

1 **A phylogenomic approach, combined with morphological characters gleaned via**
2 **machine learning, uncovers the hybrid origin and biogeographic diversification of the plum**
3 **genus**

5 Richard G. J. Hodel^{1,2,3*}

6 Sundre K. Winslow²

7 Si-Yu Xie⁴

8 Bin-Bin Liu⁵

9 Liang Zhao⁴

10 Gabriel Johnson²

11 Michael Trizna³

12 Alex E. White³

13 Rebecca B. Dikow³

14 Daniel Potter⁶

15 Elizabeth A. Zimmer¹

16 Jun Wen¹

17

18 ¹ Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff
19 AZ 86011, USA

20

21 ² Department of Botany, National Museum of Natural History, MRC 166, Smithsonian
22 Institution, Washington, DC, 20013-7012, USA

23

24 ³ Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution,
25 Washington, DC, 20560, USA

26

27 ⁴ College of Life Sciences, Northwest A&F University, Yangling 712100, China

28

29 ⁵ State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese
30 Academy of Sciences, Beijing 100093, China

31

32 ⁶ Department of Plant Sciences, University of California, Davis, California, 95616, USA

33

34 * Author for correspondence: richiehodel@gmail.com

35

36

ABSTRACT

37

38 The evolutionary histories of species have been shaped by genomic, environmental, and
39 morphological variation. Understanding the interactions among these sources of variation is
40 critical to infer accurately the biogeographic history of lineages. Here, using the geographically
41 widely distributed plum genus (*Prunus*, Rosaceae) as a model, we investigate how changes in
42 genomic and environmental variation drove the diversification of this group, and we quantify the
43 morphological features that facilitated or resulted from diversification. We sequenced 587
44 nuclear loci and complete chloroplast genomes from 99 species representing all major lineages in
45 *Prunus*, with a special focus on the understudied tropical racemose group. The environmental
46 variation in extant species was quantified by synthesizing bioclimatic variables into principal
47 components of environmental variation using thousands of georeferenced herbarium specimens.
48 We used machine learning algorithms to classify and measure morphological variation present in
49 thousands of digitized herbarium sheet images. Our phylogenomic and biogeographic analyses
50 revealed that ancient hybridization and/or allopolyploidy spurred the initial rapid diversification
51 of the genus in the early Eocene, with subsequent diversification in the north temperate zone,
52 neotropics, and paleotropics. This diversification involved successful transitions between tropical
53 and temperate biomes, an exceedingly rare event in woody plant lineages, accompanied by
54 morphological changes in leaf and reproductive morphology. The machine learning approach
55 detected morphological variation associated with ancient hybridization and quantified the
56 breadth of morphospace occupied by major lineages within the genus. The paleotropical lineages
57 of *Prunus* have diversified steadily since the late Eocene/early Oligocene, while the neotropical
58 lineages diversified much later. Critically, both the tropical and temperate lineages have

59 continued to diversify. We conclude that the genomic rearrangements created by reticulation
60 deep in the phylogeny of *Prunus* may explain why this group has been more successful than
61 other groups with tropical origins that currently persist only in either tropical or temperate
62 regions, but not both.

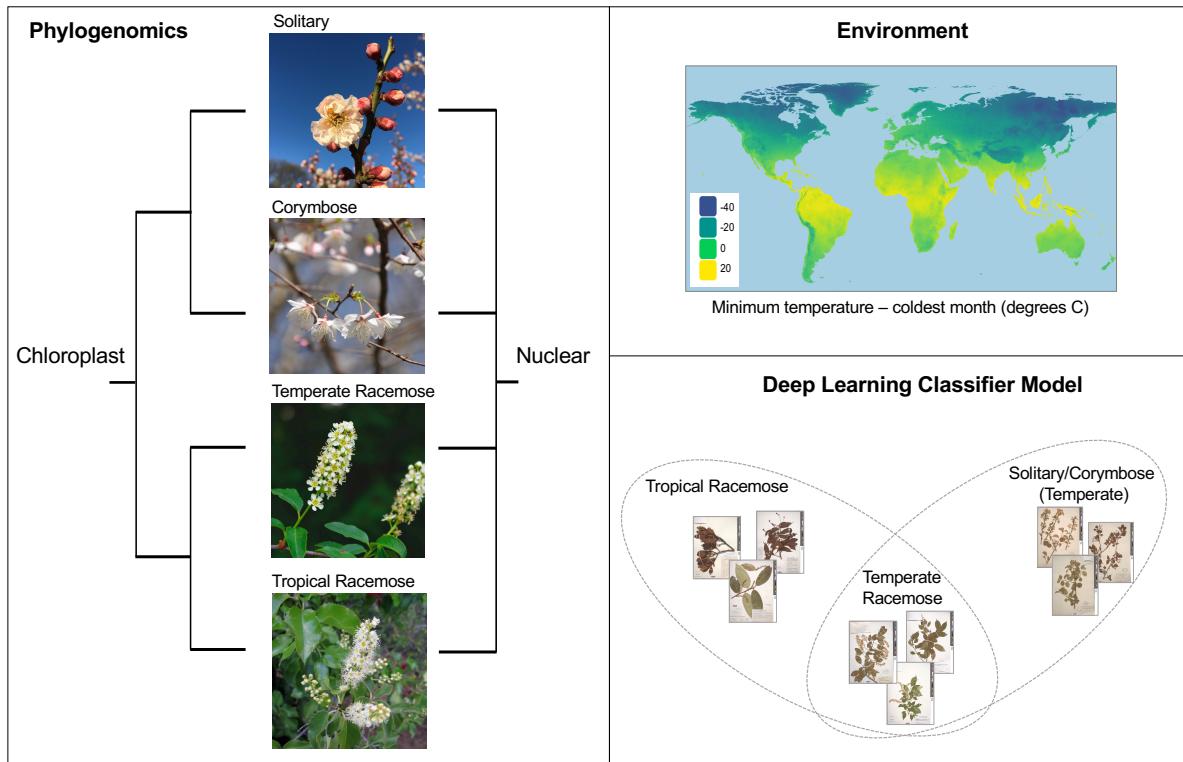
63

64

65 **Keywords:** allopolyploidy, herbarium specimens, hybridization, machine learning, niche
66 conservatism, tropical-to-temperate biogeographic transitions

67

68


INTRODUCTION

69 Bursts of speciation associated with changing environmental conditions have occurred
70 throughout the Tree of Life. Environmental factors, such as changes in climate, tectonic shifts,
71 mountain uplift, as well as biotic interactions, can all drive the diversification of lineages. In
72 particular, speciation may occur when lineages diversify to occupy newly available niches
73 resulting from changing environmental conditions. Classic evolutionary studies such as those
74 focused on Galapagos finches found that new ecological opportunities drove the rapid evolution
75 of new lineages (Schluter 2000). Climatic fluctuations have been implicated in promoting both
76 speciation and extinction in a variety of fauna (Weir and Schulter 2007). Changing
77 environmental conditions can have a particularly strong impact on plant lineages. For example,
78 increased global aridity likely promoted the diversification of both C4 grasses and succulent
79 lineages (Arakaki et al. 2011). Synthesis of current evidence suggests that many plant lineages
80 diversified in the tropics, sometimes spreading into temperate biomes (Spriggs et al. 2015), and
81 that many temperate lineages had a Boreotropical origin (Zhang et al. 2021, Nie et al. 2023).
82 Despite some evidence of shared biogeographic patterns, however, surprisingly few lineages
83 have successfully made transitions from tropical to temperate regions (Kerkhoff et al. 2014). In
84 fact, in the neotropics, the descendants of tropical ancestral lineages remained tropical in 94% of
85 woody angiosperms (Kerkhoff et al. 2014). Similarly, temperate lineages were quite conserved,
86 with 90% of temperate descendants arising from temperate ancestors (Kerkhoff et al. 2014).
87 These patterns of diversification are often attributed to the tropical conservatism hypothesis
88 (TCH) (Wiens & Donoghue 2004), which postulates that many lineages of tropical origin could
89 not adapt readily to the cooler, drier, and more seasonal temperate regions, and either were
90 extirpated (i.e., migrated to track tropical environments), or went extinct (Donoghue 2008).

91 In addition to environmental conditions, genomic changes can spark the diversification of
92 lineages. In some cases, reshuffling of genetic material may facilitate rapid diversification in
93 response to environmental change (Schenk 2021). A variety of genomic mechanisms, including
94 hybridization, gene duplication or loss, and/or genome doubling, can rearrange genomic material
95 such that new traits and adaptations develop to allow plant lineages to spread and diversify into
96 new niches and habitats (Xu et al. 2017, Hodel et al. 2022). Genome doubling may provide
97 extensive genetic variation and novelty upon which selection may act, driving adaptive
98 diversification (Seehausen 2004, Soltis and Soltis 2016, Doyle and Coate 2019, Griffiths et al.
99 2019, reviewed in Schenk 2021). Moreover, genomic changes in response to novel environments
100 may be coupled with morphological innovation (García-Verdugo et al. 2013). When lineages
101 encounter new environments, they may already possess phenotypes that facilitate their
102 occupancy of available niches in the community they enter, or the available niches in newly
103 encountered ecological conditions may drive diversifying selection on traits that are shaped to
104 promote survival in the novel niche space (Wellborn & Langerhans 2014). In some lineages,
105 success of diversification events in response to new ecological opportunities is mediated by
106 biological features as well as idiosyncrasies of the environmental conditions at the time
107 (Wellborn & Langerhans 2014). In summary, both evolutionary events and environmental
108 circumstances interact to shape the speciation and extinction rates that characterize
109 diversification (Spriggs et al. 2015).

110 One lineage that has been able to readily diversify in response to changing environments
111 was the genus *Prunus* (the plum genus, Rosaceae). This group contains approximately 250-400
112 evergreen and deciduous species that occur throughout the temperate regions of the northern
113 hemisphere and in the tropics and subtropics of both the Old and New Worlds (Rehder 1940,

114 Wen et al. 2008, Perez Zabala 2022). Species in this genus are key elements of both temperate
115 and tropical broadleaf forests. Despite its ecological and economic significance—*Prunus*
116 contains important crop species such as cherries, peaches, almonds, apricots, and plums—the
117 phylogenetic relationships of the major lineages in the genus are still unresolved. Historically,
118 the major groups within the genus were defined by inflorescence morphology—with three major
119 groups identified—solitary flower (e.g., peach), corymbose (i.e., producing a flat-topped
120 indeterminate cluster of flowers; e.g., cherries), and racemose (i.e., producing an indeterminate
121 inflorescence with the main axis not terminating in a flower; e.g., bird-cherries) (Rehder 1940;
122 Su et al. 2023). Multiple genetic studies using chloroplast DNA markers have inferred that the
123 solitary and corymbose groups form a clade that is sister to the racemose group (Bortiri et al.
124 2001, Wen et al. 2008, Chin et al. 2014, Zhao et al. 2016). However, nuclear markers have been
125 unable to resolve the backbone phylogenetic relationships of the genus (Lee & Wen 2001, Bortiri
126 et al. 2001, Wen et al. 2008, Chin et al. 2014, Zhao et al. 2016; Fig. 1). Furthermore, studies
127 using nuclear markers either relied on few nuclear loci (Wen et al. 2008, Chin et al. 2014, Zhao
128 et al. 2016) or had poor sampling in the understudied racemose group (Hodel et al. 2021).
129

130

131 **Figure 1.** Synthesizing genomic, environmental, and phenomic data can improve our understanding of the
 132 evolutionary processes that drive diversification. The summary of our phylogenetic understanding of the major groups
 133 in the plum genus (*Prunus*) based on chloroplast and nuclear markers (left). One environmental variable, minimum
 134 temperature of the coldest month, often determines the distributional limits of tropical taxa (upper right). Machine
 135 learning approaches, when applied to digitized museum specimens, can be used to infer how characters associated
 136 with reproduction and/or environmental adaptation correspond to phylogeny (lower right).

137

138

139 Attempts to characterize the backbone of the *Prunus* phylogeny have been obscured by

140 cytonuclear discord (Chin et al. 2014). One hypothesis that has been invoked to explain this

141 cytonuclear discord is that the genus diversified via an ancient allopolyploidy and/or

142 hybridization event (Zhao et al. 2016). Based on chromosome count data, the corymbose and

143 solitary groups are diploid, whereas nearly all racemose lineages are polyploid.

144 In summary, the evolutionary history of the plum genus remains unclear. To address

145 phylogenomic uncertainty, herein we assemble a phylogenomic dataset with hundreds of nuclear

146 loci and entire chloroplast genomes for each of 99 *Prunus* species representing all major lineages

147 in the genus. Our taxon sampling is the most complete to date, especially in the understudied
148 racemose group. We use the phylogeny of *Prunus* as a framework to investigate reticulation
149 events, to reconstruct the biogeographic history, and test hypotheses regarding the morphological
150 basis of key biogeographic transitions and reticulation. The morphological characters associated
151 with ancient biogeographic transitions and reticulation are notoriously difficult to measure in
152 extant species (e.g., McVay et al. 2017). Accordingly, we developed a novel approach to
153 quantify and categorize morphological variation: leveraging machine learning approaches with
154 digitized herbarium sheet image data (Fig. 1). Our specific objectives in this study are to:

- 155 1) Resolve the phylogenetic relationships of major groups within the genus.
- 156 2) Assess the role of ancient genomic rearrangements—specifically allopolyploidy
157 and/or hybridization—in shaping the evolutionary history of *Prunus*.
- 158 3) Clarify the biogeographic history of *Prunus*, especially concerning the timing and
159 frequency of transitions between tropical and temperate regions.
- 160 4) Implement a machine learning approach with thousands of digitized herbarium
161 specimen images to test for morphological evidence associated with biogeographic
162 transitions and reticulation events such as allopolyploidy and hybridization.

163
164
165
166

MATERIALS AND METHODS

167 Genomic data collection

168 *Hyb-Seq probe design*

169 We designed a 610-locus custom Hyb-Seq probe set to target nuclear genes in *Prunus*. Our
170 approach aimed to obtain genes with the highest probability of being strictly single-copy (i.e.,
171 single-copy nuclear genes; hereafter SCNs). We used an iterative process to BLAST publicly

172 available genomes against themselves to obtain a candidate pool of putatively SCN loci
173 (Supplemental Fig. S1); the subsequent analyses were conducted in Geneious Prime 2020.0.5
174 (<https://www.geneious.com>). We first conducted BLAST searches of the annotated genomes of
175 *P. persica* (L.) Batsch (peach, PRJNA31227; Verde et al. 2013), *P. avium* (L.) L. (sweet cherry,
176 PRJDB4877; Shirasawa et al. 2017), and *Malus domestica* (Suckow) Borkh. (PRJNA339703,
177 Daccord et al. 2017) against themselves using an e-value of 1e-10, which yielded 11,305, 10,703,
178 and 968 candidate SCNs, respectively. We used *Malus domestica* (apple), which is in the same
179 subfamily as *Prunus* – the Amygdaloideae – to expand the phylogenetic breadth of the baits. We
180 then BLASTed the candidate SCNs from *P. avium* against the SCNs from *P. persica*, and filtered
181 out loci that had multiple hits, were fewer than 300 nucleotides, and had less than 95.4%
182 pairwise identity. Loci with multiple hits were presumably not strictly single-copy, loci with
183 fewer than than 300 nucleotides have less phylogenetic information than longer loci, and loci
184 with pairwise identity close to 100% may not be variable enough to be informative (Weitemier et
185 al. 2014). This left 318 loci with a total of 262,684 nucleotides of sequence, and we retained the
186 sequences from *P. avium* for bait design. To obtain additional loci more closely related to
187 racemose *Prunus* species, we also BLASTed the candidate loci that passed the above length and
188 pairwise identity filter, and had two or fewer hits, against the *P. serotina* Ehrh. (black cherry)
189 transcriptome (Swenson et al. 2017; available via the Hardwood Genomics Project,
190 hardwoodgenomics.org). This yielded 96 additional SCNs with 72,172 nucleotides of sequence,
191 and the *P. serotina* sequence was retained for bait design. We also BLASTed the candidate
192 SCNs from *P. avium* against the SCNs from *Malus domestica*; after filtering out loci with
193 multiple hits, fewer than 600 nucleotides, and less than 80% or greater than 87.5% pairwise
194 identity, we retained 160 loci totaling 213,990 nucleotides. Here, we used sequences from *P.*

195 *avium* for bait design. Finally, because inflorescence architecture has historically been used to
196 define phylogroups in *Prunus*, we selected 36 functional genes that may be associated with
197 flowering (e.g., APETALA, FT; Yao et al. 2022). This gene set included 36 loci totaling 137,252
198 nucleotides, and we used *P. avium* sequences for bait design. In total, we selected 610 loci with a
199 total of 686,098 nucleotides for our custom *Prunus* bait set (Arbor Biosciences, Ann Arbor, MI).
200 In the Rosaceae, a custom bait set may perform better than a universal set (Ufimov et al. 2021).
201

202 *Field collection, DNA extraction, library preparation, and hybridization reactions*

203 Specimens were collected from the field (Supplemental Table S1) and stored in silica gel
204 until DNA was extracted from leaf tissue using a modified CTAB protocol (Doyle & Doyle
205 1987). Next, DNA libraries were constructed using a KAPA HyperPrep kit (available from
206 Roche, Basel, Switzerland) following the manufacturer's protocol except with quarter-volume
207 reactions for each individual. Briefly, DNA extractions were fragmented via sonication using the
208 QSonica ultrasonicator (Newtown, Connecticut, USA), uneven ends were repaired and A-tailed,
209 and Illumina adaptors were ligated to the DNA fragments. Next, AMPure magnetic beads were
210 used to purify and size-select the adaptor ligated DNA, and the DNA libraries were PCR
211 amplified to add unique i5 and i7 indexed oligonucleotides (i.e., barcodes). Libraries were
212 pooled in groups of eight with the criteria of balancing samples among presumed phylogenetic
213 distance and concentration prior to the hybridization capture reaction with custom-designed
214 baits. DNA libraries were hybridized with the baits for 48 hours at 60°C following the MyBaits
215 v4 manual (Arbor Biosciences, Ann Arbor, Michigan, USA). The hybridization enriched
216 libraries were combined with unenriched DNA libraries in a 60:40 ratio to enable generation of
217 plastomes from off target reads. All enriched and unenriched libraries were combined into a

218 single tube and sent for 2x150bp sequencing on the Illumina HiSeq 4000 at Novogene
219 (Sacramento, California, USA). We also acquired sequence data for one species from NCBI
220 GenBank (Supplemental Table S1). In total, we generated or obtained data for 119 accessions
221 (Supplemental Table S1) representing 101 species, which include 99 *Prunus* species and two
222 outgroups (*Lyonothamnus floribundus* A.Gray and *Physocarpus opulifolius* (L.) Maxim.). These
223 outgroups were selected because *Lyonothamnus* is likely the sister lineage of *Prunus* (Xiang et
224 al. 2017), and *Physocarpus* is more distantly related but within the Amygdaloideae (Xiang et al.
225 2017, Zhang et al. 2017).

226

227 *Plastome assembly and phylogenetic inference*

228 First, raw sequencing reads were quality filtered and Illumina adapters were removed using
229 bbdsk (<https://sourceforge.net/projects/bbmap/>). GetOrganelle (Jin et al. 2020) was used to
230 generate plastomes for each species using the reads cleaned by bbdsk. Of the 119 accessions
231 included in the final dataset, 75 produced complete, circular plastomes after an initial run
232 through GetOrganelle. For the remaining 44, we used minimap2 (Li 2018) implemented in
233 Geneious Prime 2020.0.5 (<https://www.geneious.com>) to assemble the contigs and scaffolds
234 from GetOrganelle, using the *Prunus avium* plastome (NCBI accession number MK622380) as a
235 reference to generate as complete as possible plastomes. After using minimap2 on the non-
236 circularized plastomes, we obtained nearly complete plastomes for all accessions. To ensure that
237 the use of *Prunus avium* as a reference did not bias the plastome results, we constructed a
238 phylogeny using the plastomes we generated, as well as all publicly available *Prunus* plastomes
239 (N = 17), to check that each newly sequenced accession is placed reasonably in the phylogeny
240 (Supplemental Table S2). The plastome phylogeny was inferred using RAxML with 100 rapid

241 bootstrap replicates and 20 independent maximum likelihood searches (i.e., the following
242 parameter settings: “-f a -m GTRGAMMA -p 12345 -x 12345 -# 100”). All analyses, unless otherwise
243 stated, were run on the Smithsonian Institution High Performance Cluster (SI/HPC, “Hydra”)
244 (<https://doi.org/10.25572/SIHPC>).

245

246 *Hyb-Seq locus assembly*

247 We used the software package HybPiper v2.16 (Johnson et al. 2016) to assemble nuclear
248 loci. The same quality filtering and Illumina adapter removal strategy as with the plastome
249 pipeline was used with the nuclear data (i.e., cleaning and trimming using bbduk). We followed
250 the core scripts of the HybPiper pipeline; we first used `hybpiper assemble -run_intronerate` to map
251 reads using BWA (Li & Durbin 2009), sorted reads into fasta files, and ran the SPADES
252 assembler (Bankevich et al. 2012). Next, the command `hybpiper stats` was used to get the lengths
253 of the recovered gene sequences, visualize the success of each gene for each species, and
254 generate a file of descriptive statistics for the assembly (Supplemental Table S3, Supplemental
255 Fig. S2). The command `hybpiper retrieve_sequences` was used to retrieve exons, introns, and
256 supercontigs from each gene region for every species, and put them in an unaligned fasta file.
257 Next, for each type of locus (i.e., exons, introns, and supercontigs), the unaligned gene files were
258 aligned using MAFFT (Katoh & Standley 2013) with the following parameter settings: “--
259 maxiterate 5000 --auto --adjustdirectionaccurately --leavegappyregion.” The resulting alignments were
260 trimmed using the `phyx` command `pxclsq` with the proportion of sites required to have data (-p
261 option) set at 0.5 (Brown et al, 2017). For each of the trimmed alignments, gene trees were
262 estimated using RAxML (Stamatakis 2014) with 100 rapid bootstrap replicates and 20
263 independent maximum likelihood searches (i.e., the following parameter settings: “-f a -m

264 GTRGAMMA -p 12345 -x 12345 -# 100”). After confirming that exons and supercontigs produced
265 similar species tree topologies (Supplemental Fig. S3), we used supercontigs for all subsequent
266 analyses.

267

268 *Species tree estimation*

269 The nuclear species tree was estimated using ASTRAL-III (Zhang et al. 2018), an
270 approach consistent with the coalescent, to summarize the 587 gene trees. We used the ASTRAL
271 quartet scores to assess nodewise support for inferred phylogenetic relationships. A
272 concatenation approach implemented in RaXML, with 100 rapid bootstrap replicates and 20
273 independent maximum likelihood searches, was also used for comparative purposes. For some
274 downstream analyses (e.g., divergence dating), it was necessary to have a phylogeny with
275 meaningful branch lengths. For these analyses, we used the ASTRAL topology as a constraint
276 tree for a RAxML tree search to obtain a species tree with the ASTRAL topology but with
277 proportional branch lengths.

278

279 *Gene tree discordance analysis*

280 To assess congruence between gene trees and the species tree, we used the program
281 phyparts (Smith et al. 2015). At each node in the tree, phyparts compares the rooted gene tree
282 topologies with the rooted species tree to label the number of genes that are concordant,
283 discordant, and uninformative relative to the species tree. Gene trees were rooted for the phyparts
284 analysis and we considered any gene trees with less than 50% bootstrap support at a given node
285 to be uninformative for that node (i.e., -s 50 option).

286

287 *Paralogs*

288 We used the tree-based paralog detection implemented in HypPiper 2.0+ to distinguish
289 between true orthologs and paralogs. The HybPiper post-processing command `hybpiper`
290 `paralog_retriever` was used to retrieve the multiple sequences for putative paralogous genes. Next,
291 the unaligned retrieved gene sequences were inputted into a phylogenetic pipeline that included
292 alignment with MAFFT (Katoh & Standley 2013) and phylogeny construction with FastTree
293 (Price et al. 2009). We manually examined the resulting phylogeny for each gene. In some cases,
294 genes suspected to be paralogs formed a clade, indicating that the putative paralogs may be
295 alleles and not the result of duplication. Alternatively, genes that were truly paralogs would
296 present as multiple copies dispersed throughout the phylogeny inferred by FastTree. For all 610
297 genes, we classified paralogy status based on the presence or absence of paralogs. If paralogs
298 were detected, we manually inspected the paralog tree for such genes to determine if the
299 suspected paralogs clustered, or were in fact true paralogs dispersed throughout the gene tree. In
300 the cases where true paralogs were detected, we discarded that gene from the analysis. In the
301 cases where the main contig and additional contigs clustered and formed a clade, we retained the
302 primary copy outputted by HybPiper. We discarded 23 genes that had true paralogs, and retained
303 587 genes for downstream phylogenetic analyses.

304

305 *Hybridization and allopolyploidy analyses*

306 Because hypotheses of ancient hybridization and allopolyploidy have been proposed to
307 explain the origin and diversification of this group, we used `phylonet` v3.8.2 (Than et al. 2008) to
308 investigate potential reticulation. We assembled 20 haphazardly sampled datasets each consisting
309 of seven taxa, representing the major lineages—one species each from the corymbose, solitary-

310 flower, and temperate racemose clades, three from the tropical racemose clade, and an outgroup
311 (i.e., *Physocarpus opulifolius*). We constructed rooted gene trees for each gene in each of the 20
312 datasets using RAxML (Stamatakis 2014) with 100 rapid bootstrap replicates and 20 independent
313 maximum likelihood searches. We used the maximum pseudolikelihood approach (Yu &
314 Nakhleh 2015) to infer networks with maximum reticulations set to 1, 2, and 3. We ran multiple
315 replicates (n=10) for each dataset with each of the three maximum reticulation values. For each
316 dataset, the networks with the optimal pseudolikelihood scores were retained and visualized
317 using Dendroscope (Huson & Scornavacca 2012).

318 To investigate histories of allopolyploidy, and for comparison with reticulation results
319 from phylonet, we used the program GRAMPA (Thomas et al. 2017). This approach uses a least
320 common ancestor mapping algorithm to reconcile gene trees and species trees (Goodman et al.
321 1979; Page 1994) so that polyploidy events can be placed on a phylogeny. GRAMPA can
322 identify modes of polyploidy as well as place whole genome duplications (WGDs) on a
323 phylogeny, and infer parental participants in instances of polyploidy. The user can input clades
324 of interest that are suspected to have a polyploid origin, or use a global search that considers if
325 all clades could be the result of WGD. We used the former approach to target specific major
326 clades that were hypothesized to have an ancient polyploid origin. Specifically, we tested the
327 nodes defining the following clades: temperate racemose, solitary-flower, corymbose, all
328 temperate ('Temp'), tropical ('Trop'), core tropical ('CTrop'), Australasia paleotropical ('APal'),
329 South American neotropical ('SNeo'), and North American neotropical ('NNeo') (see Fig. 2A
330 for clade definitions). In the analysis, we allowed any other node in the tree to be a parental
331 lineage to any clades determined to be of polyploid origin. For hypothesized instance of

332 polyploidy, GRAMPA assesses if a standard singly-labeled species tree or a multi-labeled tree is
333 the most parsimonious explanation of the data.

334 To complement the GRAMPA analysis and investigate all nodes in the phylogeny, we
335 used the approach of Yang et al. (2017) to map duplications to nodes in the species tree. Briefly,
336 we mapped duplication events within orthogroups to the ASTRAL species tree. For a given
337 subclade, if two or more taxa overlapped between daughter clades, a gene duplication event was
338 counted at the node which was defined as the most recent common ancestor of the subclade on
339 the ASTRAL species tree. We required the average bootstrap percentage for each orthogroup to
340 be >50.

341

342 *Environmental characterization*

343 To quantify the environment for major groups, we used a Principal Components Analysis
344 (PCA) to synthesize variation in the 19 WorldClim bioclimatic variables
345 (<https://www.worldclim.org/>) at a 2.5-minute resolution. The values for each of the 19 variables
346 were extracted for georeferenced herbarium specimens that represented each group using the R
347 packages ‘dismo’ (Hijmans et al. 2017) and ‘raster’ (Hijmans 2016). Two approaches were used
348 to quantify the environmental variation, first between two groups—temperate versus tropical—as
349 well as a comparison of four groups: temperate diploid (solitary + corymbose), temperate
350 racemose, neotropical racemose, and paleotropical racemose. We distilled the variation in 19
351 bioclimatic variables into 3 PC axes using the R package ‘vegan’ (Oksanen et al. 2017). For each
352 of the four groups, we defined 95% confidence interval ellipses, which indicate the region with
353 95% probability that the centroid is contained within the ellipse. For this analysis, we only used
354 the species for which we had genomic data, and a total of 10,011 herbarium specimen records

355 were included. Although this approach only captures present environmental variation, synthesis
356 has revealed that niches are more phylogenetically conserved than expected (Donoghue 2008),
357 and accordingly surveying all extant species in a lineage can give a reasonable approximation for
358 the environment in which a given lineage evolved. We also used the GPS data to collect
359 elevation data of each specimen using the R package ‘rgbif’ (Chamberlain et al. 2023). This was
360 done primarily to investigate whether tropical species occurred at lower or higher elevations,
361 because some high elevation tropical regions may resemble temperate environments more
362 closely than tropical ones, and this may impact our interpretation of biogeographic results.

363

364 *Dating and biogeographic analysis*

365 To investigate the timing and biogeographic history of *Prunus*, we used a biogeographic
366 ancestral range estimation analysis implemented in BioGeoBears (Matzke 2012, 2013). First, we
367 used treePL, a method for estimating divergence times on a phylogeny using penalized
368 likelihood, to infer divergence dates for all nodes in the *Prunus* phylogeny. Three calibrations
369 were used to date the phylogeny. We used *Prunus cathybrowniae* (Benedict et al. 2011) from the
370 Early Eocene of North America as the most recent common ancestor (MRCA) of the diploid
371 (i.e., corymbose+solitary) lineages (stem lineage leading to node Dip; Fig. 2A), with a minimum
372 age of 50 million years ago (Mya). The fossil *Prunus wutuensis* (Li et al. 2011) from the early
373 Eocene of East Asia (Shandong, China) was used to fix the MRCA of crown *Prunus* to a
374 minimum age of 58 Mya. Next, the crown of the Amygdaloideae was fixed at a minimum age of
375 90 Mya based on a calibrated Rosaceae phylogeny from Xiang et al. (2017). Similarly, we
376 constrained the age of the stem Amygdaloideae to have a minimum age of 100 Mya using the
377 calibrated Rosaceae phylogeny from Xiang et al. (2017) as a guide. Using BioGeoBears (Matzke

378 2013), we considered six possible biogeographic models (DEC, DEC + J, DIVALIKE,
379 DIVALIKE + J, BAYAREALIKE, BAYAREALIKE + J) and selected the optimal model for the
380 data using AIC and AICc comparisons. Likelihood ratio tests were also used to determine if the
381 more parameter-rich +J models were preferred compared to the equivalent models without the +J
382 term.

383 We defined seven biogeographic regions based on geography: North America, South
384 America, Africa, Europe, West Asia, East Asia, and Australasia. In this analysis, the maximum
385 areas was set to two. We also used a biome-based approaches to delimit biogeographic regions.
386 Using the georeferenced herbarium data from the previous section ('*Environmental analysis*'),
387 we coded each species' presence in each of the 14 biomes delineated in the Ecoregions-17
388 dataset (Dinerstein et al. 2017). We combined similar biomes such that the BioGeoBears analysis
389 would be computationally feasible and the results readily interpretable. We defined four biome-
390 based biogeographic regions: 1) Dry (Desert & Xeric Shrubland/Mediterranean Forests,
391 Woodlands & Scrub); 2) Cold (Boreal Forests & Taiga/Montane Grasslands & Shrublands); 3)
392 Temperate (Temperate Broadleaf & Mixed Forests/Temperate Conifer Forests/Temperate
393 Grasslands, Savannas & Shrublands); 4) Tropical (Tropical & Subtropical Coniferous
394 Forests/Tropical & Subtropical Dry Broadleaf Forests/Tropical & Subtropical Grasslands,
395 Savannas & Shrublands/Tropical & Subtropical Moist Broadleaf Forests). In this analysis, we set
396 the maximum areas to four. The frequency and type of biogeographic events were estimated
397 using Biogeographic Stochastic Mapping (BSM) in BioGeoBears (Matzke 2013). For each of the
398 sets of biogeographic regions (i.e., continent-based, biome-based), we selected the optimal model
399 based on AIC and AICc comparisons and ran the BSM analysis on each biogeographic model,
400 with 50 independent mappings. The BSM approach can differentiate between biogeographic

401 events that occur at speciation nodes (i.e., cladogenesis events such as sympatric speciation,
402 vicariance, or founder events) versus transitions occurring along branches (e.g., anagenetic
403 dispersal).

404

405 *Diversification analysis*

406 To investigate the variation in diversification rates across the phylogeny, we implemented
407 an episodic birth-death model (EBD; Höhna 2015) and a branch-specific diversification model
408 (LSBDS; Höhna et al. 2019) in RevBayes (Höhna et al. 2016). The EBD model assumes
409 speciation and extinction rates are constant within each time interval but are allowed to vary
410 between time intervals. We used log-transformed rates following a Horseshoe Markov random
411 field prior distribution; this approach assumes that rates are autocorrelated. The LSBDS model
412 assumes rate heterogeneity across branches and does not require *a priori* assignment of shifts. In
413 other words, this model allows for a birth-death process with diversification rates that can vary
414 among branches. We used exponential priors for both diversification and extinction rates and
415 used 50,000 generations of reversible-jump Markov chain Monte Carlo, with 25% burnin, to
416 sample models with a variety of rate shift placements.

417 The dated species tree inferred from ASTRAL, with node ages calibrated using penalized
418 likelihood in *treePL*, was used as input for the EBD and LSBDS models. We report the
419 speciation rate, extinction rate, relative extinction rate, and net diversification rate. The software
420 CRABS (Congruent Rate Analyses in Birth–death Scenarios; Höhna et al. 2022) was used to
421 assess heterogeneity in diversification rates, and if rate patterns were robust to the non-
422 identifiability of the birth–death model. Specifically, we assessed the estimated posterior median

423 from the EBD model to compare speciation and extinction rate over time. The posterior median
424 is considered a robust estimate for such rates (Magee et al. 2020).

425

426 **Morphological data collection**

427 *Herbarium image analysis*

428 Because of the rich representation of *Prunus* species in museum collections, we used a
429 deep learning approach with digitized herbarium specimen sheets to test the degree to which
430 morphological classifications of species and/or lineages corresponded to phylogenetic
431 hypotheses. We assembled a dataset of 4,228 images representing the 99 *Prunus* species with
432 genomic data in this study. These images were downloaded using the ‘idig_search_media’
433 function in the ‘ridigbio’ R package (Michonneau et al. 2016). We used exiftool
434 (<https://exiftool.org/>) to remove EXIF metadata from the images using the command “exiftool -
435 overwrite_original -EXIF= *.jpg”). This approach removes metadata often incompatible with image
436 processing libraries commonly used in machine learning. We also trimmed the edges of the
437 digitized images before using them in downstream machine learning analyses. This was done to
438 remove non-biological information, such as herbarium labels, color bars, and scale bars, from the
439 digitized herbarium sheet. We removed the top 20% and bottom 20% of every image used in
440 machine learning analyses. This unnecessarily removed some biologically relevant features, but
441 was conservative for ensuring the removal of non-biologically meaningful information on the
442 images. We investigated both trimmed and untrimmed sheets to test the impact of removing the
443 bottom 20% and top 20% of each sheet; hereafter these sheets are referred to as ‘trimmed’ or
444 ‘whole sheet’, respectively. Furthermore, because we had thousands of digitized herbarium

445 sheets available, this approach represented a reasonable balance between removing too much
446 data and ensuring that any data with the potential to bias results was excluded.

447

448 *Classification Algorithms*

449 To assess if morphological variation corresponded to genetic variation, we developed a
450 supervised machine learning classifier algorithm using the fastai (<https://github.com/fastai/fastai>)
451 deep learning library, which is built using PyTorch libraries (<https://pytorch.org>), to classify
452 herbarium sheet images into categories. The labels for each category were assigned based on
453 clades inferred using genomic data. We used two approaches for the classification analysis. First,
454 we assigned labels of ‘diploid species,’ corresponding to all species with solitary and corymbose
455 inflorescences, and ‘tropical racemose,’ which referred to all tropical species with racemes.
456 These two groups were selected because the phylogenetic relationship between these two groups
457 was the same in the nuclear and chloroplast phylogenies. This model was trained and validated
458 using a total of 5,045 herbarium sheet images representing 81 species, with 2,746 in the
459 solitary/corymbose group, and 2,301 in the tropical racemose group. In each group, 80% of the
460 labeled input data were used for training, and 20% for validation. The model was run for 24
461 epochs until an accuracy rate of 97.2% was achieved. As an additional check that the model was
462 performing well, we tested hundreds of specimens from species in either the solitary/corymbose
463 groups ($N = 452$), or the tropical racemose groups ($N = 426$), which were not species used to
464 train or validate the model. Next, the additional ‘test’ data in this implementation were species
465 from the temperate racemose group ($N = 676$). This group was selected as test data because its
466 phylogenetic position was different between the nuclear and chloroplast topologies. Essentially,
467 this machine learning classification approach was used to test if there were morphological

468 signatures of hybridization in the temperate racemose group that correspond to the genomic
469 signatures of hybridization detected. Although the model was not trained to classify temperate
470 racemose species, we expect that if the temperate racemose group arose via hybridization,
471 species in this group may retain some morphological features from both the solitary/corymbose
472 group and the tropical racemose group, if these two groups are the parental participants in
473 ancient hybridization. The second classifier model we developed had the goal of distinguishing
474 between four major groups: temperate diploid, temperate racemose, neotropical racemose, and
475 paleotropical racemose. This second model was trained and validated using a total of 4,117
476 herbarium sheet images representing 81 species. In each group, 80% of the labeled input data
477 were used for training, and 20% for validation. The model was run for 24 epochs until an
478 accuracy rate of 91.3% was achieved. This second classification model was built so we could
479 ultimately measure the breadth of morphological variation across specimens that could be
480 successfully categorized in one of the four groups using a dimensionality reduction approach
481 called IVIS (described below).

482

483 *Gradient CAM*

484 As a further ground-truthing step to ensure that the classification algorithm was assessing
485 biologically meaningful variation, as opposed to learning biologically meaningless features for
486 identification (e.g., labels, rulers), we used Gradient Class Activation Mapping (Grad-CAM), an
487 approach for visualizing how deep neural networks make their predictions (Selvaraju et al.
488 2017). Briefly, Grad-CAM generates a heatmap highlighting the regions in an input image most
489 important for why a particular prediction was made. A Grad-CAM algorithm takes the output of
490 a convolutional layer in the neural network and computes the gradient of target category in

491 relation to that layer’s activations, which are the pixels that are ‘activated’ by the model—the
492 pixels that are most important for determining the class. The gradients of target category are then
493 unsampled and overlaid onto the query image to generate a heatmap highlighting pixels and
494 regions of the image most important for determining the prediction. Grad-CAM specifically
495 excels when applied to Convolutional Neural Networks (CNNs), due to their ability to learn and
496 extract useful features from images. By interrogating the pixels of an image that the model
497 considers important, Grad-CAM can inform why and how a CNN makes its predictions. We
498 sampled the final layer of the CNN, as well as the second-to-last and third-to-last layers. We
499 categorized the heatmap images as classifying based on leaf features, floral features, or
500 neither/ambiguous. Each image with both leaf and floral structures present was classified as
501 ‘floral’, ‘mixed’, or ‘leaf’. We also assigned images that did not fall into the above categories as
502 ‘leaf with no floral structure present’, ‘ambiguous’, or ‘problematic’. The last two categories
503 were for images where it was difficult to tell if the heatmap favored either floral structures or
504 leaves, or if the heatmap was overly focused on non-biological information, respectively.

505

506 *Morphological space in tropical and temperate groups*

507 IVIS (Implicit Variational Information Sharing) is a deep learning approach with the goal
508 of mapping high-dimensional data into low-dimensional space. Critically, IVIS works well with
509 image data and can preserve distances between samples in a global sense, which is not always
510 true using other dimensionality reduction methods such as PCA, t-SNE, or umap (Szubert et al.
511 2019, Chari et al. 2021). In the case of image data, IVIS works by encoding the input image into
512 a lower-dimensional representation, and then using a decoder to reconstruct the image. During
513 training, the network learns to form a compact representation by minimizing the reconstruction

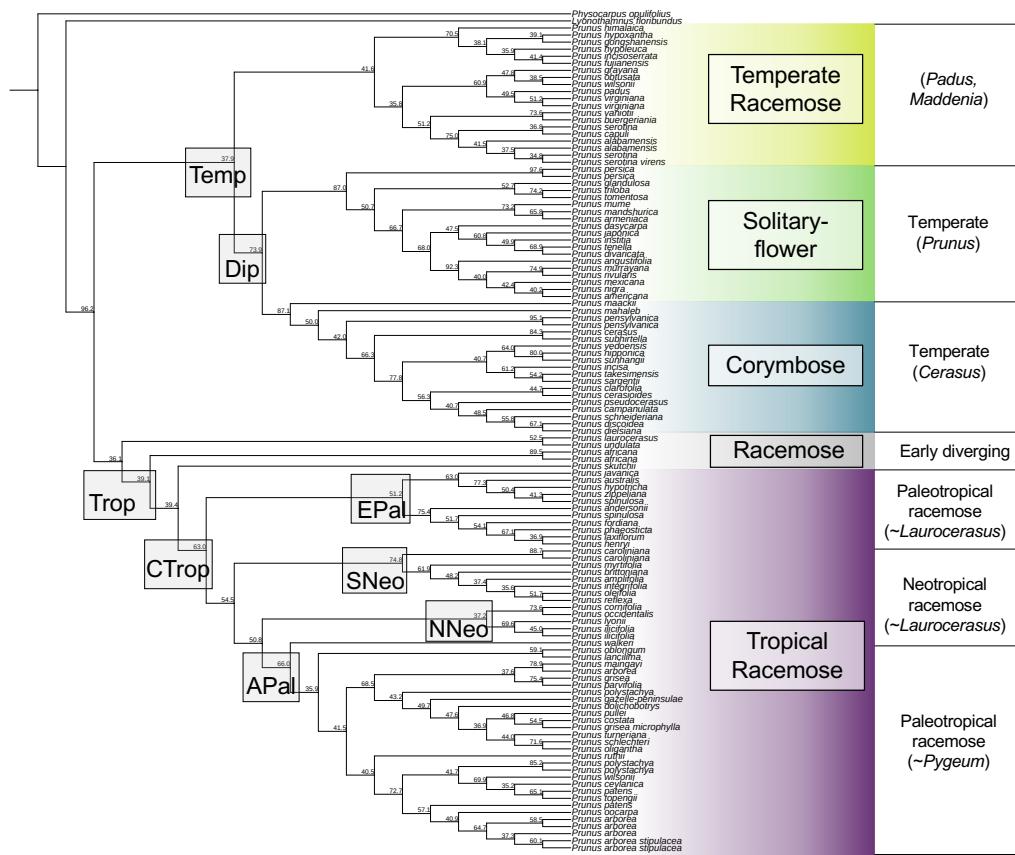
514 loss and encouraging the low-dimensional space to be continuous and well-structured through
515 the use of a regularization term. The low-dimensional representation learned by IVIS can be used
516 for various tasks, such as clustering, visualization, or further fine-tuning for classification tasks.
517 IVIS has been shown to be effective for image data, outperforming traditional methods such as
518 PCA and t-SNE in terms of clustering and visualization quality. Here, we use IVIS to reduce the
519 highly-dimensional variation present in image data into 2-dimensional space to make
520 comparisons among specimens and groups.

521

RESULTS

523 *Phylogenomic analyses*

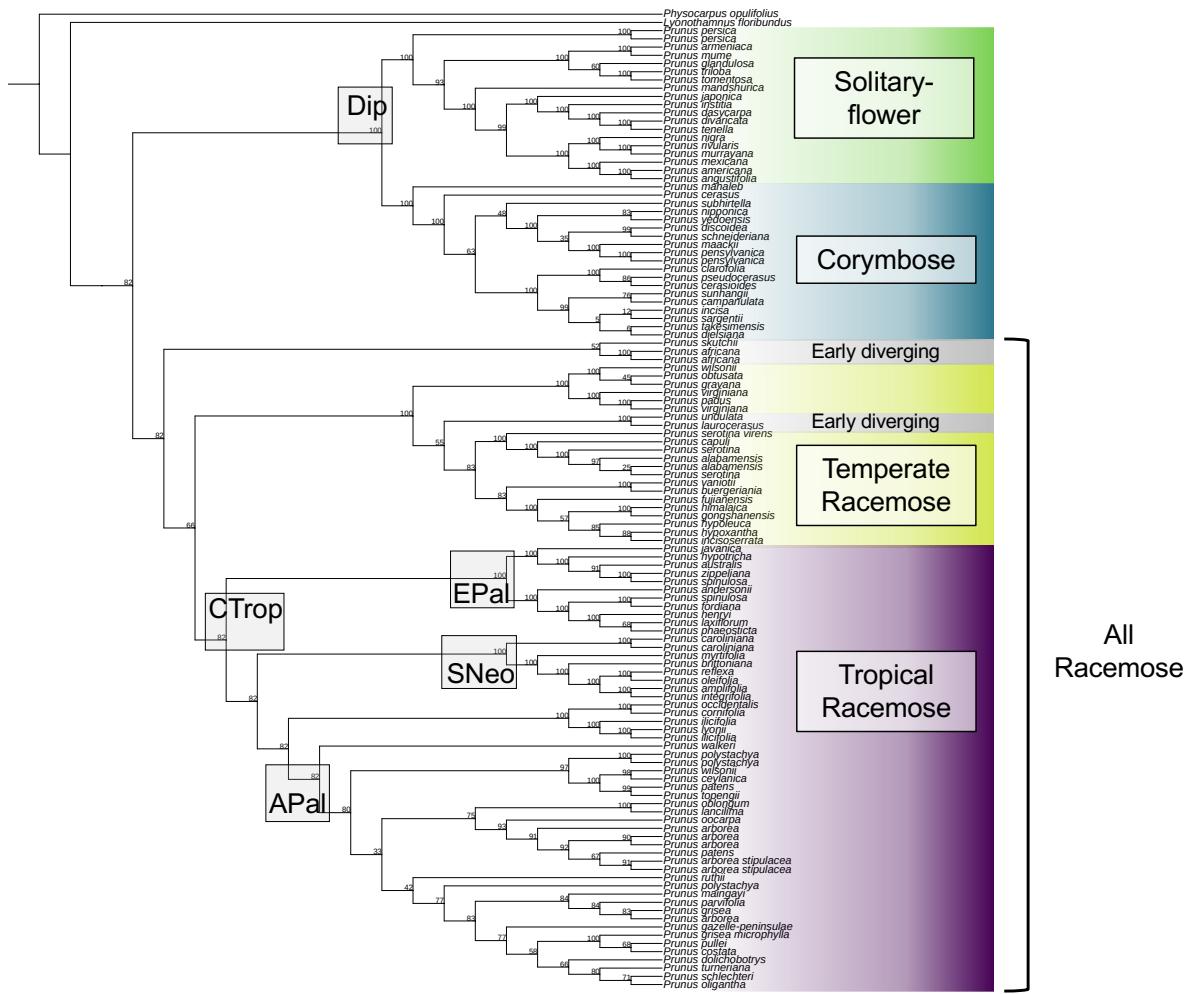
524 For 99 *Prunus* species representing all major lineages, we assembled a dataset of 587
525 nuclear genes and complete chloroplast genomes to infer phylogeny. The nuclear coalescent
526 species tree inferred using ASTRAL (Fig. 2A) recovered monophyletic corymbose and solitary
527 groups, but a paraphyletic racemose group. With our robust sampling, the solitary, corymbose,
528 and temperate racemose species form a clade, although with modest support (37.9% ASTRAL
529 quartet support (QS) score; see node Temp (“Temperate”), Fig. 2A). This clade of solitary,
530 corymbose, and temperate racemose taxa was sister to a large clade composed of tropical
531 racemose species, including representatives from both the picts and paleotropics. The monophyly
532 of each of the solitary and corymbose clades was strongly supported (i.e., > 70% QS; Fig. 2A).
533 The sister relationship between the solitary and corymbose clades also had strong support (73.9%
534 QS score; node Dip (“Diploid”), Fig. 2A). There were also several other strongly supported
535 clades, including the paleotropical subgenus *Pygeum*, and the clade of neotropical racemose


536 species (see nodes APal (“Australasian paleotropical”), EPal (“East Asian paleotropical”) and
537 SNeo (“Neotropical, predominantly South America”), respectively; Fig. 2A).

538 The paleotropical racemose species did not form a clade – the neotropical racemose
539 species were nested within the paleotropical group (Fig. 2A). A clade composed of nearly all
540 tropical racemose species, except for a few early-diverging lineages (*Prunus undulata* Buch.-
541 Ham. ex D.Don, *P. laurocerasus* L., *P. africana* (Hook.f.) Kalkman, and *P. skutchii* I.M.Johnst.),
542 had relatively strong support (63.0% QS score; see node CTrop (“Core Tropical”), Fig. 2A).
543 Additionally, the New World (primarily neotropical) racemose species were not monophyletic.
544 Whereas the exclusively South American neotropical racemose species formed a strongly
545 supported clade, four other New World racemose species (*P. ilicifolia* (Nutt. ex Hook. & Arn.)
546 D.Dietr., *P. lyonnae* (Eastw.) Sarg., *P. occidentalis* Sw., and *P. cornifolia* Koehne) formed a clade
547 with low support that was sister to the Australasian paleotropical racemose clade (Fig. 2A). The
548 concatenation tree also indicated that all temperate species formed a clade, albeit with low
549 support (42% bootstrap support; Supplemental Fig. S4). The concatenation tree was largely
550 congruent with the ASTRAL tree; one notable exception is that the early-diverging racemose
551 species *P. laurocerasus* and *P. undulata* were sister to the temperate clade in the concatenation
552 phylogeny (Supplemental Fig. S4).

553 In contrast to the nuclear phylogeny, the chloroplast tree indicated that each group
554 defined by inflorescence morphology formed a clade (Fig. 2B). Each of the solitary-flower and
555 corymbose clades had high bootstrap support (100% and 99%, respectively), and the sister
556 relationship between these two clades was also strongly supported (99%; Fig. 2B). Within the
557 major clades, many of the relationships in the chloroplast phylogeny were similar to the nuclear
558 phylogeny. The neotropical racemose group was similarly non-monophyletic in the chloroplast

559 tree, and additionally the New World racemose species did not form a clade in the chloroplast
 560 phylogeny (Fig. 2B). Notably, two species that were early-branching racemose lineages in the
 561 nuclear tree (the European *P. laurocerasus* and the East and southeast Asian *P. undulata*), were
 562 nested within the temperate racemose species (Fig. 2B).


563

564

565 **Figure 2A.** The phylogenetic species tree inferred using ASTRAL to summarize 587 nuclear gene trees. Important
 566 nodes in the phylogeny are highlighted and named: temperate ('Temp'), diploid ('Dip'), tropical ('Trop'), core tropical
 567 ('CTrop'), East Asian paleotropical ('EPal'), Australasia paleotropical ('APal'), South American neotropical ('SNeo'),
 568 and North American neotropical ('NNeo'). The numbers at nodes are ASTRAL quartet support scores.
 569

570

571

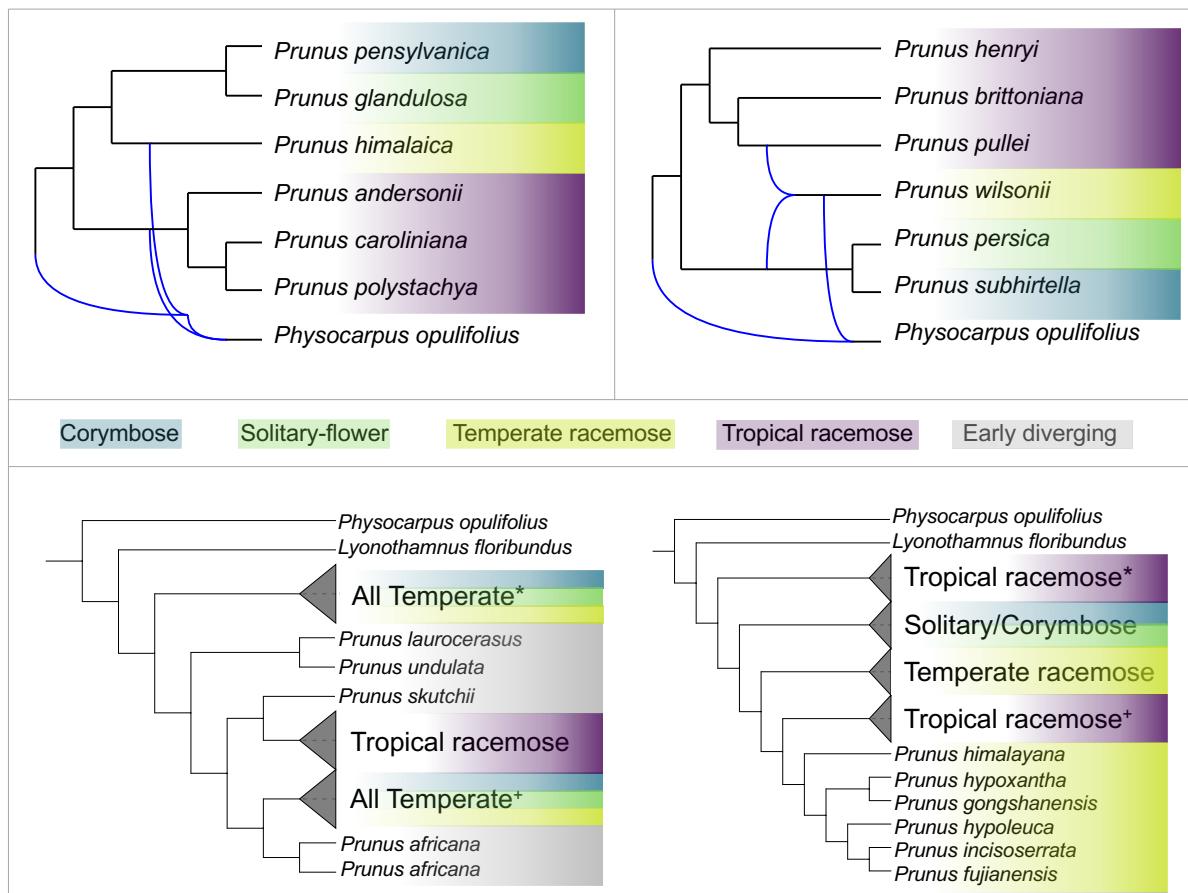
572 **Figure 2B.** The phylogenetic tree based on chloroplast genomes. Several key nodes that are congruent with the
 573 nuclear species tree are highlighted and labeled. The numbers at each node represent bootstrap percentage scores
 574 from the RAxML analysis.

575

576

577 *Gene tree discordance*

578 Many nodes in the nuclear species tree were characterized by rampant gene tree
 579 discordance, as assessed by *phyparts* (Supplemental Fig. S5). At most nodes, there were far more
 580 gene trees that were discordant with the species tree topology than were congruent


581 (Supplemental Fig. S5). Of note, fewer than 1% of gene trees were concordant with the species
582 tree at both the node defining the clade temperate racemose + solitary + corymbose, and the node
583 defining the tropical racemose clade (Fig. 2A). Within major clades, some nodes had high
584 concordance between gene trees and the species tree (e.g., the node defining a group of
585 neotropical racemose species), whereas others such as the node that defined the temperate
586 racemose species, had low concordance (Supplemental Fig. S5).

587

588 *Reticulate topology*

589 Given existing hypotheses of multiple hybridization events in *Prunus*, we investigated
590 multiple sets of species representing all major clades to better understand the variation in
591 reticulation events in this clade. The 20 networks with one reticulation often demonstrated
592 hybridization edges originating with the outgroup (Supplemental Fig. S6). The 20 networks with
593 two reticulation events frequently indicated hybridization with the outgroup, but also reticulation
594 within the focal clade (Fig. 3, Supplemental Fig. S6). Finally, the 20 networks with three
595 reticulations all indicated at least two reticulation events among the major lineages of *Prunus*
596 (Supplemental Fig. S6). Six of the 20 networks with one reticulation supported a hybrid origin of
597 the temperate racemose group. The other 14 one-reticulation networks had reticulation events
598 leading to the corymbose clade, tropical racemose clade, or corymbose/solitary-flower clade
599 (Supplemental Fig. S6). In contrast, 16/20 and 17/20 networks with two and three reticulations,
600 respectively, displayed reticulation implying a hybrid origin of the temperate racemose group
601 (Supplemental Fig. S6).

602
603

605

606

607

608 **Figure 3.** Two representative optimal 2-hybridization edge phylogenetic networks estimated using phylonet for seven
 609 species representing every major lineage in *Prunus* (top). In the network on the left, reticulation edges from the
 610 outgroup connect to the species representing the temperate racemose clade (*P. himalaica*) and the tropical racemose
 611 clade (*P. andersonii*, *P. caroliniana*, *P. polystachya*). In the network on the right, reticulation edges connect the
 612 temperate racemose species (*P. wilsonii*) to the outgroup, and also indicate that the temperate racemose species is
 613 sister to both the tropical racemose group (*P. henryi*, *P. brittoniana*, *P. pullei*) and the solitary-corymbose group (*P.*
 614 *persica*, *P. subhirtella*), suggesting hybridization leading to the temperate racemose group. The bottom portion shows
 615 the two most parsimonious GRAMPA results, which suggest an allopolyploid origin of the entire temperate clade (i.e.,
 616 temperate racemose, solitary-flower, corymbose groups) (left; most parsimonious). The second-most parsimonious
 617 GRAMPA tree indicates an allopolyploid origin of the tropical racemose clade (right).

618

619

620

621

622

Allopolyploid origin: GRAMPA

623

624

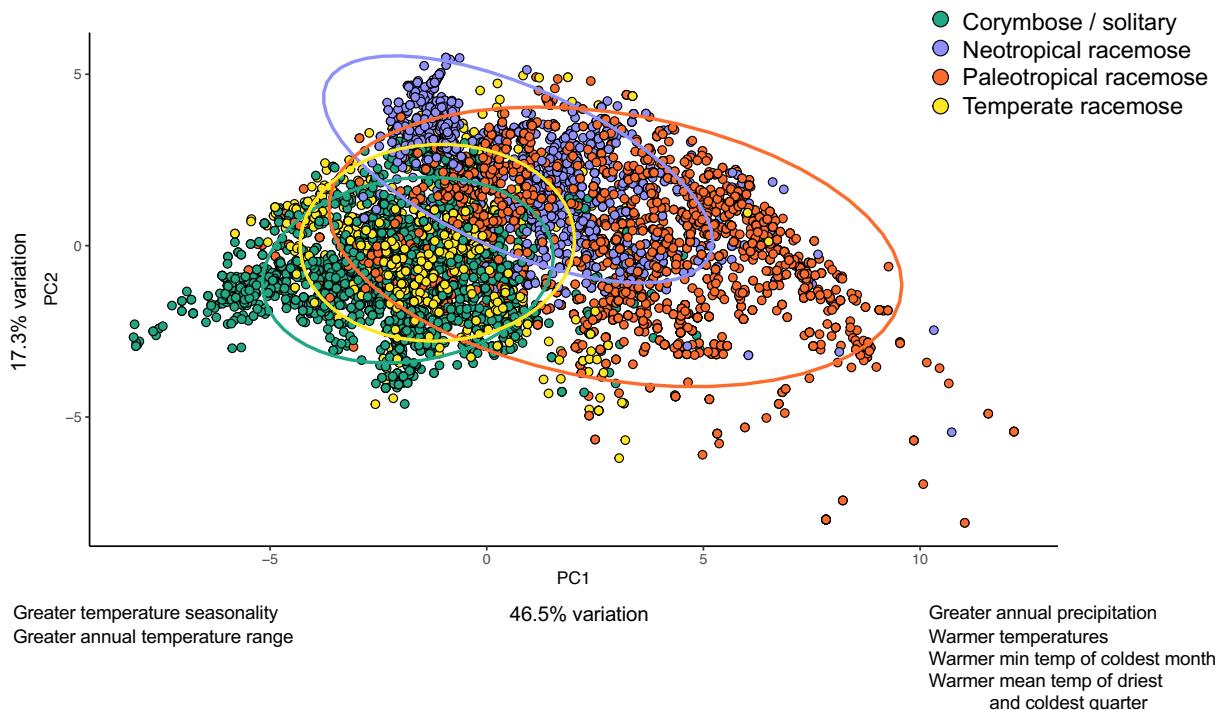
The tests for signatures of allopolyploidy using the program GRAMPA indicated that at

many of the nodes we investigated, a MUL-tree was more parsimonious than a singly-labeled

625 tree. The most parsimonious MUL-tree, with a parsimony score of 93,501, was characterized by
626 a duplicated clade that comprised all species in the temperate group (Fig. 3). The second most
627 parsimonious MUL-tree (score = 107,277) indicated an allopolyploidy event gave rise to the
628 tropical racemose clade (Fig. 3). We also detected evidence of allopolyploidy leading to the
629 temperate racemose clade (score = 115,580), tropical racemose clade (excluding early-diverging
630 species; score = 118,993), to the East Asian paleotropical clade (score = 126,618), and to the
631 Australasia paleotropical clade (score = 117,855) (Supplemental Fig. S7). Notably, when we
632 separately investigated the nodes defining the South American neotropical clade, the solitary-
633 flower clade, and the corymbose clade, the singly-labeled tree was most parsimonious in each
634 case, implying no evidence of allopolyploidy was detected at these nodes (parsimony scores of
635 126,710, 124,649, and 125,303, respectively; Supplemental Fig. S7).

636 The analysis to map WGDs to the species tree identified several nodes with relatively
637 high percentages of duplications. The crown *Prunus* node indicated a duplication percentage of
638 79.66% (Supplemental Fig. S8). The node with the second highest duplication percentage is the
639 one defining the tropical racemose species excluding the early diverging species (i.e., 'CTrop'
640 node from Fig. 2A) at 8.47% (Supplemental Fig. S8). Three other nodes within the tropical
641 racemose clade had duplication percentages >4%: the South American neotropical species
642 ('SNeo' node from Fig. 2A), the Australasian paleotropical species ('APal' node from Fig. 2A),
643 and a small clade comprised of *P. australis*, *P. hypotricha*, *P. zippeliana*, and *P. spinulosa*
644 (Supplemental Fig. S8). Within the temperate clade, the node defining the solitary-flower group
645 had a duplication percentage of 4.24% (Supplemental Fig. S8).

646


647

648 *Environmental characterization*

649 The PCA of environmental variation based on the 19 bioclimatic variables captured
650 78.8% of variation on the first three principal components, with 46.5% of the variation
651 encapsulated in PC1, 17.3% in PC2, and 15.0% in PC3 (Fig. 4). One precipitation variable—
652 annual precipitation—was strongly positively correlated with PC1, and four temperature
653 variables—mean annual temperature, minimum temperature of the coldest month, mean
654 temperature of the driest quarter, and mean temperature of the coldest quarter—were also
655 strongly associated with positive PC1 space. Meanwhile, two temperature variables—
656 temperature seasonality, and mean annual temperature range—were strongly and negatively
657 associated with PC1 values. No bioclimatic variables were strongly correlated with PC2 or PC3.
658 In summary, tropical species occupy more positive regions of PC1, which correspond to warmer
659 and wetter conditions, with higher minimum temperatures in colder seasons, and less
660 temperature seasonality (Fig. 4), whereas temperate species trend towards negative values of
661 PC1. When considering the two types of tropical species—neotropical versus paleotropical—the
662 paleotropical species extended further towards both extremes of PC1, and further towards the
663 negative extent of PC2. Neotropical species extended slightly further into positive PC2 space
664 than paleotropical species. The temperate racemose species had a greater affinity for positive
665 values of PC1 whereas corymbose/solitary species trended further towards extreme negative
666 values of PC1. The temperate racemose species occupied a larger range of PC2 space than the
667 corymbose/solitary species (Fig. 4). There were clear elevational differences among species
668 representing the four major groups. In the temperate solitary/corymbose group, only two out of
669 28 species had a median elevation greater than 1,000m (Supplemental Fig. S9). In contrast, half
670 of the 10 temperate racemose species occurred at a median elevation greater than 1,000m, and

671 also half of the 10 neotropical racemose species were found at a median elevation greater than
672 1,000m. In the paleotropical racemose species, 13 of 28 species had a median elevation greater
673 than 1,000m (Supplemental Fig. S9).

674

675

676 **Figure 4.** The summary of environmental variation using a Principal Components Analysis to distill the 19 bioclimatic
677 variables into 3 dimensions. PC1 accounts for 46.5% of variation while PC2 explains 17.3% of environmental
678 variation. Several bioclimatic variables strongly correlated with PC1 are indicated on the X-axis. Negative PC1 space
679 is associated with increased temperature seasonality and annual temperature range. Meanwhile, positive PC1 space
680 corresponds to higher annual precipitation, annual mean temperature, minimum temperature of the coldest month,
681 and mean temperature of the driest quarter and coldest quarter.

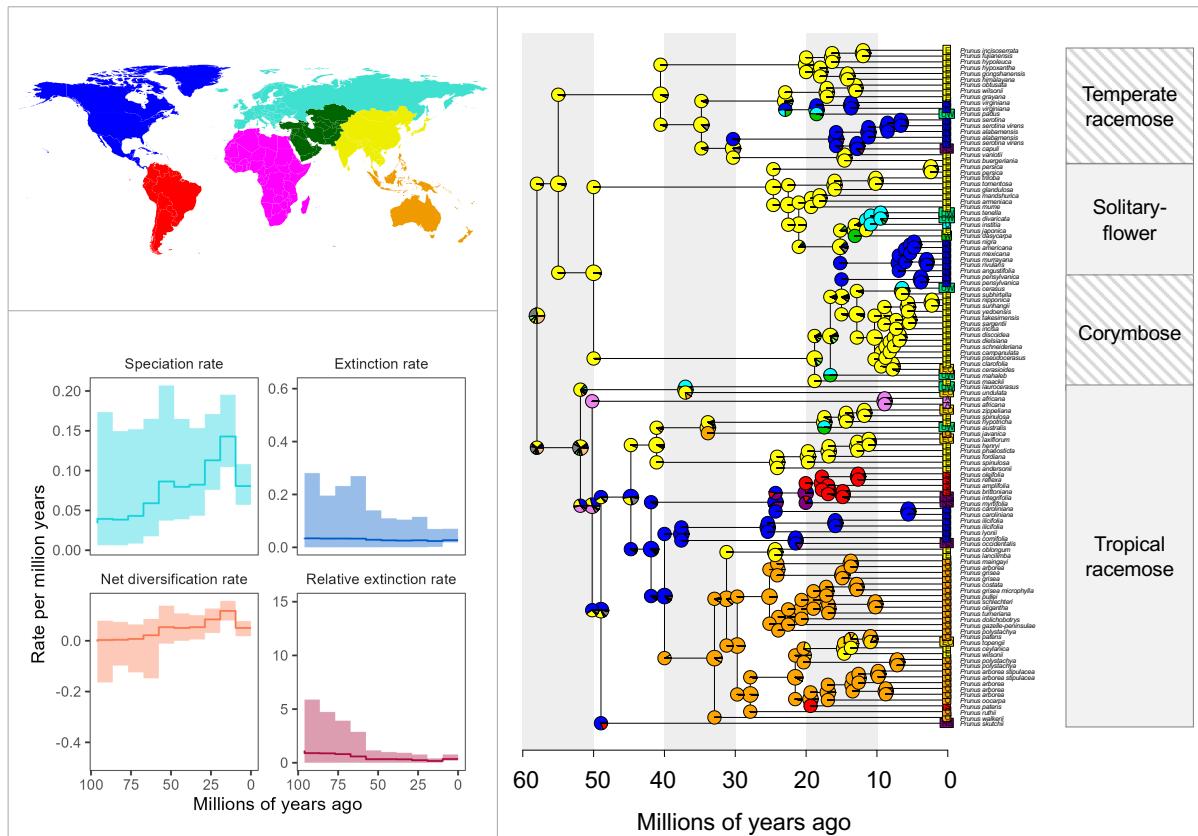
682

683

684 *Biogeographic analysis*

685 The DEC+J model was the preferred model after comparing AIC scores of competing
686 geography-based BioGeoBears models, which were based on the time-calibrated tree generated
687 with TreePL (Supplemental Table S4). Likelihood ratio tests concluded that the addition of the J

688 parameter, despite producing a more parameter-rich model, led to a significantly better model
689 than DEC (Supplemental Table S5). In contrast, the BAYAREALIKE model was favored by
690 AIC scores for the biome-based BioGeoBears model (Supplemental Table S4). Here, likelihood
691 ratio tests did not indicate that the +J model was significantly better (Supplemental Table S5).
692 The geography-based analysis indicated an East Asian origin of the genus, with the initial
693 diversification occurring in the Paleocene ca. 60-55 Mya (Fig. 5). Subsequently, the temperate
694 racemose, solitary/corymbose, and tropical racemose clades all diverged by the early-mid
695 Eocene (ca. 50 Mya). This diversification occurred predominantly in East Asia and North
696 America, which were characterized by the Boreotropical climate during the Late Cretaceous –
697 early Eocene (ca. 65-50 Mya). The temperate racemose group steadily diversified in East Asia
698 and North America beginning in the mid-late Eocene (ca. 40 Mya). Both the solitary and
699 corymbose lineages began diversifying in the early Miocene (ca. 25-20 Mya), first in East Asia
700 and subsequently in North America and Europe. These two lineages currently occupy temperate
701 environments, and based on our sampling, they were more successful in speciating in East Asia
702 versus North America (Fig. 5).


703 Broadly, the tropical racemose clade's early diversification occurred in several regions,
704 including East Asia, West Asia, Africa, North America, and Europe, between 55-40 Mya. Early-
705 diverging lineages, including species such as *Prunus laurocerasus*, *P. undulata*, *P. africana*, and
706 *P. skutchii*, split off during the Eocene between ca. 55-40 Mya. Notably, the ancestors of these
707 few early-diverging lineages occupy a wide geographic range, including Europe, West Asia, East
708 Asia, Southeast Asia, Africa, North America, and South America. Subsequently, the patterns of
709 diversification occurred differently in the major lineages within the tropical racemose group. The
710 neotropical lineages, occurring in tropical North and South America, are characterized by a long

711 period of stasis, followed by rapid diversification in the Miocene beginning between 25-20 Mya
712 and lasting until ca. 10 Mya. In contrast, two major paleotropical lineages, in East Asia and
713 Southeast Asia, respectively, began steadily diversifying in the Oligocene (ca. 35 Mya), and
714 continued until approximately 10 Mya. Notably, there were multiple clades in both the temperate
715 and tropical groups of *Prunus* that demonstrated rapid diversification beginning in the early
716 Miocene.

717 The biome-based biogeographic analysis indicated that the ancestral biome state of the
718 clade consisted of both tropical and temperate biomes (Supplemental Fig. S10). In the portion of
719 the clade that presently occupies temperate environments (top clade; Supplemental Fig. S10),
720 there were transitions to other biome categories, including temperate (many corymbose species)
721 and dry/temperate (many solitary-flower species) beginning approximately 20-15 Mya
722 (Supplemental Fig. S10). In the temperate racemose clade, the biome-based analysis indicated
723 that part of this lineage retained its ancestral biome-affinity (green pies), whereas other species
724 transitioned from the tropical/temperate biomes to dry/temperate/tropical, dry/temperate,
725 temperate, or cold/temperate beginning around 15 Mya (Supplemental Fig. S10). In the tropical
726 racemose clade, the ancestral state of temperate/tropical transitioned to predominately tropical
727 environments from approximately 50 to 30 Mya (Supplemental Fig. S10). Then, portions of the
728 paleotropical racemose group in subgenus *Laurocerasus* shifted back to temperate/tropical
729 environments (top portion of tropical racemose clade; Supplemental Fig. S10). Meanwhile,
730 neotropical species either remained tropical, or transitioned to dry/temperate,
731 dry/temperate/tropical, or cold/tropical between 25-10 Mya (Supplemental Fig. S10). In the
732 bottom portion of the clade, lineages either remained tropical, or transitioned to cold/tropical or
733 temperate/tropical approximately 25-10 Mya (Supplemental Fig. S10).

734 The stochastic mapping analysis clarified the timing of transitions between geographic
735 regions and biomes (Supplemental Fig. S11). The vast majority of transitions have taken place
736 since 25 Mya—either as cladogenesis events at nodes—or anagenetic shifts along branches
737 (Supplemental Fig. S11). The anagenetic transitions in particular frequently occurred in the past
738 15 million years (Supplemental Fig. S11). In the geography-based analysis, the majority of
739 biogeographic transitions between regions was sympatric speciation, with smaller proportions of
740 founder events and anagenetic dispersal (Supplemental Table S6). Most biogeographic events in
741 the biome-based analysis were sympatric, meaning that there were speciation events without a
742 corresponding biome shift. Approximately 30% of the biogeographic events were anagenetic
743 dispersal—or transitions between biomes along a branch (Supplemental Table S6). In the
744 geography-based biogeographic analysis, East Asia acted as a major source, with especially
745 strong dispersal to N. America, Europe, and Oceania (Supplemental Table S7). Europe and West
746 Asia underwent substantial reciprocal dispersal, and North America acted as a source to South
747 America’s sink (Supplemental Table S7). In the biome-based biogeographic analysis, both the
748 temperate and tropical biomes acted as key sources for other biomes (dry, cold). The dispersal
749 rate from tropical to temperate was larger than the rate from temperate to tropical (Supplemental
750 Table S7).

751

752

753 **Figure 5.** The BioGeoBears analysis (right) of the biogeographic history of *Prunus* using the DEC + J model based
 754 on seven biogeographic regions shown in the upper left: North America (blue), South America (red), Africa
 755 (magenta), Europe (turquoise), West Asia (green), East Asia (yellow), and Southeast Asia (orange). Color-coded pie
 756 charts at each node indicate the probability of the ancestral state occurring in a given biogeographic region. The
 757 episodic birth-death (EBD) model diversification analysis is shown in the lower left. The speciation rate and net
 758 diversification rate of the clade are highest during the Miocene, between approximately 20-10 Mya.
 759

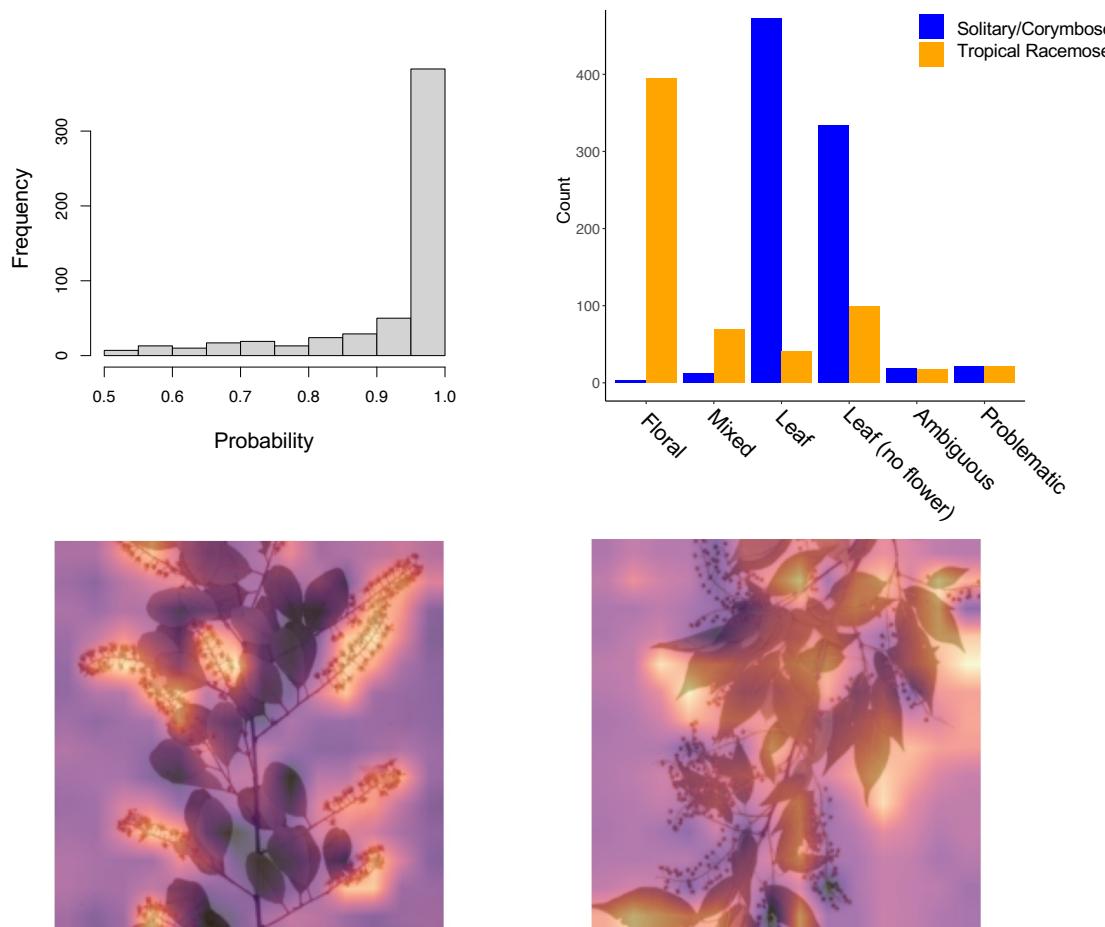
760 *Diversification analysis*

761 To investigate the variation in diversification rates across the phylogeny, we implemented
 762 an episodic birth-death model (EBD; Höhna 2015) and a branch-specific diversification model
 763 (LSBDS; Höhna et al. 2019) in RevBayes (Höhna et al. 2016). The EBD model estimated that
 764 the net diversification rate peaked approximately 20-10 Mya; this was driven by the speciation
 765 rate, which also was at its maximum between approximately 20-10 Mya (Fig. 5). The LSBDS

766 model, which shows branch-specific diversification, generally showed lower net diversification
767 in the early-diverging tropical racemose species, with similar net diversification in most other
768 lineages (Supplemental Fig. S12). The CRABS analysis confirmed results from the EBD model;
769 the extinction rate remained low, whereas the speciation rate increased to a peak approximately
770 10 Mya, followed by a decline (Supplemental Fig. S12).

771

772 *Morphological analyses*


773 We ran two experiments using computer vision-based machine learning analyses of
774 digitized herbarium sheets. The assessment of morphological characters associated with
775 hybridization revealed that whole sheet phenotypes of temperate racemose species, with the top
776 20% and bottom 20% of the sheet trimmed, were nearly evenly divided between classification as
777 ‘solitary/corymbose’ (N = 310 observations with >90% probability) and ‘tropical racemose’ (N =
778 229 observations with >90% probability) (Fig 6). When using whole sheets (i.e., untrimmed),
779 there was a similar trend: there were N = 279 observations classified as ‘solitary/corymbose’
780 with >90% probability and N = 223 observations classified as ‘tropical racemose’ with >90%
781 probability. The Grad-CAM analysis of internal model layers indicated that inflorescence vs.
782 leaf morphology was the driving factor in determining if the machine learning model inferred
783 whether to classify temperate racemose species as corymbose/solitary or tropical racemose (Fig.
784 6). Manual visual inspection indicated that the second-to-last and third-to-last layers were most
785 informative for determining classifications. The Grad-CAM results for the last three model
786 layers for every herbarium sheet specimen image are shown in Supplemental Tables S8 and S9.
787 Training and test data for all models are listed in Supplemental Tables S10 and S11.

788

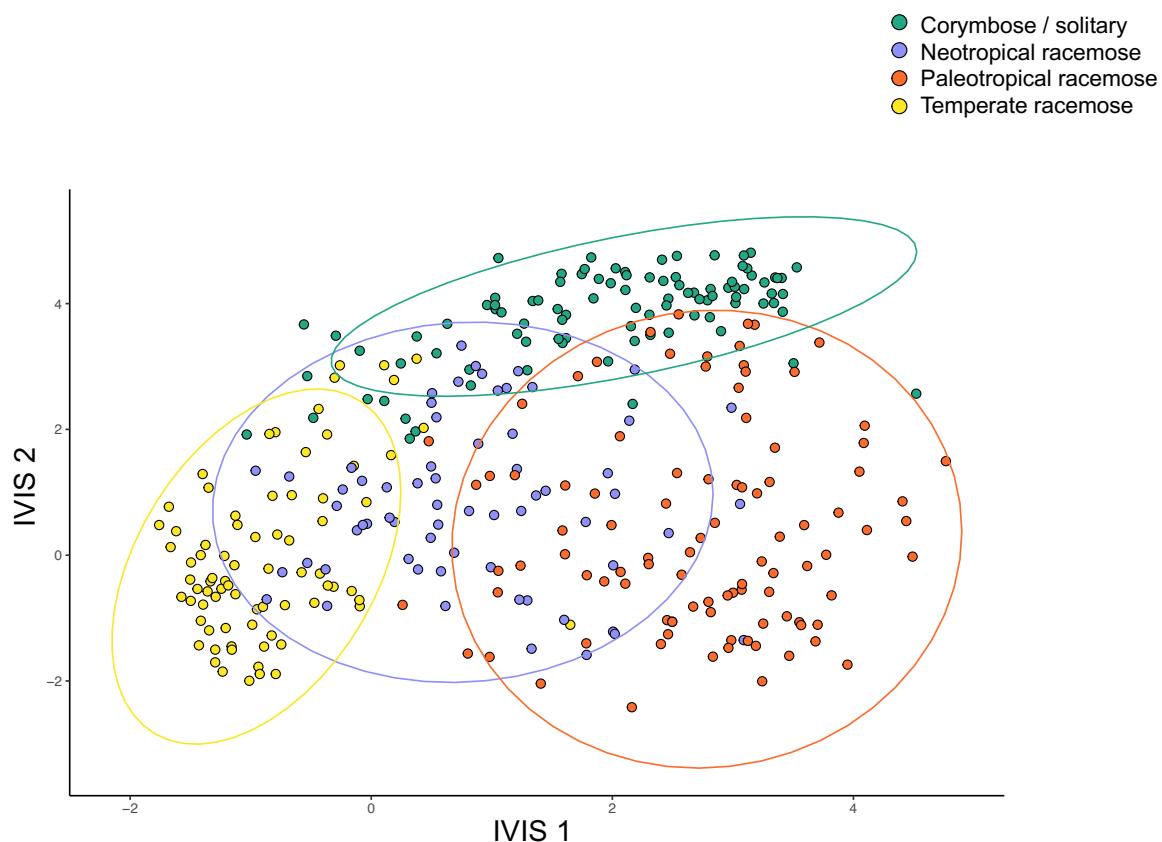
789

790

791

792

793 **Figure 6.** In the upper left, the distribution of probability scores when using the temperate racemose species as test
 794 data in the first machine learning model. These classifications include specimens that were classified as either
 795 'solitary/corymbose or tropical racemose'; regardless of classification, most specimens were assigned with high
 796 (i.e., >0.95) probability. The plot in the upper right shows the manual classifications we assigned when ground-
 797 truthing the gradient class activation maps for the 676 temperate racemose specimens for the second-to-last and
 798 third-to-last layer of the CNN. The bottom row shows the gradient class activation (Grad-CAM) maps for the second-
 799 to-last model layer for two representative temperate racemose specimens that were classified as 'tropical racemose'
 800 (left) and 'solitary/corymbose' (right), respectively.


801

802

803 In the second analysis, breadth of morphospace was measured using IVIS to quantify and
 804 compare the extent of morphological variation present in the following groups: temperate diploid

805 (i.e., corymbose and solitary flower), temperate racemose, neotropical racemose, and
806 paleotropical racemose. The IVIS analysis determined that the two tropical groups exhibited a
807 greater range of morphological variation than the two temperate groups (Fig. 7). Within all
808 tropical specimens, the paleotropical racemose species occupied a greater expanse of
809 morphological variation than neotropical racemose (Fig. 7). The paleotropical species overlapped
810 in morphospace to a small degree with the temperate diploid group (i.e., corymbose/solitary) and
811 to a much greater degree with the neotropical racemose group. The neotropical species are
812 positioned centrally in morphospace and overlap with all three other groups (Fig. 7).

813

814

815 **Figure 7.** The representation of whole specimen phenotypes in IVIS space. The specimen images were assigned to
816 four groups according to environmental preference/clade: neotropical racemose, paleotropical racemose, temperate
817 racemose, corymbose/solitary.

818

DISCUSSION

819 In this study, we provided increased resolution compared to previous studies of the
820 phylogeny of the economically and ecologically important genus *Prunus*, pinpointed key
821 genomic mechanisms promoting the diversification of this group, and improved our
822 understanding of its biogeographic history. By sampling more densely the understudied
823 racemose group and sequencing hundreds of nuclear loci and complete chloroplast genomes, we
824 changed our understanding of how several groups within the genus diversified. Specifically, by
825 combining analyses of hybridization, genome doubling, and cytonuclear and gene tree-species
826 tree conflict, we inferred that the polyploid racemose group is paraphyletic, a result found in
827 some previous studies using nuclear gene data (e.g., Lee & Wen 2001, Bortiri et al. 2002, 2006,
828 Wen et al. 2008, Chin et al. 2014, Zhao et al. 2016), but typically not found when using plastid
829 genes (e.g., Bortiri et al. 2001, Wen et al. 2008, Chin et al. 2014). The chloroplast phylogeny,
830 with a monophyletic racemose group, detected in the present study is congruent with many
831 previous studies using chloroplast markers (e.g., Bortiri et al. 2006, Wen et al. 2008, Chin et al.
832 2014, Zhao et al. 2016). Notably, our result conflicts with Su et al. (2023), which found a
833 monophyletic racemose group in both nuclear and chloroplast datasets. However, the nuclear
834 SNP markers used in Su et al. (2023) may have been unable to fully untangle the reticulate
835 history of this genus. Previous studies have suggested that cytonuclear discord observed in
836 *Prunus* phylogenies could be attributed to one (Chin et al. 2014) or multiple (Zhao et al. 2016)
837 allopolyploid hybrid origins of the racemose group. Here, we isolated specific lineages as
838 participants in likely hybridization and allopolyploidy events during the early Eocene ca. 50
839 Mya. These reticulation events early in the diversification of the genus help explain the high
840 gene tree-species tree conflict and cytonuclear discord. Through biogeographic, diversification,

841 and fossil-calibrated dating analyses, we traced the biogeographic history of the group and tied
842 key climatic events to radiations of subgeneric lineages.

843 Using several novel applications of machine learning algorithms to classify and quantify
844 morphological variation, we addressed how morphological evolution coincides with cytonuclear
845 discord, identifying characters essential for survival in specific environments and how
846 morphological variation in lineages impacts their biogeographic distribution. Phylogenomic data
847 have revealed that gene tree-species tree conflict is widespread and may sometimes arise via
848 ancient hybridization (e.g., McVay et al. 2017, Nie et al. 2023). Here, we demonstrate that a
849 well-trained machine learning classification model struggles to classify specimens in a lineage
850 that is the result of ancient hybridization, as these specimens that are the result of hybridization
851 display morphological features common to both putative ancestors. Additionally, we applied a
852 machine learning approach, IVIS, to quantify the morphological variation within major lineages,
853 revealing that the distinct morphospaces of different lineages may be shaped by their
854 biogeographic and evolutionary history. These morphological classifications, in combination
855 with environmental data, change our concept of how lineages may have diversified in the tropics,
856 and the conditions under which lineages transition from tropical to temperate biomes. Below, we
857 discuss and contextualize our results.

858

859 *Improved understanding of Prunus phylogeny, diversification, and biogeography*

860 Despite its economic and ecological importance, until now *Prunus* has not been
861 thoroughly investigated in a phylogenomic context with sufficient sampling in the racemose
862 group. Previous studies, based on chloroplast DNA and/or a few nuclear markers, inferred
863 possible cytonuclear conflict—a telltale sign suggesting hybridization—on the backbone of the

864 phylogeny. These analyses lacked the resolution to conclude whether the cytonuclear discord
865 was real or due to unresolved nuclear relationships (Lee & Wen 2001, Bortiri et al. 2001, Wen et
866 al. 2008). Based on cytonuclear discord (Chin et al. 2014), multiple copies of nuclear loci (Zhao
867 et al. 2016), nuclear reduced representation sequencing (Su et al. 2023), and chromosome count
868 data coupled with multiple gene tree topologies (Hodel et al. 2021), hypotheses of ancient
869 allopolyploid hybridization have been proposed (Zhao et al. 2016). Here, multiple lines of
870 evidence indicate a history of allopolyploidy and/or hybridization driving early diversification in
871 *Prunus*. First, we demonstrate that the cytonuclear discord along the backbone of the genus,
872 especially the differing phylogenetic placement of the temperate racemose group, provides a
873 specific hypothesis of reticulation (i.e., the temperate racemose group is a product of
874 hybridization and/or allopolyploidy). Phylonet analyses with 2- and 3-reticulations supported a
875 likely hybrid origin of the temperate racemose group. When 1-reticulation networks were also
876 considered, the reticulation analysis suggested possible hybrid and/or polyploid origins of the
877 tropical racemose group, solitary-flower clade, and corymbose clade (Fig. 3, Supplemental Fig.
878 S6). The GRAMPA analysis, which can detect and distinguish between different types of
879 genome doubling, also identified reticulation deep in the tree. The temperate clade was inferred
880 to have the best-supported allopolyploid origin deep in the phylogeny (Fig. 3, Supplemental Fig.
881 S7). However, additional clades, including the tropical racemose clade, also were inferred to
882 likely be the result of allopolyploidy (Fig. 3, Supplemental Fig. S7). Furthermore, mapping
883 WGDs to nodes in the phylogeny identify several major clades with evidence of duplication
884 (e.g., tropical racemose clade, excluding early-diverging species; Supplemental Fig. S8). Taken
885 together, these analyses point to reticulation deep in the phylogeny, although it is not constrained
886 to one instance of hybridization and/or allopolyploidy. These results are in line with previous

887 hypotheses that predicted multiple rounds of allopolyploidy (Zhao et al. 2016). Probably the
888 majority, if not all, racemose species, encompassing both temperate and tropical climates, are
889 polyploid. These species likely arose from multiple rounds of ancient allopolyploidy rather than
890 autopolyploidy. Only one of the GRAMPA analyses could possibly be autopolyploidy—the
891 Australasian paleotropical group (Supplemental Fig. S7C). All other WGD events demonstrated
892 that the duplicated clades were spread throughout the tree, necessarily implying allopolyploidy
893 (Supplemental Fig S7).

894 The higher resolution, time-calibrated plum genus phylogeny enhances our understanding
895 of the biogeographic history of the clade. The diversification and biogeographic history of
896 *Prunus* can be contextualized by existing hypotheses describing biogeographic patterns, and it
897 can shift our understanding of the range of possible outcomes for lineages that originated in the
898 tropics. Our biogeographic and diversification results show pulses of diversification in several
899 tropical and temperate *Prunus* lineages, with bursts of speciation in the early Miocene (Fig. 5,
900 Supplemental Fig. S10). This contrasts with steadier diversification reported in previous studies
901 (e.g., Chin et al. 2014). Our time-calibrated results also highlight the different patterns of
902 speciation in different tropical *Prunus* groups: relatively steady speciation in the paleotropics,
903 with punctuated bursts in the neotropics (Fig. 5). There were also key differences in greater
904 temperate success in Asia versus North America: the temperate lineages in Asia speciated readily
905 and rapidly while the species diversity in North America is depauperate. Although our sampling
906 of species diversity and nuclear loci gives better resolution than previous studies, there are still
907 limitations when interpreting our biogeographic results. Critically, biogeographic analyses
908 depend on bifurcating phylogenies, and many of our results point to a reticulate topology for
909 *Prunus*, especially deeper in the tree. It is likely that multiple lineages intermingled in the

910 expansive Boreotropical region early in the evolutionary history of the genus. The biome-based
911 biogeographic analysis is consistent with this explanation, where the deeper portion of the tree
912 showed all nodes as either tropical or temperate/tropical (Supplemental Fig. S10). Furthermore,
913 the biogeographic stochastic mapping analysis identified speciation in sympatry as the majority
914 of biogeographic events in both the geography- and biome-based analyses (Supplemental Table
915 S6). Many of the lineages implicated in reticulation, such as the early diverging tropical
916 racemose lineages, may have overlapped during the Eocene, thus facilitating ancient
917 hybridization and/or allopolyploidy. We must acknowledge that inferences of diversification
918 may be affected by sampling bias. We present the densest sampling of the understudied tropical
919 racemose clade to date, with accessions representing all major lineages. However, additional
920 future work is needed to ensure that even unbiased sampling does not impact the results, as this
921 genus is estimated to contain 250-400 species, depending on taxonomic treatments and sampling
922 of tropical species, necessitating further sampling in future studies.

923

924 *Using Prunus to inform broad biogeographic patterns*

925 For over a century, biologists have observed a latitudinal gradient in species diversity in
926 many clades across the Tree of Life, with greater species richness occurring near the equator.
927 However, we lack scientific consensus about the causes of this biogeographic pattern and several
928 hypotheses have been proposed. One explanation for the observed latitudinal gradient is the
929 tropical conservatism hypothesis (TCH), which posits that the relatively massive biodiversity of
930 the tropics can be primarily attributed to the geographic extent of tropical taxa over the past 55
931 million years and the subsequent evolutionary conservation of environmental niches (Wiens and
932 Donoghue 2004). Many groups have diversified in the Eocene, facilitated by the vast expanse of

933 the Boreotropics. Nevertheless, relatively few lineages have transitioned from tropical
934 environments to temperate ones. This phenomenon may be explained by the challenge of
935 acquiring the substantial adaptations necessary to tolerate the cooler conditions in temperate
936 zones (Donoghue 2008).

937 Another explanation is provided by the ‘taxon pulse’ hypothesis (Erwin 1985), which is
938 compatible with the TCH and posits that lineages that were able to transition from tropical to
939 temperate regions originated in tropical environments and then migrated in waves to more
940 temperate regions at higher altitudes and latitudes into increasingly harsh environments (Erwin
941 1985, Lü et al. 2020, Rapini et al. 2021). These radiations into temperate environments would
942 also be accompanied by species loss in ancestral tropical lineages as older lineages went extinct
943 (Liebherr and Porch 2015, Rapini et al. 2021, Nie et al. 2023). Some widespread plant clades,
944 such as *Viburnum*, match the taxon pulse hypothesis to an extent (Spriggs et al. 2015). In this
945 scenario, tropical lineages are posited to be ‘dying embers’ – lineages that diversified in the
946 tropics tens of millions of years ago, and persist in place, but have ceased to continue
947 diversifying (Spriggs et al. 2015).

948 Our results indicate *Prunus* does not precisely follow the predictions of either the TCH or
949 the ‘taxon pulse’ hypothesis. In *Prunus*, the paleotropical lineages have diversified in place and
950 do not appear to be ‘dying embers’, instead demonstrating steady diversification through time
951 (Fig. 5, Supplemental Fig. S12). As described in the taxon pulse hypothesis, tropical lineages
952 may migrate to higher temperate latitudes or to higher elevation regions in the tropics, which
953 may have temperate-like conditions. Biogeographic stochastic mapping suggested that in *Prunus*
954 there was substantial dispersal from the tropics to all other biome types (Supplemental Table S7).
955 Meanwhile, the diversification of the neotropical lineages, instead of occurring steadily as

956 observed in our paleotropical species, was characterized by bursts of speciation beginning in the
957 late Oligocene-early Miocene (ca. 25-20 Mya). In the tropics, some *Prunus* species have moved
958 to higher elevations, but there are also lineages that occupy truly tropical environments, as
959 defined by some or all individuals occurring in environments with the minimum temperature of
960 the coldest month greater than 18 °C. Among species in our study, these include *Prunus*
961 *dolichobotrys* (Lauterb. & K.Schum.) Kalkman, *P. arborea* (Blume) Kalkman, *P. gazelle-*
962 *peninsulae* (Kaneh. & Hatus.) Kalkman, *P. javanica* (Teijsm. & Binn.) Miq., *P. undulata*, *P.*
963 *fordiana* Dunn, *P. grisea* Kalkman, *P. costata* (Hemsl.) Kalkman, *Prunus maingayi* (Hook. f.)
964 Wen, *P. oocarpa* (Stapf) Kalkman, *P. oligantha*, *P. schlechteri* (Koehne) Kalkman, *P. ceylanica*
965 (Wight) Miq., and *P. buergeriana* Miq. in the paleotropics, and *P. myrtifolia* (L.) Urb., *P.*
966 *amplifolia* Pilg., *P. cornifolia*, *P. integrifolia* (C.Presl) Walp., *P. occidentalis*, *P. skutchii*, and *P.*
967 *reflexa* (Gardner) Walp. in the neotropics. We also note that, for the species we sampled
968 genetically in this study, in both tropical groups, at least half of the species occurred at a median
969 elevation of less than 1,000 m (Supplemental Fig. S8). The biome-based biogeographic analysis
970 showed that some lineages and species in the tropics clear remained tropical over the past 20
971 million years (e.g., *P. andersonii*, *P. oleifolia*, *P. reflexa*, *P. amplifolia* in the neotropics, *P.*
972 *dolichobotrys*, *P. gazelle-peninsulae*, *P. polystachya* in the paleotropics; Supplemental Fig. S10).
973 At the same time, the analysis demonstrated partial or complete biome shifts in many tropical
974 species, such as from tropical to temperate/tropical, tropical to dry/temperate, and tropical to
975 cold/tropical (Supplemental Fig. S10).

976 The comparison of the neotropics and paleotropics demonstrates that diversification can
977 occur differently in distinct tropical regions—even within a single genus. Our quantifications of
978 the morphological breadth and environmental breadth revealed both to be greater in the

979 paleotropics as compared to the neotropics. The larger environmental space of the paleotropics
980 suggests there may have been greater ecological opportunity for lineages in the paleotropics
981 relative to the neotropics due to increased niche availability (Wellborn & Langerhans 2015). For
982 similar reasons, the greater morphological variation in the paleotropical *Prunus* shows these
983 lineages were able to leverage advantageous morphological features to adapt to new
984 environmental niches. This implies *Prunus* differs from many lineages with a tropical origin that
985 successfully transitioned to temperate regions. Synthesis has shown that not all lineages could
986 adapt to colder climates when tropical habitat retracted, and typically those lineages that tracked
987 tropical habitats became more restricted (Donoghue 2008). However, *Prunus* bucks this pattern,
988 exhibiting steady speciation in the paleotropics, and later bursts of speciation in the neotropics. It
989 is possible that the neotropical racemose lineages have ancestors that occupied temperate zones
990 in North America (Fig. 5). The small clade of four North American species (Fig. 2A; node
991 'NNeo') is a likely candidate—these species may be Boreotropical remnants in the New World,
992 highlighting the importance of North America as a site of diversification early in the evolution of
993 some tropical racemose species. Perhaps a history of surviving in the temperate zone enabled
994 present-day neotropical lineages to develop and/or keep a suite of morphological characters that
995 facilitated radiating into the neotropics. The substantial overlap in morphospace between
996 neotropical and temperate lineages suggests this may be the case (Fig. 7).

997

998 *Why was Prunus more successful than other lineages?*

999 Because of our sampling of species diversity coupled with hundreds of nuclear loci, we
1000 identify allopolyploidy and/or hybridization in the backbone of the phylogeny, which may
1001 explain the genomic basis of the rapid diversification 55-45 Mya. This allopolyploidy event is

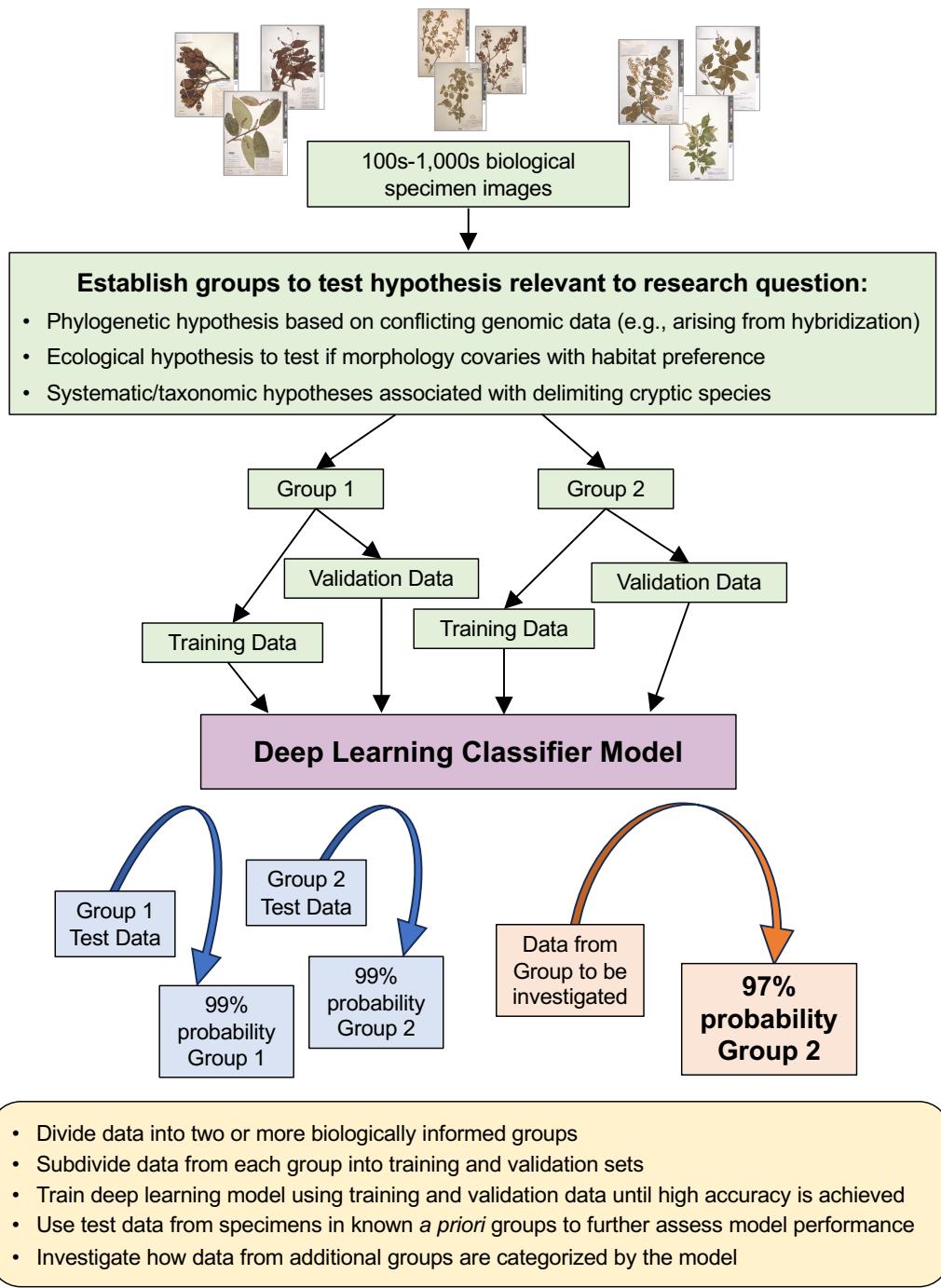
1002 supported by phylogenetic treatments of the Rosaceae, which found evidence of a WGD event at
1003 the base of *Prunus* (Xiang et al. 2017); this also is corroborated by the high duplication
1004 percentage at the base of the genus in our WGD mapping (Supplemental Fig. S8). This is an
1005 important insight for not only understanding the phylogeny of the group but also its
1006 biogeographic context. When numerous *Prunus* lineages were able to interact in the Boreotropics
1007 during the Eocene, ample opportunities for hybridization and allopolyploidy arose. This genetic
1008 reshuffling may explain why *Prunus* was more successful than other lineages at occupying both
1009 temperate and tropical regions. The Rosaceae family has diversified into many successful
1010 lineages (Potter et al. 2007), but even within this hyperdiverse group, *Prunus* stands out for its
1011 diversity of inflorescence types, which may have facilitated migration via a variety of different
1012 animal dispersers, as well as variation in leaf morphology supporting both evergreen and
1013 deciduous life histories. One key innovation in *Prunus* is the evolution of leaf glands, which
1014 appear to be associated with climatic conditions, with flat glands typical of species in tropical
1015 climates, and raised glands present in species occupying cooler climates (Chin et al. 2013).
1016 These glands may have had adaptive value due to their interactions with insects, with the flat
1017 glands found in tropical regions preventing herbivory, and may be a key feature driving the
1018 diversification of *Prunus*. Specifically, the variation in these morphological features may have
1019 enabled *Prunus* radiations into the temperate zone, while continuing to diversify in the tropics.
1020 Other Rosaceae, although successful, remained constrained in temperate regions (Xiang et al.
1021 2017). Additionally, other groups with tropical origins that have experienced great success in
1022 temperate regions did not retain much species diversity in tropical regions, including *Quercus* L.
1023 (Hipp et al. 2020), *Viburnum* (Spriggs et al. 2015), Juglandaceae (Zhang et al. 2021), and
1024 Saxifragales (Folk et al. 2019).

1025 *Morphological variation informs biogeographic history*

1026 The morphological variation associated with recent hybridization in many cases can be
1027 readily tracked to inform the parental participants in hybridization, as well as to understand how
1028 and why hybridization occurred, and whether hybrids may persist based on their environment.
1029 However, in cases of ancient hybridization, it becomes difficult to tease apart the morphological
1030 characters associated with hybridization since subsequent diversification and evolution in
1031 response to environmental variation can obscure the circumstances surrounding the hybridization
1032 event. Here, we used machine learning to quantify morphological variation in clades resulting
1033 from reticulation, presenting a way to characterize the morphological legacy of
1034 hybridization/alloploidy. By using the ancient hybridization detected via cytonuclear discord
1035 and phylogenetic networks to guide our morphological analyses, we concluded that there were
1036 morphological signals of hybridization in the present species. Members of the temperate
1037 racemose group had morphological features of both the diploid clade and the tropical racemose
1038 clade—the ancestors of these two lineages were putatively the participants in hybridization. So,
1039 we would expect morphological features from both parents to persist in the lineage resulting
1040 from reticulation. However, lineages' responses to environmental variation may also explain
1041 patterns of morphological variation not resulting, or minimally resulting, from the genomic
1042 results of hybridization (or alloploidy). In this case, we would expect that morphological
1043 variation would co-vary to some extent with environmental variation. This would lead to an
1044 expectation that the vast majority of test specimens from the temperate racemose group would be
1045 classified as solitary/corymbose, because the environment overlaps much more between these
1046 two groups than it does between temperate racemose and tropical racemose (Fig. 4). Contrary to

1047 this expectation, we observed a relatively even split of temperate racemose species between the
1048 two training categories.

1049 Morphological shifts can result from transitioning to a novel environment, or existing
1050 morphological variation can enable lineages to adapt to changing environmental conditions. The
1051 key takeaway from our IVIS analysis is that both the neotropical and paleotropical groups exhibit
1052 substantially more morphological variation than do the temperate groups, including both the
1053 corymbose/solitary group, and the temperate racemose group. Moreover, the two temperate
1054 groups occupy peripheral portions of morphological space on both IVIS axes 1 and 2, suggesting
1055 that the morphological features in the temperate groups are specialized relative to the
1056 morphological features of the tropical groups. These features may represent morphological
1057 changes that promote transitions to temperate regions, diverging from morphological features
1058 typical for tropical zones, in response to a transition from tropical to temperate biomes. Broadly,
1059 if there is greater niche space available in the tropics—a proposed explanation for the increased
1060 species diversity in these regions—we would expect greater morphological variation to occupy
1061 more niches. In *Prunus*, the balance of morphological space we quantify is not surprising given
1062 greater tropical diversity. Notably, however, the morphological space occupied by the
1063 neotropical racemose species overlaps more with the two temperate groups than the paleotropical
1064 group does. This suggests an explanation for some of the biogeographic patterns detected—
1065 specifically that the more recent diversification of the neotropics was different from the initial
1066 diversification in the paleotropics. By the time the neotropical lineages began to diversify,
1067 lineages in the genus had already radiated into and adapted to temperate biomes. This may
1068 explain the rapid diversification of the neotropical *Prunus*—the lineages may have already


1069 acquired multiple morphological innovations for surviving in the New World's warm temperate
1070 and tropical zones during the Oligocene-early Miocene.

1071

1072 *The promise of machine learning to assess morphology via digitized herbarium specimens*

1073 Machine learning approaches such as IVIS offer the promise of using whole-specimen
1074 phenotyping with minimal preprocessing to classify species based on a biologically informed
1075 hypothesis. These hypotheses could be based on phylogeny, environmental gradients, ecological
1076 features, or geography. We demonstrate a method to use specimen data to investigate
1077 correspondence between environmental and morphological variation (Fig. 8). Approaches such
1078 as IVIS allow researchers to be agnostic regarding the morphological features studied, which can
1079 avoid researcher-mediated bias in selecting traits. By grouping together specimens in different
1080 and/or hierarchical groups, competing hypotheses can be tested. We demonstrate how specimens
1081 can be grouped together to test hypotheses of hybridization. It is common to use the species as
1082 the unit of classification with image-based machine learning algorithms. However, the species is
1083 not necessarily the only level of biological organization that can be used to train classifiers.
1084 Classifier algorithms that differentiate between species implicitly use a phenetic species concept
1085 (de Queiroz 2007), which is not ideal for all research questions. We argue that groups above and
1086 below species are useful, especially if they may be defined by shared phenotypic features; here
1087 we demonstrate an application at a broader systematic level. Taking a phylogenetic approach to
1088 grouping units to be classified, based on key phenetic differences, presents a way to mesh
1089 phylogenetic and phenotypic data. Although there are benefits to using whole-specimen
1090 phenotypes, there are also advantages to extracting individual traits, such as measurements of

1091 leaf area and perimeter, as well as floral traits. These can be extracted via machine learning
1092 methods such as segmentation in a high-throughput fashion.
1093

1094

1095 **Figure 8.** A flow chart for designing phylogenetically-informed hypotheses to test using machine learning applied to
1096 biological specimen image data.

1097 *Conclusions and future prospects*

1098 In this study, we employ phylogenomic, environmental, and morphological data to
1099 establish that the initial diversification of the plum genus *Prunus* was driven by ancient
1100 hybridization and/or allopolyploidy. Moreover, this complex history of reticulation may explain
1101 the success of the tropical lineages of *Prunus* compared to other groups that also moved out of
1102 the tropics and into temperate regions. To complement phylogenomic and environmental
1103 analyses, we present innovative applications of machine learning algorithms to analyze the
1104 variation in digitized herbarium sheets. We demonstrate inventive ways to harness computer
1105 vision-based machine learning approaches to help us understand biodiversity across the Tree of
1106 Life. Future studies in *Prunus* will require additional sampling, especially in the racemose group,
1107 to further examine biogeographic patterns. Subsequent research may also focus on developing
1108 segmentation masks to extract specific features from digitized image data. *Prunus* represents an
1109 excellent model for testing the capabilities of machine learning algorithms using museum data,
1110 given the wealth of publicly available digitized specimens in the genus.

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126 **Data Availability**

1127

1128 Data available from the Dryad Digital Repository: DOI: 10.5061/dryad.x95x69pwr; Reviewer
1129 URL: <http://datadryad.org/share/L-QUcxrgnpTr6l0Td3MxdfJDCUT1iRbPmT4SzA2LwMA>.

1130

1131 Supplementary material, image data, and DNA sequence matrices are available from the Dryad
1132 Digital Repository. Raw sequence data were submitted to NCBI GenBank (SUB13638423).
1133 Machine learning models are hosted on Hugging Face with temporary URLs
1134 (https://huggingface.co/richiehodel/Prunus_lineage_classifier;
1135 https://huggingface.co/richiehodel/Prunus_herbarium_sheet_classifier). Final Hugging Face
1136 URLs will be hosted by the Smithsonian Institution upon acceptance.

1137

1138 Jupyter notebooks for developing and processing machine learning models for image data are
1139 available on GitHub
1140 (https://github.com/richiehodel/machine_learning_Prunus_herbarium_sheets).

1141

1142

1143

1144 **Acknowledgements**

1145

1146 We thank the following funding sources: Smithsonian Institution Scholarly Studies Grant to JW,
1147 EAZ, RGJH; Smithsonian Institution Peter Buck Fellowship to RGJH; National Museum of
1148 Natural History NHRE Award to SKW.

1149

1150 We thank the following people for valuable discussions and assistance with analyses: Lauren
1151 Ayers, Louis Cox, Greg Stull, Alicia Talavera.

1152

1153 All or portions of the laboratory and/or computer work were conducted in and with the support
1154 of the Laboratories of Analytical Biology facilities of the National Museum of Natural History or
1155 its partner labs.

1156

1157 **Literature Cited**

1158 Arakaki M., Christin P.A., Nyffeler R., Lendel A., Eggli U., Ogburn R.M., Spriggs E., Moore
1159 M.J., Edwards E.J. 2011. Contemporaneous and recent radiations of the world's major
1160 succulent plant lineages. *Proc. Natl. Acad. Sci. U. S. A.* 108:8379–8384.

1161 Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M.,
1162 Nikolenko S.I., Pham S., Pribelski A.D., Pyshkin A. V., Sirotnik A. V., Vyahhi N., Tesler
1163 G., Alekseyev M.A., Pevzner P.A. 2012. SPAdes: A new genome assembly algorithm and
1164 its applications to single-cell sequencing. *J. Comput. Biol.* 19:455–477.

1165 Benedict J.C., DeVore M.L., Pigg K.B. 2011. *Prunus* and *Oemleria* (Rosaceae) flowers from
1166 the late early Eocene Republic flora of Northeastern Washington State, U.S.A. *Int. J. Plant
1167 Sci.* 172:948–958.

1168 Bortiri E., Oh S.-H., Jiang J., Baggett S., Granger A., Weeks C., Buckingham M., Potter D.,
1169 Parfitt D.E. 2001. Phylogeny and systematics of *Prunus* (Rosaceae) as determined by
1170 sequence analysis of *ITS* and the chloroplast *trnL-trnF* spacer DNA. *Syst. Bot.* 26:797–
1171 807.

1172 Bortiri E., Oh S.-H., Gao F., Potter D. 2002. The phylogenetic utility of nucleotide sequences of
1173 sorbitol 6-phosphate dehydrogenase in *Prunus* (Rosaceae). *Amer. J. Bot.* 89:1697–1708.

1174 Bortiri E., Vanden Heuvel B., Potter D. 2006. Phylogenetic analysis of morphology in *Prunus*
1175 reveals extensive homoplasy. *Plant Syst. Evol.* 259:53–71.

1176 Brown J.W., Walker J.F., Smith S.A. 2017. Phyx: phylogenetic tools for unix. *Bioinformatics.*
1177 33:1886–1888.

1178 Carranza-Rojas J., Goeau H., Bonnet P., Mata-Montero E., Joly A. 2017. Going deeper in the
1179 automated identification of Herbarium specimens. *BMC Evol. Biol.* 17:181.

1180 Chamberlain S., Barve V., McGlinn D., Oldoni D., Desmet P., Geffert L., Ram K (2023). *rgbif*:
1181 Interface to the Global Biodiversity Information Facility API. R package version 3.7.6,
1182 <https://CRAN.R-project.org/package=rgbif>.

1183 Chari T., Banerjee J., Pachter L. 2021. The Specious Art of Single-Cell Genomics. *BioRxiv*:1–
1184 25.

1185 Chin S.W., Shaw J., Haberle R., Wen J., Potter D. 2014. Diversification of almonds, peaches,
1186 plums and cherries - Molecular systematics and biogeographic history of *Prunus*
1187 (Rosaceae). *Mol. Phylogenet. Evol.* 76:34–48.

1188 Daccord N., Celton J.M., Linsmith G., Becker C., Choisne N., Schijlen E., Van De Geest H.,
1189 Bianco L., Micheletti D., Velasco R., Di Pierro E.A., Gouzy J., Rees D.J.G., Guérif P.,
1190 Muranty H., Durel C.E., Laurens F., Lespinasse Y., Gaillard S., Aubourg S., Quesneville
1191 H., Weigel D., Van De Weg E., Troggio M., Bucher E. 2017. High-quality de novo
1192 assembly of the apple genome and methylome dynamics of early fruit development. *Nat.
1193 Genet.* 49:1099–1106.

1194 De Queiroz K. 2007. Species Concepts and Species Delimitation. *Syst. Biol.* 56:879–886.

1195 Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N.,
1196 Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber,

1197 C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., ... Saleem, M. 2017. An Ecoregion-
1198 Based Approach to Protecting Half the Terrestrial Realm. *BioScience*, 67: 534–545.

1199 Donoghue M.J. 2008. A phylogenetic perspective on the distribution of plant diversity. *Proc.*
1200 *Natl. Acad. Sci. U. S. A.* 105:11549–11555.

1201 Doyle J.J., Coate J.E. 2019. Polyploidy, the nucleotype, and novelty: The impact of genome
1202 doubling on the biology of the cell. *Int. J. Plant Sci.* 180:1–52.

1203 Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf
1204 tissue. *Phytochem. Bull.* 19:11–15.

1205 Folk R.A., Stubbs R.L., Mort M.E., Cellinese N., Allen J.M., Soltis P.S., Soltis D.E., Guralnick
1206 R.P. 2019. Rates of niche and phenotype evolution lag behind diversification in a
1207 temperate radiation. *Proc. Natl. Acad. Sci. U. S. A.* 166:10874–10882.

1208 García Verdugo C., Friar E., Santiago L.S. 2013. Ecological role of hybridization in adaptive
1209 radiations: A case study in the *Dubautia arborea*-*Dubautia ciliolata* (Asteraceae) complex.
1210 *Int. J. Plant Sci.* 174:749–759.

1211 Griffiths A.G., Moraga R., Tausen M., Gupta V., Bilton T.P., Campbell M.A., Ashby R., Nagy
1212 I., Khan A., Larking A., Anderson C., Franzmayr B., Hancock K., Scott A., Ellison N.W.,
1213 Cox M.P., Asp T., Mailund T., Schierup M.H., Andersen S.U. 2019. Breaking free: The
1214 genomics of allopolyploidy-facilitated niche expansion in white clover. *Plant Cell.*
1215 31:1466–1487.

1216 Hijmans, R. J. 2016. raster: Geographic Data Analysis and Modeling. R pack- age version 2.5-
1217 8.

1218 Hijmans, R. J., S. Phillips, J. Leathwick, and J. Elith. 2017. Dismo: Species distribution
1219 modeling. R package version 1:1-4.

1220 Hipp A.L., Manos P.S., Hahn M., Avishai M., Bodénès C., Cavender-Bares J., Crowl A.A.,
1221 Deng M., Denk T., Fitz-Gibbon S., Gailing O., González-Elizondo M.S., González-
1222 Rodríguez A., Grimm G.W., Jiang X.L., Kremer A., Lesur I., McVay J.D., Plomion C.,
1223 Rodríguez-Correa H., Schulze E.D., Simeone M.C., Sork V.L., Valencia-Avalos S. 2020.
1224 Genomic landscape of the global oak phylogeny. *New Phytol.* 226:1198–1212.

1225 Hodel R.G.J., Zimmer E., Wen J. 2021. A phylogenomic approach resolves the backbone of
1226 *Prunus* (Rosaceae) and identifies signals of hybridization and allopolyploidy. *Mol.*
1227 *Phylogenetic Evol.* 160.

1228 Hodel R.G.J., Massatti R., Knowles L.L. 2022. Hybrid enrichment of adaptive variation
1229 revealed by genotype–environment associations in montane sedges. *Mol. Ecol.* 31:3722–
1230 3737.

1231 Hodel R.G.J., Zimmer E.A., Liu B. Bin, Wen J. 2022. Synthesis of nuclear and chloroplast data
1232 combined with network analyses supports the polyploid origin of the apple tribe and the
1233 hybrid origin of the Maloae—Gillenieae clade. *Front. Plant Sci.* 12:3321.

1234 Höhna, S. 2015. The time-dependent reconstructed evolutionary process with a key-role for
1235 mass-extinction events. *Journal of Theoretical Biology*, 380, 321–331.

1236 Höhna S., Freyman W.A., Nolen Z., Huelsenbeck J.P., May M.R., Moore B.R. 2019. A
1237 Bayesian Approach for Estimating Branch-Specific Speciation and Extinction Rates.
1238 bioRxiv. 10.1101/555805

1239 Höhna S., Landis M.J., Heath T.A., Boussau B., Lartillot N., Moore B.R., Huelsenbeck J.P.,
1240 Ronquist F. 2016. RevBayes: Bayesian phylogenetic inference using graphical models and
1241 an interactive model-specification language. *Systematic Biology*, 65:726-736.

1242 Höhna, S., Kopperud, B. T., & Magee, A. F. 2022. CRABS: Congruent rate analyses in birth–
1243 death scenarios. *Methods in Ecology and Evolution*, 13(12), 2709–2718.

1244 Huson, D. H., & Scornavacca, C. 2012. Dendroscope 3: An Interactive Tool for Rooted
1245 Phylogenetic Trees and Networks. *Systematic Biology*, 61: 1061–1067.

1246 Jin J.J., Yu W. Bin, Yang J.B., Song Y., DePamphilis C.W., Yi T.S., Li D.Z. 2020.
1247 GetOrganelle: A fast and versatile toolkit for accurate *de novo* assembly of organelle
1248 genomes. *Genome Biol.* 21:241.

1249 Johnson M.G., Gardner E.M., Liu Y., Medina R., Goffinet B., Shaw A.J., Zerega N.J.C.,
1250 Wickett N.J. 2016. HybPiper: Extracting coding sequence and introns for phylogenetics
1251 from high-throughput sequencing reads using target enrichment. *Appl. Plant Sci.*
1252 4:1600016.

1253 Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7:
1254 Improvements in performance and usability. *Mol. Biol. Evol.* 30:772–780.

1255 Kerkhoff A.J., Moriarty P.E., Weiser M.D. 2014. The latitudinal species richness gradient in
1256 New World woody angiosperms is consistent with the tropical conservatism hypothesis.
1257 *Proc. Natl. Acad. Sci.* 111:8125–8130.

1258 Li G., Davis B.W., Eizirik E., Murphy W.J. 2016. Phylogenomic evidence for ancient
1259 hybridization in the genomes of living cats (Felidae). *Genome Res.* 26:1–11.

1260 Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*. 34:3094–
1261 3100.

1262 Li H., Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
1263 *Bioinformatics*. 25:1754–1760.

1264 Li Y., Smith T., Liu C.J., Awasthi N., Yang J., Wang Y.F., Li C. Sen. 2011. Endocarps of
1265 *Prunus* (Rosaceae: Prunoideae) from the early Eocene of Wutu, Shandong Province,
1266 China. *Taxon.* 60:555–564.

1267 Liebherr J.K., Porch N., Liebherr J.K., Porch N. 2015. Reassembling a lost lowland carabid
1268 beetle assemblage (Coleoptera) from Kauai, Hawaiian Islands. *Invertebr. Syst.* 29:191–
1269 213.

1270 Lü L., Cai C.Y., Zhang X., Newton A.F., Thayer M.K., Zhou H.Z. 2021. Linking evolutionary
1271 mode to palaeoclimate change reveals rapid radiations of staphylinoid beetles in low-
1272 energy conditions. *Curr. Zool.* 66:435–444.

1273 Magee, A. F., Höhna, S., Vasylyeva, T. I., Leaché, A. D., & Minin, V. N. 2020. Locally
1274 adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts. *PLOS*
1275 *Computational Biology*, 16: e1007999.

1276 Matzke N.J. 2013. Probabilistic historical biogeography: new models for founder-event
1277 speciation, imperfect detection, and fossils allow improved accuracy and model-testing.
1278 *Front. Biogeogr.* 5.

1279 McVaugh R. 1951. A revision of the North American black cherries (*Prunus serotina* Ehrh.,
1280 and relatives). *Brittonia*. 7:279–315.

1281 McVay J.D., Hipp A.L., Manos P.S. 2017. A genetic legacy of introgression confounds
1282 phylogeny and biogeography in oaks. *Proc. R. Soc. B Biol. Sci.* 284.

1283 Michonneau F., Collins M., Chamberlain S.A. 2016. ridigbio: An interface to iDigBio's search
1284 API that allows downloading specimen records. R package version 0.3.2.
1285 <https://github.com/iDigBio/ridigbio>

1286 Morales-Briones D.F., Liston A., Tank D.C. 2018. Phylogenomic analyses reveal a deep history
1287 of hybridization and polyploidy in the Neotropical genus *Lachemilla* (Rosaceae). *New*
1288 *Phytol.* 218:1668–1684.

1289 Nie Z., Hodel R.G.J., Ma Z., Johnson G., Ren C., Meng Y., Ickert-Bond S.M., Liu X., Zimmer
1290 E., Wen J. 2023. Climate-influenced boreotropical survival and rampant introgressions
1291 explain the thriving of New World grapes in the north temperate zone. *J. Integr. Plant*
1292 *Biol.* 65:1183–1203.

1293 Oksanen, J. F., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin,
1294 R. B. O'Hara, G. L. Simpson, P. Solymos, et al. 2017. vegan: Community ecology
1295 package. R package version 2.4-4

1296 Parins-Fukuchi C., Stull G.W., Smith S.A. 2021. Phylogenomic conflict coincides with rapid
1297 morphological innovation. *Proc. Natl. Acad. Sci. U. S. A.* 118:e2023058118.

1298 Perez Zabala, J. 2022. Taxonomic Diversity, Phylogeny, and Diversification of the
1299 Environmental Niche of the Genus *Prunus* L. with emphasis on the New World Tropics.
1300 UC Davis. Retrieved from <https://escholarship.org/uc/item/3xw4b21k>

1301 Price M.N., Dehal P.S., Arkin A.P. 2009. FastTree: Computing large minimum evolution trees
1302 with profiles instead of a distance matrix. *Mol. Biol. Evol.* 26:1641–1650.

1303 Rapini A., Bitencourt C., Luebert F., Cardoso D. 2021. An escape-to-radiate model for
1304 explaining the high plant diversity and endemism in campos rupestres. *Biol. J. Linn. Soc.*
1305 133:481–498.

1306 Rehder, A., 1940. Manual of cultivated trees and shrubs hardy in North America exclusive of
1307 the subtropical and warmer temperate regions, 2nd ed. MacMillan, New York.

1308 Schenk J.J. 2021. The next generation of adaptive radiation studies in plants. *Int. J. Plant Sci.*
1309 182:245–262.

1310 Schlüter D. 2000. The ecology of adaptive radiation. Oxford University Press.

1311 Schuettpelz E., Frandsen P.B., Dikow R.B., Brown A., Orli S., Peters M., Metallo A., Funk
1312 V.A., Dorr L.J. 2017. Applications of deep convolutional neural networks to digitized
1313 natural history collections. *Biodivers. Data J.*:e21139.

1314 Seehausen O. 2004. Hybridization and adaptive radiation. *Trends Ecol. Evol.* 19:198–207.

1315 Selvaraju R.R., Cogswell M., Das A., Vedantam R., Parikh D., Batra D. 2017. Grad-CAM:
1316 Visual explanations from deep networks via gradient-based localization. .

1317 Shirasawa K., Isuzugawa K., Ikenaga M., Saito Y., Yamamoto T., Hirakawa H., Isobe S. 2017.
1318 The genome sequence of sweet plum (*Prunus avium*) for use in genomics-assisted
1319 breeding. *DNA Res.* 24:499–508.

1320 Smith S.A., Moore M.J., Brown J.W., Yang Y. 2015. Analysis of phylogenomic datasets reveals
1321 conflict, concordance, and gene duplications with examples from animals and plants.
1322 *BMC Evol. Biol.* 15:150.

1323 Soltis P.S., Soltis D.E. 2016. Ancient WGD events as drivers of key innovations in
1324 angiosperms. *Curr. Opin. Plant Biol.* 30:159–165.

1325 Spriggs E.L., Clement W.L., Sweeney P.W., Madriñán S., Edwards E.J., Donoghue M.J. 2015.
1326 Temperate radiations and dying embers of a tropical past: the diversification of *Viburnum*.
1327 *New Phytol.* 207:340–354.

1328 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
1329 large phylogenies. *Bioinformatics*. 30:1312–3.

1330 Su N., Hodel R.G.J., Wang X., Wang J.R., Xie S.Y., Gui C.X., Zhang L., Chang Z.Y., Zhao L.,
1331 Potter D., Wen J. 2023. Molecular phylogeny and inflorescence evolution of *Prunus*
1332 (Rosaceae) based on RAD-seq and genome skimming analyses. *Plant Divers.*

1333 Szubert B., Cole J.E., Monaco C., Drozdov I. 2019. Structure-preserving visualisation of high
1334 dimensional single-cell datasets. *Sci. Rep.* 9:1–10.

1335 Than, C., Ruths, D., & Nakhleh, L. 2008. PhyloNet: A software package for analyzing and
1336 reconstructing reticulate evolutionary relationships. *BMC Bioinformatics* 9:1–16.

1337 Ufimov, R., Zeisek, V., Píšová, S., Baker, W. J., Fér, T., van Loo, M., Dobeš, C., & Schmickl,
1338 R. 2021. Relative performance of customized and universal probe sets in target
1339 enrichment: A case study in subtribe Malinae. *Applications in Plant Sciences* 9(7).

1340 Verde I., Abbott A.G., Scalabrin S., Jung S., Shu S., Marroni F., Zhebentyayeva T., Dettori
1341 M.T., Grimwood J., Cattonaro F., Zuccolo A., Rossini L., Jenkins J., Vendramin E.,
1342 Meisel L.A., Decroocq V., Sosinski B., Prochnik S., Mitros T., Policriti A., Cipriani G.,
1343 Dondini L., Ficklin S., Goodstein D.M., Xuan P., Del Fabbro C., Aramini V., Copetti D.,
1344 Gonzalez S., Horner D.S., Falchi R., Lucas S., Mica E., Maldonado J., Lazzari B.,
1345 Bielenberg D., Pirona R., Miculan M., Barakat A., Testolin R., Stella A., Tartarini S.,
1346 Tonutti P., Arús P., Orellana A., Wells C., Main D., Vizzotto G., Silva H., Salamini F.,
1347 Schmutz J., Morgante M., Rokhsar D.S. 2013. The high-quality draft genome of peach
1348 (*Prunus persica*) identifies unique patterns of genetic diversity, domestication and genome
1349 evolution. *Nat. Genet.* 45:487–494.

1350 Weir J.T., Schlüter D. 2007. The latitudinal gradient in recent speciation and extinction rates of
1351 birds and mammals. *Science*. 315:1574–1576.

1352 Weitemier K., Straub S.C.K., Cronn R.C., Fishbein M., Schmickl R., McDonnell A., Liston A.
1353 2014. Hyb-Seq: Combining target enrichment and genome skimming for plant
1354 phylogenomics. *Appl. Plant Sci.* 2:1400042.

1355 Wellborn G.A., Langerhans R.B. 2015. Ecological opportunity and the adaptive diversification
1356 of lineages. *Ecol. Evol.* 5:176–195.

1357 Wen J., Berggren S.T., Lee C.-H., Ickert-Bond S., Yi T.-S., Yoo K., Xie L., Shaw J., Potter D.
1358 2008. Phylogenetic inferences in *Prunus* (Rosaceae) using chloroplast *ndhF* and nuclear
1359 ribosomal *ITS* sequences. *J. Syst. Evol.* 46:322–332.

1360 Wen J., Nie Z.-L., Ickert-Bond S.M. 2016. Intercontinental disjunctions between eastern Asia
1361 and western North America in vascular plants highlight the biogeographic importance of
1362 the Bering land bridge from late Cretaceous to Neogene. *J. Syst. Evol.* 54:469–490.

1363 Wiens J.J., Donoghue M.J. 2004. Historical biogeography, ecology and species richness. *Trends*
1364 *Ecol. Evol.* 19:639–644.

1365 Xiang Q.-Y., Soltis D.E., Soltis P.S. 1998. The eastern Asian and eastern and western North
1366 American floristic disjunction: Congruent phylogenetic patterns in seven diverse genera.
1367 *Mol. Phylogenet. Evol.* 10:178–190.

1368 Xu S., He Z., Zhang Z., Guo Z., Guo W., Lyu H., Li J., Yang M., Du Z., Huang Y., Zhou R.,
1369 Zhong C., Boufford D.E., Lerdau M., Wu C.-I., Duke N.C., Shi S. 2017. The origin,
1370 diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by
1371 whole-genome sequencing. *Natl. Sci. Rev.* 4:721–734.

1372 Yang, Y., Moore, M. J., Brockington, S. F., Mikenas, J., Olivieri, J., Walker, J. F., & Smith, S.
1373 A. 2017. Improved transcriptome sampling pinpoints 26 ancient and more recent
1374 polyploidy events in Caryophyllales, including two allopolyploidy events. *New*
1375 *Phytologist* 217(2): 855–870.

1376 Yao J.L., Kang C., Gu C., Gleave A.P. 2022. The roles of floral organ genes in regulating
1377 Rosaceae fruit development. *Front. Plant Sci.* 12:644424.

1378 Yu, Y., & Nakhleh, L. 2015. A maximum pseudo-likelihood approach for phylogenetic
1379 networks. *BMC Genomics*, 16: 1–10.

1380 Zhang C., Rabiee M., Sayyari E., Mirarab S. 2018. ASTRAL-III: polynomial time species tree
1381 reconstruction from partially resolved gene trees. *BMC Bioinformatics*. 19:153.

1382 Zhang Q., Ree R.H., Salamin N., Xing Y., Silvestro D. 2021. Fossil-informed models reveal a
1383 boreotropical origin and divergent evolutionary trajectories in the walnut family
1384 (Juglandaceae). *Syst. Biol.* 71:242–258.

1385 Zhao L., Jiang X.-W., Zuo Y., Liu X.-L., Chin S.-W., Haberle R., Potter D., Chang Z.-Y., Wen
1386 J. 2016. Multiple events of allopolyploidy in the evolution of the racemose lineages in
1387 *Prunus* (Rosaceae) based on integrated evidence from nuclear and plastid data. *PLoS One.*
1388 11:e0157123.

1389

1390