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Abstract

DNA methylation plays a key role in epigenetic regulation across lifeforms. Nanopore
sequencing enables direct detection of base modifications. While multiple tools are
currently available for studying 5-methylcytosine (5mC), there is a paucity of models
that can detect 6-methyladenine (6mA) from raw nanopore data. Leveraging the motif-
driven nature of bacterial methylation systems, we generated 6mA identification models
that vastly surpass the accuracy of the current best model. Our work enables the study

of 6mA at a single-base resolution in new as well as existing nanopore datasets.
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Background

DNA methylation is a fundamental mechanism that regulates various biological
processes, including embryonic development, genomic imprinting, X-chromosome
inactivation, and suppression of transposable elements'™®. The methylation status of
DNA is highly dynamic and can change in response to various environmental cues, such
as stress, diet, and aging*®. Aberrant DNA methylation patterns have been associated
with various diseases, including cancer, neurodegenerative disorders, and
cardiovascular diseases®’. Moreover, recent studies have shown that DNA methylation
patterns can be used as diagnostic and prognostic markers for various diseases and as
potential therapeutic targets®. The most commonly studied methylated bases of DNA

are 5-methylcytosine (5mC), 5-hydroxy methylcytosine (5ShmC), and 6-methyladenine.
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6-methyladenine (6mA) is an epigenetic modification of DNA that has long been
known to exist in prokaryotes, where it is involved in mechanisms such as DNA repair
and protection against foreign DNA®'®. Initially thought to be absent in eukaryotes,
recent studies have shown that 6mA is present in several eukaryotic genomes, including

fungi, plants, and animals'' ™"

. In eukaryotes, 6mA is involved in several biological
processes, including gene regulation, DNA replication, and chromatin structure,

suggesting that this modification plays a crucial role in epigenetic regulation'".

Unlike 5mC, identification of 6mA is not amenable to conversion based methods
such as bisulfite sequencing. Traditionally, 6mA is studied using capture based
methods such as methylated DNA immunoprecipitation (MeDIP), where methylated
DNA is enriched using antibodies specific to 6mA followed by high-throughput
sequencing'®. Such methods provide genome wide data on 6mA patterns, but lack
nucleotide-level resolution. Recently, emerging single molecule sequencing
technologies such as PacBio and Oxford Nanopore (ONT) sequencing have enabled

direct identification of DNA base modifications.

ONT sequencing uses a voltage sensor to monitor electrical fluctuations as a
DNA strand is translocated through a biological nanopore'®. These characteristic
fluctuations are converted to the corresponding DNA sequence by a basecaller. The
ability to detect DNA modifications is due to the differences in the signal when a
modified base translocates through the nanopore as compared to a canonical base'®.
Leveraging this, several tools have been developed that identify base modifications

from raw nanopore data. A large subset of these are focused on 5mC, particularly in the

3


https://doi.org/10.1101/2024.03.12.584205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.12.584205; this version posted January 21, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

CpG context'’. A few tools support 6mA calling: Tombo, DeepSignal, DeepMP, and
mCaller. Tombo, an old tool provided by Oxford Nanopore, identifies possible modified
bases by testing statistically significant differences in the current levels among reads
aligning to the target position'®. DeepSignal and DeepMP are two recent Deep Neural
Network based tools which provide models for 6mA identification only in the GATC

context '9%°

. mCaller provides a “dinucleotide” model, which theoretically covers all
possible dimers with 6mA in the 1st position?’. The performance of these tools in
diverse sequence contexts remains unknown due to lack of appropriate benchmarking

datasets.

In this study, we set out to develop accurate models that can discriminate 6mA
from a canonical adenine from raw nanopore signal data generated on the R9.4.1
chemistry. To achieve this, we utilized datasets from multiple bacterial species for
which sequence context of 6mA is known. We call our models NEMO (Nanopore
Epigenetic Modification Output). We show that NEMO models significantly outperform
existing models in identification of 6mA, both in GATC as well as other sequence

contexts.

Results

Dataset generation and validation

Most of the existing 6mA callers have been trained and validated on limited datasets,

such as a pUC plasmid grown in presence of Escherichia coli dam (DNA adenine

)‘I 9,20

methylase . We aimed to generate more robust datasets, both to benchmark
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existing callers, and to train and develop better methods for 6mA identification. To this
end, we harnessed the methylation diversity in bacterial systems, which occurs in a
highly motif-driven manner®. To create datasets that are methylated and unmethylated
at specific sequence contexts, we sequenced both the native (NAT) and whole genome
amplified (WGA) versions of E.coli K12 MG1655, and Helicobacter pylori 26695 strains

on the Oxford Nanopore R9.4.1 flowcells (Fig 1A).

To control for possible amplification biases, we also created a “double mutant”
(referred to as DM hereon) of E.coli K12 MG1655 substr. in which both the major
methylases, dam and dcm, are deleted. We confirmed the insertion cassette and
deletion in dam and dcm loci respectively in the DM strain using whole genome
sequencing (Fig S1). Further, fragment analysis using TapeStation showed a
characteristic smear for NAT genomic DNA (gDNA) digested with Dpnl, which
specifically cuts methylated GATC sites. However, DM gDNA was resistant to cleavage
by Dpnl, and showed an intact band comparable to undigested gDNA, indicating

absence of methylation (Fig S2).

Dpnl digested gDNA of both the NAT and DM strains were sequenced on the
Oxford Nanopore platform. As expected, close to 100% of the reads spanning GATC
sites in WT strain terminate at the cut site (GA/TC) whereas in DM, the read termination
profile is similar to that of undigested gDNA (Fig S3). We derived the methylation
percentage at GATC sites that were well covered by calculating the ratio of reads
terminating at the cut site to the total number of reads mapped to the location. Our

results indicate that all profiled GATC sites are close to fully methylated in the NAT
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strain, whereas completely unmethylated in the DM strain. This strain was also
sequenced on R9.4.1 chemistry. In addition to the above, we also used data from two
previous studies - native and WGA datasets from Tourancheau et al®, and the Zymo
mock bacterial community data from Sereika et al*, to test the efficacy of our models
in accurately identifying 6-methyladenine. The datasets used, and the sequence

contexts tested in this work are summarized in Table 1.
6mA identification in GATC context

We first set out to develop a model that can discriminate 6mA from canonical adenine
in GATC context (see Methods). We compared the performance of our GATC model
(NEMO_R9_GATC) to existing tools. There are currently four different 6mA callers
available - Tombo, DeepSignal, mCaller, and DeepMP. Of the 4, DeepSignal and DeepMP
only support 6mA calling in a GATC context. Tombo and DeepSignal identified the
highest number of methylated sites but included many false positives (Fig 1B). mCaller
on the other hand missed many methylated sites but had fewer false positives.
NEMO_R9_GATC outperformed all the other tools in identifying methylated sites with

the least false positives (Fig 1B).
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Figure 1: Performance of NEMO_R9_GATC. A) Schematic indicating the bacterial species and strains
sequenced on Oxford Nanopore R9.4.1 chemistry to be used for model training and validation. NAT -
Native, DM - double mutant, WGA - whole genome amplified. The schematic was created using
BioRender (https://biorender.com). B) Performance comparison of NEMO_R9_GATC with other existing
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models on E.coli data. All GATC locations of the genome covered at least by 10 reads were profiled. C)
Scatterplots comparing the performance of NEMO_R9_ GATC with other tools on mixed data for 880
GATC sites in the E.coli genome. X-axis indicates the methylation percentage called by a tool whereas
the Y-axis indicates the expected methylation. Red lines indicate the diagonal of complete concordance.
Pearson correlation value is indicated in the plot title for each tool. D) Performance of NEMO_R9 _GATC
on native (NAT) and whole genome amplified (WGA) data of two different Helicobacter pylori strains,
26695 - where GATC methylation is present, and JP26 - where GATC methylation is absent. E)
Performance of NEMO_R9 GATC on various bacterial species part of the Zymo mock community data
taken from Sereika et al®*. Of the 6 species represented here, GATC methylation is expected to be
present in Escherichia coli and Salmonella enterica.

To test the efficacy of our model across the range of expected methylation
values rather than 100% methylated or unmethylated sites, we generated a synthetic
dataset by mixing known proportions of methylated and unmethylated reads for 880
GATC sites spanning the entire E.coli genome (See Methods). NEMO_R9_GATC showed
a concordance of 0.91 on this dataset compared to the next best concordance of 0.52
by DeepSignal (Fig 1C). We did not see a difference in identification of unmethylated
Adenine from both the DM data, as well as the whole genome amplified data of E.coli

(Fig S4).

We further validated our model on datasets from multiple bacterial species to
rule out any species- or lab-specific bias. To this end, we first analyzed data generated
in-house from H.pylori 26695, where GATC methylation is expected, and data of another
strain of H.pylori, JP26, from Tourancheau et al*®, where GATC methylation was not
found. NEMO_R9_GATC accurately discriminated 6mA and unmethylated Adenine in
these datasets (Fig 1D). In addition, we tested it on previously published data of other
bacterial species®. In all cases, our model reliably detected presence or absence of

6mA in GATC context in the respective genomes (Fig 1E). Taken together, these results

8


https://doi.org/10.1101/2024.03.12.584205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.12.584205; this version posted January 21, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

indicate that the GATC model of NEMO for the R9.4.1 chemistry is highly accurate in

discriminating 6mA from a canonical adenine.

An all context 6mA model for R9 chemistry

Using native and WGA datasets of H. pylori 26695, we next aimed to train a model that
could identify 6mA irrespective of the sequence context. The sensing regions of the
R9.4.1 version of flow cells can harbor 5-6nt of DNA. Hence, depending on the sequence
context, the signal to discriminate between canonical and modified bases can span up
to 11-13nt, with the modified base at the center. With a sampling rate of 4kHz and
translocation speed of 400 bases per second, this corresponds to approximately 130
signal points. We therefore tested multiple signal chunk sizes (30, 50, 75, 100, 120 and
150) around the target base to identify the optimal chunk size. We observed that the
true positive calls improved with longer signal sizes, plateauing around 75 signal points,
however, the true negative calling deteriorated at longer sizes, starting at around 75
signal points (Fig S5). In the contexts tested, the model trained with a chunk size of 50
data points (sig50) on either side of the target base performed most optimally. We

further refer to the sig50 model as NEMO_R9_6mA.
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Figure 2: Performance of NEMO_R9 6mA. A) Evaluation of NEMO_R9 6mA on diverse sequence
context using native (NAT) and whole genome amplified (WGA) data of Helicobacter pylori 26695. The
first 7 (underlined) motifs are contexts where methylation is expected to be present, whereas the next 3
are not known to be methylated. B) Performance of NEMO_R9_6mA in identification of 6mA in various
sequence contexts from diverse bacterial species from the Zymo mock community data. Motifs known to
be generally methylated in a species are indicated with an asterisk. C) Scatterplots depicting the
correlation between methylation values called by NEMO_R9 6mA and the expected ground truth. The
motif, total number of genome locations profiled, and the Pearson correlation is indicated in the plot title.
D) Performance comparison of NEMO_R9 6mA, Tombo, and mCaller in various sequence contexts,
evaluated on the native (NAT) and whole genome amplified (WGA) data of H.pylori JP26 taken from
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Tourancheau et al”. In all plots, the adenine which is profiled for methylation is indicated in lower case in
the motif.

We tested the efficacy of the NEMO_R9_6mA on E.coli K12 MG1655 and H.pylori
26695 data in diverse sequence contexts - motifs known to be generally methylated in
the genome, and few other motifs where no methylation is expected. As seen in Fig 2A,
our model performed well in discriminating 6mA from canonical adenine in the tested
contexts on H.pylori data. When tested on E.coli data in ‘NANN’ context (all possible
tetramers with adenine in the second position), NEMO_R9_6mA identified 6mA only in
GATC context and in the native dataset, where methylation is expected (Fig S6). We
then assayed the performance of NEMO_R9_6mA on different species using the Zymo

mock community dataset from Sereika et al**

. While the performance varied based on
the sequence context, in all cases there was a clear difference in percentage methylated
identified by NEMO in genomes where the motif is expected to be methylated, except
for the motif CAGaG in Salmonella enterica (Fig 2B). When tested on synthetic data with
methylated and unmethylated reads mixed in known proportions, the concordance for
most tested contexts was >0.7 (Fig 2C, Fig S7). Lower concordance of ~0.5 in contexts
such as GaGG could be attributed to poor signal differences between the methylated

and unmethylated samples, similar to what was observed for contexts where no

methylation is expected (Fig S8).

We next wanted to compare NEMO_R9_6mA with the other two tools which
support all context 6mA calling - Tombo and mCaller. Both Tombo and mCaller require
the raw files to be preprocessed with the ‘resquiggle’ command of Tombo. However,

Tombo does not support resquiggling on the newer PODS files, even when these are
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converted to FAST5 format. Due to this incompatibility, we could not perform the
comparison analysis on the in-house generated H.pylori 26695 data. Instead we used
H.pylori JP26 data from Tourancheau et al*®, which was in the older FAST5 format
compatible with Tombo resquiggle. As was seen in the GATC context, in general Tombo
overpredicted methylation, even in contexts where no methylation was expected (Fig
2D, Fig S9). mCaller performed well in discriminating 6mA in several contexts,
particularly in identifying unmethylated adenines. However, it did not identify methylated
adenine as effectively as Tombo and NEMO in a few sequence contexts such as

ATTAaT and CATGa (Fig 2D, Fig S9).

We further profiled the performance of these tools in two motifs - aGGcC and
aCcGG, where no adenine methylation is expected, but there is cytosine methylation
(5mC and 4mC respectively). In these cases, mCaller identified many false positives for
6mA in the context aGGcC but not aCcGG (Fig S9), suggesting that its model is
sensitive to neighboring 5-methylcytosine but not 4-methylcytosine. In a few cases such
as GaATTC, NEMO did not perform as well compared to Tombo in calling methylated
adenine. Overall, our results show that NEMO_R9_6mA is able to reliably detect 6mA in

a variety of sequence contexts from nanopore data generated on the R9.4.1 chemistry.

Discussion

The advent of long-read sequencing technology has opened new avenues for studying
sequence and epigenetic variation simultaneously. The ability to analyze epigenomes

concurrently with sequencing is contingent upon availability of robust models capable
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of accurately discriminating modified bases. The support to identify 6mA from
nanopore data has been limited, particularly for data from the R9 versions of the
flowcells, which have been one of the most widely used FC versions. For example, the
6mA models offered by Guppy and Dorado do not support methylation calling on data
generated on flowcells prior to version R10.4.1. Previous tools that support 6mA calling
have significant limitations in speed, accuracy, convenience, and support for new file

formats. Our tool, NEMO, addresses these limitations.

We report two different models of NEMO - one specific for GATC context, and
one which is sequence context-agnostic. In addition to studying bacterial genomes
where GATC is prevalent, accurate identification of 6mA in GATC context has
applications in techniques such as DamID?°. Furthermore, 2 out of the 4 tools we used
for performance comparison support 6mA identification in GATC context alone.

Compared to other tools, NEMO achieves significantly higher concordance scores.

In our quest to develop a sequence context-agnostic model for 6mA
identification, we standardized the signal chunk used in training. We found that a chunk
size of 50 signal points is optimal. While true positive rates remain high with larger
chunks, the false positive rate increases dramatically, likely due to the training dataset
(H. pylori) having abundant 6mA, possibly leading to confusion in signal interpretation
due to neighboring modifications. The other possible explanation is that the true signal
that can discriminate 6mA is diluted by the noise introduced in a large signal chunk.
Further research is needed to understand the performance decline with longer signal

chunks.
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Previous tools have enabled 6mA identification from nanopore data, but often as
standalone applications. During our comparative experiments, we encountered
challenges in running these tools on newer file formats, such as PODS5. The resquiggle
command of Tombo, a mandatory requirement for other tools, did not work on POD5
files, even when they were converted to FAST5 files using pod5tools. However, this
gave us an opportunity to test the NEMO models on data available in the public domain,
to ensure that they also work well on data generated beyond our own lab. Additionally,
while some tools supported GPU acceleration, others did not, and each required its
specific setup. In contrast, NEMO models seamlessly integrate with the latest base
callers by Oxford Nanopore, such as Bonito and Dorado. NEMO does not require any
specific setup and works out-of-the-box, leveraging any available GPU acceleration to
significantly improve processing times. This not only boosts efficiency but also offers

greater convenience to users.

Our “all-context” 6mA model does show limited capabilities in few contexts. This
is perhaps due to the fact that the signal difference in these contexts could not be
captured efficiently. This may be a limitation of the flow cell itself, where the shorter
barrel of the R9 nanopore is not capable of discriminating 6mA in all sequence
contexts. Alternatively, a model trained using a shorter signal chunk may bring out the
weak signal differences and hence perform better in these contexts. In future, a
consensus taken by using two different models, one trained on short chunks and one on

long chunks, may provide a more wholesome understanding of 6mA in a dataset.
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Methods

Bacterial strains and culture

The “double mutant” (DM) strain was constructed in the background of Escherichia coli
MG1655. dam::Cm allele (dam locus harboring transposon Tn9; M.R. lab collection) and
dcm::Kan?® were introduced singly or sequentially into MG1655 by P1 phage mediated
transduction. Deletions were confirmed by PCR. Strains were grown at 37°C in lysogeny
broth (1% tryptone, 0.5% yeast extract, 1% NaCl) supplemented with chloramphenicol

(Cm; 10ug/ml) or kanamycin (Kan; 25ug/ml) as required.
Genomic DNA extraction

An overnight bacterial culture was treated with Lysozyme and then lysed using SDS and
Proteinase K. The sample was treated with CTAB to further purify the gDNA. This was
followed by a Phenol:Chloroform:lsoamyl alcohol and Chloroform:lsoamyl alcohol
wash. DNA was precipitated using Isopropanol and spooled onto a glass rod. The gDNA
was washed in ethanol, air dried and finally dissolved in EB (Qiagen, Germany). The
gDNA was stored at 4°C for 2 days before quantification using a NanoDrop 2000
Spectrophotometer (ThermoScientific, USA) and Qubit dsDNA kit (ThermoScientific,

USA).
in vitro DNA Methylation

Genomic DNA from DM strain was used for in-vitro DNA methylation. The genomic DNA

was incubated in a mix containing S-Adenosyl methionine (SAM) along with the DNA
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adenine Methyltransferase (dam, NEB, USA) and its corresponding buffer for 4 hours at
37°C. The sample was purified using Ampure XP (Beckmann Coulter, USA) beads and

the methylated DNA was quantified using Qubit HS dsDNA kit (ThermoScientific, USA).
Nanopore library preparation

Nanopore library was constructed using the ligation sequencing kit SQK-LSK109
(Oxford Nanopore Technologies, UK). The DNA was treated with NEBNext Ultra Il End
Repair/dA-Tailing Module (NEB, USA) and NEBNext FFPE DNA Repair Mix (NEB, USA),
purified using Ampure XP (Beckmann Coulter, USA) and quantified using Qubit dsDNA
(ThermoScientific, USA). To multiplex the samples, the Native Barcoding Expansion kit
(Oxford Nanopore Technologies, UK) was used. The barcodes were ligated to samples
using the NEBNext Ultra Il Ligation Module (NEB, USA) after which the samples were
purified and quantified. Equal amounts of barcoded samples were pooled and ligated to
the adaptor protein. The final library was loaded onto an R9.4.1 flow cell (Oxford

Nanopore Technologies, UK) as per the manufacturer’s instructions.
Nanopore Sequencing Data Processing

We used Guppy (V6.3.7) for basecalling all the nanopore reads (fast5 files) using super
accuracy models (sup) with options ‘--g-value 7 -fast5_out’. Quality check for the
basecalled reads (fastq files) was performed using NanoPlot”. The basecalled reads
were mapped to the reference genome using minimap2?®. We compared our model
against 4 other existing 6mA calling tools - DeepSignal, mCaller, Tombo, DeepMP.

DeepSignal v0.1.6 was run using the GATC model with options “-motifs GATC -mod_loc
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1’. Tombo v1.5.1 was run with the alternative model using options ‘-alternate-bases
6mA & --alternate-bases dam’ independently to be able to predict 6mA methylation in
individual samples. mCaller v1.0.3 was run using model ‘r94_model_NN_6_m6A pkl’
with parameters “-m A -b A’. We used DeepMP for combined feature extraction followed
by modification calling using pre-trained model ‘pUC19_joint_202106’ for 6mA detection
in GATC context. The snakemake files for these tools were adapted from the METEORE

tool (https://github.com/comprna/METEORE).

Restriction digestion based analysis

To validate the presence or absence of methylation in GATC context, NAT, DM and
DM+DAM treated gDNA was digested with Dpnl (NEB, USA), which selectively cleaves
methylated GATC sites. Digested gDNA and undigested controls were sequenced on the
Oxford Nanopore platform. The sequenced data was aligned to the E.coli reference
genome using minimap2, and the bam files were analyzed using a custom python script
which leverages the pysam library (https://github.com/pysam-developers/pysam) to
determine the frequency of reads that terminate or start at GATC sites; The indexed
bam files are parsed using pysam and the read positions are then iterated over using
the ‘pileup’ method. Each of the pileups-iterable objects can then be tested for read
termination or initiation using the ‘is_tail’ and ‘is_head’ methods respectively. The sum
of these individual values indicate the frequency of reads that terminate or start at a
given genomic location. The ratio of the number of read terminations/start-sites to the
sequencing depth at a given location is used to calculate the percentage methylation at

a given GATC site. Data was visualized using IGV and ggplot2.
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Model training in GATC context

Custom models were built using remora v0.2.4
(https://github.com/nanoporetech/remora). First, we used the ‘dataset prepare’
function to get motif specific chunks of signal data from the training datasets (POD5
files). We used DM as the canonical dataset and NAT as the modified dataset for model
training in GATC context with parameter “-motif GATC 1'. The motif specific chunks of
signal from DM & NAT were then merged and given as input for model train function of

remora. The output was the directory containing the best model in PyTorch format.

All context 6mA model training

An all context model for 6mA detection was also trained using remora v0.2.4
(https://github.com/nanoporetech/remora). Native genomic DNA and WGA-amplified
DNA samples for Helicobacter pylori 26695 were sequenced using R9.4.1 flowcells
(Oxford Nanopore Technologies, UK). We used the whole genome amplified sample
(WGA) as canonical dataset and native sample (NAT) as the modified dataset for

training an all context model with parameters --motif A 0', -refine-rough-rescale’.

Optimization of the neural network architecture

The basic layout of the neural network is a convolutional long-short-term-memory
(LSTM) model. To ensure the NEMO models are accurate and not overfit, we optimized
various parameters of the neural network, including the chunk sizes that were used for

training. We trained the models from 10 to 100 epochs, and pool layer sizes of 64-256.
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The sensing regions of the R9.4.1 version of flow cells can harbor 5-6nt of DNA at a
time. Therefore, the location of the signal to discriminate between canonical and
methylated adenines can be different based on the motif. For the chunk context
parameter, we used multiple signal chunk sizes (30, 50, 75, 100, 120 and 150) around
the target base to generate different models to look at the effect of signal chunk size on
the accuracy of the model. Overall, the optimization effort took over 4000 GPU hours.
Finally, we used a layer size of 64 and a chunk size of 50 for NEMO_R9_GATC, and layer
size of 256 and a chunk size of 50 for NEMO_R9_6mA. The best performing model in
each case was exported as a PyTorch and dorado models using remora, which are

compatible with bonito and dorado basecallers respectively.

Model inference

To assess the efficacy of the models, we used in-house datasets generated for E.coli
K12 MG1655 and Helicobacter pylori 26695 strains on R9.4.1 flowcells (Oxford
Nanopore Technologies, UK). In addition, we also used data from two previous studies,
Tourancheau et al®®, and Sereika et al®® We wused dorado v0.3.3
(https://github.com/nanoporetech/dorado) with a super accuracy model and NEMO
model for performing modified basecalling on above mentioned datasets. Dorado
outputs reference aligned reads with the methylation information in modbam format.
The modbam file was then sorted and indexed using samtools. Further, to aggregate
modified base counts stored in modbam file, modbam2bed tool

"

(https://github.com/epi2me-labs/modbam2bed) was used with the parameter “m
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6mA”. The bed file containing methylation calls was processed for data wrangling and

visualization using the R packages dplyr and ggplot2.

Simulated data with known methylation levels

To benchmark the performance of NEMO at different methylation levels we created a
dataset with known methylation levels at the sequence context of interest. The pod5
files for WGA and NAT runs for a specific species were first basecalled to FASTQ files
independently, using dorado. These reads are then size selected using NanoFilt

(https://github.com/wdecoster/nanofilt) for a minimal size of 500bp and a maximum

length of 4 kb. Once a motif of interest is determined, all corresponding motif locations
across the genome are identified using an inhouse script. These motifs are then filtered
such that they are at least 5 kb apart (1kb + max size of reads), in order to eliminate
reads spanning multiple motifs and thus interfering with the methylation percentage at
the time of mixing. Once a list of motif sites are determined, a randomizer is used to
generate an arbitrary percentage of methylation for each site, with a constant seed
value for consistency across multiple mixing experiments performed using different

sample combinations and motifs.

The FASTQ reads are then aligned to the respective reference genomes using
minimap2, thus generating two files one for the reads containing no methylated sites
for the motif of interest (canonBam) and another with the reads that contain 6mA
nucleotides in the motif of interest (modBam). After alignment the bam files are

converted to a bed format for both canonical and modified data. These coordinate bed
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files are filtered for reads that span the filtered motif list that was generated earlier.
Reads from each bed file are combined in appropriate combinations based on the
methylation percentages generated and the final output is a TSV file containing readID
and a second column describing the origin of the read (canon/mod). Using the subset
utility in the POD5 python package (https://pypi.org/project/pod5/) , along with the
original POD5, we created subsetted POD5 files with known methylation levels from
original POD5 files. These were then used to infer the accuracy of various models. For
NEMO model accuracy, we used bonito basecaller

(https://github.com/nanoporetech/bonito) for methylation calling.

Significance testing for sequence contexts

The Remora APl was utilized to extract raw signal data from POD5 files from 100
randomly selected genomic locations for each sequence context. This was done for
both NAT and WGA datasets of Helicobacter pylori 26695. Signal was trimmed to 20
base positions, with 10 bases before and after Adenine. We calculated metric values
such as dwell, trimmean and trimsd for each of the 100 locations, using a maximum of
1000 reads per location. We then calculated p values for each base position by
performing a t-test on trimmean metric of signals from NAT and WGA datasets. These p

values were plotted using ggplot2 R package.
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Figure legends:

Fig S1: IGV screenshots depicting the insertion disrupting the dam locus (top) and the
deletion at decm locus (bottom) of Escherichia coli. Red - Native (Wildtype) strain, Blue -

Double Mutant.

Fig S2: Fragment analysis using TapeStation showing sensitivity or resistance of
genomic DNA to Dpnl cleavage. Dpnl specifically cuts methylated GATC sites.
Undigested samples show intact DNA with molecular weight >15-20kb (1 replicate
each). gDNA from Native E.coli is sensitive to Dpnl cleavage as indicated by the smear,
whereas gDNA from Double Mutant is comparable to Undigested samples. Introduction
of GATC methylation using in vitro treatment with DAM methylase renders DM gDNA

susceptible to Dpnl.

Fig S3: IGV screenshot showing the read termination profiles of various E.coli strains.
gDNA that is cleaved by Dpnl shows that all reads terminate at GATC, whereas other

samples show random termination profile, comparable to undigested DNA.

Fig S4: Performance of NEMO_R9_GATC on various data of E.coli. Native E.coli data

(NAT) shows close to 100% methylation, whereas both double mutant (DM) and whole
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genome amplified (WGA) data show close to 0% methylation, indicating no PCR bias in

model performance.

Fig S5: Effect of signal chunk size on the accuracy of NEMO models in 6mA
identification. For motifs where methylation is expected (Top row), accuracy begins to
plateau at signal size of 75. Similarly, the accuracy of negative prediction in motifs

where no methylation is expected (Bottom row) begins to drop at signal size of 75.

Fig S6: Performance of NEMO_R9_6mA on all tetramers with the profiled adenine at the
second position, on native (orange) and whole genome amplified (purple) data of
Escherichia coli. Methylation is only expected in the sequence context GaTC. The all
context model of 6mA does well in discriminating 6mA from canonical adenine in all

tested tetramer contexts.

Fig S7: Scatterplots depicting the correlation between methylation values called by
NEMO_R9_6mA and the expected ground truth. The motif, total nhumber of genome
locations profiled, and the Pearson correlation is indicated in the plot title. The adenine

which is profiled for methylation is indicated in lower case.

Fig S8: Signal differences between canonical and modified adenines in various
sequence contexts. For each sequence context, the line plot on the right indicates
statistical significance of signal differences between canonical and modified bases
from 100 loci, for -10nt to +10nt around the target adenine. The performance of
NEMO_R9_6maA for that sequence context is shown on the left. The six motifs chosen

are based on the expected methylation - methylation expected: ATTAaT, CaTG, GCGTa,
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GaGG, methylation not expected: GaGAA, TTaAG. The profiled adenine is indicated in

lowercase in the motif.

Fig S9: Performance comparison of NEMO_R9_6mA, Tombo, and mCaller in various
sequence contexts, evaluated on the native (NAT) and whole genome amplified (WGA)
data of H.pylori JP26 taken from Tourancheau et al?®. In all plots, the adenine which is
profiled for methylation is indicated in lower case in the motif. The motifs GGCC and

CCGG are expected to show Cytosine methylation (5mC and 4mC respectively).
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