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Abstract 

DNA methylation plays a key role in epigenetic regulation across lifeforms. Nanopore 

sequencing enables direct detection of base modifications. While multiple tools are 

currently available for studying 5-methylcytosine (5mC), there is a paucity of models 

that can detect 6-methyladenine (6mA) from raw nanopore data. Leveraging the motif-

driven nature of bacterial methylation systems, we generated 6mA identification models 

that vastly surpass the accuracy of the current best model. Our work enables the study 

of 6mA at a single-base resolution in new as well as existing nanopore datasets. 

Keywords: DNA methylation, 6-methyladenine, nanopore, NEMO 

Background 

DNA methylation is a fundamental mechanism that regulates various biological 

processes, including embryonic development, genomic imprinting, X-chromosome 

inactivation, and suppression of transposable elements1–3. The methylation status of 

DNA is highly dynamic and can change in response to various environmental cues, such 

as stress, diet, and aging4,5. Aberrant DNA methylation patterns have been associated 

with various diseases, including cancer, neurodegenerative disorders, and 

cardiovascular diseases6,7. Moreover, recent studies have shown that DNA methylation 

patterns can be used as diagnostic and prognostic markers for various diseases and as 

potential therapeutic targets8. The most commonly studied methylated bases of DNA 

are 5-methylcytosine (5mC), 5-hydroxy methylcytosine (5hmC), and 6-methyladenine. 
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6-methyladenine (6mA) is an epigenetic modification of DNA that has long been 

known to exist in prokaryotes, where it is involved in mechanisms such as DNA repair 

and protection against foreign DNA9,10. Initially thought to be absent in eukaryotes,  

recent studies have shown that 6mA is present in several eukaryotic genomes, including 

fungi, plants, and animals11–13. In eukaryotes, 6mA is involved in several biological 

processes, including gene regulation, DNA replication, and chromatin structure, 

suggesting that this modification plays a crucial role in epigenetic regulation11.  

Unlike 5mC, identification of 6mA is not amenable to conversion based methods 

such as bisulfite sequencing. Traditionally, 6mA is studied using capture based 

methods such as methylated DNA immunoprecipitation (MeDIP), where methylated 

DNA is enriched using antibodies specific to 6mA followed by high-throughput 

sequencing14. Such methods provide genome wide data on 6mA patterns, but lack 

nucleotide-level resolution. Recently, emerging single molecule sequencing 

technologies such as PacBio and Oxford Nanopore (ONT) sequencing have enabled 

direct identification of DNA base modifications.  

ONT sequencing uses a voltage sensor to monitor electrical fluctuations as a 

DNA strand is translocated through a biological nanopore15. These characteristic 

fluctuations are converted to the corresponding DNA sequence by a basecaller. The 

ability to detect DNA modifications is due to the differences in the signal when a 

modified base translocates through the nanopore as compared to a canonical base16. 

Leveraging this, several tools have been developed that identify base modifications 

from raw nanopore data. A large subset of these are focused on 5mC, particularly in the 
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CpG context17. A few tools support 6mA calling: Tombo, DeepSignal, DeepMP, and 

mCaller. Tombo, an old tool provided by Oxford Nanopore, identifies possible modified 

bases by testing statistically significant differences in the current levels among reads 

aligning to the target position18. DeepSignal and DeepMP are two recent Deep Neural 

Network based tools which provide models for 6mA identification only in the GATC 

context 19,20. mCaller provides a “dinucleotide” model, which theoretically covers all 

possible dimers with 6mA in the 1st position21. The performance of these tools in 

diverse sequence contexts remains unknown due to lack of appropriate benchmarking 

datasets. 

In this study, we set out to develop accurate models that can discriminate 6mA 

from a canonical adenine from raw nanopore signal data generated on the R9.4.1 

chemistry. To achieve this, we utilized datasets from multiple bacterial species for 

which sequence context of 6mA is known. We call our models NEMO (Nanopore 

Epigenetic Modification Output). We show that NEMO models significantly outperform 

existing models in identification of 6mA, both in GATC as well as other sequence 

contexts.  

Results 

Dataset generation and validation 

Most of the existing 6mA callers have been trained and validated on limited datasets, 

such as a pUC plasmid grown in presence of Escherichia coli dam (DNA adenine 

methylase)19,20. We aimed to generate more robust datasets, both to benchmark 
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existing callers, and to train and develop better methods for 6mA identification. To this 

end, we harnessed the methylation diversity in bacterial systems, which occurs in a 

highly motif-driven manner22. To create datasets that are methylated and unmethylated 

at specific sequence contexts, we sequenced both the native (NAT) and whole genome 

amplified (WGA) versions of E.coli K12 MG1655, and Helicobacter pylori 26695 strains 

on the Oxford Nanopore R9.4.1 flowcells (Fig 1A). 

To control for possible amplification biases, we also created a “double mutant” 

(referred to as DM hereon) of E.coli K12 MG1655 substr. in which both the major 

methylases, dam and dcm, are deleted. We confirmed the insertion cassette and 

deletion in dam and dcm loci respectively in the DM strain using whole genome 

sequencing (Fig S1). Further, fragment analysis using TapeStation showed a 

characteristic smear for NAT genomic DNA (gDNA) digested with DpnI, which 

specifically cuts methylated GATC sites. However, DM gDNA was resistant to cleavage 

by DpnI, and showed an intact band comparable to undigested gDNA, indicating 

absence of methylation (Fig S2). 

DpnI digested gDNA of both the NAT and DM strains were sequenced on the 

Oxford Nanopore platform. As expected, close to 100% of the reads spanning GATC 

sites in WT strain terminate at the cut site (GA/TC) whereas in DM, the read termination 

profile is similar to that of undigested gDNA (Fig S3). We derived the methylation 

percentage at GATC sites that were well covered by calculating the ratio of reads 

terminating at the cut site to the total number of reads mapped to the location. Our 

results indicate that all profiled GATC sites are close to fully methylated in the NAT 
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strain, whereas completely unmethylated in the DM strain. This strain was also 

sequenced on R9.4.1 chemistry. In addition to the above, we also used data from two 

previous studies - native and WGA datasets from Tourancheau et al23, and the Zymo 

mock bacterial community data from Sereika et al24, to test the efficacy of our models 

in accurately identifying 6-methyladenine. The datasets used, and the sequence 

contexts tested in this work are summarized in Table 1. 

6mA identification in GATC context 

We first set out to develop a model that can discriminate 6mA from canonical adenine 

in GATC context (see Methods). We compared the performance of our GATC model 

(NEMO_R9_GATC) to existing tools. There are currently four different 6mA callers 

available - Tombo, DeepSignal, mCaller, and DeepMP. Of the 4, DeepSignal and DeepMP 

only support 6mA calling in a GATC context. Tombo and DeepSignal identified the 

highest number of methylated sites but included many false positives (Fig 1B). mCaller 

on the other hand missed many methylated sites but had fewer false positives. 

NEMO_R9_GATC outperformed all the other tools in identifying methylated sites with 

the least false positives (Fig 1B). 
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Figure 1: Performance of NEMO_R9_GATC. A) Schematic indicating the bacterial species and strains 
sequenced on Oxford Nanopore R9.4.1 chemistry to be used for model training and validation. NAT - 
Native, DM - double mutant, WGA - whole genome amplified. The schematic was created using 
BioRender (https://biorender.com). B) Performance comparison of NEMO_R9_GATC with other existing 
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models on E.coli data. All GATC locations of the genome covered at least by 10 reads were profiled. C) 
Scatterplots comparing the performance of NEMO_R9_GATC with other tools on mixed data for 880 
GATC sites in the E.coli genome. X-axis indicates the methylation percentage called by a tool whereas 
the Y-axis indicates the expected methylation. Red lines indicate the diagonal of complete concordance. 
Pearson correlation value is indicated in the plot title for each tool. D) Performance of NEMO_R9_GATC 
on native (NAT) and whole genome amplified (WGA) data of two different Helicobacter pylori strains, 
26695 - where GATC methylation is present, and JP26 - where GATC methylation is absent. E) 
Performance of NEMO_R9_GATC on various bacterial species part of the Zymo mock community data 
taken from Sereika et al24. Of the 6 species represented here, GATC methylation is expected to be 
present in Escherichia coli and Salmonella enterica. 

 

To test the efficacy of our model across the range of expected methylation 

values rather than 100% methylated or unmethylated sites, we generated a synthetic 

dataset by mixing known proportions of methylated and unmethylated reads for 880 

GATC sites spanning the entire E.coli genome (See Methods). NEMO_R9_GATC showed 

a concordance of 0.91 on this dataset compared to the next best concordance of 0.52 

by DeepSignal (Fig 1C). We did not see a difference in identification of unmethylated 

Adenine from both the DM data, as well as the whole genome amplified data of E.coli 

(Fig S4).  

We further validated our model on datasets from multiple bacterial species to 

rule out any species- or lab-specific bias. To this end, we first analyzed data generated 

in-house from H.pylori 26695, where GATC methylation is expected, and data of another 

strain of H.pylori, JP26, from Tourancheau et al23, where GATC methylation was not 

found. NEMO_R9_GATC accurately discriminated 6mA and unmethylated Adenine in 

these datasets (Fig 1D). In addition, we tested it on previously published data of other 

bacterial species22. In all cases, our model reliably detected presence or absence of 

6mA in GATC context in the respective genomes (Fig 1E). Taken together, these results 
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indicate that the GATC model of NEMO for the R9.4.1 chemistry is highly accurate in 

discriminating 6mA from a canonical adenine. 

An all context 6mA model for R9 chemistry 

Using native and WGA datasets of H. pylori 26695, we next aimed to train a model that 

could identify 6mA irrespective of the sequence context. The sensing regions of the 

R9.4.1 version of flow cells can harbor 5-6nt of DNA. Hence, depending on the sequence 

context, the signal to discriminate between canonical and modified bases can span up 

to 11-13nt, with the modified base at the center. With a sampling rate of 4kHz and 

translocation speed of 400 bases per second, this corresponds to approximately 130 

signal points. We therefore tested multiple signal chunk sizes (30, 50, 75, 100, 120 and 

150) around the target base to identify the optimal chunk size. We observed that the 

true positive calls improved with longer signal sizes, plateauing around 75 signal points, 

however, the true negative calling deteriorated at longer sizes, starting at around 75 

signal points (Fig S5). In the contexts tested, the model trained with a chunk size of 50 

data points (sig50) on either side of the target base performed most optimally. We 

further refer to the sig50 model as NEMO_R9_6mA.  
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Figure 2: Performance of NEMO_R9_6mA. A) Evaluation of NEMO_R9_6mA on diverse sequence 
context using native (NAT) and whole genome amplified (WGA) data of Helicobacter pylori 26695. The 
first 7 (underlined) motifs are contexts where methylation is expected to be present, whereas the next 3 
are not known to be methylated. B) Performance of NEMO_R9_6mA in identification of 6mA in various 
sequence contexts from diverse bacterial species from the Zymo mock community data. Motifs known to 
be generally methylated in a species are indicated with an asterisk. C) Scatterplots depicting the 
correlation between methylation values called by NEMO_R9_6mA and the expected ground truth. The 
motif, total number of genome locations profiled, and the Pearson correlation is indicated in the plot title. 
D) Performance comparison of NEMO_R9_6mA, Tombo, and mCaller in various sequence contexts, 
evaluated on the native (NAT) and whole genome amplified (WGA) data of H.pylori JP26 taken from 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2026. ; https://doi.org/10.1101/2024.03.12.584205doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.12.584205
http://creativecommons.org/licenses/by/4.0/


11 
 

Tourancheau et al23. In all plots, the adenine which is profiled for methylation is indicated in lower case in 
the motif. 

We tested the efficacy of the NEMO_R9_6mA on E.coli K12 MG1655 and H.pylori 

26695 data in diverse sequence contexts - motifs known to be generally methylated in 

the genome, and few other motifs where no methylation is expected. As seen in Fig 2A, 

our model performed well in discriminating 6mA from canonical adenine in the tested 

contexts on H.pylori data. When tested on E.coli data in ‘NANN’ context (all possible 

tetramers with adenine in the second position), NEMO_R9_6mA identified 6mA only in 

GATC context and in the native dataset, where methylation is expected (Fig S6). We 

then assayed the performance of NEMO_R9_6mA on different species using the Zymo 

mock community dataset from Sereika et al24. While the performance varied based on 

the sequence context, in all cases there was a clear difference in percentage methylated 

identified by NEMO in genomes where the motif is expected to be methylated, except 

for the motif CAGaG in Salmonella enterica (Fig 2B). When tested on synthetic data with 

methylated and unmethylated reads mixed in known proportions, the concordance for 

most tested contexts was >0.7 (Fig 2C, Fig S7). Lower concordance of ~0.5 in contexts 

such as GaGG could be attributed to poor signal differences between the methylated 

and unmethylated samples, similar to what was observed for contexts where no 

methylation is expected (Fig S8).  

We next wanted to compare NEMO_R9_6mA with the other two tools which 

support all context 6mA calling - Tombo and mCaller. Both Tombo and mCaller require 

the raw files to be preprocessed with the ‘resquiggle’ command of Tombo. However, 

Tombo does not support resquiggling on the newer POD5 files, even when these are 
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converted to FAST5 format. Due to this incompatibility, we could not perform the 

comparison analysis on the in-house generated H.pylori 26695 data. Instead we used 

H.pylori JP26 data from Tourancheau et al23, which was in the older FAST5 format 

compatible with Tombo resquiggle. As was seen in the GATC context, in general Tombo 

overpredicted methylation, even in contexts where no methylation was expected (Fig 

2D, Fig S9). mCaller performed well in discriminating 6mA in several contexts, 

particularly in identifying unmethylated adenines. However, it did not identify methylated 

adenine as effectively as Tombo and NEMO in a few sequence contexts such as 

ATTAaT and CATGa (Fig 2D, Fig S9).  

We further profiled the performance of these tools in two motifs - aGGcC and 

aCcGG, where no adenine methylation is expected, but there is cytosine methylation 

(5mC and 4mC respectively). In these cases, mCaller identified many false positives for 

6mA in the context aGGcC but not aCcGG (Fig S9), suggesting that its model is 

sensitive to neighboring 5-methylcytosine but not 4-methylcytosine. In a few cases such 

as GaATTC, NEMO did not perform as well compared to Tombo in calling methylated 

adenine. Overall, our results show that NEMO_R9_6mA is able to reliably detect 6mA in 

a variety of sequence contexts from nanopore data generated on the R9.4.1 chemistry. 

Discussion 

The advent of long-read sequencing technology has opened new avenues for studying 

sequence and epigenetic variation simultaneously. The ability to analyze epigenomes 

concurrently with sequencing is contingent upon availability of robust models capable 
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of accurately discriminating modified bases. The support to identify 6mA from 

nanopore data has been limited, particularly for data from the R9 versions of the 

flowcells, which have been one of the most widely used FC versions. For example, the 

6mA models offered by Guppy and Dorado do not support methylation calling on data 

generated on flowcells prior to version R10.4.1. Previous tools that support 6mA calling 

have significant limitations in speed, accuracy, convenience, and support for new file 

formats. Our tool, NEMO, addresses these limitations. 

We report two different models of NEMO - one specific for GATC context, and 

one which is sequence context-agnostic. In addition to studying bacterial genomes 

where GATC is prevalent, accurate identification of 6mA in GATC context has 

applications in techniques such as DamID25. Furthermore, 2 out of the 4 tools we used 

for performance comparison support 6mA identification in GATC context alone. 

Compared to other tools, NEMO achieves significantly higher concordance scores. 

In our quest to develop a sequence context-agnostic model for 6mA 

identification, we standardized the signal chunk used in training. We found that a chunk 

size of 50 signal points is optimal. While true positive rates remain high with larger 

chunks, the false positive rate increases dramatically, likely due to the training dataset 

(H. pylori) having abundant 6mA, possibly leading to confusion in signal interpretation 

due to neighboring modifications. The other possible explanation is that the true signal 

that can discriminate 6mA is diluted by the noise introduced in a large signal chunk. 

Further research is needed to understand the performance decline with longer signal 

chunks. 
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Previous tools have enabled 6mA identification from nanopore data, but often as 

standalone applications. During our comparative experiments, we encountered 

challenges in running these tools on newer file formats, such as POD5. The resquiggle 

command of Tombo, a mandatory requirement for other tools, did not work on POD5 

files, even when they were converted to FAST5 files using pod5tools. However, this 

gave us an opportunity to test the NEMO models on data available in the public domain, 

to ensure that they also work well on data generated beyond our own lab. Additionally, 

while some tools supported GPU acceleration, others did not, and each required its 

specific setup. In contrast, NEMO models seamlessly integrate with the latest base 

callers by Oxford Nanopore, such as Bonito and Dorado. NEMO does not require any 

specific setup and works out-of-the-box, leveraging any available GPU acceleration to 

significantly improve processing times. This not only boosts efficiency but also offers 

greater convenience to users. 

Our “all-context” 6mA model does show limited capabilities in few contexts. This 

is perhaps due to the fact that the signal difference in these contexts could not be 

captured efficiently. This may be a limitation of the flow cell itself, where the shorter 

barrel of the R9 nanopore is not capable of discriminating 6mA in all sequence 

contexts. Alternatively, a model trained using a shorter signal chunk may bring out the 

weak signal differences and hence perform better in these contexts. In future, a 

consensus taken by using two different models, one trained on short chunks and one on 

long chunks, may provide a more wholesome understanding of 6mA in a dataset. 
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Methods 

Bacterial strains and culture 

The “double mutant” (DM) strain was constructed in the background of Escherichia coli 

MG1655. dam::Cm allele (dam locus harboring transposon Tn9; M.R. lab collection) and 

dcm::Kan26 were introduced singly or sequentially into MG1655 by P1 phage mediated 

transduction. Deletions were confirmed by PCR. Strains were grown at 37°C in lysogeny 

broth (1% tryptone, 0.5% yeast extract, 1% NaCl) supplemented with chloramphenicol 

(Cm; 10μg/ml) or kanamycin (Kan; 25μg/ml) as required. 

Genomic DNA extraction 

An overnight bacterial culture was treated with Lysozyme and then lysed using SDS and 

Proteinase K. The sample was treated with CTAB to further purify the gDNA. This was 

followed by a Phenol:Chloroform:Isoamyl alcohol and Chloroform:Isoamyl alcohol 

wash. DNA was precipitated using Isopropanol and spooled onto a glass rod. The gDNA 

was washed in ethanol, air dried and finally dissolved in EB (Qiagen, Germany). The 

gDNA was stored at 4°C for 2 days before quantification using a NanoDrop 2000 

Spectrophotometer (ThermoScientific, USA) and Qubit dsDNA kit (ThermoScientific, 

USA). 

in vitro DNA Methylation 

Genomic DNA from DM strain was used for in-vitro DNA methylation. The genomic DNA 

was incubated in a mix containing S-Adenosyl methionine (SAM) along with the DNA 
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adenine Methyltransferase (dam, NEB, USA) and its corresponding buffer for 4 hours at 

37°C. The sample was purified using Ampure XP (Beckmann Coulter, USA) beads and 

the methylated DNA was quantified using Qubit HS dsDNA kit (ThermoScientific, USA). 

Nanopore library preparation 

Nanopore library was constructed using the ligation sequencing kit SQK-LSK109 

(Oxford Nanopore Technologies, UK). The DNA was treated with NEBNext Ultra II End 

Repair/dA-Tailing Module (NEB, USA) and NEBNext FFPE DNA Repair Mix (NEB, USA), 

purified using Ampure XP (Beckmann Coulter, USA) and quantified using Qubit dsDNA 

(ThermoScientific, USA). To multiplex the samples, the Native Barcoding Expansion kit 

(Oxford Nanopore Technologies, UK) was used. The barcodes were ligated to samples 

using the NEBNext Ultra II Ligation Module (NEB, USA) after which the samples were 

purified and quantified. Equal amounts of barcoded samples were pooled and ligated to 

the adaptor protein. The final library was loaded onto an R9.4.1 flow cell (Oxford 

Nanopore Technologies, UK) as per the manufacturer’s instructions. 

Nanopore Sequencing Data Processing 

We used Guppy (V6.3.7) for basecalling all the nanopore reads (fast5 files) using super 

accuracy models (sup) with options ‘--q-value 7 --fast5_out’. Quality check for the 

basecalled reads (fastq files) was performed using NanoPlot27. The basecalled reads 

were mapped to the reference genome using minimap228. We compared our model 

against 4 other existing 6mA calling tools - DeepSignal, mCaller, Tombo, DeepMP. 

DeepSignal v0.1.6 was run using the GATC model with options ‘--motifs GATC --mod_loc 
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1’. Tombo v1.5.1 was run with the alternative model using options ‘--alternate-bases 

6mA & --alternate-bases dam’ independently to be able to predict 6mA methylation in 

individual samples. mCaller v1.0.3 was run using model ‘r94_model_NN_6_m6A.pkl’ 

with parameters ‘-m A -b A’. We used DeepMP for combined feature extraction followed 

by modification calling using pre-trained model ‘pUC19_joint_202106’ for 6mA detection 

in GATC context. The snakemake files for these tools were adapted from the METEORE 

tool (https://github.com/comprna/METEORE). 

Restriction digestion based analysis 

To validate the presence or absence of methylation in GATC context, NAT, DM and 

DM+DAM treated gDNA was digested with DpnI (NEB, USA), which selectively cleaves 

methylated GATC sites. Digested gDNA and undigested controls were sequenced on the 

Oxford Nanopore platform. The sequenced data was aligned to the E.coli reference 

genome using minimap2, and the bam files were analyzed using a custom python script 

which leverages the pysam library (https://github.com/pysam-developers/pysam) to 

determine the frequency of reads that terminate or start at GATC sites; The indexed 

bam files are parsed using pysam and the read positions are then iterated over using 

the ‘pileup’ method. Each of the pileups-iterable objects can then be tested for read 

termination or initiation using the ‘is_tail’ and ‘is_head’ methods respectively. The sum 

of these individual values indicate the frequency of reads that terminate or start at a 

given genomic location. The ratio of the number of read terminations/start-sites to the 

sequencing depth at a given location is used to calculate the percentage methylation at 

a given GATC site. Data was visualized using IGV and ggplot2. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2026. ; https://doi.org/10.1101/2024.03.12.584205doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.12.584205
http://creativecommons.org/licenses/by/4.0/


18 
 

Model training in GATC context 

Custom models were built using remora v0.2.4 

(https://github.com/nanoporetech/remora). First, we used the ‘dataset prepare’ 

function to get motif specific chunks of signal data from the training datasets (POD5 

files). We used DM as the canonical dataset and NAT as the modified dataset for model 

training in GATC context with parameter ‘--motif GATC 1’. The motif specific chunks of 

signal from DM & NAT were then merged and given as input for model train function of 

remora. The output was the directory containing the best model in PyTorch format.  

All context 6mA model training 

An all context model for 6mA detection was also trained using remora v0.2.4 

(https://github.com/nanoporetech/remora). Native genomic DNA and WGA-amplified 

DNA samples for Helicobacter pylori 26695 were sequenced using R9.4.1 flowcells 

(Oxford Nanopore Technologies, UK). We used the whole genome amplified sample 

(WGA) as canonical dataset and native sample (NAT) as the modified dataset for 

training an all context model with parameters ‘--motif A 0’, ‘--refine-rough-rescale’.  

Optimization of the neural network architecture 

The basic layout of the neural network is a convolutional long-short-term-memory 

(LSTM) model. To ensure the NEMO models are accurate and not overfit, we optimized 

various parameters of the neural network, including the chunk sizes that were used for 

training. We trained the models from 10 to 100 epochs, and pool layer sizes of 64-256. 
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The sensing regions of the R9.4.1 version of flow cells can harbor 5-6nt of DNA at a 

time. Therefore, the location of the signal to discriminate between canonical and 

methylated adenines can be different based on the motif. For the chunk context 

parameter, we used multiple signal chunk sizes (30, 50, 75, 100, 120 and 150) around 

the target base to generate different models to look at the effect of signal chunk size on 

the accuracy of the model. Overall, the optimization effort took over 4000 GPU hours. 

Finally, we used a layer size of 64 and a chunk size of 50 for NEMO_R9_GATC, and layer 

size of 256 and a chunk size of 50 for NEMO_R9_6mA. The best performing model in 

each case was exported as a PyTorch and dorado models using remora, which are 

compatible with bonito and dorado basecallers respectively. 

Model inference 

To assess the efficacy of the models, we used in-house datasets generated for  E.coli 

K12 MG1655 and Helicobacter pylori 26695 strains on R9.4.1 flowcells (Oxford 

Nanopore Technologies, UK). In addition, we also used data from two previous studies, 

Tourancheau et al23, and Sereika et al24. We used dorado v0.3.3 

(https://github.com/nanoporetech/dorado) with a super accuracy model and NEMO 

model for performing modified basecalling on above mentioned datasets. Dorado 

outputs reference aligned reads with the methylation information in modbam format. 

The modbam file was then sorted and indexed using samtools. Further, to aggregate 

modified base counts stored in modbam file, modbam2bed tool 

(https://github.com/epi2me-labs/modbam2bed) was used with the parameter “-m 
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6mA”. The bed file containing methylation calls was processed for data wrangling and 

visualization using the R packages dplyr and ggplot2.   

Simulated data with known methylation levels 

To benchmark the performance of NEMO at different methylation levels we created a 

dataset with known methylation levels at the sequence context of interest. The pod5 

files for WGA and NAT runs for a specific species were first basecalled to FASTQ files 

independently, using dorado. These reads are then size selected using NanoFilt 

(https://github.com/wdecoster/nanofilt) for a minimal size of 500bp and a maximum 

length of 4 kb. Once a motif of interest is determined, all corresponding motif locations 

across the genome are identified using an inhouse script. These motifs are then filtered 

such that they are at least 5 kb apart (1kb + max size of reads), in order to eliminate 

reads spanning multiple motifs and thus interfering with the methylation percentage at 

the time of mixing. Once a list of motif sites are determined, a randomizer is used to 

generate an arbitrary percentage of methylation for each site, with a constant seed 

value for consistency across multiple mixing experiments performed using different 

sample combinations and motifs. 

The FASTQ  reads are then aligned to the respective reference genomes using 

minimap2, thus generating two files one for the reads containing no methylated sites 

for the motif of interest (canonBam) and  another with the reads that contain 6mA 

nucleotides in the motif of interest (modBam). After alignment the bam files are 

converted to a bed format for both canonical and modified data. These coordinate bed 
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files are filtered for reads that span the filtered motif list that was generated earlier. 

Reads from each bed file are combined in appropriate combinations based on the 

methylation percentages generated and the final output is a TSV file containing readID 

and a second column describing the origin of the read (canon/mod). Using the subset 

utility in the POD5 python package (https://pypi.org/project/pod5/) , along with the 

original POD5, we created subsetted POD5 files with known methylation levels from 

original POD5 files. These were then used to infer the accuracy of various models. For 

NEMO model accuracy, we used bonito basecaller 

(https://github.com/nanoporetech/bonito) for methylation calling. 

Significance testing for sequence contexts 

The Remora API was utilized to extract raw signal data from POD5 files from 100 

randomly selected genomic locations for each sequence context. This was done for 

both NAT and WGA datasets of Helicobacter pylori 26695. Signal was trimmed to 20 

base positions, with 10 bases before and after Adenine. We calculated metric values 

such as dwell, trimmean and trimsd for each of the 100 locations, using a maximum of 

1000 reads per location. We then calculated p values for each base position by 

performing a t-test on trimmean metric of signals from NAT and WGA datasets. These p 

values were plotted using ggplot2 R package. 
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Figure legends: 

Fig S1: IGV screenshots depicting the insertion disrupting the dam locus (top) and the 

deletion at dcm locus (bottom) of Escherichia coli. Red - Native (Wildtype) strain, Blue - 

Double Mutant. 

Fig S2: Fragment analysis using TapeStation showing sensitivity or resistance of 

genomic DNA to DpnI cleavage. DpnI specifically cuts methylated GATC sites. 

Undigested samples show intact DNA with molecular weight >15-20kb (1 replicate 

each). gDNA from Native E.coli is sensitive to DpnI cleavage as indicated by the smear, 

whereas gDNA from Double Mutant is comparable to Undigested samples. Introduction 

of GATC methylation using in vitro treatment with DAM methylase renders DM gDNA 

susceptible to DpnI. 

Fig S3: IGV screenshot showing the read termination profiles of various E.coli strains. 

gDNA that is cleaved by DpnI shows that all reads terminate at GATC, whereas other 

samples show random termination profile, comparable to undigested DNA. 

Fig S4: Performance of NEMO_R9_GATC on various data of E.coli. Native E.coli data 

(NAT) shows close to 100% methylation, whereas both double mutant (DM) and whole 
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genome amplified (WGA) data show close to 0% methylation, indicating no PCR bias in 

model performance. 

Fig S5: Effect of signal chunk size on the accuracy of NEMO models in 6mA 

identification. For motifs where methylation is expected (Top row), accuracy begins to 

plateau at signal size of 75. Similarly, the accuracy of negative prediction in motifs 

where no methylation is expected (Bottom row) begins to drop at signal size of 75. 

Fig S6: Performance of NEMO_R9_6mA on all tetramers with the profiled adenine at the 

second position, on native (orange) and whole genome amplified (purple) data of 

Escherichia coli. Methylation is only expected in the sequence context GaTC. The all 

context model of 6mA does well in discriminating 6mA from canonical adenine in all 

tested tetramer contexts. 

Fig S7: Scatterplots depicting the correlation between methylation values called by 

NEMO_R9_6mA and the expected ground truth. The motif, total number of genome 

locations profiled, and the Pearson correlation is indicated in the plot title. The adenine 

which is profiled for methylation is indicated in lower case. 

Fig S8: Signal differences between canonical and modified adenines in various 

sequence contexts. For each sequence context, the line plot on the right indicates 

statistical significance of signal differences between canonical and modified bases 

from 100 loci, for -10nt to +10nt  around the target adenine. The performance of 

NEMO_R9_6mA for that sequence context is shown on the left. The six motifs chosen 

are based on the expected methylation - methylation expected: ATTAaT, CaTG, GCGTa, 
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GaGG, methylation not expected: GaGAA, TTaAG. The profiled adenine is indicated in 

lowercase in the motif.  

Fig S9: Performance comparison of NEMO_R9_6mA, Tombo, and mCaller in various 

sequence contexts, evaluated on the native (NAT) and whole genome amplified (WGA) 

data of H.pylori JP26 taken from Tourancheau et al23. In all plots, the adenine which is 

profiled for methylation is indicated in lower case in the motif. The motifs GGCC and 

CCGG are expected to show Cytosine methylation (5mC and 4mC respectively). 
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