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Abstract

Emotional experiences are never static but continuously evolve in response to internal and
external contexts. Little is known about how neural patterns change as a function of these
experiences, particularly in response to complex, real-world stimuli. This study aimed to
identify generalizable neural patterns as individuals collectively engage and disengage from
emotions dynamically. To do so, we analyzed functional magnetic resonance imaging
(fMRI) along with subjective emotional annotations from two independent studies as
individuals watched negative and neutral movie clips. We used predictive modeling to test
if amodel trained to predict a group emotional signature response in one study generalizes
to the other study and vice versa. Disengagement patterns generalized specifically across
intense clips. They were supported by connections within and between the sensorimotor
and salience networks, maybe reflecting the processing of feeling states as individuals
regulate their emotions. Prediction success for the engagement signature was mixed, but
primarily linked to connections within the visual and between the visual and dorsal
attention networks, maybe supporting visual attention orienting as emotionsintensify. This
work offers potential pathways for identifying generalizable neural patterns contributing to
future affective research and clinical applications aiming to better understand dynamic
emotional responses to naturalistic stimuli.

Keywords: movie, film, emotional intensity, engagement, disengagement, fMRI,

arousal, subjective
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Generalizable Neural Models of Emotional Engagement and Disengagement
Introduction

Our well-being profoundly depends on how we engage in and disengage from emotions
when interacting with others and the world. While theories of affect emphasize the
temporal progression of emotional responses and their regulation (e.g. Gross et al. (2014);
Scherer (2009); Sheppes and Gross (2011) pp. 16-17), these processes have typically been
studied in isolation (Goldin et al., 2009; Gruber et a., 2011; McRae et al., 2010),
disregarding their dynamic nature throughout time. In real life, emotions evolve, and
naturalistic scenarios like movies may preserve this temporal aternation of engagement
and disengagement, offering rich, dynamic affective experiences (Morgenroth et al., 2023;
Saariméki, 2021). Although movies have the potential to mimic real-life scenarios, thereis
achallenge for affective movie fMRI in terms of ecological validity not necessarily directly
tranglating to ecological generalizability, in that affective correlates may not extend
uniformly across various naturalistic contexts (Nastase et al., 2020), and instead may be
partially driven by contextual factors (jump cuts, actor’ s costumes, camera perspective,
background) (Hasson et al., 2008; Zacks & Magliano, 2011). Predictive modeling of a
dynamic affective experience across various movies and participant groups holds the
potential to unveil more generalized neural mechanisms relevant to the actual emotional
experience, independent from the idiosyncratic nature of each movie. Thisway, common
patterns, and neura responses can be distilled that transcend specific cinematic content
and individual differences. Asstimuli continuously evolve, individuals dynamically allocate
attentional resources toward affectively relevant information, engaging with and eventually
disengaging from specific content. Theoretical work suggests that emotional intensity can
be understood through both trajectories of intensity over time (gradual changes) and
episodes of sharp increases and decreases of intensity (Kuppens et al., 2010). Building on
this framework, we propose that episodes can be conceptualized as containing two distinct

components: an engagement component, marked by the sharp increase in emotional
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intensity, followed by a disengagement component, characterized by the subsequent decrease
inintensity. These cyclical engagement-disengagement patterns would together contribute
to the formation of subjective emotional experiences. Specifically, arousal would function
as the energetic substrate that enables the formation of top-down attentional biases toward
emotionally salient stimuli (Mohanty et al., 2008), amplifying competitive processing
advantages for high-priority information while suppressing lower-priority competing
representations (Mather & Sutherland, 2011). In this context, emotional engagement
would not reflect smply "more arousal’, but instead reflect a transitional process of
directing and intensifying attention towards movie content. In contrast, disengagement
would reflect the transition from high to low arousal as the arousal-mediated competitive
bias dissolves, allowing attention to withdraw from movie content and return to a more
distributed, less focused processing state. In other words, two moments in time may share
the same arousal level yet reflect different cognitive processes, one reflecting passive arousal
without competitive advantage, and the other reflecting arousal actively deployed to bias
processing in favor of emotionally salient movie content. Together, continuous intensity
tracking techniques may provide a unique opportunity to identify moments of engagement
and disengagement within the stream of emotional experiences and detect underlying
generalizable brain patterns. Few studies have shown that continuous subjective reports of
attention and emotion state can be predicted across movies and participant groups. One
study showed that continuous subjective experience of fear during movie viewing was
predicted by widespread large-scale brain network connectivity patterns, and that these
predictions were successful between independent subject groups and movies (Zhou et al .,
2023). In one study it was found that functional connectivity strength within the DMN
was predictive of continuous attentional engagement reports across a movie and audiobook
from independent studies (Song, Finn, et al., 2021). Other work linked DMN connectivity
to both intensity and polarity of continuous affective experiences across independent movie

data sets (Lettieri et al., 2022). One study found that even though stronger dynamic DMN
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recruitment was also linked to moment-to-moment movie comprehension in separate
movies, a DMN signature obtained in one movie failed to predict movie comprehension in
the other movie and vice versa (Song, Park, et al., 2021). Together, these findings suggest
that both dynamic changes in attentional engagement levels and affective processing, or an
interplay of both may be tracked by dynamic functional brain connectivity (dynFC) across
large-scale networks. While this body of work demonstrates that continuous annotations
can predict generalizable brain patterns across movies, those underlying collective
engagement and disengagement as distinct episodic processes defined by transitional

intensity changes rather than absolute levels remain poorly understood.

To tackle this, we analyzed movie fMRI data from two independent studies, both using
retroactive subjective emotional intensity annotations in response to either one intense
negative and one neutral movie clip (study 1) or one intense negative movie clip (study 2).
Positive and negative shifts in subjects annotation timecourses were labeled as EE and
ED, respectively. We used support vector regression (SVR) to test the predictive nature of
dynFC patterns across independent data linked to moment-to-moment changes in the
degree to which a participant group exhibited EE and ED phases throughout movie
viewing. Based on previous work linking subjective attention states during movie viewing
to the DMN, we wondered if DMN connectivity, both within and between networks, might
play a central role in predicting group signature of EE or ED. However, given the limited
predictive studies in naturalistic scenarios, we did not constrain our analysis to specific

regions or networks of interest.

We hypothesized that collective emotional engagement (EE) and emotional disengagement
(ED) during intense negative movies are linked to brain patterns generalizable across
independent participant groups and movie clips but not generalizable to neutral movie
content of low emotional intensity, suggesting high intensity-specific predictive brain
patterns. Our results were in line with this for predicting ED signatures, where predictions

succeeded between negative movies and failed for between negative and neutral predictions.
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In contrast, our results were mixed for predicting EE signatures, where predictions
succeeded between negative movies and also partially for between negative and neutral
predictions. Brain patterns predicting collective disengagement involved functional
connectivity patterns across the entire brain connectome without drawing on specific
network-to-network connections. In contrast, EE signatures were linked to connections from
visual to attention and salience networks, potentially reflecting heightened engagement.
Thiswork represents an initial step toward understanding generalizable neural patterns

underlying collective engagement and disengagement patterns during naturalistic viewing.

Material and Methods
Data Sources

We analyzed fMRI and behavioral datafrom two independent studies with similar
paradigms and acquisition methods. These prior studies addressed unrelated research
questions. For clarity, werefer to them as study 1 (Borchardt et al., 2018) and study 2
(Raz et al., 2016). We previously published work based on study 1 (Nanni-Zepedaet al.,

2024) with another research question.

Participants

Study 1 included 22 female volunteers aged 2049 years (mean age 28.1 F 6.5), all German
native speakers recruited in Germany. Study 2 included 44 Hebrew native speakers
recruitedin Tel Aviv, Isragl (25 female, 19 male) aged 21-37 years (mean age 26.73 + 4.69).
All participants from both studies were screened for neurological and psychiatric disorders
using standardized protocols (study 1: short SCID (Wittchen et al., 1997)), with no
participants reporting any such conditions. Study 1 protocols were conducted in
accordance with the Declaration of Helsinki and approved by the institutional review board
of the Charité. Study 2 was reviewed and approved by the ethics committees of the Tel
Aviv Sourasky Medical Center.
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Naturalistic Viewing Paradigm

Participants in study 1 watched aneutral and negative movie clip in a counterbalanced
order during fMRI scanning. The negative clip (21 Grams, Ifarritu (2003), 4.45 min)
depicts a mother learning of her daughters’ deaths, while the neutral clip (Son’s Room,
Moretti (2001); 4.54 min) shows everyday family life, matched for low-level features such as
faces and domestic settings. Both were dubbed in German. The negative clip €licited
significantly stronger negative arousal and valence (Borchardt et al., 2018).

In study 2, participants watched a 10-min excerpt from Sophie’ s Choice (Pakula, 1983),
where a mother must choose which child to save, containing similar visual elements (faces,
domestic context). It was presented in English with Hebrew subtitles. These stimuli have
been validated in prior fMRI emotion-induction studies (Borchardt et al., 2018; Gaviria
etal., 2021; Hanich et al., 2014; Innes-Ker, 2015; Raz et al., 2016).

Subjective Continuous Emotional Intensity Annotations

About 15 minutes post-scan, they re-watched the clips while providing continuous
emotional intensity annotations via atrackball-operated mouse. A visual analog scale
(VAS) from O ("not at all") to 250 ("very much™) was displayed alongside the video for
real-time adjustments (instructions in supplements). Annotations were sampled at 30Hz
and downsampled to the fMRI sampling rate. Study 2 followed a similar procedure.
Participants viewed the clip during fMRI scanning and re-watched it 15 minutes | ater,
providing continuous emotional intensity annotations using a 7-point Likert scale (0 =
"neutral” to 7 ="very intense"). For details, see Raz et al. (2016). Annotations were
sampled at 10Hz and downsampled to match the fMRI sampling rate. In both studies,
individuals were instructed to annotate their emotional intensity with regard to the first
time they watched the movie. Figure 1 showsthe variation in emotional intensity ratings
over time across subjects.

We used the individual subjective annotations to compute group-averaged signals of EE
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and ED through a sliding window approach, aggregating all instances within each dliding
window. These group-averaged measures were used as input variables in our computational

models, as detailed in the 'Emotional Engagement and Disengagement’ section.

Emotional Engagement and Disengagement

We extracted time points of EE and ED from individual subjective annotations with an
algorithm previously used to separate four phases of atemporal signal into rise, high, fall
and low magnitude (Dessu et al., 2020; Kato et al., 2015; Shine et al., 2019). EE and ED
periods were defined as rises and falls within the temporal fluctuations of subjective
emotional intensity. To count as an EE or ED period, an emotional intensity score had to
be within the 33rd and 67th percentile and exhibit a positive (EE) or a negative change
(ED) between two subsequent time points. This way we obtained two binary time courses
per participant: one indicating the presence of EE (yes/no), and the other indicating ED
(yes/no) at each moment. Figure S1 shows the distribution of estimated EE and ED per

movie.

We next sought to assess the degree to which individuals collectively exhibited EE and ED
phases throughout movie viewing. To this aim, we obtained a dynamic group signature
reflecting the dynamic change in frequency of simultaneous reports of EE or ED across
individuals. We used a sliding window approach over the binary timeseries of EE and ED
(window size of 40s; time step of 1 TR) where we counted the number of EE or ED
moments present across all individuals within each sliding window. Thisresulted in two
group signature time courses, i.e. onefor EE, and one for ED. These time courses were
then convolved with the hemodynamic response function (HRF) and used in combination
with fMRI timecourses to train and test SVR models (Fig. 3).

To assess the robustness of our engagement and disengagement predictions, we conducted a
sensitivity analysis testing whether the results held across varying percentile thresholds

used to define EE and ED. The original threshold range (33rd and 67th percentiles) was
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systematically modified to include both wider and narrower ranges. We expanded the
range in three incremental steps by decreasing the low percentile and increasing the high
percentile by 5-unit increments, resulting in threshold pairs of (28th, 72nd), (23rd, 77th),
and (18th, 82nd percentiles). We also tested a narrower range (38th, 62nd percentiles). For
each threshold pair, we repeated the complete prediction analysis pipeline and evaluated
the consistency of our main findings. Results are presented in supplementary materials

(Tables S1 and S2).

fMRI Analysis

fMRI data were acquired on a 3T scanner and preprocessed using standard pipelines (see

Supplementary for full details).

Dynamic Predictive Modeling. To extract dynFC, for every participant, we extracted
BOLD time courses using a 200 region parcellation by Schaefer et al. (2018), the
Harvard-Oxford structural subcortical atlas (8 regions) Kennedy et al. (2016) and insula
sub-regions (6 regions) Deen et al. (2011) resulting in atotal of 214 brain regions. Next, we
calculated dynFC of BOLD time series, computed as the Pearson correlation between pairs
of regions (214 x 214 ROIls). We used a tapered sliding window with alength of 40
seconds and atapering factor of 1 TR as done previously in naturalistic studies linking
dynFC to subjective annotations (Petrican et al., 2021; Song, Finn, et al., 2021; Song,
Park, et al., 2021).

In the next step, we used support vector regression (SVR) to test whether dynamic
inter-regional connectivity patterns could predict temporal fluctuations in the group-level
EE and ED signatures.

To reduce dimensionality and enhance model performance, we first identified functiona
connections (ROI pairs) that significantly correlated with the group EE or ED signature
(one-samplet-test, p < 0.01). Using these selected connections as features, we trained an

SV R model with aradial basis function (RBF) kernel (maximum iterations = 1,000;
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sklearn.svm.SVR in Python) to predict the group engagement time series based on each
participant’ s individual dynamic functional connectivity (dynFC) time courses.
To examine the generalizability of the identified engagement-related connectivity features,
we performed across-dataset analyses. Specifically, feature weights derived from the
within-movie analyses in one dataset were applied to predict the group EE and ED
signatures in a different dataset, and vice versa. This procedure was also repeated for
neutral versus negative clips to test whether predictive connectivity patterns were specific
to emotionally intense narratives (Fig. 2A). Statistical significance of the mean correlation
values was assessed by comparing them to anull distribution derived from SVR models
trained on phase-randomized EE and ED time series.
Predictive performance was assessed by computing the Pearson correlation between the
predicted and actual group engagement time series for each participant. For comparison,
we also computed mean squared error (M SE) and the coefficient of determination (R2),
where the R2 corresponds to the standard coefficient of determination, which quantifies
how much variance in the observed engagement time series is explained by the model. We
computed R2 using the standard coefficient of determination:

2 t(ytrue,t - ypred,t)2

R =1—= _ .
t(ytrue,t - ytrue)2

We averaged these metrics across participants to summarize group-level model accuracy.
All analyses used publicly shared code from Song, Finn, et al. (2021) to ensure
reproducibility (https://github.com/hyssong/NarrativeEngagement ).

We also report within-dataset predictions, in which the group engagement signature was
recalculated using aleave-one-out (L OO) approach. For each iteration, the SVR model was
trained on all subjects except one, using the group signature computed without the
held-out subject. The trained model was then applied to the held-out subject’s dynFC
datato predict that same group-defined engagement time series (see Supplementary)

To assess the significance of the empirical mean correlation values, we computed the
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percentage of simulated correlation values resulting from the SV R phase-randomized EE
and ED. The threshold was set to ensure that this percentage did not surpass 95% (p <
0.05); Fig. 2B. This iterative procedure was repeated 200 times. Throughout this section’s
analyses, we employed a modified version of the publicly available dynamic predicting

modeling codeinitially developed by Song et al. (2021).

Networks Supporting Engagement and Disengagement.\We further explored the
involvement of canonical networks in predicting group signature response of EE and ED.
We did this by grouping connections that significantly contributed to the model into
canonical functional networks based on the network parcellation by Yeo et al. (2011). We
then calculated the proportion of all participants significant connections against all
possible connections within a particular network. To evaluate the relevance of each network
in predicting a group signature response of EE and ED, we generated null matrices by
phase-randomizing the empirical emotional response time courses. This processinvolved
transforming the original data into the frequency domain, randomizing the phases, and
then transforming the data back into the time domain to generate surrogate data with
equivalent second-order properties as the original time series (Gias, 2023). These
randomized data sets were input into the SVR model to generate simulated predictions,
forming the null distribution. The significance of empirical mean r values was assessed by
comparing the observed proportion of network pairsin the empirical datato the proportion
of network pairs from the randomized data that surpassed the observed value. We inferred
significance if more than 99% of the randomized pairs exceeded the empirical proportion (p
<0.01); Fig. 4A. We then grouped the significant network pairs into networks (Fig. 4B)
and identified the region pairs predictive of EE and ED between movie clips in over 50% of
the subjects. For visualization, we selected the two top nodes that exhibited most

connections to other regions across the connectome (Fig. 4C).
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Results

Functional Connectivity Patterns underlying Engagement and Disengagement

Generalize across Studies

In anext step, we investigated whether the neural features predicting the group signature
response of EE and ED were generalizable across movie clips. To thisaim, we tested if a
model trained to predict a group signature response in one study is able to predict the
group signature response in the other study and vice versa (Fig. 2). First, we tested
predictions across negative clips of study 1 and 2. The model trained on dynFC of subjects
watching the negative clip of study 2 successfully predicted the EE group signature in the
negativeclip of study 1 (r =0.572; p < 0.005, MSE =50.84, R2 = —1.30), asdid
predictions in the opposite direction (negative clip of study 1 to negative clip of study 2:
r=0.299; p = 0.005 MSE =296.03, R2 =0.061). The model trained on dynFC of subjects
watching the neutral clip of study 1 successfully predicted the EE group signature in the
negative clip of study 1 (r = 0.334; p = 0.005, MSE = 30.8, R2 = —0.389), as did
predictions in the opposite direction (negative clip of study 1 to neutral clip of study 1:

r=0.18; p =0.024, MSE = 14.553, R2 = —45.167). The model trained with the negative
clip of study 2 did not predict the neutral clip

(r=-—0.144; p=0.999, MSE =99.432, R2 = —314.827), similarly in the opposite
direction, theneutral clip of study 1 to negative movie of study 2

(r=-—0.028; p=0.791, MSE =401.26, R2 = —0.272). Taken together, predictionsfailed
only between the neutral clip of study 1 and the negative clip of study 2 but succeeded
between the neutral and negative clip of study 1.

The model trained on dynFC patterns to predict the group signature of ED in subjects
watching the negative clip of study 2 successfully predicted the group signature of ED in
the negative clip of study 1 (r = 0.233, p = 0.005; MSE = 4.497; R2 = —0.357), as did
predictionsin the opposite direction (negative clip of study 1 to negative clip of study 2:
r=0.167, p = 0.005; MSE = 13.673; R2 = —0.128). Conversely, predictions between
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negative movie clips (study 1 and 2) with the neutral movie clip of study 1 failed (from the

negative clip of study 1 to the neutral clip of study 1.

r=—0.025, p =0.59; MSE = 1.482; R2 = —0.273; from the negative clip of study 2 to the
neutral clip of study 1: r =0.014, p = 0.60; MSE =5.891; R2 = —4.184,; neutral movieclip
of study 1 to negative clip of study 1.:r = —0.109, p = 0.96; MSE = 1.344; R2 = —0.324),
neutral movie clip of study 1 to negative clip of study 2:

r=—0.009, p =0.42; MSE = 15.243; R2 = —0.257 ). Thus these findings suggest that the
neural features predicting the group signature response for ED generalize across different
narratives and participantsfor clipsinducing high levels of emotional intensity, but not for

neutral contexts.

We also examined the top two regions with the highest number of hub-like connections for
all movies combined; those with connections positively associated with EE were the
angular gyrus (AngG) and the middle temporal gyrus (MTG), while negative connections
were observed in the right dorsolateral prefrontal cortex (dIPFC) and right dorsal posterior
cingulate cortex (dPCC). For connections positively correlated with ED were the left AngG
and the left ventromedial prefrontal cortex (vmPFC), while connections negatively
correlated were the right superior lateral occipital cortex (OC) and the left dPCC.

Next, we sought to understand which canonical brain networks contributed to the group
signature responses. To achieve this, we calculated the proportion of significant ROI
connections within each network, divided by the total number of possible connections
within that network for each movie and EE and ED signature responses separately (Fig.
4A). Across al movies from study 1 and 2, within visual network connections
predominated (40%) among those positively correlated with the EE signature response,
while only connections within Visual-SAL (14%) negatively correlated with EE. In
contrast, for ED, no significant effects were observed across all movies combined. Across
the negative clips only from study 1 and 2, EE correlated positively with Visual-DMN

(8%) and negatively mainly with Visual-DMN (13%) connections. In contrast, most of the
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connections correlating positively with ED in negative clips, were found within SAL
connections (13%), while negatively correlated mainly with Visual-DMN (7%) connections

(see Table 2; resultsfor individual movies are summarized in Table 1).

Discussion

This study aimed at identifying generalizable functional connectivity (dynFC) patterns
that underlie moment-to-moment changes in collective EE and ED during movie viewing.
To do so, we used predictive modeling across movie fMRI data and continuous subjective
annotations of affect from two independent studies (Borchardt et al., 2018; Raz et al.,
2016). Specifically, we trained a dynFC-based model to predict group signatures of EE and
ED in one data set and then tested whether the model could generalize to an independent
study with a different clip and participant group and vice versa. We further aimed to test
whether predictive dynFC patterns are specific to emotionally intense clips or if they also

generalize to aneutral context.

Disengagement

A model trained to predict an ED group signature based on neural features in one negative
movie clip successfully predicted an ED group signature in another negative movie clip,
from independent samples with different narratives. However, since this predictive ability
did not extend to the neutral clip, this may imply some level of specificity to negative or
high emotional intensity contexts. We found that ED was linked to widespread positive
associations with between-network connections, specifically for negative movie clips. We
hypothesized that ED may reflect an internally directed shift of processing involving the
regulation of emotional responses. Thus, the positive association with wide-spread network
connections may reflect enhanced cognitive regulation of emotions that relies on the
involvement of large scale network communication (Cohen & D’ Esposito, 2016; Morawetz
et al., 2020). Within these wide-spread connections, the strongest effects were found within

the SMN and SAL and between them. Previous research has linked stronger recruitment of
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the sensorimotor cortex and regions of the salience network to attention directed toward
interoceptive markers of arousal (Critchley et al., 2004; Wu et al., 2019). Thus, in our
findings, the connections between SAL and SMN during negative emotional movies could
indicate an intensified focus on bodily sensations induced by intense emotional experiences.
This heightened interoception could play a role in ED, shifting attention away from
external emotional stimuli towards internally directed processing and regulation of feeling
states. We found that moment-to-moment fluctuations in the ED signature correspond to
hub-like behavior within the ventromedial prefrontal cortex (vmPFC). The vmPFC has
been implicated in both generating and regulating negative emotions through the
formation of generalizable representations of negative emotions (Kragel et a., 2018). Since
the highly connected nodes were exclusive to negative movie clips, the involvement of the
vmPFC may facilitate the moment-to-moment regulation of negative emotions elicited by
negative clips. In our previous study, we observed that inter-individual similarity in static
vmPFC activations supported synchronized responses in both EE and ED in the negative
clip of study 1 (Nanni-Zepeda et al., 2024). In contrast, adopting a dynamic perspective,
the current study reveals that moment-to-moment connectivity of the vmPFC may also
reflect fluid adjustments in regulatory processes as emotional contexts shift throughout the
movie. Taken together our findings suggest generalizable dynFC patterns across
wide-spread large scale networks predicting group collective moment-to-moment changes of
ED confined to emotionally intense contexts. However, the specificity of these patterns to
negative emotional content may also reflect the particular narrative structures and
cinematic techniques employed in the selected clips, which could influence the

generalizability across different storytelling approaches or cultural contexts

Engagement

In contrast to ED, prediction success for EE varied: predictions were successful across

negative clips in both study 1 and study 2, and also across the neutral and negative
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contextsin study 1. However, we interpret the latter finding with caution. A sensitivity
analysis varying the width of the thresholds to define EE and ED phases revealed that EE
prediction success between neutral and sad movies of study 1 was inconsistent across
thresholds (see Table S1). Additionally, predictions did not succeed between the negative

clip of study 2 and the neutral clip of study 1.

However, predictions did not succeed between the negative clip of study 2 and the neutral
clip of study 1. Thus, idiosyncratic features within the participant group may have driven
the successful cross-predictions across clips within one and the same study. Another or
complementary interpretation could be that EE relies on network connections that support
engagement regardless of emotional intensity levels. However, given that the predictions
did not succeed between the neutral clip of study 1 and the negative clip of study 2 the
latter interpretation may be more reasonable. Connections within the visual network and
between the visual and the DAN were predictive of The EE group signature response.
These networks are critical for goal-directed and stimulus-driven attention, aligning with
their established roles in the voluntary control of visuo-spatial attention (Corbetta &
Shulman, 2002; Kelley et al., 2008; Tosoni et al., 2023). Specifically, the connectivity in
these networks may reflect attentional engagement with the emotional content of
emotionally salient stimuli, potentially through mechanisms of visuospatial attention
prioritizing emotionally salient stimuli. This prioritization could involve the DAN initiated
selective top-down enhancement of visual processing areas linked to the perception and
interpretation of emotionally relevant cues (Mohanty & Sussman, 2013). Interestingly,
some Visual-to-DMN connections predicted EE in negative and positive directions,
highlighting their dual role in promoting and reducing engagement. Prior research has
shown that connectivity between the visual cortex and DMN changes depending on task
demands, with positive coupling in some contexts like processing task irrelevant
information (Chadick & Gazzaley, 2011) or automated information processing (V atansever
et al., 2017), and negative coupling during low cognitive effort (Weber et al., 2022).
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Further, during movie viewing, FC profiles of visual-DMN have shown to contribute to the
classification of emotional states such as sadness or happiness (Xu et al., 2023). Together
these findings may reflect the DMN’srole in facilitating coordination between the DAN

and visual networks to direct attention on emotionally salient stimuli.

Limitations

Using multiple independent datasets introduces variability in cultural background, image
acquisition, and annotation methods. The movie clips differed in duration (4.45, 4.54, and
10 min), which may engage distinct neural processes related to sustained attention or
narrative structure. However, our analyses target the temporal dynamics of emotional
engagement and disengagement (EE/ED) episodes rather than cumulative responses, and
the high-intensity scenes driving our measures occurred with similar timing across clips.
Different TRs (3svs. 2s) still yielded comparable numbers of fMRI timepoints, though
idedlly, clips of equal length would eliminate this confound. Second, EE/ED was derived
from retroactive annotations using two methods: continuous pointer ratings and button
presses. Both captured the dynamics of interest, but standardized response protocols
would improve comparability. While repeated viewings can alter absolute arousal intensity
(Chun et al., 2020), we focused on directional changes. Moreover, brain responses show
strong test—retest reliability across viewings (Gruskin & Patel, 2022), though it remains
unclear whether arousal episodes shift in timing. Third, although our sample was sufficient
to detect main effects, larger and more diverse cohorts would improve generalizability and
enable study of individual differences. One dataset included only women, and all clips
carried asad affective tone, limiting extension to other populations and emotions. Broader
emotional valence should be incorporated in future work. Finally, technical factors may
constrain interpretation. Lower-density head coils (8- and 12-channel) could reduce
sensitivity to subcortical regions, and stimulus characteristics (narrative complexity, visual

features, cultural context) may restrict generalizability to other forms of emotional
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experience. Future studies with higher-density coils and a wider range of stimuli will

provide greater comprehensi veness.

Conclusion

Our findings reveal that emotional disengagement is characterized by neural patterns
specific to emotionally intense situations, while emotional engagement shows broader

neural responses that generalize across both high- and low-intensity contexts. This suggests
that the neural mechanisms underlying engagement are more adaptable across diverse
intensity contexts, whereas di sengagement involves more processes specific to high-intensity
emotions. These results provide insights into the neural responses driving shiftsin
emotional experiences and highlight generalizable neural patterns that can guide future
research on emotional transitions and regulation in real-world scenarios. Future studies
should examine inter-individual variability in model performance to better understand
performance heterogeneity across participants and enhance generalizability at the

individual level.
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Table 1

Percentage of ROI-pairs within canonical networks connections significantly predicting the group

signature responses for EE and ED listed for each clip separately.

EE ED

study Movie-clip Positive corr. Negative corr. Positive corr. Negative corr.

) ) Visua-Visua (52%) Visua-SAL (21%) Visual-Visual (26%) Visual-SAL (8%)
Negative clip of study 1 (21 grams)

study 1 Visual-DAN (10%)  Visua-DMN (18%) SMN-SMN (8%) Visual-CEN (5%)

. Visual-Visua (23%) Visual-Visual (17%) ) )
Neutral clip of study 1 (Son’s room) Vlisual-Visua (23%) Visual-DAN (5%)
Visual-DAN (5%) SubC-SubC (10%)

sudy 2 Sophie's Visual-Visual (29%) Visua-SAL (14%)  SAL-SAL (17%) Visual-DMN (8%)

choice DAN-DAN (22%)  Visua-SMN (13%)  SMN-SAL (15%) Vlsual-Visual (5%)

Note: Percentage of ROI-pairs within a canonical network significantly predicting the group

signature responses for EE and ED. The two most prominent network pairs are shown.
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Table 2

Percentage of ROI-pairswithin a canonical network significantly predicting the group signature

responses for EE and ED across studies.

EE ED

Context Positive corr. Negative corr. Positive corr. Negative corr.

SAL-SAL (13%)
Visual-DMN (13%) SMN-SAL (12%)
Vlsual-CEN (10%) Visual-Visua (12%)
Negative Visid-DMN (8% DAN-CEN (8%) DAN-SMN (9%) Visual-DMN (7%)
movie-clips DAN-SAL (7%) DAN-VIS (8%) DMN-CEN (4%)
DAN-DMN (7%)  DAN-DAN (8%)
DMN-CEN (3%)  SMN-SMN (6%)
Visual-SMN (5%)

All Visual-Visual (40%) _
Visual-SAL (14%) - -
movie-clips Visual-DAN (14%)

Note: Percentage of ROI-pairs within a canonical network significantly predicting the group
signature responses for EE and ED across studies. No significant pairs were found in relation to

ED considering negative and neutral contexts together.
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Figure 1. (A) Individual subjective emotional intensity annotations over time for each movie clip,

z-scored and scaled between 0 and 1 for visualization purposes. EE, Emotional Engagement, ED,

Emotional Disengagement.
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Figure 2. Functional connectivity patterns underlying engagement and disengagement generalize
across independent studies (A) left panel: To infer specificity to negative clips, models trained to
predict a group signature response of EE and ED in one negative movie clip in one study (e.g.
study 1) must succeed in predicting the group signature response in another negative movie clip
(e.g. study 2) and vice versa, but fail for predictions across negative and neutral clips. Based on
these assumptions we infer generalization due to both independence from idiosyncratic features of
the participant group and narratives in each study. Right panel: Both conditions were met for the
group signature response of ED. For EE, only the first condition (between negative clip
prediction) was met. (B) Predictive performance of dynFC features shown for each clip
separately. The black dots in the scatter plots represent Pearson’s correlations between predicted
and observed group signature response for EE (top) and ED (bottom). Horizontal lines indicate
the prediction quality reflected in the mean r across cross-validation folds. Violin plots illustrate
the null distributions of mean prediction performance after phase-randomization. The significance
of empirical r was computed based on the null distribution (one-tailed t-test). DynFC, Dynamic

Functional Connectivity, EE, Emotional Engagement, ED, Emotional Disengagement.
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Figure 3. Visualization of how dynFC and group signature responses for EE and ED were
derived. (A) DynFC and the group signature responses were calculated using a sliding window
approach. From left to right: DynFC represents the Pearson correlation of BOLD time courses
within each sliding window, while the group signature responses for EE and ED reflects the
number of EE and ED phases within each sliding window aggregated across all participants. An
EE and ED phase was identified as positive or negative shifts within a subject’s continuous
subjective emotional intensity annotation (see methods section ). DynFC, Dynamic Functional

Connectivity, EE, Emotional Engagement, ED, Emotional Disengagement.
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Figure 4. Functional connectivity within and across canonical networks predicts a group signature
response of EE and ED. (A) predictive between-region connections were grouped into canonical
functional networks (Schaefer et al., 2018). The lower triangle matrix (red) illustrates the
proportion of FCs positively correlated with the group signature response for EE or ED, and the
upper triangle matrix (blue) illustrates the proportion of FCs negatively correlated with the
group signature response for EE or ED. Asterisks indicate network pairs selected above chance
(one-tailed t tests, pror< 0.001). The intensity of colors indicates the proportion of selected
connections from all possible ROI-to-ROI connections with regard to its network assignment. (B)
Shared significant ROI-to-ROI connections across negative movie clips. The crossed gray square
indicates connections shared among negative movie clips that also overlapped with the neutral
clip. (C) Top two strongest ROI-to-ROI connections predicting a group signature response for EE
and ED. Connections overlapping across all three movie clips are indicated by black circles,
whereas those specific to negative clips do not show black circles. EE, Emotional Engagement,

ED, Emotional Disengagement.
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