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Abstract 

 
Emotional experiences are never static but continuously evolve in response to internal and 

external contexts. Little is known about how neural patterns change as a function of these 

experiences, particularly in response to complex, real-world stimuli. This study aimed to 

identify generalizable neural patterns as individuals collectively engage and disengage from 

emotions dynamically. To do so, we analyzed functional magnetic resonance imaging 

(fMRI) along with subjective emotional annotations from two independent studies as 

individuals watched negative and neutral movie clips. We used predictive modeling to test 

if a model trained to predict a group emotional signature response in one study generalizes 

to the other study and vice versa. Disengagement patterns generalized specifically across 

intense clips. They were supported by connections within and between the sensorimotor 

and salience networks, maybe reflecting the processing of feeling states as individuals 

regulate their emotions. Prediction success for the engagement signature was mixed, but 

primarily linked to connections within the visual and between the visual and dorsal 

attention networks, maybe supporting visual attention orienting as emotions intensify. This 

work offers potential pathways for identifying generalizable neural patterns contributing to 

future affective research and clinical applications aiming to better understand dynamic 

emotional responses to naturalistic stimuli. 

Keywords: movie, film, emotional intensity, engagement, disengagement, fMRI, 

arousal, subjective 
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Generalizable Neural Models of Emotional Engagement and Disengagement 

 
Introduction 

 
Our well-being profoundly depends on how we engage in and disengage from emotions 

when interacting with others and the world. While theories of affect emphasize the 

temporal progression of emotional responses and their regulation (e.g. Gross et al. (2014); 

Scherer (2009); Sheppes and Gross (2011) pp. 16-17), these processes have typically been 

studied in isolation (Goldin et al., 2009; Gruber et al., 2011; McRae et al., 2010), 

disregarding their dynamic nature throughout time. In real life, emotions evolve, and 

naturalistic scenarios like movies may preserve this temporal alternation of engagement 

and disengagement, offering rich, dynamic affective experiences (Morgenroth et al., 2023; 

Saarimäki, 2021). Although movies have the potential to mimic real-life scenarios, there is 

a challenge for affective movie fMRI in terms of ecological validity not necessarily directly 

translating to ecological generalizability, in that affective correlates may not extend 

uniformly across various naturalistic contexts (Nastase et al., 2020), and instead may be 

partially driven by contextual factors (jump cuts, actor’s costumes, camera perspective, 

background) (Hasson et al., 2008; Zacks & Magliano, 2011). Predictive modeling of a 

dynamic affective experience across various movies and participant groups holds the 

potential to unveil more generalized neural mechanisms relevant to the actual emotional 

experience, independent from the idiosyncratic nature of each movie. This way, common 

patterns, and neural responses can be distilled that transcend specific cinematic content 

and individual differences. As stimuli continuously evolve, individuals dynamically allocate 

attentional resources toward affectively relevant information, engaging with and eventually 

disengaging from specific content. Theoretical work suggests that emotional intensity can 

be understood through both trajectories of intensity over time (gradual changes) and 

episodes of sharp increases and decreases of intensity (Kuppens et al., 2010). Building on 

this framework, we propose that episodes can be conceptualized as containing two distinct 

components: an engagement component, marked by the sharp increase in emotional 
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intensity, followed by a disengagement component, characterized by the subsequent decrease 

in intensity. These cyclical engagement-disengagement patterns would together contribute 

to the formation of subjective emotional experiences. Specifically, arousal would function 

as the energetic substrate that enables the formation of top-down attentional biases toward 

emotionally salient stimuli (Mohanty et al., 2008), amplifying competitive processing 

advantages for high-priority information while suppressing lower-priority competing 

representations (Mather & Sutherland, 2011). In this context, emotional engagement 

would not reflect simply ’more arousal’, but instead reflect a transitional process of 

directing and intensifying attention towards movie content. In contrast, disengagement 

would reflect the transition from high to low arousal as the arousal-mediated competitive 

bias dissolves, allowing attention to withdraw from movie content and return to a more 

distributed, less focused processing state. In other words, two moments in time may share 

the same arousal level yet reflect different cognitive processes, one reflecting passive arousal 

without competitive advantage, and the other reflecting arousal actively deployed to bias 

processing in favor of emotionally salient movie content. Together, continuous intensity 

tracking techniques may provide a unique opportunity to identify moments of engagement 

and disengagement within the stream of emotional experiences and detect underlying 

generalizable brain patterns. Few studies have shown that continuous subjective reports of 

attention and emotion state can be predicted across movies and participant groups. One 

study showed that continuous subjective experience of fear during movie viewing was 

predicted by widespread large-scale brain network connectivity patterns, and that these 

predictions were successful between independent subject groups and movies (Zhou et al., 

2023). In one study it was found that functional connectivity strength within the DMN 

was predictive of continuous attentional engagement reports across a movie and audiobook 

from independent studies (Song, Finn, et al., 2021). Other work linked DMN connectivity 

to both intensity and polarity of continuous affective experiences across independent movie 

data sets (Lettieri et al., 2022). One study found that even though stronger dynamic DMN 
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recruitment was also linked to moment-to-moment movie comprehension in separate 

movies, a DMN signature obtained in one movie failed to predict movie comprehension in 

the other movie and vice versa (Song, Park, et al., 2021). Together, these findings suggest 

that both dynamic changes in attentional engagement levels and affective processing, or an 

interplay of both may be tracked by dynamic functional brain connectivity (dynFC) across 

large-scale networks. While this body of work demonstrates that continuous annotations 

can predict generalizable brain patterns across movies, those underlying collective 

engagement and disengagement as distinct episodic processes defined by transitional 

intensity changes rather than absolute levels remain poorly understood. 

To tackle this, we analyzed movie fMRI data from two independent studies, both using 

retroactive subjective emotional intensity annotations in response to either one intense 

negative and one neutral movie clip (study 1) or one intense negative movie clip (study 2). 

Positive and negative shifts in subjects’ annotation timecourses were labeled as EE and 

ED, respectively. We used support vector regression (SVR) to test the predictive nature of 

dynFC patterns across independent data linked to moment-to-moment changes in the 

degree to which a participant group exhibited EE and ED phases throughout movie 

viewing. Based on previous work linking subjective attention states during movie viewing 

to the DMN, we wondered if DMN connectivity, both within and between networks, might 

play a central role in predicting group signature of EE or ED. However, given the limited 

predictive studies in naturalistic scenarios, we did not constrain our analysis to specific 

regions or networks of interest. 

We hypothesized that collective emotional engagement (EE) and emotional disengagement 

(ED) during intense negative movies are linked to brain patterns generalizable across 

independent participant groups and movie clips but not generalizable to neutral movie 

content of low emotional intensity, suggesting high intensity-specific predictive brain 

patterns. Our results were in line with this for predicting ED signatures, where predictions 

succeeded between negative movies and failed for between negative and neutral predictions. 
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In contrast, our results were mixed for predicting EE signatures, where predictions 

succeeded between negative movies and also partially for between negative and neutral 

predictions. Brain patterns predicting collective disengagement involved functional 

connectivity patterns across the entire brain connectome without drawing on specific 

network-to-network connections. In contrast, EE signatures were linked to connections from 

visual to attention and salience networks, potentially reflecting heightened engagement. 

This work represents an initial step toward understanding generalizable neural patterns 

underlying collective engagement and disengagement patterns during naturalistic viewing. 

 
Material and Methods 

 
Data Sources 

 
We analyzed fMRI and behavioral data from two independent studies with similar 

paradigms and acquisition methods. These prior studies addressed unrelated research 

questions. For clarity, we refer to them as study 1 (Borchardt et al., 2018) and study 2 

(Raz et al., 2016). We previously published work based on study 1 (Nanni-Zepeda et al., 

2024) with another research question. 

 
Participants 

Study 1 included 22 female volunteers aged 20–49 years (mean age 28.1 ∓ 6.5), all German 

native speakers recruited in Germany. Study 2 included 44 Hebrew native speakers 

recruited in Tel Aviv, Israel (25 female, 19 male) aged 21–37 years (mean age 26.73 ∓ 4.69). 

All participants from both studies were screened for neurological and psychiatric disorders 

using standardized protocols (study 1: short SCID (Wittchen et al., 1997)), with no 

participants reporting any such conditions. Study 1 protocols were conducted in 

accordance with the Declaration of Helsinki and approved by the institutional review board 

of the Charité. Study 2 was reviewed and approved by the ethics committees of the Tel 

Aviv Sourasky Medical Center. 
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Naturalistic Viewing Paradigm 

 
Participants in study 1 watched a neutral and negative movie clip in a counterbalanced 

order during fMRI scanning. The negative clip (21 Grams, Iñárritu (2003), 4.45 min) 

depicts a mother learning of her daughters’ deaths, while the neutral clip (Son’s Room, 

Moretti (2001); 4.54 min) shows everyday family life, matched for low-level features such as 

faces and domestic settings. Both were dubbed in German. The negative clip elicited 

significantly stronger negative arousal and valence (Borchardt et al., 2018). 

In study 2, participants watched a 10-min excerpt from Sophie’s Choice (Pakula, 1983), 

where a mother must choose which child to save, containing similar visual elements (faces, 

domestic context). It was presented in English with Hebrew subtitles. These stimuli have 

been validated in prior fMRI emotion-induction studies (Borchardt et al., 2018; Gaviria 

et al., 2021; Hanich et al., 2014; Innes-Ker, 2015; Raz et al., 2016). 

 
Subjective Continuous Emotional Intensity Annotations 

 
About 15 minutes post-scan, they re-watched the clips while providing continuous 

emotional intensity annotations via a trackball-operated mouse. A visual analog scale 

(VAS) from 0 ("not at all") to 250 ("very much") was displayed alongside the video for 

real-time adjustments (instructions in supplements). Annotations were sampled at 30Hz 

and downsampled to the fMRI sampling rate. Study 2 followed a similar procedure. 

Participants viewed the clip during fMRI scanning and re-watched it 15 minutes later, 

providing continuous emotional intensity annotations using a 7-point Likert scale (0 = 

"neutral" to 7 = "very intense"). For details, see Raz et al. (2016). Annotations were 

sampled at 10Hz and downsampled to match the fMRI sampling rate. In both studies, 

individuals were instructed to annotate their emotional intensity with regard to the first 

time they watched the movie. Figure 1 shows the variation in emotional intensity ratings 

over time across subjects. 

We used the individual subjective annotations to compute group-averaged signals of EE 
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and ED through a sliding window approach, aggregating all instances within each sliding 

window. These group-averaged measures were used as input variables in our computational 

models, as detailed in the ’Emotional Engagement and Disengagement’ section. 

 
Emotional Engagement and Disengagement 

 
We extracted time points of EE and ED from individual subjective annotations with an 

algorithm previously used to separate four phases of a temporal signal into rise, high, fall 

and low magnitude (Dessu et al., 2020; Kato et al., 2015; Shine et al., 2019). EE and ED 

periods were defined as rises and falls within the temporal fluctuations of subjective 

emotional intensity. To count as an EE or ED period, an emotional intensity score had to 

be within the 33rd and 67th percentile and exhibit a positive (EE) or a negative change 

(ED) between two subsequent time points. This way we obtained two binary time courses 

per participant: one indicating the presence of EE (yes/no), and the other indicating ED 

(yes/no) at each moment. Figure S1 shows the distribution of estimated EE and ED per 

movie. 

We next sought to assess the degree to which individuals collectively exhibited EE and ED 

phases throughout movie viewing. To this aim, we obtained a dynamic group signature 

reflecting the dynamic change in frequency of simultaneous reports of EE or ED across 

individuals. We used a sliding window approach over the binary timeseries of EE and ED 

(window size of 40s; time step of 1 TR) where we counted the number of EE or ED 

moments present across all individuals within each sliding window. This resulted in two 

group signature time courses, i.e. one for EE, and one for ED. These time courses were 

then convolved with the hemodynamic response function (HRF) and used in combination 

with fMRI timecourses to train and test SVR models (Fig. 3). 

To assess the robustness of our engagement and disengagement predictions, we conducted a 

sensitivity analysis testing whether the results held across varying percentile thresholds 

used to define EE and ED. The original threshold range (33rd and 67th percentiles) was 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2026. ; https://doi.org/10.1101/2024.02.15.579332doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.579332
http://creativecommons.org/licenses/by/4.0/


GENERALIZABLE NEURAL MODELS OF EMOTIONAL ENGAGEMENT AND 
DISENGAGEMENT 10 

 

 
systematically modified to include both wider and narrower ranges. We expanded the 

range in three incremental steps by decreasing the low percentile and increasing the high 

percentile by 5-unit increments, resulting in threshold pairs of (28th, 72nd), (23rd, 77th), 

and (18th, 82nd percentiles). We also tested a narrower range (38th, 62nd percentiles). For 

each threshold pair, we repeated the complete prediction analysis pipeline and evaluated 

the consistency of our main findings. Results are presented in supplementary materials 

(Tables S1 and S2). 

 
fMRI Analysis 

 
fMRI data were acquired on a 3T scanner and preprocessed using standard pipelines (see 

Supplementary for full details). 

Dynamic Predictive Modeling. To extract dynFC, for every participant, we extracted 

BOLD time courses using a 200 region parcellation by Schaefer et al. (2018), the 

Harvard-Oxford structural subcortical atlas (8 regions) Kennedy et al. (2016) and insula 

sub-regions (6 regions) Deen et al. (2011) resulting in a total of 214 brain regions. Next, we 

calculated dynFC of BOLD time series, computed as the Pearson correlation between pairs 

of regions (214 x 214 ROIs). We used a tapered sliding window with a length of 40 

seconds and a tapering factor of 1 TR as done previously in naturalistic studies linking 

dynFC to subjective annotations (Petrican et al., 2021; Song, Finn, et al., 2021; Song, 

Park, et al., 2021). 

In the next step, we used support vector regression (SVR) to test whether dynamic 

inter-regional connectivity patterns could predict temporal fluctuations in the group-level 

EE and ED signatures. 

To reduce dimensionality and enhance model performance, we first identified functional 

connections (ROI pairs) that significantly correlated with the group EE or ED signature 

(one-sample t-test, p < 0.01). Using these selected connections as features, we trained an 

SVR model with a radial basis function (RBF) kernel (maximum iterations = 1,000; 
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sklearn.svm.SVR in Python) to predict the group engagement time series based on each 

participant’s individual dynamic functional connectivity (dynFC) time courses. 

To examine the generalizability of the identified engagement-related connectivity features, 

we performed across-dataset analyses. Specifically, feature weights derived from the 

within-movie analyses in one dataset were applied to predict the group EE and ED 

signatures in a different dataset, and vice versa. This procedure was also repeated for 

neutral versus negative clips to test whether predictive connectivity patterns were specific 

to emotionally intense narratives (Fig. 2A). Statistical significance of the mean correlation 

values was assessed by comparing them to a null distribution derived from SVR models 

trained on phase-randomized EE and ED time series. 

Predictive performance was assessed by computing the Pearson correlation between the 

predicted and actual group engagement time series for each participant. For comparison, 

we also computed mean squared error (MSE) and the coefficient of determination (R2), 

where the R2 corresponds to the standard coefficient of determination, which quantifies 

how much variance in the observed engagement time series is explained by the model. We 

computed R2 using the standard coefficient of determination: 

2 

Σ

t(ytrue,t − ypred,t)2 

R = 1 − Σ . 

t(ytrue,t − ȳ true)2  

We averaged these metrics across participants to summarize group-level model accuracy. 

All analyses used publicly shared code from Song, Finn, et al. (2021) to ensure 

reproducibility (https://github.com/hyssong/NarrativeEngagement ). 

We also report within-dataset predictions, in which the group engagement signature was 

recalculated using a leave-one-out (LOO) approach. For each iteration, the SVR model was 

trained on all subjects except one, using the group signature computed without the 

held-out subject. The trained model was then applied to the held-out subject’s dynFC 

data to predict that same group-defined engagement time series (see Supplementary) 

To assess the significance of the empirical mean correlation values, we computed the 
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percentage of simulated correlation values resulting from the SVR phase-randomized EE 

and ED. The threshold was set to ensure that this percentage did not surpass 95% (p < 

0.05); Fig. 2B. This iterative procedure was repeated 200 times. Throughout this section’s 

analyses, we employed a modified version of the publicly available dynamic predicting 

modeling code initially developed by Song et al. (2021). 

 
 
 

 
Networks Supporting Engagement and Disengagement. We further explored the 

involvement of canonical networks in predicting group signature response of EE and ED. 

We did this by grouping connections that significantly contributed to the model into 

canonical functional networks based on the network parcellation by Yeo et al. (2011). We 

then calculated the proportion of all participants’ significant connections against all 

possible connections within a particular network. To evaluate the relevance of each network 

in predicting a group signature response of EE and ED, we generated null matrices by 

phase-randomizing the empirical emotional response time courses. This process involved 

transforming the original data into the frequency domain, randomizing the phases, and 

then transforming the data back into the time domain to generate surrogate data with 

equivalent second-order properties as the original time series (Gias, 2023). These 

randomized data sets were input into the SVR model to generate simulated predictions, 

forming the null distribution. The significance of empirical mean r values was assessed by 

comparing the observed proportion of network pairs in the empirical data to the proportion 

of network pairs from the randomized data that surpassed the observed value. We inferred 

significance if more than 99% of the randomized pairs exceeded the empirical proportion (p 

< 0.01); Fig. 4A. We then grouped the significant network pairs into networks (Fig. 4B) 

and identified the region pairs predictive of EE and ED between movie clips in over 50% of 

the subjects. For visualization, we selected the two top nodes that exhibited most 

connections to other regions across the connectome (Fig. 4C). 
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Results 

 
Functional Connectivity Patterns underlying Engagement and Disengagement 

Generalize across Studies 

In a next step, we investigated whether the neural features predicting the group signature 

response of EE and ED were generalizable across movie clips. To this aim, we tested if a 

model trained to predict a group signature response in one study is able to predict the 

group signature response in the other study and vice versa (Fig. 2). First, we tested 

predictions across negative clips of study 1 and 2. The model trained on dynFC of subjects 

watching the negative clip of study 2 successfully predicted the EE group signature in the 

negative clip of study 1 (r = 0.572; p < 0.005, MSE = 50.84, R2
 = −1.30), as did 

predictions in the opposite direction (negative clip of study 1 to negative clip of study 2: 

r = 0.299; p = 0.005, MSE = 296.03, R2
 = 0.061). The model trained on dynFC of subjects 

watching the neutral clip of study 1 successfully predicted the EE group signature in the 

negative clip of study 1 (r = 0.334; p = 0.005, MSE = 30.8, R2
 = −0.389), as did 

predictions in the opposite direction (negative clip of study 1 to neutral clip of study 1: 

r = 0.18; p = 0.024, MSE = 14.553, R2
 = −45.167). The model trained with the negative 

clip of study 2 did not predict the neutral clip 

(r = −0.144; p = 0.999, MSE = 99.432, R2
 = −314.827), similarly in the opposite 

direction, theneutral clip of study 1 to negative movie of study 2 

(r = −0.028; p = 0.791, MSE = 401.26, R2
 = −0.272). Taken together, predictions failed 

only between the neutral clip of study 1 and the negative clip of study 2 but succeeded 

between the neutral and negative clip of study 1. 

The model trained on dynFC patterns to predict the group signature of ED in subjects 

watching the negative clip of study 2 successfully predicted the group signature of ED in 

the negative clip of study 1 (r = 0.233, p = 0.005; MSE = 4.497; R2
 = −0.357), as did 

predictions in the opposite direction (negative clip of study 1 to negative clip of study 2: 

r = 0.167, p = 0.005; MSE = 13.673; R2
 = −0.128). Conversely, predictions between 
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negative movie clips (study 1 and 2) with the neutral movie clip of study 1 failed (from the 

negative clip of study 1 to the neutral clip of study 1: 

r = −0.025, p = 0.59; MSE = 1.482; R2
 = −0.273; from the negative clip of study 2 to the 

neutral clip of study 1: r = 0.014, p = 0.60; MSE = 5.891; R2
 = −4.184; neutral movie clip 

of study 1 to negative clip of study 1:r = −0.109, p = 0.96; MSE = 1.344; R2
 = −0.324), 

neutral movie clip of study 1 to negative clip of study 2: 

r = −0.009, p = 0.42; MSE = 15.243; R2
 = −0.257 ). Thus these findings suggest that the 

neural features predicting the group signature response for ED generalize across different 

narratives and participants for clips inducing high levels of emotional intensity, but not for 

neutral contexts. 

We also examined the top two regions with the highest number of hub-like connections for 

all movies combined; those with connections positively associated with EE were the 

angular gyrus (AngG) and the middle temporal gyrus (MTG), while negative connections 

were observed in the right dorsolateral prefrontal cortex (dlPFC) and right dorsal posterior 

cingulate cortex (dPCC). For connections positively correlated with ED were the left AngG 

and the left ventromedial prefrontal cortex (vmPFC), while connections negatively 

correlated were the right superior lateral occipital cortex (slOC) and the left dPCC. 

Next, we sought to understand which canonical brain networks contributed to the group 

signature responses. To achieve this, we calculated the proportion of significant ROI 

connections within each network, divided by the total number of possible connections 

within that network for each movie and EE and ED signature responses separately (Fig. 

4A). Across all movies from study 1 and 2, within visual network connections 

predominated (40%) among those positively correlated with the EE signature response, 

while only connections within Visual-SAL (14%) negatively correlated with EE. In 

contrast, for ED, no significant effects were observed across all movies combined. Across 

the negative clips only from study 1 and 2, EE correlated positively with Visual-DMN 

(8%) and negatively mainly with Visual-DMN (13%) connections. In contrast, most of the 
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connections correlating positively with ED in negative clips, were found within SAL 

connections (13%), while negatively correlated mainly with Visual-DMN (7%) connections 

(see Table 2; results for individual movies are summarized in Table 1). 

Discussion 

 
This study aimed at identifying generalizable functional connectivity (dynFC) patterns 

that underlie moment-to-moment changes in collective EE and ED during movie viewing. 

To do so, we used predictive modeling across movie fMRI data and continuous subjective 

annotations of affect from two independent studies (Borchardt et al., 2018; Raz et al., 

2016). Specifically, we trained a dynFC-based model to predict group signatures of EE and 

ED in one data set and then tested whether the model could generalize to an independent 

study with a different clip and participant group and vice versa. We further aimed to test 

whether predictive dynFC patterns are specific to emotionally intense clips or if they also 

generalize to a neutral context. 

Disengagement 

 
A model trained to predict an ED group signature based on neural features in one negative 

movie clip successfully predicted an ED group signature in another negative movie clip, 

from independent samples with different narratives. However, since this predictive ability 

did not extend to the neutral clip, this may imply some level of specificity to negative or 

high emotional intensity contexts. We found that ED was linked to widespread positive 

associations with between-network connections, specifically for negative movie clips. We 

hypothesized that ED may reflect an internally directed shift of processing involving the 

regulation of emotional responses. Thus, the positive association with wide-spread network 

connections may reflect enhanced cognitive regulation of emotions that relies on the 

involvement of large scale network communication (Cohen & D’Esposito, 2016; Morawetz 

et al., 2020). Within these wide-spread connections, the strongest effects were found within 

the SMN and SAL and between them. Previous research has linked stronger recruitment of 
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the sensorimotor cortex and regions of the salience network to attention directed toward 

interoceptive markers of arousal (Critchley et al., 2004; Wu et al., 2019). Thus, in our 

findings, the connections between SAL and SMN during negative emotional movies could 

indicate an intensified focus on bodily sensations induced by intense emotional experiences. 

This heightened interoception could play a role in ED, shifting attention away from 

external emotional stimuli towards internally directed processing and regulation of feeling 

states. We found that moment-to-moment fluctuations in the ED signature correspond to 

hub-like behavior within the ventromedial prefrontal cortex (vmPFC). The vmPFC has 

been implicated in both generating and regulating negative emotions through the 

formation of generalizable representations of negative emotions (Kragel et al., 2018). Since 

the highly connected nodes were exclusive to negative movie clips, the involvement of the 

vmPFC may facilitate the moment-to-moment regulation of negative emotions elicited by 

negative clips. In our previous study, we observed that inter-individual similarity in static 

vmPFC activations supported synchronized responses in both EE and ED in the negative 

clip of study 1 (Nanni-Zepeda et al., 2024). In contrast, adopting a dynamic perspective, 

the current study reveals that moment-to-moment connectivity of the vmPFC may also 

reflect fluid adjustments in regulatory processes as emotional contexts shift throughout the 

movie. Taken together our findings suggest generalizable dynFC patterns across 

wide-spread large scale networks predicting group collective moment-to-moment changes of 

ED confined to emotionally intense contexts. However, the specificity of these patterns to 

negative emotional content may also reflect the particular narrative structures and 

cinematic techniques employed in the selected clips, which could influence the 

generalizability across different storytelling approaches or cultural contexts 

 
Engagement 

 
In contrast to ED, prediction success for EE varied: predictions were successful across 

negative clips in both study 1 and study 2, and also across the neutral and negative 
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contexts in study 1. However, we interpret the latter finding with caution. A sensitivity 

analysis varying the width of the thresholds to define EE and ED phases revealed that EE 

prediction success between neutral and sad movies of study 1 was inconsistent across 

thresholds (see Table S1). Additionally, predictions did not succeed between the negative 

clip of study 2 and the neutral clip of study 1. 

 
However, predictions did not succeed between the negative clip of study 2 and the neutral 

clip of study 1. Thus, idiosyncratic features within the participant group may have driven 

the successful cross-predictions across clips within one and the same study. Another or 

complementary interpretation could be that EE relies on network connections that support 

engagement regardless of emotional intensity levels. However, given that the predictions 

did not succeed between the neutral clip of study 1 and the negative clip of study 2 the 

latter interpretation may be more reasonable. Connections within the visual network and 

between the visual and the DAN were predictive of The EE group signature response. 

These networks are critical for goal-directed and stimulus-driven attention, aligning with 

their established roles in the voluntary control of visuo-spatial attention (Corbetta & 

Shulman, 2002; Kelley et al., 2008; Tosoni et al., 2023). Specifically, the connectivity in 

these networks may reflect attentional engagement with the emotional content of 

emotionally salient stimuli, potentially through mechanisms of visuospatial attention 

prioritizing emotionally salient stimuli. This prioritization could involve the DAN initiated 

selective top-down enhancement of visual processing areas linked to the perception and 

interpretation of emotionally relevant cues (Mohanty & Sussman, 2013). Interestingly, 

some Visual-to-DMN connections predicted EE in negative and positive directions, 

highlighting their dual role in promoting and reducing engagement. Prior research has 

shown that connectivity between the visual cortex and DMN changes depending on task 

demands, with positive coupling in some contexts like processing task irrelevant 

information (Chadick & Gazzaley, 2011) or automated information processing (Vatansever 

et al., 2017), and negative coupling during low cognitive effort (Weber et al., 2022). 
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Further, during movie viewing, FC profiles of visual-DMN have shown to contribute to the 

classification of emotional states such as sadness or happiness (Xu et al., 2023). Together 

these findings may reflect the DMN’s role in facilitating coordination between the DAN 

and visual networks to direct attention on emotionally salient stimuli. 

 
Limitations 

 
Using multiple independent datasets introduces variability in cultural background, image 

acquisition, and annotation methods. The movie clips differed in duration (4.45, 4.54, and 

10 min), which may engage distinct neural processes related to sustained attention or 

narrative structure. However, our analyses target the temporal dynamics of emotional 

engagement and disengagement (EE/ED) episodes rather than cumulative responses, and 

the high-intensity scenes driving our measures occurred with similar timing across clips. 

Different TRs (3s vs. 2s) still yielded comparable numbers of fMRI timepoints, though 

ideally, clips of equal length would eliminate this confound. Second, EE/ED was derived 

from retroactive annotations using two methods: continuous pointer ratings and button 

presses. Both captured the dynamics of interest, but standardized response protocols 

would improve comparability. While repeated viewings can alter absolute arousal intensity 

(Chun et al., 2020), we focused on directional changes. Moreover, brain responses show 

strong test–retest reliability across viewings (Gruskin & Patel, 2022), though it remains 

unclear whether arousal episodes shift in timing. Third, although our sample was sufficient 

to detect main effects, larger and more diverse cohorts would improve generalizability and 

enable study of individual differences. One dataset included only women, and all clips 

carried a sad affective tone, limiting extension to other populations and emotions. Broader 

emotional valence should be incorporated in future work. Finally, technical factors may 

constrain interpretation. Lower-density head coils (8- and 12-channel) could reduce 

sensitivity to subcortical regions, and stimulus characteristics (narrative complexity, visual 

features, cultural context) may restrict generalizability to other forms of emotional 
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experience. Future studies with higher-density coils and a wider range of stimuli will 

provide greater comprehensiveness. 

 
Conclusion 

 
Our findings reveal that emotional disengagement is characterized by neural patterns 

specific to emotionally intense situations, while emotional engagement shows broader 

neural responses that generalize across both high- and low-intensity contexts. This suggests 

that the neural mechanisms underlying engagement are more adaptable across diverse 

intensity contexts, whereas disengagement involves more processes specific to high-intensity 

emotions. These results provide insights into the neural responses driving shifts in 

emotional experiences and highlight generalizable neural patterns that can guide future 

research on emotional transitions and regulation in real-world scenarios. Future studies 

should examine inter-individual variability in model performance to better understand 

performance heterogeneity across participants and enhance generalizability at the 

individual level. 
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Table 1 

Percentage of ROI-pairs within canonical networks connections significantly predicting the group 

signature responses for EE and ED listed for each clip separately. 

 

EE ED 
 

study Movie-clip Positive corr. Negative corr. Positive corr. Negative corr. 
 

 
study 1 

Negative clip of study 1 (21 grams)  
Visual-Visual (52%) 

Visual-DAN (10%) 

Visual-SAL (21%) 

Visual-DMN (18%) 

Visual-Visual (26%) 

SMN-SMN (8%) 

Visual-SAL (8%) 

Visual-CEN (5%) 

Neutral clip of study 1 (Son’s room)  
Visual-Visual (23%) Visual-Visual (17%)  

VIsual-Visual (23%)  Visual-DAN (5%) 
 Visual-DAN (5%) SubC-SubC (10%)  

study 2 
Sophie’s Visual-Visual (29%) Visual-SAL (14%) SAL-SAL (17%) Visual-DMN (8%) 

choice DAN-DAN (22%) Visual-SMN (13%) SMN-SAL (15%) VIsual-Visual (5%) 

Note: Percentage of ROI-pairs within a canonical network significantly predicting the group 

signature responses for EE and ED. The two most prominent network pairs are shown. 
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Table 2 

Percentage of ROI-pairs within a canonical network significantly predicting the group signature 

responses for EE and ED across studies. 

 

EE ED 

 

Context Positive corr. Negative corr. Positive corr. Negative corr. 
 

SAL-SAL (13%) 
 
 
 

 
Negative 

movie-clips 

 
 
 
 
 

Visual-DMN (8%) 

Visual-DMN (13%) 

VIsual-CEN (10%) 

DAN-CEN (8%) 

DAN-SAL (7%) 

DAN-DMN (7%) 

DMN-CEN (3%) 

SMN-SAL (12%) 

Visual-Visual (12%) 

DAN-SMN (9%) 

DAN-VIS (8%) 

DAN-DAN (8%) 

SMN-SMN (6%) 

Visual-SMN (5%) 

 
 
 

 
Visual-DMN (7%) 

DMN-CEN (4%) 

All 

movie-clips 

Visual-Visual (40%) 

Visual-DAN (14%) 

 
Visual-SAL (14%) – – 

 
 

Note: Percentage of ROI-pairs within a canonical network significantly predicting the group 

signature responses for EE and ED across studies. No significant pairs were found in relation to 

ED considering negative and neutral contexts together. 
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Figure 1. (A) Individual subjective emotional intensity annotations over time for each movie clip,

z-scored and scaled between 0 and 1 for visualization purposes. EE, Emotional Engagement, ED,

Emotional Disengagement. 

30 

, 

, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2026. ; https://doi.org/10.1101/2024.02.15.579332doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.579332
http://creativecommons.org/licenses/by/4.0/


GENERALIZABLE NEURAL MODELS OF EMOTIONAL ENGAGEMENT AND 
DISENGAGEMENT 31

 

 

 

 

 

 

 

 

 

 

 

Between movie clips prediction 
A Hypothesis 

Results 
 

  

B 

1.0 

 

 

r= 0.299 

 
 

r= 0.572 

 
 

r= 0.334 

 
 

r= 0.180 r= -0.028 

 
 

r= -0.144 

 

 
0.5 

 

 

0.0 

 

 

-0.5 

 

 

 

 

 

 

 

 

 

 

Grams 
Sophie 

 
 
 
 
 
 
 
 
 
 

Sophie 
Grams 

 
 
 
 
 
 
 
 
 
 

Son's room Grams 
Grams Son's room 

 
 
 
 
 
 
 
 
 
 
Son's room 

Sophie 

 
 
 
 
 
 
 
 
 
 

Sophie' 
Son's room 

 

 
indiv. r 

mean r 

Null 
distribution 

 

      
 

r= 0.233 r= 0.167 r= -0.109 r= -0.025 r= 0.014 r= -0.009 
p= 0.005 p= 0.005 p= 0.96 p= 0.59 p= 0.60 p= 0.42 

 

 
0.5 

 

 

0.0 

 

 

-0.5 

 

 

 

 

Grams 
Sophie' 

 
 
 

 
Sophie 
Grams 

 
 
 

 
Son's room 

Grams 

 
 
 

 
Grams Son's room 

Son's room Sophie 

 
 
 

 
Sophie 

Son's room 
 

      

 
Figure 2. Functional connectivity patterns underlying engagement and disengagement generalize

across independent studies (A) left panel: To infer specificity to negative clips, models trained to

predict a group signature response of EE and ED in one negative movie clip in one study (e.g. 

study 1) must succeed in predicting the group signature response in another negative movie clip 

(e.g. study 2) and vice versa, but fail for predictions across negative and neutral clips. Based on 

these assumptions we infer generalization due to both independence from idiosyncratic features of 

the participant group and narratives in each study. Right panel: Both conditions were met for the

group signature response of ED. For EE, only the first condition (between negative clip 

prediction) was met. (B) Predictive performance of dynFC features shown for each clip 

separately. The black dots in the scatter plots represent Pearson’s correlations between predicted

and observed group signature response for EE (top) and ED (bottom). Horizontal lines indicate 

the prediction quality reflected in the mean r across cross-validation folds. Violin plots illustrate 

the null distributions of mean prediction performance after phase-randomization. The significance

of empirical r was computed based on the null distribution (one-tailed t-test). DynFC, Dynamic 

Functional Connectivity, EE, Emotional Engagement, ED, Emotional Disengagement. 
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Figure 3. Visualization of how dynFC and group signature responses for EE and ED were 

derived. (A) DynFC and the group signature responses were calculated using a sliding window 

approach. From left to right: DynFC represents the Pearson correlation of BOLD time courses 

within each sliding window, while the group signature responses for EE and ED reflects the 

number of EE and ED phases within each sliding window aggregated across all participants. An 

EE and ED phase was identified as positive or negative shifts within a subject’s continuous 

subjective emotional intensity annotation (see methods section ). DynFC, Dynamic Functional 

Connectivity, EE, Emotional Engagement, ED, Emotional Disengagement. 
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Figure 4. Functional connectivity within and across canonical networks predicts a group signature 

response of EE and ED. (A) predictive between-region connections were grouped into canonical 

functional networks (Schaefer et al., 2018). The lower triangle matrix (red) illustrates the 

proportion of FCs positively correlated with the group signature response for EE or ED, and the 

upper triangle matrix (blue) illustrates the proportion of FCs negatively correlated with the 

group signature response for EE or ED. Asterisks indicate network pairs selected above chance 

(one-tailed t tests, pFDR< 0.001). The intensity of colors indicates the proportion of selected 

connections from all possible ROI-to-ROI connections with regard to its network assignment. (B) 

Shared significant ROI-to-ROI connections across negative movie clips. The crossed gray square 

indicates connections shared among negative movie clips that also overlapped with the neutral 

clip. (C) Top two strongest ROI-to-ROI connections predicting a group signature response for EE

and ED. Connections overlapping across all three movie clips are indicated by black circles, 

whereas those specific to negative clips do not show black circles. EE, Emotional Engagement, 

ED, Emotional Disengagement. 

 

* *  * 
* 

* 

* 
* 

Study 2: 
 

 
*  *  * * 

VIS * * 
SMN *  * * 
DAN *  * 
SAL 

LIM * 
CEN 

DMN * * * 
SUB * 

VIS * 
SMN * * 
DAN * * * 

*  * * 

* 

SAL 

LIM 

CEN 

DMN 

SUB 

*  * 
* 

* 
* 

*  * 

* 
VIS * 

* 
* 

SMN * * 
DAN * * * 

* 

SAL 

LIM 

CEN 

DMN * 
SUB 

*  * 
* * 

*  * 
* * * 

*  * 

L R 

AngG 
slOC 

R 

L 

dPCC 

vmPFC 

D
is

en
ga

ge
m

en
t 

E
ng

ag
em

en
t 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

0 
0.

15
 

0  
0.

15
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

P
ro

p
o

rt
io

n
 o

f F
C

s 
P

ro
p
o

rt
io

n
 o

f F
C

s 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L
 

L
IM

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L 

LI
M

 

C
E

N
 

D
M

N
 

S
U

B
 

V
IS

 

S
M

N
 

D
A

N
 

S
A

L
 

L
IM

 

C
E

N
 

D
M

N
 

S
U

B
 

+ + 

+ + 

33 

E 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2026. ; https://doi.org/10.1101/2024.02.15.579332doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.579332
http://creativecommons.org/licenses/by/4.0/

