

 1

Spyglass: a framework for reproducible and shareable
neuroscience research

Kyu Hyun Lee1,2,3,⧫, Eric L. Denovellis1,2,3,⧫, Ryan Ly4, Jeremy Magland5, Jeff Soules5, Alison E.
Comrie1,3, Daniel P. Gramling6, Jennifer A. Guidera1,3,7,8, Rhino Nevers1,3, Philip Adenekan1,3,
Chris Brozdowski1,3, Samuel R. Bray1,3, Emily Monroe1, Ji Hyun Bak1, Michael E. Coulter1,3, Xulu
Sun1,2,3, Emrey Broyles1,3, Donghoon Shin1,3,7, Sharon Chiang9, Cristofer Holobetz10, Andrew Tritt4,
Oliver Rübel4, Thinh Nguyen11, Dimitri Yatsenko11, Joshua Chu12, Caleb Kemere12, Samuel
Garcia13, Alessio Buccino14, Loren M. Frank1,2,3,*

1Department of Physiology, University of California, San Francisco
2Howard Hughes Medical Institute, University of California, San Francisco
3Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
4Scientific Data Division, Lawrence Berkeley National Laboratory
5Center for Computational Mathematics, Flatiron Institute
6Graduate Program in Neural and Behavioral Sciences, University of Tübingen
7UCSF-UC Berkeley Graduate Program in Bioengineering, University of California, San Francisco
8Medical Scientist Training Program, University of California, San Francisco
9Department of Neurology, University of California, San Francisco
10Sainsbury Wellcome Centre, University College London
11DataJoint
12Department of Electrical and Computer Engineering, Rice University
13Centre de Recherche en Neuroscience de Lyon, CNRS
14Allen Institute for Brain Science

⧫Equal contribution
*Corresponding author: loren.frank@ucsf.edu

Abstract
Scientific progress depends on reliable and reproducible results. Progress can be accelerated
when data are shared and re-analyzed to address new questions. Current approaches to storing
and analyzing neural data involve bespoke formats and software that make replication and reuse
of data difficult. To address these challenges, we created Spyglass, an open-source data
management and analysis framework written in Python. Spyglass provides reproducible pipelines
for common neuroscience analyses and sharing of raw data, intermediate analyses, and final
results within and across labs. Spyglass uses the Neurodata Without Borders (NWB) standard
and includes pipelines for spectral filtering, spike sorting, pose tracking, and neural decoding.
Spyglass can be extended to apply existing and newly developed pipelines to datasets from
multiple sources. We demonstrate these features in the context of a cross-laboratory replication
by applying advanced state space decoding algorithms to publicly available data.

New users can try out Spyglass on a Jupyter Hub hosted by HHMI and 2i2c:
https://spyglass.hhmi.2i2c.cloud/.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

mailto:loren.frank@ucsf.edu
https://spyglass.hhmi.2i2c.cloud/
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 2

Introduction
A central goal of neuroscience is to understand how the structure and dynamics of neural activity
relate to the internal states of the organism and the external world. This understanding is derived
from analyzing complex, multi-modal datasets. While the community has improved tools and
algorithms for data collection and analysis1–6, extracting consistent and reproducible insights from
data remains a complex and time-consuming task. Often, researchers take years to collect and
organize data, which is then transformed through a complicated series of analyses using custom
scripts. This begins with preprocessing that isolates specific signals from the data, followed by
multiple subsequent analyses that quantify properties of these signals. The outputs of these
analyses are then synthesized across datasets, and when they are consistent upon limited
replication, they are reported in the scientific literature—with the data and analysis scripts
documented to varying degrees.

Ideally, it would be possible for another group to take the same raw datasets, apply the analyses,
and rapidly and reliably reproduce the findings. In practice, this is often exceptionally challenging.
Raw data are seldom shared and metadata critical for understanding the data are often not
included, posing a significant challenge to replication. Essential components of the analysis
pipelines, such as the manual curation of sorted spikes and artifact rejection, are often
irretrievable from the written reports. Similarly, the full set of parameters used for each of the
analyses are not shared or hidden in cryptic analysis scripts. Efforts to reproduce findings are
also hampered by idiosyncratic data and code organization, poor documentation, and missing
vital details, including computational hardware requirements7. In collaborations among multiple
scientists, these problems are exacerbated due to the variability in how each participant carries
out analysis. Consequently, the full validation of a result usually requires repeating the experiment
and reconstructing the analysis from scratch.

These difficulties in replication of analyses incur significant costs in time and effort. A new trainee
might struggle to analyze existing data because they do not understand critical details. A scientist
who downloads the data from a previous study may find that the analyses they wanted to carry
out are impossible because the raw data is not available. Alternatively, raw data may be available,
but the scientist may need intermediate results (e.g. spike waveforms) that are not included.
Similarly, shared code, including visualizations, is most often not standardized or documented,
causing multiple teams to duplicate efforts and implement the same tools.

A system that addresses these challenges therefore should enable:

● compilation of raw data with sufficient metadata for analysis and reuse
● sharing of data and all intermediate analysis results in an accessible format
● reproducible analysis via well-documented, organized, and searchable pipelines
● generation of shareable visualizations to facilitate communication and collaboration
● easy use by scientists with minimal formal training in data management.

Achieving these goals would represent a major step towards meeting the FAIR guiding principles
for findable, accessible, interoperable, and reusable8 data and analysis pipelines9. For example,
it would become possible to easily find publicly available data, analyze it with a standardized
pipeline that keeps track of all the parameters, and generate a visualization to share the results
over the web—a stark contrast to how science is practiced today.

In pursuit of this vision, many organizations, such as the Allen Institute for Brain Science (AIBS),
Johns Hopkins Applied Physics Lab (APL), and the International Brain Laboratory (IBL), have

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 3

made strides by standardizing and sharing data and analyses10–12. However, these efforts have
not fully resolved the issues related to data sharing and reproducible analysis. For instance, a
lack of raw data often precludes reproduction of early stages of the analysis, and many steps of
the processing pipeline (e.g. the criteria used for manual or automatic curation of spike sorting)
that can significantly affect the results13 are omitted. Some of the technologies used, such as
cloud computing services (e.g., CodeOcean) and sophisticated databases and APIs11,14,15, can
be cost prohibitive or require specialized software engineering expertise that is beyond the reach
of most labs. Furthermore, these existing efforts tend to be focused on the needs of specific
projects, data types, and behavioral paradigms, limiting their scope. Thus, while these efforts
mark important advances, there remains a need for user-friendly, integrated solutions that can be
widely adopted across individual labs in the neuroscience community.

To address this need, we developed Spyglass, an open-source neuroscience data management
and analysis framework written in Python. Spyglass builds on widely available community-
developed tools and adopts the Neurodata Without Borders (NWB) as the standardized format16,17.
It uses DataJoint5,18 to manage reproducible analysis pipelines with a relational database and
incorporates novel software tools (e.g. Kachery and Figurl) for sharing data and web-based
visualizations to enable collaboration within and across labs. This includes methods for exporting
and uploading all raw data and intermediate results used to produce a manuscript, which, along
with sharing of code, enables full replication of results. Spyglass is Python-based and thus can
accommodate pipelines that use a wide array of analysis packages that have been developed by
the community, including SpikeInterface19, GhostiPy20, DeepLabCut2, and Pynapple21. Spyglass
also offers ready-to-use pipelines for analyzing behavior and electrophysiological data, including
spectral analysis of local field potential (LFP), spike sorting, video processing to extract position,
and decoding neural data. Spyglass can be extended to support additional pipelines for behavioral,
intracellular, optical physiology data, or other data types that can be stored in the NWB format. In
addition to extensive documentation and tutorials, new users can try out a demo version of
Spyglass hosted on the web by HHMI and 2i2c as a Jupyter Hub instance. Here we describe the
structure of Spyglass and demonstrate its potential by applying the same analysis pipelines to
NWB files from different labs and comparing the results.

Results
Overview of Spyglass
Spyglass is an open-source Python-based software framework for reproducible analysis of
neuroscience data and sharing of the results with collaborators and the broader community
(Figure 1). It is designed to be used by everyone in a laboratory who works with the data, both as
a general-purpose tool to enable the development of new analysis pipelines and a tool that allows
those pipelines and associated results to be frozen and packaged to enable reproducibility. It can
be run locally or in the cloud. Analyzing data with Spyglass begins with raw data and experimental
metadata stored in the NWB format16,22. These NWB files are ingested into a relational database
and processed using DataJoint-enabled pipelines. Existing pipelines are built around common
neuroscience tasks such as spectral filtering, spike sorting, pose tracking, and neural decoding
and each user can extend these pipelines to carry out the specific sets of analyses needed for
their project. DataJoint stores parameters of each analysis and tracks the intermediate analysis
results, which are also stored as NWB files to maintain a shareable standardized data format.
Spyglass enables sharing results and interactive visualization of the data over the web via
Kachery and Figurl. Finally, Spyglass supports exporting specific parts of the database required

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://spyglass.hhmi.2i2c.cloud/
https://spyglass.hhmi.2i2c.cloud/
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 4

to reproduce the results and figures of a manuscript and the upload of the associated raw data
and analysis outputs to a public repository. In the following sections, we provide detailed
descriptions of these components and the design decisions behind them.

The NWB format as data specification
Why NWB?
A typical neuroscience experiment consists of multiple data streams stored in different formats.
Managing such heterogeneous data in a shareable and accessible manner is challenging. A
practical solution is to save the data in a community-supported format like NWB, which is
emerging as a standard for neurophysiology and behavior data16,22. We have chosen NWB as the
data specification in Spyglass for the following reasons:

● The versatility of NWB accommodates various data types and allows metadata to be
saved with the data in a single self-annotated file.

● NWB files are immediately shareable.
● Public data archives like DANDI23–26 accept the NWB format and provide APIs to easily

stream file contents for local analysis.
● Tools developed for NWB files are immediately accessible to users.

Conversion to NWB can be done using software tools developed by the community, such as the
NeuroConv package or NWB GUIDE, a desktop app for converting data to NWB without having
to write code.

Importantly, Spyglass requires all raw data—including neurophysiology, behavioral task,
interaction with the environment— to be in the NWB format prior to any analysis. This ensures
reproducibility of all subsequent analyses by sharing the NWB file containing the raw data and
the analysis pipelines. Furthermore, Spyglass stores virtually all intermediate results from
downstream analysis pipelines in NWB. This ensures that all data associated with the analysis
can be shared and read using the same software tools.

Spyglass-specific NWB requirements
NWB allows some flexibility in the specification of data to accommodate a broad range of
experiments and lab-specific requirements. For example, the name of data types within the NWB
file can differ from those expected by Spyglass. We have fully described the Spyglass-specific
NWB conventions in the documentation website. To further accommodate NWB files from many
sources, we have also developed a system that makes it possible to ingest NWB files into
Spyglass even when they do not adhere to our naming conventions or best practices by including
a configuration yaml file (see Methods and Table 1, 02_Insert_data).

Relational database as analysis pipelines
Why a relational database?
One significant challenge with data analysis is in managing its complexity. Most results derive
from an extended series of steps, including “preprocessing” (e.g. spike sorting for
electrophysiological data, region-of-interest identification for optical physiological data, video
processing for behavioral data, etc.) and downstream analyses. Each step depends on a different
algorithm with a specific set of parameters and generates distinct intermediate data. Tracking
these numerous components is difficult, and understanding how another scientist has managed
them can be even more daunting. This complexity hinders collaboration, verification of results,
and data reuse.

These issues motivated our use of a formal software system: the relational database, a well-
established data structure that uses tables to organize data. To construct an analysis pipeline, we

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://docs.dandiarchive.org/api/rest-api/
https://docs.dandiarchive.org/api/rest-api/
https://nwb-overview.readthedocs.io/en/latest/tools/analysis_tools_home.html
https://github.com/catalystneuro/neuroconv
https://nwb-guide.readthedocs.io/
https://lorenfranklab.github.io/spyglass/latest/ForDevelopers/UsingNWB/
https://lorenfranklab.github.io/spyglass/latest/ForDevelopers/UsingNWB/
https://lorenfranklab.github.io/spyglass/latest/notebooks/02_Insert_Data/
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 5

use DataJoint27,28 to define a series of database tables with a dependency structure. Associated
with the database tables is code that carries out an analysis using a specific set of parameters
and a specific part of the data. This code then stores the results as a new row in the table with a
pointer to the results stored on disk as an NWB file. Creating a new table row is referred to as
“populating” the table. Thus, data analysis becomes a matter of populating and interacting with
the database. This style of data analysis offers many advantages:

● It lowers effort for users seeking to apply the same analysis to multiple datasets, as they
only need to specify the data and parameters for computation ("what") independent of the
execution details ("how").

● It provides a structure to organize and systematize the analysis parameters, data, and
outputs into different tables. This contrasts with user-generated configuration files where
each user could adopt their own idiosyncratic approach to specifying parameters and data.

● It enables easy access to multiple datasets via queries (e.g. to find all datasets with
recordings from a particular brain region or that used a particular behavioral paradigm).

● It is concurrently accessible to multiple users.
Because DataJoint binds the code for running the computation with the table that will store the
result, populating the same table will execute the same code. DataJoint also provides additional
features for reproducible data analysis, such as maintaining data integrity of the database (e.g.
deleting a table entry causes cascading deletion of dependent entries in downstream tables) and
the files containing the results (e.g. by checksum verification).

How does Spyglass differ from DataJoint?
While Spyglass is based on DataJoint, it offers many useful features that DataJoint lacks. These
include:

• A tight integration with the NWB format: When the NWB file is ingested into Spyglass,
pointers to the data types appear as rows in a set of predefined tables. These serve as
the starting point for analyses and an interface for the users to access the raw data within
Spyglass. We provide the mapping between NWB data types and corresponding Spyglass
tables in the documentation website.

• Extending table types: Spyglass provides a mix-in class, which allows different tables to
inherit shared behaviors without duplicating code, for defining table types that are not
included in DataJoint or extending the function of existing table types. This is used to
implement many key table types such as Merge tables, which allow multiple upstream
pipelines to feed into the same downstream pipeline. This example is illustrated in the
description of the spike sorting pipeline below.

• Permission-based delete: Spyglass enables the deletion of individual rows in a table
based on pre-defined user permission. This is not naturally supported by MySQL, the
underlying relational database management system used by DataJoint.

• Improved searching based on restrictions on non-primary keys: Spyglass allows the users
to conveniently track the provenance of a particular row in a downstream table across
multiple upstream tables with only partial information.

• Export system for publishing: Spyglass provides a convenient way to export only the part
of the database used for generating results and figures for a publication. This is done by
caching the information about tables that are accessed when generating figures.

• The inclusion of various helper functions, which are detailed on the Spyglass
documentation website.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://lorenfranklab.github.io/spyglass/latest/ForDevelopers/UsingNWB/#object-table-mappings
https://lorenfranklab.github.io/spyglass/latest/ForDevelopers/UsingNWB/#object-table-mappings
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 6

Setup and hardware requirement
Spyglass can be installed in any setting that can support Python via the Python Package Index
(PyPI). We provide detailed installation instructions on the documentation website, including a
complete list of software requirements. In addition to the Python package, using Spyglass requires
running a relational database (currently MySQL backend is supported). In our laboratory, we run
this from a Docker container provided by DataJoint on a lab-wide server and grant access to it to
members of the lab and other collaborators. This local configuration is recommended for use
cases involving ~ 10 users. For a larger scale deployment, one could also run the Spyglass
database in the cloud using services such as AWS.

Practical use cases and extensions
Spyglass comes with many pre-defined pipelines that implement common analysis tasks for
electrophysiological and behavioral data. For users interested in using these pipelines, they can
do so as soon as they ingest their NWB files into the database. Spyglass can also serve as a
jumping off point for exploratory data analysis. For example, the user can conveniently read
specific data types from the NWB file by first ingesting it into Spyglass and accessing database
tables with Spyglass functions (e.g. fetch_nwb) or load those objects in a format compatible
with Pynapple21 (fetch_pynapple). If they need to pre-process the data first, they can do so by
running the relevant pipelines. Once the user has decided to formalize a particular analysis that
is not yet supported by Spyglass, they can extend Spyglass and create user-generated custom
pipelines. These could include data types from NWB files not currently supported by Spyglass
(e.g. photometry, optical physiology, etc.) or build on existing Spyglass pipelines. Because the
raw data and intermediate results are in NWB format, the custom pipelines can take advantage
of analysis software packages within the NWB ecosystem.

Figure	1:	Overview	of	Spyglass.	The	raw	data—consisting	of	information	about	the	animal,	the	behavioral	
task,	 the	neurophysiological	data,	etc.—is	converted	to	 the	NWB	format	(yellow	box)	and	 ingested	 into	the	
Spyglass	database.	The	pipelines	(dark	green	box)	operate	on	pointers	to	specific	data	objects	in	the	NWB	file	
(tan	box).	 The	 raw	and	processed	data	 are	 then	 shared	with	 the	 community	 by	depositing	 them	 to	public	
archives	like	DANDI	or	shared	with	collaborators	via	Kachery.	Visualizations	of	key	analysis	steps	can	be	shared	
over	the	web	via	Figurl.	Code	is	shared	by	hosting	the	codebase	for	Spyglass	and	project-specific	pipelines	on	
online	 repositories	 like	GitHub.	Finally,	 the	populated	database	may	be	 shared	by	exporting	 it	 to	 a	Docker	
container.		

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 7

Organization of analysis pipelines
Here we delve deeper into the design and organization of analysis pipelines in Spyglass. As
mentioned previously, the analysis pipelines are defined as a set of tables in the relational
database. Specifically, Spyglass uses DataJoint syntax to define tables as Python classes (see
online documentation on Custom Pipelines and this video for examples). The code for executing
the analysis is associated with these tables as class methods, enabling a tight integration of the
database structure with the code for populating it. We refer the reader to the DataJoint
documentation for more details on specific commands to interact with the database.

When an NWB file is first ingested into Spyglass, pointers to the data types in the NWB file are
stored in database tables of the Common module. Each Common table corresponds to a data object
in the NWB file and serves as an interface to retrieve it with simple function calls (fetch_nwb).
The retrieval is “lazy” in the sense that only a specific part of the data is loaded for analysis instead
of the entire NWB file.

An analysis pipeline consists of sets of tables downstream of the Common tables. In each step in
the analysis, the user populates one of four table types (Figure 2A):

● Data tables contain pointers to data objects in either the original NWB file or ones
generated by an upstream analysis.

● Parameter tables contain a list of the parameters needed to fully specify the desired
analysis.

● Selection tables allow users to select and pair a data entry and a parameter entry,
defining the input to the Compute table.

● Compute tables execute the computations to carry out the analysis using the Data and
Parameters specified in the Selection table entry. These results are then stored and
can serve as Data for downstream analysis.

This design has multiple features that we have found to be beneficial. First, Parameter tables
store the full set of parameters needed to specify a given analysis. For example, a Parameter
table entry for a firing rate analysis of a single neuron might specify the bin size and smoothing to
be used for that analysis. Multiple such entries can be defined, allowing a user to select the most
appropriate one for the question being addressed. Second, because Selection tables specify
which Parameter table entry was used for a given analysis on the associated Data table entry,
they provide the key information needed to know which parameters were used to generate the
entry in the downstream Compute table. Third, it is simple to associate a given Data table entry
with multiple Parameter table entries and then re-run the analysis on those pairs. This enables
a user to understand how their choice of parameters impacts their results, something that is
otherwise difficult to manage and track.

Spyglass includes pipelines for a diverse range of analysis tasks in systems neuroscience, such
as the analysis of LFP, spike sorting, video and position processing, and fitting state-space
models for decoding neural data. Tutorials for all pipelines are available on the Spyglass
documentation website (Table 1). Our goal was take advantage of other open source packages,
and we have therefore integrated support for Pynapple21, a general purpose neural data analysis
package. We also built our pipelines to take advantage of other community-developed, open-
source packages, like GhostiPy20, SpikeInterface19, DeepLabCut2 and Moseq29. These pipelines
store a complete record of the analysis and simplify the application of these tools. Furthermore,
multiple versions of the pipelines can co-exist to apply different algorithms to a single data set,

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://github.com/LorenFrankLab/spyglass/blob/master/docs/src/ForDevelopers/CustomPipelines.md
https://youtu.be/-2R7HLmmyqs
https://lorenfranklab.github.io/spyglass/latest/
https://lorenfranklab.github.io/spyglass/latest/
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 8

making it easy to probe the robustness of the results (see Merge motif below). Finally, the
pipelines are modular as long as they process different kinds of data stored in the NWB files.

Next we provide a detailed description about the implementation of three common analysis tasks
in Spyglass pipelines: (i) filtering broadband extracellular voltage traces to extract the lower-
frequency LFP bands; (ii) detecting discrete events (e.g. sharp-wave ripples, a hippocampal event
marking the time of bursts of population activity) in the LFP signals; and (iii) spike sorting and
curation.

Example 1: LFP extraction (Figure 2B)
To extract the LFP signal (below 400 Hz), we use the pipeline shown in Figure 2B. First, we select
a row from the Raw table, a Data table that points to an ElectricalSeries object in the NWB
file. We then specify the parameters of the analysis in the Parameter tables: the list of channels
for which LFP should be extracted (LFPElectrodeGroup), the time interval for the LFP
extraction (IntervalList), and the coefficients for the filter that will be used on the data
(FIRFilterParameters). These parameters are associated with the entry in the Raw table by
defining a Python dictionary object that specifies the Data and Parameter entries and inserting
it into a Selection table (LFPSelection) by calling the LFPSelection.insert1 method
(Figure 2B). Finally, we apply the filter to the selected data over the selected interval using the
LFP table (a Compute table) by calling the LFP.populate method. The resulting filtered data
is saved to disk in the NWB format, and the object ID associated with the LFP object within the
NWB file is also stored in the LFP table for easy retrieval. Thus, the corresponding entry in the
LFP table contains all the details about the data and the parameters, allowing a user to fully track
the provenance of the output.

Example 2: Sharp-wave ripple detection (Figure 2C)
Once the LFP extraction is completed, we can build on the results by applying another filter to
isolate a specific frequency band and identifying sharp-wave ripples (SWRs), a prominent LFP
event within hippocampal data. This pipeline is illustrated in Figure 2C. It applies two additional
steps to a row in the LFP table: another band-pass filter to isolate the 150-250 Hz band and a
subsequent detection of SWR events. Each step uses the same basic scheme shown in Figure
2A. These include defining a specific band-pass filter in the Parameter tables; selecting a time
interval for the bandpass filtering; and adding an entry to LFPBandSelection table that binds
both the filter parameters and the time interval with a row in the LFP table. A call to
LFPBand.populate generates an NWB file containing the ripple-band data and an entry in the
LFPBand table with information about which data and parameters were used. Next, the user
selects an entry in RippleParameters to define the parameters for detecting the ripple events
(e.g. threshold over the spectral power) and associates it with filtered data in LFPBand in the
RippleLFPSelection table. Finally, the RippleTimes table is populated (by
RippleTimes.populate), which identifies the start and end times of each ripple event and
saves these to a new NWB file.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 9

	
Figure	2:	Analysis	pipelines	in	Spyglass.	(A)	A	general	structure	for	a	Spyglass	pipeline.	(B)	Example	1:	LFP	
extraction.	Note	the	correspondence	to	the	pipeline	structure	in	(A)	as	shown	by	the	color	scheme.	The	trace	
next	to	the	Raw	table	is	raw	voltage	data	sampled	at	30	kHz	and	is	represented	by	a	row	in	the	Raw	table.	This,	
along	with	parameters	from	LFPElectrodeGroup,	IntervalList,	and	FIRFilterParameters	tables	
(red	arrow),	are	defined	in	a	Python	dictionary	and	the	LFPSelection.insert()	call	is	used	to	insert	the	

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 10

reference	to	the	raw	data	and	the	now	associated	parameters	into	LFPSelection	table.	When	the	populate	
method	is	called	on	the	LFP	table,	the	filtering	is	initiated	and	the	output	is	inserted	into	the	database.	The	
results	(e.g.	the	trace	above	LFP	table)	are	stored	in	NWB	format	and	its	object	ID	within	the	file	is	also	stored	
as	a	row	in	LFP	table,	enabling	easy	retrieval.	(C)	Example	2:	Sharp-wave	ripple	(SWR)	detection.	Note	that	the	
key	specification,	insert,	and	populate	calls	are	omitted	for	simplicity.	This	pipeline	is	downstream	of	the	LFP	
extraction	pipeline	and	consists	of	two	steps:	(i)	further	extraction	of	a	frequency	band	for	SWR	(LFPBand);	
and	(ii)	detection	of	SWR	events	in	that	band	(RippleTimes).	Note	that	the	output	of	LFP	extraction	serves	
as	the	input	data	for	the	SWR	detection	pipeline	and	can	thus	be	thought	of	as	both	Compute	and	Data	types.	
As	in	(B),	for	each	step,	the	results	are	saved	in	NWB	files	and	the	object	ID	of	the	analysis	result	within	the	
NWB	file	are	stored	as	rows	in	the	corresponding	Compute	tables.	The	trace	above	the	RippleTimes	table	is	
the	SWR-filtered	LFP	around	the	time	of	a	single	SWR	event	(pink	shade).	In	each	table,	columns	in	bold	are	the	
primary	keys.	Arrows	depict	dependency	structure	within	the	pipeline.	

Example 3: Spike sorting and curation (Figure 3)
The spike sorting pipeline (Figure 3) combines the principles of analysis pipeline design we
outlined previously with additional design features. This pipeline uses SpikeInterface19 to perform
the operations critical for spike sorting, but also tracks all of the parameters used and provides a
system for tracking multiple sorting curations. The pipeline includes the following steps: (1)
preprocess the recording (e.g. filter and whiten to remove noise); (2) apply spike sorting algorithm
(e.g. MountainSort4, Kilosort3, etc.); (3) curate the results (e.g. either manually or automatically
by computing quality metrics); and (4) consolidate the output with other sources of sorted units
(e.g. those already present in the NWB file) for downstream analysis. Each of these steps follow
the general design shown in Figure 2A. We also detail additional features that have not been
discussed previously.

Global Parameter tables (e.g. IntervalList)
An important object in any analysis is the time interval during which the data were collected or to
which analysis procedures should be applied. To avoid having a separate table for time intervals
in every pipeline, we store them in the IntervalList table of the Common module for all
pipelines. For example, in the spike sorting pipeline (Figure 3), IntervalList provides a time
interval for both preprocessing the recording (SpikeSortingRecordingSelection) and
running a spike sorting algorithm (SpikeSortingSelection). In addition, the intervals during
which artifacts (i.e. high-amplitude voltage transients from behavioral events such as licking)
occur is identified and fed back into IntervalList (dashed arrow in Figure 3).

“Cyclic iteration” motif for curation
Certain pipelines, such as curating the output of spike sorting, may need to be run multiple times
on the same data. For example, one might first compute quality metrics to identify noise clusters
and potential candidates for merging over-clustered units (Automatic); then inspect, merge, and
apply curation labels to the result with an external viewer (Manual); and finally, compute a final
set of metrics to describe the quality of each unit (Automatic). This results in a sequence of
curation steps: Automatic, Manual, Automatic. Depending on the data, the user may choose a
different curation sequence, and the order and length of these sequences might change as new
algorithms and metrics are developed. This presents a challenge in modeling the pipeline within
the relational database.

We therefore developed a specific design motif to enable this iterative curation with a finite number
of tables (Figure 3). First, a given row of the CurationV1 table (the output of the spike sorting
step) is taken through automatic or manual curation steps downstream. Upon completion, the
spike sorting object may enter this curation pipeline again as a new row in the CurationV1 table.
Importantly, the new row has information about previous curation from which it descended. This

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 11

allows the user to track each round of curation while applying as many steps as desired. It can
also be easily extended; if new automatic curation algorithms are developed in the future, it can
simply be added downstream to the CurationV1 table, enabling application of the latest
methods to previously collected data.

“Merge” motif for consolidating data streams and versioning pipelines
A different challenge arises when the user wants to feed multiple streams of data of the same
type into a single downstream pipeline. For example, once curation is completed, the spike sorting
is saved in CurationV1. But some NWB files may already contain curated spike sorting (as a
row in the table ImportedSpikeSorting), and one may want to apply the same downstream
pipeline to both data sources to compare the results. In yet another case, the other data stream
could be a different version of the spike sorting pipeline (e.g. CurationV2) that uses different
algorithms but produces output of the same type. Adding the same downstream pipeline to each
of these separately would result in code redundancy and database bloat. Simply having these
converge onto a single downstream table is not desirable either, as it will require modifying an
existing table to add new columns every time a new version or new data stream is added.

To solve this problem, we have designed a “merge” table type (Figure 3). Here Parts tables (a
table type within DataJoint tightly associated with a parent table) are used to implement the
merging of multiple data streams onto a single table. The downstream pipeline then gets data
from this table without any duplication. More details for the implementation and helper functions
to maintain data integrity can be found in the tutorial notebook (Table 1, 04_Merge_Tables).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://lorenfranklab.github.io/spyglass/latest/notebooks/04_Merge_Tables/
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 12

	
Figure	3:	Spike	sorting	pipeline.	The	Spyglass	spike	sorting	pipeline	consists	of	seven	components	(large	gray	
boxes),	all	of	which	take	advantage	of	the	SpikeInterface	library:	preprocess	recording	(A);	detect	artifacts	to	
omit	from	sorting	(B);	apply	spike	sorting	algorithm	(C);	curate	spike	sorting	(D),	either	with	quality	metrics	
(E)	or	manually	(F);	and	merge	with	other	sources	of	spike	sorting	for	downstream	processing	(G).	Solid	arrows	
describe	 dependency	 relationships	 and	 dashed	 arrows	 indicate	 that	 the	 data	 is	 re-inserted	 upstream	 for	
iterative	 processing.	 Note	 the	 two	 design	motifs	 (see	 text):	 “cyclic	 iteration”	 for	 curation	 and	 “merge”	 for	
consolidating	data	streams.	Color	scheme	is	the	same	as	Figure	2,	except	for	light	purple	(cyclic	iteration	table),	
orange	(merge	table),	and	peach	(Parts	table	of	the	merge	table).		

Sharing Data, Analysis, and Visualization
Complete sharing of data and analysis at the end of projects
A key goal of our system is to simplify sharing data and analyses when results are ready to be
published. Because all raw and intermediate data are in the NWB format, they can be directly
deposited to DANDI16,24–26, a NIH-supported public archive for neuroscience data. Sharing the
analysis code is also easy: simply share the codebase for the analysis pipelines (i.e. Spyglass
plus any project-specific pipelines) and the scripts used to populate the database. Others can
then download the raw data from DANDI, set up the database with Spyglass, and recreate all
results locally by executing the population script. Alternatively, users may want to share the
Spyglass database in its populated state so that the community can access it directly without
going through the setup procedures or re-running time-consuming analysis steps. This can be
done by (i) hosting the database on the cloud and granting access to users outside the lab; or (ii)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 13

exporting and sharing parts of the database that were used by the project. Spyglass facilitates
the second option by providing functions that automatically log the table entries and NWB files
used for creating figures of a manuscript in a Python environment (Table 1, 05_Export). The
dependencies of these entries are traced through the database to compile the complete set of
raw, intermediate, and plotted NWB files and their corresponding database entries. These are
stored in the Export table, which also generates a bash script to create SQL dumps of the
identified database entries.

To upload these files to DANDI, users must first register a new dandiset for their project and
record their API and dandiset ID. With this information, they can then use the method
DandiPath.compile_dandiset() to automatically validate, organize, and upload all project
files to the DANDI archive. Additionally, this process stores the archive information for each file in
the DandiPath table, allowing fetch_nwb to automatically stream data from the DANDI cloud
storage when not available locally.

To create a sharable Docker image of the project, we provide a template repository called
spyglass-export-docker. Users first download a local copy of this repo and copy the SQL dump
file, environment yaml, and figure-generating notebooks generated during Spyglass export into
the appropriate folders. Running the provided docker-compose scripts then generates two
linked Docker containers: one running the reconstructed Spyglass SQL database, and a second
connected to this database and running a Jupyter Hub—with a python environment matching that
used when generating the figures. These can be readily shared with new users to provide them
immediate access to all steps of the analysis process and the corresponding data through DANDI
streaming

Controlled sharing for ongoing projects
For ongoing projects, users may want to limit the sharing of the analyses to their collaborators.
This requires controlling access to the database and the underlying NWB files that contain the
raw or intermediate data. This is straightforward to manage in Spyglass. DataJoint handles
access to the database natively by requiring a username and a password. Managing access to
the NWB files is handled by Kachery, a content-addressed sharing tool for scientific data (Figure
4A). Specifically, the user selects the NWB files to be shared by inserting pointers to them into
NwbKachery and AnalysisNwbKachery tables within Spyglass. When the collaborator
attempts to access these files, Kachery first looks for them in their local system. If not found, the
corresponding files are automatically uploaded from the user’s system to a cloud storage server
and then downloaded to the collaborator’s computer. This feature is detailed in a tutorial (Table
1, 03_Data_Sync). Critically, the downloaded files are never modified locally within Spyglass, and
attempt to access a modified file would result in a DataJoint error. This ensures that each user is
working on the same underlying data even if they are at different sites. More generally, Kachery
offers advantages over other file hosting services (e.g. Dropbox and Google Drive) or alternative
architectures (e.g. IBL data architecture) by not requiring a central location to track available files
and providing a user-friendly Python API. We point interested readers to the Kachery GitHub repo
for further descriptions.

Sharing visualizations
Spyglass enables users to create and share interactive visualizations of final and intermediate
analysis results through the Figurl package. These visualizations facilitate understanding complex,
multi-modal neuroscience datasets by allowing users to (i) quickly compare different stages of
processed data to spot issues with their data and (ii) align multimodal information sources to get

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://lorenfranklab.github.io/spyglass/latest/notebooks/05_Export/
https://docs.dandiarchive.org/user-guide-sharing/creating-dandiset/
https://github.com/LorenFrankLab/spyglass-export-docker
https://github.com/flatironinstitute/kachery-cloud
https://lorenfranklab.github.io/spyglass/latest/notebooks/03_Data_Sync/
https://github.com/magland/kachery
https://github.com/flatironinstitute/figurl
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 14

a more holistic view of their dataset. Figurl is integrated within Spyglass as dedicated tables
attached to specific pipelines such as spike sorting (Figure 4B) and neural decoding (Figure 5).
Populating these tables generates a URL to web-based visualizations for exploring complex,
multi-dimensional time series across multiple views whose time axes can be linked. Sharing them
is also easy, as the URL can be accessed from any browser without the need for local software
installation or specialized hardware. This allows collaborators anywhere in the world to easily
access and explore the data.

Table	 1:	 Tutorials	 included	 in	 Spyglass	 and	 their	 descriptions.	 	 All	 available	 from	
https://github.com/LorenFrankLab/spyglass.

Pipeline Tutorial notebook Description

Data ingestion

00_Setup Setting up Spyglass

01_Concepts Basic concepts of using on Spyglass

02_Insert_data How to insert data into Spyglass

03_Data_Sync How to share data with collaborators who have access
to the database

04_Merge_Tables A new table type unique to Spyglass that allows the user
to use different versions of pipelines on the same data

05_Export How to export parts of the database used to generate
figures and upload corresponding NWB files to DANDI

Spike sorting

10_Spike_SortingV0 Detect spikes from electrophysiological recording and
separate them to individual neurons (example of multiple
versions of the same pipeline) 10_Spike_SortingV1

11_Spike_Sorting_Analysis Curate the results of spike sorting manually for V0

12_Burst_Merge_Curation Automatically merge units separated due to bursting

Position processing

20_Position_Trodes.ipynb Process information about animal’s position from video
recording of the behavior using Trodes

21_DLC Detect keypoint markers with DeepLabCut

22_DLC_Loop Detect keypoint markers with DeepLabCut over multiple
epochs

23_Linearization Convert 2D position to 1D position using track geometry

LFP analysis

30_LFP Filter broadband electrophysiology data to isolate low-
frequency LFP bands

31_Theta Filter LFP to isolate the theta band

32_Ripple_Detection Detect sharp-wave ripples from filtered LFP

Decoding

40_Extracting_Clusterless_Wave
form_Features Extract waveform features for clusterless decoding

41_Decoding_Clusterless Apply the decoding algorithm using clusterless waveform
features

42_Decoding_SortedSpikes Apply the decoding algorithm from spikes of sorted and
curated units

MUA 50_MUA_Detection Detect times of high multiunit firing
MoSeq 60_MoSeq Tutorial to using MoSeq pipeline

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://github.com/LorenFrankLab/spyglass
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 15

Figure	4:	Sharing	data	and	visualizations.	(A)	Kachery	provides	a	convenient	Python	API	to	share	data	over	
a	content-addressable	cloud	storage	network.	To	retrieve	data	from	a	collaborator’s	Spyglass	database,	one	can	
make	a	simple	 function	call	 (fetch_nwb)	 that	pulls	 the	data	 from	a	node	 in	the	Kachery	Zone	to	the	 local	
machine.	(B)	Example	of	a	Figurl	interactive	figure	for	visualizing	and	applying	curation	labels	to	spike	sorting	
over	the	web.

Demonstration of generalizability: neural decoding of position in multiple data sets
A major goal of Spyglass is to facilitate the analysis of data across multiple datasets that may
come from different laboratories. To illustrate this, we ingested and analyzed two NWB files
containing single-neuron recordings from rat hippocampus, one from our laboratory and another
from the Buzsáki laboratory at NYU30. Specifically, we applied a switching state space model 31,32
to decode the animal’s position from spikes and infer periods of different types of non-local
representations (such as replay and theta sequences), during which the decoded position
deviates from the animal’s true position. This is a complex analysis that involves integrating
multiple data sources, including position and neural spiking activity, and applying an advanced
statistical model with many user-defined parameters. The decoding pipeline in Spyglass enables
the user to carry out every step of this analysis, including “preprocessing” of the data (e.g. linearize

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://figurl.org/f?v=gs://figurl/spikesortingview-10&d=sha1://1fa0b4a1663323b49b6f1934d79ca9f67779bda8&s=%7B%22initialSortingCuration%22:%22sha1://51b950cad7d97f26aaf807ba234e4b41ffade4ef%22,%22sortingCuration%22:%22gh://LorenFrankLab/sorting-curations/main/mcoulter/molly20220316_.nwb_r1_r2/15/curation.json%22%7D&label=molly20220316_.nwb_r1_r2_15_franklab_tetrode_hippocampus%20molly20220316_.nwb_r1_r2_15_franklab_tetrode_hippocampus_13f7a6a2_spikesorting
https://figurl.org/f?v=gs://figurl/spikesortingview-10&d=sha1://1fa0b4a1663323b49b6f1934d79ca9f67779bda8&s=%7B%22initialSortingCuration%22:%22sha1://51b950cad7d97f26aaf807ba234e4b41ffade4ef%22,%22sortingCuration%22:%22gh://LorenFrankLab/sorting-curations/main/mcoulter/molly20220316_.nwb_r1_r2/15/curation.json%22%7D&label=molly20220316_.nwb_r1_r2_15_franklab_tetrode_hippocampus%20molly20220316_.nwb_r1_r2_15_franklab_tetrode_hippocampus_13f7a6a2_spikesorting
https://figurl.org/f?v=gs://figurl/spikesortingview-10&d=sha1://1fa0b4a1663323b49b6f1934d79ca9f67779bda8&s=%7B%22initialSortingCuration%22:%22sha1://51b950cad7d97f26aaf807ba234e4b41ffade4ef%22,%22sortingCuration%22:%22gh://LorenFrankLab/sorting-curations/main/mcoulter/molly20220316_.nwb_r1_r2/15/curation.json%22%7D&label=molly20220316_.nwb_r1_r2_15_franklab_tetrode_hippocampus%20molly20220316_.nwb_r1_r2_15_franklab_tetrode_hippocampus_13f7a6a2_spikesorting
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 16

the 2D position of the animal, perform spike sorting, or import units that have already been sorted)
and fitting of the model (see Supplementary Figure 1 for a visualization of the steps involved).
After running the decoding pipeline, we visualize the results on the browser via Figurl and
generate plots to further reproduce the reported results.

The UCSF dataset contains large-scale hippocampal recordings in a rat performing a foraging
task in a maze with six reward sites and dynamic reward probabilities (Figure 5A, top panel).
Applying the decoding pipeline to these data yields a probability distribution over space in 2 ms
bins that describes our estimate of the “mental” position of the animal. This mental position tracks
the animal as it traverses the maze (Figure 5A, 2nd panel from top; see interactive visualization
via Figurl) but also shows interesting systematic deviations from actual position. Computing the
distance between the peak of the probability distribution and the actual location reveals
characteristic patterns of such deviations from the actual position (Figure 5A, 3rd panel from top)
in which the decoded position sweeps ahead of the actual position and then back during
movement bouts. This pattern recurs at ~8 Hz, reflecting the well-known “theta sequences” seen
in the hippocampus33,34.

We then applied this same pipeline to the NYU dataset, where rats performed a spatial alternation
task on a maze with a figure-8 topology (Figure 5B, top panel). As expected, we could identify
theta sequences in these data as well, highlighting the robustness of these phenomena (Figure
5B, 2nd and 3rd panels from top, see interactive visualization via Figurl). Moreover, the NYU
dataset includes a specific manipulation in which the medial septum, a brain region critical for
pacing the theta rhythm, was cooled, reducing the theta frequency from 8-10 Hz to 5-8 Hz. The
authors originally carried out several detailed analyses to demonstrate that cooling reduced theta
frequency and impaired behavior without changing the overall spatial tuning of single neurons or
their tendency to fire sequentially within theta cycles. However, the authors did not apply state-
space decoding methods, and did not characterize the effects of cooling on the decoded
representation of space in relation to the animal’s actual position. We therefore applied our
decoding pipeline to the cooling trials (“cooling on”) and the control trials preceding it (“pre-
cooling”), just after it (“cooling off”), and the recovery trials 10-12 minutes after cooling (“post-
cooling”).

The results of these analyses were consistent with the published findings and provided new
characterizations that could serve as the foundation for additional discoveries. We first estimated
the multiunit firing rate as a proxy for the theta LFP and characterized its power spectrum before
and after cooling. As expected, cooling decreased the power above ~8 Hz and increased the
power below ~8 Hz, consistent with the slowing of theta LFP shown in the original manuscript
(Figure 5C, top panel). We then applied the same analysis described above to the distance
between the decoded and the actual position during movement (“decode distance”), expecting
cooling to have a similar effect on its power spectrum. Interestingly, here cooling led to a decrease
in power at essentially all frequencies (Figure 5C, bottom panel). Consistent with this result, the
decode distance decreased from the pre-cooling to cooling period, with a partial recovery during
the post-cooling period (Figure 5D, top panel). Similarly, the average speed at which the decoded
position moved ahead and behind the animal was also reduced during cooling and showed a
partial recovery after the cooling period (Figure 5D, bottom panel). These results indicate that
cooling reduces both the extent and the rate at which the decoded position deviates from the
actual position. This was unexpected given that cooling had no effect on the average spatial tuning
of these cells30. It also raises an interesting hypothesis: hippocampal representations of distant
locations may be exquisitely tuned to the specific frequency of the rhythmic input from medial
septum, such that slowing the rhythm down by just 2-3 Hz significantly limits their expression.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://figurl.org/f?v=gs://figurl/spikesortingview-10&d=sha1://3990d47cfcfbe426fae203659479e55d7b08980f&label=j1620210710_clusterless_decode&zone=franklab.default
https://figurl.org/f?v=gs://figurl/spikesortingview-10&d=sha1://ec5e8c82dd0d3eb000fc00f54a61a622e904766c&label=MS2220180629_sorted_decode&zone=franklab.default
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 17

More broadly, these findings illustrate the power of our framework that enables both replication of
results across datasets and the re-analysis of previously collected data.

Figure	 5:	 Applying	 decoding	 pipelines	 to	multiple	 data	 sets	 from	different	 labs	 (A)	 Decoding	 neural	
position	from	rat	hippocampal	CA1	using	a	clusterless	state	space	model	(UCSF	dataset).	In	the	top	panel,	grey	
lines	represent	positions	the	rat	has	occupied	in	the	spatial	environment.	Overlayed	lines	in	color	are	the	track	
segments	used	to	linearize	position	for	decoding.	Filled	circles	represent	reward	wells.	The	second	panel	from	
the	top	shows	the	posterior	probability	of	the	latent	neural	position	over	time.	The	magenta	line	represents	the	
animal’s	actual	position.	The	vertical	lines	on	the	right	represent	the	linearized	track	segments	with	the	colors	
corresponding	to	the	top	panel.	The	third	panel	from	the	top	shows	the	distance	of	the	most	likely	decoded	
position	from	the	animal’s	actual	position	and	sign	indicates	the	direction	relative	to	the	animal’s	head	position.	
The	fourth	panel	from	the	top	is	the	animal’s	speed.	The	final	panel	is	the	multiunit	firing	rate.		(B)	Decoding	
from	rat	hippocampal	CA1	using	existing	spike	sorted	units	(NYU	dataset).	Conventions	are	the	same	as	in	A.	
Filled	circle	in	the	linearization	represents	the	reward	zone	rather	than	the	reward	well.	(C)	Decoding	analysis	
of	the	NYU	dataset.	The	top	panel	shows	the	power	difference	of	the	multiunit	firing	rate	between	the	medial	
septal	cooling	period	and	the	pre-cooling	period	 in	 the	5-13	Hz	range.	The	power	at	8-10	Hz	 is	attenuated	
during	cooling	while	the	power	at	5-8	Hz	is	enhanced,	showing	a	slowing	of	the	theta	rhythm	during	cooling.	
The	bottom	panel	shows	that	the	power	of	the	distance	between	decoded	and	actual	position	(decode	distance)	
is	mostly	reduced	throughout	the	5-13	Hz	range.	(D)	Cooling	decreases	the	decode	distance	and	speed	and	this	
effect	may	only	recover	partially	after	cooling.	Bars	represent	95%	confidence	intervals.	

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 18

Discussion
Summary of results
Science is a social enterprise that relies heavily on collaboration and transparency among
researchers35,36. Reproducible and shareable data analysis plays a critical role in this context, as
it ensures that scientific findings can be independently verified and built upon by others. To
facilitate this for the neuroscience community, we built Spyglass, a software framework that
combines the NWB format and the relational database structure. Building on many community-
developed tools, it provides useful features to design complex analysis pipelines, share raw and
processed data, generate web-based visualizations, and analyze data from multiple sources. As
a result, it simplifies collaboration within and across labs, making it well-suited as a community
framework for neurophysiological and behavioral data analysis.

Comparison to prior work
Our work builds on many previous approaches that have been proposed for scientific data
management and reproducible analysis pipelines. This includes work from individual laboratories
that have illustrated how a few elements of an NWB file could be read into a DataJoint database37,
and publications highlighting datasets available in NWB38. More broadly, DataJoint is used by
many labs with lab-specific pipelines39, but to our knowledge none of these efforts integrate cross-
laboratory data and visualization tools or use NWB as the foundation to facilitate sharing. Our
system also contains elements similar to those developed by large collaborative groups like The
International Brain Laboratory (IBL) that are designed to organize neurophysiology data for
sharing with collaborators and a module to automatically run analyses12. But the conversion to a
standardized format (outside the collaboration or group) and public data sharing are only done
following substantial analysis in the IBL system, complicating replication of the full analysis.

Other approaches do away with the relational database altogether. For example, DataLad uses
version control tools such as git and git-annex to manage both code and data as files40. This
enables the creation of a data analysis environment and decentralized data sharing. For building
analysis pipelines, it may be combined with other tools for managing the sequential execution of
scripts. For example, Snakemake41 (and related projects such as Cobrawap42) allows the users
to gather and define the input, output, and the associated scripts to execute for each analysis
step, thereby tracking the dependency between steps. But because these tools do not provide
any formal structure for data analysis or parameter specification, they lack the advantages of the
relational database that we discussed, such as being able to easily organize or search for the
records of previous analysis based on specific parameters, efficient data sharing and access
management to multiple users, and built-in data integrity checks based on constraints native to
the database (e.g. primary keys).

By contrast, Spyglass begins with a shared data format that includes the raw data and offers both
transparent data management and reproducible analysis pipelines using a formal data structure.
One distinguishing feature of Spyglass is the emphasis placed on combinatorial matching of data
and method in a reproducible way. For example, Spyglass makes it easy to apply multiple spike
sorting algorithms to a given dataset and to compare the results, as this involves simply matching
the data with different rows in the parameter tables. Spyglass also makes it straightforward to
apply complex analyses like decoding to datasets from multiple labs, facilitating replication and
data re-use. The system can be extended by adding new pipelines to the existing database as
better tools and algorithms become available. These features enable the re-analysis of data to
examine how the results depend on the choice of algorithm. We believe it is critical to provide this

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 19

kind of future-compatibility to maximize the impact of the years of experimental work that go into
each dataset.

Limitations
Although Spyglass provides many useful features for reproducible data analysis, it has several
limitations. Because of the central role played by the NWB format in Spyglass, a potential user
must first convert their data to NWB, which requires time and effort43. In addition, some data types
are yet to have defined standards within NWB (e.g. surgical procedure details, descriptions of
conditions, detailed subject information), and if the user wishes to include those details, they
would need to build an NWB extension and parallel Spyglass tables to do so. NWB also allows
users to choose their own names for some datatypes (e.g. behavioral tasks), further requiring
standardizations to agree on naming conventions.

In addition, users are expected to set up and maintain a relational database, which may involve
additional training. Using Spyglass includes learning to work with the structure of DataJoint, such
as the strict data integrity requirement that can make modification of existing tables difficult.
Spyglass also does not yet include pipelines for processing certain types of neural data, such as
optical physiology or fiber photometry, and some of its features such as Kachery-based file
sharing may not currently support Windows (although it may be possible to run on the Windows
Subsystem for Linux). Finally, as for all software frameworks, the evolution or lack of maintenance
of other packages presents a challenge for long term support and reproducibility.

Fortunately, there are ongoing efforts to address these challenges. These include tools to simplify
the raw data conversion into NWB, such as NeuroConv, a package to convert neurophysiology
data in common formats to NWB automatically, and NWB GUIDE, a desktop app that guides
users through the process of converting data to NWB without writing any code. Using Spyglass
could also help with standardization efforts across labs: having a database makes it easy to create
lists of names used to refer to particular items and to then move toward standardization.

We also provide many tutorials on the documentation website so that the user can efficiently set
up a database and learn to use Spyglass. We continue to actively maintain Spyglass and are
eager to work with the community to extend it and support data types and analyses beyond what
is currently available. These efforts will increase the usability and reach of Spyglass and make its
adoption more attractive, particularly to early-stage investigators. Finally, even in cases where
reproducing a result would require installing older versions of software, the results themselves
remain accessible within NWB files reference in Spyglass, ensuring that previous results can be
built on even as packages evolve.

Future applications
Spyglass and similar tools have the potential to transform scientific data analysis. In addition to
facilitating examination or extension of published results, they enable meta-analysis across
studies and easy testing of novel methods across multiple datasets. The machine-readable form
of data and analysis pipelines also opens doors for machine-driven analysis and hypothesis
testing. As these tools develop and become more accessible, we believe that frameworks like
Spyglass will likely become essential for neuroscience researchers.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://neuroconv.readthedocs.io/
https://nwb-guide.readthedocs.io/
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 20

Acknowledgements
We thank members of the Frank and Gillespie laboratory for bug reports and testing. We also
thank Peter Petersen for consultations about analyzing his publicly available data, Daniel Liu for
initial discussions about standardization of pipelines, and Abhilasha Joshi for consulting on the
DeepLabCut pipeline. Finally, we thank Vanessa Bender for comments on the manuscript. This
work was supported by HHMI funds and NIH grants RF1MH130623 and RF1MH133778 to L.M.F.
and a Helen Hay Whitney Postdoctoral Fellowship and NIH grant 1K99EY036953 to K.H.L.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 21

Author contributions

Contribution KL ED RL JM JS AC DG JG RN PA CB SB EM JB

Conception

Pipeline design

Pipeline
implementation

Tool
development

Documentation
and tutorials

Testing and bug
fixes

Data collection

Data analysis

Figure
generation

Drafting
manuscript

Contribution MC XS EB DS SC CH AT OR TN DY JC CK SG AB LF

Conception

Pipeline design

Pipeline
implementation

Tool
development

Documentation
and tutorials

Testing and bug
fixes

Data collection

Data analysis

Figure
generation

Drafting
manuscript

Declaration of interests
The authors declare no competing interests.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 22

Methods and materials

Coding environment
Spyglass was developed in Python 3.9 and is compatible with version 3.10 as well. See our
dependency list for a full list of Python packages used.

NWB conversion
To facilitate conversion of raw data to NWB format, we offer trodes-to-NWB, a sister package
to Spyglass for converting data acquired with the SpikeGadgets hardware to NWB. This comes
with a web-based GUI for conveniently generating a YAML file containing the metadata used by
trodes-to-NWB. For converting data not acquired with SpikeGadgets, users can use NWB
conversion tools developed by the NWB team, such as NeuroConv and NWB GUIDE.

NWB file conventions
We adopted a specific set of conventions for our NWB files. Some of these conventions rely on a
specific set of Frank lab-specific NWB extensions:

● Time:
o Spyglass inherits from the source NWB file either the explicit or implicit

timestamps. NWB files from Frank lab have explicit timestamps for each sample
in Unix time (seconds since 12:00 am January 1st, 1970). This lets users to know
exactly when data were collected. Spyglass is also compatible with other
approaches, however, including implicit timestamping consisting of the start time
and sampling rate.

● ElectrodeTable and ElectrodeGroup:
o ElectrodeGroups are stored in a custom NWB extension that also includes the

name of the targeted brain region for each group.
o The NWB file contains information about the relative locations of each of the

electrodes within each physical device used for data collection. This ensures that
the relative locations of the electrodes are available for spike sorting and
registration to histology.

● Video files
o The relative path to the video files collected along with the recordings are stored

in the NWB file.
● Additional files

o Other files important to recreate the conditions of the experiments can be saved,
depending on the format. For example, the code used for implementing the
behavioral paradigm or reward contingency can be stored as text objects in the
NWB file.

NWB file ingestion
Although the NWB format serves as a community standard for neurophysiology data and has a
list of best practices, it allows some flexibility in the specification of data within NWB files to
accommodate user preferences. For example, the ElectricalSeries object that stores the
electrophysiology data may have different names depending on the convention chosen by the
investigator, which may complicate programmatic access to the data. To make Spyglass
interoperable with NWB files of varying degrees of NWB-compliance, we have created an option
to supply or override information that is missing in the NWB file but is nevertheless required by
Spyglass via a configuration file that can accompany the NWB file. We provide an example of this
approach in a tutorial (Table 1, 02_Insert_Data).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://github.com/LorenFrankLab/spyglass/network/dependencies
https://github.com/LorenFrankLab/trodes_to_nwb
https://neuroconv.readthedocs.io/
https://nwb-guide.readthedocs.io/
https://github.com/LorenFrankLab/ndx-franklab-novela
https://www.nwb.org/best-practices/
https://lorenfranklab.github.io/spyglass/latest/notebooks/02_Insert_Data/#yaml-inserts
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 23

Permission-handling and cautious delete
Spyglass is based on a relational database that is accessible to multiple users. In some cases,
the type of operations that can be applied to individual data entries (i.e., rows of a table) may
need to be restricted to a specified set of users. This is particularly true for operations that are
irreversible or time consuming, such as deleting a row from a table storing analysis results.
However, there is no inherent mechanism within MySQL or DataJoint that allows permission
handling at the level of individual rows of a table. To solve this problem, we have implemented a
cautious_delete function, in which the user’s permission to carry out a delete operation is
checked before it is applied. The permission is granted based on team membership within the lab,
reflected in the LabTeam table. Though this is not a formal permission-management system, it
serves to prevent accidental deletions. We note that this system does incur additional overhead,
and while that has not been an issue for us, it is possible that this would become problematic in
use for much larger cross-laboratory collaborations.

Sharing files via Kachery
One way to share the results of Spyglass analysis pipelines is to make the database publicly
available. This gives anyone the permission to access the rows of the tables that make up the
pipelines and inspect the metadata and the parameters associated with each step of the analysis.
But because Spyglass only saves a path to the NWB files containing analysis results within the
tables, external viewers cannot download the data and examine it by default.

To enable controlled external access to the data, we have created a system to share selected
analysis NWB files with a specified group of users via Kachery. We define a set of tables
(KacheryZone and AnalysisNWBfileKachery) where users can associate analysis NWB
files to be shared with a Kachery Zone, making it available to all remote clients who are members
of the zone through cloud storage services like Cloudflare R2 bucket or self-hosted servers. Once
linked, Spyglass automatically requests, downloads, and manages analysis data for remote users
attempting to access shared data through Spyglass tables. This provides a convenient way to
provide access to the Spyglass pipelines and associated data files to collaborators.

Customizing pipelines
To alleviate the challenges associated with database design, we have identified design principles
that have been tested extensively by multiple users in the Frank lab. These are described in the
text and illustrated with examples in Figures 2 and 3. We recommend users adopt these design
elements for building their custom pipelines. We also describe the naming conventions for the
tables defined as Python classes and important methods associated with them (e.g. for multiple
versions of a pipeline) in our Developer Notes available online. Once the pipeline is sufficiently
mature and potentially useful to other scientists, we encourage users to submit their pipelines as
a pull request to our GitHub repository.

Decoding of position from NWB files from multiple laboratories
The Frank lab data is available on the DANDI archive (DANDI:000937). The Buzsáki lab data
was also obtained from DANDI (DANDI:000059/0.230907.2101). For decoding the Frank lab data,
we applied the clusterless decoding pipeline by detecting the amplitude of threshold-crossing
events in the tetrode recordings. For decoding the Buzsáki lab data, we applied a sorted-spikes
decoding pipeline. The code for these decoding pipelines, as well as detailed tutorials describing
them, are available online (Table 1, 40_Extracting_Clusterless_Waveform_Features,
41_Decoding_Clusterless, 42_Decoding_SortedSpikes). Code to generate Figure 5 can be found
at: https://github.com/LorenFrankLab/spyglass-paper. Briefly, decoding the latent neural position
and extracting the distance between the most likely decoded position and the animal’s position

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://github.com/LorenFrankLab/spyglass/blob/master/docs/src/contribute.md
https://github.com/LorenFrankLab/spyglass/tree/master
https://dandiarchive.org/dandiset/000937/draft
https://doi.org/10.48324/dandi.000059/0.230907.2101
https://lorenfranklab.github.io/spyglass/latest/notebooks/40_Extracting_Clusterless_Waveform_Features/
https://lorenfranklab.github.io/spyglass/latest/notebooks/41_Decoding_Clusterless/
https://lorenfranklab.github.io/spyglass/latest/notebooks/42_Decoding_SortedSpikes/
https://github.com/LorenFrankLab/spyglass-paper
https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 24

used methods described in Denovellis et al. (2021). We used a timestep of 4 ms and a position
bin size of 2 cm with a continuous (6 cm variance Gaussian random walk) and fragmented
(uniform distribution) discrete state. Place intensity receptive fields were estimated using a
Gaussian kernel density estimate with a standard deviation of 6 cm for position and 24 mV for
amplitude space (amplitude space was used for the clusterless analysis only). We calculated the
power of the multiunit firing rate and the decoded distance from the animal by using a multitaper
spectrogram during the pre-cooling and cooling periods. The time resolution was 3 seconds and
the frequency resolution of 2/3 Hz with a single taper. We excluded immobility periods by using a
threshold of 10 cm/s. Power difference was calculated by converting to the Decibel scale and
taking the difference of average power under the cooling and pre-cooling condition. The decoded
speed of theta sequences was calculated by taking the absolute value of the second-order
difference of the decoded distance from the animal (function numpy.gradient) multiplied by the
sampling frequency (250 Hz).

Reference
1. Lopes, G., Bonacchi, N., Frazão, J., Neto, J.P., Atallah, B.V., Soares, S., Moreira, L.,

Matias, S., Itskov, P.M., Correia, P.A., et al. (2015). Bonsai: an event-based framework for
processing and controlling data streams. Front. Neuroinformatics 9.
https://doi.org/10.3389/fninf.2015.00007.

2. Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M., and Mathis, M.W. (2019). Using
DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat Protoc
14, 2152–2176. https://doi.org/10.1038/s41596-019-0176-0.

3. Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M., and Harris, K. (2016). Kilosort:
realtime spike-sorting for extracellular electrophysiology with hundreds of channels. bioRxiv,
061481. https://doi.org/10.1101/061481.

4. Siegle, J.H., López, A.C., Patel, Y.A., Abramov, K., Ohayon, S., and Voigts, J. (2017). Open
Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural
Eng. 14, 045003. https://doi.org/10.1088/1741-2552/aa5eea.

5. Yatsenko, D., Walker, E.Y., and Tolias, A.S. (2018). DataJoint: A Simpler Relational Data
Model. ArXiv180711104 Cs. https://doi.org/10.48550/arXiv.1807.11104.

6. Buccino, A.P., Hurwitz, C.L., Garcia, S., Magland, J., Siegle, J.H., Hurwitz, R., and Hennig,
M.H. (2019). SpikeInterface, a unified framework for spike sorting.
https://doi.org/10.1101/796599.

7. Abe, T., Kinsella, I., Saxena, S., Buchanan, E.K., Couto, J., Briggs, J., Kitt, S.L., Glassman,
R., Zhou, J., Paninski, L., et al. (2022). Neuroscience Cloud Analysis As a Service: An
open-source platform for scalable, reproducible data analysis. Neuron 110, 2771-2789.e7.
https://doi.org/10.1016/j.neuron.2022.06.018.

8. Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.-W., da Silva Santos, L.B., Bourne, P.E., et al. (2016). The FAIR
Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018.
https://doi.org/10.1038/sdata.2016.18.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 25

9. Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y., Crusoe, M.R., Peters,
K., and Schober, D. (2020). FAIR Computational Workflows. Data Intell. 2, 108–121.
https://doi.org/10.1162/dint_a_00033.

10. De Vries, S.E., Siegle, J.H., and Koch, C. (2023). Sharing neurophysiology data from the
Allen Brain Observatory. eLife 12, e85550. https://doi.org/10.7554/eLife.85550.

11. Hider, R., Kleissas, D., Gion, T., Xenes, D., Matelsky, J., Pryor, D., Rodriguez, L., Johnson,
E.C., Gray-Roncal, W., and Wester, B. (2022). The Brain Observatory Storage Service and
Database (BossDB): A Cloud-Native Approach for Petascale Neuroscience Discovery.
Front. Neuroinformatics 16, 828787. https://doi.org/10.3389/fninf.2022.828787.

12. The International Brain Laboratory, Acerbi, L., Aguillon-Rodriguez, V., Ahmadi, M., Amjad,
J., Angelaki, D., Arlandis, J., Ashwood, Z.C., Banga, K., Barrell, H., et al. (2023). A modular
architecture for organizing, processing and sharing neurophysiology data. Nat. Methods 20,
403–407. https://doi.org/10.1038/s41592-022-01742-6.

13. Magland, J., Jun, J.J., Lovero, E., Morley, A.J., Hurwitz, C.L., Buccino, A.P., Garcia, S., and
Barnett, A.H. (2020). SpikeForest, reproducible web-facing ground-truth validation of
automated neural spike sorters. eLife 9, e55167. https://doi.org/10.7554/eLife.55167.

14. Matelsky, J.K., Rodriguez, L.M., Xenes, D., Gion, T., Hider, R., Wester, B.A., and Gray-
Roncal, W. (2021). An Integrated Toolkit for Extensible and Reproducible Neuroscience. In
2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC) (IEEE), pp. 2413–2418.
https://doi.org/10.1109/EMBC46164.2021.9630199.

15. Sanchez, M., Moore, D., Johnson, E.C., Wester, B., Lichtman, J.W., and Gray-Roncal, W.
(2022). Connectomics Annotation Metadata Standardization for Increased Accessibility and
Queryability. Front. Neuroinformatics 16, 828458. https://doi.org/10.3389/fninf.2022.828458.

16. Rübel, O., Tritt, A., Ly, R., Dichter, B.K., Ghosh, S., Niu, L., Baker, P., Soltesz, I., Ng, L.,
Svoboda, K., et al. (2022). The Neurodata Without Borders ecosystem for
neurophysiological data science. eLife 11, e78362. https://doi.org/10.7554/eLife.78362.

17. Teeters, J.L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B., Asari, H., Peron, S.,
Li, N., Peyrache, A., et al. (2015). Neurodata Without Borders: Creating a Common Data
Format for Neurophysiology. Neuron 88, 629–634.
https://doi.org/10.1016/j.neuron.2015.10.025.

18. Yatsenko, D., Reimer, J., Ecker, A.S., Walker, E.Y., Sinz, F., Berens, P., Hoenselaar, A.,
Cotton, R.J., Siapas, A.S., and Tolias, A.S. (2015). DataJoint: managing big scientific data
using MATLAB or Python. https://doi.org/10.1101/031658.

20. Chu, J.P., and Kemere, C.T. (2021). GhostiPy: An Efficient Signal Processing and Spectral
Analysis Toolbox for Large Data. eneuro 8, ENEURO.0202-21.2021.
https://doi.org/10.1523/ENEURO.0202-21.2021.

21. Viejo, G., Levenstein, D., Carrasco, S.S., Mehrotra, D., Mahallati, S., Vite, G.R., Denny, H.,
Sjulson, L., Battaglia, F.P., and Peyrache, A. (2023). Pynapple: a toolbox for data analysis

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 26

in neuroscience. Preprint at elife, https://doi.org/10.7554/eLife.85786.2
https://doi.org/10.7554/eLife.85786.2.

22. BRAIN Initiative (2019). Notice of Data Sharing Policy for the BRAIN Initiative.

23. Rübel, O., Tritt, A., Dichter, B., Braun, T., Cain, N., Clack, N., Davidson, T.J., Dougherty, M.,
Fillion-Robin, J.-C., Graddis, N., et al. (2019). NWB:N 2.0: An Accessible Data Standard for
Neurophysiology (Neuroscience) https://doi.org/10.1101/523035.

24. BRAIN Initiative Cell Census Network (BICCN), BRAIN Initiative Cell Census Network
(BICCN) Corresponding authors, Callaway, E.M., Dong, H.-W., Ecker, J.R., Hawrylycz, M.J.,
Huang, Z.J., Lein, E.S., Ngai, J., Osten, P., et al. (2021). A multimodal cell census and atlas
of the mammalian primary motor cortex. Nature 598, 86–102.
https://doi.org/10.1038/s41586-021-03950-0.

25. Hawrylycz, M., Martone, M.E., Ascoli, G.A., Bjaalie, J.G., Dong, H.-W., Ghosh, S.S., Gillis,
J., Hertzano, R., Haynor, D.R., Hof, P.R., et al. (2023). A guide to the BRAIN Initiative Cell
Census Network data ecosystem. PLOS Biol. 21, e3002133.
https://doi.org/10.1371/journal.pbio.3002133.

26. Park, J., Wang, J., Guan, W., Gjesteby, L.A., Pollack, D., Kamentsky, L., Evans, N.B.,
Stirman, J., Gu, X., Zhao, C., et al. (2024). Integrated platform for multiscale molecular
imaging and phenotyping of the human brain. Science 384, eadh9979.
https://doi.org/10.1126/science.adh9979.

27. Yatsenko, D., Walker, E.Y., and Tolias, A.S. (2018). DataJoint: A Simpler Relational Data
Model. ArXiv180711104 Cs.

28. Yatsenko, D., Reimer, J., Ecker, A.S., Walker, E.Y., Sinz, F., Berens, P., Hoenselaar, A.,
Cotton, R.J., Siapas, A.S., and Tolias, A.S. (2015). DataJoint: managing big scientific data
using MATLAB or Python. BioRxiv, 031658.

29. Weinreb, C., Pearl, J.E., Lin, S., Osman, M.A.M., Zhang, L., Annapragada, S., Conlin, E.,
Hoffmann, R., Makowska, S., Gillis, W.F., et al. (2024). Keypoint-MoSeq: parsing behavior
by linking point tracking to pose dynamics. Nat. Methods 21, 1329–1339.
https://doi.org/10.1038/s41592-024-02318-2.

30. Petersen, P.C., and Buzsáki, G. (2020). Cooling of Medial Septum Reveals Theta Phase
Lag Coordination of Hippocampal Cell Assemblies. Neuron 107, 731-744.e3.
https://doi.org/10.1016/j.neuron.2020.05.023.

31. Denovellis, E.L., Gillespie, A.K., Coulter, M.E., Sosa, M., Chung, J.E., Eden, U.T., and
Frank, L.M. (2021). Hippocampal replay of experience at real-world speeds. Elife 10.
https://doi.org/10.7554/eLife.64505.

32. Denovellis, E.L., Frank, L.M., and Eden, U.T. (2019). Characterizing hippocampal replay
using hybrid point process state space models. In 2019 53rd Asilomar Conference on
Signals, Systems, and Computers (IEEE), pp. 245–249.
https://doi.org/10.1109/IEEECONF44664.2019.9048688.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 27

33. Skaggs, W.E., and McNaughton, B.L. (1996). Theta phase precession in hippocampal
neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–
172. https://doi.org/10.1002/(SICI)1098-1063(1996)6:2%3C149::AID-HIPO6%3E3.0.CO;2-
K.

34. Foster, D.J., and Wilson, M.A. (2007). Hippocampal theta sequences. Hippocampus 17,
1093–1099. https://doi.org/10.1002/hipo.20345.

35. Committee on Responsible Science, Committee on Science, Engineering, Medicine, and
Public Policy, Policy and Global Affairs, and National Academies of Sciences, Engineering,
and Medicine (2017). Fostering Integrity in Research (National Academies Press)
https://doi.org/10.17226/21896.

36. OECD (2015). Making Open Science a Reality https://doi.org/10.1787/5jrs2f963zs1-en.

37. Reimer, M.L., Bangalore, L., Waxman, S.G., and Tan, A.M. (2021). Core principles for the
implementation of the neurodata without borders data standard. J. Neurosci. Methods 348,
108972. https://doi.org/10.1016/j.jneumeth.2020.108972.

38. Chandravadia, N., Liang, D., Schjetnan, A.G.P., Carlson, A., Faraut, M., Chung, J.M., Reed,
C.M., Dichter, B., Maoz, U., Kalia, S.K., et al. (2020). A NWB-based dataset and processing
pipeline of human single-neuron activity during a declarative memory task. Sci. Data 7, 78.
https://doi.org/10.1038/s41597-020-0415-9.

39. Yatsenko, D., Nguyen, T., Shen, S., Gunalan, K., Turner, C.A., Guzman, R., Sasaki, M.,
Sitonic, D., Reimer, J., Walker, E.Y., et al. (2021). DataJoint Elements: Data Workflows for
Neurophysiology (Neuroscience) https://doi.org/10.1101/2021.03.30.437358.

40. Halchenko, Y., Meyer, K., Poldrack, B., Solanky, D., Wagner, A., Gors, J., MacFarlane, D.,
Pustina, D., Sochat, V., Ghosh, S., et al. (2021). DataLad: distributed system for joint
management of code, data, and their relationship. J. Open Source Softw. 6, 3262.
https://doi.org/10.21105/joss.03262.

41. Mölder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster,
J., Lee, S., Twardziok, S.O., Kanitz, A., et al. (2021). Sustainable data analysis with
Snakemake. F1000Research 10, 33. https://doi.org/10.12688/f1000research.29032.2.

42. Gutzen, R., De Bonis, G., De Luca, C., Pastorelli, E., Capone, C., Allegra Mascaro, A.L.,
Resta, F., Manasanch, A., Pavone, F.S., Sanchez-Vives, M.V., et al. (2024). A modular and
adaptable analysis pipeline to compare slow cerebral rhythms across heterogeneous
datasets. Cell Rep. Methods 4, 100681. https://doi.org/10.1016/j.crmeth.2023.100681.

43. Pierré, A., Pham, T., Pearl, J., Datta, S.R., Ritt, J.T., and Fleischmann, A. (2024). A
perspective on neuroscience data standardization with Neurodata Without Borders. Preprint
at arXiv, https://doi.org/10.48550/arXiv.2310.04317
https://doi.org/10.48550/arXiv.2310.04317.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 28

Supplemental Figures

Supplemental	Figure	1:	Spyglass	pipeline	workflow	for	Figure	5A	and	B.	(A)	Decoding	of	the	UCSF	dataset	
started	with	the	NWB	file.	Data	was	ingested	into	the	RawPosition	and	Raw	tables,	which	hold	the	unprocessed	
position	 data	 (only	 LED	 tracking	 from	 the	 Trodes	 hardware	 system)	 and	 the	 electrophysiology	 traces	
respectively.	Position	data	from	the	two	LEDs	had	outliers	removed,	interpolated	over,	and	then	smoothed	and	
combined	into	a	single	head	position	via	the	TrodesPosV1	table	(and	requiste	Selection	and	Parameter	tables	
which	specified	the	dataset	and	the	parameters	for	processing).	This	was	then	inserted	into	the	PositionOutput	
merge	 table.	 The	 position	 data	 was	 then	 inserted	 into	 the	 PositionGroup	 table	 which	 in	 this	 case	 is	 a	
passthrough	table	(but	in	other	cases	could	hold	position	data	from	multiple	time	periods	such	as	sleep).	The	
raw	electrophysiology	data	was	processed	through	the	Spike	Sorting	pipeline.	Because	the	data	is	intended	for	
“clusterless”	 decoding,	 this	 simply	 consists	 of	 thresholding	 for	 high	 amplitude	 spikes	 (above	 60	mV).	 The	
UnitWaveformFeatures	 table	 then	extracts	a	snippet	of	waveform	data	around	 the	 time	of	a	spike	 for	each	
tetrode.	UnitWaveformFeature	then	calculates	the	peak	amplitude	at	the	time	of	the	spike	for	each	tetrode.	This	

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

 29

amplitude	waveform	feature	(along	with	the	spike	time)	is	used	for	clusterless	decoding	in	conjunction	to	the	
position	of	 the	animal	via	 the	ClusterlessDecodingV1	 table.	The	decoding	result	was	 then	 ingested	 into	 the	
DecodingOutput	merge	table	which	the	Figure	5A	code	subsequently	fetched	from.	(B)	The	NYU	dataset	was	
downloaded	from	the	DANDI	archive.	The	raw	position	underwent	the	same	processing	as	Figure	5A.	The	NYU	
dataset	did	not	contain	raw	electrophysiology	signals	but	did	contain	spike	times	from	already	sorted	neurons.	
These	were	ingested	into	the	ImportedSpikeSorting	table	and	then	passed	to	the	SpikeSortingOutput	table.	The	
SpikeSortingGroup	table	allowed	us	to	select	only	the	CA1	cells	for	decoding.	This	along	with	the	processed	
position	 data	 was	 used	 for	 decoding	 via	 the	 SortedSpikesDecodingV1	 table	 and	 inserted	 into	 the	
DecodingOutput	merge	table.	This	data	was	used	to	generate	Figure	5B-D.	

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 29, 2026. ; https://doi.org/10.1101/2024.01.25.577295doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.25.577295
http://creativecommons.org/licenses/by-nc/4.0/

