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The role of genomic variants in disease has expanded significantly with the advent of advanced sequencing
techniques. The rapid increase in identified genomic variants has led to many variants being classified as
Variants of Uncertain Significance or as having conflicting evidence, posing challenges for their interpretation
and characterization. Additionally, current methods for predicting pathogenic variants often lack insights into
the underlying molecular mechanisms. Here, we introduce MAVISp (Multi-layered Assessment of Varlants by
Structure for proteins), a modular structural framework for variant effects, accompanied by a web server
(https://services.healthtech.dtu.dk/services/MAVISp-1.0/) to enhance data accessibility, consultation, and re-
usability. MAVISp currently provides data over 1000 proteins, encompassing more than eight million variants.
A team of biocurators regularly analyzes and updates protein entries using standardized workflows, incorpo-
rating free energy calculations or biomolecular simulations. We illustrate the utility of MAVISp through selected
case studies. The framework facilitates the analysis of variant effects at the protein level and has the potential
to advance the understanding and application of mutational data in disease research.
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Structure-based assessment of variants with MAVISp

Introduction

We are witnessing unprecedented advances in cancer genomics, sequencing’, structural biology?, and high-
throughput multiplex-based assays®*. While sequencing approaches can identify alterations in the genome,
understanding the molecular mechanisms of these variants remains a challenge. Although many variants in
human genes associated with disease are currently known, the identification of their effects on human health
is lagging behind’. Substantial evidence, which is necessary to classify variants according to their effects, is
often lacking or contradictory in nature. Consequently, Variants of Uncertain Significance (VUS) or variants
found to have conflicting evidence are continuously identified and reported in variant databases®-'' . VUS
remain an outstanding problem which complicate diagnosis and lead to suboptimal diagnosis or choice of
therapy 2.

At the same time, the bioinformatics community has developed various approaches for predicting the impact
of variants on human health, many of which are benchmarked against or complemented by experimental
data and cellular readouts'*"’ In this context, experimental multiplex assays deliver good quality and high-
throughput assessment of the effect of variants on different readouts and have effectively been used to aid
clinical variant interpretation. '*'°These computational and experimental approaches allow to classify variants
for their potential pathogenic or benign effects, which are then reported in different repositories and compen-
dia’ 10, In fact, computational methods are currently considered supporting evidence for variant classification,
according to recent revisions of the American College of Medical Genetics and Genomics/Association for
Molecular Pathology (ACMG/AMP) variant classification guidelines®. Variant effect predictors (VEPs), meth-
ods designed to predict the effect of a mutation at the genome or protein level, have made considerable
progress, as outlined in recent reviews?'**. VEPs have classically relied on sequence data and variants with
known classifications.

Nonetheless, in recent years, the advent of AlphaFold222425 and other similar methodologies has enabled
the prediction of accurate three-dimensional (3D) protein structures and complexes, often with a quality com-
parable to experiments. This, in turn, enabled the inclusion of information about protein structure in machine
learning models, which are among the best-performing available VEPs?'. A well-known example of this is
AlphaMissense?®, which is based on a deep learning model similar to AlphaFold2. Additionally, it simultane-
ously learns to perform structure prediction and trains an unsupervised protein language model, thereby
incorporating structural information into the prediction. The latter was then fine-tuned for a variant classifica-
tion task. Approaches based on protein language models (such as ESM-1b?” or, more recently, ESM-228 and
ESM-329), which are unsupervised models of protein sequence, have also shown good performance when
used in variant effect prediction tasks®-°. ESM-32° already incorporates structural information into its training,
through specialized tokens, whereas protein sequence models have been used in conjunction with structural
information in various ways®'*?. Even a model such as GEMME, which is an epistatic model entirely based
on sequence conservation, has been supplemented with structural information as structure-derived features
in ESCOTT?. Rhapsody-2 is a VEP that incorporates features derived from protein structure and dynamics
within a machine learning framework*. Finally, the ability to perform long and accurate biomolecular simula-
tions and robust physical models allows the exploration of conformational changes and protein dynamics
across different timescales®.

In previous pilot projects, we explored structure-based methods to analyze the impact of variants in coding
regions of cancer-related genes, focusing on their consequences on the protein product®®=*. We propose that
these methodologies could be widely applied to study disease-associated variants. When formalized and
standardized, this approach can complement existing methods for predicting pathogenic variants, such as
the aforementioned AlphaMissense?6. Most available VEPs estimate the likelihood of damaging effects of
variants, but do not provide evidence of variant effects in relation to specific altered protein functions at the
cellular level. On the contrary, with this contribution, we aim to link the effects of variants to specific underlying
molecular mechanisms?. A mechanistic understanding of variant effects can help the design of strategies in
disease prevention, genetic counseling, clinical care, and treatment. Moreover, from a fundamental research
perspective, mechanistic knowledge is also essential for designing and prioritizing experiments to investigate
the underlying molecular causes of disease.
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Structure-based assessment of variants with MAVISp

Considering this, we developed MAVISp (Multi-layered Assessment of Varlants by Structure for proteins) to
enable high-throughput variant analysis within standardized workflows. MAVISp integrates results from VEPs
and structure-based predictions of variant effects on several protein properties. The data are accessible
through a Streamlit-based website for consultation and download (https://services.healthtech.dtu.dk/ser-
vices/MAVISp-1.0/). Additionally, we maintain a Gitbook resource with detailed reports for individual proteins
(https://elelab.gitbook.io/mavisp/).

With this publication, we provide data on in silico saturation mutagenesis for all possible variants at each
mutation site with structural coverage for 1096 proteins and over eight million variants. New data and updates
of existing entries will be continuously released. Currently, we are capable of processing up to 20 new pro-
teins weekly, which are deposited in a local version of the database. The public database is updated quarterly.
Based on recent statistics (https:/elelab.qgitbook.io/mavisp/documentation/coverage-and-statistics), we an-
ticipate providing 80-100 new proteins with each update, along with additional modules for existing entries.
In this manuscript, we provide an overview of the methodology and show examples of data analysis and
application.
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Results
Overview of MAVISp and its database

MAVISp performs a set of independent predictions, each assessing the effect of a specific amino acid sub-
stitution on a different aspect of protein function and structural stability, starting from one or more protein
structures. These independent predictions are executed by the so-called MAVISp modules (Fig. 1a). MAVISp
can be applied to individual three-dimensional (3D) protein structures and their complexes (simple mode) or
to an ensemble of structures generated through various approaches (ensemble mode). The framework is
modular, allowing all the modules or only a selected subset to be applied, depending on the case study.
Each module relies on Snakemake, Dask workflows, or Python scripts, all of which are supported by specific
virtual environments. The modules are divided into two main categories: (i) modules to retrieve and select
structures for analyses (shown in orange in Fig. 1a), (ii) modules to perform analyses related to variant as-
sessment or annotations (shown in blue in Fig. 1a). Each module includes a strictly defined protocol for
computational analysis that can be carried out either step by step or automatically embedded in more com-
prehensive pipelines (Methods). They are designed to ensure consistency across all the proteins under in-
vestigation and to enhance reproducibility and repeatability. Our prediction modules are also complemented
by available experimental data or already available predictions that can be integrated in the MAVISp dataset,
such as those for VEPs (shown in green in Fig. 1a). All the resources used in the MAVISp framework are
reported in Table S1, some of which have been developed within this work.

The modules are used in the context of the overall MAVISp workflow (Fig. 1b), which is designed to enable
multiple biocurators to work concurrently and independently on distinct proteins. Data managers defined a
priority list of targets that are analyzed in batches by biocurators, depending on the specific research project
requirements. Additional targets of interest for the research community can be requested, as explained in the
documentation on GitBook.

The workflow is designed as a set of consecutive steps that act on a protein of interest at a time. As the first
step, once a protein of interest has been selected, a biocurator retrieves structural and functional information
about it, along with key identifiers (e.g., gene name, UniProt AC, RefSeq identifier) for the next steps. Addi-
tionally, the biocurator proposes a trimming strategy for the protein, e.g., identifying one or more sets of
contiguous residues in the protein structure that can effectively serve as input for the prediction steps. This
step entails considering only well-structured and high-accuracy regions of our proteins, which is crucial since
most MAVISp modules are not designed to handle large intrinsically disordered regions. In selected cases,
to avoid potential bias in our structural calculations, the curator may edit the structure by removing long
disordered inclusions in structured regions. Furthermore, in the MAVISp ensemble mode, where he ENSEM-
BLE GENERATION module should be carried out, the biocurator identifies the initial structures for the simu-
lations to be performed on the protein target in its free or bound state with other biomolecules and performs
the necessary simulations to obtain the final structural ensemble. Once the protein structure or structural
ensemble, depending on the mode, is available, the biocurator works with each available module and obtains:
i) a list of variants that MAVISp will annotate (see Materials and Methods for details) and ii) the final predic-
tions for each module. To do so, biocurators adhere to strict workflows for data collection based on a set of
procedures codified in each module, which is mostly automated via the use of Snakemake pipelines. Once
this is completed, the MAVISp data managers will import and aggregate the data using the MAVISp Python
package (https://github.com/ELELAB/MAVISp). This step also allows to perform sanity checks, per-module
data classifications, and write the results in a human-readable table format, constituting the MAVISp data-
base. The database files are the first product of MAVISp and contain the relevant collected data and metadata
for each of the identified variants (https://services.healthtech.dtu.dk/services/MAVISp-1.0/).

The datasets from the MAVISp database can then be further used in two ways. First, biocurators or data
managers can perform a set of analyses, referred to as downstream analyses, which are generated down-
stream of database creation. These analyses result in the generation of publication-ready figures that sum-
marize the predicted effects for each variant and assist results interpretation.

Furthermore, the biocurators use data from the downstream analysis to create a report in GitBook (https://ele-
lab.qgitbook.io/mavisp/), using a standard Markdown template and a semi-automated procedure. Biocurators
and data managers also act as reviewers for reports created by their peers. A review status is assigned to
each GitBook entry to guide users regarding the quality and integrity of the curated data. To achieve this, we
defined four review status levels (i.e., stars) for each protein entry (https://elelab.gitbook.io/mavisp/documen-
tation/mavisp-review-status).
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Fig. 1. Overview of MAVISp components. (A) MAVISp includes different modules, each managed by workflow engines or dedicated tools. The
modules highlighted in orange handle the selection and collection of protein structures, while the modules in blue and purple are dedicated to structural
analyses of variant effects in relation to protein functional- or stability-related properties. Additionally, the framework provided modules with results
from VEPs and scores derived by experiments, such as deep mutational scans (green). The procedure begins with a gene name, its UniProt and
RefSeq identifiers and the desired structural coverage. For each gene, all the steps can be conducted on a standard server with 32-64 CPUs. The
only exceptions are: i) the ENSEMBLE GENERATION module, which includes all-atom MD simulations, and ii) Rosetta-based calculations on binding
free energies and folding/unfolding free energy calculations. Depending on the simulation length and system size, these might require access to HPC
facilities. On the left, the simple mode for the assessment is illustrated, which uses single experimental structures or models from AlphaFold2 or
AlphaFold3. On the right, the ensemble mode is schematized in which a conformational ensemble for the target protein or its complexes is applied.
Hereby, we consider a conformational ensemble a collection of 3D conformations of the protein generated by a sampling method such as molecular
dynamics or provided by NMR structures in the PDB (B) Scheme of the current workflow for the MAVISp database and websever. Biocurators apply
specific workflows and protocols within each MAVISp module to generate structure-based predictions of changes linked to variants in each protein
target. In doing so, they take advantage of the MAVISp toolkit as well as our mutation sources. The results are gathered into a text-based database.
The data are further processed by the MAVISp Python package, which performs consistency checks, aggregate the data and outputs human-readable
CSV table files, that make up the MAVISp database. These CSV files are imported by the Streamlit web app, powering the MAVISp webserver

(hitps://services.healthtech.dtu.dk/services/MAVISp-1 .0/), where the data are available for interactive visualization and download. In addition, the
MAVISp database can be used to generate graphical representations of the data, such us dot plots, lollipop plots, and UpSet plots. Finally, based on
the information gathered so far, we provide GitBook reports to facilitate the interpretation of the results: https://elelab.gitbook.io/mavisp/.

Finally, the MAVISp database is presented through a user-friendly Streamlit-based website (https://ser-
vices.healthtech.dtu.dk/services/MAVISp-1.0/). The web app includes various visualizations to aid the inter-
pretation of MAVISp results that are essentially equivalent to the downstream analyses outlined above: (a) a
dot plot displaying classifications for each variant across MAVISp modules, experimental data (if available),
and the VEP results, (b) a lollipop plot aggregating relevant mechanistic indicators (i.e., MAVISp-identified
effects at the structural level) associated with potentially pathogenic variants, and (c) an interactive repre-
sentation on the 3D structure, showing the localization of mutation sites identified in (b). These features are
designed to support the interpretation of results and facilitate the identification of variants with specific
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Structure-based assessment of variants with MAVISp
mechanisms and multiple effects. The source code for the MAVISp Python package and the web application
are available on GitHub (https:/github.com/ELELAB/MAVISp), while the complete dataset can be down-
loaded from an OSF repository (https://osf.io/ufpzm/ ). The OSF repository also include previous version of
the database. Both source code and data are freely available and released under open-source or free li-
censes.
We invite requests on targets or variants that are not yet available in MAVISp or scheduled for curation. We
also welcome contributors as biocurators or developers, pending training and adherence to our guidelines
(https://elelab.gitbook.io/mavisp). To facilitate entrance into the MAVISp community of biocurators and de-
velopers, we organize training events, research visits and workshops.
Notably, a comprehensive update will be conducted annually to incorporate new versions of external tools or
resources used by MAVISp, ensuring that resources remain current. Moreover, we continuously expand our
toolkit and develop new modules to enable even more comprehensive assessments. The criteria for including
new methods and approaches in the framework are detailed in the GitBook documentation (https://elelab.git-
book.io/mavisp/documentation/how-to-contribute-as-a-developer).

MAVISp modules for structure collection and selection

MAVISp includes various modules to select and model the structures of interest in both ensemble and simple
mode (Fig. 1a).

The STRUCTURE SELECTION module enables biocurators to identify the starting structure for their study,
both for models of the free and bound states of the protein of interest. This module includes structure retrieval
from the Protein Data Bank (PDB)39, the AlphaFold Protein Structure Database?5, or through the generation
of initial models with AlphaFold34°, AlphaFold2? and, AlphaFold-multimer?4. In addition, it streamlines the
selection of structures in terms of structural quality, experimental resolution, missing residues, amino acidic
substitutions with respect to the UniProt reference sequence, as well as the AlphaFold per-residue confi-
dence score (pLDDT), integrating tools such as PDBminer*'. Using AlphaFill** further assists in identifying
cofactors to be included in the model structure or to identify mutation sites that should be flagged, if located
in the proximity of a missing cofactor in the structure model. When necessary, a workflow is available to
reconstruct missing residues or design linkers to replace large, disordered loops within structured domains
(Methods).

According to the protocol established for the generation of the models, we retain 3D structures with reason-
able accuracy based on parameters such as pLDDT, Predicted Aligned Error (PAE), and pDOCKQ2*. In
addition, the module includes protocols based on AlphaFold 2444 or comparative modeling*>4¢ when the com-
plex between the protein target and the interactor involves Short Linear Motifs (SLiMs).

The INTERACTOME module aids the identification of protein interactors for the target protein and their com-
plex structures by querying the Mentha database*’, the PDB, and experimentally validated proteome-wide
AlphaFold models 48, as well as the STRING database*® (Methods). Once a suitable set of interactors has
been identified, the information is used to predict protein complex structures, which are then utilized in the
subsequent steps (i.e., the LOCAL_INTERACTIONS module, see below).

The ENSEMBLE GENERATION module allows the use of structural ensembles from different sources, such
as NMR structures deposited in PDB, coarse-grained models for protein flexibility (e.g., CABS-flex?%) or all-
atom Molecular Dynamics (MD) simulations (with GROMACS?' and PLUMED"**) of the protein structure or
its complexes. The choice of the method to be used is based on the required accuracy of the generated
ensemble and the available computational resources. Once individual structures or structural ensembles for
the protein candidate are selected — either alone or with interactors - the analysis modules can be used.

MAVISp modules for structural analysis

MAVISp integrates different analysis modules for both ensemble and simple mode (Fig.1a). The minimal set
of data required to import a protein target and its variants into the MAVISp database includes the results from
the STABILITY and PTM modules, along with predictions from VEPs. The STABILITY module is devoted to
estimating the effects of the variants on the protein structural stability using folding free energy calculations
(Methods). This module leverages workflows for high throughput in silico mutagenesis scans®+%5 and a newly
implemented protocol for RaSP% (Methods). All the methods used in this module predict change of free
energy of folding upon the insertion of an amino acid substitution, and predictions are performed using FoldX,
Rosetta, or RaSP. Once these predictions have been collected, MAVISp applies a consensus approach to
classify the effect of the variants (Methods). The defined thresholds for changes in free energy are based on
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evidence that shows that variants with changes in folding free energy below 3 kcal/mol do not exhibit a
marked decrease in stability at the cellular level 5758, Thus, MAVISp defines the following classes for changes
in stability: stabilizing (AAG = - 3 kcal/mol with both methods, FoldX and Rosetta or RaSP), destabilizing
(AAG = 3 kcal/mol), neutral ( -2 < AAG < 2 kcal/mol), and uncertain (-3 < AAG < -2 kcal/mol or 2 < AAG <3
kcal/mol). A variant is also classified as uncertain if the two methods would classify the effect of the variant
differently. Since March 2024, we adopted the consensus between RaSP and FoldX as a default for data
collection, after performing a benchmark using the MAVISp datasets (Supplementary Text S1 and
https://github.com/ELELAB/MAVISp RaSP_benchmark). RaSP provides a suitable solution for high-
throughput data collection compared to the CPU-intensive scans based on Rosetta. In low-throughput stud-
ies, where we focus in detail on a target protein, we can include Rosetta data, which are computationally
more demanding.
The LOCAL INTERACTION module can be applied if the STRUCTURE SELECTION and INTERACTOME
modules identify at least a suitable structure of the complex between the target protein and another biomol-
ecule. The LOCAL INTERACTION module is based on estimating of changes in binding free energy for
variants at protein sites within 10 A of the interaction interface, using protocols and consensus strategies that
mirror those for STABILITY. In this case, we use a combination of FoldX and Rosetta calculations (Methods).
Binding free energy thresholds are set based on the expected error margins of the predictors, approximately
+1 kcal/mol, as outlined by the authors of the methods and in accordance with general good practice in the
literature. This approach addresses the scarcity of experimental datasets on amino acid substitutions that
impacting protein-protein interactions® ', which are often constrained by system heterogeneity, limited mu-
tation numbers, or both, thereby complicating reliable benchmarking. We rely on a consensus approach be-
tween the results of FoldX and Rosetta on changes in binding free energies upon amino acid substitution.
We classify a variant as stabilizing (both methods predict AAG <= -1 kcal/mol), neutral (-1 kcal/mol < AAG <
1 kcal/mol) or destabilizing (AAG >=1 kcal/mol). Cases in which the two methods disagree on the classifica-
tion, or for which we do not have a prediction for both methods, and the side chain relative solvent accessible
area of the residue is >= 25%, are classified as uncertain. This is because, in high-throughput data collection,
we cannot exclude the possibility that the site interacts if it is solvent exposed, as often in structural biology,
only part of the 3D structures of protein-protein complexes are available or can be modelled. We also included
support for LOCAL INTERACTION for protein and DNA interactions, as well as for homodimers. Notably, a
strength of our approach is to provide annotations for the effects of protein variants on various biological
interfaces for the same target protein.
In the ensemble mode, the STABILITY and LOCAL INTERACTION modules are used on ensembles of at
least 20-25 structures from the simulations or on the three main representative structures upon clustering,
depending on the free energy calculation scheme to apply. The results obtained for each structure are then
averaged, and classification is performed with the same strategies we use in simple mode using these aver-
age values. This approach is used to mitigate limitations due to lack of backbone flexibility when these free
energy methods are applied to just one single 3D structure®® 6263,
The LONG-RANGE module applies coarse-grained models to estimate allosteric free energy changes upon
amino acid substitution based on AlloSigMA2%. The protocol followed by the LONG-RANGE module has
recently been updated and benchmarked using experimental data from deep mutational scans®5. Details on
the parameters and steps for analysis are also provided in the Methods. Variants are annotated as destabi-
lizing (positive changes in allosteric free energy), stabilizing (negative changes in allosteric free energy),
mixed effects (both conditions occur), or neutral if the variant does not cause any significant change. Addi-
tionally, variants that do not cause a significant change in residue side-chain volume are annotated as un-
certain. In the ensemble mode, we applied graph theory metrics based on changes in the shortest commu-
nication paths using atomic contact-based Protein Structure Network® . This analysis, combined with the
AlloSigMA2 data, allows pinpointing variants with long-range effects to functional sites or protein pockets that
could serve as interfaces to recruit interactors or ligands.
The FUNCTIONAL SITES module in simple mode allow to evaluate the effect of variants at (or in the proximity
of) the active site of enzymes or cofactor binding sites of proteins and it is based on analyses of contacts with
the second sphere of coordination of the residues belonging to these sites (see Methods).
The FUNCTIONAL DYNAMICS module in ensemble mode includes enhanced sampling simulations to fur-
ther assess the local or long-range effects of a variant. As a first example, we applied this class of methods
to validate the long-range effects predicted for p53 variants on the DNA-binding loops®, and included such
results in the MAVISp database.
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The PTM module currently supports phosphorylation only, annotating the effect of variants at phosphorylata-
ble sites. It evaluates how the loss or changes of phosphorylation sites may impact protein regulation, stabil-
ity, or interaction with partners. To this goal, the module collects analyses and annotations such as solvent
accessibility of the mutation site, inclusion of the site in phosphorylatable linear motif, comparison between
predicted changes in folding or binding free energy upon amino acid substitution or upon phosphorylation at
the site of interest. In the module, we applied a custom decision logic (Supplementary Text S2) to derive
the classification for each variant as neutral, damaging, unknown effect, potentially damaging or uncertain.
The identification of the phosphorylation sites in the PTM module is based on known experimental phospho-
sites and SLiMs, as retrieved by Cancermuts®’. These data are complemented by a manually curated selec-
tion of phospho-modulated SLiMs (https:/github.com/ELELAB/MAVISp/blob/main/mavisp/data/phospho-
SLiMs _09062023.csv). For solvent-inaccessible phosphorylatable residues, the effects are classified as un-
certain in the simple mode. In these cases, the ensemble mode is required to investigate wheatear a cryptic
phosphorylated site may become accessible upon conformational changes®®. Of note, the current version
of the PTM module has been designed based on fundamental principles on how phosphorylation can affect
the protein structure and should be used to identify variants for further investigation, particularly for experi-
mental research. Benchmarking the effectiveness of this module would be difficult at present time, given the
relatively small number of amino acid substitutions that can affect phosphorylation currently present in the
MAVISp database, especially considering those for which experimental data is available. To this purpose,
we are currently in the process of curating and including more proteins relevant to benchmarking the PTM
module. These will include experimental data on protein stability and protein-protein interactions upon phos-
phorylation 70 71,

MAVISp includes further analyses and annotations, such as predictions on regions involved in early folding
events’, pLDDT score, secondary structure, and side-chain solvent accessibility, which can assist in the
interpretation of the results.

Variant Effect Predictors included in MAVISp

MAVISp provides annotations for the variant interpretation reported in ClinVar®, or calculated with REVEL3,
DeMaSk’™ , GEMME", EVE (Evolutionary model of variant effect)’s , and AlphaMissense2é. In MAVISp, each
of them is handled by a separate module. The results of these VEPs can be combined with the results from
the MAVISp structure-based modules to understand variant effects and to prioritize variants for other studies,
as detailed in the examples below.

Sources of variants supported by MAVISp

By default, we apply in silico saturation mutagenesis, which means that we provide predicted effects for each
variant of a target protein at any position that has a structural coverage. Additionally, all variants reported for
the target protein in COSMIC, cBioPortal, and ClinVar are annotated within MAVISp. We routinely update
and maintain the entries in the MAVISp database to include up-to-date annotations using Cancermuts®’. All
Cancermuts annotations for MAVISp and other protein targets are also available at the Cancermuts web-
server, https://services.healthtech.dtu.dk/services/Cancermuts-1.0/. In addition, annotations from lists of var-
iants from other studies, such as data on cohort-based or nationwide studies or other disease-related ge-
nomic initiatives, can be manually introduced.

Currently, MAVISp includes data on eight+ million variants from 1096 proteins (at the date of 20/11/2025).
An overview of the currently available data and how to use them to address different research questions is
described in detail in the next sections. The first targeted studies in which MAVISp has been applied to
understand variants impact in rare genetic diseases’ or involved in cancer hallmarks?”:78 are also suitable
examples

Interpretation of the results of MAVISp

MAVISp provides a comprehensive set of results for many variants; therefore, we have devised a few strat-
egies that can be useful to make sense of the MAVISp data for a few common use cases that users might
encounter.
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Structure-based assessment of variants with MAVISp
One of the most important outputs from the downstream analyses, of MAVISp is the so-called dot plot, which
is available on the GitBook reports or released within the target studies of specific proteins (see below for
examples). A dotplot can also be generated within the MAVISp webserver in the “Classification” tab, for up
to 50 variants of choice simultaneously. This plot showcases i) the classification of the different VEPs inte-
grated in MAVISp, ii) the classification performed by each MAVISp module, iii) the classification of variants
in ClinVar, when available, as variant label colors. The code to generate dot plots from MAVISp csv file is
also available in GitHub (https://github.com/ELELAB/mavisp_accessory_tools/tree/main/tools). The MAVISp
modules classification has a different meaning depending on the considered module: a variant classified as
damaging for a VEP usually means it is predicted as functionally damaging or pathogenic (depending on the
predictor), while a variant classified as damaging for stability just means that the variant is predicted to com-
promise the structural stability of the protein, and one classified as damaging by the long range module is
predicted to have significant long-range effects, and so on. Another representation which depends on further
processing of a text output created by dot_plot.py (i.e., alphamissense_out.csv) provides a concise repre-
sentation of the classes of mechanistic indicators found for each variant in the form of lolliplots. Lolliplots are
also available in the GitBook report or in the “Damaging mutation" tab on the website, that shows only those
variants that are at the same time: i) classified as pathogenic for AlphaMissense, ii) classified as loss-of-
fitness or gain-of-fitness by DeMaSk and iii) damaging for the respective structure-based module of MAVISp.
The downstream analysis toolkit also provides the code to prepare upset plots or venn diagrams for the
variant source (as reported in Gitbook).
Consulting the available dot plot for an entry of interest is therefore the most straightforward place to start to
access MAVISp data. To identify a subset of variants of interest, we have defined the following strategy for
a data-driven discovery of variants of interest with little other information (i.e. VUS, conflicting evidence or
variants not reported in ClinVar). In this case, the dot plot allows to understand first which variants are pre-
dicted to be pathogenic, by using the AlphaMissense classification; these are the ones reported as Damaging
in the AlphaMissense row. For these, we also consider the output of DeMaSk, that define whether the variant
is classified as gain-of-fitness or loss-of-fitness. If a variant fullfil these criteria, we then consider the structure-
based MAVISp predictions for mechanistic indicators, that give us one or more explanations of the reason
for the effect of the variant. For instance, the variant could be destabilizing the protein structure and will be
reported with an altered stability as mechanistic indicator. Another common use case is to use MAVISp to
get a mechanistic interpretation of variants already known in ClinVar. In this case, if the variant already has
an interpretation of Pathogenic, Likely pathogenic, Benign, or Likely benign, we can just refer to the MAVISp
mechanistic interpretation.
Importantly, researchers should always refer to specific biological or phenotypical contexts when interpreting
predictions from MAVISp, including their knowledge of the biological role the protein investigation has or
concerning the nature of the disease of interest. For instance, predictions might lead to different conclusions
if the protein under consideration is from a tumor suppressor or from an oncogene.
In the next section we illustrate some of the applications of data collected with MAVISp through case stud-
ies (Table S2 for mapping of case studies and modules).

COSMIC Tumor Suppressor Genes and Oncogenes

At first, we prioritized MAVISp data collection of known driver genes in cancer, i.e., tumor suppressors and
oncogenes. To this goal, we collected data for the COSMIC Tumor Suppressor Genes (COSMIC v96), while
the collection of the COSMIC Oncogene and Dual Role targets is ongoing. Furthermore, we have been in-
cluding genes reported as a candidate driver by the Network of Cancer Genes (NGC)7°.

The MAVISp datasets on cancer driver genes can assist the identification of molecular mechanisms of pre-
dicted or known pathogenic variants in these genes, as well as to aid the characterization of Variants of
Uncertain Significance (VUS). A recent example is the study we performed on BRCA278.In this study, we
analyzed BRCA2 variants reported in ClinVar, comparing the predictions from the STABILITY and LOCAL
INTERACTIONS modules of MAVISp with results from a multiplex assay which measured the impact of these
variants on cell viability. We were able to explain the effect of 84 BRCAZ2 variants, which were classified as
non-functional by the assay, and for which MAVISp predicted effects on protein stability or binding to the
binding partner SEM1.
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Fig. 2. Variants with effects on structural stability in the tumor suppressor protein BLM. (a) The cartoon representation shows the trimmed
mode BLMagsg-1290 and the spheres highlight the C, atom of the 41 positions harboring 45 variants predicted as destabilizing by the MAVISp STABILITY
module (RaSP/FoldX consensus) and annotated in ClinVar. Among these, Y764C, G891E, and L896P are also reported in CBioPortal, whereas
F663I, L845P and C901Y are also reported in COSMIC. The two views correspond to the same domain rotated by 180°. The backbone and spheres
are colored according to the AlphaFold pLDDT scores, i.e., blue - very high (pLDDT > 90), cyan - confident (70 < pLDDT <= 90), yellow - low (50 <
pLDDT <= 70), and orange - very low (pLDDT <= 50). The labels indicate the mutation sites and the corresponding variants and are colored by ClinVar
classification., uncertain significance (black), conflicting interpretation of pathogenicity (orange), and likely pathogenic (red). (b) The stacked bar plot
shows the distribution of destabilizing BLM variants across secondary structure elements as defined by DSSP ( (i.e., H = a-helix, B = residue in
isolated B-bridge, E = extended strand, participates in B ladder, G = 3-helix (310 helix), | = 5-helix (r-helix), T = hydrogen bonded turn, S = bend, and
“” = no secondary structure identified). The results refer to the data available in the MAVISp database on 12th September 2025. More information
about BLM analyses with MAVISp can be found in the corresponding GitBook report: https://elelab.gitbook.io/mavisp/proteins/blm

In the case of tumor suppressors, the identification of variants that might lead to loss of function is particularly
important. Given structure-function relationship in proteins, structural stability represents a key determinant
that can be disrupted by amino acid substitutions, potentially resulting in local or more drastic misfolding and
loss of functiong As an example of loss of function due to changes in stability, we report the analysis of the
MAVISp entry for the tumor suppressor BLM, a DNA helicase involved in DNA replication, recombination
and repair®'. We identified a total of 1170 predicted destabilizing variants according to the STABILITY mod-
ule, of which 45 annotated in ClinVar (Fig. 2a). Among these, 82% destabilizing variants was found in struc-
tured regions of the protein, while the remaining 18% are located in disordered residue stretches (Fig. 2b).
Of the ClinVar-reported variants, 42 are classified as VUS. Y811C and C901Y are reported with conflicting
interpretations and only G952A is reported as likely pathogenic.

These results provide a starting point for variant characterization and prioritization. As suggested in the pre-
vious section, our results can be used to guide the selection of a subset of variants that have a predicted
pathogenic impact from AlphaMissense, with a loss-of-fitness signature according to DeMaSk and that we
predict damaging for stability., These would be suitable candidates for experimental validation. Concerning
BLM, MAVISp identifies 41 ClinVar VUS or variants with conflicting evidence that could be prioritized accord-
ing to these criteria (Table S3).

For example, depending on the size of the library to validate, methods such as flow cytometry sorting or
cycloheximide chase assays82#3 or use approaches based on multiplex technologies®**” would be useful to
validate our predictions

Integration of MAVISp data with experimental data

A useful feature of MAVISp is a dedicated module to curate and import experimentally derived scores on the
effects of the variants on different biological readouts (i.e., the EXPERIMENTAL DATA module, Fig. 1a).
These data can be directly compared with the structural properties we predict with MAVISp, for a variety of
purposes. For example, they can serve as additional layer of information respect to the structure-based
mechanistic indicators themselves. Additionally, as done in the aforementioned BRCA2 study, they can be
used as a source of information for variants with a known detrimental effect that can depend on different
mechanisms of action for each variant, which can be investigate using MAVISp. In cases such as this, MA-
VISp helps identifying the possible mechanism for which variants have an effect, for further in-depth investi-
gation.

Experimental data can also be used to validate the results of certain MAVISp modules, for cases in which
the predicted structural properties are related to the experimentally tested biological readouts. Deep muta-
tional scans can also be used to benchmark or tune the thresholds used for classification performed by the
MAVISp modules, including structural properties. In this context, the format of MAVISp database files is
handy for further data processing, for example using biostatistical models or machine learning. In the case
of PTEN, we included data from available deep mutational scans, reporting on the effect of mutations on
cellular abundance or phosphatase activity848889 in its MAVISp entry. Cellular abundance represents a criti-
cal property that is often perturbed by missense mutations, and that can be altered by changes in protein
structural stability. We therefore compared predictions from the MAVISp STABILITY module—based on a
consensus of RaSP and FoldX —with protein abundance scores obtained from VAMP-seq assays 8489, To
compare the classification obtained by the stability module with the experimental data, we considered how
the abundance score from the experiment have been classified. Multiple classification strategies have been
used for these data: on one side, the ProteinGym benchmark dataset®! applies a threshold based on the
median of the abundance score (i.e., 0.77). Variants that scored lower than this threshold (>=22% reduction
of abundance relative to the wild-type) were classified as low abundant, whereas those that scored higher
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were considered to be similar to the wild-type. The second classification followed the original PTEN study
deposited in MaveDB (MaveDB ID urn:mavedb:00000013-a-1), which defines four abundance classes. In
this scheme, the 5% lowest-abundance synonymous variants corresponded to a score of 0.7184 | and variants
were classified into bin 1 (low-abundant, both score and confidence interval < 0.71), bin 4 (WT-like abundant,
both scores > 0.71), bin 2 (likely low-abundant, score < 0.71 but confidence interval > 0.71), and bin 3 (likely
WT-like abundant, score > 0.71 but confidence interval < 0.71). For this analysis, we retained only variants
in bins 1 and 4, to ensure an unambiguous classification. After applying these filters and excluding uncertain
variants defined by the STABILITY module, the MaveDB-based classification contained 1690 variants. To
enable a direct comparison between the two classification strategies, the ProteinGym-based dataset, which
initially comprised 3211 variants, was filtered to include the same 1690 variants as the filtered MaveDB da-
taset. The two classification schemes were found to be largely concordant, differing only for variants with
abundance scores between 0.71 and 0.77, which were considered damaging by ProteinGym and neutral by
MaveDB.

Fig.3 and Table 1 illustrate the performance of the MAVISp STABILITY classification against the classifica-
tion of experimental data on protein abundance for PTEN. In this first comparison, we applied the same
threshold suggested for this dataset from the benchmarking dataset ProteinGym?®?, which is based on the
median value of the DMS scores. The consensus approach provided by the STABILITY module of MAVISp
(accuracy 0.814) has an overall better performance in identifying variants that are found to be damaging in
the assay than those predicted to cause damaging effects according to GEMME or DeMaSk (Fig. 3b). Nev-
ertheless, this approach has a lower sensitivity (0.66) compared to GEMME. We thus wondered if the rela-
tively low sensitivity we obtained was due to cases with experimental scores too close to the median (Fig.
3c). Additionally, in the original study for PTEN and as deposited in the MaveDB®2%, a different classification
for the variant scoring based on four abundance levels was proposed, as detailed above. We thus performed
a comparison of the MAVISp results with the experimental dataset for the PTEN experiment from MaveDB
using the abundance level classes as a threshold (Fig. 3c), resulting in increases sensitivity for the methods
applied within MAVISp. The results on PTEN from MAVISp fits nicely with recent computational studies of
PTEN variants using Rosetta calculations of protein stability and analyses of sequence conservation'6.17.

Table 1. Performances of MAVISp modules and VEP predictors against experimental measurements of protein abundance and
phosphatase activity for PTEN.

Assay column comparison  threshold_mode sensitivity specificity accuracy precision F1 score
RaSP/FoldX consensus 0,666 0,954 0,814 0,928 0,771
GEMME ProteinGym ¢ 719 0,743 0,731 0,717 0,718
. DeMaSk 0,66 0,814 0,741 0,763 0,708
protein abundance assay
RaSP/FoldX consensus 0,707 0,955 0,845 0,927 0,802
GEMME MaveDB 0,759 0,748 0,753 0,706 0,732
DeMaSk 0,7 0,818 0,766 0,754 0,726
RaSP/FoldX + GEMME 0,776 0,653 0,697 0,551 0,644
phosphatase assay
RaSP/FoldX + DeMaSk 0,739 0,763 0,754 0,631 0,681
MaveDB
GEMME 0,751 0,68 0,705 0,563 0,644
DeMaSk 0,707 0,787 0,758 0,645 0,675

We next assessed whether MAVISp could also inform predictions of variant effects on PTEN phosphatase
activity. Experimental data from a cellular phosphatase assay (MaveDB ID urn:mavedb:00000054-a-1) were
classified as reduced (< 0.89), wildtype-like (0.89—1), or hyperactive (> 1). Here, we investigated whether
integrating MAVISp STABILITY data with VEP results could enhance predictive power, since reduced stability
is not the only possible mechanism for loss of phosphatase activity in mutated variants. We combined the
STABILITY results with GEMME or DeMaSk, applying a priority logic in which damaging calls from
GEMME/DeMaSk were given priority. This strategy produced performance comparable to GEMME or
DeMaSk alone (Fig.3d-e, Table 1). Notably, combining changes in folding free energies with GEMME
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increased sensitivity (0.78) but reduced specificity (0.653), yielding an F1 score comparable to that of
GEMME but lower than the one of DeMaSk (0.64; Fig.3d-e, Table 1).

Overall, with the examples in this section, we illustrate examples on how to use MAVISp data to compare
predictions and experiments, as well as how to integrate MAVISp modules on structural properties with VEP

results.
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Fig. 3. Comparison of GEMME, DeMaSk, and MAVISp STABILITY module predictions with experimentally-derived scores for protein abun-
dance and phosphatase activity of PTEN. (a) The trimmed AlphaFold structure (residues 1-351) of PTEN used for MAVISp stability module calculations is shown
as a cartoon, colored according to pLDDT scores.
(b-e) Histograms with performances of MAVISp STABILITY module, DeMaSk, and GEMME in predicting the effect of variants using VAMP-seq scores with ProteinGym
(b) and MaveDB (c) thresholds. (d-e) illustrates the performances of the same tools or their combination against an experimental functional readout that assess the
phosphatase activity at the cellular level.

Proteins involved in cancer hallmarks

To expand the contents of the MAVISp database, we have also been focusing on protein targets related to
cancer hallmarks®4, and in particular on proteins involved in cancer hallmarks related to protein clearance at
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the cellular level, i.e. the ability to escape cell death through apoptosis and autophagy, as well as kinases or
transcription factors involved in the regulation of cellular proliferation. Mitochondrial apoptosis is tightly regu-
lated by a network of protein-protein interactions between pro-survival and pro-apoptotic proteins. We inves-
tigated the mutational landscape in cancer of this group of proteins in a previous study®, which includes
structural analyses with different simple mode MAVISp modules for both the pro-survival proteins BCL2,
BCL2L1, BCL2L2, BCL2L10, MCL1 and BCL2A1, as well as the pro-apoptotic members of the family BOK,
BAX and BAK1. In these analyses, the C-terminal transmembrane helix has been removed since the current
version of our approach does not support transmembrane proteins or domains, illustrating an example on
how the STRUCTURE SELECTION module works.
Autophagy is a clearance mechanism with a dual role in cancer. The autophagy pathway relies on approxi-
mately 40 proteins, constituting the core autophagy machinery®. As an example of the application of MAVISp
to this group of proteins, we applied the simple mode to the markers of autophagosome formation MAP1LC3B
and the central kinase ULK1, building on the knowledge provided by previous work?*®’.
In the case of ULK1, we expanded our analysis to cover a larger part of the structure of the protein, meaning
that both the N-terminal (residues 7-279) and C-terminal domains (837-1046) have been used for the MAVISp
assessment. ULK1 also serves as an example of how to customize the trimming of an AlphaFold model to
exclude disordered regions or linkers with residues featuring low pLDDT scores, in simple mode. In fact, their
inclusion could lead to predictions of questionable quality. Disordered regions cannot be properly represented
by a single conformation, and the ensemble mode would be necessary to derive more reliable conclusions.
ULK1 featured 215 variants reported in COSMIC, cBioPortal and/or ClinVar, as shown in its dot plot (Fig.
4A), which was generated using the downstream analysis tools of MAVISp. Using the simple mode, 59 vari-
ants had predicted long-range mixed effects. Furthermore, eight had a damaging effect on stability, one had
a damaging PTM effect on regulation (S954N), one had a possible damaging PTM effect in function
(S1042T), and four variants (L53P, G183V, E191G, and L215P) are characterized by both effects on stability
and long-range communication (Fig. 4B-D). Most of the variants that were predicted to have long-range and
structure-destabilizing effects are in the N-terminal kinase domain of the protein, suggesting that mutations
in this domain could result in the inactivation of ULK1 by compromising its 3D architecture. We then per-
formed a one-microsecond MD simulation of the ULK1 N-terminal kinase domain (residues 3-279, PDB ID:
5CI7) to generate a structural ensemble for the MAVISp ensemble mode. In this case, we used an approach
based on graph analysis from a contact-based PSN (Methods), as provided by the LONG-RANGE module,
which verified if long-range communication occurs between mutation and response sites predicted by the
coarse grain model used in the simple mode. The ensemble mode also validates the prediction on the effect
of variants on stability that were done in simple mode, as it compensates for the none or limited mobility of
the protein main chain that characterize the used in the STABILITY module. Overall, the application of the
ensemble mode allowed to validate five variants with predicted long-range damaging effects (H72D, H72N,
E73D, E73K, and R160L) and two variants with a damaging effect on stability (G183V and L215P). The
predicted destabilizing (Fig. 4E) variant L215P has been also identified in samples from The Cancer Genome
Atlas (TCGA) *¢.
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542 Fig. 4. MAVISp ensemble mode to identify damaging variants in the autophagy kinase ULK1. a) We examined the central autophagy kinase
543 ULK1 using MAVISp, generating a saturation of all possible variants within the N-terminal (residues 7-279) and C-terminal domains (residues 837-
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1046), leading to a total of 8,962 variants. Of these, 215 variants have been identified in COSMIC, cBioPortal, and/or ClinVar databases. b) Among
the ones reported in the previous databases, eight variants were reported as pathogenic by AlphaMissense (L21P, L53P, G183V, E191G, G208S,
V211F, L215P, and W894G) and among these, four variants are predicted to have a damaging effect on both protein stability and long-range com-
munication (L53P, G183V, E191G, and L215P). c) Using MAVISp simple and ensemble modes, we identified 22 variants with destabilizing effects in
terms of folding free energy, long-range effects, or PTM effects in regulation or in function. The mutation sites are highlighted with spheres on the
AlphaFold models of the ULK1 N-terminal (left) and C-terminal (right) domains. d) We showed the predicted changes in folding free energy upon
amino acid substitution for each of the 22 variants as calculated by the STABILITY module of MAVISp with MutateX and RosettaDDGPrediction with
the simple mode (left) or with the ensemble mode (right). Interestingly, most of the variants that alter structural stability are located in the catalytic
domain of the enzyme. This suggests potential mechanisms for ULK1 inactivation. €) Summary of the predicted effects on the 22 variants of ULK1
that have been found damaging with at least one MAVISp module with the simple mode (upper) or with the ensemble mode (lower) using the dot plot
representation provided by the MAVISp toolkit for downstream analyses. Of note, the lower legend refers to the color of variants on the X-axis which
are related to the ClinVar effect category.

The MAVISp entry of the autophagy marker MAP1LC3B provides an example on how the data for the LOCAL
INTERACTION module can be obtained in a case of a protein that interacts with a functional motif embedded
in intrinsically disordered proteins, i.e., a short linear motif (SLiM). MAP1LC3B in fact is able to bind to pro-
teins harboring a so called LC3-interacting region (LIR)%’. In MAVISp, we report the results for the effect on
binding affinity of variants in MAP1LC3B or in its binding partners using three examples of this mode of
interaction modeling the binding of MAP1LC3B with the LIR regions of its binding partner SQSTM1 (Fig.5a),
ATG13, and Optineurin. In this case, we first applied the protocols for (phospho)-SLiM identification devel-
oped within the MAVISp framework (Methods) and PDBminer to identify possible starting structures. In the
case of optineurin, we further model the flanking regions””. We identified ten variants annotated in ClinVar:
nine reported as VUS (E102K, H86D, T29l, V911, P2R, L44P, L44F, D56G, and R11L) and one as benign,
i.e., E25Q (Fig.5a). MAVISp managed to predict a putative mechanistic explanation for the effect of four
variants (Fig.5b-d): T29I is predicted to disrupt regulation by phosphorylation, L44P has an effect on both
structural stability and long-range effects to distal sites, L44F and R11L have long-range effects (Fig 5b).
Additionally, a variant found in cancer studies, P32Q, is predicted to have a detrimental effect on structural
stability, confirming previous experimental results which showed propensity for aggregation3’. Of note, this
variant is identified with an uncertain prediction for the effect on stability in MAVISp simple mode, whereas
two different approaches for generating a conformational ensembles accounting for protein dynamics pre-
dicted a destabilizing effect (Fig 5d). Additionally, all the variants with a mechanistic indicator from MAVISp
are also predicted as pathogenic by AlphaMissense (Fig.5¢c-d) and are good candidates to further experi-
mental studies for their effects on the autophagy flux or other functional readouts. V91l is likely to be benign
variants since all the predictors identified neutral effects (Fig. 5¢c-d).
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Fig. 5. Analysis of MAP1LC3B VUS Variants from ClinVar. a) A structural model (PDB ID: 2ZJD) of the MAP1LC3B (green) interaction with the
LIR motif of SQSTM1(pink) highlights ten ClinVar-reported variants (E102K, H86D, T29I, V91l, P2R, L44P, L44F, D56G, R11L and E25Q) along with
the cancer-related variant P32Q. These variants are depicted as blue spheres on the structure. (b) Among these variants, five (R11L, T29I, P32Q,
L44F and L44P) are predicted as damaging by AlphaMissense. Interestingly, L44P shows a predicted damaging effect on both long-range communi-

cation and stability.

(c-d) Summary of the predicted effects on the 11 variants of MAP1LC3B as reported by MAVISp dot plot with the simple mode (c) or with the ensemble
mode (d) using the dot plot representation provided by the MAVISp toolkit for downstream analyses. Of note, the lower legend refers to the color of
variants on the X-axis which are related to the ClinVar effect category.
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Application of MAVISp to transmembrane proteins and to variants associated to other diseases

The STABILITY and LOCAL INTERACTION modules do not support predictions for variants in transmem-
brane regions. A survey on methods to predict folding free energy changes induced by amin on transmem-
brane proteins suggested that existing protocols, based on FoldX or Rosetta, are suitable for soluble pro-
teins’®. Therefore, the protocols implemented in the MAVISp modules for transmembrane proteins only retain
those variants that are not in contact with the membrane. An example of a MAVISp entry for this class of
proteins is PILRA, which has a low pLDDT score in the transmembrane region, and has been therefore
excluded from the model, focusing on the analyses on the variants in the 32-153 region. In addition, we
included other transmembrane proteins in the database such as ATG9A and EGFR.

PILRA is a protein target connected to neurodegenerative diseases®, along with KIF5A, CFAP410, and
CYP2R1, illustrating the broad applicability of MAVISp to proteins involved in different diseases. Proteins
associated with other diseases, such as TTR, SOD1, and SMPD1, have also been included in the MAVISp
database. SMPD1 has been recently investigated in a targeted study using the ensemble mode of MAVISp
together with other methodologies, validating our results by means of experimental data measuring the re-
sidual catalytic activity of enzyme variants’6. As previously stated, MAVISp integrates curated experimental
data for specific target proteins, which can be analyzed together with the results from the computational
modules. To this goal, the dot plot representation provided by the downstream analyses toolkit of MAVISp
and by the MAVISp database achieves a complete overview of both the experimental and the computational
results (Fig. 6a-c) for SMPD1. Additionally, when a set of experimental data is available, it is possible to
evaluate the correlation between predictions and experimental data (Fig. 6d-e). For SMPD1, we have ob-
tained data on the residual catalytic activity of the enzyme for 135 variants®, available in the literature. Thanks
to the MAVISp protocol, we predicted the effect of amino acid substitutions on changes in folding free ener-
gies as well as data for predicted functional effects from VEPSs, which can be compared with the experimental
data. The score values produced by the VEPs were mildly correlated with the residual activity measurements
(Pearson correlation coefficient ~0.6). Of note, most of the variants that have a predicted destabilizing effects
on the stability are found at values of experimental residual activity lower than 20%, confirming what observed
in our previous study”® and suggesting that changes in stability for SMPD1 can be help identifying damaging
variants of this enzyme. Nonetheless, in this case, the experimental readout cannot be explained by stability
changes alone. Thus, variants found with low residual activity and functionally damaging (GEMME and
DeMaSk scores lower than -3 and -0.25, respectively) and that are neutral for stability according to MAVISp
are good candidates for further investigation. For example, biomolecular simulations or computational chem-
istry methods could be used to investigate the effects of these variants on the catalytic mechanism of the
enzyme and its lipid transport. Finally, variants, such as Y500H, which have a low residual activity, high loss-
of-fitness scores and are uncertain for the STABILITY module, can be analyzed for their propensity to fall in
early folding regions (see entry in the MAVISp database) and could be investigated in the ensemble mode
using enhanced sampling simulations to accurately estimate their folding free energy profiles.
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Fig. 6. MAVISp, GEMME, and DeMaSk predictions on the impact of SMPD1 variant subset.
A subset of SMPD1 variants, for which experimental data on enzyme activity have been selected, is shown with predictions from MAVISp, GEMME,
and DeMaSka-b) Scatter plots comparing DeMaSk (left) and GEMME (right) scores against experimental assay scores for enzymatic activity. The
red line represents the regression, while the dotted line marks the threshold below which enzyme activity is considered inactive. Dots are colored
based on the MAVISp STABILITY module classification (Rosetta/FoldX consensus): Destabilizing, Neutral, or Uncertain.

Conclusions and Future Perspective

MAVISp provides a multi-layered assessment of the effects of variants found in cancer studies or other dis-
eases using structural methods. MAVISp results are especially useful for variant interpretation and prioritiza-
tion. These results can be useful as a complementary resource to available pathogenic scores or high-
throughput experiments. MAVISp can help to pinpoint the effects linked to a pathogenic variant for further
studies.

A significant advantage of MAVISp is its comprehensive coverage, expanding beyond clinically identified
variants, by including novel variants yet to be characterized in other databases. This makes MAVISp a valu-
able resource for researchers and clinicians, facilitating the exploration of novel variants and their underlying
pathogenic mechanisms. MAVISp can help on one side to associated mechanistic indicators to variants that
are known or predicted pathogenic, as well as to aid in the characterization of the effects of VUS or variants
with conflict evidence at the molecular level. Finally, we envision that MAVISp could become, in time, a
community-driven effort and serve as a repository of data for the effects of disease-related variants more
broadly. The results reported in MAVISp will provide an atlas of functional annotations for disease-related
variants.

We have previously framed MAVISp in the context of others computational frameworks that collect data from
different sources or integrate different structure-based methods to characterize variants'®. This idea has led
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to the production of different attempts. Missense3D'0" predicts the impact of variants on an array of structural
features; ADDRESS'%? includes predictions on stability and intermolecular contacts for variant found in Uni-
Prot humsavar; MUTATIONEXPLORER'% uses Rosetta and RaSP to predict the effect of amino acid sub-
stitutions on stability or binding, on user-provided structures; VUStruct'®* selects relevant protein structures
for the protein of interest and performs a wide array of predictions, including on the effect of variants on
stability, binding surface, PTMs. The Genomics 2 Proteins' portal includes data from several sources, in-
cluding some overlapping with MAVISp such as Phosphosite or MaveDB, as well as features calculated on
the protein structure. ProtVar'%¢ also aggregates variant from different sources and includes both variant
effect predictors, prediction of change on stability upon amino acid substitution, as well as prediction of com-
plex structures. MAVISp, is, to our knowledge, the first resource to integrate data on binding free-energies,
data derived from molecular dynamics simulations, as well as experimental data from different sources, and
the first to integrate predictions on long-range effects as a database. While MAVISp has a lower coverage
than others, it includes carefully curated manual steps, such as during protein structure preparation and
simulation.
As the database grows, it will provide high quality data on different structural properties that can also be used
for benchmarking purposes or as features in machine learning models. To this goal, the stringent data col-
lection that we designed and present here is pivotal to build meaningful and accurate predictive models.
We would like to highlight previous studies that have demonstrated the usefulness of MAVISp and its proto-
cols. For example, we have showcased the versatility of MAVISp in characterizing the effects induced by a
redox post-translational modification of Cysteine (S-nitrosylation) using structural methods'” . We focused
on variants found in cancer samples for their capability to alter the propensity of cysteine to be S-nitrosylated,
or a population-shift mechanism induced by the PTM. The collection of data using MAVISp modules has
been pivotal to aggregate variants for each target of interest in the study on S-nitrosylation. The pipelines
developed in the study of S-nitrosylation will be integrated within the MAVISp PTM module, extending it
beyond support for phosphorylation, which is currently supported by MAVISp.
Alterations in transcription factors are often linked to aberrant gene expression, including processes such as
proliferation, cell death, and other cancer hallmarks'%8. Different mechanisms are at the base of alterations
in the activity of transcription factors in cancer, including point mutations. A previous study on TP53 served
as a platform to develop different modules currently available in MAVISp 8. We thus aim to expand the
MAVISp database to include more transcription factors. To this goal, one of the datasets under data collection
covers the protein targets from the TRRUST2 database®, which includes experimentally characterized tran-
scription factors and their targets, of which 150 have been already processed and included in the MAVISp
database.
Furthermore, MAVISp provides pre-calculated values of changes in folding or binding free energies and other
metrics that can also be reanalyzed in the context of other research projects. With the examples on PTEN
and SMPD1 provided here, we introduced the curation of experimental data in MAVISp, as a source of ex-
perimental validation. The implementation of additional modules for MAVISp (e.g., degron''® and aggregation
propensity''") would likely improve coverage of the diverse mechanisms regulating protein abundance. Of
note, MAVISp supports either data from multiplex assays of variant effects or experimental data from litera-
ture mining of the biocurators. The purpose of collecting experimental data is to validate our findings, update
protocols, and continuously improve the included methodologies. The reliability of our predictions depends
on their alignment with experimental results, which can be used as reference data to benchmark and improve
our predictions over time. The database currently includes 16 protein entries with experimental data.
At this stage, MAVISp can provide annotations for variants of transmembrane proteins exclusively in regions
that are not in contact with the membrane. Recently published approaches''? could enable the application of
the STABILITY module to transmembrane regions as well. In addition, we will include support to intrinsically
disordered regions in the ensemble mode, designing new modules to reflect the most important properties of
these regions.
We foresee that MAVISp will provide a large amount of data on structure-based properties related to the
changes that can exert at the protein level, which could be exploited for design of experimental biological
readouts, also towards machine-learning applications for variant assessment and classification or to under-
stand the importance of specific variants in connection with clinical variables, such as drug resistance, risk
of relapse and more.

Methods
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Initial structures for MAVISp and STRUCTURE_SELECTION module

As a default, in the high-throughput data collection, we use models from the AlphaFold2 database?® for most
of the target proteins and trim them to remove regions with pLDDT scores < 70 at the N- or C-termini or very
long disordered linkers between folded domains. For proteins coordinating cofactors, in the low-throughput
targeted studies, we re-modeled the relevant cofactors upon analyses with AlphaFill*2 and where needed
through MODELLER'". A summary of the initial structures used for each protein included in the database is
reported in OSF (https://osf.io/y3p2x/). In selected cases, we have replaced long disordered loops with short
residue stretches using a custom pipeline based on MODELLER (htips:/github.com/ELELAB/MA-
VISp_loop replacer). This was done to avoid potential bias in our structural calculations, due to the arbitrary
conformation of such loops and their spurious contacts with the rest of the structure. In addition, for proteins
with transmembrane regions, we used the PPM (Positioning of Proteins in Membrane) server 3.0 from OPM
(Orientations of Proteins in Membrane)''*!'*. For target proteins larger than 2700 residues, whose structures
are not provided by the AlphaFold2 database, we model them using AlphaFold3.

The advantage of using AlphaFold-predicted structures in the default high-throughput data collection of MA-
VISp lies in their ability to achieve quality comparable to experimental data, as demonstrated in previous
work?, and at the same time circumventing limitations typically associated with experimental approaches,
such as artifacts, missing atoms, and incomplete or absent residues.

INTERACTOME module

In the INTERACTOME module, implemented in the freely available PPI2PDB toolkit (https://github.com/ELE-
LAB/PPI2PDB), we identify known interactors of the target protein by extracting data from the Mentha data-
base*” and match them to available PDB structures, using the mentha2pdb script. Mentha2pdb also exam-
ines experimentally validated dimeric complexes generated with AlphaFold2 from the HuRI and HUMAP da-
tabases by Burke et al.*8. Mentha2PDB provides annotations of the interactors and generates input files for
AlphaFold-Multimer.

Complementarily, we retrieve interactors from the STRING database*® and process them analogously using
our STRING2PDB tool, which maps STRING interactions to available PDB structures. The tool restricts re-
trieval from the physical subnetwork of STRING with evidence of interaction supported by either curated
database annotation or experimental data.

As a final step, we aggregate all interaction data for the target protein into a single table, ranking interactors
primarily by Mentha and secondarily by STRING score to prioritize experimentally supported pairs. We then
add complexes retrieved directly from the PDB via pdbminer-complexes (https://github.com/ELELAB/MA-
VISp_automatization/tree/main/mavisp_templates/) to capture interactions not yet reflected in PPl data-
bases.

We also use other methods to identify four different classes of short linear motifs (BRCT, LIR, BH3 and UIM)
in our target proteins. Depending on the type, we use a combination of simple regular expression matching,
a method designed by us for structure-based identification of short linear motifs SLiMfast (available at
https://github.com/ELELAB/SLiMfast) together with another method for predicting changes in secondary
structure propensity that may be induced by phosphorylation in the core of putative LIR motifs, phosphor-
iLIR (https://github.com/ELELAB/phospho-iLIR), or DeepLoc 2.0''¢ for predicting the subcellular localization
of the protein, especially useful for BRCT motifs.

Free energy calculations for STABILITY, LOCAL INTERACTION and LONG-RANGE modules

We applied the BuildModel module of FoldX5 suite'!” averaging over five independent runs for the calcula-
tions of changes in free energy of folding upon amino acid substitution with MutateX and the FoldX5 method.
We used the cartddg2020 protocol for folding free energy calculations with Rosetta suite and the ref2015
energy function. In this protocol, only one structure is generated at the relax step and then optimized in
Cartesian space. Five rounds of Cartesian space optimization provide five pairs of wild-type and mutant
structures for each variant. The change in folding free energy is then calculated on the pair characterized by
the lower value of free energy for the mutant variant, as described in the original protocol'?8.

We used MutateX to calculate changes in binding free energy for the LOCAL INTERACTION module using
the BuildModel and AnalyzeComplex functions of FoldX5 suite and averaging over five runs. With Rosetta,
we used the flexddg protocol as implemented in RosettaDDGPrediction and the talaris2014 energy function.
We used 35,000 backrub trials and a threshold for the absolute score for minimization convergence of 1
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Rosetta Energy Unit (REU). The protocol then generates an ensemble of 35 structures for each mutant var-
iant and calculates the average changes in binding free energy. We used Rosetta 2022.11 version for both
stability and binding calculations. In the applications with RosettaDDGPrediction the Rosetta Energy Units
(REUs) were converted to kcal/mol with available conversion factors''®. We also applied RaSP using the
same protocol provided in the original publication®® and adjusting the code in a workflow according to MA-
VISp-compatible formats (https://github.com/ELELAB/RaSP_workflow). We have included data on 131 com-
plexes at the date of 16/10/2025 (https://osf.io/y3p2x/ ).

For the calculations of allosteric free energy, we used the structure-based statistical mechanical model of
allostery (SBSMMA)'19.120 implemented in AlloSigMA2%4 . The model describes the mutated variants as ‘UP’
or ‘DOWN’ mutations depending on difference in steric hindrance upon the substitution. We followed a re-
cently updated and benchmarked protocol®. In brief, we classified as uncertain those variants for which the
absolute changes in the volume of the side chain upon the amino acid substitution was lower than 5 A3, as
recently applied to p533%. As a default, we considered as having an effect only variants that were exposed to
the solvent (=25% relative solvent accessibility of the side chain), with associated changes in absolute value
of allosteric free energy larger than 2 kcal/mol and considered as remote response sites those that were at
a distance higher than 5.5 A from the mutation site, considering all heavy atoms, and which belongs to pock-
ets as identified by Fpocket'?' ( see workflow at https:/github.com/ELELAB/MAVISp_allosigma2_workflow/)

Efoldmine

The EFOLDMINE module, integrated within the simple mode of MAVISp, predicts residues with early folding
propensity using the EfoldMine tool”2. Trained on residue-level hydrogen/deuterium exchange nuclear mag-
netic resonance (HDX NMR) folding data from the Start2Fold database'*, this tool uses secondary structure
propensity and backbone/side-chain dynamics in a support-vector machine algorithm to predict early folding
regions based on the target's sequence.
In MAVISp, we incorporated EfoldMine to determine whether point
mutations in variants fall within the predicted early folding regions, using a threshold of 0.169 to define resi-
dues involved in early folding events as suggested by the developers of the method”? and considering only
regions with a minimum length of three early folding residues to exclude isolated peaks.”".

FUNCTIONAL SITE module

The FUNCTIONAL SITES module aids the identification of variants that might impact cofactor binding sites
or active site residues, as well as the residues within the second coordination sphere with respect to active
site residues of enzymes or their corresponding binding sites. It is based on a contact analysis performed
with the Arpeggio software'23. Before the analysis, the model structure is subjected to energy minimization
with Conjugate Gradients'?* in 50 steps, using the MMFF94 force field'?%, a van der Waals cutoff of 0.1, an
interacting cutoff of 5.0 A, and a physiological pH of 7.4. Subsequently, the output is further preprocessed to
exclude clashes and proximal contacts (https://github.com/ELELAB/mavisp accessory tools).

Molecular dynamics simulations for MAVISp ensemble mode

We used either previously published*’**!2¢-13% or newly collected one microsecond all-atom molecular dynam-
ics simulations performed using the CHARMM22* or CHARMM36m force fields"'. All the simulations have
been carried out in the canonical ensemble after a final equilibration steps and using explicit solvent and
periodic boundary conditions. The templates files used for the simulations are provided in OSF
(https://ost.ioly3p2x/).

Ensembles generated using simulations are then subject to quality control, either using Mol_Analysis's? or
MetaD_Analysis (https://github.com/ELELAB/MetaD-Analysis) tools.

As a first example of how we intend to use metadynamics data for the FUNCTIONAL_DYNAMICS module
we used the simulations from TP53 where the effects of amino acid substitutions on an interface for protein-
protein interaction (residues 207-213) was investigated. We used a collective variable based on distances
between two residues (D208-R156) that were effective in capturing open (active) and closed (inactive) con-
formations of the loop. See repositories associated with the enhanced sampling simulations of TP5338. All
the newly generated trajectories will be deposited as different entries in OSF, and the link is reported in the
metadata on the MAVISp webserver. At the date of 01/11/2024, we have included 45 protein targets in the
ensemble mode using as source of ensemble mostly unbiased MD simulations of 500 ns or one-us, as
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detailed in the corresponding metadata on the MAVISp webserver. In some cases, we included ensembles
generated by a coarse-grain model of flexibility or using the conformation provided by NMR structures from
the PDB (see INPUT STRUCTURES tables in https://osf.io/y3p2x/).

Protein Structure Networks and path analysis for MAVISp ensemble mode

In the ensemble mode we apply a module building upon the simple mode LONG_RANGE module. It uses
AlloSigma2-PSN (https://github.com/ELELAB/MAVISp allosigma2 workflow/) where we constructed an
atomic-contact PSN on the full trajectories using Pylnteraph26é. Pairs of residues were retained only if their
sequence distance exceeded Proxcut threshold of 1 and their edge calculations remained within less than
4.5A, based on the thresholds described in Pylnteraph266. We retained edges with an occurrence greater
than Pcrit threshold of 50% across the ensemble frames, weighted on the interaction strength Imin of 3.
Subsequently, we used the path_analysis function of Pylnteraph2 to identify the shortest paths of communi-
cation between each pair of AlloSigMA2%4 predicted mutation and respective response sites, using a mini-
mum distance threshold of 5.5 A and retained paths that were four residues or longer.

CABS-flex ensembles for MAVISp ensemble mode

We used the coarse-grained CABS-flex 2.0 method and software® as a part of a Snakemake'® pipeline,
available at https://github.com/ELELAB/MAVISp CABSflex pipeline. The pipeline includes the possibility to
tune the calculations by different restraints, secondary structure definition, ligand binding and more. It also
contains a quality control step to evaluate the secondary structure content of the generated structures with

respect to the starting one, using DSSP'** and the SOV-refine score'*’.

Variant Effect Prediction

We used DeMaSk74, GEMME', EVE"5, REVEL”® and AlphaMissense?¢ as predictors for the effect of any
possible amino acid substitution to natural amino acids, on the full protein sequence of the main UniProt'36
isoform of each protein. We used available default parameters for each method unless noted otherwise. We
used the standalone version of DeMaSk as available on its public GitHub (commit ID 10fa198), with BLAST+
2.13.0. We followed the protocol available on GitHub: we first generated the aligned homologs sequence file
by using the demask.homologs module and then calculated fitness impact predictions. Finally, we classified
as loss-of-fitness those variants having a DeMaSk delta fitness score in absolute value lower or equal to -
0.25, gain-of-fitness if the score is higher than 0.25, and neutral otherwise (Supplementary Text S3). We
used the available online webserver to obtain variant effect predictions with GEMME, upon setting the num-
ber of JET iterations to 5, to obtain more precise results. 26 We have classified variants having a GEMME
score <= -3 as damaging, and neutral otherwise. Thresholds were selected according to our benchmarking
(Supplementary Text S3). To obtain EVE scores, we have used the scripts, protocol and parameters avail-
able on the EVE GitHub (commit iD 740b0a7) as part of a custom-built Snakemake'33-based pipeline, avail-
able at https://github.com/ELELAB/MAVISp EVE pipeline Using EVE first requires building a protein-spe-
cific Bayesian variational autoencoder model, which learns evolutionary constraints between residues from
a multiple sequence alignment. In the current MAVISp release, we generated such alignments using EVcou-
plings'®7, using the Uniref100'38 sequence database released on 01/03/2023, by keeping sequences with at
least 50% of coverage with the target protein sequence, alignment positions with a minimum of 70% residue
occupancy, and using a bit score threshold for inclusion of 0.5 bits with no further hyperparameter exploration.
We then used our pipeline to perform model training, calculation of the evolutionary index, and used a global-
local mixture of Gaussian Mixture Models to obtain a pathogenicity score and classification. We have used
pre-computed REVEL scores for variants as available in dbSNFP'3°.140, accessed through myvari-
ants.info'#1.142 as implemented in Cancermuts. We have classified as damaging variants that have a REVEL
score larger or equal to 0.5'%3. We included AlphaMissense pathogenicity prediction scores and classification
as available by the dataset of prediction for all possible amino acid substitutions in UniProt canonical
isoforms, release version 2144,

Annotations from experimental data for EXPERIMENTAL_DATA module

We developed Python scripts to identify the overlap in coverage between the Mave database (MaveDB)%?
and MAVISp, and to retrieve the score sets associated with the shared entries from the MaveDB?®? database

23


https://github.com/ELELAB/MAVISp_allosigma2_workflow/
https://github.com/ELELAB/MAVISp_CABSflex_pipeline
https://github.com/Singh-Lab/DeMaSk/commit/10fa19842807d68c26571f21034bee644b63be07
https://github.com/ELELAB/MAVISp_EVE_pipeline
https://doi.org/10.1101/2022.10.22.513328
http://creativecommons.org/licenses/by-nc-nd/4.0/

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

910
911
912
913
914
915
916
917
918
919
920
921

922
974
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513328; this version posted January 22, 2026. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Structure-based assessment of variants with MAVISp
through their API (https://api.mavedb.org/docs). Where available, we also extracted information on methods
and classification thresholds. For entries where this information was incomplete, the corresponding publica-
tions were manually reviewed to extract thresholds for variant classification.
The ProteinGym?®! repository was locally downloaded from GitHub, and a custom Python script was used to
process the datasets based on the reference files provided in the repository. The datasets used for the anal-
ysis contained the experimental scores and the classification provided by the authors either based on the
median of the score distributions or via manual annotation. The scores and their classifications were then
integrated into the final database file generated by MAVISp. The aggregated scores, along with their classi-
fications, were compiled into the final database file produced by MAVISp through a module dedicated to the
experimental data.

Identification of RefSeq identifiers

To ensure the correct RefSeq annotations in MAVISp, we implemented a Python tool, compare_seq.py
(https://github.com/ELELAB/mavisp_accessory_tools/), to verify the sequence identity between the ca-
nonical UniProt sequence used in our analyses and the corresponding RefSeq protein identifier to be used
for the ClinVar search. The Uniprot sequences were retrieved using the UniProt REST API, while the RefSeq
protein sequences were fetched from the NCBI Entrez Protein database. We implemented a global pairwise
alignment using the Biophyton pairwise2 module with the globalxx scheme to assess sequence identity. Each
comparison was classified as either an exact match, a mismatch (identity <100%), or unresolved due to
missing or unresolvable sequences. To improve performances, the analyses were parallelized using multi-
threading via Python concurrent.futures. The results were logged into structured CSV reports for consultation.
This allows data managers to identify exisiting entries in MAVISp with RefSeq identifiers inconsistent with
provided UniProt accession code and assign them to biocurators for entry review.

Additionally, we provide the Dbiocurators with a Python-based script (uniprot2refseq, |
https://github.com/ELELAB/mavisp_accessory_tools/) that identifies RefSeq IDs for the UniProt canoni-
cal protein isoform. For each UniProt AC, we queried the UniProt REST API to obtain RefSeq protein cross-
references (NP_* IDs) from the canonical entry in JSON format. Only protein-level RefSeq entries were con-
sidered. The canonical UniProt protein sequence was downloaded in FASTA format, and each RefSeq se-
quence was retrieved from the NCBI Protein database using Biopython and the Entrez API. Pairwise global
alignments were performed using the Biopython pairwise2 module and we estimate the percentage sequence
identity as the number of identical residues over the length of the longer sequence. Results were saved in
tabular format, including UniProt AC, RefSeq ID, and sequence identity. This approach aids the biocurators
to identify the RefSeq IDs for the canonical isoform of the protein undebefore starting with the data collection.
The script is expected to be used by the biocurators before each run with the MAVISp automatization work-
flow described below.

Workflows for automatization and data collection within MAVISp

We provide and maintain two Snakemake workflows for the data collection of the default modules of MAVISp.
The first is a Snakemake pipeline to automate MutateX runs as much as possible. It is designed to automat-
ically download the chosen structure(s) from the AlphaFold structural database, or a custom structure input
file, when necessary, trim them as requested, and generate desired MutateX folding free energy scans with
a predictable directory structure. It only requires as input a csv file with metadata on the desired scan and a
configuration file with details on the run to be performed. It is available at https:/github.com/ELELAB/mu-
tatex pipelines/tree/main/custom_collect scan.

Once such a scan is available, it is possible to use a second Snakemake pipeline, called MAVISp_automati-
zation, which performs most of the steps that are necessary to annotate a protein for a MAVISp simple mode
entry. Similarly to the previous pipeline, it only requires metadata on the target protein to be analyzed, as
well as a MutateX mutational scan. It generates a dataset that can then be imported into the MAVISp data-
base, except for predictions performed using Rosetta-based methods, since these are much more computa-
tionally expensive and need to be performed separately using the RosettaDDGPrediction pipelines. Using a
Snakemake pipeline allows to improve efficiency and scalability, allowing to use multi-core system to process
several proteins or perform different analyses in parallel. It is available at https:/github.com/ELELAB/MA-
VISp_automatization.
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Data Availability

The data can either be consulted through our web server (htips://services.healthtech.dtu.dk/services/MA-
VISp-1.0/) or as individual CSV files in the OSF repository htips://osf.io/ufpzm/. Other raw data and utilities
can be found at the MAVISp extended data OSF repository (https://osf.io/y3p2x/) Reports for several proteins
are available at hitps://elelab.gitbook.io/mavisp/.
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