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Abstract 

The Allen Mouse Brain Atlas provides gene expression data for over 20,000 genes and has 

been extensively used in neuroscience. However, it’s constrained by a resolution of 200 µm³. 

We improved this to 25 µm³ for 4,083 genes by re-registering 401,660 sections to atlas space. 

From this, we produced an atlas with regions defined by shared molecular signatures and 

built an interactive online platform allowing exploration of gene expression patterns. 
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Main 

Gene expression atlases have substantially advanced our understanding of the organization of 

the mouse brain1–3. Of particular impact has been the Allen Mouse Brain Atlas (AMBA), 

offering brain-wide expression data for over 20,000 genes across the C57BL/6 (standard 

laboratory mouse) whole brain1–4. This resource is based on classical in situ hybridization 

(ISH) experiments, where the expression of each gene is measured in histological sections. 

Sections are registered to the three-dimensional (3D) Common Coordinate Framework 

version 3 (CCFv3) mouse brain atlas5, and reconstructed into 3D maps of gene expression. 

The AMBA has supported discoveries across neurodegeneration, neuroplasticity, and genetic  

disorders6. However, the AMBA is constrained by relatively coarse spatial resolution7 (200 

µm³)  and contains registration inaccuracies8 which blur anatomical detail.  

Recent advances in registration methods now allow for more accurate alignment of 

histological sections to 3D reference atlases than what was possible when the AMBA was 

first developed8–11. Using the DeepSlice toolkit8, along with the Advanced Normalisation 

Tools (ANTs) nonlinear alignment tool9, we re-registered the coronal portion of the AMBA 

ISH data (4,083 genes) to an extended version of the CCFv3, called the CCFv3 Blue Brain 

Project (CCFv3BBP)12. We then combined these registrations and segmentations to generate 

3D gene expression volumes at 25 µm³, a substantial increase over the 200 µm³ of the 

AMBA. To support exploration and reuse, the data has been shared through the EBRAINS 

Knowledge Graph (RRID:SCR_017612) and volumes have been integrated into the siibra 

explorer atlas viewer13. 

The main advance of this work is that it provides far more detailed spatial information than 

was previously possible9. By reconstructing thousands of datasets at high resolution in a 

common coordinate framework, the resource enables more refined and intuitive exploration 
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of gene expression patterns across the whole mouse brain. It also enables the automated 

identification of areas based on shared expression signatures. 

To create this resource, we began by downloading all coronal ISH datasets from the AMBA 

which were from postnatal day 56 C57BL/6 mice (totalling 401,660 sections from 1,078 

brains). We used DeepSlice (RRID:SCR_023854) to place each section into the CCFv3BBP. 

DeepSlice has previously been shown to achieve expert level section image to atlas 

registration accuracy8. For each brain, a subset of the alignments were reviewed and 

corrected with QuickNII (RRID:SCR_016854)10, and any changes to angle or position were 

propagated to all sections from that brain. Nonlinear tissue distortions were corrected using 

the Advanced Normalisation Tools (ANTs) toolbox, which registered each section to the 

corresponding Nissl template slice from the CCFv3BBP
12. This procedure was repeated for all 

sections (Figure 1a).  

To validate our registration pipeline, we compared its accuracy with the original AMBA 

registrations and with manual alignments (both from experts and novices) generated using 

QuickNII and VisuAlign (RRID:SCR_017978)11 (figure 1b). For the manual alignments, each 

rater placed sections from nine AMBA brains into the CCFv3BBP using QuickNII, and 

performed non-linear corrections for distortions using VisuAlign. We then measured how far 

each rater’s registrations within the CCFv3BBP deviated from the group average, providing an 

estimate of alignment error in microns8. We repeated this process, measuring the deviations 

of our alignments, and the AMBA’s, from this group average.  

Experts were most accurate (mean error: 193.6 µm), with novices being significantly less 

accurate (mean error: 257.9 µm; Tukey P<0.001). Our pipeline matched novice performance 

(mean error 252.8 µm; Tukey P=0.995), while remaining significantly less accurate than 

experts (Tukey P<0.05). Our pipeline outperformed the original AMBA registrations (mean 
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AMBA error 485.9 µm; Tukey P<0.001), as did novices (Tukey P<0.001) and experts (Tukey 

P<0.001). A major limitation of the AMBA registrations was poor estimation of cutting 

angles, which showed little correlation with those determined by neuroanatomists (r2 = 0.03, 

figure 1c). By comparison, the angles specified with our pipeline were highly correlated with 

the average neuroanatomist-determined angle (r2 = 0.823, Figure 1c).  
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Figure 1  
a, Pipeline overview. Coronal ISH sections from the Allen Brain Atlas are registered to the CCFv3bbp reference atlas 
using DeepSlice. Non-linear distortions are corrected using Advanced Normalisation Tool (ANTs). Empty space 
between sections is then interpolated creating high resolution 3D gene expression maps. b, Quantification of 
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registration error. The plot shows the distribution of alignment errors for novices (n=3), experts (n=3), our automated 
pipeline, and the original AMBA alignments. Our pipeline significantly outperforms the AMBA (p<0.001) and performs 
at a level comparable to novices (p=0.995). Red lines indicate the mean error for each group. Each data point 
represents one section c, Comparison of predicted sectioning angles. Scatter plots show the correlation between the 
average human-annotated angles (x-axis) and the angles predicted by our pipeline (left) and the original AMBA (right) 
for mediolateral (ML, blue) and dorsoventral (DV, orange) axes. Our pipeline's predictions show a strong correlation 
(r2=0.823) with human annotations, unlike the AMBA's (r2=0.03). 

 

Since our pipeline produced significantly more accurate alignments than those in the AMBA, 

we were able to construct gene expression maps at much higher resolution than the original 

200 µm³ volumes provided by the Allen Institute. Using these improved alignments, we 

generated 25 µm³ 3D volumes for 4,083 genes. Gaps between sections were interpolated, and 

experiments targeting the same gene were combined into a single averaged volume. This 

increase in resolution greatly improved visualization of gene expression in fine subregions 

(figure 2A). Genes with many available experiments such as Cap1 and Cacna1g (top two 

panels of figure 2A) yielded the most detailed reconstructions. However, even genes with a 

low number of samples can be reconstructed into high-quality 3D maps using our approach 

(bottom two panels of figure 2A). Since many datasets also contained Nissl stained sections, 

these were also registered and combined into a population average Nissl volume, this volume 

is reported on in more depth in Piluso et al.12. 

To make the resource more accessible, we built an online portal, available at https://neural-

systems-at-uio.github.io/spatial_brain_maps/, where users can search for genes of interest and 

explore their expression patterns. The portal also lets users select atlas regions and rank genes 

by specificity of gene expression in the chosen brain region, coverage, intensity, or a 

weighted mix of these metrics (figure 2b, supplementary figure 1). For interactive 3D 

viewing, we integrated all volumes into the siibra-explorer13 on the EBRAINS platform, 

allowing each gene to be visualised alongside an atlas.  
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Figure 2  
a, Comparison of gene expression volumes from the original Allen Brain Atlas (left, 200 µm³ voxels) and our pipeline 
(right, 25 µm³  voxels). Our high-resolution maps reveal finer anatomical details for genes with varying numbers of 
experimental samples (n). From top to bottom: Cap1 (n=26), Cacna1g (n=13), Satb1 (n=3), and Heatr5b (n=1). The 
values on the colour bar represent the range of shown pixel values. We set the max intensity of each plot at 70% of 
the max value in the volume so as to better display the variance present in each gene. The Allen institute has a 
smaller range of pixel values since it is lower resolution, greater down sampling has a smoothing effect which 
removes outlier values. b, Examples from the spatial search tool. The top-ranked gene is shown for queries targeting 
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thalamic areas (Plekhg1), the subthalamic nucleus (Pitx2), and the olivary pretectal nucleus (Gal). The 3D view (left) 
shows the expression of Plekhg1 within the thalamus (red) in the context of the whole brain. The coronal views show 
the precise expression patterns of Pitx2 and Gal within their respective target regions (outlined).  

For more than a century, brain atlases have been shaped by the methods available for defining 

neuroanatomical boundaries. Early atlases relied on features visible under the microscope  

through histochemical staining, later supplemented by functional criteria. Today, high-

resolution spatially registered datasets offer a way to automatically discover brain regions 

from patterns of gene expression. Earlier efforts have used clustering of AMBA data to create 

regions based on differential gene-expression14–17, but these attempts were limited by the 

original 200 µm³ AMBA resolution. Our volumes overcome this constraint, with 25 µm³ 

resolution allowing clustering at a resolution comparable to contemporary 3D atlases5. Using 

our gene-expression volumes we first mirrored one hemisphere onto the other to create a 

symmetrical dataset. The dimensionality of the data was reduced with Principal Component 

Analysis (PCA) and K-means clustering was applied, grouping voxels with similar 

expression profiles. The resulting clusters were then projected back into 3D to generate a 

fully data-driven atlas.  

To select the number of clusters, we tried various numbers of clusters on a subset of voxels 

and identified an “elbow point” where adding more clusters produced only small gains in 

performance (supplementary figure 2). This led us to choose 55 clusters for the final atlas. We 

refer to the final volume as the clustered area (“CArea”) atlas and treat each cluster as a 

region. Many regions in the CArea atlas recapitulate established neuroanatomical boundaries, 

such as the cortical layers (figure 3b, slices 186, 225, 286, and 379), and the border between 

the caudate-putamen and accumbens (figure 3b, slice 379). Some of these regions have been 

difficult to define in traditional murine brain atlases18, highlighting the value of a method 

which is able to identify these boundaries more objectively.  
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While spatial transcriptomic methods now allow the simultaneous imaging of thousands of 

genes, they are not yet scalable to the large cohorts needed for population-level atlasing19–21. 

Our resource integrates data from 1,078 animals, making the CArea atlas regions broadly 

representative rather than driven by a few mice. Since the atlas is in 3D, it is compatible with 

existing volumetric atlas analysis software22–24. Given that the number of clusters output from 

our pipeline is adjustable, it is possible for users to create use-case specific atlases if a 

particular number of parcellations is required. We consider the CArea atlas to be 

complementary to existing human-delineated atlases such as the CCFv3. 
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Figure 3 
a, Sagittal views of the top 4 principal components after running a voxel-wise iterative PCA on all 4,083 gene volumes. 
The colour scale represents the principal component (PC) value with bright yellow indicating high positive values and 
dark purple indicating low or negative values. These components capture the dominant patterns of co-expression 
across the mouse brain b, Side by side comparison of the regions from an established anatomical atlas (CCFv3BBP, 

left of dashed line) and those from our data-driven Clustered Area atlas (CArea atlas, right of dashed line) on 
representative coronal slices. The CCFv3BBP colours were modified such that each region was uniquely coloured. 
Each CArea was assigned the colour of the CCFv3BBP region it most overlapped with, if two CAreas were assigned the 
same colour, one was adjusted such that each CArea was uniquely coloured. Slice numbers refer to the coronal 
plane of the atlas.  
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In summary, we present high-resolution 3D gene expression volumes for the mouse brain. 

The volumes enable a population-scale, data-driven anatomical atlas that captures shared 

molecular signatures while faithfully recapitulating many known anatomical structures. 

Beyond the core dataset, we provide an intuitive search and visualization interface, ensuring 

accessibility. The full analysis pipeline is reusable and can be adapted to a wide range of 

future applications, bridging high-resolution molecular mapping with practical tools for 

exploration and investigation. 

Data sharing statement 

• Our online search portal can be accessed at https://neural-systems-at-

uio.github.io/spatial_brain_maps/.   

• All code for replicating our analysis is available from https://github.com/Neural-

Systems-at-UIO/interactive_gene_expression.  

• All registrations, gene expression volumes, and clustered atlases are openly accessible 

via the EBRAINS Knowledge Graph from 

https://search.kg.ebrains.eu/instances/7f8ef0e2-121a-4892-8a5e-1c7a8b693503.  

• The CArea atlas will be released via the brainglobe atlas API (RRID:SCR_023848)24. 

Acknowledgements 

We thank Heidi Kleven for her invaluable insights into atlasing terminology and methods, 

Lydia Ng for early discussions that helped shape the project's direction, and Michael 

Hawrylycz for valuable comments on the manuscript. We are also grateful to the Allen 

Institute for Brain Science for sharing their data in a curated and usable form. Finally, we 

acknowledge Sergio Rivas-Gomez from the Blue Brain Project for his high-performance 

computing support. This study was supported by the European Union’s Research and 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2026. ; https://doi.org/10.64898/2026.01.20.700446doi: bioRxiv preprint 

https://neural-systems-at-uio.github.io/spatial_brain_maps/
https://neural-systems-at-uio.github.io/spatial_brain_maps/
https://github.com/Neural-Systems-at-UIO/interactive_gene_expression
https://github.com/Neural-Systems-at-UIO/interactive_gene_expression
https://search.kg.ebrains.eu/instances/7f8ef0e2-121a-4892-8a5e-1c7a8b693503
https://doi.org/10.64898/2026.01.20.700446
http://creativecommons.org/licenses/by/4.0/


Innovation Program Horizon Europe under Grant Agreement no. 101147319 (EBRAINS 2.0), 

The Research Council of Norway under Grant Agreement no. 333157 (Norwegian INCF 

Node), the Blue Brain Project, a research centre of the École polytechnique fédérale de 

Lausanne (EPFL), and the Swiss government’s ETH Board of the Swiss Federal Institutes of 

Technology.  

 

Online Methods 

Data acquisition 

All ISH and corresponding segmentation data were downloaded via the Allen Institute’s API 

(RRID:SCR_005984) and filtered to include only coronally cut mouse brains which passed 

quality control and were from postnatal day 56, C57BL/6 mice.  We used the CCFv3BBP atlas9 

as the anatomical reference. This atlas is an extended and refined version of the Allen 

Institute’s CCFv3 atlas, incorporating several important improvements. It includes a non-

truncated main olfactory bulb, cerebellum, and medulla, thereby providing coverage of the 

entire mouse brain. It also offers more detailed anatomical annotations, including of the 

laminar organization within the cerebellum. In addition, the CCFv3BBP provides a 3D Nissl-

stained reference volume that is more accurately co-registered with the atlas labels than the 

Nissl volume provided with the CCFv3.  

Data registration 

To register the data, we first ran each whole brain dataset through DeepSlice (version 1.2.4), 

using the angle integration options and providing the section thickness reported by the Allen 

so as to improve accuracy. From each dataset, 5 sections covering the length of the brain were 

selected for quality control (most brains contained between 100 and 500 sections) and 

reviewed to correct errors in angle estimation or anteroposterior positioning. The cross-
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section from the CCFv3BBP Nissl reference template corresponding to each recalibrated ISH 

section was used for non-linear refinements. Using this Nissl section as reference image and 

the corresponding ISH histological tissue as the moving image, we applied the ANTs 

registration package and calculated both affine and non-linear transformations.  

Interpolation  

Segmentation images were first downsampled via average pooling to match the resolution of 

the CCFv3BBP (25 µm³). We then placed the segmentation data into CCFv3BBP space using the 

position as determined by our registration files. To correct for empty space between the sections 

we used a K nearest neighbour (KNN) interpolation method, where each voxel was assigned 

the average value of the five nearest segmentation pixels. To ensure that all voxels in each 

volume were equivalent and comparable we applied KNN approach to all voxels not just those 

for which segmentation data was missing, avoiding a scenario where some voxels are an 

average of 5 and others just single datapoints. This process produced smooth 3D volumes of 

gene expression at 25 µm³ resolution.  

Validation  

To quantify alignment error for each section, raters positioned sections in atlas space using 

QuickNII and VisuAlign. The registration generated by each rater was then compared to the 

mean position derived from all other raters. To obtain an error measure that reflected the full 

extent of each section rather than only its edges, a 2D grid was projected into the 3D atlas 

space. Every grid point was transformed according to the rater’s placement, and an identical 

grid was generated using the mean placement of the remaining raters. The Euclidean distance 

between corresponding points in these two grids (supplementary figure 3), expressed in 

microns, was used as the section-wise error metric (Figure 1b).   

Clustering 
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In order to make clustering across all 4,083 genes computationally feasible, we first ran a 

voxel-wise iterative Principal Component Analysis (PCA) on the gene volumes in order to 

reduce the dimensionality down from 4,083 genes per voxel to 299 principal components, 

retaining 70% of the original variance.  K-means clustering was then applied to this reduced 

data, clustering together voxels with similar molecular signatures. We then projected these 

clusters back into 3D producing atlas like volumes identifying regions of the brain with 

similar patterns of gene expression. The K-means clustering algorithm allowed us to choose 

the number of clusters, we therefore tested cluster numbers from 10 to 100 (incrementing by 

5) on a 1,000,000 voxel subset (supplementary figure 2). By analysing the change in the 

silhouette score, we were able to manually identify an elbow point in the graph at 55 clusters.  

For this reason, we chose the 55 regions for our “CArea" (Clustered-Area) atlas (each cluster 

functions as a region of the CArea atlas).  
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Supplementary Figure 1 
a, The region based search interface for our dataset. The input allows you to choose a region and then weight the 
ranking according to an array of metrics. b, with a more advanced multi region search functionality users can find 
genes which are highly expressed in one region but lowly expressed in another. Users can combine as many regions 
as they wish into their query. c, All volumes are viewable in 3D in the browser via the Siibra atlas explorer.  
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Supplementary Figure 2 
Running the k-means algorithm on a subset of the PCA voxels (1,000,000 voxels) helped us identify an elbow point at 
55 regions. Due to this we chose 55 as the number of regions in the CArea atlas.   
 

 

Supplementary Figure 3 
To measure the distance between two registrations we project a grid into atlas space, where the corners of the grid 
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align with the corners of the registration. We then measure the pairwise distance between corresponding points in 
each grid.  
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