

1 **Selective impairment of long-term depression in accumbal D1-MSNs involves**
2 **calcium-permeable AMPARs in Alzheimer's disease**

3 Nicolas Riffo-Lepe¹, Juliana Gonzalez-Sanmiguel¹, Isaías Meza¹, Paulina Saavedra-
4 Sieyes¹, Lorena Armijo-Weingart^{1,3}, Armando Salinas⁵, Loreto San Martín^{1,2,4} & Luis G.
5 Aguayo^{1,2*}

6 * Corresponding author

7 1. Laboratorio de Neurofisiología, Departamento de Fisiología, Universidad de
8 Concepción, Concepción, Chile

9 2. Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad
10 de Concepción, Concepción, Chile

11 3. Facultad de Odontología, Universidad San Sebastián, Concepción, Chile.

12 4. Present address: Departamento de Bioquímica Clínica e Inmunología, Facultad
13 de Farmacia, Concepción, Chile

14 5. Department of Pharmacology, Toxicology & Neuroscience, Louisiana State
15 University Health Shreveport, Shreveport, LA, USA

16 Sugested reviewers:

- 17 - [Marina E. Wolf, Professor of Behavioral Neuroscience, \(OHSU\)](#)
- 18 - [Rakez Kayed, University of Texas Medical Branch \(UTMB\)](#)
- 19 - [Marcello D'Amelio, Medical School University Campus Bio-medico](#)
- 20 - [Marco Fuenzalida, Universidad de Valparaíso](#)

21 **Abstract**

22 Early neuropsychiatric symptoms in Alzheimer's disease emerge before cognitive
23 decline, yet their synaptic basis remains poorly defined. Here we identify an early, cell-
24 type-specific disruption of synaptic plasticity in the nucleus accumbens during pre-
25 plaque stages of disease. In APP/PS1 mice, intracellular amyloid-beta accumulation is
26 associated with a selective loss of mGluR1/5-dependent long-term depression in
27 dopamine D1 receptor-expressing medium spiny neurons, despite comparable
28 intracellular amyloid-beta levels across neuronal subtypes. This impairment is
29 accompanied by aberrant postsynaptic remodeling characterized by functional
30 accumulation of calcium-permeable AMPA receptors and increased excitatory drive.
31 These synaptic alterations coincide with reduced dopamine-dependent signaling and
32 selective changes in reward-related behavior, including altered hedonic consumption.
33 Together, these findings identify an early vulnerability of the mesolimbic reward system
34 and suggest that non-cognitive manifestations of Alzheimer's disease arise from circuit-
35 level imbalance before plaque deposition.

36 **Introduction**

37 Alzheimer's disease (AD) is the most prevalent form of dementia, resulting from the
38 complex interplay between genetic susceptibility and environmental factors that range
39 from mutations in genes critical for neuronal function to social and lifestyle factors ^{1, 2}.
40 Although memory impairments have long been considered the primary clinical hallmark
41 of AD ³, new evidence indicates that neuropsychiatric symptoms such as mood
42 disturbances, motivational deficits, and compulsive behaviors show up before cognitive
43 decline and strongly predict later dementia ^{4, 5}. Despite their relevance, the cellular and

44 circuit-level mechanisms underlying these early non-cognitive alterations remain poorly
45 understood, particularly within subcortical regions implicated in emotional and
46 motivational regulation⁶.

47 A key feature of AD progression is the temporal progression between intracellular and
48 extracellular amyloid-beta (A β) pathology. While extracellular A β plaques appear at
49 advanced disease stages in humans and animal models, intracellular A β accumulation
50 occurs months to years earlier, and is now recognized as one of the earliest
51 pathological events, preceding extracellular A β plaque and neurofibrillary tangle
52 deposition⁶⁻¹¹. Intracellular A β disrupts calcium signaling, synaptic homeostasis, and
53 neuronal excitability¹¹⁻¹³, yet the consequences of this pathology outside canonical
54 hippocampal and cortical circuits remain largely unexplored.

55 Emerging evidence indicates that early pathological changes also affect the mesolimbic
56 system¹⁴⁻¹⁶. The nucleus accumbens (nAc), a central integrative hub within this circuit,
57 receives convergent glutamatergic inputs from the prefrontal cortex, amygdala,
58 hippocampal subiculum, and thalamus, and dopaminergic projections from the ventral
59 tegmental area (VTA)¹⁷. Through these connections, the nAc integrates motivational,
60 affective, and cognitive signals that are essential for reward processing, goal-directed
61 behavior, and social interaction^{17, 18}. Notably, accumulating evidence from patients and
62 mouse models indicates that nAc dysfunction precedes cognitive decline, suggesting
63 that early alterations in mesolimbic signaling contribute to the emergence of non-
64 cognitive symptoms in AD^{16, 19-22}. In this context, we previously reported intracellular A β
65 accumulation accompanied by increased neuronal excitability in the nAc of 6-month-old
66 APP/PS1 mice, in the absence of extracellular plaque deposition²¹, raising the

67 possibility that intracellular A β disrupts synaptic physiology in the nAc during early
68 stages of the disease.

69 Medium spiny neurons (MSNs), the principal neuronal type in the nAc, coordinate
70 information flow via dopamine receptor type 1 (D1R)- and dopamine receptor type 2
71 (D2R)-expressing pathways ^{17, 23}. Balanced excitation and inhibition within these
72 pathways are essential for emotional regulation and motivational salience ^{24, 25}. Long-
73 term depression (LTD) represents the predominant form of enduring synaptic plasticity
74 in the nAc and functions as a key mechanism for constraining excitatory drive, thereby
75 preventing pathological strengthening of glutamatergic inputs ^{26, 27}. Accumbal LTD
76 critically depends on AMPA receptor (AMPAR) remodeling driven by the group I
77 metabotropic glutamate receptor (mGluR1/5) signaling, which promotes the endocytosis
78 of calcium-permeable AMPARs (CP-AMPARs) to maintain synaptic homeostasis ^{28, 29}.
79 Disruption of this LTD mechanism favors the synaptic accumulation of CP-AMPARs in
80 the nAc, enhances excitatory transmission, and reinforces direct pathway output, as
81 demonstrated in addiction and food-restriction paradigms ³⁰⁻³⁷.

82 AMPARs are tetrameric ionotropic receptors composed of GluA1–4 subunits that
83 mediate fast excitatory transmission in the brain ³⁸. Their calcium permeability depends
84 on the presence or absence of the GluA2 subunit, which undergoes RNA editing at the
85 Q/R site to render AMPARs calcium-impermeable ³⁹. AMPA receptors lacking edited
86 GluA2 and GluA1 homomers are calcium-permeable, show inward rectification currents,
87 and contribute to forms of plasticity involving rapid AMPAR trafficking ^{38, 39}. Although
88 CP-AMPARs have been implicated in various pathological conditions, including

89 addiction, eating disorders, and stress^{37, 40, 41}, their regulation in the nAc during early
90 AD remains unknown.

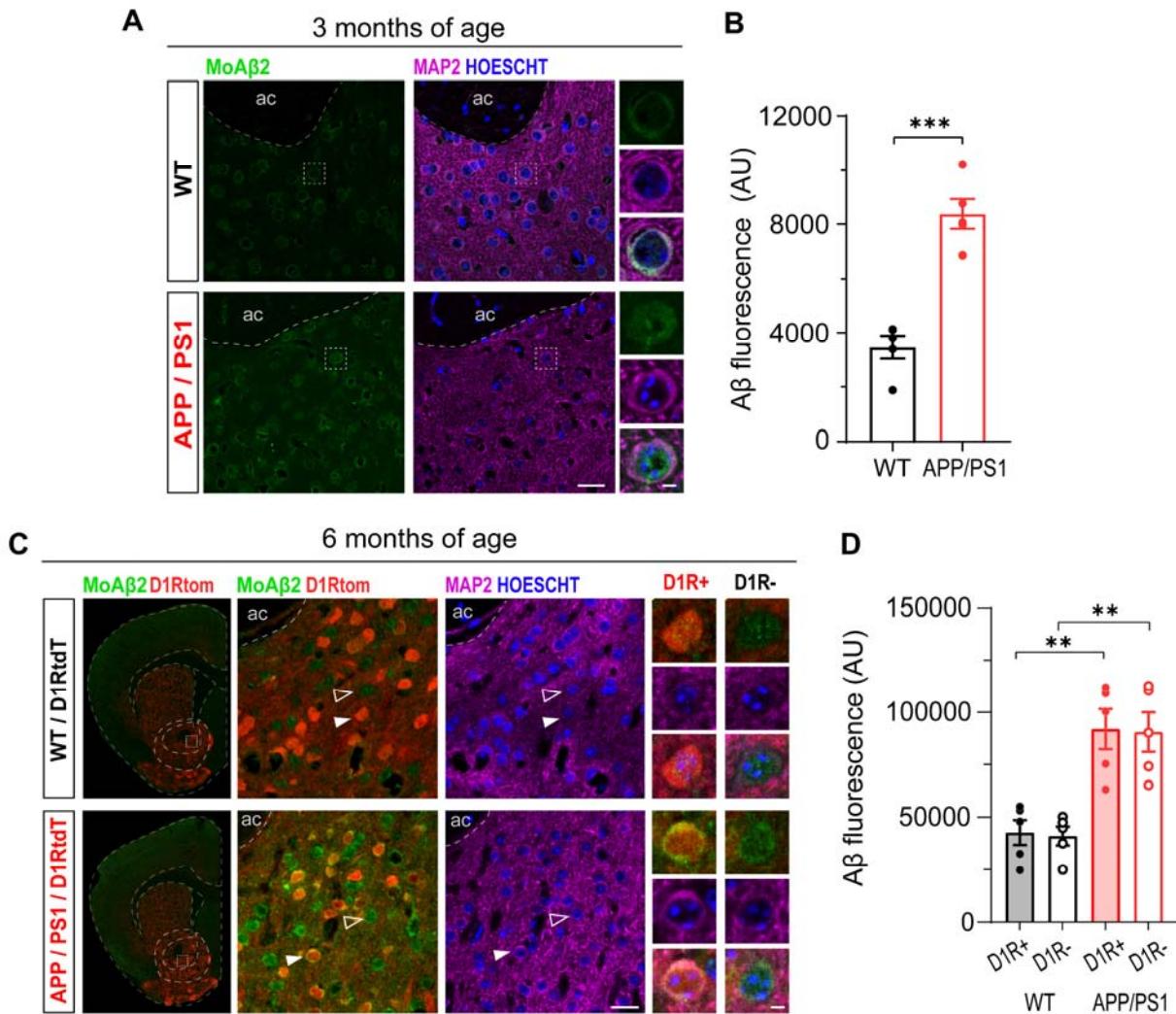
91 Within this framework, two key questions remain unresolved. First, does intracellular
92 A β alter AMPAR composition or LTD mechanisms in the nAc during early disease
93 stages, prior to plaque deposition? Second, are specific MSN subtypes differentially
94 vulnerable to these alterations? Although intracellular A β oligomers disrupt AMPAR
95 trafficking and synaptic function in hippocampal neurons⁴², it remains unknown whether
96 similar mechanisms operate in accumbal MSNs. Moreover, it is unclear whether D1R-
97 and D2R-expressing pathways are differentially affected during early stages of the
98 disease. Notably, no study to date has examined how intracellular A β accumulation
99 influences LTD or AMPAR function in distinct MSN subtypes during the earliest phases
100 of AD progression.

101 Recent evidence indicates that dopaminergic dysfunction is an early event in AD,
102 preceding cognitive impairment⁴³. Reduced dopamine levels, degeneration of VTA
103 dopaminergic neurons, and decreased dopamine transporter expression in the nAc
104 have been reported in patients and AD mouse models^{16, 44-46}. Collectively, these
105 observations highlight a potential convergence between early dopaminergic dysfunction
106 in the mesolimbic system and synaptic plasticity impairments emerging during initial
107 stages of A β pathology. However, whether intracellular A β contributes to synaptic
108 dysfunction in accumbal MSNs during early AD remains unknown. Here, we
109 hypothesized that intracellular A β disrupts postsynaptic homeostasis in D1R-positive
110 MSNs, leading to aberrant plasticity and excitatory imbalance that may underlie early
111 motivational and affective alterations associated with AD. Elucidating these

112 mechanisms provides insight into the synaptic basis of early non-cognitive symptoms
113 and may inform the identification of molecular targets for early-stage therapeutic
114 intervention.

115 **RESULTS**

116 **Intracellular A β accumulates broadly in accumbal MSNs during early stages of**
117 **APP/PS1 pathology.**


118 To establish the temporal onset of amyloid pathology in the nucleus accumbens during
119 early Alzheimer's disease progression, we first performed immunohistochemistry in
120 coronal sections from WT and APP/PS1 mice at 3 months of age using the MoA β 2
121 antibody, which recognizes the N-terminal region of A β without cross-reacting with APP.
122 At this age, intracellular A β signal was detected within neuronal somata, with no
123 evidence of extracellular plaque deposition, consistent with our previous observations at
124 6 months. Quantitative analysis revealed a significant increase in intracellular A β signal
125 in APP/PS1 compared with WT mice, indicating that accumbal neurons already
126 accumulate A β intracellularly at very early stages of disease progression (Fig. 1A, B).

127 To determine whether this intracellular A β accumulation is differentially distributed
128 across MSN subtypes at later pre-plaque stages, we next analyzed 6-month-old
129 WT/D1RtdT and APP/PS1/D1RtdT mice. Consistent with our previous report in 6-
130 month-old APP/PS1 mice²¹, APP/PS1/D1RtdTomato animals exhibited robust
131 intracellular A β accumulation restricted to neuronal somata in the nucleus accumbens,
132 with no detectable extracellular plaques (Fig. 1C). Quantitative analysis revealed a
133 significant increase in A β intensity in both D1R+ and D1R- MSNs compared with WT

134 controls (Fig. 1D), indicating that intracellular A β accumulation during pre-plaque stages
135 occurs broadly across MSN subtypes rather than selectively targeting a specific
136 neuronal population.

137 To anchor these findings within the broader progression of amyloid pathology, we
138 evaluated extracellular plaque deposition using Thioflavin-S staining in coronal brain
139 sections from WT and APP/PS1 mice at 6 and 12 months of age (Fig. S1A). No plaques
140 were detected in the nAc at 6 months, whereas sparse plaques appeared at 12 months.
141 In contrast, amyloid plaques were readily detected in the cortex of APP/PS1 mice at
142 both ages (Fig. S1B). Together, these data indicate that amyloid pathology in the nAc is
143 predominantly intracellular during early disease stages, preceding extracellular plaque
144 formation.

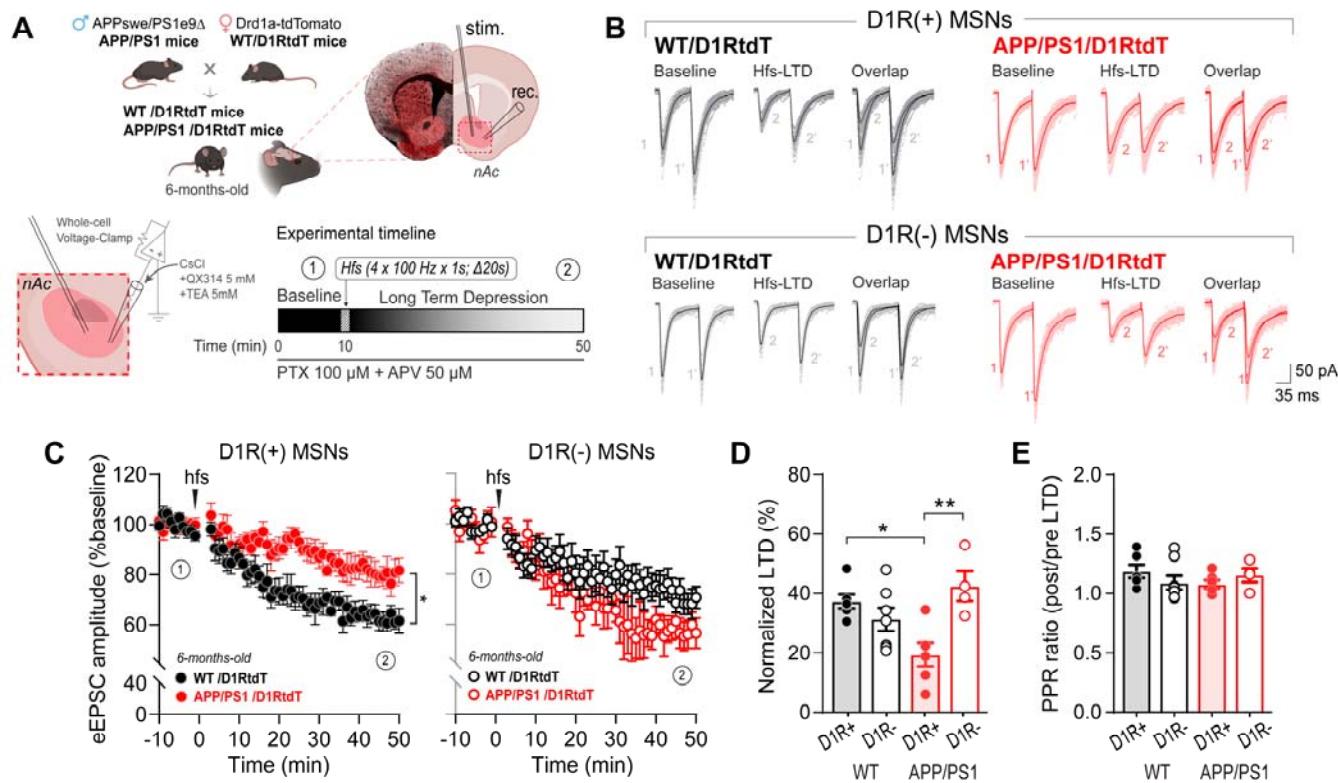
145 Finally, to evaluate whether early intracellular A β accumulation is associated with
146 inflammatory responses, we quantified Iba1+ microglia in the nAc of 6-month-old WT
147 and APP/PS1 mice. No differences in Iba1+ cell number or fluorescence intensity were
148 detected between genotypes, indicating the absence of overt microglial activation at this
149 stage (Fig. S1C, D). Together, these results show that intracellular A β accumulates in
150 both D1R+ and D1R- MSNs in the nAc during pre-plaque stages, defining an early
151 histopathological window preceding extracellular aggregation.

152

153 **Fig. 1 | Intracellular A β accumulates in both D1R+ and D1R- MSNs in the nAc of**
154 **APP/PS1 mice during pre-plaque stages. A** Representative immunohistochemistry of
155 coronal nAc sections (30 μ m) from 3-month-old WT and APP/PS1 mice labeled with
156 MOA β -2, MAP2, and Hoechst. APP/PS1 mice show detectable intracellular A β
157 immunoreactivity. Right panels display magnified insets (dashed boxes) highlighting
158 intracellular signal within individual neuronal somata. **B** Quantification of MOA β -2
159 fluorescence intensity under a MAP2 mask shows significantly higher intracellular A β
160 levels in APP/PS1 mice compared with WT (unpaired two-tailed t test, $t(8)=7.111$,

161 **p<0.001). Each point represents the mean value per animal (WT n=5; APP/PS1 n=5).
162 A total of 20 neurons per animal were analyzed. **C** Immunohistochemistry of 6-month-
163 old WT/D1RtdTomato and APP/PS1/D1RtdTomato nAc sections labeled with MOA β -2,
164 D1RtdTomato, MAP2, and Hoechst. Left panels show tile-scan images; middle panels
165 present magnified fields (dashed boxes). Filled white arrowheads indicate D1R+ MSNs
166 (tdTomato+), whereas open white arrowheads denote D1R- MSNs (tdTomato-). Right
167 panels show single-cell zoom-ins corresponding to each MSN subtype **D** Quantification
168 of intracellular A β intensity in identified D1R+ and D1R- MSNs at 6 months. APP/PS1
169 mice exhibit significantly elevated A β levels in both MSN subtypes compared with WT
170 (one-way ANOVA followed by Tukey's test: WT D1R+ vs WT D1R-, ns; WT D1R+ vs
171 APP/PS1 D1R+, p=0.002; WT D1R+ vs APP/PS1 D1R-, p=0.002; WT D1R- vs
172 APP/PS1 D1R+, p=0.001; WT D1R- vs APP/PS1 D1R-, p=0.002; APP/PS1 D1R+ vs
173 APP/PS1 D1R-, ns). Each point represents the mean value per animal (n=5 per
174 genotype). A total of WT: 50 D1R+ and 47 D1R- cells, APP/PS1: 40 D1R+ and 35
175 D1R- cells were analyzed. Scale bars: 20 μ m; insets scale bar 5 μ m

176 **Selective impairment of long-term depression in D1R+ MSNs of the nAc in early-**
177 **stage APP/PS1 mice.**


178 To determine whether intracellular A β accumulation disrupts accumbal synaptic
179 plasticity, we used electrophysiology in accumbal brain slices of 3- and 6-month-old WT
180 and APP/PS1 mice. LTD was induced by a high frequency stimulation (HFS) protocol in
181 presence of NMDARs and GABAARs blockers, 2-amino-5-phosphonovaleric acid (APV)
182 and Picrotoxin (PTX) respectively, isolating electrically evoked excitatory postsynaptic
183 currents (eEPSCs) mediated mostly by AMPARs. At 3-months-old, HFS-LTD was

184 robust and similar between WT and APP/PS1 mice (WT: ~40%; APP/PS1: ~40%; $p =$
185 0.6849). In contrast, at 6 months, LTD was markedly reduced in APP/PS1 mice ($47.3 \pm$
186 3.2% in WT vs. $11.4 \pm 4.0\%$ in APP/PS1; $t(16) = 3.386$, $p = 0.0038$, $\eta^2 = 0.4174$) (Fig
187 2S. A-G), indicating loss of HFS-LTD at 6 but normal at 3 months old, supporting the
188 idea of a progressive dysregulation of accumbal synaptic plasticity at early AD stages.

189 We next evaluated mGluR-dependent LTD using the bath application of the mGluR(1/5)
190 agonist, (RS)-3,5-Dihydroxyphenylglycine (DHPG) (50 μM). Quantitative analysis
191 revealed a marked reduction in mGluR-LTD magnitude in APP/PS1 accumbal slices
192 compared with WT controls. An unpaired two-tailed t-test showed a significant
193 difference between genotypes ($t(13) = 4.155$, $p = 0.0011$), with WT neurons exhibiting
194 robust LTD (35.33%) whereas APP/PS1 neurons displayed a strongly attenuated
195 response (11.45%) (Fig. 2S, H-K). These findings indicate that, in addition to impaired
196 HFS-induced LTD, mGluR-LTD is also significantly disrupted at 6 months of age in
197 APP/PS1 mice. Notably, since picrotoxin (PTX) (100 μM) and the NMDAR antagonist
198 APV (50 μM) were present on the bath solution, these results suggest that neither
199 GABA_ARs, GlyRs nor NMDARs are involved in the LTD impairment.

200 To assess cell-type specificity, we recorded evoked EPSCs before and after LTD
201 induction and evaluated paired-pulse responses in D1R+ and D1R- MSNs from 6-
202 month-old WT/D1RtdTomato and APP/PS1/D1RtdTomato mice, in which tdTomato
203 selectively labels D1R-expressing neurons (Fig. 2A). HFS-LTD was significantly
204 reduced in APP/PS1 D1R+ MSNs compared with WT D1R+ MSNs (Fig. 2B,C; one-way
205 ANOVA, $F(3,19) = 6.170$, $p = 0.004$; Tukey, $p = 0.015$), whereas D1R- MSNs displayed
206 preserved LTD across genotypes and differed significantly from APP/PS1 D1R+ MSNs

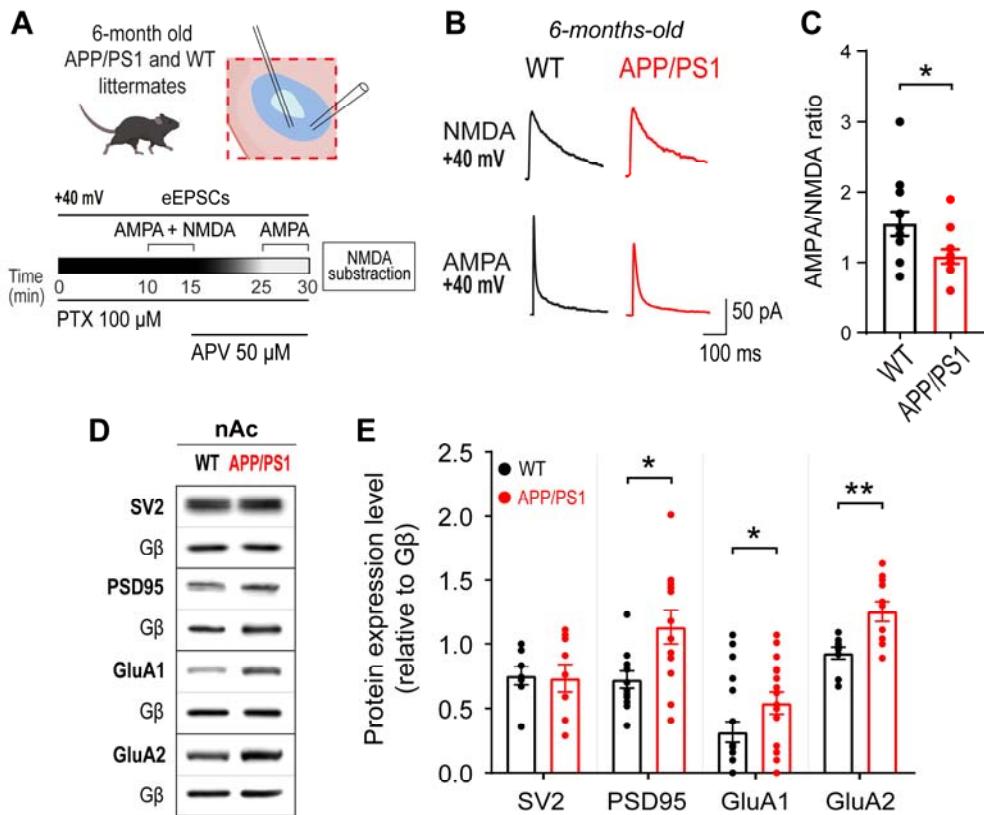
207 (p = 0.005; Fig. 2D). Paired-pulse ratio was unchanged between groups (Fig. 2E),
 208 indicating intact presynaptic release probability. Together, these results demonstrate a
 209 selective postsynaptic loss of HFS-LTD in accumbal D1R+ MSNs during early AD
 210 stages.

211

212 **Fig. 2 | HFS-LTD is selectively impaired in D1R+ MSNs, but preserved in D1R-**
 213 **MSNs, in the nAc of 6-month-old APP/PS1 mice. A** Schematic representation of the
 214 experimental strategy. Crossing APP/PS1 mice with Drd1-tdTomato animals enables
 215 selective identification of D1R+ MSNs. The experimental timeline indicates baseline
 216 eEPSC acquisition (1; 10 min), HFS-LTD induction (four trains of 100 Hz, 1 s, every 20
 217 s), and monitoring of LTD expression. LTD magnitude was calculated by normalizing
 218 the mean eEPSC amplitude measured during the final 10 min of the recording period (2;
 219 40–50 min) to the baseline period (1). **B** Representative pair-pulse evoked EPSC traces

220 recorded from D1R+ and D1R- MSNs in WT/D1RtdT and APP/PS1/D1RtdT mice
221 before (baseline) and after HFS-LTD induction. Overlaid traces illustrate changes in
222 synaptic strength. Paired-pulse stimulation was used to assess presynaptic release
223 probability. **C** Time course of normalized eEPSC amplitude in D1R+ (left) and D1R-
224 (right) MSNs. A significant reduction in LTD was observed only in D1R+ MSNs of
225 APP/PS1 mice compared with WT littermates, whereas D1R- MSNs exhibited
226 preserved LTD. Data are shown as mean \pm s.e.m. **D** Quantification of LTD magnitude
227 calculated from the last 10 min of the recording (40–50 min) revealed a significant
228 reduction of LTD in D1R+ MSNs from APP/PS1 mice compared with WT D1R+ MSNs
229 (one-way ANOVA, $F(3,19)=6.170$, $p=0.004$; Tukey's post hoc test, WT D1R+ vs.
230 APP/PS1 D1R+, $p=0.015$). In addition, LTD magnitude differed between D1R+ and
231 D1R- MSNs within APP/PS1 mice (Tukey's post hoc test, $p=0.005$). **E** Quantification of
232 paired-pulse ratio (PPR; post/pre) showed no significant differences between
233 genotypes or MSN subtypes (Kruskal–Wallis test, $p=0.279$; Dunn's multiple
234 comparisons test). Each data point represents a single recorded neuron. Number of
235 cells and animals analyzed: WT D1R+ ($n=6$ cells, 5 mice), WT D1R- ($n=7$ cells, 5
236 mice), APP/PS1 D1R+ ($n=6$ cells, 5 mice), APP/PS1 D1R- ($n=4$ cells, 3 mice). Graphs
237 show mean \pm s.e.m. * $p<0.05$, ** $p<0.01$.

238 **Postsynaptic upregulation of AMPAR signaling selectively affects accumbal D1R+**
239 **MSNs in APP/PS1 mice at an early stage.**


240 To determine whether the impairment in LTD observed in APP/PS1 mice is associated
241 with alterations in glutamatergic synaptic transmission, we first quantified the
242 AMPA/NMDA ratio in MSNs of the nAc. Whole-cell voltage-clamp recordings were

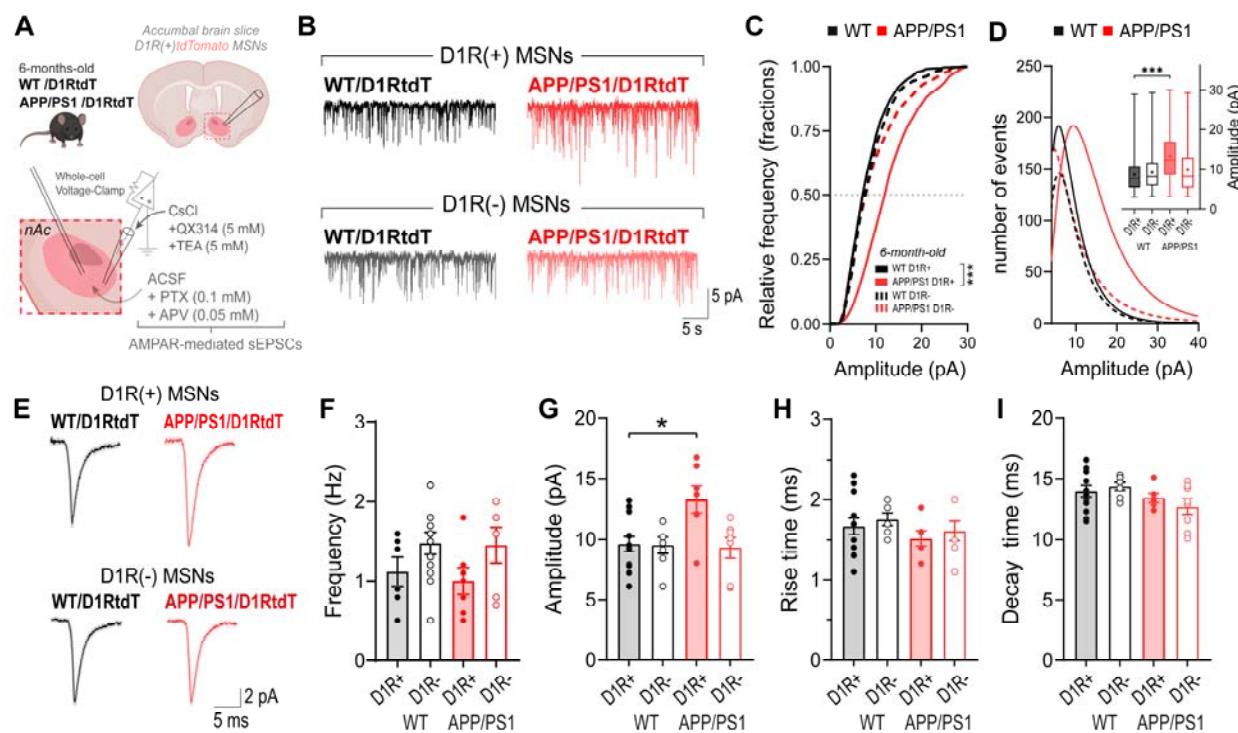
243 performed at a holding potential of +40 mV to relieve the Mg²⁺ block of NMDARs,
244 allowing simultaneous measurement of AMPAR- and NMDAR-mediated components,
245 followed by pharmacological isolation and digital subtraction of NMDA currents (Fig.
246 3A–B). APP/PS1 MSNs exhibited a significant reduction in the AMPA/NMDA ratio
247 compared with WT controls (Fig. 3C).

248 Because AMPAR-mediated currents recorded at depolarized potentials are strongly
249 influenced by receptor subunit composition, including inward rectification and polyamine
250 block characteristic of Ca²⁺-permeable AMPARs ³⁹, this reduction is unlikely to reflect a
251 generalized decrease in excitatory synaptic strength. Rather, it suggests a postsynaptic
252 reorganization of AMPAR populations and/or altered receptor surface expression.

253 To determine whether these functional changes were associated with altered synaptic
254 protein expression, we assessed pre- and postsynaptic markers in nAc tissue by
255 Western blot. Levels of the presynaptic protein SV2 were unchanged between WT and
256 APP/PS1 mice (Fig. 3D–E), indicating preserved presynaptic integrity. In contrast, the
257 postsynaptic scaffolding protein PSD95 and the AMPAR subunits GluA1 and GluA2
258 were significantly increased in APP/PS1 mice (Fig. 3D–E). These results indicate that
259 LTD impairment is associated with postsynaptic glutamatergic remodeling rather than
260 presynaptic alterations.

261 To determine whether these changes arise from transcriptional regulation, we examined
262 mRNA levels for GluA1, GluA2, Grin1, and Grin2b at 6 and 9 months of age. No
263 significant genotype differences were detected at either stage (Fig. 3S), indicating that
264 the elevated AMPAR protein levels likely result from post-transcriptional or translational
265 mechanisms rather than altered gene expression.

266


267 **Fig. 3 | AMPAR-related synaptic alterations in the nucleus accumbens of 6-month-**
268 **old APP/PS1 mice. A** Schematic representation of the experimental design used to
269 assess AMPAR- and NMDAR-mediated synaptic transmission in MSNs of the nAc from
270 6-month-old WT and APP/PS1 mice. Whole-cell voltage-clamp recordings were
271 performed at +40 mV to isolate mixed AMPA+NMDA eEPSCs, followed by
272 pharmacological isolation of AMPAR-mediated currents after APV application and digital
273 subtraction to obtain NMDA receptor-mediated component. **B** Representative AMPAR-
274 and NMDAR-mediated eEPSCs recorded at +40 mV from MSNs of WT (black) and
275 APP/PS1 (red) mice, illustrating the subtraction-based isolation of NMDA currents. **C**
276 Quantification of the AMPA/NMDA ratio reveals a significant reduction in APP/PS1 mice
277 compared with WT (unpaired two-tailed t-test, $t(23) = 2.236$, $P = 0.027$; WT: $n = 12$

278 neurons, 4 mice; APP/PS1: n = 13 neurons, 4 mice). **D** Representative Western blots of
279 synaptic proteins extracted from the nAc of WT and APP/PS1 mice. **E** Quantification of
280 protein expression levels normalized to G β shows no significant difference in the
281 presynaptic marker SV2 between genotypes, whereas postsynaptic proteins PSD95,
282 GluA1, and GluA2 are significantly increased in APP/PS1 mice (unpaired two-tailed t-
283 tests). Sample sizes (WT/APP/PS1): SV2, n = 8/9; PSD95, n = 12/12; GluA1, n = 22/16;
284 GluA2, n = 9/11. Data are shown as mean \pm s.e.m. *p < 0.05, **p < 0.01.

285 We next examined excitatory synaptic transmission at 3 and 6 months. AMPAR-
286 mediated spontaneous EPSCs, recorded at -60 mV in the presence of PTX and APV
287 and blocked by CNQX, were similar between WT and APP/PS1 mice at 3 months of
288 age (Fig. 4S, A–I). In contrast, at 6-months-old APP/PS1 MSNs exhibited increased
289 sEPSC amplitude without changes in frequency or kinetics (Fig. 4S, J–R), accompanied
290 by a rightward shift in cumulative amplitude distributions (Fig. 4S, L–M). Thus, despite
291 early intracellular A β accumulation, functional synaptic alterations emerge at 6 months,
292 coinciding with the onset of LTD deficits.

293 Finally, to determine whether these postsynaptic changes are specific to MSN subtypes,
294 we performed whole-cell recordings in WT/D1RtdT and APP/PS1/D1RtdT mice (Fig. 4).
295 A two-way ANOVA revealed a significant genotype \times MSN-type interaction for sEPSC
296 amplitude ($F(3,18) = 5.856$, p = 0.0057). Sidak's post hoc test showed a significant
297 increase in amplitude exclusively in APP/PS1 D1R+ MSNs compared with WT D1R+
298 MSNs, whereas D1R- MSNs showed no genotype differences (Fig. 4C–D, G).
299 Importantly, sEPSC frequency remained unchanged across genotypes and MSN

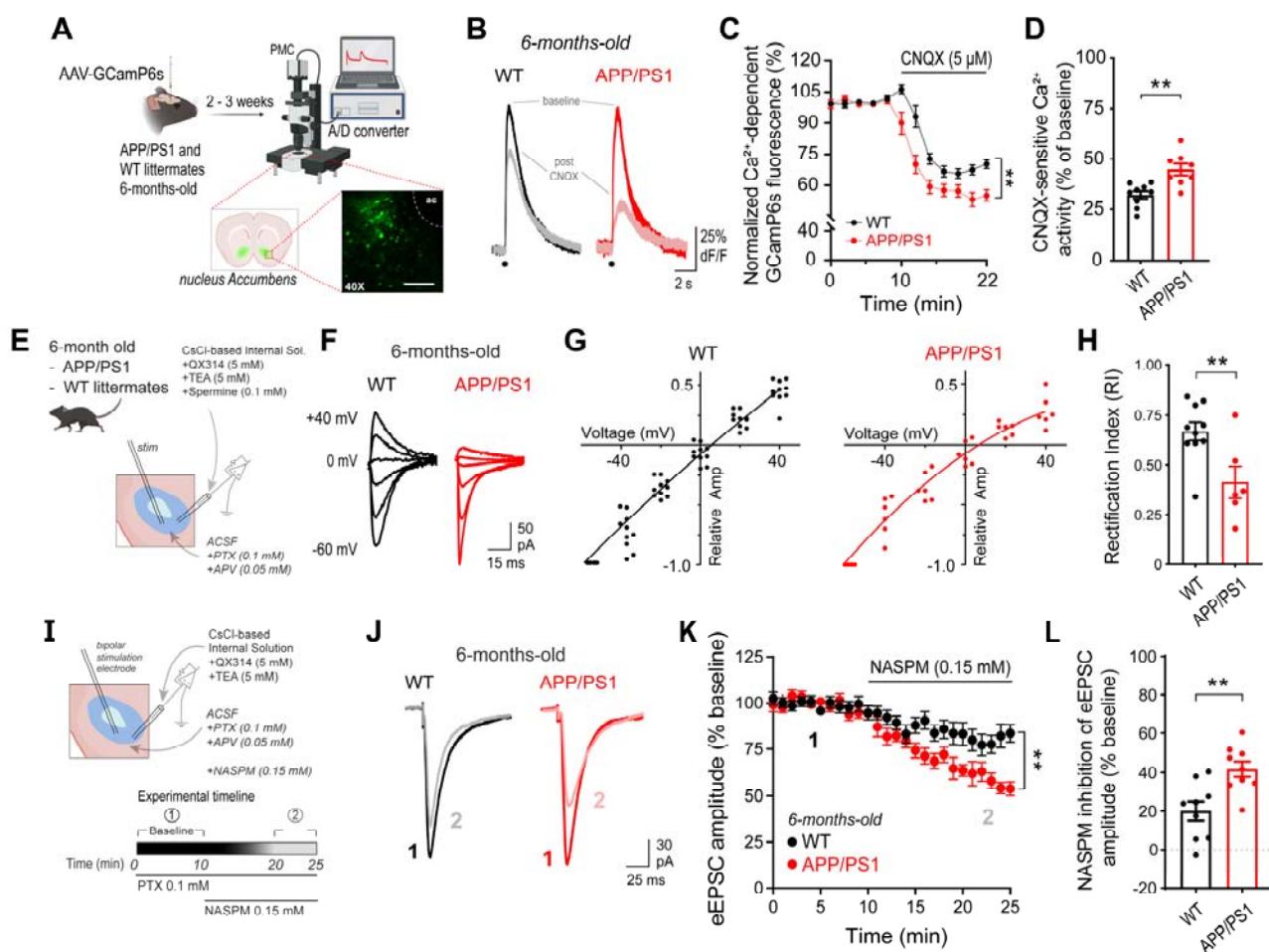
300 subtypes (Fig. 4F), supporting the conclusion that these alterations arise from
301 postsynaptic rather than presynaptic mechanisms.

302 **Fig. 4 | Enhanced AMPAR-mediated excitatory transmission selectively in D1R+**
303 **MSNs of 6-month-old APP/PS1 mice. A** Schematic representation of the experimental
304 configuration for whole-cell voltage-clamp recordings of AMPAR-mediated spontaneous
305 EPSCs (sEPSCs) in nucleus accumbens slices from 6-month-old WT/D1RtdT and
306 APP/PS1/D1RtdT mice. **B** Representative sEPSC traces recorded at -60 mV from
307 D1R+ (top) and D1R- (bottom) MSNs in WT (black) and APP/PS1 (red) mice. **C**
308 Cumulative probability distributions of sEPSC amplitudes showing a rightward shift
309 selectively in APP/PS1 D1R+ MSNs compared with WT D1R+ MSNs (Welch's ANOVA,
310 $p < 0.001$). **D** Amplitude distribution histograms and box plots reveal a significant
311 increase in sEPSC amplitude in APP/PS1 D1R+ MSNs relative to WT D1R+ MSNs
312 (Games-Howell post hoc test, mean difference = -4.71 pA, 95% CI -5.29 to -4.14 , $p <$

314 0.001), whereas no difference was detected between WT and APP/PS1 D1R- MSNs (p
315 = 0.094). **E** Representative averaged sEPSC event from D1R+ and D1R- MSNs in
316 WT/D1RtdT and APP/PS1/D1RtdT mice. **F** Quantification of sEPSC frequency shows
317 no significant differences across groups (one-way ANOVA, $F(3,27) = 1.89$, $p = 0.155$).
318 **G** Two-way ANOVA of sEPSC amplitude reveals a significant interaction between
319 genotype and MSN subtype ($F(1,18) = 5.86$, $p = 0.0057$). Šídák post hoc comparisons
320 show increased sEPSC amplitude in APP/PS1 D1R+ MSNs compared with WT D1R+
321 MSNs (mean difference = -2.67 pA, 95% CI -5.28 to -0.07, $p = 0.044$), with no
322 differences in D1R- MSNs ($p = 0.979$). **H** Rise time analysis shows no significant
323 differences among groups (one-way ANOVA, $F(3,30) = 0.66$, $p = 0.582$). **I** Decay time
324 analysis shows no significant differences among groups (one-way ANOVA, $F(3,30) =$
325 1.88, $p = 0.154$). Data are presented as mean \pm s.e.m. * $p < 0.05$, *** $p < 0.001$.
326 Together, these results reveal a progressive, postsynaptic upregulation of AMPAR
327 signaling in the nAc of APP/PS1 mice that selectively targets D1R+ MSNs. This cell-
328 type specific strengthening of excitatory synaptic transmission aligns with the selective
329 impairment of LTD in 6-months-old D1R+ MSNs and may contribute to altered
330 mesolimbic function during early stages of Alzheimer's disease.

331 **Functional upregulation of calcium-permeable AMPA receptors in the nAc of**
332 **APP/PS1 mice.**

333 Considering the postsynaptic alterations found in the APP/PS1 mice, we next asked
334 whether these changes reflect an early shift in AMPAR subunit composition toward CP-
335 AMPARs, which lacks the GluA2 subunit or contain non edited GluA2 subunit,


336 contribute to increased Ca^{2+} influx, show inward rectification, and sensitivity to selective
337 antagonists such as NASPM³⁵.

338 To assess AMPAR-mediated Ca^{2+} signaling in the nAc, we expressed GCaMP6s in the
339 nAc of 6-months-old WT and APP/PS1 mice and recorded electrically evoked Ca^{2+}
340 transients in acute accumbal brain slices (Fig. 5A-D). Bath application of CNQX (5 μM)
341 was used to estimate the AMPAR-dependent component of the Ca^{2+} response by
342 quantifying the reduction in fluorescence following AMPAR blockade. APP/PS1
343 accumbal slices displayed significantly larger CNQX-sensitive reductions in Ca^{2+}
344 transients compared with WT slices (Fig. 5C-D), indicating that a greater proportion of
345 evoked Ca^{2+} activity depends on AMPAR activation in the nAc of APP/PS1 mice.
346 Because GluA2-lacking AMPARs allow Ca^{2+} influx and can enhance downstream Ca^{2+}
347 signaling, this increase is consistent with a higher calcium activity driven by AMPARs in
348 early stages of AD in the nAc of APP/PS1 mice and points to an increase of CP-
349 AMPARs .

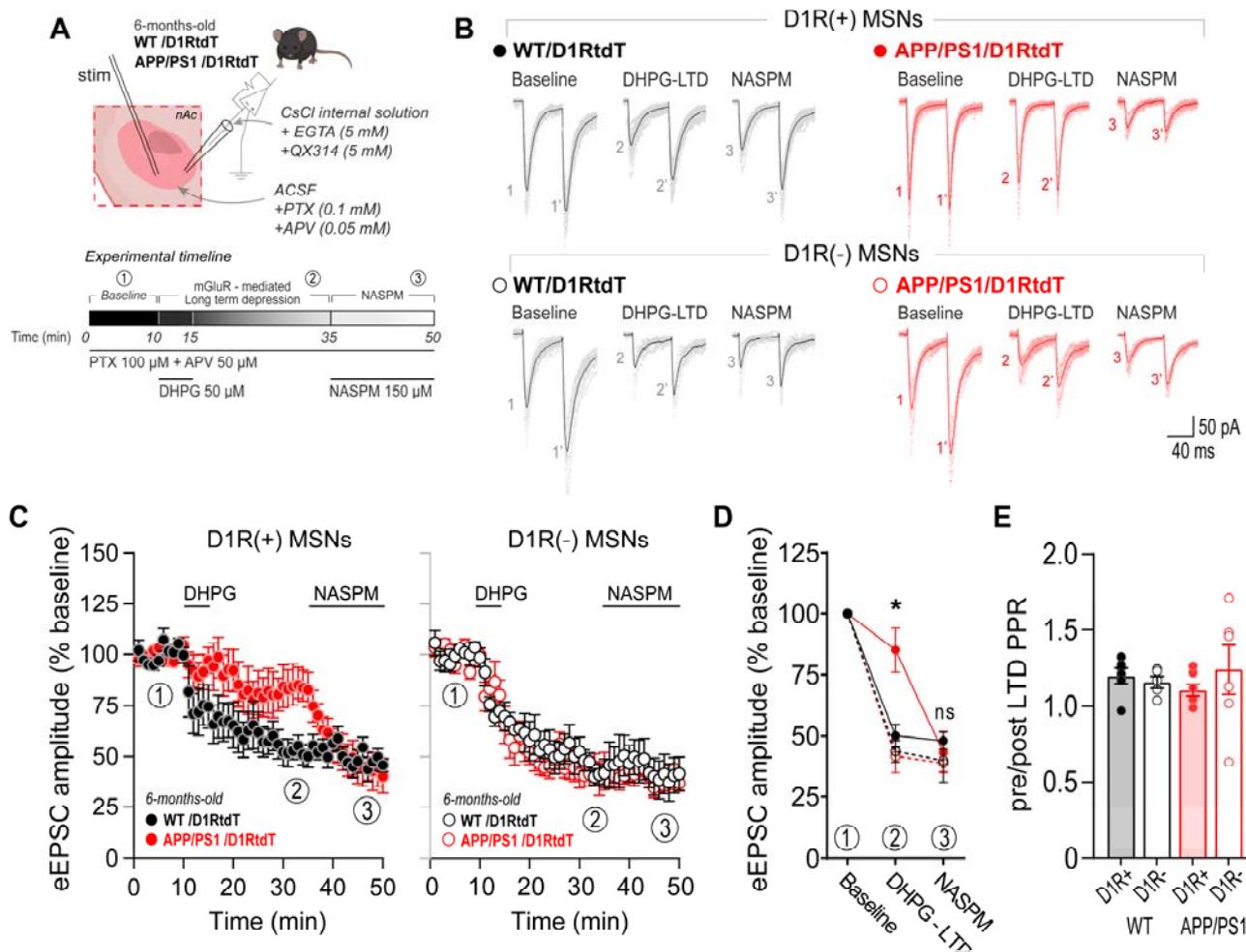
350 We next assessed the rectification behavior associated with CP-AMPARs by quantifying
351 the rectification index (RI) of AMPAR-mediated eEPSCs recorded at holding potentials
352 from -60 mV to $+40$ mV in 20 mV steps (Fig. 5E-H). The data shows that APP/PS1
353 MSNs displayed markedly smaller current amplitudes at depolarized voltages compared
354 with WT MSNs, resulting in a significantly lower RI (WT ≈ 0.7 ; APP/PS1 ≈ 0.4 , unpaired
355 two-tailed t-test, $t(14) = 2.989$, $p = 0.0098$) (Fig. 5H). This inward rectification property
356 reflects voltage-dependent block of GluA2-lacking AMPARs by intracellular polyamines,
357 enabling functional identification of CP-AMPARs³⁹. Therefore, these findings provide

358 evidence for increased incorporation of calcium-permeable AMPARs at accumbal
359 synapses in APP/PS1 mice at early AD stages.

360 To directly test CP-AMPAR involvement, we applied NASPM (150 μ M) while recording
361 AMPAergic eEPSCs in nAc MSNs (Fig. 5I-K). NASPM produced a larger inhibition in
362 APP/PS1 MSNs (~40% reduction) than in WT MSNs (~20%) (Fig. 5K), consistent with
363 an increased contribution of calcium-permeable, NASPM-sensitive AMPARs to synaptic
364 transmission in APP/PS1 mice in early AD.

365
366 **Fig. 5 | Enhanced functional contribution of calcium-permeable AMPA receptors**
367 **in the nucleus accumbens of APP/PS1 mice at pre-plaque stages. A AAV-**

368 GCaMP6s was injected into the nAc of WT and APP/PS1 mice and allowed to express
369 for 2–3 weeks before acute slice preparation for calcium imaging. **B** Representative
370 electrically evoked calcium transients recorded in the nAc of 6-month-old WT (black)
371 and APP/PS1 (red) mice before and after application of the AMPAR antagonist CNQX.
372 **C** Time course of normalized GCaMP6s-dependent Ca^2 fluorescence (% of baseline)
373 showing a larger CNQX-induced reduction in APP/PS1 slices. **D** Quantification of
374 CNQX-sensitive Ca^2 activity reveals significantly greater inhibition in APP/PS1 mice
375 compared with WT (unpaired two-tailed t-test, $t(15) = 3.725$, $p = 0.002$; WT 9
376 recordings/4 mice, APP/PS1 8/4). **E** Whole-cell voltage-clamp configuration for
377 recording electrically evoked EPSCs (eEPSCs) in MSNs from the nAc of 6-month-old
378 mice. Recordings were performed using an internal solution containing spermine (100
379 μM). **F** Representative eEPSC traces recorded at - 60 mV to + 40 mV (delta = 20 mV)
380 from WT (black) and APP/PS1 (red) MSNs. **G** Current–voltage relationships showing
381 reduced inward rectification in APP/PS1 MSNs. **H** Quantification of the RI shows a
382 significant decrease in APP/PS1 MSNs (unpaired two-tailed t-test, $t(14) = 2.989$, $p =$
383 0.0098). **I** Experimental protocol for pharmacological isolation of calcium-permeable
384 AMPARs using NASPM. **J** Representative eEPSC traces recorded before and after
385 NASPM application (150 μM). **K** Time course of normalized eEPSC amplitude (% of
386 baseline) showing greater NASPM-induced inhibition in APP/PS1 MSNs. **L**
387 Quantification of NASPM-sensitive eEPSC inhibition confirms increased NASPM
388 sensitivity in APP/PS1 MSNs compared with WT (unpaired two-tailed t-test, $t(14) = 2.98$,
389 $p = 0.0098$). Data are presented as mean \pm s.e.m.; each data point represents a single
390 recording or neuron.


391 Together, these converging imaging, electrophysiological, and pharmacological results
392 demonstrate a robust upregulation of CP-AMPARs in the nAc of APP/PS1 mice. This
393 shift in AMPAR subunit composition provides a mechanistic basis for the enhanced
394 excitatory transmission and impaired LTD observed in D1R+ MSNs at 6 months of age
395 in transgenic mice, implicating the pathological incorporation of calcium-permeable
396 AMPARs as a central contributor to accumbal dysfunction during early stages of
397 Alzheimer's disease.

398 **CP-AMPAR accumulation occludes mGluR-LTD selectively in D1R+ MSNs of
399 APP/PS1 mice.**

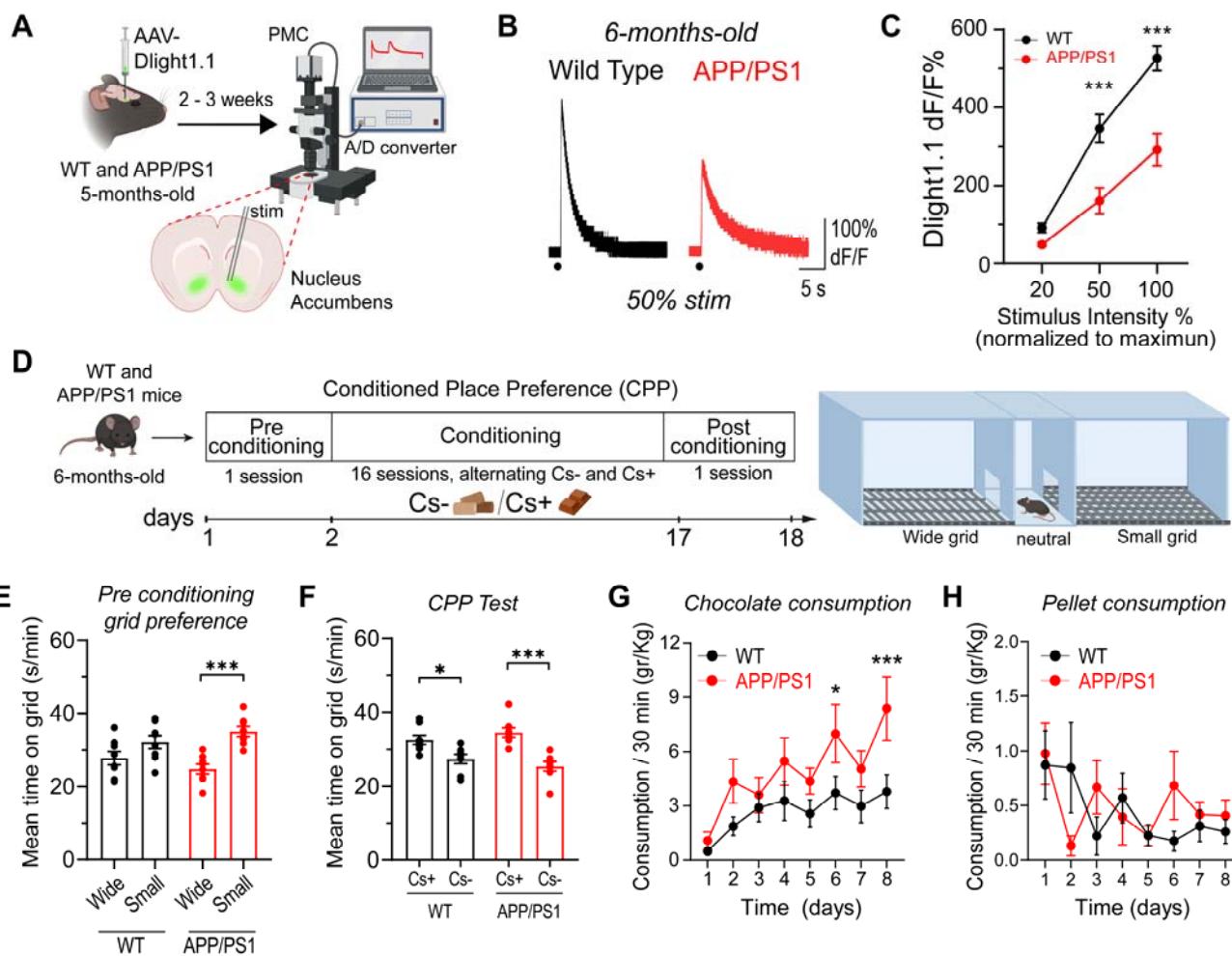
400 Given that APP/PS1 mice exhibit both impaired LTD and enhanced CP-AMPAR
401 signaling in the nAc, we next examined whether the incorporation of GluA2-lacking
402 AMPARs interferes with the expression of mGluR1/5-dependent LTD, which is reported
403 as the principal homeostatic LTD mechanism that induce CP-AMPAR endocytosis²⁸. To
404 address this, we performed whole-cell recordings in D1R+ and D1R- MSNs from 6-
405 month-old WT/D1RtdT and APP/PS1/D1RtdT mice using a sequential protocol
406 consisting of baseline acquisition, induction of mGluR-LTD with DHPG (50 μ M), and
407 subsequent application of NASPM (150 μ M) to block CP-AMPARs (Fig. 6A,B).

408 In WT D1R+ MSNs, application of DHPG induced a robust and sustained depression of
409 eEPSC amplitude, consistent with intact mGluR1/5-LTD (Fig. 6C,D). Under these
410 conditions, subsequent NASPM application did not produce further suppression of
411 synaptic currents (Fig. 6C,D), indicating a minimal residual CP-AMPAR contribution
412 after LTD induction.

413 In APP/PS1 D1R+ MSNs, DHPG failed to induce significant synaptic depression,
414 indicating a selective impairment of mGluR1/5-dependent LTD (Fig. 6C). Notably,
415 subsequent application of NASPM after DHPG produced a robust additional reduction in
416 eEPSC amplitude, reaching levels of synaptic depression comparable to those
417 observed in WT neurons following LTD induction (Fig. 6C,D). Analysis of the paired-
418 pulse ratio before and after LTD induction revealed no significant differences across
419 conditions (Fig. 6E), indicating that presynaptic release probability remained
420 unchanged. These data demonstrate that mGluR1/5-LTD impairment in APP/PS1 D1R+
421 MSNs originates from postsynaptic mechanisms. Together, these findings indicate that
422 impaired mGluR1/5-dependent LTD is associated with persistent functional
423 incorporation of CP-AMPARs at accumbal D1R+ synapses. Importantly, selective CP-
424 AMPAR blockade is sufficient to reinstate synaptic depression, supporting the
425 conclusion that abnormal retention of CP-AMPARs contributes directly to the loss of
426 LTD and enhanced excitatory transmission observed in the nAc during early APP/PS1
427 pathology.

429 **Fig. 6 | Impaired mGluR1/5-dependent LTD and CP-AMPAR dysregulation in D1R+**
430 **medium spiny neurons of the nucleus accumbens in APP/PS1 mice. A** Schematic
431 of whole-cell voltage-clamp recordings performed in MSNs from the nAc of 6-month-old
432 WT/D1RtdT and APP/PS1/D1RtdT mice. D1R+ MSNs were identified by tdTomato
433 expression. After baseline acquisition, LTD was induced by bath application of DHPG
434 (50 μ M, 5 min), followed by application of NASPM (150 μ M). **B** Representative AMPAR-
435 mediated eEPSC traces recorded from D1R+ and D1R- MSNs at baseline, after
436 DHPG-induced LTD, and during NASPM application in WT and APP/PS1 mice.
437 Overlaid traces show individual responses (light) and averages (dark). Paired-pulse
438 responses were obtained using double-pulse stimulation ($\Delta t = 70$ ms). **C** Time course of

439 normalized eEPSC amplitudes (% baseline) in D1R+ (left) and D1R- (right) MSNs.
440 DHPG-induced LTD was markedly reduced in D1R+ MSNs from APP/PS1 mice and
441 partially restored by NASPM, whereas D1R- MSNs exhibited comparable LTD between
442 genotypes. Black bars indicate periods of DHPG and NASPM application. **D**
443 Quantification of normalized eEPSC amplitudes at baseline, after DHPG-LTD, and
444 during NASPM application. A mixed-effects REML analysis revealed significant main
445 effects of stage ($F(1.845, 36.90) = 127.7, p < 0.001$), genotype ($F(3, 20) = 4.292, p =$
446 0.017), and a stage \times genotype interaction ($F(6, 40) = 5.105, p < 0.001$). Tukey's post
447 hoc tests showed reduced LTD in APP/PS1 D1R+ MSNs compared with WT D1R+ ($p =$
448 0.039) and APP/PS1 D1R- MSNs ($p = 0.014$). **E** Quantification of paired-pulse ratio
449 (PPR; post/pre LTD) revealed no significant differences among groups (Kruskal–Wallis
450 test, $H(3) = 1.928, p = 0.587$; Dunn's multiple comparisons test, all adjusted $p > 0.999$).
451 Data are presented as mean \pm s.e.m. Each data point represents a single recorded
452 neuron.

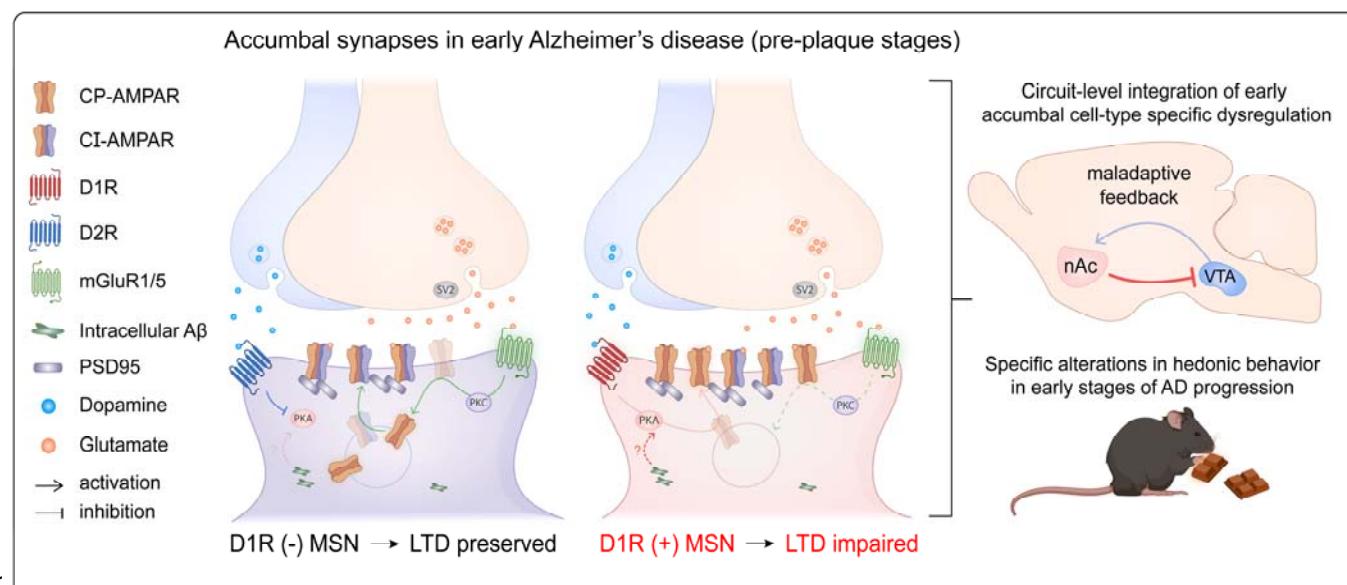

453 **Dopaminergic hypoactivity and reward-related behavioral alterations in the nAc of**
454 **APP/PS1 mice at pre-plaque stage.**

455 To determine whether the early synaptic alterations identified in the nAc of APP/PS1
456 mice are accompanied by changes in local dopaminergic signaling, dopamine dynamics
457 were assessed using the genetically encoded fluorescent sensor dLight1.1, which was
458 stereotactically injected into the nAc (Fig. 7A). Acute slice photometry revealed that
459 electrical stimulation evoked robust dopamine-dependent fluorescence transients in
460 nAc-containing slices from WT mice, whereas slices from APP/PS1 mice displayed
461 markedly reduced responses (Fig. 7B). Consistently, input–output curves demonstrated

462 a significant reduction in normalized dLight1.1 fluorescence across stimulus intensities
463 in APP/PS1 mice compared with WT controls (Fig. 7C), indicating impaired evoked
464 dopaminergic signaling in the nAc at pre-plaque stages.

465 We next investigated whether this dopaminergic hypoactivity was associated with
466 alterations in reward-related behavior. Using a conditioned place preference (CPP)
467 paradigm using chocolate (Fig. 7D), mice first underwent a pre-conditioning session to
468 assess baseline context preference. APP/PS1 mice exhibited a significant bias toward
469 the small-grid context during this phase, whereas WT mice showed no preference (Fig.
470 7E), indicating altered exploratory behavior in the absence of reward. During
471 conditioning, the chocolate-paired context (Cs+) was counterbalanced based on
472 individual baseline preference. In the CPP test, both WT and APP/PS1 mice spent
473 significantly more time in the reward-associated context compared with the non-
474 rewarded context (Fig. 7F), demonstrating intact associative learning in both genotypes,
475 albeit with a stronger CPP expression in APP/PS1 mice.

476 Despite comparable CPP learning, APP/PS1 mice consumed significantly more
477 chocolate across conditioning days than WT mice (Fig. 7G), whereas pellet
478 consumption did not differ between genotypes (Fig. 7H). This selective increase in
479 palatable reward intake suggests altered reward valuation in APP/PS1 mice rather than
480 generalized changes in feeding behavior.


482 **Fig. 7 | Reduced dopamine-dependent signaling in the nucleus accumbens and**
 483 **altered reward-related behavior in APP/PS1 mice. A** AAV-dLight1.1 was injected into
 484 the nAc of WT and APP/PS1 mice and allowed to express for 2–3 weeks before acute
 485 slice preparation for dopamine imaging. Dopamine-dependent fluorescence signals
 486 were recorded using slice photometry following electrical stimulation. **B** Representative
 487 dLight1.1 fluorescence traces evoked by electrical stimulation in nAc slices from 6-
 488 month-old WT (black) and APP/PS1 (red) mice. **C** Input–output relationship between
 489 normalized dLight1.1 fluorescence ($\Delta F/F\%$) and stimulus intensity reveals a reduced
 490 dopamine-dependent signal in APP/PS1 mice (WT: $n = 12$ slices from 4 mice;

491 APP/PS1: n = 10 slices from 3 mice; two-way ANOVA with Bonferroni post hoc test, ***p
492 < 0.001). **D** Schematic of the conditioned place preference (CPP) experimental design,
493 including pre-conditioning, conditioning, and post-conditioning phases, using wide and
494 small grid contexts. **E** Pre-conditioning analysis of grid preference shows increased
495 baseline preference for the small grid in APP/PS1 mice compared with WT (two-way
496 ANOVA, grid type effect $F(1,14) = 22.04$, $P < 0.001$; WT, $P = 0.121$; APP/PS1, $P <$
497 0.001). **F** CPP test reveals increased time spent in the reward-associated context (Cs+)
498 compared with the non-rewarded context (Cs-) in both genotypes, with a stronger effect
499 in APP/PS1 mice (two-way ANOVA, interaction $F(1,14) = 6.25$, $P = 0.0254$; grid effect
500 $F(1,14) = 21.90$, $P = 0.0004$; genotype effect $F(1,14) = 3.047 \times 10E3$, $P > 0.999$;
501 Bonferroni post hoc test, WT $P = 0.012$, APP/PS1 $P < 0.0001$). **G** Chocolate
502 consumption during the conditioning phase is increased in APP/PS1 mice compared
503 with WT across days (two-way ANOVA, time effect $P < 0.0001$; Bonferroni post hoc test,
504 day 6 $P = 0.0171$, day 8 $P = 0.0003$). **H** Pellet consumption during conditioning shows
505 no significant differences between genotypes. Data are presented as mean \pm s.e.m.
506 unless otherwise indicated. n = 8 mice per genotype.

507 To determine whether the alterations in reward-related behavior observed in APP/PS1
508 mice extended to other affective or social domains, anxiety-like behavior and sociability
509 were evaluated using the elevated plus maze and a three-chamber social interaction
510 paradigm, respectively (Fig. 5S). In the elevated plus maze, WT and APP/PS1 mice
511 exhibited comparable time spent in the open and closed arms, similar numbers of arm
512 entries, and equivalent distances traveled, indicating no genotype-dependent
513 differences in anxiety-like behavior (Fig. 5S, A-G). Likewise, in the social interaction

514 task, both genotypes showed intact social preference and social novelty, as evidenced
515 by comparable time spent in each chamber and similar sniffing times toward conspecific
516 versus empty or novel stimuli (Fig. 5S, I-M).

517 Together, these results indicate that anxiety-like responses and social behaviors remain
518 preserved in APP/PS1 mice at this stage, suggesting that the behavioral phenotype
519 associated with dopaminergic hypoactivity in the nucleus accumbens is selective for
520 reward-related processes. Notably, these circuit-level and behavioral alterations emerge
521 at pre-plaque stages, supporting the idea that accumbal dysfunction precedes
522 extracellular A β deposition.

524 **Fig. 8 | Proposed mechanistic model underlying selective synaptic plasticity**
525 **impairment in the nucleus accumbens during early stages of Alzheimer's disease.**
526 Schematic model illustrating the integration of glutamatergic and dopaminergic signaling
527 onto nAc MSNs during pre-plaque stages of AD, when intracellular A β is present in the
528 absence of extracellular plaques. Both synapses depicted correspond to the AD

529 condition. In D1R-negative MSNs (left, purple; putatively D2R-expressing), synaptic
530 plasticity is preserved despite intracellular A β accumulation, consistent with intact
531 mGluR1/5 signaling and putatively reduced engagement of PKA-dependent pathways.
532 In contrast, D1R-expressing MSNs (right) exhibit impaired mGluR1/5-dependent LTD,
533 leading to deficient AMPAR endocytosis and persistent functional presence of CP-
534 AMPARs. Reduced dopaminergic tone may preferentially weaken D1R-dependent
535 signaling, allowing intracellular A β to promote PKA-dependent AMPAR stabilization,
536 potentially facilitated by increased PSD-95. At the circuit level, these early, cell-type-
537 specific alterations are proposed to bias mesolimbic output and contribute to selective
538 changes in reward-related behavior during early AD.

539 **DISCUSSION**

540 The present study shows that excitatory neurotransmission and synaptic plasticity in the
541 nucleus accumbens were disrupted at 6 months in a cell type-specific manner,
542 preferentially affecting D1R-expressing medium spiny neurons during pre-plaque stages
543 in APP/PS1 mice. The phenotype included impaired LTD, enhanced calcium-permeable
544 AMPAR, reduced dopamine signaling, and a selective alteration in a reward-related
545 behavior. Together, these results identify the accumbens direct pathway as an early site
546 of synaptic vulnerability before plaque deposition and cognitive decline in the APP/PS1
547 model (see Fig. 8).

548 AD is increasingly recognized as a brain disorder that perturbs distributed neural circuits
549 well before memory impairment becomes clinically evident^{24, 47}. Although research has
550 traditionally focused on hippocampal and cortical regions, important for learning and

551 memory, converging evidence shows that non-cognitive symptoms, including apathy,
552 motivational deficits, and affective disturbances, often precede cognitive decline ^{4, 48, 49}.
553 These early neuropsychiatric manifestations implicate limbic and reward-related circuits,
554 whose underlying molecular and synaptic mechanisms remain poorly understood ^{6, 46}.
555 The nAc is a central integrative hub of the mesolimbic system that modulates affective
556 processing, motivation, and reward-related behaviors ^{18, 23}, positioning it as a key
557 contributor to early disease phenotypes. In humans, nAc atrophy has been reported in
558 patients with AD and correlates with cognitive performance, while increased
559 inflammation is associated with reduced functional connectivity between the nAc and
560 cortical regions involved in decision-making and inhibitory control ^{19, 20}. Despite this
561 observation, the nAc has remained relatively underexplored in experimental models of
562 Alzheimer's disease. By focusing on the nAc during pre-plaque stages, the present
563 study addresses this gap and supports the notion that early AD pathology cannot be
564 fully explained by hippocampal and cortical dysfunction alone.
565 A critical aspect in interpreting Alzheimer's disease mechanisms is the temporal
566 framework in which the pathology is examined ^{6, 50}. While most studies have focused on
567 advanced stages characterized by extracellular amyloid plaques and established
568 cognitive deficits ^{8, 9, 51, 52}, converging evidence from human tissue and animal models
569 indicates that intracellular amyloid-beta accumulation, increased excitatory
570 transmission, and neuropsychiatric symptoms precede plaque formation ^{7, 12, 53, 54}.
571 Consistent with this view, transgenic models differ markedly in their temporal
572 trajectories, supporting the existence of an early disease phase in which initial cellular

573 and synaptic alterations occur before classical neuropathological hallmarks emerge⁵⁵⁻
574⁵⁷.

575 A central finding of this study is the progressive and cell-type specific disruption of long-
576 term depression in the nucleus accumbens during early AD stages. LTD was preserved
577 at 3 months of age, but markedly impaired at 6 months, indicating a gradual loss of
578 synaptic plasticity as the pathology advances. Importantly, although intracellular A β
579 accumulation was comparable in D1R-positive and D1R-negative MSNs, LTD
580 impairment was selectively observed in D1R-expressing neurons. This dissociation
581 indicates that intracellular A β accumulation is necessary but not sufficient to disrupt
582 synaptic plasticity. Rather, our data show that intrinsic properties linked to MSN subtype
583 identity confer selective vulnerability to intracellular A β effects.

584 The selective alteration of D1R-positive neurons in AD aligns with observations from
585 addiction and withdrawal paradigms, in which synaptic plasticity and AMPAR
586 remodeling are preferentially disrupted in D1R-expressing MSNs of the nAc^{36, 58}. These
587 parallels suggest that convergent mechanisms of synaptic vulnerability may operate
588 across distinct pathological contexts. Consistent with this view, dietary restriction in mice
589 reduces dopamine release in the nAc, triggering a compensatory increase in D1R-
590 dependent signaling that promotes AMPAR remodeling and leads to more persistent
591 reward-seeking behavior than under unrestricted feeding conditions⁴⁰.

592 Our data demonstrate aberrant AMPAR subunit remodeling as a key mechanism
593 underlying the loss of LTD in D1R-expressing MSNs. Increased inward rectification,
594 enhanced sensitivity to NASPM, a decreased +40 mV AMPAR/NMDAR ratio, and

595 increased calcium-permeable AMPAR component revealed by GCaMP-based calcium
596 imaging collectively support the functional incorporation of GluA2-lacking, calcium-
597 permeable AMPARs at accumbal synapses in APP/PS1 mice. Notably, although both
598 HFS-LTD and mGluR1/5-LTD were broadly impaired in 6-month-old APP/PS1 mice, cell-
599 type-specific analyses in APP/PS1/D1RtdTomato animals allowed us to identify D1R-
600 expressing MSNs as the principal cell-type contributing to these synaptic deficits.

601 The alteration of CP-AMPARs in D1R-expressing MSNs during pre-plaque stages may
602 arise from convergent disruptions in glutamatergic and dopaminergic signaling. One
603 possibility is the impairment of mGluR1/5-dependent plasticity. In the nAc, mGluR1/5-
604 mediated LTD normally constrains synaptic strength by promoting AMPAR endocytosis
605 and subunit exchange, favoring the removal of GluA2-lacking CP-AMPARs and the
606 insertion of GluA2-containing AMPARs of lower conductance²⁸. The persistent synaptic
607 presence of CP-AMPARs indicates impaired mGluR1/5-dependent plasticity, as
608 pharmacological blockade of CP-AMPARs selectively restored mGluR1/5-LTD in D1R-
609 positive MSNs.

610 This mGluR1/5-LTD-CP-AMPAR mechanism is consistent with dysfunctional plasticity
611 observed in other pathological contexts. In addictive models, CP-AMPAR accumulation
612 in the nAc arises from loss of mGluR1/5-dependent LTD driving persistent reward-
613 seeking behavior^{36, 59}. Using extracellular field recordings at CA3-CA1 synapses,
614 Valdivia et al. reported an age-dependent decline in hippocampal mGluR-dependent
615 LTD in APP/PS1 mice, which was preserved at 2 months but reduced by 8 months⁶⁰.
616 The present study combines intracellular recordings with genetic cell-type identification
617 to demonstrate that mGluR-LTD impairment emerges earlier in a distinct mesolimbic

618 region and is selectively expressed in D1R-expressing MSNs, where it is directly
619 associated with aberrant CP-AMPAR accumulation. Together, these observations
620 highlight how differences in circuit, disease stage, and experimental resolution critically
621 shape the manifestation of mGluR-dependent synaptic dysfunction in AD.

622 The selective vulnerability of D1R-expressing MSNs likely reflects their dependence on
623 dopaminergic tone. D1 receptors exhibit lower affinity for dopamine than D2 receptors,
624 rendering D1R-positive neurons particularly sensitive to reductions in dopamine
625 availability^{61, 62}. Consistent with this notion, we found a reduced dopamine-dependent
626 signaling in the nAc at 6 months of age using a genetically encoded sensor. These
627 findings align with previous reports showing that dopamine release in the nAc is
628 significantly reduced during pre-plaque stages in the APPswe mice, accompanied by a
629 compensatory decrease in dopamine transporter expression⁴⁵. Although our results do
630 not distinguish between impaired presynaptic release, dopaminergic terminal
631 dysfunction, or early degeneration of VTA neurons, any reduction in dopamine
632 availability would be expected to disproportionately weaken D1R-mediated signaling.
633 Such dopaminergic hypoactivity may therefore converge with A β -driven postsynaptic
634 alterations to destabilize direct pathway function during early stages of AD. For
635 instance, Whitcomb et al. reported that intracellular perfusion of A β oligomers into
636 hippocampal neurons rapidly increase surface GluA1 and promote CP-AMPAR insertion
637 through a PKA-dependent pathway⁴². Thus, a reduced dopaminergic tone may weaken
638 physiological D1R-PKA coupling, developing conditions in which intracellular A β
639 aberrantly engages PKA signaling to drive GluA1 membrane insertion. In contrast, D2R
640 signaling inhibits adenylyl cyclase and suppresses PKA activity⁶³, potentially limiting

641 this mechanism in D2R+ MSNs and contributing to their marked resilience. Together,
642 impaired mGluR1/5-dependent AMPAR endocytosis and A β -driven GluA1 insertion
643 would bias synapses toward persistent CP-AMPAR enrichment, providing a mechanistic
644 explanation for the selective failure of LTD in D1R+ MSNs during early Alzheimer's
645 disease.

646 In agreement with the present results, Aguado et al. reported that CP-AMPAR are
647 increased in the hippocampus of APPswe mice at advanced stages of the disease,
648 particularly in animals displaying a vulnerable phenotype ⁶⁴. Notably, mGluR5
649 expression was reduced in vulnerable APPswe animals, but preserved in resilient mice,
650 paralleling the normalization of CP-AMPAR expression ⁶⁴. These findings suggest that
651 coordinated regulation of mGluR1/5 signaling and CP-AMPAR composition may act as
652 a compensatory mechanism modulating synaptic vulnerability across disease stages
653 and brain regions. Complementing this view, Guo et al. demonstrated that acute
654 exposure to exogenous oligomeric A β in the nAc of young WT mice induces synaptic
655 insertion of CP-AMPARs, leading to spine loss, synaptic weakening, and motivational
656 deficits ⁶⁵. Importantly, this model reflects extracellular A β -driven pathology and
657 preferentially impacts D2 MSNs, contrasting with our findings showing that intracellular
658 A β accumulation during early stages selectively promotes CP-AMPAR incorporation in
659 D1R-expressing MSNs. Together, these studies highlight CP-AMPAR dysregulation as a
660 convergent mechanism of synaptic failure across disease stages.

661 The nucleus accumbens functions as a critical inhibitory hub within the mesolimbic
662 circuit, regulating reward-related signal gain through the integration of glutamatergic
663 inputs and dopaminergic modulation ¹⁷. The selective loss of LTD in D1R-expressing

664 MSNs is therefore expected to bias circuit output toward enhanced direct pathway
665 activity, reducing the capacity of the nAc to constrain excitatory drive and favoring
666 reward-seeking behavior. In parallel, reduced dopaminergic tone may further weaken
667 D1R signaling, potentially causing compensatory increases in reward consumption to
668 achieve comparable motivational salience. Our data reveal selective changes in reward
669 valuation, including increased consumption of palatable solid food and altered
670 preference behavior, in the absence of anxiety-like or social deficits. Together, these
671 findings suggest that early synaptic dysfunction within the nAc preferentially disrupts
672 motivational processing rather than broader affective domains.

673 Some limitations should be considered when interpreting these findings. First, all
674 experiments were performed in male mice, precluding assessment of sex-specific
675 mechanisms. This is particularly relevant given evidence that estradiol signaling
676 profoundly modulates synaptic plasticity within the nucleus accumbens. Estradiol, acting
677 through mGluR5 and endocannabinoid signaling, has been shown to structurally
678 remodel nAc reward circuits and enhance sensitivity to psychostimulants⁶⁶, highlighting
679 a strong interaction between hormonal state and mesolimbic plasticity. Second,
680 although our data reveal a robust association between intracellular A β accumulation and
681 synaptic alterations, the APP/PS1 model does not allow definitive attribution of these
682 effects exclusively to A β . Nonetheless, prior studies support a direct role for intracellular
683 A β in modulating excitatory synaptic function. Fernández-Pérez et al. demonstrated that
684 intracellular A β enhances neuronal synchronization and AMPAR-mediated transmission⁶⁷, and Saavedra et al. reported increased intracellular A β levels together with
686 augmented AMPAR currents in cultured nAc MSNs derived from APP/PS1 mice⁶⁸.

687 Together, these observations support a direct contribution of intracellular A β to the
688 synaptic alterations described here, while underscoring the need for future studies
689 incorporating sex as a biological variable and approaches that selectively manipulate
690 intracellular A β levels to establish causality.

691 In conclusion, this study identifies early synaptic alterations in which intracellular A β
692 accumulation is associated with disrupted AMPAR subunit composition, selective
693 impairment of LTD in D1R-expressing MSNs, reduced dopaminergic signaling in the
694 nAc before extracellular A β plaque deposition, and specific hedonic behavior alterations.
695 These findings suggest that non-cognitive symptoms in Alzheimer's disease may reflect
696 early circuit-level imbalance rather than late-stage neurodegeneration. By highlighting
697 the nucleus accumbens as an early site of vulnerability, this work underscores the
698 importance of neuronal subtype identity and signaling context in shaping susceptibility
699 to the early intracellular A β accumulation.

700 **METHODS**

701 **Animals**

702 All experimental procedures were approved by the Institutional Animal Care and Use
703 Committee of the University of Concepción and were conducted in accordance with
704 national and international guidelines for the care and use of laboratory animals. Male
705 C57BL/6J mice, double-transgenic APPswe/PS1dE9 mice (MMRRC:034832; B6.Cg-
706 Tg(APPswe,PSEN1dE9)85Dbo/Mmjjax), and Drd1a-tdTomato reporter mice (B6.Cg-
707 Tg(Drd1a-tdTomato)6Calak/J; JAX stock #016204) were obtained from The Jackson
708 Laboratory (Bar Harbor, ME, USA) and maintained at the Regional Center for Advanced

709 Studies in Life Sciences (CREAV), University of Concepción. The transgenic line
710 expresses the Swedish mutation (K594M/N595L) in amyloid precursor protein (APP)
711 and the human presenilin-1 variant lacking exon 9 (PS1-dE9), leading to an increased
712 A β production ⁶⁹. Drd1a-tdTomato mice express the fluorescent reporter tdTomato
713 under the control of the dopamine D1 receptor (Drd1a) promoter, allowing selective
714 visualization of D1R-expressing medium spiny neurons ⁷⁰. To generate experimental
715 cohorts enabling recordings from genetically labeled D1R-expressing MSNs,
716 D1RtdTomato mice were crossed with APP/PS1 mice to obtain APP/PS1/D1RtdTomato
717 offspring; WT/D1RtdTomato littermates were used as controls for these experiments.
718 Genotyping was performed according to the provider's instructions for each line. Mice
719 were housed in groups of 2–5 under a 12 h light/dark cycle with ad libitum access to
720 food and water. Animals were used between 3 and 12 months of age. Euthanasia was
721 performed by decapitation following anesthesia with inhaled isoflurane.

722 **Immunohistochemistry**

723 Mice were anesthetized with ketamine (100 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.)
724 and transcardially perfused with pre-warmed saline (0.9% NaCl, 35 °C), followed by
725 freshly prepared ice-cold 4% paraformaldehyde (PFA). Brains were then dissected,
726 post-fixed for 24 h at 4 °C, and cryoprotected in 30% sucrose for 3–5 days at 4 °C.
727 Samples were embedded in NEG50, cooled at –20°C for 2-4 h, and stored at –80°C for
728 at least 24 h before sectioning with a cryostat. Free-floating coronal sections (30 μ m)
729 were rinsed in Tris-phosphate buffer, permeabilized in Trisphosphate containing 1%
730 BSA and 0.2% Triton X-100, and incubated for 24 h at 4°C with primary antibodies:
731 MOA β -2 (1:200, mouse, Novus Biologicals, USA), MAP2 (1:200, guinea pig, Synaptic

732 Systems, Germany), and Iba1 (1:1000, rabbit, Alomone Labs, Germany). Sections were
733 then incubated for 2 h with secondary antibodies (Alexa Fluor 488, Alexa Fluor 594,
734 Alexa Fluor 647). Stained samples were mounted with DAKO fluorescent medium on
735 glass slides and imaged using confocal microscopy at the Advanced Microscopy Center
736 (CMA, Biobío). For each animal, at least two coronal sections were analyzed, with three
737 distinct regions of interest (ROIs) per section. Each ROI was consistently acquired as a
738 Z-stack (~20 μ m) for subsequent processing and quantification using FIJI and Zen
739 software.

740 **Thioflavin-S staining**

741 Thioflavin-S (Sigma, T1892), which binds β -sheet-rich structures present in amyloid
742 aggregates, was used to assess extracellular amyloid plaque deposition. Coronal brain
743 sections (35 μ m) containing the nucleus accumbens and hippocampus were mounted
744 on glass slides and processed at room temperature (~22 °C). Sections were dehydrated
745 through a graded ethanol series (50%, 70%, 80%, 90%, 95%, and 100%; 5 min each),
746 incubated in xylene (Winkler, XI-1670) for 10 min, and subsequently rehydrated through
747 descending ethanol concentrations (100%, 95%, 90%, 80%, and 70%; 5 min each).
748 Freshly prepared Thioflavin-S solution (0.05% in 50% ethanol) was filtered prior to use,
749 and sections were incubated for 10 min protected from light. Sections were then
750 washed in 70% ethanol (3 min) followed by distilled water (2 min), coverslipped, and
751 stored protected from light until imaging. Images were acquired using confocal
752 microscopy with identical acquisition parameters across genotypes and brain regions.
753 For each animal, five sections were analyzed, sampled every 100 μ m, and four animals
754 per group were included. Autofluorescence background was estimated from negative

755 control sections processed without Thioflavin-S and subtracted from all images.
756 Fluorescent puncta larger than 5 μm were considered amyloid plaques. Absence of
757 detectable Thioflavin-S signal was interpreted as absence of plaque deposition. The
758 analysis was performed blinded to genotype. Quantification was conducted within the
759 same regions of interest used for immunohistochemical analyses.

760 **Electrophysiological recordings in coronal brain slices**

761 Acute coronal brain slices containing the nucleus accumbens were prepared from male
762 mice anesthetized with isoflurane and euthanized by decapitation. Brains were rapidly
763 removed and transferred to an ice-cold, oxygenated cutting solution containing (in mM):
764 194 sucrose, 30 NaCl, 4.5 KCl, 1.2 $\text{NaH}_2\text{PO}_4\cdot\text{H}_2\text{O}$, 1 $\text{MgCl}_2\cdot\text{6H}_2\text{O}$, 26 NaHCO_3 , and 10
765 glucose (pH 7.4, equilibrated with 95% O_2 /5% CO_2). Coronal slices (300 μm) were
766 prepared using a vibratome (VT1200, Leica, Germany) and allowed to recover for 1 h at
767 32°C in artificial cerebrospinal fluid (aCSF) containing (in mM): 124 NaCl, 26 NaHCO_3 ,
768 10 glucose, 4.5 KCl, 2 $\text{CaCl}_2\cdot\text{2H}_2\text{O}$, 1 $\text{MgCl}_2\cdot\text{6H}_2\text{O}$, and 1.2 $\text{NaH}_2\text{PO}_4\cdot\text{H}_2\text{O}$,
769 continuously bubbled with 95% O_2 /5% CO_2 .

770 Whole-cell patch-clamp recordings were performed in the nucleus accumbens core
771 using an Axopatch 200B amplifier coupled to a Digidata 1440A digitizer and pClamp 10
772 software (Axon Instruments). Recording pipettes (4–5 $\text{M}\Omega$) were pulled from borosilicate
773 glass capillaries (WPI) using a horizontal puller (P-1000, Sutter Instruments). During
774 recordings, slices were continuously perfused with oxygenated aCSF at 32°C. Signals
775 were low-pass filtered at 2 kHz and digitized at 10 kHz. Series resistance was
776 continuously monitored and partially compensated (60–70%) throughout the recordings;
777 cells were excluded if series resistance changed by more than 20%.

778 **Voltage Clamp recordings**

779 For voltage-clamp experiments, the internal pipette solution contained (in mM): 120
780 CsCl, 10 HEPES, 4 MgCl₂·6H₂O, 2 Mg-ATP, 0.5 Na₂-GTP, and 10 BAPTA (tetra-Cs)
781 (pH 7.4, adjusted with CsOH; 290 mOsm), together with QX-314 (1 mM) and TEA-Cl (5
782 mM). For rectification index experiments, Spermine (100 μM) was also included. For
783 DHPG-induced LTD experiments, EGTA (1 mM) was used instead of BAPTA. Bath
784 solutions were continuously perfused at a rate of 1 mL/min.

785 **Spontaneous synaptic currents.**

786 Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded at a holding
787 potential of -60 mV. AMPAR-mediated events were isolated by bath application of
788 picrotoxin (PTX, 100 μM) to block GABA_A and glycine receptors, and D-AP5 (50 μM) to
789 block NMDA receptors. After break-in, cells were allowed to stabilize for at least 10 min
790 before recording. sEPSCs were recorded under baseline conditions and subsequently
791 in the presence of PTX and D-AP5 for a minimum of 15 min. Event detection was
792 performed using the template search algorithm in Clampfit v11, and at least 300 events
793 per cell were analyzed. Parameters quantified included event frequency, amplitude, rise
794 time, and decay time.

795 **Synaptic stimulation and evoked responses.**

796 Evoked excitatory postsynaptic currents (eEPSCs) were elicited using a tungsten
797 bipolar stimulating electrode (World Precision Instruments) positioned approximately
798 100 μm from the recorded neuron and connected to an isolated pulse stimulator (A-M
799 Systems). Square current pulses (1 ms, 0.05–0.5 mA) were delivered to evoke stable

800 responses with amplitudes ≤ 200 pA. Stimulation intensity was adjusted only at the
801 beginning of each recording to obtain a stable response and was not modified
802 thereafter. Baseline recordings were initiated only after achieving stable eEPSCs that
803 varied by no more than 30% over a period exceeding 1 min (corresponding to at least
804 three consecutive sweeps, delivered every 20 s).

805 **AMPA/NMDA ratio.**

806 AMPAR- and NMDAR-mediated components were measured from eEPSCs recorded in
807 the presence of PTX (100 μ M). AMPAR responses were obtained at -60 mV. The
808 holding potential was then shifted to $+40$ mV to record mixed AMPA+NMDA responses
809 (30 sweeps, one every 20 s). D-AP5 (50 μ M) was subsequently applied to isolate the
810 AMPAR component at $+40$ mV. The NMDA component was calculated by subtracting
811 the averaged AMPAR trace from the mixed response, and its amplitude was measured
812 20 ms after the peak of the AMPAR current. The AMPA/NMDA ratio was calculated as
813 the peak AMPAR current divided by the NMDA current amplitude.

814 **Paired-pulse ratio (PPR).**

815 Paired-pulse ratio (PPR) was assessed at -60 mV using two consecutive stimuli
816 delivered with a 70 ms inter-stimulus interval. PPR was calculated as the ratio between
817 the second and first eEPSC amplitudes (R2/R1), using responses ≤ 200 pA.

818 **Rectification index (RI).**

819 Rectification properties of AMPAR-mediated currents were assessed using CsCl-based
820 internal solution containing spermine (100 μ M), in the presence of PTX (100 μ M) and D-
821 AP5 (50 μ M). eEPSCs were recorded at holding potentials ranging from -60 to $+40$ mV

822 in 20 mV increments. For each potential, 30 sweeps were collected and averaged. The
823 rectification index was calculated as the ratio of the absolute current amplitude at +40
824 mV to that at -60 mV.

825 **NASPM sensitivity.**

826 To assess the contribution of calcium-permeable AMPARs, MSNs were voltage-
827 clamped at -60 mV. After establishing a stable baseline for at least 10 min (one
828 stimulus every 20 s), NASPM (150 μ M) was bath-applied for a minimum of 15 min.
829 Inhibition was expressed as the percentage reduction in mean eEPSC amplitude,
830 comparing baseline responses with those recorded during the last 5 min of NASPM
831 application.

832 **Long-term depression (LTD)**

833 All LTD experiments were performed in the presence of PTX (100 μ M) and D-AP5 (50
834 μ M). For HFS-induced LTD, recordings were obtained with CsCl-based internal solution.
835 After recording a stable baseline for at least 10 min, LTD was induced using four trains
836 of stimuli delivered at 100 Hz (1 ms pulses), separated by 20 s. eEPSCs were recorded
837 for at least 40 min following induction. LTD magnitude was calculated as the percentage
838 change in normalized eEPSC amplitude during the last 5 min relative to baseline.

839 For mGluR1/5-dependent LTD, recordings were performed using internal solution
840 containing EGTA (1 mM). After a stable 10 min baseline, (RS)-3,5-
841 dihydroxyphenylglycine (DHPG, 50 μ M) was bath-applied for 5 min, and eEPSCs were
842 monitored for at least 25 min thereafter. LTD magnitude was calculated as the

843 percentage reduction in mean eEPSC amplitude during the final 5 min relative to
844 baseline.

845 **Experimental design and analysis**

846 The number of cells and animals analyzed for each experiment is reported in the
847 corresponding figure legends. Animals were randomly selected for recordings without
848 prior knowledge of their APP/PS1 or WT genotype; only tdTomato fluorescence was
849 used to identify D1R-expressing neurons when applicable. Data acquisition and
850 analysis were performed blind to genotype.

851 **Stereotaxic injections**

852 Five-month-old male WT and APP/PS1 mice were used. Stereotaxic surgery was
853 performed to deliver adeno-associated viruses (AAVs) expressing the genetically
854 encoded calcium indicator GCaMP6s under the synapsin promoter, as previously
855 described ²². A total of 200 nL of AAV1-Syn-GCaMP6s.WPRE.SV40 (1.76×10^{13} GC/ml;
856 Addgene #100843-AAV1) or 400 nL of pAAV-CAG-dLight1.1 (7×10^{12} vg/ml;
857 Addgene #111067-AAV5) was injected bilaterally into the nucleus accumbens (nAc)
858 using a stereotaxic alignment system (Kopf Instruments). Injection coordinates relative
859 to bregma were: AP +0.13 mm, ML ± 0.11 mm, and DV –0.4 mm (Allen Brain Atlas).
860 Mice were anesthetized with 4% isoflurane/oxygen and positioned in a stereotaxic
861 frame; anesthesia was maintained with 2–3% isoflurane/oxygen throughout the
862 procedure. After leveling the skull, a small craniotomy was made at the target site. A 1
863 μ L Neuros Hamilton syringe was lowered slowly to the desired depth, and viral solution

864 was delivered. The syringe was left in place for 1 min post-infusion before withdrawal,
865 and incisions were closed with Leukosan adhesive.

866 **Calcium and Dopamine photometry**

867 Two to three weeks after AAV injection, mice are 6 months old and completely
868 recovered. Acute coronal slices (300 μ m) containing the nAc were prepared for calcium
869 or dopamine imaging. Slices were transferred to an upright microscope and
870 continuously perfused with oxygenated aCSF (1 mL/min). The recording region of
871 interest (medial to the anterior commissure, corresponding to the nAc core) was
872 visualized under fluorescence to confirm GCaMP6s or Dlight1.1 expression. A bipolar
873 stimulating electrode (DS3 Isolated Current Stimulator, Digitimer, UK) was placed on
874 the slice surface near the area of interest. Stimulation consisted of single electrical
875 pulses (400–800 μ A, 1 ms duration, 10 Hz). Transients were measured by slice
876 photometry using a Horiba PTI D-104 Microscope Photometer with a 710 nm
877 photomultiplier tube mounted on an Olympus BX51 microscope, equipped with a 120
878 LED Boost High-Power illumination system and appropriate fluorescence filters.
879 Fluorescence signals were acquired using Patch-Master software and expressed as
880 $\Delta F/F_0$. Single-pulse electrical stimulation was delivered every 2 min, generating one
881 evoked fluorescence transient per stimulus. A stable baseline was recorded for 12 min
882 (six responses), followed by bath application of the AMPAR antagonist CNQX and
883 continued stimulation for an additional 12 min until responses reached a plateau. For
884 analysis, $\Delta F/F_0$ values were normalized to baseline and expressed as percentage
885 change. Drug effects were quantified by comparing the mean response during the last 6
886 min in the presence of CNQX with baseline for each slice. Data represent individual

887 slices obtained from at least three animals per experimental group, and analyses were
888 performed blind to genotype.

889 **Western blot**

890 The nAc was microdissected from coronal slices of 6-months-old WT and APP/PS1
891 male mice. Tissue was homogenized in RIPA buffer containing protease and
892 phosphatase inhibitors, and protein concentration was determined by BCA assay. Equal
893 amounts of protein (50 µg) were separated by SDS-PAGE and transferred to PVDF
894 membranes. Membranes were blocked in 5% non-fat milk and incubated overnight at 4
895 °C with primary antibodies against SV2, PSD95, GluA1, GluA2, and Gβ (loading
896 control). After incubation with HRP-conjugated secondary antibodies, proteins were
897 visualized by ECL and imaged on a chemiluminescence detection system. Band
898 intensities were quantified in FIJI, normalized to Gβ, and expressed relative to WT
899 controls.

900 **qRT-PCR**

901 The nAc was microdissected from 300 µm coronal brain slices. Total RNA was
902 extracted using TRIzol reagent according to the manufacturer's instructions and treated
903 with DNase to eliminate potential genomic DNA contamination. Complementary DNA
904 (cDNA) was synthesized from 2 µg of total RNA using reverse transcriptase and
905 oligo(dT) primers. Quantitative real-time PCR was performed for 40 cycles using SYBR
906 Green Universal Master Mix (Agilent Technologies) and gene-specific primers targeting
907 NMDA receptor subunits and AMPA receptor subunits. The following primer pairs were
908 used: Gria1 (GluA1), forward 5'-ACCCTCCATGTGATCGAAATG-3' and reverse 5'-

909 GGTTCTATTCTGGACGCTTGAG-3'; Gria2 (GluA2), forward 5'-
910 AAAGAATACCCTGGAGCACAC-3' and reverse 5'-CCAAACAATCTCCTGCATTCC-3';
911 Grin1 (NMDA receptor subunit 1), forward 5'-AAATGTGTCCCTGTCCATACTC-3' and
912 reverse 5'-CCTGCCATGTTCTCAAAAGTG-3'; Grin2b (NMDA receptor subunit 2B),
913 forward 5'-GAACGAGACTGACCCAAAGAG-3' and reverse 5'-
914 CAGAAGCTTGTGTTCAATGG-3'. Cyclophilin A was used as the housekeeping gene,
915 with forward primer 5'-ATAATGGCACTGGTGGCAAGTC-3' and reverse primer 5'-
916 ATTCCCTGGACCCAAAACGCTCC-3'. Relative mRNA expression levels were calculated
917 using the $\Delta\Delta Ct$ method and expressed as fold changes relative to WT controls..

918 **Statistical analysis**

919 All electrophysiological data were analyzed using Clampfit v11 (Molecular Devices).
920 Synaptic event detection was performed using the template search protocol
921 implemented in Clampfit. Data were organized in Microsoft Excel and subsequently
922 imported into GraphPad Prism (version 10) for statistical analyses and figure
923 preparation. Normality was assessed using the Shapiro–Wilk test. For comparisons
924 between two independent groups, unpaired two-tailed Student's t-tests or Welch's t-
925 tests were used when variance was unequal, whereas Mann–Whitney U tests were
926 applied for non-normally distributed data. For experiments involving repeated measures
927 over time, such as LTD time-course analyses, mixed-effects models with restricted
928 maximum likelihood (REML) estimation were used, with Genotype, Cell type, or Age as
929 fixed factors and individual neurons treated as random effects. When appropriate, post
930 hoc comparisons were performed using Sidak's or Tukey's multiple-comparison tests.
931 Paired-pulse ratio analyses were assessed using unpaired two-tailed t-tests. Data are

932 presented as mean \pm s.e.m., and statistical significance was defined as $p < 0.05$. Exact
933 p values, test statistics, degrees of freedom, and sample sizes are reported in the
934 corresponding figure legends.

935 **References**

- 936 1. Dubois B, *et al.* Alzheimer Disease as a Clinical-Biological Construct-An International
937 Working Group Recommendation. *JAMA Neurol* **81**, 1304-1311 (2024).
- 938 2. Migeot J, *et al.* Social exposome and brain health outcomes of dementia across Latin
939 America. *Nat Commun* **16**, 8196 (2025).
- 940 3. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. *EMBO Mol Med* **8**, 595-608 (2016).
- 941 4. Masters MC, Morris JC, Roe CM. "Noncognitive" symptoms of early Alzheimer disease:
942 a longitudinal analysis. *Neurology* **84**, 617-622 (2015).
- 943 5. Shah J, *et al.* Predicting cognitive decline from neuropsychiatric symptoms and
944 Alzheimer's disease biomarkers: A machine learning approach to a population-based
945 data. *J Alzheimers Dis* **103**, 833-843 (2025).
- 946 6. Riffó-Lepe N, *et al.* Synaptic and synchronic impairments in subcortical brain regions
947 associated with early non-cognitive dysfunction in Alzheimer's disease. *Neural Regen Res* **21**, 248-264 (2025).
- 948 7. Pensalfini A, *et al.* Intracellular amyloid and the neuronal origin of Alzheimer neuritic
949 plaques. *Neurobiol Dis* **71**, 53-61 (2014).
- 950 8. Iulita MF, *et al.* Intracellular Abeta pathology and early cognitive impairments in a
951 transgenic rat overexpressing human amyloid precursor protein: a multidimensional
952 study. *Acta Neuropathol Commun* **2**, 61 (2014).
- 953 9. Wirths O, *et al.* Intraneuronal Abeta accumulation precedes plaque formation in beta-
954 amyloid precursor protein and presenilin-1 double-transgenic mice. *Neurosci Lett* **306**,
955 116-120 (2001).
- 956 10. Ochiishi T, *et al.* New Alzheimer's disease model mouse specialized for analyzing the
957 function and toxicity of intraneuronal Amyloid beta oligomers. *Sci Rep* **9**, 17368 (2019).
- 958 11. LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease. *Nat Rev Neurosci* **8**, 499-509 (2007).
- 959 12. Chang M, *et al.* Intercellular communication in the brain through a dendritic nanotubular
960 network. *Science* **390**, eadr7403 (2025).
- 961 13. Alcantara-Gonzalez D, Kennedy M, Criscuolo C, Botterill J, Scharfman HE. Increased
962 excitability of dentate gyrus mossy cells occurs early in life in the Tg2576 model of
963 Alzheimer's disease. *Alzheimers Res Ther* **17**, 105 (2025).
- 964 14. Wu XR, *et al.* Amygdala neuronal dyshomeostasis via 5-HT receptors mediates mood
965 and cognitive defects in Alzheimer's disease. *Aging Cell* **23**, e14187 (2024).
- 966 15. Kelly L, *et al.* Identification of intraneuronal amyloid beta oligomers in locus coeruleus
967 neurons of Alzheimer's patients and their potential impact on inhibitory neurotransmitter
968 receptors and neuronal excitability. *Neuropathol Appl Neurobiol* **47**, 488-505 (2021).
- 969 16. Cordella A, *et al.* Dopamine loss alters the hippocampus-nucleus accumbens synaptic
970 transmission in the Tg2576 mouse model of Alzheimer's disease. *Neurobiol Dis* **116**,
971 142-154 (2018).
- 972 17. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. *Nat Rev Neurosci*
973 **14**, 609-625 (2013).

977 18. Floresco SB. The nucleus accumbens: an interface between cognition, emotion, and
978 action. *Annu Rev Psychol* **66**, 25-52 (2015).

979 19. Contreras JA, et al. Functional connectivity among brain regions affected in Alzheimer's
980 disease is associated with CSF TNF-alpha in APOE4 carriers. *Neurobiol Aging* **86**, 112-
981 122 (2020).

982 20. Nie X, et al. Subregional Structural Alterations in Hippocampus and Nucleus Accumbens
983 Correlate with the Clinical Impairment in Patients with Alzheimer's Disease Clinical
984 Spectrum: Parallel Combining Volume and Vertex-Based Approach. *Front Neurol* **8**, 399
985 (2017).

986 21. Fernandez-Perez EJ, et al. Changes in neuronal excitability and synaptic transmission in
987 nucleus accumbens in a transgenic Alzheimer's disease mouse model. *Sci Rep* **10**,
988 19606 (2020).

989 22. Armijo-Weingart L, et al. Loss of glycine receptors in the nucleus accumbens and
990 ethanol reward in an Alzheimer's Disease mouse model. *Prog Neurobiol* **237**, 102616
991 (2024).

992 23. Vieitas-Gaspar N, Soares-Cunha C, Rodrigues AJ. From valence encoding to motivated
993 behavior: A focus on the nucleus accumbens circuitry. *Neurosci Biobehav Rev* **172**,
994 106125 (2025).

995 24. Scaduto P, et al. Functional excitatory to inhibitory synaptic imbalance and loss of
996 cognitive performance in people with Alzheimer's disease neuropathologic change. *Acta
997 Neuropathol* **145**, 303-324 (2023).

998 25. Li G, Hsu LM, Wu Y, Bozoki AC, Shih YI, Yap PT. Revealing excitation-inhibition
999 imbalance in Alzheimer's disease using multiscale neural model inversion of resting-
1000 state functional MRI. *Commun Med (Lond)* **5**, 17 (2025).

1001 26. Kauer JA, Malenka RC. Synaptic plasticity and addiction. *Nat Rev Neurosci* **8**, 844-858
1002 (2007).

1003 27. Thomas MJ, Beurrier C, Bonci A, Malenka RC. Long-term depression in the nucleus
1004 accumbens: a neural correlate of behavioral sensitization to cocaine. *Nat Neurosci* **4**,
1005 1217-1223 (2001).

1006 28. Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic
1007 Glutamate Receptors (mGluR1)-Dependent Long-Term Depression. *Cells* **12**, (2023).

1008 29. Luscher C, Huber KM. Group 1 mGluR-dependent synaptic long-term depression:
1009 mechanisms and implications for circuitry and disease. *Neuron* **65**, 445-459 (2010).

1010 30. Turner BD, Kashima DT, Manz KM, Grueter CA, Grueter BA. Synaptic Plasticity in the
1011 Nucleus Accumbens: Lessons Learned from Experience. *ACS Chem Neurosci* **9**, 2114-
1012 2126 (2018).

1013 31. Scheyer AF, Christian DT, Wolf ME, Tseng KY. Emergence of Endocytosis-Dependent
1014 mGlu1 LTD at Nucleus Accumbens Synapses After Withdrawal From Cocaine Self-
1015 Administration. *Front Synaptic Neurosci* **10**, 36 (2018).

1016 32. Conrad KL, et al. Formation of accumbens GluR2-lacking AMPA receptors mediates
1017 incubation of cocaine craving. *Nature* **454**, 118-121 (2008).

1018 33. Carr KD. Homeostatic regulation of reward via synaptic insertion of calcium-permeable
1019 AMPA receptors in nucleus accumbens. *Physiol Behav* **219**, 112850 (2020).

1020 34. Ouyang J, et al. Food restriction induces synaptic incorporation of calcium-permeable
1021 AMPA receptors in nucleus accumbens. *Eur J Neurosci* **45**, 826-836 (2017).

1022 35. McCutcheon JE, Loweth JA, Ford KA, Marinelli M, Wolf ME, Tseng KY. Group I mGluR
1023 activation reverses cocaine-induced accumulation of calcium-permeable AMPA
1024 receptors in nucleus accumbens synapses via a protein kinase C-dependent
1025 mechanism. *J Neurosci* **31**, 14536-14541 (2011).

1026 36. Wong B, Zimbelman AR, Milovanovic M, Wolf ME, Stefanik MT. GluA2-lacking AMPA
1027 receptors in the nucleus accumbens core and shell contribute to the incubation of
1028 oxycodone craving in male rats. *Addict Biol* **27**, e13237 (2022).

1029 37. Wolf ME, Tseng KY. Calcium-permeable AMPA receptors in the VTA and nucleus
1030 accumbens after cocaine exposure: when, how, and why? *Front Mol Neurosci* **5**, 72
1031 (2012).

1032 38. Henley JM, Wilkinson KA. Synaptic AMPA receptor composition in development,
1033 plasticity and disease. *Nat Rev Neurosci* **17**, 337-350 (2016).

1034 39. Cull-Candy SG, Farrant M. Ca(2+) -permeable AMPA receptors and their auxiliary
1035 subunits in synaptic plasticity and disease. *J Physiol* **599**, 2655-2671 (2021).

1036 40. Italia M, Scheggia D, DiLuca M, Gardoni F. What's in your plate?AMPA receptors
1037 modulation at the crossroads of homeostatic and hedonic eating. *Pharmacol Res* **217**,
1038 107821 (2025).

1039 41. Whitehead G, et al. Acute stress causes rapid synaptic insertion of Ca2+ -permeable
1040 AMPA receptors to facilitate long-term potentiation in the hippocampus. *Brain* **136**, 3753-
1041 3765 (2013).

1042 42. Whitcomb DJ, et al. Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit
1043 of AMPA receptor in the hippocampus. *Sci Rep* **5**, 10934 (2015).

1044 43. Pilotto A, et al. Dopaminergic deficits along the spectrum of Alzheimer's disease.
1045 *Molecular Psychiatry*, (2025).

1046 44. Storga D, Vrecko K, Birkmayer JG, Reibnegger G. Monoaminergic neurotransmitters,
1047 their precursors and metabolites in brains of Alzheimer patients. *Neurosci Lett* **203**, 29-
1048 32 (1996).

1049 45. Nobili A, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in
1050 a model of Alzheimer's disease. *Nat Commun* **8**, 14727 (2017).

1051 46. Krashia P, Nobili A, D'Amelio M. Unifying Hypothesis of Dopamine Neuron Loss in
1052 Neurodegenerative Diseases: Focusing on Alzheimer's Disease. *Front Mol Neurosci* **12**,
1053 123 (2019).

1054 47. Baez S, et al. Moral Emotions and Their Brain Structural Correlates Across
1055 Neurodegenerative Disorders. *J Alzheimers Dis* **92**, 153-169 (2023).

1056 48. Zufferey V, Gunten AV, Kherif F. Interactions between Personality, Depression, Anxiety
1057 and Cognition to Understand Early Stage of Alzheimer's Disease. *Curr Top Med Chem*
1058 **20**, 782-791 (2020).

1059 49. Frank P, et al. Specific midlife depressive symptoms and long-term dementia risk: a 23-
1060 year UK prospective cohort study. *Lancet Psychiatry*, (2025).

1061 50. Frisoni GB. Alzheimer disease: biomarker trajectories across stages of Alzheimer
1062 disease. *Nat Rev Neurol* **8**, 299-300 (2012).

1063 51. Jeremic D, Jimenez-Diaz L, Navarro-Lopez JD. Past, present and future of therapeutic
1064 strategies against amyloid-beta peptides in Alzheimer's disease: a systematic review.
1065 *Ageing Res Rev* **72**, 101496 (2021).

1066 52. Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-beta Oligomer Hypothesis:
1067 Beginning of the Third Decade. *J Alzheimers Dis* **64**, S567-S610 (2018).

1068 53. Daini E, Secco V, Liao W, Zoli M, Vilella A. A regional and cellular analysis of the early
1069 intracellular and extracellular accumulation of Abeta in the brain of 5XFAD mice.
1070 *Neurosci Lett* **754**, 135869 (2021).

1071 54. Drummond E, et al. The amyloid plaque proteome in early onset Alzheimer's disease
1072 and Down syndrome. *Acta Neuropathol Commun* **10**, 53 (2022).

1073 55. Belfiore R, et al. Temporal and regional progression of Alzheimer's disease-like
1074 pathology in 3xTg-AD mice. *Aging Cell* **18**, e12873 (2019).

1075 56. Youmans KL, et al. Intraneuronal Abeta detection in 5xFAD mice by a new Abeta-
1076 specific antibody. *Mol Neurodegener* **7**, 8 (2012).

1077 57. Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of
1078 Alzheimer's disease. *Mol Neurodegener* **19**, 23 (2024).

1079 58. Hwang E-K, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives
1080 cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation
1081 of cocaine craving. *Molecular Psychiatry* **30**, 3175-3187 (2025).

1082 59. Kawa AB, Hwang EK, Funke JR, Zhou H, Costa-Mattioli M, Wolf ME. Positive Allosteric
1083 Modulation of mGlu(1) Reverses Cocaine-Induced Behavioral and Synaptic Plasticity
1084 Through the Integrated Stress Response and Oligophrenin-1. *Biol Psychiatry* **92**, 871-
1085 879 (2022).

1086 60. Valdivia G, et al. mGluR-dependent plasticity in rodent models of Alzheimer's disease.
1087 *Front Synaptic Neurosci* **15**, 1123294 (2023).

1088 61. Gerlach M, Double K, Arzberger T, Leblhuber F, Tatschner T, Riederer P. Dopamine
1089 receptor agonists in current clinical use: comparative dopamine receptor binding profiles
1090 defined in the human striatum. *J Neural Transm (Vienna)* **110**, 1119-1127 (2003).

1091 62. Richfield EK, Penney JB, Young AB. Anatomical and affinity state comparisons between
1092 dopamine D1 and D2 receptors in the rat central nervous system. *Neuroscience* **30**, 767-
1093 777 (1989).

1094 63. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of
1095 dopamine receptors. *Pharmacol Rev* **63**, 182-217 (2011).

1096 64. Aguado C, et al. Resilience to structural and molecular changes in excitatory synapses
1097 in the hippocampus contributes to cognitive function recovery in Tg2576 mice. *Neural
1098 Regen Res* **19**, 2068-2074 (2024).

1099 65. Guo C, et al. Amyloid-beta oligomers in the nucleus accumbens decrease motivation via
1100 insertion of calcium-permeable AMPA receptors. *Mol Psychiatry* **27**, 2146-2157 (2022).

1101 66. Peterson BM, Martinez LA, Meisel RL, Mermelstein PG. Estradiol impacts the
1102 endocannabinoid system in female rats to influence behavioral and structural responses
1103 to cocaine. *Neuropharmacology* **110**, 118-124 (2016).

1104 67. Fernandez-Perez EJ, et al. Synaptic dysregulation and hyperexcitability induced by
1105 intracellular amyloid beta oligomers. *Aging Cell* **20**, e13455 (2021).

1106 68. Saavedra-Sieyes P, Meza I, Riffo-Lepe N, San Martin L, Gonzalez-SanMiguel J, Aguayo
1107 LG. Alterations in neuronal excitability and AMPA-mediated neurotransmission in an
1108 APP/PS1 neuronal culture model derived from nucleus accumbens. *J Alzheimers Dis*,
1109 13872877251378468 (2025).

1110 69. Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Co-
1111 expression of multiple transgenes in mouse CNS: a comparison of strategies. *Biomol
1112 Eng* **17**, 157-165 (2001).

1113 70. Ade KK, Wan Y, Chen M, Gloss B, Calakos N. An Improved BAC Transgenic
1114 Fluorescent Reporter Line for Sensitive and Specific Identification of Striatonigral
1115 Medium Spiny Neurons. *Front Syst Neurosci* **5**, 32 (2011).

1116 **Data availability**

1117 The data supporting the findings of this study are available from the corresponding
1118 author upon reasonable request.

1119 **Acknowledgements**

1120 We thank Laurie Aguayo, Helena Zambrano, and Ailine Riquelme for technical
1121 assistance, as well as Jocelyn González and Ixia Cid for support during experimental

1122 procedures. We also acknowledge Carolina Benítez (CREAV-UDEC) and Claudia
1123 Ramírez for veterinary assistance. We thank Lauren Aguayo and Mauricio Avendaño
1124 Valenzuela (Universidad de Concepción, Chile) for assistance with language editing.
1125 This work was supported by ANID Fondecyt Regular grant 1221080 (L.G.A.), a PhD
1126 fellowship from ANID (21202521) awarded to N.R.L., and NIH grant R01AA025718
1127 (L.G.A.).

1128 **Author contributions**

1129 N.R.L.: Conceptualization, methodology, investigation, formal analysis, visualization,
1130 writing - original draft, writing - review & editing. J.G.S.: Investigation, formal analysis,
1131 writing & review. I.M.: Investigation, formal analysis, writing & review. L.A.W.:
1132 Investigation, formal analysis, writing & review. P.S.S.: Investigation, formal analysis,
1133 writing & editing. A.S.: Methodology, supervision, writing & review. L.S.M.:
1134 Conceptualization, supervision, writing & review. L.G.A.*: Conceptualization,
1135 methodology, supervision, writing - review & editing, project administration, funding
1136 acquisition.

1137 **Competing interests**

1138 The authors declare no competing interests.

1139 **Additional Information**

1140 **Correspondence** and requests for materials should be addressed to Luis G. Aguayo.