeline (Figure 3) combines the principles of analysis pipeline design we 
outlined previously with additional design features. This pipeline uses SpikeInterface19 to perform 
the operations critical for spike sorting, but also tracks all of the parameters used and provides a 
system for tracking multiple sorting curations. The pipeline includes the following steps: (1) 
preprocess the recording (e.g. filter and whiten to remove noise); (2) apply spike sorting algorithm 
(e.g. MountainSort4, Kilosort3, etc.); (3) curate the results (e.g. either manually or automatically 
by computing quality metrics); and (4) consolidate the output with other sources of sorted units 
(e.g. those already present in the NWB file) for downstream analysis. Each of these steps follow 
the general design shown in Figure 2A. We also detail additional features that have not been 
discussed previously.  

Global Parameter tables (e.g. IntervalList) 
An important object in any analysis is the time interval during which the data were collected or to 
which analysis procedures should be applied. To avoid having a separate table for time intervals 
in every pipeline, we store them in the IntervalList table of the Common module for all 
pipelines. For example, in the spike sorting pipeline (Figure 3), IntervalList provides a time 
interval for both preprocessing the recording (SpikeSortingRecordingSelection) and 
running a spike sorting algorithm (SpikeSortingSelection). In addition, the intervals during 
which artifacts (i.e. high-amplitude voltage transients from behavioral events such as licking) 
occur is identified and fed back into IntervalList (dashed arrow in Figure 3).  

“Cyclic iteration” motif for curation 
Certain pipelines, such as curating the output of spike sorting, may need to be run multiple times 
on the same data. For example, one might first compute quality metrics to identify noise clusters 
and potential candidates for merging over-clustered units (Automatic); then inspect, merge, and 
apply curation labels to the result with an external viewer (Manual); and finally, compute a final 
set of metrics to describe the quality of each unit (Automatic). This results in a sequence of 
curation steps: Automatic, Manual, Automatic. Depending on the data, the user may choose a 
different curation sequence, and the order and length of these sequences might change as new 
algorithms and metrics are developed. This presents a challenge in modeling the pipeline within 
the relational database.  

We therefore developed a specific design motif to enable this iterative curation with a finite number 
of tables (Figure 3). First, a given row of the CurationV1 table (the output of the spike sorting 
step) is taken through automatic or manual curation steps downstream. Upon completion, the 
spike sorting object may enter this curation pipeline again as a new row in the CurationV1 table. 
Importantly, the new row has information about previous curation from which it descended. This 
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allows the user to track each round of curation while applying as many steps as desired. It can 
also be easily extended; if new automatic curation algorithms are developed in the future, it can 
simply be added downstream to the CurationV1 table, enabling application of the latest 
methods to previously collected data.  

“Merge” motif for consolidating data streams and versioning pipelines 
A different challenge arises when the user wants to feed multiple streams of data of the same 
type into a single downstream pipeline. For example, once curation is completed, the spike sorting 
is saved in CurationV1. But some NWB files may already contain curated spike sorting (as a 
row in the table ImportedSpikeSorting), and one may want to apply the same downstream 
pipeline to both data sources to compare the results. In yet another case, the other data stream 
could be a different version of the spike sorting pipeline (e.g. CurationV2) that uses different 
algorithms but produces output of the same type. Adding the same downstream pipeline to each 
of these separately would result in code redundancy and database bloat. Simply having these 
converge onto a single downstream table is not desirable either, as it will require modifying an 
existing table to add new columns every time a new version or new data stream is added.  

To solve this problem, we have designed a “merge” table type (Figure 3). Here Parts tables (a 
table type within DataJoint tightly associated with a parent table) are used to implement the 
merging of multiple data streams onto a single table. The downstream pipeline then gets data 
from this table without any duplication. More details for the implementation and helper functions 
to maintain data integrity can be found in the tutorial notebook (Table 1, 04_Merge_Tables). 
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Figure	3:	Spike	sorting	pipeline.	The	Spyglass	spike	sorting	pipeline	consists	of	seven	components	(large	gray	
boxes),	all	of	which	take	advantage	of	the	SpikeInterface	library:	preprocess	recording	(A);	detect	artifacts	to	
omit	from	sorting	(B);	apply	spike	sorting	algorithm	(C);	curate	spike	sorting	(D),	either	with	quality	metrics	
(E)	or	manually	(F);	and	merge	with	other	sources	of	spike	sorting	for	downstream	processing	(G).	Solid	arrows	
describe	 dependency	 relationships	 and	 dashed	 arrows	 indicate	 that	 the	 data	 is	 re-inserted	 upstream	 for	
iterative	 processing.	 Note	 the	 two	 design	motifs	 (see	 text):	 “cyclic	 iteration”	 for	 curation	 and	 “merge”	 for	
consolidating	data	streams.	Color	scheme	is	the	same	as	Figure	2,	except	for	light	purple	(cyclic	iteration	table),	
orange	(merge	table),	and	peach	(Parts	table	of	the	merge	table).		

Sharing Data, Analysis, and Visualization 
Complete sharing of data and analysis at the end of projects 
A key goal of our system is to simplify sharing data and analyses when results are ready to be 
published. Because all raw and intermediate data are in the NWB format, they can be directly 
deposited to DANDI16,24–26, a NIH-supported public archive for neuroscience data. Sharing the 
analysis code is also easy: simply share the codebase for the analysis pipelines (i.e. Spyglass 
plus any project-specific pipelines) and the scripts used to populate the database. Others can 
then download the raw data from DANDI, set up the database with Spyglass, and recreate all 
results locally by executing the population script. Alternatively, users may want to share the 
Spyglass database in its populated state so that the community can access it directly without 
going through the setup procedures or re-running time-consuming analysis steps. This can be 
done by (i) hosting the database on the cloud and granting access to users outside the lab; or (ii) 
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exporting and sharing parts of the database that were used by the project. Spyglass facilitates 
the second option by providing functions that automatically log the table entries and NWB files 
used for creating figures of a manuscript in a Python environment (Table 1, 05_Export). The 
dependencies of these entries are traced through the database to compile the complete set of 
raw, intermediate, and plotted NWB files and their corresponding database entries. These are 
stored in the Export table, which also generates a bash script to create SQL dumps of the 
identified database entries.  
 
To upload these files to DANDI, users must first register a new dandiset for their project and 
record their API and dandiset ID. With this information, they can then use the method 
DandiPath.compile_dandiset() to automatically validate, organize, and upload all project 
files to the DANDI archive. Additionally, this process stores the archive information for each file in 
the DandiPath table, allowing fetch_nwb to automatically stream data from the DANDI cloud 
storage when not available locally.  
 
To create a sharable Docker image of the project, we provide a template repository called 
spyglass-export-docker. Users first download a local copy of this repo and copy the SQL dump 
file, environment yaml, and figure-generating notebooks generated during Spyglass export into 
the appropriate folders.  Running the provided docker-compose scripts then generates two 
linked Docker containers: one running the reconstructed Spyglass SQL database, and a second 
connected to this database and running a Jupyter Hub—with a python environment matching that 
used when generating the figures. These can be readily shared with new users to provide them 
immediate access to all steps of the analysis process and the corresponding data through DANDI 
streaming 

Controlled sharing for ongoing projects 
For ongoing projects, users may want to limit the sharing of the analyses to their collaborators. 
This requires controlling access to the database and the underlying NWB files that contain the 
raw or intermediate data. This is straightforward to manage in Spyglass. DataJoint handles 
access to the database natively by requiring a username and a password. Managing access to 
the NWB files is handled by Kachery, a content-addressed sharing tool for scientific data (Figure 
4A). Specifically, the user selects the NWB files to be shared by inserting pointers to them into 
NwbKachery and AnalysisNwbKachery tables within Spyglass. When the collaborator 
attempts to access these files, Kachery first looks for them in their local system. If not found, the 
corresponding files are automatically uploaded from the user’s system to a cloud storage server 
and then downloaded to the collaborator’s computer. This feature is detailed in a tutorial (Table 
1, 03_Data_Sync). Critically, the downloaded files are never modified locally within Spyglass, and 
attempt to access a modified file would result in a DataJoint error. This ensures that each user is 
working on the same underlying data even if they are at different sites. More generally, Kachery 
offers advantages over other file hosting services (e.g. Dropbox and Google Drive) or alternative 
architectures (e.g. IBL data architecture) by not requiring a central location to track available files 
and providing a user-friendly Python API. We point interested readers to the Kachery GitHub repo 
for further descriptions.  

Sharing visualizations 
Spyglass enables users to create and share interactive visualizations of final and intermediate 
analysis results through the Figurl package. These visualizations facilitate understanding complex, 
multi-modal neuroscience datasets by allowing users to (i) quickly compare different stages of 
processed data to spot issues with their data and (ii) align multimodal information sources to get 
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a more holistic view of their dataset. Figurl is integrated within Spyglass as dedicated tables 
attached to specific pipelines such as spike sorting (Figure 4B) and neural decoding (Figure 5). 
Populating these tables generates a URL to web-based visualizations for exploring complex, 
multi-dimensional time series across multiple views whose time axes can be linked. Sharing them 
is also easy, as the URL can be accessed from any browser without the need for local software 
installation or specialized hardware. This allows collaborators anywhere in the world to easily 
access and explore the data.  
 

 
Table	 1:	 Tutorials	 included	 in	 Spyglass	 and	 their	 descriptions.	 	 All	 available	 from	
https://github.com/LorenFrankLab/spyglass. 

Pipeline Tutorial notebook Description 

Data ingestion 

00_Setup Setting up Spyglass 

01_Concepts Basic concepts of using on Spyglass 

02_Insert_data How to insert data into Spyglass 

03_Data_Sync How to share data with collaborators who have access 
to the database 

04_Merge_Tables A new table type unique to Spyglass that allows the user 
to use different versions of pipelines on the same data 

05_Export How to export parts of the database used to generate 
figures and upload corresponding NWB files to DANDI 

Spike sorting 

10_Spike_SortingV0 Detect spikes from electrophysiological recording and 
separate them to individual neurons (example of multiple 
versions of the same pipeline) 10_Spike_SortingV1 

11_Spike_Sorting_Analysis Curate the results of spike sorting manually for V0 

12_Burst_Merge_Curation Automatically merge units separated due to bursting 

Position processing 

20_Position_Trodes.ipynb Process information about animal’s position from video 
recording of the behavior using Trodes 

21_DLC Detect keypoint markers with DeepLabCut 

22_DLC_Loop Detect keypoint markers with DeepLabCut over multiple 
epochs 

23_Linearization Convert 2D position to 1D position using track geometry 

LFP analysis 

30_LFP Filter broadband electrophysiology data to isolate low-
frequency LFP bands 

31_Theta Filter LFP to isolate the theta band 

32_Ripple_Detection Detect sharp-wave ripples from filtered LFP 

Decoding 

40_Extracting_Clusterless_Wave
form_Features Extract waveform features for clusterless decoding 

41_Decoding_Clusterless Apply the decoding algorithm using clusterless waveform 
features 

42_Decoding_SortedSpikes Apply the decoding algorithm from spikes of sorted and 
curated units 

MUA 50_MUA_Detection Detect times of high multiunit firing 
MoSeq 60_MoSeq Tutorial to using MoSeq pipeline 
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Figure	4:	Sharing	data	and	visualizations.	(A)	Kachery	provides	a	convenient	Python	API	to	share	data	over	
a	content-addressable	cloud	storage	network.	To	retrieve	data	from	a	collaborator’s	Spyglass	database,	one	can	
make	a	simple	 function	call	 (fetch_nwb)	 that	pulls	 the	data	 from	a	node	 in	the	Kachery	Zone	to	the	 local	
machine.	(B)	Example	of	a	Figurl	interactive	figure	for	visualizing	and	applying	curation	labels	to	spike	sorting	
over	the	web. 

Demonstration of generalizability: neural decoding of position in multiple data sets  
A major goal of Spyglass is to facilitate the analysis of data across multiple datasets that may 
come from different laboratories. To illustrate this, we ingested and analyzed two NWB files 
containing single-neuron recordings from rat hippocampus, one from our laboratory and another 
from the Buzsáki laboratory at NYU30. Specifically, we applied a switching state space model 31,32 
to decode the animal’s position from spikes and infer periods of different types of non-local 
representations (such as replay and theta sequences), during which the decoded position 
deviates from the animal’s true position. This is a complex analysis that involves integrating 
multiple data sources, including position and neural spiking activity, and applying an advanced 
statistical model with many user-defined parameters. The decoding pipeline in Spyglass enables 
the user to carry out every step of this analysis, including “preprocessing” of the data (e.g. linearize 
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the 2D position of the animal, perform spike sorting, or import units that have already been sorted) 
and fitting of the model (see Supplementary Figure 1 for a visualization of the steps involved). 
After running the decoding pipeline, we visualize the results on the browser via Figurl and 
generate plots to further reproduce the reported results. 
 
The UCSF dataset contains large-scale hippocampal recordings in a rat performing a foraging 
task in a maze with six reward sites and dynamic reward probabilities (Figure 5A, top panel). 
Applying the decoding pipeline to these data yields a probability distribution over space in 2 ms 
bins that describes our estimate of the “mental” position of the animal. This mental position tracks 
the animal as it traverses the maze (Figure 5A, 2nd panel from top; see interactive visualization 
via Figurl) but also shows interesting systematic deviations from actual position. Computing the 
distance between the peak of the probability distribution and the actual location reveals 
characteristic patterns of such deviations from the actual position (Figure 5A, 3rd panel from top) 
in which the decoded position sweeps ahead of the actual position and then back during 
movement bouts. This pattern recurs at ~8 Hz, reflecting the well-known “theta sequences” seen 
in the hippocampus33,34.  
 
We then applied this same pipeline to the NYU dataset, where rats performed a spatial alternation 
task on a maze with a figure-8 topology (Figure 5B, top panel). As expected, we could identify 
theta sequences in these data as well, highlighting the robustness of these phenomena (Figure 
5B, 2nd and 3rd panels from top, see interactive visualization via Figurl). Moreover, the NYU 
dataset includes a specific manipulation in which the medial septum, a brain region critical for 
pacing the theta rhythm, was cooled, reducing the theta frequency from 8-10 Hz to 5-8 Hz. The 
authors originally carried out several detailed analyses to demonstrate that cooling reduced theta 
frequency and impaired behavior without changing the overall spatial tuning of single neurons or 
their tendency to fire sequentially within theta cycles. However, the authors did not apply state-
space decoding methods, and did not characterize the effects of cooling on the decoded 
representation of space in relation to the animal’s actual position. We therefore applied our 
decoding pipeline to the cooling trials (“cooling on”) and the control trials preceding it (“pre-
cooling”), just after it (“cooling off”), and the recovery trials 10-12 minutes after cooling (“post-
cooling”). 
 
The results of these analyses were consistent with the published findings and provided new 
characterizations that could serve as the foundation for additional discoveries. We first estimated 
the multiunit firing rate as a proxy for the theta LFP and characterized its power spectrum before 
and after cooling. As expected, cooling decreased the power above ~8 Hz and increased the 
power below ~8 Hz, consistent with the slowing of theta LFP shown in the original manuscript 
(Figure 5C, top panel). We then applied the same analysis described above to the distance 
between the decoded and the actual position during movement (“decode distance”), expecting 
cooling to have a similar effect on its power spectrum. Interestingly, here cooling led to a decrease 
in power at essentially all frequencies (Figure 5C, bottom panel). Consistent with this result, the 
decode distance decreased from the pre-cooling to cooling period, with a partial recovery during 
the post-cooling period (Figure 5D, top panel). Similarly, the average speed at which the decoded 
position moved ahead and behind the animal was also reduced during cooling and showed a 
partial recovery after the cooling period (Figure 5D, bottom panel). These results indicate that 
cooling reduces both the extent and the rate at which the decoded position deviates from the 
actual position. This was unexpected given that cooling had no effect on the average spatial tuning 
of these cells30. It also raises an interesting hypothesis: hippocampal representations of distant 
locations may be exquisitely tuned to the specific frequency of the rhythmic input from medial 
septum, such that slowing the rhythm down by just 2-3 Hz significantly limits their expression. 
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More broadly, these findings illustrate the power of our framework that enables both replication of 
results across datasets and the re-analysis of previously collected data.  
 

 
Figure	 5:	 Applying	 decoding	 pipelines	 to	multiple	 data	 sets	 from	different	 labs	 (A)	 Decoding	 neural	
position	from	rat	hippocampal	CA1	using	a	clusterless	state	space	model	(UCSF	dataset).	In	the	top	panel,	grey	
lines	represent	positions	the	rat	has	occupied	in	the	spatial	environment.	Overlayed	lines	in	color	are	the	track	
segments	used	to	linearize	position	for	decoding.	Filled	circles	represent	reward	wells.	The	second	panel	from	
the	top	shows	the	posterior	probability	of	the	latent	neural	position	over	time.	The	magenta	line	represents	the	
animal’s	actual	position.	The	vertical	lines	on	the	right	represent	the	linearized	track	segments	with	the	colors	
corresponding	to	the	top	panel.	The	third	panel	from	the	top	shows	the	distance	of	the	most	likely	decoded	
position	from	the	animal’s	actual	position	and	sign	indicates	the	direction	relative	to	the	animal’s	head	position.	
The	fourth	panel	from	the	top	is	the	animal’s	speed.	The	final	panel	is	the	multiunit	firing	rate.		(B)	Decoding	
from	rat	hippocampal	CA1	using	existing	spike	sorted	units	(NYU	dataset).	Conventions	are	the	same	as	in	A.	
Filled	circle	in	the	linearization	represents	the	reward	zone	rather	than	the	reward	well.	(C)	Decoding	analysis	
of	the	NYU	dataset.	The	top	panel	shows	the	power	difference	of	the	multiunit	firing	rate	between	the	medial	
septal	cooling	period	and	the	pre-cooling	period	 in	 the	5-13	Hz	range.	The	power	at	8-10	Hz	 is	attenuated	
during	cooling	while	the	power	at	5-8	Hz	is	enhanced,	showing	a	slowing	of	the	theta	rhythm	during	cooling.	
The	bottom	panel	shows	that	the	power	of	the	distance	between	decoded	and	actual	position	(decode	distance)	
is	mostly	reduced	throughout	the	5-13	Hz	range.	(D)	Cooling	decreases	the	decode	distance	and	speed	and	this	
effect	may	only	recover	partially	after	cooling.	Bars	represent	95%	confidence	intervals.	
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Discussion 
Summary of results 
Science is a social enterprise that relies heavily on collaboration and transparency among 
researchers35,36. Reproducible and shareable data analysis plays a critical role in this context, as 
it ensures that scientific findings can be independently verified and built upon by others. To 
facilitate this for the neuroscience community, we built Spyglass, a software framework that 
combines the NWB format and the relational database structure. Building on many community-
developed tools, it provides useful features to design complex analysis pipelines, share raw and 
processed data, generate web-based visualizations, and analyze data from multiple sources. As 
a result, it simplifies collaboration within and across labs, making it well-suited as a community 
framework for neurophysiological and behavioral data analysis.  

Comparison to prior work 
Our work builds on many previous approaches that have been proposed for scientific data 
management and reproducible analysis pipelines. This includes work from individual laboratories 
that have illustrated how a few elements of an NWB file could be read into a DataJoint database37, 
and publications highlighting datasets available in NWB38. More broadly, DataJoint is used by 
many labs with lab-specific pipelines39, but to our knowledge none of these efforts integrate cross-
laboratory data and visualization tools or use NWB as the foundation to facilitate sharing. Our 
system also contains elements similar to those developed by large collaborative groups like The 
International Brain Laboratory (IBL) that are designed to organize neurophysiology data for 
sharing with collaborators and a module to automatically run analyses12. But the conversion to a 
standardized format (outside the collaboration or group) and public data sharing are only done 
following substantial analysis in the IBL system, complicating replication of the full analysis.  

Other approaches do away with the relational database altogether. For example, DataLad uses 
version control tools such as git and git-annex to manage both code and data as files40. This 
enables the creation of a data analysis environment and decentralized data sharing. For building 
analysis pipelines, it may be combined with other tools for managing the sequential execution of 
scripts. For example, Snakemake41 (and related projects such as Cobrawap42) allows the users 
to gather and define the input, output, and the associated scripts to execute for each analysis 
step, thereby tracking the dependency between steps. But because these tools do not provide 
any formal structure for data analysis or parameter specification, they lack the advantages of the 
relational database that we discussed, such as being able to easily organize or search for the 
records of previous analysis based on specific parameters, efficient data sharing and access 
management to multiple users, and built-in data integrity checks based on constraints native to 
the database (e.g. primary keys).  

By contrast, Spyglass begins with a shared data format that includes the raw data and offers both 
transparent data management and reproducible analysis pipelines using a formal data structure. 
One distinguishing feature of Spyglass is the emphasis placed on combinatorial matching of data 
and method in a reproducible way. For example, Spyglass makes it easy to apply multiple spike 
sorting algorithms to a given dataset and to compare the results, as this involves simply matching 
the data with different rows in the parameter tables. Spyglass also makes it straightforward to 
apply complex analyses like decoding to datasets from multiple labs, facilitating replication and 
data re-use. The system can be extended by adding new pipelines to the existing database as 
better tools and algorithms become available. These features enable the re-analysis of data to 
examine how the results depend on the choice of algorithm. We believe it is critical to provide this 
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kind of future-compatibility to maximize the impact of the years of experimental work that go into 
each dataset.  

Limitations 
Although Spyglass provides many useful features for reproducible data analysis, it has several 
limitations. Because of the central role played by the NWB format in Spyglass, a potential user 
must first convert their data to NWB, which requires time and effort43. In addition, some data types 
are yet to have defined standards within NWB (e.g. surgical procedure details, descriptions of 
conditions, detailed subject information), and if the user wishes to include those details, they 
would need to build an NWB extension and parallel Spyglass tables to do so. NWB also allows 
users to choose their own names for some datatypes (e.g. behavioral tasks), further requiring 
standardizations to agree on naming conventions. 

In addition, users are expected to set up and maintain a relational database, which may involve 
additional training. Using Spyglass includes learning to work with the structure of DataJoint, such 
as the strict data integrity requirement that can make modification of existing tables difficult. 
Spyglass also does not yet include pipelines for processing certain types of neural data, such as 
optical physiology or fiber photometry, and some of its features such as Kachery-based file 
sharing may not currently support Windows (although it may be possible to run on the Windows 
Subsystem for Linux). Finally, as for all software frameworks, the evolution or lack of maintenance 
of other packages presents a challenge for long term support and reproducibility.  

Fortunately, there are ongoing efforts to address these challenges. These include tools to simplify 
the raw data conversion into NWB, such as NeuroConv, a package to convert neurophysiology 
data in common formats to NWB automatically, and NWB GUIDE, a desktop app that guides 
users through the process of converting data to NWB without writing any code. Using Spyglass 
could also help with standardization efforts across labs: having a database makes it easy to create 
lists of names used to refer to particular items and to then move toward standardization.  
 
We also provide many tutorials on the documentation website so that the user can efficiently set 
up a database and learn to use Spyglass. We continue to actively maintain Spyglass and are 
eager to work with the community to extend it and support data types and analyses beyond what 
is currently available. These efforts will increase the usability and reach of Spyglass and make its 
adoption more attractive, particularly to early-stage investigators. Finally, even in cases where 
reproducing a result would require installing older versions of software, the results themselves 
remain accessible within NWB files reference in Spyglass, ensuring that previous results can be 
built on even as packages evolve. 

Future applications 
Spyglass and similar tools have the potential to transform scientific data analysis. In addition to 
facilitating examination or extension of published results, they enable meta-analysis across 
studies and easy testing of novel methods across multiple datasets. The machine-readable form 
of data and analysis pipelines also opens doors for machine-driven analysis and hypothesis 
testing. As these tools develop and become more accessible, we believe that frameworks like 
Spyglass will likely become essential for neuroscience researchers. 
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Methods and materials 

Coding environment 
Spyglass was developed in Python 3.9 and is compatible with version 3.10 as well. See our 
dependency list for a full list of Python packages used.  

NWB conversion 
To facilitate conversion of raw data to NWB format, we offer trodes-to-NWB, a sister package 
to Spyglass for converting data acquired with the SpikeGadgets hardware to NWB. This comes 
with a web-based GUI for conveniently generating a YAML file containing the metadata used by 
trodes-to-NWB. For converting data not acquired with SpikeGadgets, users can use NWB 
conversion tools developed by the NWB team, such as NeuroConv and NWB GUIDE. 

NWB file conventions 
We adopted a specific set of conventions for our NWB files. Some of these conventions rely on a 
specific set of Frank lab-specific NWB extensions: 

● Time: 
o Spyglass inherits from the source NWB file either the explicit or implicit 

timestamps. NWB files from Frank lab have explicit timestamps for each sample 
in Unix time (seconds since 12:00 am January 1st, 1970). This lets users to know 
exactly when data were collected. Spyglass is also compatible with other 
approaches, however, including implicit timestamping consisting of the start time 
and sampling rate. 

● ElectrodeTable and ElectrodeGroup: 
o ElectrodeGroups are stored in a custom NWB extension that also includes the 

name of the targeted brain region for each group. 
o The NWB file contains information about the relative locations of each of the 

electrodes within each physical device used for data collection. This ensures that 
the relative locations of the electrodes are available for spike sorting and 
registration to histology. 

● Video files 
o The relative path to the video files collected along with the recordings are stored 

in the NWB file. 
● Additional files 

o Other files important to recreate the conditions of the experiments can be saved, 
depending on the format. For example, the code used for implementing the 
behavioral paradigm or reward contingency can be stored as text objects in the 
NWB file.  

NWB file ingestion 
Although the NWB format serves as a community standard for neurophysiology data and has a 
list of best practices, it allows some flexibility in the specification of data within NWB files to 
accommodate user preferences. For example, the ElectricalSeries object that stores the 
electrophysiology data may have different names depending on the convention chosen by the 
investigator, which may complicate programmatic access to the data. To make Spyglass 
interoperable with NWB files of varying degrees of NWB-compliance, we have created an option 
to supply or override information that is missing in the NWB file but is nevertheless required by 
Spyglass via a configuration file that can accompany the NWB file. We provide an example of this 
approach in a tutorial (Table 1, 02_Insert_Data). 
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Permission-handling and cautious delete 
Spyglass is based on a relational database that is accessible to multiple users. In some cases, 
the type of operations that can be applied to individual data entries (i.e., rows of a table) may 
need to be restricted to a specified set of users. This is particularly true for operations that are 
irreversible or time consuming, such as deleting a row from a table storing analysis results. 
However, there is no inherent mechanism within MySQL or DataJoint that allows permission 
handling at the level of individual rows of a table. To solve this problem, we have implemented a 
cautious_delete function, in which the user’s permission to carry out a delete operation is 
checked before it is applied. The permission is granted based on team membership within the lab, 
reflected in the LabTeam table. Though this is not a formal permission-management system, it 
serves to prevent accidental deletions. We note that this system does incur additional overhead, 
and while that has not been an issue for us, it is possible that this would become problematic in 
use for much larger cross-laboratory collaborations. 

Sharing files via Kachery 
One way to share the results of Spyglass analysis pipelines is to make the database publicly 
available. This gives anyone the permission to access the rows of the tables that make up the 
pipelines and inspect the metadata and the parameters associated with each step of the analysis. 
But because Spyglass only saves a path to the NWB files containing analysis results within the 
tables, external viewers cannot download the data and examine it by default.  
 
To enable controlled external access to the data, we have created a system to share selected 
analysis NWB files with a specified group of users via Kachery. We define a set of tables 
(KacheryZone and AnalysisNWBfileKachery) where users can associate analysis NWB 
files to be shared with a Kachery Zone, making it available to all remote clients who are members 
of the zone through cloud storage services like Cloudflare R2 bucket or self-hosted servers. Once 
linked, Spyglass automatically requests, downloads, and manages analysis data for remote users 
attempting to access shared data through Spyglass tables. This provides a convenient way to 
provide access to the Spyglass pipelines and associated data files to collaborators.  

Customizing pipelines 
To alleviate the challenges associated with database design, we have identified design principles 
that have been tested extensively by multiple users in the Frank lab. These are described in the 
text and illustrated with examples in Figures 2 and 3. We recommend users adopt these design 
elements for building their custom pipelines. We also describe the naming conventions for the 
tables defined as Python classes and important methods associated with them (e.g. for multiple 
versions of a pipeline) in our Developer Notes available online. Once the pipeline is sufficiently 
mature and potentially useful to other scientists, we encourage users to submit their pipelines as 
a pull request to our GitHub repository.   

Decoding of position from NWB files from multiple laboratories 
The Frank lab data is available on the DANDI archive (DANDI:000937). The  Buzsáki lab data 
was also obtained from DANDI (DANDI:000059/0.230907.2101). For decoding the Frank lab data, 
we applied the clusterless decoding pipeline by detecting the amplitude of threshold-crossing 
events in the tetrode recordings. For decoding the  Buzsáki lab data, we applied a sorted-spikes 
decoding pipeline. The code for these decoding pipelines, as well as detailed tutorials describing 
them, are available online (Table 1, 40_Extracting_Clusterless_Waveform_Features, 
41_Decoding_Clusterless, 42_Decoding_SortedSpikes). Code to generate Figure 5 can be found 
at: https://github.com/LorenFrankLab/spyglass-paper. Briefly, decoding the latent neural position 
and extracting the distance between the most likely decoded position and the animal’s position 
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used methods described in Denovellis et al. (2021). We used a timestep of 4 ms and a position 
bin size of 2 cm with a continuous (6 cm variance Gaussian random walk) and fragmented 
(uniform distribution) discrete state. Place intensity receptive fields were estimated using a 
Gaussian kernel density estimate with a standard deviation of 6 cm for position and 24 mV for 
amplitude space (amplitude space was used for the clusterless analysis only). We calculated the 
power of the multiunit firing rate and the decoded distance from the animal by using a multitaper 
spectrogram during the pre-cooling and cooling periods. The time resolution was 3 seconds and 
the frequency resolution of 2/3 Hz with a single taper. We excluded immobility periods by using a 
threshold of 10 cm/s. Power difference was calculated by converting to the Decibel scale and 
taking the difference of average power under the cooling and pre-cooling condition. The decoded 
speed of theta sequences was calculated by taking the absolute value of the second-order 
difference of the decoded distance from the animal (function numpy.gradient) multiplied by the 
sampling frequency (250 Hz). 
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Supplemental Figures 

 
Supplemental	Figure	1:	Spyglass	pipeline	workflow	for	Figure	5A	and	B.	(A)	Decoding	of	the	UCSF	dataset	
started	with	the	NWB	file.	Data	was	ingested	into	the	RawPosition	and	Raw	tables,	which	hold	the	unprocessed	
position	 data	 (only	 LED	 tracking	 from	 the	 Trodes	 hardware	 system)	 and	 the	 electrophysiology	 traces	
respectively.	Position	data	from	the	two	LEDs	had	outliers	removed,	interpolated	over,	and	then	smoothed	and	
combined	into	a	single	head	position	via	the	TrodesPosV1	table	(and	requiste	Selection	and	Parameter	tables	
which	specified	the	dataset	and	the	parameters	for	processing).	This	was	then	inserted	into	the	PositionOutput	
merge	 table.	 The	 position	 data	 was	 then	 inserted	 into	 the	 PositionGroup	 table	 which	 in	 this	 case	 is	 a	
passthrough	table	(but	in	other	cases	could	hold	position	data	from	multiple	time	periods	such	as	sleep).	The	
raw	electrophysiology	data	was	processed	through	the	Spike	Sorting	pipeline.	Because	the	data	is	intended	for	
“clusterless”	 decoding,	 this	 simply	 consists	 of	 thresholding	 for	 high	 amplitude	 spikes	 (above	 60	mV).	 The	
UnitWaveformFeatures	 table	 then	extracts	a	snippet	of	waveform	data	around	 the	 time	of	a	spike	 for	each	
tetrode.	UnitWaveformFeature	then	calculates	the	peak	amplitude	at	the	time	of	the	spike	for	each	tetrode.	This	

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/


   
 

  29 
 

amplitude	waveform	feature	(along	with	the	spike	time)	is	used	for	clusterless	decoding	in	conjunction	to	the	
position	of	 the	animal	via	 the	ClusterlessDecodingV1	 table.	The	decoding	result	was	 then	 ingested	 into	 the	
DecodingOutput	merge	table	which	the	Figure	5A	code	subsequently	fetched	from.	(B)	The	NYU	dataset	was	
downloaded	from	the	DANDI	archive.	The	raw	position	underwent	the	same	processing	as	Figure	5A.	The	NYU	
dataset	did	not	contain	raw	electrophysiology	signals	but	did	contain	spike	times	from	already	sorted	neurons.	
These	were	ingested	into	the	ImportedSpikeSorting	table	and	then	passed	to	the	SpikeSortingOutput	table.	The	
SpikeSortingGroup	table	allowed	us	to	select	only	the	CA1	cells	for	decoding.	This	along	with	the	processed	
position	 data	 was	 used	 for	 decoding	 via	 the	 SortedSpikesDecodingV1	 table	 and	 inserted	 into	 the	
DecodingOutput	merge	table.	This	data	was	used	to	generate	Figure	5B-D.	
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