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Abstract

Scientific progress depends on reliable and reproducible results. Progress can be accelerated
when data are shared and re-analyzed to address new questions. Current approaches to storing
and analyzing neural data involve bespoke formats and software that make replication and reuse
of data difficult. To address these challenges, we created Spyglass, an open-source data
management and analysis framework written in Python. Spyglass provides reproducible pipelines
for common neuroscience analyses and sharing of raw data, intermediate analyses, and final
results within and across labs. Spyglass uses the Neurodata Without Borders (NWB) standard
and includes pipelines for spectral filtering, spike sorting, pose tracking, and neural decoding.
Spyglass can be extended to apply existing and newly developed pipelines to datasets from
multiple sources. We demonstrate these features in the context of a cross-laboratory replication
by applying advanced state space decoding algorithms to publicly available data.

New users can try out Spyglass on a Jupyter Hub hosted by HHMI and 2i2c:
https://spyglass.hhmi.2i2c.cloud/.
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Introduction

A central goal of neuroscience is to understand how the structure and dynamics of neural activity
relate to the internal states of the organism and the external world. This understanding is derived
from analyzing complex, multi-modal datasets. While the community has improved tools and
algorithms for data collection and analysis'=®, extracting consistent and reproducible insights from
data remains a complex and time-consuming task. Often, researchers take years to collect and
organize data, which is then transformed through a complicated series of analyses using custom
scripts. This begins with preprocessing that isolates specific signals from the data, followed by
multiple subsequent analyses that quantify properties of these signals. The outputs of these
analyses are then synthesized across datasets, and when they are consistent upon limited
replication, they are reported in the scientific literature—with the data and analysis scripts
documented to varying degrees.

Ideally, it would be possible for another group to take the same raw datasets, apply the analyses,
and rapidly and reliably reproduce the findings. In practice, this is often exceptionally challenging.
Raw data are seldom shared and metadata critical for understanding the data are often not
included, posing a significant challenge to replication. Essential components of the analysis
pipelines, such as the manual curation of sorted spikes and artifact rejection, are often
irretrievable from the written reports. Similarly, the full set of parameters used for each of the
analyses are not shared or hidden in cryptic analysis scripts. Efforts to reproduce findings are
also hampered by idiosyncratic data and code organization, poor documentation, and missing
vital details, including computational hardware requirements’. In collaborations among multiple
scientists, these problems are exacerbated due to the variability in how each participant carries
out analysis. Consequently, the full validation of a result usually requires repeating the experiment
and reconstructing the analysis from scratch.

These difficulties in replication of analyses incur significant costs in time and effort. A new trainee
might struggle to analyze existing data because they do not understand critical details. A scientist
who downloads the data from a previous study may find that the analyses they wanted to carry
out are impossible because the raw data is not available. Alternatively, raw data may be available,
but the scientist may need intermediate results (e.g. spike waveforms) that are not included.
Similarly, shared code, including visualizations, is most often not standardized or documented,
causing multiple teams to duplicate efforts and implement the same tools.

A system that addresses these challenges therefore should enable:

compilation of raw data with sufficient metadata for analysis and reuse

sharing of data and all intermediate analysis results in an accessible format
reproducible analysis via well-documented, organized, and searchable pipelines
generation of shareable visualizations to facilitate communication and collaboration
easy use by scientists with minimal formal training in data management.

Achieving these goals would represent a major step towards meeting the FAIR guiding principles
for findable, accessible, interoperable, and reusable® data and analysis pipelines®. For example,
it would become possible to easily find publicly available data, analyze it with a standardized
pipeline that keeps track of all the parameters, and generate a visualization to share the results
over the web—a stark contrast to how science is practiced today.

In pursuit of this vision, many organizations, such as the Allen Institute for Brain Science (AIBS),
Johns Hopkins Applied Physics Lab (APL), and the International Brain Laboratory (IBL), have
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made strides by standardizing and sharing data and analyses'®'2. However, these efforts have

not fully resolved the issues related to data sharing and reproducible analysis. For instance, a
lack of raw data often precludes reproduction of early stages of the analysis, and many steps of
the processing pipeline (e.g. the criteria used for manual or automatic curation of spike sorting)
that can significantly affect the results’ are omitted. Some of the technologies used, such as
cloud computing services (e.g., CodeOcean) and sophisticated databases and APIs'"'*'° can
be cost prohibitive or require specialized software engineering expertise that is beyond the reach
of most labs. Furthermore, these existing efforts tend to be focused on the needs of specific
projects, data types, and behavioral paradigms, limiting their scope. Thus, while these efforts
mark important advances, there remains a need for user-friendly, integrated solutions that can be
widely adopted across individual labs in the neuroscience community.

To address this need, we developed Spyglass, an open-source neuroscience data management
and analysis framework written in Python. Spyglass builds on widely available community-
developed tools and adopts the Neurodata Without Borders (NWB) as the standardized format'®"’.
It uses DataJoint®'® to manage reproducible analysis pipelines with a relational database and
incorporates novel software tools (e.g. Kachery and Figurl) for sharing data and web-based
visualizations to enable collaboration within and across labs. This includes methods for exporting
and uploading all raw data and intermediate results used to produce a manuscript, which, along
with sharing of code, enables full replication of results. Spyglass is Python-based and thus can
accommodate pipelines that use a wide array of analysis packages that have been developed by
the community, including Spikelnterface'®, GhostiPy?°, DeepLabCut?, and Pynapple?'. Spyglass
also offers ready-to-use pipelines for analyzing behavior and electrophysiological data, including
spectral analysis of local field potential (LFP), spike sorting, video processing to extract position,
and decoding neural data. Spyglass can be extended to support additional pipelines for behavioral,
intracellular, optical physiology data, or other data types that can be stored in the NWB format. In
addition to extensive documentation and tutorials, new users can try out a demo version of
Spyalass hosted on the web by HHMI and 2i2¢ as a Jupyter Hub instance. Here we describe the
structure of Spyglass and demonstrate its potential by applying the same analysis pipelines to
NWB files from different labs and comparing the results.

Results

Overview of Spyglass

Spyglass is an open-source Python-based software framework for reproducible analysis of
neuroscience data and sharing of the results with collaborators and the broader community
(Figure 1). It is designed to be used by everyone in a laboratory who works with the data, both as
a general-purpose tool to enable the development of new analysis pipelines and a tool that allows
those pipelines and associated results to be frozen and packaged to enable reproducibility. It can
be run locally or in the cloud. Analyzing data with Spyglass begins with raw data and experimental
metadata stored in the NWB format'®?2. These NWB files are ingested into a relational database
and processed using DataJoint-enabled pipelines. Existing pipelines are built around common
neuroscience tasks such as spectral filtering, spike sorting, pose tracking, and neural decoding
and each user can extend these pipelines to carry out the specific sets of analyses needed for
their project. DataJoint stores parameters of each analysis and tracks the intermediate analysis
results, which are also stored as NWB files to maintain a shareable standardized data format.
Spyglass enables sharing results and interactive visualization of the data over the web via
Kachery and Figurl. Finally, Spyglass supports exporting specific parts of the database required
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to reproduce the results and figures of a manuscript and the upload of the associated raw data
and analysis outputs to a public repository. In the following sections, we provide detailed
descriptions of these components and the design decisions behind them.

The NWB format as data specification
Why NWB?
A typical neuroscience experiment consists of multiple data streams stored in different formats.
Managing such heterogeneous data in a shareable and accessible manner is challenging. A
practical solution is to save the data in a community-supported format like NWB, which is
emerging as a standard for neurophysiology and behavior data'®??. We have chosen NWB as the
data specification in Spyglass for the following reasons:
e The versatility of NWB accommodates various data types and allows metadata to be
saved with the data in a single self-annotated file.
e NWB files are immediately shareable.
e Public data archives like DANDI?**?® accept the NWB format and provide APIs to easily
stream file contents for local analysis.
e Tools developed for NWB files are immediately accessible to users.
Conversion to NWB can be done using software tools developed by the community, such as the
NeuroConv package or NWB GUIDE, a desktop app for converting data to NWB without having
to write code.

Importantly, Spyglass requires all raw data—including neurophysiology, behavioral task,
interaction with the environment— to be in the NWB format prior to any analysis. This ensures
reproducibility of all subsequent analyses by sharing the NWB file containing the raw data and
the analysis pipelines. Furthermore, Spyglass stores virtually all intermediate results from
downstream analysis pipelines in NWB. This ensures that all data associated with the analysis
can be shared and read using the same software tools.

Spyglass-specific NWB requirements

NWB allows some flexibility in the specification of data to accommodate a broad range of
experiments and lab-specific requirements. For example, the name of data types within the NWB
file can differ from those expected by Spyglass. We have fully described the Spyglass-specific
NWB conventions in the documentation website. To further accommodate NWB files from many
sources, we have also developed a system that makes it possible to ingest NWB files into
Spyglass even when they do not adhere to our naming conventions or best practices by including
a configuration yaml file (see Methods and Table 1, 02_Insert data).

Relational database as analysis pipelines

Why a relational database?

One significant challenge with data analysis is in managing its complexity. Most results derive
from an extended series of steps, including “preprocessing” (e.g. spike sorting for
electrophysiological data, region-of-interest identification for optical physiological data, video
processing for behavioral data, etc.) and downstream analyses. Each step depends on a different
algorithm with a specific set of parameters and generates distinct intermediate data. Tracking
these numerous components is difficult, and understanding how another scientist has managed
them can be even more daunting. This complexity hinders collaboration, verification of results,
and data reuse.

These issues motivated our use of a formal software system: the relational database, a well-
established data structure that uses tables to organize data. To construct an analysis pipeline, we
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use DataJoint?”? to define a series of database tables with a dependency structure. Associated
with the database tables is code that carries out an analysis using a specific set of parameters
and a specific part of the data. This code then stores the results as a new row in the table with a
pointer to the results stored on disk as an NWB file. Creating a new table row is referred to as
“populating” the table. Thus, data analysis becomes a matter of populating and interacting with
the database. This style of data analysis offers many advantages:

e It lowers effort for users seeking to apply the same analysis to multiple datasets, as they
only need to specify the data and parameters for computation ("what") independent of the
execution details ("how").

e |t provides a structure to organize and systematize the analysis parameters, data, and
outputs into different tables. This contrasts with user-generated configuration files where
each user could adopt their own idiosyncratic approach to specifying parameters and data.

e |t enables easy access to multiple datasets via queries (e.g. to find all datasets with
recordings from a particular brain region or that used a particular behavioral paradigm).

e |tis concurrently accessible to multiple users.

Because DataJoint binds the code for running the computation with the table that will store the
result, populating the same table will execute the same code. DataJoint also provides additional
features for reproducible data analysis, such as maintaining data integrity of the database (e.g.
deleting a table entry causes cascading deletion of dependent entries in downstream tables) and
the files containing the results (e.g. by checksum verification).

How does Spyglass differ from Dataloint?
While Spyglass is based on DataJoint, it offers many useful features that DataJoint lacks. These
include:

¢ A tight integration with the NWB format: When the NWB file is ingested into Spyglass,
pointers to the data types appear as rows in a set of predefined tables. These serve as
the starting point for analyses and an interface for the users to access the raw data within
Spyglass. We provide the mapping between NWB data types and corresponding Spyglass
tables in the documentation website.

e Extending table types: Spyglass provides a mix-in class, which allows different tables to
inherit shared behaviors without duplicating code, for defining table types that are not
included in Datadoint or extending the function of existing table types. This is used to
implement many key table types such as Merge tables, which allow multiple upstream
pipelines to feed into the same downstream pipeline. This example is illustrated in the
description of the spike sorting pipeline below.

e Permission-based delete: Spyglass enables the deletion of individual rows in a table
based on pre-defined user permission. This is not naturally supported by MySQL, the
underlying relational database management system used by DataJoint.

¢ Improved searching based on restrictions on non-primary keys: Spyglass allows the users
to conveniently track the provenance of a particular row in a downstream table across
multiple upstream tables with only partial information.

e Export system for publishing: Spyglass provides a convenient way to export only the part
of the database used for generating results and figures for a publication. This is done by
caching the information about tables that are accessed when generating figures.

e The inclusion of various helper functions, which are detailed on the Spyglass
documentation website.
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Setup and hardware requirement

Spyglass can be installed in any setting that can support Python via the Python Package Index
(PyPIl). We provide detailed installation instructions on the documentation website, including a
complete list of software requirements. In addition to the Python package, using Spyglass requires
running a relational database (currently MySQL backend is supported). In our laboratory, we run
this from a Docker container provided by DataJoint on a lab-wide server and grant access to it to
members of the lab and other collaborators. This local configuration is recommended for use
cases involving ~ 10 users. For a larger scale deployment, one could also run the Spyglass
database in the cloud using services such as AWS.

Practical use cases and extensions

Spyglass comes with many pre-defined pipelines that implement common analysis tasks for
electrophysiological and behavioral data. For users interested in using these pipelines, they can
do so as soon as they ingest their NWB files into the database. Spyglass can also serve as a
jumping off point for exploratory data analysis. For example, the user can conveniently read
specific data types from the NWB file by first ingesting it into Spyglass and accessing database
tables with Spyglass functions (e.g. fetch nwb) or load those objects in a format compatible
with Pynapple®' (fetch pynapple). If they need to pre-process the data first, they can do so by
running the relevant pipelines. Once the user has decided to formalize a particular analysis that
is not yet supported by Spyglass, they can extend Spyglass and create user-generated custom
pipelines. These could include data types from NWB files not currently supported by Spyglass
(e.g. photometry, optical physiology, etc.) or build on existing Spyglass pipelines. Because the
raw data and intermediate results are in NWB format, the custom pipelines can take advantage
of analysis software packages within the NWB ecosystem.

Re-analyze
., DANDI
";5(‘0_* . 15 kachery
Raw data ‘NWB } Datajomt / Share data
s NWB file Pointers to data Pipelines
‘\ - Subject - Subject > FI S u
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Figure 1: Overview of Spyglass. The raw data—consisting of information about the animal, the behavioral
task, the neurophysiological data, etc.—is converted to the NWB format (yellow box) and ingested into the
Spyglass database. The pipelines (dark green box) operate on pointers to specific data objects in the NWB file
(tan box). The raw and processed data are then shared with the community by depositing them to public
archives like DANDI or shared with collaborators via Kachery. Visualizations of key analysis steps can be shared
over the web via Figurl. Code is shared by hosting the codebase for Spyglass and project-specific pipelines on
online repositories like GitHub. Finally, the populated database may be shared by exporting it to a Docker
container.
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Organization of analysis pipelines

Here we delve deeper into the design and organization of analysis pipelines in Spyglass. As
mentioned previously, the analysis pipelines are defined as a set of tables in the relational
database. Specifically, Spyglass uses DataJoint syntax to define tables as Python classes (see
online documentation on Custom Pipelines and this video for examples). The code for executing
the analysis is associated with these tables as class methods, enabling a tight integration of the
database structure with the code for populating it. We refer the reader to the DataJoint
documentation for more details on specific commands to interact with the database.

When an NWB file is first ingested into Spyglass, pointers to the data types in the NWB file are
stored in database tables of the Common module. Each Common table corresponds to a data object
in the NWB file and serves as an interface to retrieve it with simple function calls (fetch nwb).

The retrieval is “lazy” in the sense that only a specific part of the data is loaded for analysis instead
of the entire NWB file.

An analysis pipeline consists of sets of tables downstream of the Common tables. In each step in
the analysis, the user populates one of four table types (Figure 2A):
e Data tables contain pointers to data objects in either the original NWB file or ones
generated by an upstream analysis.
e Parameter tables contain a list of the parameters needed to fully specify the desired
analysis.
e Selection tables allow users to select and pair a data entry and a parameter entry,
defining the input to the Compute table.
e Compute tables execute the computations to carry out the analysis using the Data and
Parameters specified in the Selection table entry. These results are then stored and
can serve as Data for downstream analysis.

This design has multiple features that we have found to be beneficial. First, Parameter tables
store the full set of parameters needed to specify a given analysis. For example, a Parameter
table entry for a firing rate analysis of a single neuron might specify the bin size and smoothing to
be used for that analysis. Multiple such entries can be defined, allowing a user to select the most
appropriate one for the question being addressed. Second, because Selection tables specify
which Parameter table entry was used for a given analysis on the associated Data table entry,
they provide the key information needed to know which parameters were used to generate the
entry in the downstream Compute table. Third, it is simple to associate a given Data table entry
with multiple Parameter table entries and then re-run the analysis on those pairs. This enables
a user to understand how their choice of parameters impacts their results, something that is
otherwise difficult to manage and track.

Spyglass includes pipelines for a diverse range of analysis tasks in systems neuroscience, such
as the analysis of LFP, spike sorting, video and position processing, and fitting state-space
models for decoding neural data. Tutorials for all pipelines are available on the Spyglass
documentation website (Table 1). Our goal was take advantage of other open source packages,
and we have therefore integrated support for Pynapple?!, a general purpose neural data analysis
package. We also built our pipelines to take advantage of other community-developed, open-
source packages, like GhostiPy?°, Spikelnterface'®, DeepLabCut? and Moseq?®. These pipelines
store a complete record of the analysis and simplify the application of these tools. Furthermore,
multiple versions of the pipelines can co-exist to apply different algorithms to a single data set,
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making it easy to probe the robustness of the results (see Merge motif below). Finally, the
pipelines are modular as long as they process different kinds of data stored in the NWB files.

Next we provide a detailed description about the implementation of three common analysis tasks
in Spyglass pipelines: (i) filtering broadband extracellular voltage traces to extract the lower-
frequency LFP bands; (ii) detecting discrete events (e.g. sharp-wave ripples, a hippocampal event
marking the time of bursts of population activity) in the LFP signals; and (iii) spike sorting and
curation.

Example 1: LFP extraction (Figure 2B)

To extract the LFP signal (below 400 Hz), we use the pipeline shown in Figure 2B. First, we select
a row from the Raw table, a Data table that pointsto an ElectricalSeries objectin the NWB
file. We then specify the parameters of the analysis in the Parameter tables: the list of channels
for which LFP should be extracted (LFPElectrodeGroup), the time interval for the LFP
extraction (IntervallList), and the coefficients for the filter that will be used on the data
(FIRFilterParameters). These parameters are associated with the entry in the Raw table by
defining a Python dictionary object that specifies the Data and Parameter entries and inserting
it into a Selection table (LEPSelection) by calling the LFPSelection.insertl method
(Figure 2B). Finally, we apply the filter to the selected data over the selected interval using the
LFP table (a Compute table) by calling the LFP.populate method. The resulting filtered data
is saved to disk in the NWB format, and the object ID associated with the LFP object within the
NWB file is also stored in the LFP table for easy retrieval. Thus, the corresponding entry in the
LFP table contains all the details about the data and the parameters, allowing a user to fully track
the provenance of the output.

Example 2: Sharp-wave ripple detection (Figure 2C)

Once the LFP extraction is completed, we can build on the results by applying another filter to
isolate a specific frequency band and identifying sharp-wave ripples (SWRs), a prominent LFP
event within hippocampal data. This pipeline is illustrated in Figure 2C. It applies two additional
steps to a row in the LEFP table: another band-pass filter to isolate the 150-250 Hz band and a
subsequent detection of SWR events. Each step uses the same basic scheme shown in Figure
2A. These include defining a specific band-pass filter in the Parameter tables; selecting a time
interval for the bandpass filtering; and adding an entry to LFPBandSelection table that binds
both the filter parameters and the time interval with a row in the LFP table. A call to
LFPBand.populate generates an NWB file containing the ripple-band data and an entry in the
LFPBand table with information about which data and parameters were used. Next, the user
selects an entry in RippleParameters to define the parameters for detecting the ripple events
(e.g. threshold over the spectral power) and associates it with filtered data in LEPBand in the
RippleLFPSelection table. Finally, the RippleTimes table is populated (by
RippleTimes.populate), which identifies the start and end times of each ripple event and
saves these to a new NWB file.
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9082d64f-55af ripple Ripple 150-250 Hz 1000 beans20150205_I7X  bf72945a-b101-4e5c-
-4926-948c- 1A8GQJR.nwb b117-072a11f40a4f
dce32f018e3e +
RippleLFPSelection
RippleTimes
Ifp_id interval_list_name filter_name filter_sampling_rate ripple_param_name analysis_nwb_file ripple_times_object_id
9082d64f-55af ripple Ripple 150-250 Hz 1000 default beans20150205_H5A de6a7c8b-3322-44db-
-4926-948c- 578YMJQ.nwb a8c1-89af5d8221b3
dce32f018e3e

Figure 2: Analysis pipelines in Spyglass. (A) A general structure for a Spyglass pipeline. (B) Example 1: LFP
extraction. Note the correspondence to the pipeline structure in (A) as shown by the color scheme. The trace
next to the Raw table is raw voltage data sampled at 30 kHz and is represented by a row in the Raw table. This,
along with parameters from LFPElectrodeGroup, Intervallist, and FIRFilterParameters tables
(red arrow), are defined in a Python dictionary and the LEPSelection.insert () call is used to insert the
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reference to the raw data and the now associated parameters into LEPSelection table. When the populate
method is called on the LFP table, the filtering is initiated and the output is inserted into the database. The
results (e.g. the trace above LFP table) are stored in NWB format and its object ID within the file is also stored
asarow in LEFP table, enabling easy retrieval. (C) Example 2: Sharp-wave ripple (SWR) detection. Note that the
key specification, insert, and populate calls are omitted for simplicity. This pipeline is downstream of the LFP
extraction pipeline and consists of two steps: (i) further extraction of a frequency band for SWR (LFPBand);
and (ii) detection of SWR events in that band (RippleTimes). Note that the output of LFP extraction serves
as the input data for the SWR detection pipeline and can thus be thought of as both Compute and Data types.
As in (B), for each step, the results are saved in NWB files and the object ID of the analysis result within the
NWB file are stored as rows in the corresponding Compute tables. The trace above the RippleTimes tableis
the SWR-filtered LFP around the time of a single SWR event (pink shade). In each table, columns in bold are the
primary keys. Arrows depict dependency structure within the pipeline.

Example 3: Spike sorting and curation (Figure 3)

The spike sorting pipeline (Figure 3) combines the principles of analysis pipeline design we
outlined previously with additional design features. This pipeline uses Spikelnterface'® to perform
the operations critical for spike sorting, but also tracks all of the parameters used and provides a
system for tracking multiple sorting curations. The pipeline includes the following steps: (1)
preprocess the recording (e.g. filter and whiten to remove noise); (2) apply spike sorting algorithm
(e.g. MountainSort4, Kilosort3, etc.); (3) curate the results (e.g. either manually or automatically
by computing quality metrics); and (4) consolidate the output with other sources of sorted units
(e.g. those already present in the NWB file) for downstream analysis. Each of these steps follow
the general design shown in Figure 2A. We also detail additional features that have not been
discussed previously.

Global Parameter tables (e.g. IntervalList)

An important object in any analysis is the time interval during which the data were collected or to
which analysis procedures should be applied. To avoid having a separate table for time intervals
in every pipeline, we store them in the IntervallList table of the Common module for all
pipelines. For example, in the spike sorting pipeline (Figure 3), IntervalList provides a time
interval for both preprocessing the recording (SpikeSortingRecordingSelection) and
running a spike sorting algorithm (SpikeSortingSelection). In addition, the intervals during
which artifacts (i.e. high-amplitude voltage transients from behavioral events such as licking)
occur is identified and fed back into IntervalList (dashed arrow in Figure 3).

“Cyclic iteration” motif for curation

Certain pipelines, such as curating the output of spike sorting, may need to be run multiple times
on the same data. For example, one might first compute quality metrics to identify noise clusters
and potential candidates for merging over-clustered units (Automatic); then inspect, merge, and
apply curation labels to the result with an external viewer (Manual); and finally, compute a final
set of metrics to describe the quality of each unit (Automatic). This results in a sequence of
curation steps: Automatic, Manual, Automatic. Depending on the data, the user may choose a
different curation sequence, and the order and length of these sequences might change as new
algorithms and metrics are developed. This presents a challenge in modeling the pipeline within
the relational database.

We therefore developed a specific design motif to enable this iterative curation with a finite number
of tables (Figure 3). First, a given row of the CurationVv1 table (the output of the spike sorting
step) is taken through automatic or manual curation steps downstream. Upon completion, the
spike sorting object may enter this curation pipeline again as a new row in the CurationV1 table.
Importantly, the new row has information about previous curation from which it descended. This
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allows the user to track each round of curation while applying as many steps as desired. It can
also be easily extended; if new automatic curation algorithms are developed in the future, it can
simply be added downstream to the CurationVvl table, enabling application of the latest
methods to previously collected data.

“Merge” motif for consolidating data streams and versioning pipelines

A different challenge arises when the user wants to feed multiple streams of data of the same
type into a single downstream pipeline. For example, once curation is completed, the spike sorting
is saved in CurationV1. But some NWB files may already contain curated spike sorting (as a
row in the table TmportedSpikeSorting), and one may want to apply the same downstream
pipeline to both data sources to compare the results. In yet another case, the other data stream
could be a different version of the spike sorting pipeline (e.g. CurationVv?2) that uses different
algorithms but produces output of the same type. Adding the same downstream pipeline to each
of these separately would result in code redundancy and database bloat. Simply having these
converge onto a single downstream table is not desirable either, as it will require modifying an
existing table to add new columns every time a new version or new data stream is added.

To solve this problem, we have designed a “merge” table type (Figure 3). Here Parts tables (a
table type within DatadJoint tightly associated with a parent table) are used to implement the
merging of multiple data streams onto a single table. The downstream pipeline then gets data
from this table without any duplication. More details for the implementation and helper functions
to maintain data integrity can be found in the tutorial notebook (Table 1, 04 Merge Tables).
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Figure 3: Spike sorting pipeline. The Spyglass spike sorting pipeline consists of seven components (large gray
boxes), all of which take advantage of the Spikelnterface library: preprocess recording (A); detect artifacts to
omit from sorting (B); apply spike sorting algorithm (C); curate spike sorting (D), either with quality metrics
(E) or manually (F); and merge with other sources of spike sorting for downstream processing (G). Solid arrows
describe dependency relationships and dashed arrows indicate that the data is re-inserted upstream for
iterative processing. Note the two design motifs (see text): “cyclic iteration” for curation and “merge” for
consolidating data streams. Color scheme is the same as Figure 2, except for light purple (cyclic iteration table),
orange (merge table), and peach (Parts table of the merge table).

Sharing Data, Analysis, and Visualization

Complete sharing of data and analysis at the end of projects

A key goal of our system is to simplify sharing data and analyses when results are ready to be
published. Because all raw and intermediate data are in the NWB format, they can be directly
deposited to DANDI'®%+%6 5 NIH-supported public archive for neuroscience data. Sharing the
analysis code is also easy: simply share the codebase for the analysis pipelines (i.e. Spyglass
plus any project-specific pipelines) and the scripts used to populate the database. Others can
then download the raw data from DANDI, set up the database with Spyglass, and recreate all
results locally by executing the population script. Alternatively, users may want to share the
Spyglass database in its populated state so that the community can access it directly without
going through the setup procedures or re-running time-consuming analysis steps. This can be
done by (i) hosting the database on the cloud and granting access to users outside the lab; or (ii)
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exporting and sharing parts of the database that were used by the project. Spyglass facilitates
the second option by providing functions that automatically log the table entries and NWB files
used for creating figures of a manuscript in a Python environment (Table 1, 05_Export). The
dependencies of these entries are traced through the database to compile the complete set of
raw, intermediate, and plotted NWB files and their corresponding database entries. These are
stored in the Export table, which also generates a bash script to create SQL dumps of the
identified database entries.

To upload these files to DANDI, users must first register a new dandiset for their project and
record their APl and dandiset ID. With this information, they can then use the method
DandiPath.compile dandiset () to automatically validate, organize, and upload all project
files to the DANDI archive. Additionally, this process stores the archive information for each file in
the DandiPath table, allowing fetch nwb to automatically stream data from the DANDI cloud
storage when not available locally.

To create a sharable Docker image of the project, we provide a template repository called
spyglass-export-docker. Users first download a local copy of this repo and copy the SQL dump
file, environment yaml, and figure-generating notebooks generated during Spyglass export into
the appropriate folders. Running the provided docker-compose scripts then generates two
linked Docker containers: one running the reconstructed Spyglass SQL database, and a second
connected to this database and running a Jupyter Hub—with a python environment matching that
used when generating the figures. These can be readily shared with new users to provide them
immediate access to all steps of the analysis process and the corresponding data through DANDI
streaming

Controlled sharing for ongoing projects

For ongoing projects, users may want to limit the sharing of the analyses to their collaborators.
This requires controlling access to the database and the underlying NWB files that contain the
raw or intermediate data. This is straightforward to manage in Spyglass. Datadoint handles
access to the database natively by requiring a username and a password. Managing access to
the NWB files is handled by Kachery, a content-addressed sharing tool for scientific data (Figure
4A). Specifically, the user selects the NWB files to be shared by inserting pointers to them into
NwbKachery and AnalysisNwbKachery tables within Spyglass. When the collaborator
attempts to access these files, Kachery first looks for them in their local system. If not found, the
corresponding files are automatically uploaded from the user’s system to a cloud storage server
and then downloaded to the collaborator’'s computer. This feature is detailed in a tutorial (Table
1,03 Data_Sync). Critically, the downloaded files are never modified locally within Spyglass, and
attempt to access a modified file would result in a DataJoint error. This ensures that each user is
working on the same underlying data even if they are at different sites. More generally, Kachery
offers advantages over other file hosting services (e.g. Dropbox and Google Drive) or alternative
architectures (e.g. IBL data architecture) by not requiring a central location to track available files
and providing a user-friendly Python API. We point interested readers to the Kachery GitHub repo
for further descriptions.

Sharing visualizations

Spyglass enables users to create and share interactive visualizations of final and intermediate
analysis results through the Figurl package. These visualizations facilitate understanding complex,
multi-modal neuroscience datasets by allowing users to (i) quickly compare different stages of
processed data to spot issues with their data and (ii) align multimodal information sources to get
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a more holistic view of their dataset. Figurl is integrated within Spyglass as dedicated tables
attached to specific pipelines such as spike sorting (Figure 4B) and neural decoding (Figure 5).
Populating these tables generates a URL to web-based visualizations for exploring complex,
multi-dimensional time series across multiple views whose time axes can be linked. Sharing them
is also easy, as the URL can be accessed from any browser without the need for local software
installation or specialized hardware. This allows collaborators anywhere in the world to easily
access and explore the data.

Pipeline Tutorial notebook Description
00_Setup Setting up Spyglass
01_Concepts Basic concepts of using on Spyglass
02_Insert_data How to insert data into Spyglass

Data ingestion How to share data with collaborators who have access

to the database

A new table type unique to Spyglass that allows the user
to use different versions of pipelines on the same data
How to export parts of the database used to generate

03_Data_Sync

04_Merge_Tables

05_Export figures and upload corresponding NWB files to DANDI
10_Spike_SortingV0 Detect spikes from electrophysiological recording and
separate them to individual neurons (example of multiple
10_Spike_SortingV1 versions of the same pipeline)

Spike sorting
11_Spike_Sorting_Analysis Curate the results of spike sorting manually for VO

12_Burst_Merge_Curation Automatically merge units separated due to bursting

Process information about animal’s position from video

20_Position_Trodes.ipynb recording of the behavior using Trodes

21_DLC Detect keypoint markers with DeepLabCut
Position processing - - -
22 DLC._Loop Detect keypoint markers with DeepLabCut over multiple
— — epochs
23_Linearization Convert 2D position to 1D position using track geometry

Filter broadband electrophysiology data to isolate low-

30_LFP frequency LFP bands
LFP analysis 31_Theta Filter LFP to isolate the theta band
32_Ripple_Detection Detect sharp-wave ripples from filtered LFP

40_Extracting_Clusterless_Wave

Extract waveform features for clusterless decoding
form_Features

Apply the decoding algorithm using clusterless waveform
features

Apply the decoding algorithm from spikes of sorted and
curated units

Decoding 41_Decoding_Clusterless

42_Decoding_SortedSpikes

MUA 50_MUA_Detection Detect times of high multiunit firing
MoSeq 60_MoSeq Tutorial to using MoSeq pipeline
Table 1: Tutorials included in Spyglass and their descriptions. All available from

https://github.com/LorenFrankLab/spyglass.
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Figure 4: Sharing data and visualizations. (A) Kachery provides a convenient Python API to share data over
a content-addressable cloud storage network. To retrieve data from a collaborator’s Spyglass database, one can
make a simple function call (fetch_nwb) that pulls the data from a node in the Kachery Zone to the local
machine. (B) Example of a Figurl interactive figure for visualizing and applying curation labels to spike sorting
over the web.

Demonstration of generalizability: neural decoding of position in multiple data sets

A major goal of Spyglass is to facilitate the analysis of data across multiple datasets that may
come from different laboratories. To illustrate this, we ingested and analyzed two NWB files
containing single-neuron recordings from rat hippocampus, one from our laboratory and another
from the Buzsaki laboratory at NYU®. Specifically, we applied a switching state space model 3"
to decode the animal’s position from spikes and infer periods of different types of non-local
representations (such as replay and theta sequences), during which the decoded position
deviates from the animal’s true position. This is a complex analysis that involves integrating
multiple data sources, including position and neural spiking activity, and applying an advanced
statistical model with many user-defined parameters. The decoding pipeline in Spyglass enables
the user to carry out every step of this analysis, including “preprocessing” of the data (e.g. linearize
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the 2D position of the animal, perform spike sorting, or import units that have already been sorted)
and fitting of the model (see Supplementary Figure 1 for a visualization of the steps involved).
After running the decoding pipeline, we visualize the results on the browser via Figurl and
generate plots to further reproduce the reported results.

The UCSF dataset contains large-scale hippocampal recordings in a rat performing a foraging
task in a maze with six reward sites and dynamic reward probabilities (Figure 5A, top panel).
Applying the decoding pipeline to these data yields a probability distribution over space in 2 ms
bins that describes our estimate of the “mental” position of the animal. This mental position tracks
the animal as it traverses the maze (Figure 5A, 2" panel from top; see interactive visualization
via Figurl) but also shows interesting systematic deviations from actual position. Computing the
distance between the peak of the probability distribution and the actual location reveals
characteristic patterns of such deviations from the actual position (Figure 5A, 3™ panel from top)
in which the decoded position sweeps ahead of the actual position and then back during
movement bouts. This pattern recurs at ~8 Hz, reflecting the well-known “theta sequences” seen
in the hippocampus®*3*,

We then applied this same pipeline to the NYU dataset, where rats performed a spatial alternation
task on a maze with a figure-8 topology (Figure 5B, top panel). As expected, we could identify
theta sequences in these data as well, highlighting the robustness of these phenomena (Figure
5B, 2" and 3™ panels from top, see interactive visualization via Figurl). Moreover, the NYU
dataset includes a specific manipulation in which the medial septum, a brain region critical for
pacing the theta rhythm, was cooled, reducing the theta frequency from 8-10 Hz to 5-8 Hz. The
authors originally carried out several detailed analyses to demonstrate that cooling reduced theta
frequency and impaired behavior without changing the overall spatial tuning of single neurons or
their tendency to fire sequentially within theta cycles. However, the authors did not apply state-
space decoding methods, and did not characterize the effects of cooling on the decoded
representation of space in relation to the animal’s actual position. We therefore applied our
decoding pipeline to the cooling trials (“cooling on”) and the control trials preceding it (“pre-
cooling”), just after it (“cooling off”), and the recovery trials 10-12 minutes after cooling (“post-
cooling”).

The results of these analyses were consistent with the published findings and provided new
characterizations that could serve as the foundation for additional discoveries. We first estimated
the multiunit firing rate as a proxy for the theta LFP and characterized its power spectrum before
and after cooling. As expected, cooling decreased the power above ~8 Hz and increased the
power below ~8 Hz, consistent with the slowing of theta LFP shown in the original manuscript
(Figure 5C, top panel). We then applied the same analysis described above to the distance
between the decoded and the actual position during movement (“decode distance”), expecting
cooling to have a similar effect on its power spectrum. Interestingly, here cooling led to a decrease
in power at essentially all frequencies (Figure 5C, bottom panel). Consistent with this result, the
decode distance decreased from the pre-cooling to cooling period, with a partial recovery during
the post-cooling period (Figure 5D, top panel). Similarly, the average speed at which the decoded
position moved ahead and behind the animal was also reduced during cooling and showed a
partial recovery after the cooling period (Figure 5D, bottom panel). These results indicate that
cooling reduces both the extent and the rate at which the decoded position deviates from the
actual position. This was unexpected given that cooling had no effect on the average spatial tuning
of these cells®. It also raises an interesting hypothesis: hippocampal representations of distant
locations may be exquisitely tuned to the specific frequency of the rhythmic input from medial
septum, such that slowing the rhythm down by just 2-3 Hz significantly limits their expression.

16


https://figurl.org/f?v=gs://figurl/spikesortingview-10&d=sha1://3990d47cfcfbe426fae203659479e55d7b08980f&label=j1620210710_clusterless_decode&zone=franklab.default
https://figurl.org/f?v=gs://figurl/spikesortingview-10&d=sha1://ec5e8c82dd0d3eb000fc00f54a61a622e904766c&label=MS2220180629_sorted_decode&zone=franklab.default
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577295; this version posted January 29, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

More broadly, these findings illustrate the power of our framework that enables both replication of
results across datasets and the re-analysis of previously collected data.
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Figure 5: Applying decoding pipelines to multiple data sets from different labs (A) Decoding neural
position from rat hippocampal CA1 using a clusterless state space model (UCSF dataset). In the top panel, grey
lines represent positions the rat has occupied in the spatial environment. Overlayed lines in color are the track
segments used to linearize position for decoding. Filled circles represent reward wells. The second panel from
the top shows the posterior probability of the latent neural position over time. The magenta line represents the
animal’s actual position. The vertical lines on the right represent the linearized track segments with the colors
corresponding to the top panel. The third panel from the top shows the distance of the most likely decoded
position from the animal’s actual position and sign indicates the direction relative to the animal’s head position.
The fourth panel from the top is the animal’s speed. The final panel is the multiunit firing rate. (B) Decoding
from rat hippocampal CA1 using existing spike sorted units (NYU dataset). Conventions are the same as in A.
Filled circle in the linearization represents the reward zone rather than the reward well. (C) Decoding analysis
of the NYU dataset. The top panel shows the power difference of the multiunit firing rate between the medial
septal cooling period and the pre-cooling period in the 5-13 Hz range. The power at 8-10 Hz is attenuated
during cooling while the power at 5-8 Hz is enhanced, showing a slowing of the theta rhythm during cooling.
The bottom panel shows that the power of the distance between decoded and actual position (decode distance)
is mostly reduced throughout the 5-13 Hz range. (D) Cooling decreases the decode distance and speed and this
effect may only recover partially after cooling. Bars represent 95% confidence intervals.
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Discussion

Summary of results

Science is a social enterprise that relies heavily on collaboration and transparency among
researchers®>%*. Reproducible and shareable data analysis plays a critical role in this context, as
it ensures that scientific findings can be independently verified and built upon by others. To
facilitate this for the neuroscience community, we built Spyglass, a software framework that
combines the NWB format and the relational database structure. Building on many community-
developed tools, it provides useful features to design complex analysis pipelines, share raw and
processed data, generate web-based visualizations, and analyze data from multiple sources. As
a result, it simplifies collaboration within and across labs, making it well-suited as a community
framework for neurophysiological and behavioral data analysis.

Comparison to prior work

Our work builds on many previous approaches that have been proposed for scientific data
management and reproducible analysis pipelines. This includes work from individual laboratories
that have illustrated how a few elements of an NWB file could be read into a DataJoint database®’,
and publications highlighting datasets available in NWB?*®. More broadly, DataJoint is used by
many labs with lab-specific pipelines®®, but to our knowledge none of these efforts integrate cross-
laboratory data and visualization tools or use NWB as the foundation to facilitate sharing. Our
system also contains elements similar to those developed by large collaborative groups like The
International Brain Laboratory (IBL) that are designed to organize neurophysiology data for
sharing with collaborators and a module to automatically run analyses'?. But the conversion to a
standardized format (outside the collaboration or group) and public data sharing are only done
following substantial analysis in the IBL system, complicating replication of the full analysis.

Other approaches do away with the relational database altogether. For example, DataLad uses
version control tools such as git and git-annex to manage both code and data as files*’. This
enables the creation of a data analysis environment and decentralized data sharing. For building
analysis pipelines, it may be combined with other tools for managing the sequential execution of
scripts. For example, Snakemake*' (and related projects such as Cobrawap*?) allows the users
to gather and define the input, output, and the associated scripts to execute for each analysis
step, thereby tracking the dependency between steps. But because these tools do not provide
any formal structure for data analysis or parameter specification, they lack the advantages of the
relational database that we discussed, such as being able to easily organize or search for the
records of previous analysis based on specific parameters, efficient data sharing and access
management to multiple users, and built-in data integrity checks based on constraints native to
the database (e.g. primary keys).

By contrast, Spyglass begins with a shared data format that includes the raw data and offers both
transparent data management and reproducible analysis pipelines using a formal data structure.
One distinguishing feature of Spyglass is the emphasis placed on combinatorial matching of data
and method in a reproducible way. For example, Spyglass makes it easy to apply multiple spike
sorting algorithms to a given dataset and to compare the results, as this involves simply matching
the data with different rows in the parameter tables. Spyglass also makes it straightforward to
apply complex analyses like decoding to datasets from multiple labs, facilitating replication and
data re-use. The system can be extended by adding new pipelines to the existing database as
better tools and algorithms become available. These features enable the re-analysis of data to
examine how the results depend on the choice of algorithm. We believe it is critical to provide this
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kind of future-compatibility to maximize the impact of the years of experimental work that go into
each dataset.

Limitations

Although Spyglass provides many useful features for reproducible data analysis, it has several
limitations. Because of the central role played by the NWB format in Spyglass, a potential user
must first convert their data to NWB, which requires time and effort*®. In addition, some data types
are yet to have defined standards within NWB (e.g. surgical procedure details, descriptions of
conditions, detailed subject information), and if the user wishes to include those details, they
would need to build an NWB extension and parallel Spyglass tables to do so. NWB also allows
users to choose their own names for some datatypes (e.g. behavioral tasks), further requiring
standardizations to agree on naming conventions.

In addition, users are expected to set up and maintain a relational database, which may involve
additional training. Using Spyglass includes learning to work with the structure of DataJoint, such
as the strict data integrity requirement that can make modification of existing tables difficult.
Spyglass also does not yet include pipelines for processing certain types of neural data, such as
optical physiology or fiber photometry, and some of its features such as Kachery-based file
sharing may not currently support Windows (although it may be possible to run on the Windows
Subsystem for Linux). Finally, as for all software frameworks, the evolution or lack of maintenance
of other packages presents a challenge for long term support and reproducibility.

Fortunately, there are ongoing efforts to address these challenges. These include tools to simplify
the raw data conversion into NWB, such as NeuroConv, a package to convert neurophysiology
data in common formats to NWB automatically, and NWB GUIDE, a desktop app that guides
users through the process of converting data to NWB without writing any code. Using Spyglass
could also help with standardization efforts across labs: having a database makes it easy to create
lists of names used to refer to particular items and to then move toward standardization.

We also provide many tutorials on the documentation website so that the user can efficiently set
up a database and learn to use Spyglass. We continue to actively maintain Spyglass and are
eager to work with the community to extend it and support data types and analyses beyond what
is currently available. These efforts will increase the usability and reach of Spyglass and make its
adoption more attractive, particularly to early-stage investigators. Finally, even in cases where
reproducing a result would require installing older versions of software, the results themselves
remain accessible within NWB files reference in Spyglass, ensuring that previous results can be
built on even as packages evolve.

Future applications

Spyglass and similar tools have the potential to transform scientific data analysis. In addition to
facilitating examination or extension of published results, they enable meta-analysis across
studies and easy testing of novel methods across multiple datasets. The machine-readable form
of data and analysis pipelines also opens doors for machine-driven analysis and hypothesis
testing. As these tools develop and become more accessible, we believe that frameworks like
Spyglass will likely become essential for neuroscience researchers.
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Methods and materials

Coding environment
Spyglass was developed in Python 3.9 and is compatible with version 3.10 as well. See our
dependency list for a full list of Python packages used.

NWB conversion

To facilitate conversion of raw data to NWB format, we offer t rodes-to-NWB, a sister package
to Spyglass for converting data acquired with the SpikeGadgets hardware to NWB. This comes
with a web-based GUI for conveniently generating a YAML file containing the metadata used by
trodes-to-NWB. For converting data not acquired with SpikeGadgets, users can use NWB
conversion tools developed by the NWB team, such as NeuroConv and NWB GUIDE.

NWSB file conventions
We adopted a specific set of conventions for our NWB files. Some of these conventions rely on a
specific set of Frank lab-specific NWB extensions:

e Time:

o Spyglass inherits from the source NWB file either the explicit or implicit
timestamps. NWB files from Frank lab have explicit timestamps for each sample
in Unix time (seconds since 12:00 am January 1%, 1970). This lets users to know
exactly when data were collected. Spyglass is also compatible with other
approaches, however, including implicit timestamping consisting of the start time
and sampling rate.

® FElectrodeTable and ElectrodeGroup:

o ElectrodeGroups are stored in a custom NWB extension that also includes the
name of the targeted brain region for each group.

o The NWB file contains information about the relative locations of each of the
electrodes within each physical device used for data collection. This ensures that
the relative locations of the electrodes are available for spike sorting and
registration to histology.

e Video files

o The relative path to the video files collected along with the recordings are stored

in the NWB file.
e Additional files

o Other files important to recreate the conditions of the experiments can be saved,
depending on the format. For example, the code used for implementing the
behavioral paradigm or reward contingency can be stored as text objects in the
NWE file.

NWSB file ingestion

Although the NWB format serves as a community standard for neurophysiology data and has a
list of best practices, it allows some flexibility in the specification of data within NWB files to
accommodate user preferences. For example, the ElectricalSeries object that stores the
electrophysiology data may have different names depending on the convention chosen by the
investigator, which may complicate programmatic access to the data. To make Spyglass
interoperable with NWB files of varying degrees of NWB-compliance, we have created an option
to supply or override information that is missing in the NWB file but is nevertheless required by
Spyglass via a configuration file that can accompany the NWB file. We provide an example of this
approach in a tutorial (Table 1, 02_Insert Data).

22


https://github.com/LorenFrankLab/spyglass/network/dependencies
https://github.com/LorenFrankLab/trodes_to_nwb
https://neuroconv.readthedocs.io/
https://nwb-guide.readthedocs.io/
https://github.com/LorenFrankLab/ndx-franklab-novela
https://www.nwb.org/best-practices/
https://lorenfranklab.github.io/spyglass/latest/notebooks/02_Insert_Data/#yaml-inserts
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577295; this version posted January 29, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Permission-handling and cautious delete

Spyglass is based on a relational database that is accessible to multiple users. In some cases,
the type of operations that can be applied to individual data entries (i.e., rows of a table) may
need to be restricted to a specified set of users. This is particularly true for operations that are
irreversible or time consuming, such as deleting a row from a table storing analysis results.
However, there is no inherent mechanism within MySQL or DataJoint that allows permission
handling at the level of individual rows of a table. To solve this problem, we have implemented a
cautious delete function, in which the user’s permission to carry out a delete operation is
checked before it is applied. The permission is granted based on team membership within the lab,
reflected in the LabTeam table. Though this is not a formal permission-management system, it
serves to prevent accidental deletions. We note that this system does incur additional overhead,
and while that has not been an issue for us, it is possible that this would become problematic in
use for much larger cross-laboratory collaborations.

Sharing files via Kachery

One way to share the results of Spyglass analysis pipelines is to make the database publicly
available. This gives anyone the permission to access the rows of the tables that make up the
pipelines and inspect the metadata and the parameters associated with each step of the analysis.
But because Spyglass only saves a path to the NWB files containing analysis results within the
tables, external viewers cannot download the data and examine it by default.

To enable controlled external access to the data, we have created a system to share selected
analysis NWB files with a specified group of users via Kachery. We define a set of tables
(KacheryZone and AnalysisNWBfileKachery) where users can associate analysis NWB
files to be shared with a Kachery Zone, making it available to all remote clients who are members
of the zone through cloud storage services like Cloudflare R2 bucket or self-hosted servers. Once
linked, Spyglass automatically requests, downloads, and manages analysis data for remote users
attempting to access shared data through Spyglass tables. This provides a convenient way to
provide access to the Spyglass pipelines and associated data files to collaborators.

Customizing pipelines

To alleviate the challenges associated with database design, we have identified design principles
that have been tested extensively by multiple users in the Frank lab. These are described in the
text and illustrated with examples in Figures 2 and 3. We recommend users adopt these design
elements for building their custom pipelines. We also describe the naming conventions for the
tables defined as Python classes and important methods associated with them (e.g. for multiple
versions of a pipeline) in our Developer Notes available online. Once the pipeline is sufficiently
mature and potentially useful to other scientists, we encourage users to submit their pipelines as
a pull request to our GitHub repository.

Decoding of position from NWB files from multiple laboratories

The Frank lab data is available on the DANDI archive (DANDI:000937). The Buzsaki lab data
was also obtained from DANDI (DANDI:000059/0.230907.2101). For decoding the Frank lab data,
we applied the clusterless decoding pipeline by detecting the amplitude of threshold-crossing
events in the tetrode recordings. For decoding the Buzsaki lab data, we applied a sorted-spikes
decoding pipeline. The code for these decoding pipelines, as well as detailed tutorials describing
them, are available online (Table 1, 40 Extracting Clusterless Waveform Features,
41 Decoding_Clusterless, 42 _Decoding_SortedSpikes). Code to generate Figure 5 can be found
at: https://github.com/LorenFrankLab/spyglass-paper. Briefly, decoding the latent neural position
and extracting the distance between the most likely decoded position and the animal’s position
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used methods described in Denovellis et al. (2021). We used a timestep of 4 ms and a position
bin size of 2 cm with a continuous (6 cm variance Gaussian random walk) and fragmented
(uniform distribution) discrete state. Place intensity receptive fields were estimated using a
Gaussian kernel density estimate with a standard deviation of 6 cm for position and 24 mV for
amplitude space (amplitude space was used for the clusterless analysis only). We calculated the
power of the multiunit firing rate and the decoded distance from the animal by using a multitaper
spectrogram during the pre-cooling and cooling periods. The time resolution was 3 seconds and
the frequency resolution of 2/3 Hz with a single taper. We excluded immobility periods by using a
threshold of 10 cm/s. Power difference was calculated by converting to the Decibel scale and
taking the difference of average power under the cooling and pre-cooling condition. The decoded
speed of theta sequences was calculated by taking the absolute value of the second-order
difference of the decoded distance from the animal (function numpy.gradient) multiplied by the
sampling frequency (250 Hz).

Reference

1. Lopes, G., Bonacchi, N., Frazao, J., Neto, J.P., Atallah, B.V., Soares, S., Moreira, L.,
Matias, S., Itskov, P.M., Correia, P.A., et al. (2015). Bonsai: an event-based framework for
processing and controlling data streams. Front. Neuroinformatics 9.
https://doi.org/10.3389/fninf.2015.00007.

2. Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M., and Mathis, M.W. (2019). Using
DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat Protoc
14, 2152-2176. https://doi.org/10.1038/s41596-019-0176-0.

3. Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M., and Harris, K. (2016). Kilosort:
realtime spike-sorting for extracellular electrophysiology with hundreds of channels. bioRxiv,
061481. https://doi.org/10.1101/061481.

4. Siegle, J.H., Lépez, A.C., Patel, Y.A., Abramov, K., Ohayon, S., and Voigts, J. (2017). Open
Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural
Eng. 74, 045003. https://doi.org/10.1088/1741-2552/aa5eea.

5. Yatsenko, D., Walker, E.Y., and Tolias, A.S. (2018). DataJoint: A Simpler Relational Data
Model. ArXiv180711104 Cs. https://doi.org/10.48550/arXiv.1807.11104.

6. Buccino, A.P., Hurwitz, C.L., Garcia, S., Magland, J., Siegle, J.H., Hurwitz, R., and Hennig,
M.H. (2019). Spikelnterface, a unified framework for spike sorting.
https://doi.org/10.1101/796599.

7. Abe, T., Kinsella, I., Saxena, S., Buchanan, E.K., Couto, J., Briggs, J., Kitt, S.L., Glassman,
R., Zhou, J., Paninski, L., et al. (2022). Neuroscience Cloud Analysis As a Service: An
open-source platform for scalable, reproducible data analysis. Neuron 110, 2771-2789.e7.
https://doi.org/10.1016/j.neuron.2022.06.018.

8. Wilkinson, M.D., Dumontier, M., Aalbersberg, lj.J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.-W., da Silva Santos, L.B., Bourne, P.E., et al. (2016). The FAIR
Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018.
https://doi.org/10.1038/sdata.2016.18.

24


https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577295; this version posted January 29, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

9. Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y., Crusoe, M.R., Peters,
K., and Schober, D. (2020). FAIR Computational Workflows. Data Intell. 2, 108—-121.
https://doi.org/10.1162/dint_a_00033.

10. De Vries, S.E., Siegle, J.H., and Koch, C. (2023). Sharing neurophysiology data from the
Allen Brain Observatory. eLife 12, e85550. https://doi.org/10.7554/eLife.85550.

11. Hider, R., Kleissas, D., Gion, T., Xenes, D., Matelsky, J., Pryor, D., Rodriguez, L., Johnson,
E.C., Gray-Roncal, W., and Wester, B. (2022). The Brain Observatory Storage Service and
Database (BossDB): A Cloud-Native Approach for Petascale Neuroscience Discovery.
Front. Neuroinformatics 16, 828787. https://doi.org/10.3389/fninf.2022.828787.

12. The International Brain Laboratory, Acerbi, L., Aguillon-Rodriguez, V., Ahmadi, M., Amjad,
J., Angelaki, D., Arlandis, J., Ashwood, Z.C., Banga, K., Barrell, H., et al. (2023). A modular
architecture for organizing, processing and sharing neurophysiology data. Nat. Methods 20,
403-407. https://doi.org/10.1038/s41592-022-01742-6.

13. Magland, J., Jun, J.J., Lovero, E., Morley, A.J., Hurwitz, C.L., Buccino, A.P., Garcia, S., and
Barnett, A.H. (2020). SpikeForest, reproducible web-facing ground-truth validation of
automated neural spike sorters. eLife 9, €55167. https://doi.org/10.7554/eLife.55167.

14. Matelsky, J.K., Rodriguez, L.M., Xenes, D., Gion, T., Hider, R., Wester, B.A., and Gray-
Roncal, W. (2021). An Integrated Toolkit for Extensible and Reproducible Neuroscience. In
2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC) (IEEE), pp. 2413-2418.
https://doi.org/10.1109/EMBC46164.2021.9630199.

15. Sanchez, M., Moore, D., Johnson, E.C., Wester, B., Lichtman, J.W., and Gray-Roncal, W.
(2022). Connectomics Annotation Metadata Standardization for Increased Accessibility and
Queryability. Front. Neuroinformatics 16, 828458. https://doi.org/10.3389/fninf.2022.828458.

16. Rubel, O., Tritt, A, Ly, R., Dichter, B.K., Ghosh, S., Niu, L., Baker, P., Soltesz, |., Ng, L.,
Svoboda, K., et al. (2022). The Neurodata Without Borders ecosystem for
neurophysiological data science. elLife 771, e78362. https://doi.org/10.7554/eLife.78362.

17. Teeters, J.L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B., Asari, H., Peron, S.,
Li, N., Peyrache, A., et al. (2015). Neurodata Without Borders: Creating a Common Data
Format for Neurophysiology. Neuron 88, 629-634.
https://doi.org/10.1016/j.neuron.2015.10.025.

18. Yatsenko, D., Reimer, J., Ecker, A.S., Walker, E.Y., Sinz, F., Berens, P., Hoenselaar, A.,
Cotton, R.J., Siapas, A.S., and Tolias, A.S. (2015). DataJoint: managing big scientific data
using MATLAB or Python. https://doi.org/10.1101/031658.

20. Chu, J.P., and Kemere, C.T. (2021). GhostiPy: An Efficient Signal Processing and Spectral
Analysis Toolbox for Large Data. eneuro 8, ENEURO.0202-21.2021.
https://doi.org/10.1523/ENEURO.0202-21.2021.

21. Viejo, G., Levenstein, D., Carrasco, S.S., Mehrotra, D., Mahallati, S., Vite, G.R., Denny, H.,
Sjulson, L., Battaglia, F.P., and Peyrache, A. (2023). Pynapple: a toolbox for data analysis

25


https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577295; this version posted January 29, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

in neuroscience. Preprint at elife, https://doi.org/10.7554/eLife.85786.2
https://doi.org/10.7554/eLife.85786.2.

22. BRAIN Initiative (2019). Notice of Data Sharing Policy for the BRAIN Initiative.

23. Ribel, O., Tritt, A., Dichter, B., Braun, T., Cain, N., Clack, N., Davidson, T.J., Dougherty, M.,
Fillion-Robin, J.-C., Graddis, N., et al. (2019). NWB:N 2.0: An Accessible Data Standard for
Neurophysiology (Neuroscience) https://doi.org/10.1101/523035.

24. BRAIN Initiative Cell Census Network (BICCN), BRAIN Initiative Cell Census Network
(BICCN) Corresponding authors, Callaway, E.M., Dong, H.-W., Ecker, J.R., Hawrylycz, M.J.,
Huang, Z.J., Lein, E.S., Ngai, J., Osten, P, et al. (2021). A multimodal cell census and atlas
of the mammalian primary motor cortex. Nature 598, 86—-102.
https://doi.org/10.1038/s41586-021-03950-0.

25. Hawrylycz, M., Martone, M.E., Ascoli, G.A., Bjaalie, J.G., Dong, H.-W., Ghosh, S.S., Gillis,
J., Hertzano, R., Haynor, D.R., Hof, P.R., et al. (2023). A guide to the BRAIN Initiative Cell
Census Network data ecosystem. PLOS Biol. 271, e3002133.
https://doi.org/10.1371/journal.pbio.3002133.

26. Park, J., Wang, J., Guan, W., Gjesteby, L.A., Pollack, D., Kamentsky, L., Evans, N.B.,
Stirman, J., Gu, X., Zhao, C., et al. (2024). Integrated platform for multiscale molecular
imaging and phenotyping of the human brain. Science 384, eadh9979.
https://doi.org/10.1126/science.adh9979.

27. Yatsenko, D., Walker, E.Y., and Tolias, A.S. (2018). DataJoint: A Simpler Relational Data
Model. ArXiv180711104 Cs.

28. Yatsenko, D., Reimer, J., Ecker, A.S., Walker, E.Y., Sinz, F., Berens, P., Hoenselaar, A.,
Cotton, R.J., Siapas, A.S., and Tolias, A.S. (2015). DataJoint: managing big scientific data
using MATLAB or Python. BioRxiv, 031658.

29. Weinreb, C., Pearl, J.E., Lin, S., Osman, M.A.M., Zhang, L., Annapragada, S., Conlin, E.,
Hoffmann, R., Makowska, S., Gillis, W.F., et al. (2024). Keypoint-MoSeq: parsing behavior
by linking point tracking to pose dynamics. Nat. Methods 27, 1329-1339.
https://doi.org/10.1038/s41592-024-02318-2.

30. Petersen, P.C., and Buzsaki, G. (2020). Cooling of Medial Septum Reveals Theta Phase
Lag Coordination of Hippocampal Cell Assemblies. Neuron 107, 731-744.e3.
https://doi.org/10.1016/j.neuron.2020.05.023.

31. Denovellis, E.L., Gillespie, A.K., Coulter, M.E., Sosa, M., Chung, J.E., Eden, U.T., and
Frank, L.M. (2021). Hippocampal replay of experience at real-world speeds. Elife 10.
https://doi.org/10.7554/eLife.64505.

32. Denovellis, E.L., Frank, L.M., and Eden, U.T. (2019). Characterizing hippocampal replay
using hybrid point process state space models. In 2019 53rd Asilomar Conference on
Signals, Systems, and Computers (IEEE), pp. 245-249.
https://doi.org/10.1109/IEEECONF44664.2019.9048688.

26


https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577295; this version posted January 29, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

33. Skaggs, W.E., and McNaughton, B.L. (1996). Theta phase precession in hippocampal
neuronal populations and the compression of temporal sequences. Hippocampus 6, 149—
172. https://doi.org/10.1002/(SICI)1098-1063(1996)6:2%3C149::AID-HIPO6%3E3.0.CO;2-
K.

34. Foster, D.J., and Wilson, M.A. (2007). Hippocampal theta sequences. Hippocampus 17,
1093-1099. https://doi.org/10.1002/hipo.20345.

35. Committee on Responsible Science, Committee on Science, Engineering, Medicine, and
Public Policy, Policy and Global Affairs, and National Academies of Sciences, Engineering,
and Medicine (2017). Fostering Integrity in Research (National Academies Press)
https://doi.org/10.17226/21896.

36. OECD (2015). Making Open Science a Reality https://doi.org/10.1787/5jrs2f963zs1-en.

37. Reimer, M.L., Bangalore, L., Waxman, S.G., and Tan, A.M. (2021). Core principles for the
implementation of the neurodata without borders data standard. J. Neurosci. Methods 348,
108972. https://doi.org/10.1016/j.jneumeth.2020.108972.

38. Chandravadia, N., Liang, D., Schjetnan, A.G.P., Carlson, A., Faraut, M., Chung, J.M., Reed,
C.M,, Dichter, B., Maoz, U., Kalia, S.K., et al. (2020). A NWB-based dataset and processing
pipeline of human single-neuron activity during a declarative memory task. Sci. Data 7, 78.
https://doi.org/10.1038/s41597-020-0415-9.

39. Yatsenko, D., Nguyen, T., Shen, S., Gunalan, K., Turner, C.A., Guzman, R., Sasaki, M.,
Sitonic, D., Reimer, J., Walker, E.Y., et al. (2021). DataJoint Elements: Data Workflows for
Neurophysiology (Neuroscience) https://doi.org/10.1101/2021.03.30.437358.

40. Halchenko, Y., Meyer, K., Poldrack, B., Solanky, D., Wagner, A., Gors, J., MacFarlane, D.,
Pustina, D., Sochat, V., Ghosh, S., et al. (2021). DataLad: distributed system for joint
management of code, data, and their relationship. J. Open Source Softw. 6, 3262.
https://doi.org/10.21105/joss.03262.

41. Molder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster,
J., Lee, S., Twardziok, S.0O., Kanitz, A., et al. (2021). Sustainable data analysis with
Snakemake. F1000Research 10, 33. https://doi.org/10.12688/f1000research.29032.2.

42. Gutzen, R., De Bonis, G., De Luca, C., Pastorelli, E., Capone, C., Allegra Mascaro, A.L.,
Resta, F., Manasanch, A., Pavone, F.S., Sanchez-Vives, M.V, et al. (2024). A modular and
adaptable analysis pipeline to compare slow cerebral rhythms across heterogeneous
datasets. Cell Rep. Methods 4, 100681. https://doi.org/10.1016/j.crmeth.2023.100681.

43. Pierré, A., Pham, T., Pearl, J., Datta, S.R., Ritt, J.T., and Fleischmann, A. (2024). A
perspective on neuroscience data standardization with Neurodata Without Borders. Preprint
at arXiv, https://doi.org/10.48550/arXiv.2310.04317
https://doi.org/10.48550/arXiv.2310.04317.

27


https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577295; this version posted January 29, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Supplemental Figures

A UCSF Dataset B NYU Dataset
(Clusterless Decoding) (Sorted Spikes Decoding)
NWB File NWB File
DANDI:000937 DANDI:000059
Raw Raw Raw Imported
Position (ephys) Position Spike Sorting
11 [2] ) 1] [31
¥ Y ¥ ¥
Position Spike Sorting Position Spike Sorting
Output Output Output Output
[4] 5] [4] 5]
¥ \
( \
Waveform Sorted Spikes
Features Group
[61 [71
| |
/ \
Position Waveform Position
Group Features Group Group
81 21 81

Clusterless
Decoding
[10]

Sorted Spikes
Decoding
[11]

Decoding

Decoding
Output
[12]

Output
[12]

[ Position processing || Neural (clusterless) [_] Neural (sorted) [ ] Decoding [_] Merge table

Table Reference

Sources Feature Extraction & Grouping

[1] TrodesPosV1 - Position processing [6] UnitWaveformFeatures - Waveform amplitudes
[2) SpikeSortingRecording - Spike detection & sorting [7] SortedSpikesGroup - Group sorted units
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Supplemental Figure 1: Spyglass pipeline workflow for Figure 5A and B. (A) Decoding of the UCSF dataset
started with the NWB file. Data was ingested into the RawPosition and Raw tables, which hold the unprocessed
position data (only LED tracking from the Trodes hardware system) and the electrophysiology traces
respectively. Position data from the two LEDs had outliers removed, interpolated over, and then smoothed and
combined into a single head position via the TrodesPosV1 table (and requiste Selection and Parameter tables
which specified the dataset and the parameters for processing). This was then inserted into the PositionOutput
merge table. The position data was then inserted into the PositionGroup table which in this case is a
passthrough table (but in other cases could hold position data from multiple time periods such as sleep). The
raw electrophysiology data was processed through the Spike Sorting pipeline. Because the data is intended for
“clusterless” decoding, this simply consists of thresholding for high amplitude spikes (above 60 mV). The
UnitWaveformFeatures table then extracts a snippet of waveform data around the time of a spike for each
tetrode. UnitWaveformFeature then calculates the peak amplitude at the time of the spike for each tetrode. This
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amplitude waveform feature (along with the spike time) is used for clusterless decoding in conjunction to the
position of the animal via the ClusterlessDecodingV1 table. The decoding result was then ingested into the
DecodingOutput merge table which the Figure 5A code subsequently fetched from. (B) The NYU dataset was
downloaded from the DANDI archive. The raw position underwent the same processing as Figure 5A. The NYU
dataset did not contain raw electrophysiology signals but did contain spike times from already sorted neurons.
These were ingested into the ImportedSpikeSorting table and then passed to the SpikeSortingOutput table. The
SpikeSortingGroup table allowed us to select only the CA1 cells for decoding. This along with the processed
position data was used for decoding via the SortedSpikesDecodingV1l table and inserted into the
DecodingOutput merge table. This data was used to generate Figure 5B-D.
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