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The role of genomic variants in disease has expanded significantly with the advent of advanced sequencing 
techniques. The rapid increase in identified genomic variants has led to many variants being classified as 
Variants of Uncertain Significance or as having conflicting evidence, posing challenges for their interpretation 
and characterization. Additionally, current methods for predicting pathogenic variants often lack insights into 
the underlying molecular mechanisms. Here, we introduce MAVISp (Multi-layered Assessment of VarIants by 
Structure for proteins), a modular structural framework for variant effects, accompanied by a web server 
(https://services.healthtech.dtu.dk/services/MAVISp-1.0/) to enhance data accessibility, consultation, and re-
usability. MAVISp currently provides data over 1000 proteins, encompassing more than eight million variants. 
A team of biocurators regularly analyzes and updates protein entries using standardized workflows, incorpo-
rating free energy calculations or biomolecular simulations. We illustrate the utility of MAVISp through selected 
case studies. The framework facilitates the analysis of variant effects at the protein level and has the potential 
to advance the understanding and application of mutational data in disease research. 

Keywords: variant effects, cancer genomics, protein structures, free energy calculations, protein stability, protein 
function, long-range structural communication 
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Introduction 1 
 2 
We are witnessing unprecedented advances in cancer genomics, sequencing1, structural biology2, and high-3 
throughput multiplex-based assays3,4. While sequencing approaches can identify alterations in the genome, 4 
understanding the molecular mechanisms of these variants remains a challenge. Although many variants in 5 
human genes associated with disease are currently known, the identification of their effects on human health 6 
is lagging behind5. Substantial evidence, which is necessary to classify variants according to their effects, is 7 
often lacking or contradictory in nature. Consequently, Variants of Uncertain Significance (VUS) or variants 8 
found to have conflicting evidence are continuously identified and reported in variant databases67–11 . VUS 9 
remain an outstanding problem which complicate diagnosis and lead to suboptimal diagnosis or choice of 10 
therapy 12.  11 
At the same time, the bioinformatics community has developed various approaches for predicting the impact 12 
of variants on human health, many of which are benchmarked against or complemented by experimental 13 
data and cellular readouts13–17 In this context, experimental multiplex assays deliver good quality and high-14 
throughput assessment of the effect of variants on different readouts and have effectively been used to aid 15 
clinical variant interpretation. 18,19These computational and experimental approaches allow to classify variants 16 
for their potential pathogenic or benign effects, which are then reported in different repositories and compen-17 
dia7–10. In fact, computational methods are currently considered supporting evidence for variant classification, 18 
according to recent revisions of the American College of Medical Genetics and Genomics/Association for 19 
Molecular Pathology (ACMG/AMP) variant classification guidelines20.  Variant effect predictors (VEPs), meth-20 
ods designed to predict the effect of a mutation at the genome or protein level, have made considerable 21 
progress, as outlined in recent reviews21–23. VEPs have classically relied on sequence data and variants with 22 
known classifications.  23 
Nonetheless, in recent years, the advent of AlphaFold22,24,25  and other similar methodologies has enabled 24 
the prediction of accurate three-dimensional (3D) protein structures and complexes, often with a quality com-25 
parable to experiments. This, in turn, enabled the inclusion of information about protein structure in machine 26 
learning models, which are among the best-performing available VEPs21. A well-known example of this is 27 
AlphaMissense26,  which is based on a deep learning model similar to AlphaFold2. Additionally, it simultane-28 
ously learns to perform structure prediction and trains an unsupervised protein language model, thereby 29 
incorporating structural information into the prediction. The latter was then fine-tuned for a variant classifica-30 
tion task. Approaches based on protein language models (such as ESM-1b27 or, more recently, ESM-228 and 31 
ESM-329), which are unsupervised models of protein sequence, have also shown good performance when 32 
used in variant effect prediction tasks29,30. ESM-329 already incorporates structural information into its training, 33 
through specialized tokens, whereas protein sequence models have been used in conjunction with structural 34 
information in various ways31,32. Even a model such as GEMME, which is an epistatic model entirely based 35 
on sequence conservation, has been supplemented with structural information as structure-derived features 36 
in ESCOTT33. Rhapsody-2 is a VEP that incorporates features derived from protein structure and dynamics 37 
within a machine learning framework34. Finally, the ability to perform long and accurate biomolecular simula-38 
tions and robust physical models allows the exploration of conformational changes and protein dynamics 39 
across different timescales35. 40 
In previous pilot projects, we explored structure-based methods to analyze the impact of variants in coding 41 
regions of cancer-related genes, focusing on their consequences on the protein product36–38. We propose that 42 
these methodologies could be widely applied to study disease-associated variants. When formalized and 43 
standardized, this approach can complement existing methods for predicting pathogenic variants, such as 44 
the aforementioned AlphaMissense26. Most available VEPs estimate the likelihood of damaging effects of 45 
variants, but do not provide evidence of variant effects in relation to specific altered protein functions at the 46 
cellular level. On the contrary, with this contribution, we aim to link the effects of variants to specific underlying 47 
molecular mechanisms38. A mechanistic understanding of variant effects can help the design of strategies in 48 
disease prevention, genetic counseling, clinical care, and treatment. Moreover, from a fundamental research 49 
perspective, mechanistic knowledge is also essential for designing and prioritizing experiments to investigate 50 
the underlying molecular causes of disease. 51 
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Considering this, we developed MAVISp (Multi-layered Assessment of VarIants by Structure for proteins) to 52 
enable high-throughput variant analysis within standardized workflows. MAVISp integrates results from VEPs 53 
and structure-based predictions of variant effects on several protein properties. The data are accessible 54 
through a Streamlit-based website for consultation and download (https://services.healthtech.dtu.dk/ser-55 
vices/MAVISp-1.0/). Additionally, we maintain a Gitbook resource with detailed reports for individual proteins 56 
(https://elelab.gitbook.io/mavisp/).  57 
With this publication, we provide data on in silico saturation mutagenesis for all possible variants at each 58 
mutation site with structural coverage for 1096 proteins and over eight million variants. New data and updates 59 
of existing entries will be continuously released. Currently, we are capable of processing up to 20 new pro-60 
teins weekly, which are deposited in a local version of the database. The public database is updated quarterly. 61 
Based on recent statistics (https://elelab.gitbook.io/mavisp/documentation/coverage-and-statistics), we an-62 
ticipate providing 80-100 new proteins with each update, along with additional modules for existing entries. 63 
In this manuscript, we provide an overview of the methodology and show examples of data analysis and 64 
application.  65 

 66 
  67 
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Results 68 
 69 
Overview of MAVISp and its database 70 
 71 
 72 
MAVISp performs a set of independent predictions, each assessing the effect of a specific amino acid sub-73 
stitution on a different aspect of protein function and structural stability, starting from one or more protein 74 
structures. These independent predictions are executed by the so-called MAVISp modules (Fig. 1a). MAVISp 75 
can be applied to individual three-dimensional (3D) protein structures and their complexes (simple mode) or 76 
to an ensemble of structures generated through various approaches (ensemble mode). The framework is 77 
modular, allowing all the modules or only a selected subset to be applied, depending on the case study.  78 
Each module relies on Snakemake, Dask workflows, or Python scripts, all of which are supported by specific 79 
virtual environments. The modules are divided into two main categories: (i) modules to retrieve and select 80 
structures for analyses (shown in orange in Fig. 1a), (ii) modules to perform analyses related to variant as-81 
sessment or annotations (shown in blue in Fig. 1a). Each module includes a strictly defined protocol for 82 
computational analysis that can be carried out either step by step or automatically embedded in more com-83 
prehensive pipelines (Methods). They are designed to ensure consistency across all the proteins under in-84 
vestigation and to enhance reproducibility and repeatability. Our prediction modules are also complemented 85 
by available experimental data or already available predictions that can be integrated in the MAVISp dataset, 86 
such as those for VEPs (shown in green in Fig. 1a). All the resources used in the MAVISp framework are 87 
reported in Table S1, some of which have been developed within this work. 88 
The modules are used in the context of the overall MAVISp workflow (Fig. 1b), which is designed to enable 89 
multiple biocurators to work concurrently and independently on distinct proteins. Data managers defined a 90 
priority list of targets that are analyzed in batches by biocurators, depending on the specific research project 91 
requirements. Additional targets of interest for the research community can be requested, as explained in the 92 
documentation on GitBook. 93 
The workflow is designed as a set of consecutive steps that act on a protein of interest at a time. As the first 94 
step, once a protein of interest has been selected, a biocurator retrieves structural and functional information 95 
about it, along with key identifiers (e.g., gene name, UniProt AC, RefSeq identifier) for the next steps. Addi-96 
tionally, the biocurator proposes a trimming strategy for the protein, e.g., identifying one or more sets of 97 
contiguous residues in the protein structure that can effectively serve as input for the prediction steps. This 98 
step entails considering only well-structured and high-accuracy regions of our proteins, which is crucial since 99 
most MAVISp modules are not designed to handle large intrinsically disordered regions. In selected cases, 100 
to avoid potential bias in our structural calculations, the curator may edit the structure by removing long 101 
disordered inclusions in structured regions. Furthermore, in the MAVISp ensemble mode, where he ENSEM-102 
BLE GENERATION module should be carried out, the biocurator identifies the initial structures for the simu-103 
lations to be performed on the protein target in its free or bound state with other biomolecules and performs 104 
the necessary simulations to obtain the final structural ensemble. Once the protein structure or structural 105 
ensemble, depending on the mode, is available, the biocurator works with each available module and obtains: 106 
i) a list of variants that MAVISp will annotate (see Materials and Methods for details) and ii) the final predic-107 
tions for each module. To do so, biocurators adhere to strict workflows for data collection based on a set of 108 
procedures codified in each module, which is mostly automated via the use of Snakemake pipelines. Once 109 
this is completed, the MAVISp data managers will import and aggregate the data using the MAVISp Python 110 
package (https://github.com/ELELAB/MAVISp). This step also allows to perform sanity checks, per-module 111 
data classifications, and write the results in a human-readable table format, constituting the MAVISp data-112 
base. The database files are the first product of MAVISp and contain the relevant collected data and metadata 113 
for each of the identified variants (https://services.healthtech.dtu.dk/services/MAVISp-1.0/). 114 
The datasets from the MAVISp database can then be further used in two ways. First, biocurators or data 115 
managers can perform a set of analyses, referred to as downstream analyses, which are generated down-116 
stream of database creation. These analyses result in the generation of publication-ready figures that sum-117 
marize the predicted effects for each variant and assist results interpretation.  118 
Furthermore, the biocurators use data from the downstream analysis to create a report in GitBook (https://ele-119 
lab.gitbook.io/mavisp/), using a standard Markdown template and a semi-automated procedure. Biocurators 120 
and data managers also act as reviewers for reports created by their peers. A review status is assigned to 121 
each GitBook entry to guide users regarding the quality and integrity of the curated data. To achieve this, we 122 
defined four review status levels (i.e., stars) for each protein entry (https://elelab.gitbook.io/mavisp/documen-123 
tation/mavisp-review-status). 124 
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 125 
 126 
 127 
 128 
Fig. 1. Overview of MAVISp components. (A) MAVISp includes different modules, each managed by workflow engines or dedicated tools. The 129 
modules highlighted in orange handle the selection and collection of protein structures, while the modules in blue and purple are dedicated to structural 130 
analyses of variant effects in relation to protein functional- or stability-related properties. Additionally, the framework provided modules with results 131 
from VEPs and scores derived by experiments, such as deep mutational scans (green). The procedure begins with a gene name, its UniProt and 132 
RefSeq identifiers and the desired structural coverage. For each gene,  all the steps can be conducted on a standard server with 32-64 CPUs. The 133 
only exceptions are: i) the ENSEMBLE GENERATION module, which includes all-atom MD simulations, and ii) Rosetta-based calculations on binding 134 
free energies and folding/unfolding free energy calculations. Depending on the simulation length and system size, these might require access to HPC 135 
facilities. On the left, the simple mode for the assessment is illustrated, which uses single experimental structures or models from AlphaFold2 or 136 
AlphaFold3. On the right, the ensemble mode is schematized in which a conformational ensemble for the target protein or its complexes is applied. 137 
Hereby, we consider a conformational ensemble a collection of 3D conformations of the protein generated by a sampling method such as molecular 138 
dynamics or provided by NMR structures in the PDB (B) Scheme of the current workflow for the MAVISp database and websever. Biocurators apply 139 
specific workflows and protocols within each MAVISp module to generate structure-based predictions of changes linked to variants in each protein 140 
target. In doing so, they take advantage of the MAVISp toolkit as well as our mutation sources. The results are gathered into a text-based database. 141 
The data are further processed by the MAVISp Python package, which performs consistency checks, aggregate the data and outputs human-readable 142 
CSV table files, that make up the MAVISp database. These CSV files are imported by the Streamlit web app, powering the MAVISp webserver 143 
(https://services.healthtech.dtu.dk/services/MAVISp-1.0/), where the data are available for interactive visualization and download. In addition, the 144 
MAVISp database can be used to generate graphical representations of the data, such us dot plots, lollipop plots, and UpSet plots. Finally, based on 145 
the information gathered so far, we provide GitBook reports to facilitate the interpretation of the results: https://elelab.gitbook.io/mavisp/. 146 
 147 
Finally, the MAVISp database is presented through a user-friendly Streamlit-based website (https://ser-148 
vices.healthtech.dtu.dk/services/MAVISp-1.0/). The web app includes various visualizations to aid the inter-149 
pretation of MAVISp results that are essentially equivalent to the downstream analyses outlined above: (a) a 150 
dot plot displaying classifications for each variant across MAVISp modules, experimental data (if available), 151 
and the VEP results, (b) a lollipop plot aggregating relevant mechanistic indicators (i.e., MAVISp-identified 152 
effects at the structural level)  associated with potentially pathogenic variants, and (c) an interactive repre-153 
sentation on the 3D structure, showing the localization of mutation sites identified in (b). These features are 154 
designed to support the interpretation of results and facilitate the identification of variants with specific 155 
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mechanisms and multiple effects. The source code for the MAVISp Python package and the web application 156 
are available on GitHub (https://github.com/ELELAB/MAVISp), while the complete dataset can be down-157 
loaded from an OSF repository (https://osf.io/ufpzm/ ). The OSF repository also include previous version of 158 
the database. Both source code and data are freely available and released under open-source or free li-159 
censes. 160 
We invite requests on targets or variants that are not yet available in MAVISp or scheduled for curation. We 161 
also welcome contributors as biocurators or developers, pending training and adherence to our guidelines 162 
(https://elelab.gitbook.io/mavisp). To facilitate entrance into the MAVISp community of biocurators and de-163 
velopers, we organize training events, research visits and workshops.  164 
Notably, a comprehensive update will be conducted annually to incorporate new versions of external tools or 165 
resources used by MAVISp, ensuring that resources remain current. Moreover, we continuously expand our 166 
toolkit and develop new modules to enable even more comprehensive assessments. The criteria for including 167 
new methods and approaches in the framework are detailed in the GitBook documentation (https://elelab.git-168 
book.io/mavisp/documentation/how-to-contribute-as-a-developer). 169 
 170 
MAVISp modules for structure collection and selection 171 
 172 
MAVISp includes various modules to select and model the structures of interest in both ensemble and simple 173 
mode (Fig. 1a).  174 
The STRUCTURE SELECTION module enables biocurators to identify the starting structure for their study, 175 
both for models of the free and bound states of the protein of interest. This module includes structure retrieval 176 
from the Protein Data Bank (PDB)39, the AlphaFold Protein Structure Database25, or through the generation 177 
of initial models with AlphaFold340, AlphaFold22 and, AlphaFold-multimer24. In addition, it streamlines the 178 
selection of structures in terms of structural quality, experimental resolution, missing residues, amino acidic 179 
substitutions with respect to the UniProt reference sequence, as well as the AlphaFold per-residue confi-180 
dence score (pLDDT), integrating tools such as PDBminer41. Using AlphaFill42 further assists in identifying 181 
cofactors to be included in the model structure or to identify mutation sites that should be flagged, if located 182 
in the proximity of a missing cofactor in the structure model. When necessary, a workflow is available to 183 
reconstruct missing residues or design linkers to replace large, disordered loops within structured domains 184 
(Methods). 185 
According to the protocol established for the generation of the models, we retain 3D structures with reason-186 
able accuracy based on parameters such as pLDDT, Predicted Aligned Error (PAE), and pDOCKQ243. In 187 
addition, the module includes protocols based on AlphaFold 24,44 or comparative modeling45,46 when the com-188 
plex between the protein target and the interactor involves Short Linear Motifs (SLiMs).  189 
The INTERACTOME module aids the identification of protein interactors for the target protein and their com-190 
plex structures by querying the Mentha database47, the PDB, and experimentally validated proteome-wide 191 
AlphaFold models 48, as well as the STRING database49 (Methods). Once a suitable set of interactors has 192 
been identified, the information is used to predict protein complex structures, which are then utilized in the 193 
subsequent steps (i.e., the LOCAL_INTERACTIONS module, see below).  194 
The ENSEMBLE GENERATION module allows the use of structural ensembles from different sources, such 195 
as NMR structures deposited in PDB, coarse-grained models for protein flexibility (e.g., CABS-flex50) or all-196 
atom Molecular Dynamics (MD) simulations (with GROMACS51 and PLUMED52,53) of the protein structure or 197 
its complexes. The choice of the method to be used is based on the required accuracy of the generated 198 
ensemble and the available computational resources. Once individual structures or structural ensembles for 199 
the protein candidate are selected – either alone or with interactors - the analysis modules can be used. 200 
 201 
MAVISp modules for structural analysis 202 
 203 
MAVISp integrates different analysis modules for both ensemble and simple mode (Fig.1a). The minimal set 204 
of data required to import a protein target and its variants into the MAVISp database includes the results from 205 
the STABILITY and PTM modules, along with predictions from VEPs. The STABILITY module is devoted to 206 
estimating the effects of the variants on the protein structural stability using folding free energy calculations 207 
(Methods). This module leverages workflows for high throughput in silico mutagenesis scans54,55 and a newly 208 
implemented protocol for RaSP56 (Methods). All the methods used in this module predict change of free 209 
energy of folding upon the insertion of an amino acid substitution, and predictions are performed using FoldX, 210 
Rosetta, or RaSP. Once these predictions have been collected, MAVISp applies a consensus approach to 211 
classify the effect of the variants (Methods). The defined thresholds for changes in free energy are based on 212 
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evidence that shows that variants with changes in folding free energy below 3 kcal/mol do not exhibit a 213 
marked decrease in stability at the cellular level 57,58. Thus, MAVISp defines the following classes for changes 214 
in stability: stabilizing (DDG ≤ - 3 kcal/mol with both methods, FoldX and Rosetta or RaSP), destabilizing 215 
(DDG ≥ 3 kcal/mol), neutral ( -2 < DDG < 2 kcal/mol), and uncertain (-3 < DDG ≤ -2 kcal/mol  or 2 ≤ DDG < 3 216 
kcal/mol). A variant is also classified as uncertain if the two methods would classify the effect of the variant 217 
differently. Since March 2024, we adopted the consensus between RaSP and FoldX as a default for data 218 
collection, after performing a benchmark using the MAVISp datasets (Supplementary Text S1 and 219 
https://github.com/ELELAB/MAVISp_RaSP_benchmark). RaSP provides a suitable solution for high-220 
throughput data collection compared to the CPU-intensive scans based on Rosetta. In low-throughput stud-221 
ies, where we focus in detail on a target protein, we can include Rosetta data, which are computationally 222 
more demanding. 223 
The LOCAL INTERACTION module can be applied if the STRUCTURE SELECTION and INTERACTOME 224 
modules identify at least a suitable structure of the complex between the target protein and another biomol-225 
ecule. The LOCAL INTERACTION module is based on estimating of changes in binding free energy for 226 
variants at protein sites within 10 Å of the interaction interface, using protocols and consensus strategies that 227 
mirror those for STABILITY. In this case, we use a combination of FoldX and Rosetta calculations (Methods). 228 
Binding free energy thresholds are set based on the expected error margins of the predictors, approximately 229 
±1 kcal/mol, as outlined by the authors of the methods and in accordance with general good practice in the 230 
literature. This approach addresses the scarcity of experimental datasets on amino acid substitutions that 231 
impacting protein-protein interactions59–61, which are often constrained by system heterogeneity, limited mu-232 
tation numbers, or both, thereby complicating reliable benchmarking. We rely on a consensus approach be-233 
tween the results of FoldX and Rosetta on changes in binding free energies upon amino acid substitution. 234 
We classify a variant as stabilizing (both methods predict DDG <= -1 kcal/mol), neutral (-1 kcal/mol < DDG < 235 
1 kcal/mol) or destabilizing (DDG >=1 kcal/mol). Cases in which the two methods disagree on the classifica-236 
tion, or for which we do not have a prediction for both methods, and the side chain relative solvent accessible 237 
area of the residue is >= 25%, are classified as uncertain. This is because, in high-throughput data collection, 238 
we cannot exclude the possibility that the site interacts if it is solvent exposed, as often in structural biology, 239 
only part of the 3D structures of protein-protein complexes are available or can be modelled. We also included 240 
support for LOCAL INTERACTION for protein and DNA interactions, as well as for homodimers. Notably, a 241 
strength of our approach is to provide annotations for the effects of protein variants on various biological 242 
interfaces for the same target protein.  243 
In the ensemble mode, the STABILITY and LOCAL INTERACTION modules are used on ensembles of at 244 
least 20-25 structures from the simulations or on the three main representative structures upon clustering, 245 
depending on the free energy calculation scheme to apply. The results obtained for each structure are then 246 
averaged, and classification is performed with the same strategies we use in simple mode using these aver-247 
age values. This approach is used to mitigate limitations due to lack of backbone flexibility when these free 248 
energy methods are applied to just one single 3D structure38,54,62,63. 249 
The LONG-RANGE module applies coarse-grained models to estimate allosteric free energy changes upon 250 
amino acid substitution based on AlloSigMA264. The protocol followed by the LONG-RANGE module has 251 
recently been updated and benchmarked using experimental data from deep mutational scans65.  Details on 252 
the parameters and steps for analysis are also provided in the Methods. Variants are annotated as destabi-253 
lizing (positive changes in allosteric free energy), stabilizing (negative changes in allosteric free energy), 254 
mixed effects (both conditions occur), or neutral if the variant does not cause any significant change. Addi-255 
tionally, variants that do not cause a significant change in residue side-chain volume are annotated as un-256 
certain. In the ensemble mode, we applied graph theory metrics based on changes in the shortest commu-257 
nication paths using atomic contact-based Protein Structure Network66 . This analysis, combined with the 258 
AlloSigMA2 data, allows pinpointing variants with long-range effects to functional sites or protein pockets that 259 
could serve as interfaces to recruit interactors or ligands.  260 
The FUNCTIONAL SITES module in simple mode allow to evaluate the effect of variants at (or in the proximity 261 
of) the active site of enzymes or cofactor binding sites of proteins and it is based on analyses of contacts with 262 
the second sphere of coordination of the residues belonging to these sites (see Methods). 263 
The FUNCTIONAL DYNAMICS module in ensemble mode includes enhanced sampling simulations to fur-264 
ther assess the local or long-range effects of a variant. As a first example, we applied this class of methods 265 
to validate the long-range effects predicted for p53 variants on the DNA-binding loops38, and included such 266 
results in the MAVISp database. 267 
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The PTM module currently supports phosphorylation only, annotating the effect of variants at phosphorylata-268 
ble sites. It evaluates how the loss or changes of phosphorylation sites may impact protein regulation, stabil-269 
ity, or interaction with partners. To this goal, the module collects analyses and annotations such as solvent 270 
accessibility of the mutation site, inclusion of the site in phosphorylatable linear motif, comparison between 271 
predicted changes in folding or binding free energy upon amino acid substitution or upon phosphorylation at 272 
the site of interest. In the module, we applied a custom decision logic (Supplementary Text S2) to derive 273 
the classification for each variant as neutral, damaging, unknown effect, potentially damaging or uncertain. 274 
The identification of the phosphorylation sites in the PTM module is based on known experimental phospho-275 
sites and SLiMs, as retrieved by Cancermuts67. These data are complemented by a manually curated selec-276 
tion of phospho-modulated SLiMs (https://github.com/ELELAB/MAVISp/blob/main/mavisp/data/phospho-277 
SLiMs_09062023.csv). For solvent-inaccessible phosphorylatable residues, the effects are classified as un-278 
certain in the simple mode. In these cases, the ensemble mode is required to investigate wheatear a cryptic 279 
phosphorylated site may become accessible upon conformational changes68,69. Of note, the current version 280 
of the PTM module has been designed based on fundamental principles on how phosphorylation can affect 281 
the protein structure and should be used to identify variants for further investigation, particularly for experi-282 
mental research. Benchmarking the effectiveness of this module would be difficult at present time, given the 283 
relatively small number of amino acid substitutions that can affect phosphorylation currently present in the 284 
MAVISp database, especially considering those for which experimental data is available.  To this purpose, 285 
we are currently in the process of curating and including more proteins relevant to benchmarking the PTM 286 
module. These will include experimental data on protein stability and protein-protein interactions upon phos-287 
phorylation 70 71. 288 
MAVISp includes further analyses and annotations, such as predictions on regions involved in early folding 289 
events72, pLDDT score, secondary structure, and side-chain solvent accessibility, which can assist in the 290 
interpretation of the results.  291 
 292 
 293 
Variant Effect Predictors included in MAVISp 294 
 295 
MAVISp provides annotations for the variant interpretation reported in ClinVar9, or calculated with REVEL73,  296 
DeMaSk74 , GEMME14, EVE (Evolutionary model of variant effect)75 , and AlphaMissense26. In MAVISp, each 297 
of them is handled by a separate module. The results of these VEPs can be combined with the results from 298 
the MAVISp structure-based modules to understand variant effects and to prioritize variants for other studies, 299 
as detailed in the examples below.  300 
 301 
Sources of variants supported by MAVISp 302 
 303 
By default, we apply in silico saturation mutagenesis, which means that we provide predicted effects for each 304 
variant of a target protein at any position that has a structural coverage. Additionally, all variants reported for 305 
the target protein in COSMIC, cBioPortal, and ClinVar are annotated within MAVISp. We routinely update 306 
and maintain the entries in the MAVISp database to include up-to-date annotations using Cancermuts67. All 307 
Cancermuts annotations for MAVISp and other protein targets are also available at the Cancermuts web-308 
server, https://services.healthtech.dtu.dk/services/Cancermuts-1.0/. In addition, annotations from lists of var-309 
iants from other studies, such as data on cohort-based or nationwide studies or other disease-related ge-310 
nomic initiatives, can be manually introduced.  311 
Currently, MAVISp includes data on eight+ million variants from 1096 proteins (at the date of 20/11/2025). 312 
An overview of the currently available data and how to use them to address different research questions is 313 
described in detail in the next sections. The first targeted studies in which MAVISp has been applied to 314 
understand variants impact in rare genetic diseases76 or involved in cancer hallmarks77,78 are also suitable 315 
examples 316 
 317 
 318 
Interpretation of the results of MAVISp 319 
 320 
MAVISp provides a comprehensive set of results for many variants; therefore, we have devised a few strat-321 
egies that can be useful to make sense of the MAVISp data for a few common use cases that users might 322 
encounter.  323 
 324 
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One of the most important outputs from the downstream analyses, of MAVISp is the so-called dot plot, which 325 
is available on the GitBook reports or released within the target studies of specific proteins (see below for 326 
examples). A dotplot can also be generated within the MAVISp webserver in the “Classification” tab, for up 327 
to 50 variants of choice simultaneously. This plot showcases i) the classification of the different VEPs inte-328 
grated in MAVISp, ii) the classification performed by each MAVISp module, iii) the classification of variants 329 
in ClinVar, when available, as variant label colors. The code to generate dot plots from MAVISp csv file is 330 
also available in GitHub (https://github.com/ELELAB/mavisp_accessory_tools/tree/main/tools). The MAVISp 331 
modules classification has a different meaning depending on the considered module: a variant classified as 332 
damaging for a VEP usually means it is predicted as  functionally damaging or pathogenic (depending on the 333 
predictor), while a variant classified as damaging for stability just means that the variant is predicted to com-334 
promise the structural stability of the protein, and one classified as damaging by the long range module is 335 
predicted to have significant long-range effects, and so on. Another representation which depends on further 336 
processing of a text output created by dot_plot.py (i.e., alphamissense_out.csv) provides a concise repre-337 
sentation of the classes of mechanistic indicators found for each variant in the form of lolliplots. Lolliplots are 338 
also available in the GitBook report or in the “Damaging mutation" tab on the website, that shows only those 339 
variants that are at the same time: i) classified as pathogenic for AlphaMissense, ii) classified as loss-of-340 
fitness or gain-of-fitness by DeMaSk and iii) damaging for the respective structure-based module of MAVISp. 341 
The downstream analysis toolkit also provides the code to prepare upset plots or venn diagrams for the 342 
variant source (as reported in Gitbook). 343 
Consulting the available dot plot for an entry of interest is therefore the most straightforward place to start to 344 
access MAVISp data. To identify a subset of variants of interest, we have defined the following strategy for 345 
a data-driven discovery of variants of interest with little other information (i.e. VUS, conflicting evidence or 346 
variants not reported in ClinVar). In this case, the dot plot allows to understand first which variants are pre-347 
dicted to be pathogenic, by using the AlphaMissense classification; these are the ones reported as Damaging 348 
in the AlphaMissense row. For these, we also consider the output of DeMaSk, that define whether the variant 349 
is classified as gain-of-fitness or loss-of-fitness. If a variant fullfil these criteria, we then consider the structure-350 
based MAVISp predictions for mechanistic indicators, that give us one or more explanations of the reason 351 
for the effect of the variant. For instance, the variant could be destabilizing the protein structure and will be 352 
reported with an altered stability as mechanistic indicator. Another common use case is to use MAVISp to 353 
get a mechanistic interpretation of variants already known in ClinVar. In this case, if the variant already has 354 
an interpretation of Pathogenic, Likely pathogenic, Benign, or Likely benign, we can just refer to the MAVISp 355 
mechanistic interpretation.  356 
Importantly, researchers should always refer to specific biological or phenotypical contexts when interpreting 357 
predictions from MAVISp, including their knowledge of the biological role the protein investigation has or 358 
concerning the nature of the disease of interest. For instance, predictions might lead to different conclusions 359 
if the protein under consideration is from a tumor suppressor or from an oncogene. 360 
In the next section we illustrate some of the applications of data collected with MAVISp through case stud-361 
ies (Table S2 for mapping of case studies and modules). 362 
 363 
COSMIC Tumor Suppressor Genes and Oncogenes 364 
 365 
At first, we prioritized MAVISp data collection of known driver genes in cancer, i.e., tumor suppressors and 366 
oncogenes. To this goal, we collected data for the COSMIC Tumor Suppressor Genes (COSMIC v96), while 367 
the collection of the COSMIC Oncogene and Dual Role targets is ongoing. Furthermore, we have been in-368 
cluding genes reported as a candidate driver by the Network of Cancer Genes (NGC)79.  369 
The MAVISp datasets on cancer driver genes can assist the identification of molecular mechanisms of pre-370 
dicted or known pathogenic variants in these genes, as well as to aid the characterization of Variants of 371 
Uncertain Significance (VUS). A recent example is the study we performed on BRCA278.In this study, we 372 
analyzed BRCA2  variants reported in ClinVar, comparing the predictions from the STABILITY and LOCAL 373 
INTERACTIONS modules of MAVISp with results from a multiplex assay which measured the impact of these 374 
variants on cell viability. We were able to explain the effect of 84 BRCA2 variants, which were classified as 375 
non-functional by the assay, and for which MAVISp predicted effects on protein stability or binding to the 376 
binding partner SEM1.  377 
 378 
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Fig. 2. Variants with effects on structural stability in the tumor suppressor protein BLM. (a) The cartoon representation shows the trimmed 380 
mode BLM368-1290 and the spheres highlight the Cɑ atom of the 41 positions harboring 45 variants predicted as destabilizing by the MAVISp STABILITY 381 
module (RaSP/FoldX consensus) and annotated in ClinVar. Among these, Y764C, G891E, and L896P are also reported in CBioPortal, whereas 382 
F663I, L845P and C901Y are also reported in COSMIC. The two views correspond to the same domain rotated by 180°. The backbone and spheres 383 
are colored according to the AlphaFold pLDDT scores, i.e., blue - very high (pLDDT > 90), cyan - confident (70 < pLDDT <= 90), yellow - low (50 < 384 
pLDDT <= 70), and orange - very low (pLDDT <= 50). The labels indicate the mutation sites and the corresponding variants and are colored by ClinVar 385 
classification., uncertain significance (black), conflicting interpretation of pathogenicity (orange), and likely pathogenic (red).  (b) The stacked bar plot 386 
shows the distribution of destabilizing BLM variants across secondary structure elements as defined by DSSP ( (i.e., H = ɑ-helix, B = residue in 387 
isolated β-bridge, E = extended strand, participates in  β ladder, G = 3-helix (310 helix), I = 5-helix (π-helix), T = hydrogen bonded turn, S = bend, and 388 
“-” = no secondary structure identified). The results refer to the data available in the MAVISp database on 12th September 2025. More information 389 
about BLM analyses with MAVISp can be found in the corresponding GitBook report: https://elelab.gitbook.io/mavisp/proteins/blm  390 

In the case of tumor suppressors, the identification of variants that might lead to loss of function is particularly 391 
important. Given structure-function relationship in proteins, structural stability represents a key determinant 392 
that can be disrupted by amino acid substitutions, potentially resulting in local or more drastic misfolding and 393 
loss of function80 As an example of loss of function due to changes in stability, we report the analysis of the 394 
MAVISp  entry for the tumor suppressor BLM, a DNA helicase involved in DNA replication, recombination 395 
and repair81. We identified a total of 1170 predicted destabilizing variants according to the STABILITY mod-396 
ule, of which 45 annotated in ClinVar (Fig. 2a). Among these, 82% destabilizing variants was found in struc-397 
tured regions of the protein, while the remaining 18% are located in disordered residue stretches (Fig. 2b). 398 
Of the ClinVar-reported variants, 42 are classified as VUS. Y811C and C901Y are reported with conflicting 399 
interpretations and only G952A is reported as likely pathogenic. 400 
These results provide a starting point for variant characterization and prioritization. As suggested in the pre-401 
vious section, our results can be used to guide the selection of a subset of variants that have a predicted 402 
pathogenic impact from AlphaMissense, with a loss-of-fitness signature according to DeMaSk and that we 403 
predict damaging for stability., These would be suitable candidates for experimental validation. Concerning 404 
BLM, MAVISp identifies 41 ClinVar VUS or variants with conflicting evidence that could be prioritized accord-405 
ing to these criteria (Table S3).  406 
For example, depending on the size of the library to validate, methods such as flow cytometry sorting or 407 
cycloheximide chase assays82,83 or use approaches based on multiplex technologies84–87 would be useful to 408 
validate our predictions  409 
 410 
 411 
Integration of MAVISp data with experimental data  412 
 413 
A useful feature of MAVISp is a dedicated module to curate and import experimentally derived scores on the 414 
effects of the variants on different biological readouts (i.e., the EXPERIMENTAL DATA module, Fig. 1a). 415 
These data can be directly compared with the structural properties we predict with MAVISp, for a variety of 416 
purposes. For example, they can serve as additional layer of information respect to the structure-based 417 
mechanistic indicators themselves. Additionally, as done in the aforementioned BRCA2 study, they can be 418 
used as a source of information for variants with a known detrimental effect that can depend on different 419 
mechanisms of action for each variant, which can be investigate using MAVISp. In cases such as this, MA-420 
VISp helps identifying the possible mechanism for which variants have an effect, for further in-depth investi-421 
gation.  422 
Experimental data can also be used to validate the results of certain MAVISp modules, for cases in which 423 
the predicted structural properties are related to the experimentally tested biological readouts. Deep muta-424 
tional scans can also be used to benchmark or tune the thresholds used for classification performed by the 425 
MAVISp modules, including structural properties. In this context, the format of MAVISp database files is 426 
handy for further data processing, for example using biostatistical models or machine learning.  In the case 427 
of PTEN, we included data from available deep mutational scans, reporting on the effect of mutations on 428 
cellular abundance or phosphatase activity84,88,89, in its MAVISp entry. Cellular abundance represents a criti-429 
cal property that is often perturbed by missense mutations, and that can be altered by changes in protein 430 
structural stability. We therefore compared predictions from the MAVISp STABILITY module—based on a 431 
consensus of RaSP and FoldX—with protein abundance scores obtained from VAMP-seq assays 84,89,90. To 432 
compare the classification obtained by the stability module with the experimental data, we considered how 433 
the abundance score from the experiment have been classified. Multiple classification strategies have been 434 
used for these data: on one side, the ProteinGym benchmark dataset91 applies a threshold based on the 435 
median of the abundance score (i.e., 0.77). Variants that scored lower than this threshold (>=22% reduction 436 
of abundance relative to the wild-type) were classified as low abundant, whereas those that scored higher 437 
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were considered to be similar to the wild-type. The second classification followed the original PTEN study 438 
deposited in MaveDB (MaveDB ID urn:mavedb:00000013-a-1), which defines four abundance classes. In 439 
this scheme, the 5% lowest-abundance synonymous variants corresponded to a score of 0.7184 , and variants 440 
were classified into bin 1 (low-abundant, both score and confidence interval < 0.71), bin 4 (WT-like abundant, 441 
both scores > 0.71), bin 2 (likely low-abundant, score < 0.71 but confidence interval > 0.71), and bin 3 (likely 442 
WT-like abundant, score > 0.71 but confidence interval < 0.71). For this analysis, we retained only variants 443 
in bins 1 and 4, to ensure an unambiguous classification. After applying these filters and excluding uncertain 444 
variants defined by the STABILITY module, the MaveDB-based classification contained 1690 variants. To 445 
enable a direct comparison between the two classification strategies, the ProteinGym-based dataset, which 446 
initially comprised 3211 variants, was filtered to include the same 1690 variants as the filtered MaveDB da-447 
taset. The two classification schemes were found to be largely concordant, differing only for variants with 448 
abundance scores between 0.71 and 0.77, which were considered damaging by ProteinGym and neutral by 449 
MaveDB. 450 
Fig.3 and Table 1 illustrate the performance of the MAVISp STABILITY classification against the classifica-451 
tion of experimental data on protein abundance for PTEN. In this first comparison, we applied the same 452 
threshold suggested for this dataset from the benchmarking dataset ProteinGym91, which is based on the 453 
median value of the DMS scores. The consensus approach provided by the STABILITY module of MAVISp 454 
(accuracy 0.814) has an overall better performance in identifying variants that are found to be damaging in 455 
the assay than those predicted to cause damaging effects according to GEMME or DeMaSk (Fig. 3b). Nev-456 
ertheless, this approach has a lower sensitivity (0.66) compared to GEMME. We thus wondered if the rela-457 
tively low sensitivity we obtained was due to cases with experimental scores too close to the median (Fig. 458 
3c). Additionally, in the original study for PTEN and as deposited in the MaveDB92,93, a different classification 459 
for the variant scoring based on four abundance levels was proposed, as detailed above. We thus performed 460 
a comparison of the MAVISp results with the experimental dataset for the PTEN experiment from MaveDB 461 
using the abundance level classes as a threshold (Fig. 3c), resulting in increases sensitivity for the methods 462 
applied within MAVISp. The results on PTEN from MAVISp fits nicely with recent computational studies of 463 
PTEN variants using Rosetta calculations of protein stability and analyses of sequence conservation16,17.  464 
 465 
Table 1.  Performances of MAVISp modules and VEP predictors against experimental measurements of protein abundance and 466 
phosphatase activity for PTEN. 467 
 468 
Assay column comparison threshold_mode sensitivity specificity accuracy precision F1 score 

protein abundance assay 

RaSP/FoldX consensus  

ProteinGym 
0,666 0,954 0,814 0,928 0,771 

GEMME 0,719 0,743 0,731 0,717 0,718 
DeMaSk 0,66 0,814 0,741 0,763 0,708 

RaSP/FoldX consensus  

MaveDB 
0,707 0,955 0,845 0,927 0,802 

GEMME 0,759 0,748 0,753 0,706 0,732 
DeMaSk 0,7 0,818 0,766 0,754 0,726 

phosphatase assay 
RaSP/FoldX + GEMME  

MaveDB 

0,776 0,653 0,697 0,551 0,644 
RaSP/FoldX + DeMaSk  0,739 0,763 0,754 0,631 0,681 

 GEMME 0,751 0,68 0,705 0,563 0,644 

 DeMaSk 0,707 0,787 0,758 0,645 0,675 
 469 
 470 
 471 
We next assessed whether MAVISp could also inform predictions of variant effects on PTEN phosphatase 472 
activity. Experimental data from a cellular phosphatase assay (MaveDB ID urn:mavedb:00000054-a-1) were 473 
classified as reduced (< 0.89), wildtype-like (0.89–1), or hyperactive (> 1). Here, we investigated whether 474 
integrating MAVISp STABILITY data with VEP results could enhance predictive power, since reduced stability 475 
is not the only possible mechanism for loss of phosphatase activity in mutated variants. We combined the 476 
STABILITY results with GEMME or DeMaSk, applying a priority logic in which damaging calls from 477 
GEMME/DeMaSk were given priority. This strategy produced performance comparable to GEMME or 478 
DeMaSk alone (Fig.3d-e, Table 1). Notably, combining changes in folding free energies with GEMME 479 
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increased sensitivity (0.78) but reduced specificity (0.653), yielding an F1 score comparable to that of 480 
GEMME but lower than the one of DeMaSk (0.64; Fig.3d-e, Table 1).  481 
 482 
Overall, with the examples in this section, we illustrate examples on how to use MAVISp data to compare 483 
predictions and experiments, as well as how to integrate MAVISp modules on structural properties with VEP 484 
results.  485 

 486 
 487 

 488 
Fig. 3.  Comparison of GEMME, DeMaSk, and MAVISp STABILITY module predictions with experimentally-derived scores for protein abun-489 
dance and phosphatase activity of PTEN. (a) The trimmed AlphaFold structure (residues 1-351) of PTEN used for MAVISp stability module calculations is shown 490 
as a cartoon, colored according to pLDDT scores. 491 
(b-e)  Histograms with performances of MAVISp STABILITY module, DeMaSk, and GEMME in predicting the effect of variants  using VAMP-seq scores with ProteinGym 492 
(b) and MaveDB (c) thresholds. (d-e) illustrates the performances of the same tools or their combination against an experimental functional readout that assess the 493 
phosphatase activity at the cellular level. 494 
 495 
Proteins involved in cancer hallmarks 496 
 497 
To expand the contents of the MAVISp database, we have also been focusing on protein targets related to 498 
cancer hallmarks94, and in particular on proteins involved in cancer hallmarks related to protein clearance at 499 
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the cellular level, i.e. the ability to escape cell death through apoptosis and autophagy, as well as kinases or 500 
transcription factors involved in the regulation of cellular proliferation. Mitochondrial apoptosis is tightly regu-501 
lated by a network of protein-protein interactions between pro-survival and pro-apoptotic proteins. We inves-502 
tigated the mutational landscape in cancer of this group of proteins in a previous study95, which includes 503 
structural analyses with different simple mode MAVISp modules for both the pro-survival proteins BCL2, 504 
BCL2L1, BCL2L2, BCL2L10, MCL1 and BCL2A1, as well as the pro-apoptotic members of the family BOK, 505 
BAX and BAK1. In these analyses, the C-terminal transmembrane helix has been removed since the current 506 
version of our approach does not support transmembrane proteins or domains, illustrating an example on 507 
how the STRUCTURE SELECTION module works. 508 
Autophagy is a clearance mechanism with a dual role in cancer. The autophagy pathway relies on approxi-509 
mately 40 proteins, constituting the core autophagy machinery96. As an example of the application of MAVISp 510 
to this group of proteins, we applied the simple mode to the markers of autophagosome formation MAP1LC3B 511 
and the central kinase ULK1, building on the knowledge provided by previous work36,37.  512 
In the case of ULK1, we expanded our analysis to cover a larger part of the structure of the protein, meaning 513 
that both the N-terminal (residues 7-279) and C-terminal domains (837-1046) have been used for the MAVISp 514 
assessment. ULK1 also serves as an example of how to customize the trimming of an AlphaFold model to 515 
exclude disordered regions or linkers with residues featuring low pLDDT scores, in simple mode. In fact, their 516 
inclusion could lead to predictions of questionable quality. Disordered regions cannot be properly represented 517 
by a single conformation, and the ensemble mode would be necessary to derive more reliable conclusions. 518 
ULK1 featured 215 variants reported in COSMIC, cBioPortal and/or ClinVar, as shown in its dot plot (Fig. 519 
4A), which was generated using the downstream analysis tools of MAVISp. Using the simple mode, 59 vari-520 
ants had predicted long-range mixed effects. Furthermore, eight had a damaging effect on stability, one had 521 
a damaging PTM effect on regulation (S954N), one had a possible damaging PTM effect in function 522 
(S1042T), and four variants (L53P, G183V, E191G, and L215P) are characterized by both effects on stability 523 
and long-range communication (Fig. 4B-D). Most of the variants that were predicted to have long-range and 524 
structure-destabilizing effects are in the N-terminal kinase domain of the protein, suggesting that mutations 525 
in this domain could result in the inactivation of ULK1 by compromising its 3D architecture. We then per-526 
formed a one-microsecond MD simulation of the ULK1 N-terminal kinase domain (residues 3-279, PDB ID: 527 
5CI7) to generate a structural ensemble for the MAVISp ensemble mode. In this case, we used an approach 528 
based on graph analysis from a contact-based PSN (Methods), as provided by the LONG-RANGE module, 529 
which verified if long-range communication occurs between mutation and response sites predicted by the 530 
coarse grain model used in the simple mode. The ensemble mode also validates the prediction on the effect 531 
of variants on stability that were done in simple mode, as it compensates for the none or limited mobility of 532 
the protein main chain that characterize the used in the STABILITY module. Overall, the application of the 533 
ensemble mode allowed to validate five variants with predicted long-range damaging effects (H72D, H72N, 534 
E73D, E73K, and R160L) and two variants with a damaging effect on stability (G183V and L215P). The 535 
predicted destabilizing (Fig. 4E) variant L215P has been also identified in samples from The Cancer Genome 536 
Atlas (TCGA) 36.  537 
 538 
 539 
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 540 
 541 
Fig. 4. MAVISp ensemble mode to identify damaging variants in the autophagy kinase ULK1. a) We examined the central autophagy kinase 542 
ULK1 using MAVISp, generating a saturation of all possible variants within the N-terminal (residues 7-279) and C-terminal domains (residues 837-543 
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1046), leading to a total of 8,962 variants. Of these, 215 variants have been identified in COSMIC, cBioPortal, and/or ClinVar databases. b) Among 544 
the ones reported in the previous databases, eight variants were reported as pathogenic by AlphaMissense (L21P, L53P, G183V, E191G, G208S, 545 
V211F, L215P, and W894G) and among these, four variants are predicted to have a damaging effect on both protein stability and long-range com-546 
munication (L53P, G183V, E191G, and L215P).  c) Using MAVISp simple and ensemble modes, we identified 22 variants with destabilizing effects in 547 
terms of folding free energy, long-range effects, or PTM effects in regulation or in function. The mutation sites are highlighted with spheres on the 548 
AlphaFold models of the ULK1 N-terminal (left) and C-terminal (right) domains. d) We showed the predicted changes in folding free energy upon 549 
amino acid substitution for each of the 22 variants as calculated by the STABILITY module of MAVISp with MutateX and RosettaDDGPrediction with 550 
the simple mode (left) or with the ensemble mode (right). Interestingly, most of the variants that alter structural stability are located in the catalytic 551 
domain of the enzyme. This suggests potential mechanisms for ULK1 inactivation. e) Summary of the predicted effects on the 22 variants of ULK1 552 
that have been found damaging with at least one MAVISp module with the simple mode (upper) or with the ensemble mode (lower) using the dot plot 553 
representation provided by the MAVISp toolkit for downstream analyses. Of note, the lower legend refers to the color of variants on the X-axis which 554 
are related to the ClinVar effect category. 555 
 556 
 557 
The MAVISp entry of the autophagy marker MAP1LC3B provides an example on how the data for the LOCAL 558 
INTERACTION module can be obtained in a case of a protein that interacts with a functional motif embedded 559 
in intrinsically disordered proteins, i.e., a short linear motif (SLiM). MAP1LC3B in fact is able to bind to pro-560 
teins harboring a so called LC3-interacting region (LIR)97. In MAVISp, we report the results for the effect on 561 
binding affinity of variants in MAP1LC3B or in its binding partners using three examples of this mode of 562 
interaction modeling the binding of MAP1LC3B with the LIR regions of its binding partner SQSTM1 (Fig.5a), 563 
ATG13, and Optineurin. In this case, we first applied the protocols for (phospho)-SLiM identification devel-564 
oped within the MAVISp framework (Methods) and PDBminer to identify possible starting structures. In the 565 
case of optineurin, we further model the flanking regions77. We identified ten variants annotated in ClinVar: 566 
nine reported as VUS (E102K, H86D, T29I, V91I, P2R, L44P, L44F, D56G, and R11L) and one as benign, 567 
i.e., E25Q (Fig.5a). MAVISp managed to predict a putative mechanistic explanation for the effect of four 568 
variants (Fig.5b-d): T29I is predicted to disrupt regulation by phosphorylation, L44P has an effect on both 569 
structural stability and long-range effects to distal sites, L44F and R11L have long-range effects (Fig 5b). 570 
Additionally, a variant found in cancer studies, P32Q, is predicted to have a detrimental effect on structural 571 
stability, confirming previous experimental results which showed propensity for aggregation37. Of note, this 572 
variant is identified with an uncertain prediction for the effect on stability in MAVISp simple mode, whereas 573 
two different approaches for generating a conformational ensembles accounting for protein dynamics pre-574 
dicted a destabilizing effect (Fig 5d). Additionally, all the variants with a mechanistic indicator from MAVISp 575 
are also predicted as pathogenic by AlphaMissense (Fig.5c-d) and are good candidates to further experi-576 
mental studies for their effects on the autophagy flux or other functional readouts. V91I is likely to be benign 577 
variants since all the predictors identified neutral effects (Fig. 5c-d).   578 
 579 
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 580 
 581 
 582 
Fig. 5. Analysis of MAP1LC3B VUS Variants from ClinVar. a) A structural model (PDB ID: 2ZJD) of the MAP1LC3B (green) interaction with the 583 
LIR motif of SQSTM1(pink) highlights ten ClinVar-reported variants (E102K, H86D, T29I, V91I, P2R, L44P, L44F, D56G, R11L and E25Q) along with 584 
the cancer-related variant P32Q. These variants are depicted as blue spheres on the structure. (b) Among these variants, five (R11L, T29I, P32Q, 585 
L44F and L44P) are predicted as damaging by AlphaMissense. Interestingly, L44P shows a predicted damaging effect on both long-range communi-586 
cation and stability. 587 
(c-d) Summary of the predicted effects on the 11 variants of MAP1LC3B as reported by MAVISp dot plot with the simple mode (c) or with the ensemble 588 
mode (d) using the dot plot representation provided by the MAVISp toolkit for downstream analyses. Of note, the lower legend refers to the color of 589 
variants on the X-axis which are related to the ClinVar effect category. 590 
 591 
 592 
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 593 
Application of MAVISp to transmembrane proteins and to variants associated to other diseases 594 
 595 
The STABILITY and LOCAL INTERACTION modules do not support predictions for variants in transmem-596 
brane regions. A survey on methods to predict folding free energy changes induced by amin on transmem-597 
brane proteins suggested that existing protocols, based on FoldX or Rosetta, are suitable for soluble pro-598 
teins98. Therefore, the protocols implemented in the MAVISp modules for transmembrane proteins only retain 599 
those variants that are not in contact with the membrane. An example of a MAVISp entry for this class of 600 
proteins is PILRA, which has a low pLDDT score in the transmembrane region, and has been therefore 601 
excluded from the model, focusing on the analyses on the variants in the 32-153 region. In addition, we 602 
included other transmembrane proteins in the database such as ATG9A and EGFR. 603 
PILRA is a protein target connected to neurodegenerative diseases99, along with KIF5A, CFAP410, and 604 
CYP2R1, illustrating the broad applicability of MAVISp to proteins involved in different diseases. Proteins 605 
associated with other diseases, such as TTR, SOD1, and SMPD1, have also been included in the MAVISp 606 
database. SMPD1 has been recently investigated in a targeted study using the ensemble mode of MAVISp 607 
together with other methodologies, validating our results by means of experimental data measuring the re-608 
sidual catalytic activity of enzyme variants76. As previously stated, MAVISp integrates curated experimental 609 
data for specific target proteins, which can be analyzed together with the results from the computational 610 
modules. To this goal, the dot plot representation provided by the downstream analyses toolkit of MAVISp 611 
and by the MAVISp database achieves a complete overview of both the experimental and the computational 612 
results (Fig. 6a-c) for SMPD1. Additionally, when a set of experimental data is available, it is possible to 613 
evaluate the correlation between predictions and experimental data (Fig. 6d-e). For SMPD1, we have ob-614 
tained data on the residual catalytic activity of the enzyme for 135 variants76, available in the literature. Thanks 615 
to the MAVISp protocol, we predicted the effect of amino acid substitutions on changes in folding free ener-616 
gies as well as data for predicted functional effects from VEPs, which can be compared with the experimental 617 
data. The score values produced by the VEPs were mildly correlated with the residual activity measurements 618 
(Pearson correlation coefficient ~0.6). Of note, most of the variants that have a predicted destabilizing effects 619 
on the stability are found at values of experimental residual activity lower than 20%, confirming what observed 620 
in our previous study76 and suggesting that changes in stability for SMPD1 can be help identifying damaging 621 
variants of this enzyme. Nonetheless, in this case, the experimental readout cannot be explained by stability 622 
changes alone. Thus, variants found with low residual activity and functionally damaging (GEMME and 623 
DeMaSk scores lower than -3 and -0.25, respectively) and that are neutral for stability according to MAVISp 624 
are good candidates for further investigation. For example, biomolecular simulations or computational chem-625 
istry methods could be used to investigate the effects of these variants on the catalytic mechanism of the 626 
enzyme and its lipid transport. Finally, variants, such as Y500H, which have a low residual activity, high loss-627 
of-fitness scores and are uncertain for the STABILITY module, can be analyzed for their propensity to fall in 628 
early folding regions (see entry in the MAVISp database) and could be investigated in the ensemble mode 629 
using enhanced sampling simulations to accurately estimate their folding free energy profiles. 630 
 631 
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 632 
 633 
Fig. 6. MAVISp, GEMME, and DeMaSk predictions on the impact of SMPD1 variant subset. 634 
A subset of SMPD1 variants, for which experimental data on enzyme activity have been selected, is shown with predictions from MAVISp, GEMME, 635 
and DeMaSka-b) Scatter plots comparing DeMaSk (left) and GEMME (right) scores against experimental assay scores for enzymatic activity. The 636 
red line represents the regression, while the dotted line marks the threshold below which enzyme activity is considered inactive. Dots are colored 637 
based on the MAVISp STABILITY module classification (Rosetta/FoldX consensus): Destabilizing, Neutral, or Uncertain. 638 
 639 
 640 
Conclusions and Future Perspective 641 
 642 
MAVISp provides a multi-layered assessment of the effects of variants found in cancer studies or other dis-643 
eases using structural methods. MAVISp results are especially useful for variant interpretation and prioritiza-644 
tion. These results can be useful as a complementary resource to available pathogenic scores or high-645 
throughput experiments. MAVISp can help to pinpoint the effects linked to a pathogenic variant for further 646 
studies.  647 
A significant advantage of MAVISp is its comprehensive coverage, expanding beyond clinically identified 648 
variants, by including novel variants yet to be characterized in other databases. This makes MAVISp a valu-649 
able resource for researchers and clinicians, facilitating the exploration of novel variants and their underlying 650 
pathogenic mechanisms. MAVISp can help on one side to associated mechanistic indicators to variants that 651 
are known or predicted pathogenic, as well as to aid in the characterization of the effects of VUS or variants 652 
with conflict evidence at the molecular level. Finally, we envision that MAVISp could become, in time, a 653 
community-driven effort and serve as a repository of data for the effects of disease-related variants more 654 
broadly. The results reported in MAVISp will provide an atlas of functional annotations for disease-related 655 
variants.  656 
We have previously framed MAVISp in the context of others computational frameworks that collect data from 657 
different sources or integrate different structure-based methods to characterize variants100. This idea has led 658 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2026. ; https://doi.org/10.1101/2022.10.22.513328doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.22.513328
http://creativecommons.org/licenses/by-nc-nd/4.0/


Structure-based assessment of variants with MAVISp 

   20 

to the production of different attempts. Missense3D101 predicts the impact of variants on an array of structural 659 
features; ADDRESS102 includes predictions on stability and intermolecular contacts for variant found in Uni-660 
Prot humsavar; MUTATIONEXPLORER103 uses Rosetta and RaSP to predict the effect of amino acid sub-661 
stitutions on stability or binding, on user-provided structures; VUStruct104 selects relevant protein structures 662 
for the protein of interest and performs a wide array of predictions, including on the effect of variants on 663 
stability, binding surface, PTMs. The Genomics 2 Proteins105 portal includes data from several sources, in-664 
cluding some overlapping with MAVISp such as Phosphosite or MaveDB, as well as features calculated on 665 
the protein structure. ProtVar106 also aggregates variant from different sources and includes both variant 666 
effect predictors, prediction of change on stability upon amino acid substitution, as well as prediction of com-667 
plex structures. MAVISp, is, to our knowledge, the first resource to integrate data on binding free-energies, 668 
data derived from molecular dynamics simulations, as well as experimental data from different sources, and 669 
the first to integrate predictions on long-range effects as a database. While MAVISp has a lower coverage 670 
than others, it includes carefully curated manual steps, such as during protein structure preparation and 671 
simulation. 672 
As the database grows, it will provide high quality data on different structural properties that can also be used 673 
for benchmarking purposes or as features in machine learning models. To this goal, the stringent data col-674 
lection that we designed and present here is pivotal to build meaningful and accurate predictive models.  675 
We would like to highlight previous studies that have demonstrated the usefulness of MAVISp and its proto-676 
cols. For example, we have showcased the versatility of MAVISp in characterizing the effects induced by a 677 
redox post-translational modification of Cysteine (S-nitrosylation) using structural methods107 . We focused 678 
on variants found in cancer samples for their capability to alter the propensity of cysteine to be S-nitrosylated, 679 
or a population-shift mechanism induced by the PTM. The collection of data using MAVISp modules has 680 
been pivotal to aggregate variants for each target of interest in the study on S-nitrosylation. The pipelines 681 
developed in the study of S-nitrosylation will be integrated within the MAVISp PTM module, extending it 682 
beyond support for phosphorylation, which is currently supported by MAVISp. 683 
Alterations in transcription factors are often linked to aberrant gene expression, including processes such as 684 
proliferation, cell death, and other cancer hallmarks108. Different mechanisms are at the base of alterations 685 
in the activity of transcription factors in cancer, including point mutations. A previous study on TP53 served 686 
as a platform to develop different modules currently available in MAVISp 38. We thus aim to expand the 687 
MAVISp database to include more transcription factors. To this goal, one of the datasets under data collection 688 
covers the protein targets from the TRRUST2 database109, which includes experimentally characterized tran-689 
scription factors and their targets, of which 150 have been already processed and included in the MAVISp 690 
database.  691 
Furthermore, MAVISp provides pre-calculated values of changes in folding or binding free energies and other 692 
metrics that can also be reanalyzed in the context of other research projects. With the examples on PTEN 693 
and SMPD1 provided here, we introduced the curation of experimental data in MAVISp, as a source of ex-694 
perimental validation. The implementation of additional modules for MAVISp (e.g., degron110  and aggregation 695 
propensity111) would likely improve coverage of the diverse mechanisms regulating protein abundance. Of 696 
note, MAVISp supports either data from multiplex assays of variant effects or experimental data from litera-697 
ture mining of the biocurators. The purpose of collecting experimental data is to validate our findings, update 698 
protocols, and continuously improve the included methodologies. The reliability of our predictions depends 699 
on their alignment with experimental results, which can be used as reference data to benchmark and improve 700 
our predictions over time. The database currently includes 16 protein entries with experimental data.  701 
At this stage, MAVISp can provide annotations for variants of transmembrane proteins exclusively in regions 702 
that are not in contact with the membrane. Recently published approaches112 could enable the application of 703 
the STABILITY module to transmembrane regions as well. In addition, we will include support to intrinsically 704 
disordered regions in the ensemble mode, designing new modules to reflect the most important properties of 705 
these regions.  706 
We foresee that MAVISp will provide a large amount of data on structure-based properties related to the 707 
changes that  can exert at the protein level, which could be exploited for design of experimental biological 708 
readouts, also towards machine-learning applications for variant assessment and classification or to under-709 
stand the importance of specific variants in connection with clinical variables, such as drug resistance, risk 710 
of relapse and more.  711 
 712 
Methods 713 
 714 
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Initial structures for MAVISp and STRUCTURE_SELECTION module  715 
 716 
As a default, in the high-throughput data collection, we use models from the AlphaFold2 database25 for most 717 
of the target proteins and trim them to remove regions with pLDDT scores < 70 at the N- or C-termini or very 718 
long disordered linkers between folded domains. For proteins coordinating cofactors, in the low-throughput 719 
targeted studies, we re-modeled the relevant cofactors upon analyses with AlphaFill42 and where needed 720 
through MODELLER113. A summary of the initial structures used for each protein included in the database is 721 
reported in OSF (https://osf.io/y3p2x/). In selected cases, we have replaced long disordered loops with short 722 
residue stretches using a custom pipeline based on MODELLER (https://github.com/ELELAB/MA-723 
VISp_loop_replacer). This was done to avoid potential bias in our structural calculations, due to the arbitrary 724 
conformation of such loops and their spurious contacts with the rest of the structure. In addition, for proteins 725 
with transmembrane regions, we used the PPM (Positioning of Proteins in Membrane) server 3.0 from OPM 726 
(Orientations of Proteins in Membrane)114,115.  For target proteins larger than 2700 residues, whose structures 727 
are not provided by the AlphaFold2 database, we model them using AlphaFold3.  728 
The advantage of using AlphaFold-predicted structures in the default high-throughput data collection of MA-729 
VISp lies in their ability to achieve quality comparable to experimental data, as demonstrated in previous 730 
work2, and at the same time circumventing limitations typically associated with experimental approaches, 731 
such as artifacts, missing atoms, and incomplete or absent residues.  732 
 733 
INTERACTOME module 734 
 735 
In the INTERACTOME module, implemented in the freely available PPI2PDB toolkit (https://github.com/ELE-736 
LAB/PPI2PDB), we identify known interactors of the target protein by extracting data from the Mentha data-737 
base47 and match them to available PDB structures, using the mentha2pdb script. Mentha2pdb also exam-738 
ines experimentally validated dimeric complexes generated with AlphaFold2 from the HuRI and HuMAP da-739 
tabases by Burke et al.48. Mentha2PDB provides annotations of the interactors and generates input files for 740 
AlphaFold-Multimer. 741 
Complementarily, we retrieve interactors from the STRING database49 and process them analogously using 742 
our STRING2PDB tool, which maps STRING interactions to available PDB structures. The tool restricts re-743 
trieval from the physical subnetwork of STRING with evidence of interaction supported by either curated 744 
database annotation or experimental data. 745 
As a final step, we aggregate all interaction data for the target protein into a single table, ranking interactors 746 
primarily by Mentha and secondarily by STRING score to prioritize experimentally supported pairs. We then 747 
add complexes retrieved directly from the PDB via pdbminer-complexes (https://github.com/ELELAB/MA-748 
VISp_automatization/tree/main/mavisp_templates/) to capture interactions not yet reflected in PPI data-749 
bases. 750 
We also use other methods to identify four different classes of short linear motifs (BRCT, LIR, BH3 and UIM) 751 
in our target proteins. Depending on the type, we use a combination of simple regular expression matching, 752 
a method designed by us for structure-based identification of short linear motifs SLiMfast (available at 753 
https://github.com/ELELAB/SLiMfast) together with another method for predicting changes in secondary 754 
structure propensity that may be induced by phosphorylation in the core of putative LIR motifs, phosphor-755 
iLIR (https://github.com/ELELAB/phospho-iLIR), or DeepLoc 2.0116 for predicting the subcellular localization 756 
of the protein, especially useful for BRCT motifs. 757 
 758 
Free energy calculations for STABILITY, LOCAL INTERACTION and LONG-RANGE modules 759 
 760 
We applied the BuildModel module of FoldX5 suite117 averaging over five independent runs for the calcula-761 
tions of changes in free energy of folding upon amino acid substitution with MutateX and the FoldX5 method. 762 
We used the cartddg2020 protocol for folding free energy calculations with Rosetta suite and the ref2015 763 
energy function. In this protocol, only one structure is generated at the relax step and then optimized in 764 
Cartesian space. Five rounds of Cartesian space optimization provide five pairs of wild-type and mutant 765 
structures for each variant. The change in folding free energy is then calculated on the pair characterized by 766 
the lower value of free energy for the mutant variant, as described in the original protocol118. 767 
We used MutateX to calculate changes in binding free energy for the LOCAL INTERACTION module using 768 
the BuildModel and AnalyzeComplex functions of FoldX5 suite and averaging over five runs. With Rosetta, 769 
we used the flexddg protocol as implemented in RosettaDDGPrediction and the talaris2014 energy function. 770 
We used 35,000 backrub trials and a threshold for the absolute score for minimization convergence of 1 771 
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Rosetta Energy Unit (REU). The protocol then generates an ensemble of 35 structures for each mutant var-772 
iant and calculates the average changes in binding free energy. We used Rosetta 2022.11 version for both 773 
stability and binding calculations. In the applications with RosettaDDGPrediction the Rosetta Energy Units 774 
(REUs) were converted to kcal/mol with available conversion factors118. We also applied RaSP using the 775 
same protocol provided in the original publication56 and adjusting the code in a workflow according to MA-776 
VISp-compatible formats (https://github.com/ELELAB/RaSP_workflow). We have included data on 131 com-777 
plexes at the date of 16/10/2025 (https://osf.io/y3p2x/ ). 778 
For the calculations of allosteric free energy, we used the structure-based statistical mechanical model of 779 
allostery (SBSMMA)119,120 implemented in AlloSigMA264 . The model describes the mutated variants as ‘UP’ 780 
or ‘DOWN’ mutations depending on difference in steric hindrance upon the substitution. We followed a re-781 
cently updated and benchmarked protocol65. In brief, we classified as uncertain those variants for which the 782 
absolute changes in the volume of the side chain upon the amino acid substitution was lower than 5 Å3, as 783 
recently applied to p5338. As a default, we considered as having an effect only variants that were exposed to 784 
the solvent (≥25% relative solvent accessibility of the side chain), with associated changes in absolute value 785 
of allosteric free energy larger than 2 kcal/mol and considered as remote response sites those that were at 786 
a distance higher than 5.5 Å from the mutation site, considering all heavy atoms, and which belongs to pock-787 
ets as identified by Fpocket121  ( see workflow at https://github.com/ELELAB/MAVISp_allosigma2_workflow/) 788 
 789 
Efoldmine 790 
 791 
The EFOLDMINE module, integrated within the simple mode of MAVISp, predicts residues with early folding 792 
propensity using the EfoldMine tool72. Trained on residue-level hydrogen/deuterium exchange nuclear mag-793 
netic resonance (HDX NMR) folding data from the Start2Fold database122, this tool uses secondary structure 794 
propensity and backbone/side-chain dynamics in a support-vector machine algorithm to predict early folding 795 
regions based on the target's sequence.  796 
In MAVISp, we incorporated EfoldMine to determine whether point  797 
mutations in variants fall within the predicted early folding regions, using a threshold of 0.169 to define resi-798 
dues involved in early folding events as suggested by the developers of the method72 and considering only 799 
regions with a minimum length of three early folding residues to exclude isolated peaks.71.  800 
 801 
FUNCTIONAL SITE module  802 
 803 
The FUNCTIONAL SITES module aids the identification of variants that might impact cofactor binding sites 804 
or active site residues, as well as the residues within the second coordination sphere with respect to active 805 
site residues of enzymes or their corresponding binding sites. It is based on a contact analysis performed 806 
with the Arpeggio software123. Before the analysis, the model structure is subjected to energy minimization 807 
with Conjugate Gradients124 in 50 steps, using the MMFF94 force field125, a van der Waals cutoff of 0.1, an 808 
interacting cutoff of 5.0 Å, and a physiological pH of 7.4. Subsequently, the output is further preprocessed to 809 
exclude clashes and proximal contacts (https://github.com/ELELAB/mavisp_accessory_tools).  810 
 811 
Molecular dynamics simulations for MAVISp ensemble mode 812 
 813 
We used either previously published37,38,126–130 or newly collected one microsecond all-atom molecular dynam-814 
ics simulations performed using the CHARMM22* or CHARMM36m force fields131. All the simulations have 815 
been carried out in the canonical ensemble after a final equilibration steps and using explicit solvent and 816 
periodic boundary conditions. The templates files used for the simulations are provided in OSF 817 
(https://osf.io/y3p2x/). 818 
Ensembles generated using simulations are then subject to quality control, either using Mol_Analysis132 or  819 
MetaD_Analysis (https://github.com/ELELAB/MetaD-Analysis) tools.  820 
As a first example of how we intend to use metadynamics data for the FUNCTIONAL_DYNAMICS module 821 
we used the simulations from TP53 where the effects of amino acid substitutions on an interface for protein-822 
protein interaction (residues 207-213) was investigated. We used a collective variable based on distances 823 
between two residues (D208-R156) that were effective in capturing open (active) and closed (inactive) con-824 
formations of the loop. See repositories associated with the enhanced sampling simulations of TP5338. All 825 
the newly generated trajectories will be deposited as different entries in OSF, and the link is reported in the 826 
metadata on the MAVISp webserver. At the date of 01/11/2024, we have included 45 protein targets in the 827 
ensemble mode using as source of ensemble mostly unbiased MD simulations of 500 ns or one-µs, as 828 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2026. ; https://doi.org/10.1101/2022.10.22.513328doi: bioRxiv preprint 

https://github.com/ELELAB/RaSP_workflow
https://osf.io/y3p2x/
https://github.com/ELELAB/MAVISp_allosigma2_workflow/
https://github.com/ELELAB/mavisp_accessory_tools
https://osf.io/y3p2x/
https://github.com/ELELAB/MetaD-Analysis
https://doi.org/10.1101/2022.10.22.513328
http://creativecommons.org/licenses/by-nc-nd/4.0/


Structure-based assessment of variants with MAVISp 

   23 

detailed in the corresponding metadata on the MAVISp webserver. In some cases, we included ensembles 829 
generated by a coarse-grain model of flexibility or using the conformation provided by NMR structures from 830 
the PDB (see INPUT STRUCTURES tables in https://osf.io/y3p2x/).  831 
 832 
Protein Structure Networks and path analysis for MAVISp ensemble mode 833 
 834 
In the ensemble mode we apply a module building upon the simple mode LONG_RANGE module. It uses 835 
AlloSigma2-PSN (https://github.com/ELELAB/MAVISp_allosigma2_workflow/) where we constructed an 836 
atomic-contact PSN on the full trajectories using PyInteraph266. Pairs of residues were retained only if their 837 
sequence distance exceeded Proxcut threshold of 1 and their edge calculations remained within less than 838 
4.5Å, based on the thresholds described in PyInteraph266. We retained edges with an occurrence greater 839 
than Pcrit threshold of 50% across the ensemble frames, weighted on the interaction strength Imin of 3.  840 
Subsequently, we used the path_analysis function of PyInteraph2 to identify the shortest paths of communi-841 
cation between each pair of AlloSigMA264 predicted mutation and respective response sites, using a mini-842 
mum distance threshold of 5.5 Å and retained paths that were four residues or longer. 843 
 844 
CABS-flex ensembles for MAVISp ensemble mode 845 
 846 
We used the coarse-grained CABS-flex 2.0 method and software50 as a part of a Snakemake133 pipeline, 847 
available at https://github.com/ELELAB/MAVISp_CABSflex_pipeline.  The pipeline includes the possibility to 848 
tune the calculations by different restraints, secondary structure definition, ligand binding and more. It also 849 
contains a quality control step to evaluate the secondary structure content of the generated structures with 850 
respect to the starting one, using DSSP134  and the SOV-refine score135.  851 
 852 
Variant Effect Prediction  853 
 854 
We used DeMaSk74, GEMME14, EVE75, REVEL73  and AlphaMissense26 as predictors for the effect of any 855 
possible amino acid substitution to natural amino acids, on the full protein sequence of the main UniProt136 856 
isoform of each protein. We used available default parameters for each method unless noted otherwise. We 857 
used the standalone version of DeMaSk as available on its public GitHub (commit ID 10fa198), with BLAST+ 858 
2.13.0. We followed the protocol available on GitHub: we first generated the aligned homologs sequence file 859 
by using the demask.homologs module and then calculated fitness impact predictions. Finally, we classified 860 
as loss-of-fitness those variants having a DeMaSk delta fitness score in absolute value lower or equal to -861 
0.25, gain-of-fitness if the score is higher than 0.25, and neutral otherwise (Supplementary Text S3). We 862 
used the available online webserver to obtain variant effect predictions with GEMME, upon setting the num-863 
ber of JET iterations to 5, to obtain more precise results. 126 We have classified variants having a GEMME 864 
score <= -3 as damaging, and neutral otherwise. Thresholds were selected according to our benchmarking 865 
(Supplementary Text S3). To obtain EVE scores, we have used the scripts, protocol and parameters avail-866 
able on the EVE GitHub (commit iD 740b0a7) as part of a custom-built Snakemake133-based pipeline, avail-867 
able at https://github.com/ELELAB/MAVISp_EVE_pipeline  Using EVE first requires building a protein-spe-868 
cific Bayesian variational autoencoder model, which learns evolutionary constraints between residues from 869 
a multiple sequence alignment. In the current MAVISp release, we generated such alignments using EVcou-870 
plings137, using the Uniref100138 sequence database released on 01/03/2023, by keeping sequences with at 871 
least 50% of coverage with the target protein sequence, alignment positions with a minimum of 70% residue 872 
occupancy, and using a bit score threshold for inclusion of 0.5 bits with no further hyperparameter exploration. 873 
We then used our pipeline to perform model training, calculation of the evolutionary index, and used a global-874 
local mixture of Gaussian Mixture Models to obtain a pathogenicity score and classification. We have used 875 
pre-computed REVEL scores for variants as available in dbSNFP139,140, accessed through myvari-876 
ants.info141,142, as implemented in Cancermuts. We have classified as damaging variants that have a REVEL 877 
score larger or equal to 0.5143. We included AlphaMissense pathogenicity prediction scores and classification 878 
as available by the dataset of prediction for all possible amino acid substitutions in UniProt canonical 879 
isoforms, release version 2144. 880 
 881 
Annotations from experimental data for EXPERIMENTAL_DATA module 882 
 883 
We developed Python scripts to identify the overlap in coverage between the Mave database (MaveDB)92 884 
and MAVISp, and to retrieve the score sets associated with the shared entries from the  MaveDB92 database 885 
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through their API (https://api.mavedb.org/docs). Where available, we also extracted information on methods 886 
and classification thresholds. For entries where this information was incomplete, the corresponding publica-887 
tions were manually reviewed to extract thresholds for variant classification.  888 
The ProteinGym91 repository was locally downloaded from GitHub, and a custom Python script was used to 889 
process the datasets based on the reference files provided in the repository. The datasets used for the anal-890 
ysis contained the experimental scores and the classification provided by the authors either based on the 891 
median of the score distributions or via manual annotation. The scores and their classifications were then 892 
integrated into the final database file generated by MAVISp. The aggregated scores, along with their classi-893 
fications, were compiled into the final database file produced by MAVISp through a module dedicated to the 894 
experimental data. 895 
 896 
Identification of RefSeq identifiers 897 
 898 
To ensure the correct RefSeq annotations in MAVISp, we implemented a Python tool, compare_seq.py 899 
(https://github.com/ELELAB/mavisp_accessory_tools/), to verify the sequence identity between the ca-900 
nonical UniProt sequence used in our analyses and the corresponding RefSeq protein identifier to be used 901 
for the ClinVar search. The Uniprot sequences were retrieved using the UniProt REST API, while the RefSeq 902 
protein sequences were fetched from the NCBI Entrez Protein database. We implemented a global pairwise 903 
alignment using the Biophyton pairwise2 module with the globalxx scheme to assess sequence identity. Each 904 
comparison was classified as either an exact match, a mismatch (identity <100%), or unresolved due to 905 
missing or unresolvable sequences. To improve performances, the analyses were parallelized using multi-906 
threading via Python concurrent.futures. The results were logged into structured CSV reports for consultation. 907 
This allows data managers to identify exisiting entries in MAVISp with  RefSeq identifiers inconsistent with 908 
provided UniProt accession code and assign them to biocurators for entry review.   909 

Additionally, we provide the biocurators with a Python-based script (uniprot2refseq, l 910 
https://github.com/ELELAB/mavisp_accessory_tools/) that identifies RefSeq IDs for the UniProt canoni-911 
cal protein isoform. For each UniProt AC, we queried the UniProt REST API to obtain RefSeq protein cross-912 
references (NP_* IDs) from the canonical entry in JSON format. Only protein-level RefSeq entries were con-913 
sidered. The canonical UniProt protein sequence was downloaded in FASTA format, and each RefSeq se-914 
quence was retrieved from the NCBI Protein database using Biopython and the Entrez API. Pairwise global 915 
alignments were performed using the Biopython pairwise2 module and we estimate the percentage sequence 916 
identity as the number of identical residues over the length of the longer sequence. Results were saved in 917 
tabular format, including UniProt AC, RefSeq ID, and sequence identity. This approach aids the biocurators 918 
to identify the RefSeq IDs for the canonical isoform of the protein undebefore starting with the data collection. 919 
The script is expected to be used by the biocurators before each run with the MAVISp automatization work-920 
flow described below. 921 

 922 
Workflows for automatization and data collection within MAVISp 923 
 924 
We provide and maintain two Snakemake workflows for the data collection of the default modules of MAVISp. 925 
The first is a Snakemake pipeline to automate MutateX runs as much as possible. It is designed to automat-926 
ically download the chosen structure(s) from the AlphaFold structural database, or a custom structure input 927 
file, when necessary, trim them as requested, and generate desired MutateX folding free energy scans with 928 
a predictable directory structure. It only requires as input a csv file with metadata on the desired scan and a 929 
configuration file with details on the run to be performed. It is available at https://github.com/ELELAB/mu-930 
tatex_pipelines/tree/main/custom_collect_scan.  931 
Once such a scan is available, it is possible to use a second Snakemake pipeline, called MAVISp_automati-932 
zation, which performs most of the steps that are necessary to annotate a protein for a MAVISp simple mode 933 
entry. Similarly to the previous pipeline, it only requires metadata on the target protein to be analyzed, as 934 
well as a MutateX mutational scan. It generates a dataset that can then be imported into the MAVISp data-935 
base, except for predictions performed using Rosetta-based methods, since these are much more computa-936 
tionally expensive and need to be performed separately using the RosettaDDGPrediction pipeline55. Using a 937 
Snakemake pipeline allows to improve efficiency and scalability, allowing to use multi-core system to process 938 
several proteins or perform different analyses in parallel. It is available at https://github.com/ELELAB/MA-939 
VISp_automatization. 940 
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 941 
Data Availability 942 
 943 
The data can either be consulted through our web server (https://services.healthtech.dtu.dk/services/MA-944 
VISp-1.0/) or as individual CSV files in the OSF repository https://osf.io/ufpzm/. Other raw data and utilities 945 
can be found at the MAVISp extended data OSF repository (https://osf.io/y3p2x/)  Reports for several proteins 946 
are available at https://elelab.gitbook.io/mavisp/.  947 
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