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Abstract

Motivation:

Genotype imputation is a powerful tool for inferring missing genotype data in large-scale
genomic studies. Over the last two decades, multiple research groups have developed a
number of imputation algorithms, which continue improving in speed and overall accuracy.

However, accurate imputation of rare and infrequent variants remains a challenge.

Results:

Here we present Selphi, a novel genotype imputation algorithm based on the Positional Burrow
Wheeler Transform (PBWT) and a new heuristic method for haplotype selection based on
identity by descent (IBD). When compared to state-of-the-art methods Beagle5.4, IMPUTES,
and Minimac4, Selphi showed a higher accuracy in 1000 Genome Project and TOPmed
datasets, across all super-populations and allele frequencies. Similarly, Selphi performed better
than Beagle5.4 in the UK Biobank dataset, which translated into improved GWAS discovery and
more accurate polygenic risk scores. Selphi's improvements in imputation accuracy, especially
for rare and low frequency variants, promises to boost the power and accuracy of downstream

genomic applications.

Availability and implementation:

Selphi code is available at GitHub: https://github.com/selfdecode/rd-imputation-selphi.

Additionally, we offer an applet that allows convenient testing of the Selphi code on the UKB
RAP platform.

Contact:

pyazdi@omicsedge.com

Supplementary information:

Supplementary data are available (Figures S1-S4; Tables S1-S8).
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Introduction

Genomic medicine has grown rapidly since the completion of the Human Genome Project
(HGP) two decades ago, promising to deepen our knowledge of disease pathology, improve
diagnostic speed and accuracy, and enable targeted disease treatment and preventive therapy
(Mega et al. 2015, Natarajan et al. 2017, Damask et al. 2020, Marston et al. 2020, Pereira et al.

2021, Klarin and Natarajan 2022, Mishra et al. 2022). However, as whole genome sequencing

(WGS) is still prohibitively expensive, especially when it comes to large-scale population-wide
screening, a lot of academic and direct-to-consumer efforts rely on array-based SNP genotyping
and low-coverage WGS (IcCWGS). These approaches are cost-effective, but their accuracy is
limited by the accuracy of imputation methods used to fill in the gaps in these datasets.
Therefore, imputation has a profound impact on all downstream applications when using
genotyping and IcCWGS datasets, such as detecting associated variants in genome-wide
association studies (GWAS) or calculating polygenic risk scores (PRS) (Pasaniuc et al. 2012,
Homburger et al. 2019, Chen et al. 2020, Nguyen et al. 2022, Appadurai et al. 2023).

Over the last twenty years, multiple groups have developed and published different imputation
methods, the majority of which are based on the Li and Stephens Hidden Markov Model (HMM)
(Scheet and Stephens 2006, Fuchsberger et al. 2015, Das et al. 2016, Browning et al. 2018,

Delaneau et al. 2019, Rubinacci et al. 2020). However, they still suffer in accuracy when

imputing rare variants (Herzig et al. 2018, Sariya et al. 2019, De Matrino et al. 2022) This is of

note because rare variants can be highly informative and of great medical significance (Bomba

et al. 2017, Momozawa and Mizukami 2021, Weiner et al. 2023). Recently, efforts have been

made to address this by broadening the reference panel either by creating cohort-specific

imputation reference panels (Mitt et al. 2017, Sun et al. 2022, Xu et al. 2022), or adding whole

exome sequencing data into the reference panel (Wuttke et al. 2023). However, improving rare

variant imputation by tackling the algorithm itself has not yet been convincingly demonstrated.
Here, we describe a new imputation tool that does just that by identifying and giving priority to

potential identity by descent (IBD) segments.

Selphi is a tool that improves imputation by using a heuristic algorithm to select potential IBD
haplotype segments coupled with a Positional Burrow Wheeler Transform (PBWT) (Durbin
2014). We compare Selphi to state-of-the-art imputation methods Beagle5.4 (Browning et al.
2018), IMPUTES (Rubinacci et al. 2020), and Minimac4 (Das et al. 2016) using the 1000
Genomes Project (1000 Genomes Project Consortium 2015) and TOPmed (Taliun et al. 2021)
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datasets. Next we impute UK biobank (Bycroft et al. 2018) genotyping data using Selphi and the

next most accurate model, Beagle5.4 to demonstrate the applicability of Selphi to large-scale

datasets. Finally we use this imputed data to improve downstream GWAS and PRS.

Methods

Selphi
Model Overview

Selphi was developed in Python and C and uses vectorized matrix functionalities of numpy for
efficient processing in large-scale data environments. It operates under the assumption that
both reference and target genotypes are phased and non-missing. The imputation process
relies on the concept of identity by descent (IBD), identifying chromosome segments inherited
from a common ancestor uninterrupted by recombination events, which allows for the transfer of

un-genotyped alleles from reference to target haplotypes (Figure 1).

PBWT

For improved precision, Selphi integrates the Positional Burrow Wheeler Transformation
(PBWT) (Durbin 2014), adept at identifying the longest haplotype matches between the target
and reference sequences. PBWT’s primary objective is to arrange haplotypes in a reversed
prefix order, a mechanism that markedly simplifies the identification and matching of haplotypes
across datasets. The model also includes a heuristic Identity by Descent (IBD) selection at each

genotyped marker, crucial for filtering out coincidental Identity by State (IBS) matches.

The PBWT algorithm initiates with the construction of a positional prefix array. This array is
essentially a sequence of haplotype indices, arranged such that the haplotypes are sorted in
reverse prefix order at a given position, denoted as n. To achieve this, two distinct vectors, of
length M, are created for each genotype marker at position n. One vector is responsible for
holding the indices of haplotypes, sorted according to their reversed prefix order. The other
vector tracks the index where the last match for each haplotype began, essentially marking the
starting point of each haplotype match. This helps facilitate quick and memory-efficient pairwise

comparisons between all haplotypes in the reference panel.
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Figure 1. Selphi workflow. (A) The first step in the workflow involves merging the reference panel and
target data into a unified PBWT data structure. (B) Subsequently, the algorithm scans the reference panel
searching for matches to reference haplotypes of a minimum length L. (C—D) At each marker, the
algorithm retains the longest matches, prioritizing haplotypes with more total matches across the
chromosome. (E) A dynamic haplotype selection step follows, where the matches are mapped and
filtered to adjust the number of retained matches at each marker, based on the distribution of match
lengths. (F) The HMM forward-backward algorithm is employed. (G) Transitions between variant states
are utilized to compute weights for each haplotype at each marker. These weights aid in determining the
significance of each haplotype within the population. (H) The final step involves the interpolation of allele
probabilities with the haplotypes from the reference panel.
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In the context of Selphi's imputation process, the reference panel denoted as X with X {0,1}MN
and the target haplotype T with T {0,1}1N are defined within a certain genomic structure. Here,
N represents the total number of genotyped variants. The reference panel X and the target T
are aligned such that they share a common set of markers, with the reference panel not

necessarily containing a complete marker set but only those that overlap with the target.
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The first crucial step in Selphi's imputation process involves the computation of forward matches.
This is achieved by accumulating previous matches for the same haplotype until a mismatch
occurs, at which point the match count resets to zero. This mechanism is integral to the PBWT

and is detailed in equation (1), describing the creation of Bl data structures.

rjfa?j'[m.n —1l]=1 ifu>0andn <N -1 ad T[n| = X ]
1 if it =0 aned F[0] = A .0
Bi[m. o] =« , ’ _I 10 _[’ ] ) .
| fu=NN-1lad T[N —1]=A[m. N - 1]
| 0 ot lhiorwise

Equation 1: Calculation of forward matches (Bl data structures). This mechanism involves
accumulating previous matches for the same haplotype until a mismatch occurs, at which point the
match count resets to zero. This process is integral to PBWT.

The algorithm then proceeds to compare each target haplotype against every reference
haplotype at each variant. A match is recorded when there is a divergence, provided that the
total length of the match exceeds a pre-set threshold, typically a minimum of five consecutive
variants. This threshold ensures that only significant matches are considered, enhancing the
accuracy of imputation. The matches are then organized into a sparse matrix format, which is
particularly suited for handling data with a high proportion of zero values, common in genomic
matrices. The sparse matrix, encapsulating the essential match data, is then saved as a .npz file
for downstream use.

Haplotype selection

The haplotype selection process begins with the construction of a custom match matrix, which
serves as a structured representation of consecutive haplotype matches identified through

the PBWT. Each entry in this matrix represents the length of consecutive matches between a
target haplotype and reference haplotypes. To refine this selection, Selphi constructs a filtering
mask—a secondary matrix that delineates the maximum length of matches at each genomic
marker. In this matrix, for each marker, the k haplotypes with the longest matches are retained,
effectively filtering out less likely haplotypes and thus narrowing down the potential candidates

for imputation.

With this filtered matrix, Selphi then assigns weights to each match, incorporating both (i) the

length of individual matches and (ii) the aggregated matching performance across all markers.
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These weighted values are stored in a weighted matrix (WH) and used in determining the

haplotype's contribution. Each haplotype is then weighted according to equation (2).

threshold, — Max(WH[:,n]) - Knob - Std(WH]I:,n])

Equation 2: Computation of the haplotype match weighting threshold (threshold,). The formula involves
subtracting the product of the knob parameter and the standard deviation (Std) of the weighted matrix
(WH) at a specific genomic marker from the maximum value at that marker (Max(WH][:,n])).

Equation 2 computes a threshold (threshold,) for each genomic marker n, where:

e Max(WHI:,n]) is the maximum weighted match length at marker n,
e Knob is an adjustable scaling parameter proportionate to the distance between the mean
weighted match length at marker n and the maximum match length,

e Std(WHTI:,n]) is the standard deviation of the weighted match lengths at marker n.

The threshold dynamically adjusts based on the distribution of match lengths at each marker.
Markers with longer matches have a higher threshold, and haplotypes with match lengths that
fall below this threshold are excluded from the imputation process. This mechanism allows
Selphi to focus on high-confidence matches, improving the overall accuracy of the imputation.
When high-confidence matches are not present, Selphi includes a broader sampling of

haplotypes in the imputation process.

Haplotype selection is conducted across the entire chromosome without segmenting it into
windows. This is a distinguishing feature of our method, contrasting with others that divide the

genome into smaller windows (Browning et al. 2018, Rubinacci et al. 2020). This

comprehensive approach ensures the conservation of essential data derived from the pairing of
target sequences with the reference panel. Moreover, it avoids the imputation inaccuracy near
window boundaries, a known limitation in methods employing short, non-overlapping windows.
Our technique circumvents the potential loss of continuity and the need for overlapping windows,

thus enhancing the integrity and consistency of the imputation results.

Dynamic Thresholding and the Knob Parameter

A critical element of the haplotype selection process is the knob parameter, which is an
adjustable factor used to control the stringency of haplotype selection. The knob parameter is

calibrated against the average match length at each marker, normalized between 0.2 and 3.
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This normalization allows for fine-tuning the sensitivity of the selection process based on the

data distribution:

e Lower knob values are applied when the number of potential matches is high. This
stricter criterion is necessary to filter out weaker haplotype matches and ensure that only
the strongest candidates, those likely to represent true Identity by Descent (IBD), are
retained.

e Higher knob values are used when there are fewer matches. This relaxed threshold
prevents the exclusion of valid haplotypes in cases where genuine matches may be

shorter due to data sparsity or variability in the genetic sequences.

By dynamically adjusting the threshold for haplotype inclusion, the knob parameter mitigates the
influence of Identity by State (IBS) matches—instances where haplotypes share alleles by
chance rather than through a common ancestor. This tunable selection process ensures that the
imputation algorithm remains both sensitive and specific, maintaining a balance between false

positives and false negatives.

Imputation

The imputation component of Selphi utilizes a modified version of the Li Stephens Hidden
Markov Model (HMM) (Li and Stephens 2003, Li et al. 2009). In Selphi's adaptation of HMM, the

hidden states, which are not directly observable, are represented by haplotypes at specific loci

across the genome, denoted by pairs of indices (m,n), with m indexing the haplotype within the

reference panel and n designating the particular genetic marker in question.

Our method diverges from the standard use of the forward-backward algorithm for imputation,
primarily because of how we define transition probabilities. We permit a complete transition
probability for a move from one hidden state to a subsequent state, provided that the
haplotype's position in the reference panel remains consistent (this condition is depicted as Hp, +
1 =Hp). Hy stands for a hidden state at marker index m. Here, hidden state refers to a specific
haplotype in the reference panel of haplotypes, and m is the index of that haplotype in the
reference panel. In this condition we allow the model to have a full transition probability (equal to
1) from one state to another state when the haplotype does not change from one marker to the

next.

The exact probability of such transitions is outlined in equation (3), where Ne denotes the

effective population size, which is typically assumed to be 1,000,000. dm signifies the
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recombination distance, which we derive through linear interpolation of the distances provided
by a publicly available genetic map (genetic map). Finally, NumHid corresponds to the total

number of hidden states.

1-eMN((dm* -0.04*Ne)/NumHid )}
Equation 3: Transition probability between states using recombination rate.
The forward-backward algorithm is used to estimate the probabilities of missing genetic marker
data. This process has been optimized by implementing the forward-backward algorithm using
sparse matrices for both forward and backward passes, which considerably reduces
computational load. The transition probabilities are then used to infer the most likely haplotypes

given the observed genotypes.

For computational efficiency, Selphi processes each haplotype in parallel, dedicating a
computing core to each target haplotype. This parallel processing extends to the interpolation of

reference states, following a method akin to that used in Beagle5.4 (Browning et al. 2018) and

IMPUTES (Rubinacci et al. 2020), where linear interpolation between two boundary probabilities

is employed to compute the reference states. The cumulative probabilities for both the reference
and alternate alleles are then computed at each marker, culminating in the imputed genetic

profile.

Sparse reference format (.srp)

Efficient interpolation requires rapid retrieval of selected haplotypes at markers within the
interpolation window. Selphi includes a customized tool for compressing large reference panels
into chunked sparse matrices, enabling rapid access of reference panel data with a smaller

storage footprint than a compressed VCF (Danecek et al. 2011). Reference panel haplotypes

are converted to sparse matrices, each containing a preset number of markers. The sparse
matrices are compressed with Zstandard compression and organized within a zip archive,
allowing rapid loading into memory. Once loaded, sparse matrices are cached in memory until
they are no longer accessed, eliminating disk latency as Selphi moves down the chromosome.
The chunked storage format also allows Selphi to parallelize imputation across the chromosome

without loss of performance.

Selphi offers good flexibility by allowing generation of the srp format from both

compressed/uncompressed VCF/BCF and XSl reference formats (Wertenbroek et al. 2022),

enhancing its adaptability to diverse data sources. This versatility empowers Selphi to
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seamlessly handle various reference data types. The .srp format's inherent flexibility streamlines
the process, ensuring smooth and reliable imputation even in scenarios with a large number of
samples and when the data size of a compressed VCF reference panel could be problematic to

handle.

Datasets

1000 Genomes Project

The 1000 Genomes Project 30x dataset contains phased sequences of 3,202 individuals
sampled from 26 different populations. We selected all the individuals without relatives in the
dataset to test imputation in unrelated individuals. The filtering was executed using the pedigree
file available at
(http://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/working/20130606_sample_info/20130606
alk.ped). Individuals that had a Family ID that diverged from the Individual ID were selected

and used as our reference panel while individuals with the same Family ID and Individual ID
were used as the target dataset for imputation. This filtering ensures that there are no related
individuals between the target and reference panel that could inflate imputation results. The
number of samples in the reference panel was 2401. The final number of target samples was
801, belonging to 12 out of the 26 populations found in the dataset (Figure S4). All analysis
used the hc-WGS 30x version of the 1000 Genomes Project (1KG) (L1000 Genomes Project
Consortium 2015).

We used the following filtering criteria for all variants: (i) only variants with FILTER=PASS were
retained; (ii) variants with genotype missingness below 5% were included; (i) variants passing
the Hardy-Weinberg equilibrium (HWE) test, indicated by an HWE P value greater than 10™° in
at least one of the five super-populations, were kept; (iv) variants with a Mendelian error rate of
5% or lower were considered; and finally, (v) variants with a minor allele count (MAC) of 2 or

higher were included.

To assess imputation accuracy we masked a portion of the markers to simulate genotyping data.
We limited the 1000 Genomes reference data to markers that had at least one minor allele copy

in the reference panel, and we masked markers not found on the Illumina GSA chip array (Table
S4). This masking process was applied to all chromosomes using the GSA chip array as

reference (GSA v3 by lllumina).

10
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TOPMED Dataset

To compare imputation performance against a more diverse reference panel, we assembled a
larger, ethnically and ancestrally diverse reference panel using WGS data from 32 studies (48
consensus groups) available through the NHLBI TOPMed (Trans-Omics for Precision Medicine)

Program (Taliun et al. 2021), encompassing 90,897 participants. We considered the Freeze 8,

GRCh38 version of TOPmed data, which was the latest version with all consent groups bearing
the same number of variants. For details regarding the processing of TOPmed Freeze 8, see

(https://topmed.nhlbi.nih.gov/topmed-whole-genome-sequencing-methods-freeze-8). TOPmed

data were made available as gVCF files through the database of Genotypes and Phenotypes
(dbGaP). All study names and IDs are listed in Table S5. We focused on chromosome 20 and

performed haplotype phasing using Beagle5.4 (Browning et al. 2018), which is particularly

optimized for large datasets like TOPMed.

From the TOPMed dataset, we selected a subset of 5,000 samples, coming from the Multi-
Ethnic Study of Atherosclerosis (MESA) (Bild et al. 2002, Olson et al. 2016) for our imputation

experiments (White-Caucasian 1634, Black-African-American 930, Hispanic 862, Chinese-

American 535). These selected samples were unrelated to each other within the dataset. The
remaining 85,897 WGS samples from the TOPMed dataset served as a comprehensive

reference panel.

The quality control (QC) steps were executed as follows: Initially, we split multi-allelic variants

into bi-allelic forms using BCFtools (Danecek et al. 2021). The subsequent filtering of SNPs and

indels was based on several criteria: (i) a Hardy-Weinberg equilibrium P value less than 10,
(i) more than 5% missing data among individuals (based on a GQ score = 0), (iii) abnormal
heterozygosity rates, defined as less than 0.5 or greater than 1.5, (iv) alternative alleles with an
AA-score below 0.5, (v) variants where the FILTER field was not 'PASS’, (vi) kept only biallelic
SNPs. These QC measures are crucial for ensuring the reliability of subsequent analyses and

were automated within the TOPMed data processing framework.

A total of 46 phased VCF files — one for each consensus group, excluding two from MESA -
were then merged. The final reference panel for chr20 thus assembled consisted of 85,897
samples and 17,900,635 biallelic SNPs. The reference was also converted into formats
appropriate for each imputation tool (.bref3 format for Beagle5, .m3vcf for Minimac4 and imp5
for IMPUTES). For imputation validation, we used genotype data derived from a masking of
MESA samples, using the GSA SNP array.

11
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UK Biobank

We used the 150,119 WGS data jointly called with GraphTyper v2.7.1 (Eggertsson et al. 2017),
available as pVCF files on the UK Biobank RAP (Rubinacci et al. 2023). We selected all

autosomal chromosomes and conducted haplotype phasing using Shapeit v4.2.2 (Delaneau et

al. 2019). The quality control process was carried out as follows: initially, multi-allelic variants

were decomposed into bi-allelic variants using BCFtools (Danecek et al. 2021). Subsequently,

SNPs and indels were filtered based on several criteria: (i) a Hardy-Weinberg p-value lower
than 10, (ii) over 5% of individuals with missing data (GQ score = 0), (iii) an excess of
heterozygosity, measured as less than 0.5 or greater than 1.5, (iv) alternative alleles with an
AA-score below 0.5, and (v) variant sites where the FILTER tag did not match PASS. We
selected a subset of 50,000 samples with White British ancestry from the UK Biobank dataset.
These samples were unrelated to any other individual in the dataset and had Axiom SNP array
data available for imputation experiments, making them the target samples. The remaining
100,119 Whole-Genome Sequencing (WGS) samples from the UK Biobank were utilized as the
reference panel. Phased Axiom genotype data have been downloaded from the UK Biobank
study conducted by Bycroft et al. (2018) (Bycroft et al. 2018). Subsequently, the data was lifted

over to the GRCh38 human reference genome, with strand flips discarded, resulting in a dataset
comprising 657,354 autosomal markers for 487,442 samples (Table S6). After liftover,

approximately 99.8% of the original variants were retained for further analysis.

Benchmarking

We analyzed the autosomal chromosomes from the 1KG reference panel to explore the
distribution of the selected states in our imputation experiments. The 801 unrelated target
samples were imputed against the remaining haplotypes in the reference panels. We compared
the accuracy of Selphi with the most up-to-date versions of Beagle5.4 (Browning et al. 2018),
IMPUTES (Rubinacci et al. 2020) and Minimac4 (Das et al. 2016), using default parameters for

each program. We used the true genetic map for analyses for Beagle5.4, IMPUTES and Selphi
for real data imputation. Minimac4 does not require a genetic map, as recombination
parameters are estimated and stored when producing the m3vcf format input file for the
reference data.

The accuracy of the methods was assessed by comparing the imputed allele probabilities to the

true (masked) alleles, as previously described (De Marino et al. 2022). Markers were binned

into bins according to the minor allele frequency of the marker in the reference panel. For each

12
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bin we also calculated the squared correlation (r?) between the vector of all the true (masked)
alleles and the vector of all posterior imputed allele probabilities, the number of errors in
concordance with the true masked allele, and the imputation quality score (IQS)Precision and

Recall as the F-score (Browning and Browning 2009, Lin et al. 2010). For the imputation

accuracy evaluation, we have rebuilt a faster version of the tool Simpy to obtain all evaluation

metrics (De Marino et al. 2022). All imputation analyses for the 1000 Genomes Project (1KG)

were conducted on an AWS EC2 instance featuring a 107-vCPU computer equipped with Intel

Xeon Platinum 8171M CPU processors and 753 GB of memory.

For the TOPMed dataset, we focused our analysis solely on chromosome 20 for efficacy,
following the same exact methodology stated previously. All computations for TOPMed were
performed at Scripps HPC (High Performance Computing) facility through a Singularity image
(Kurtzer et al. 2017), using a variable number of 16-CPU nodes equipped with 128Gb RAM.

For the UK Biobank (UKB) dataset, a similar approach was employed. The imputation
experiments were conducted on the UKB RAP platform. To execute Selphi on the UKB RAP
platform, our software was developed as a single applet on the dnanexus platform. These
applets were run with distinct hardware configurations, employing virtual machines (VMs)
tailored to meet the minimum hardware requirements specific to each chromosome being

imputed.

GWAS analysis

Following the imputation of all autosomal chromosomes for the entire cohort of 50,000
individuals of white British ancestry from the UK Biobank, we selected 50 phenotypes (Table S7)
with less than 10% missing data across anthropomorphic traits and blood measurements in our
call set for further analysis. To assess associations between the selected phenotypes and the

imputed call sets, we utilized plink2 (Chang et al. 2015) with default parameters, incorporating

sex, age, and the first 10 principal components (PCs) as covariates. We analyzed the hc-WGS
dataset, along with two datasets imputed by Beagle5.4 and Selphi. Our locus selection criteria
involved two key factors: (i) we focused on genome-wide significant loci with P values less than
5e-08 reported by the NHGRI Catalog of published GWAS (release 2023-08-26) (MacArthur et
al. 2017), and (ii) we considered the strongest signal per locus (+100 kb genomic region) to
select independent loci. For the analysis, we exclusively considered imputed variants, removing
those present in the axiom array. To compare beta values (slope) and P values (significance)

between the imputed set and the results obtained with the hc-WGS set, we adopted two

13


https://doi.org/10.1101/2023.12.18.23300143
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.12.18.23300143; this version posted January 29, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

approaches: (1) using absolute beta values and (2) employing the negative logarithm of the P
value on a logarithmic scale to address low and highly significant P values (for at least nominally
significant associations, P < 0.05). In evaluating concordance (r%) in the correlation of imputed

vs. hc-WGS association values, we assessed how well the data fit the 1:1 identity line.

PRS analysis

In the final phase of our study, we utilized seven GWAS phenotypes mentioned earlier to
generate PRS scores, including atrial fibrillation, asthma, hypertension, type 2 diabetes, height,
apolipoprotein B levels, and calcium. To facilitate the analysis, quantitative traits were
transformed into binary categories: short stature was defined as the lowest 10% of individuals
based on height, accounting for sex; hypercalcemia was characterized by calcium levels
exceeding 2.6 mmol/L; and high ApoB was designated for levels surpassing 1.3 g/L. We
generated summary statistics by meta-analyzing existing external datasets collected by the
GWAS Catalog (Table S8). We implemented clumping plus thresholding models, exploring

various parameter values as detailed by Privé et al. (Privé et al. 2019). Specifically, we

investigated squared correlation thresholds of clumping within {0.01, 0.05, 0.1, 0.2, 0.5, 0.8,
0.95}, base sizes of clumping windows within {50, 100, 200, 500} divided by r* of clumping
(parameter 1), a sequence of 50 thresholds on P values between the least and most significant
values on a log-log scale, and 13 minor allele frequency (MAF) threshold filters ranging from
0.001 to 0.1. During the training phase, we assessed a total of 18,200 PRS models per
phenotype and selected the most accurate one for each callset as the optimal hyperparameters.
The 50,000 individuals from the UK Biobank (UKBB), utilized in the GWAS power analysis, were
divided into 30,000 for training and 20,000 for testing the PRS models. The assessment of PRS
accuracy involved two key measures: (i) relative risk, defined as the ratio of the percentage of
cases found between the fifth quintile (individuals with high PRS) and the first quintile
(individuals with low PRS) of the PRS distribution; and (ii) area under the curve (AUC).

14


https://doi.org/10.1101/2023.12.18.23300143
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.12.18.23300143; this version posted January 29, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Results

Selphi Improves Rare Variant Imputation

To benchmark Selphi's performance, we first compared its accuracy against that of Beagle5.4,
IMPUTES and Minimac4, using chromosomes 1-22 of the 1000 Genomes Project dataset

(Figure 2a) (1000 Genomes Project Consortium 2015). This dataset has been widely used as a

gold-standard dataset for testing imputation accuracy (Browning et al. 2018, Sariya et al. 2019,
De Marino et al. 2022, ). Selphi had an overall concordance of 0.9941 (Table S1), with an

improvement in accuracy of 4.2% to 27.3% per sample. Our model achieved the best results
with the lowest number of errors across all minor allele frequency intervals and all ancestral
backgrounds (Figure 2a; Table S2). It performed exceedingly well for rare (MAF 0.05-2%) and
particularly for ultra-rare (MAF 0.05-0.1%) variants, with an average improvement of 13% and
21%, respectively. The improvement was pronounced in the East Asian and African super-
populations, with 16.4% and 4% improvement, respectively, compared to the next best model
Beagle5.4. We additionally assessed the accuracy of each method using the following metrics:
squared correlation (r2), concordance (P0O) and imputation quality score (IQS) (Figure S1;
Tables S1-2) (Browning and Browning 2009, Lin et al. 2010). Selphi remained the best method

across all evaluated metrics across all ancestries (Figure S1, Table S1, Table S2).

Next, we benchmarked Selphi's accuracy using chromosome 20 of TOPmed (Taliun et al. 2021),

a large, ethnically and ancestrally diverse dataset that is increasingly used to improve
imputation accuracy, especially in admixed populations (Huerta-Chagoya et al. 2023). 5,000
samples from the TOPMed dataset's Multi-Ethnic Study of Atherosclerosis (MESA) were

imputed against the remaining 85,897 high coverage WGS (hc-WGS) TOPMed samples as the
reference panel. Selphi again achieved the best results with the lowest number of errors, with
an average improvement of 27.1% for rare variants (MAF 0.05-2%) (Figure 2b; Figure S2, Table
S1, Table S3).

Finally, to demonstrate its applicability to larger datasets, we benchmarked Selphi against
Beagle5.4, the next most accurate model in our analysis, using the UK Biobank dataset (Bycroft
et al. 2018). We imputed chromosomes 1-22 of 50,000 samples classified as White British.
Selphi performed better than Beagle5.4 for all MAFs (Figure 2c¢). On average, Selphi
accomplished a ~25% increase in concordance over Beagle5.4, with an improvement of 13.4%
for rare variants (MAF 0.05-2%). Notably, for the MAF interval of 20-50%, Selphi made around

20,000 fewer errors per sample, achieving 33.4% improvement (Table S1, Table S4).
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Selphi Improves GWAS Variant Discovery and PRS

To ascertain that improved imputation accuracy would boost GWAS variant discovery, we used
50,000 unrelated White British samples from the UK Biobank that possessed both genotyping
and hc-WGS information, and imputed their genotyping data using Selphi and Beagle5.4. Next,
we conducted GWAS for 50 distinct traits using the imputed datasets. Selphi yielded results in
closer alignment with the hc-WGS data, especially for rare variants (Figure 3a-c, Figure S3).
Finally, we used the GWAS results to create polygenic risk scores (PRS) for seven different
phenotypes. Imputation by Selphi produced PRSs in closer alignment to that of hc-WGS (Figure
3d).
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Figure 3. GWAS and PRS power analysis. (A) Number of GWAS hits in which Selphi or Beagle5.4
obtained higher significance, plotted by ratio bin. Variants that surpassed GWAS suggestive threshold (P
< 10°) were analyzed. A ratio below 1.05 was considered as an equivalent result for both Beagle5.4 and
Selphi. (B) Squared correlation (r?) for betas and P values obtained from imputed sets and compared to
hc-WGS across 50 UK biobank phenotypes by MAF. Nominally significant (P < 0.05) trait-associated hits
collected by the GWAS Catalog were retrieved. Lower and upper limits of the forest plot represent the
confidence interval from bootstrap resampling. (C) GWAS examples of imputed sets along with hc-WGS
results for total fatty acid levels, age at menopause and venous thromboembolism phenotypes. Red
diamond indicates known GWAS signals. (D) PRS drop in accuracy when comparing imputed sets with
hc-WGS, assessed through relative risk and area under the curve (AUC).

Discussion

Genotype imputation will likely continue to be an important part of future genomic studies,
especially as large-population-wide genotyping efforts expand and reference panels continue to
grow. Researchers will increasingly be able to impute and re-impute a larger number of rare
variants and impute them to a higher quality. We have developed Selphi, a new software for
genotype imputation that enables just that: improved overall and rare variant imputation. We
benchmarked Selphi's performance against three widely used imputation methods: Beagle5.4,
Minimac4 and IMPUTEDS using the 1000 Genomes Project and TOPmed datasets. Selphi
achieved better imputation accuracy than any other tested method, across all minor allele
frequencies and ancestral backgrounds. In addition, we demonstrated Selphi's utility in large
biobank-scale datasets by showing Selphi's superiority compared to the next most accurate
model, Beagle5.4, using the UK Biobank dataset.

One of the main challenges in imputing rare variants is the lack of a suitable or large enough

reference panel for accurate imputation (Sengupta et al. 2023, Terao et al. 2023) Selphi may

help partially overcome this by implementing a heuristic IBD selection. By employing a rigorous
selection protocol of haplotype selection, Selphi effectively prioritizes haplotypes that are more
likely to share a true genetic lineage, as indicated by IBD, while reducing the likelihood of
confounding IBS instances. This fine-tuned approach lays the groundwork for a more accurate
and reliable imputation, which is particularly crucial when dealing with large genomic datasets
where the precision of haplotype matching can significantly impact the overall imputation

outcomes.

Unlike recent efforts to broaden and manipulate the reference panel (Mitt et al. 2017, Sun et al.

2022, Xu et al. 2022, Wuttke et al. 2023), Selphi increases accuracy within existing reference

panels, which is of particular importance when there is not enough data to manipulate or
broaden reference panels, which is often the case in non-European and non-British populations.

Notably, Selphi achieved particularly pronounced improvements in East Asian and African
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populations of the 1000 Genomes Project and Chinese Americans in the Topmed dataset.
These findings suggest that Selphi holds considerable promise for increasing imputation
accuracy in populations that have been historically underrepresented in genetic research
(Petrovski and Goldstein 2016, Martin et al. 2019, Atutornu et al. 2023).

It has been shown that improving imputation accuracy by improving the reference panel

translates into improved downstream analysis (Huerta-Chagoya et al. 2023, Terao et al. 2023).

Here we demonstrate that Selphi can improve both GWAS variant discovery and PRS
calculation without changing the reference panel, obtaining results in closer alignment to hc-
WGS.

In conclusion, Selphi is a promising genotype imputation method that achieves higher accuracy
than existing methods, which can be used to boost downstream analyses, such as GWAS
variant discovery and PRS. This advance in imputation, therefore, has the potential to improve

the accuracy and resolution of future genomic studies.
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