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Abstract 

 

Despite the importance of audition in spatial, semantic, and social function, there is no consensus 

regarding the detailed organisation of human auditory cortex. Using a novel application of a population 

receptive field model to a high-powered naturalistic audiovisual movie-watching dataset, we 

simultaneously estimate the basic spectral tuning properties and category selectivity of human auditory 

cortex. This revealed unprecedentedly clear tonotopic maps which showcase the modes of organization 

and computational motifs of the auditory cortex.  Specifically, we find that regions more remote from the 

auditory core exhibit more compressive, non-linear response properties with finely-tuned, speech 

selectivity in low frequency portions of their tonotopic maps. These patterns of organisation mirror aspects 

of the visual cortical hierarchy, wherein tuning properties progress from a stimulus category-agnostic 

‘front end’  towards more advanced regions increasingly optimised for behaviorally relevant stimulus 

categories. 
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1. Introduction 

 

Auditory information processing is fundamental to human spatial, semantic, and social function. 

The principal dimension in which auditory sensations are organized is sound frequency. The cochlea 1, 

brainstem 2, thalamic 3,4, and cortical 5 centers of the auditory system all exhibit tonotopy: neighbouring 

neurons with similar spectral sensitivities give rise to a smooth topographic progression of frequency 

tuning within each region. The primacy of tonotopy as an organizing principle in both the auditory brain 4,5 

and artificial neural networks of audition 6 is uncontested, but there is little consensus on the cortical 

auditory system’s tonotopic structure 7,8.  

In analogy to the auditory brain, many visual brain regions are organized retinotopically: 

according to the structure of their sensory organ, the retina 9,10. In contrast to audition’s elusive 

organization, vision science has been able to leverage explicit computational models of the brain’s 

encoding of visual space to chart multiple distinct retinotopic maps, with the proposed number of these 

maps rapidly increasing in recent years. 11–13. The combination of retinotopic mapping with charting 

selectivity for salient stimulus categories 14 (e.g. faces, objects and environmental scenes) has delivered 

a relatively detailed understanding of the layered topology of stages that underlie the visual system’s 

processing hierarchy. In this work, our goal was to apply the computational neuroimaging toolkit of vision 

to the auditory system in order to reveal its topographic organization. 

Originally applied to visual cortex10, a population receptive field (pRF) model is a parsimonious 

encoding model that explains population neural responses as the interaction between a stimulus and a 

receptive field. Previous work has leveraged this model to reveal tonotopic maps derived from pure tone 

stimuli15. The application of other computational models to explaining responses to naturalistic sound 

stimuli has also had great explanatory power in revealing core aspects of auditory cortical function 16–18. 

However, although such studies employed real-world stimuli, they were brief (<10s), isolated and 

contextless sounds that do not closely resemble everyday auditory experience. Our natural sensory 

experiences are much better characterised by extended and continuous multisensory presentations - 
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much of the meaning we infer is from stimulation sequences rather than from instantaneous stimuli. In 

this study, we develop previous work via the novel application of a nonlinear pRF model to explain 

responses to more naturalistic stimuli. Moreover, we perform our modeling on a volume of data that far 

exceeds that underlying previous tonotopic mapping studies, offering us a unique insight into auditory 

cortical function. 

 Here, we used naturalistic movie stimuli to simultaneously chart both low-level tonotopic structure 

as well as higher level category-selective structure of auditory cortex. To this end, we leveraged a 

uniquely high-powered 7-Tesla functional imaging dataset acquired in the Human Connectome Project 

(HCP), in which 174 participants viewed approximately 1 hour of naturalistic audiovisual movies 19,20.  We 

analyzed these data with the compressive spectral summation (CSS) model - a nonlinear pRF model that 

explains the hemodynamic response of cortical locations as resulting from the interaction between an 

auditory stimulus and the basic spectral tuning of their population receptive field (Figure 1, Methods). 

[INSERT FIGURE 1 HERE] 

2. Results 

2.1. Global Tonotopic Organisation 

To focus our analysis on regions sensitive to structured auditory information, we initially removed 

vertices that responded unselectively to sound (see Methods). This revealed a tonotopic population of 

vertices in a large expanse of superior temporal cortex. Preferred frequency (μ) of this population is 

depicted in Figure 2A and 2B. The population covers Heschl’s gyrus (HG) - a landmark traditionally 

associated with the auditory core 21 and spans portions of the planum temporale (PT), superior temporal 

gyrus (STG) and terminates ventrally close to the superior temporal sulcus (STS).  

 The tonotopic structure depicted in Figure 2B mirrors classical hallmarks of auditory organisation 

that have been observed in traditional psycho-acoustic paradigms 21,22. There is a large, ‘core’-like, low-

frequency region on HG (i), surrounded by an antero-medial ‘strip’ (ii) and posterior ‘patch’ (iii) preferring 

high frequencies. These high-frequency regions adjoin approximately medially, creating the hallmark ‘V’ 

shaped pattern that has been observed consistently in previous investigations 8. As model performance 

drops off dorsolaterally, an additional region preferring low frequencies can be observed that roughly 
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aligns with STG (iv). The organisation of these features are highly consistent across hemispheres. 

Although we searched for preferred frequencies up to 8 kHz, we found little selectivity for frequencies 

above 4 kHz. This range of frequencies revealed by our analyses are in good agreement with a 

complementary, high-field study based on brief, naturalistic stimuli 16. Moreover, in addition to the similar 

range of frequencies, we also note the striking similarity between the finer-level tonotopic arrangement 

revealed by our analyses. The range of frequencies likely reflects a combination of the fact that low 

frequencies tend to dominate natural sounds and the effect of across-subject averaging. 

Representative model fits, as well as an assessment of the CSS model’s predictive capabilities 

referenced against data reliability can be found in Supplementary Material S1 and Figure S1. In terms 

of cross-validation performance, the CSS model outperformed a model with a fixed nonlinearity (n) in 

nearly all locations of the tonotopic population, indicating the benefit of this aspect of the modeling 

(Supplementary Material S1).To quantify the reliability of parameter estimates, we assessed the 

association between the μ estimates obtained from two across-subject folds (the ‘early’ and ‘late’ subject - 

see Methods). There was robust agreement between these tonotopic maps (Spearman's rs = .87, p 

<.001) and similar levels of agreement with respect to the maps of the pRF size - as defined by full width 

half maximum (FWHM - rs = .86, p <.001) and n parameters (rs = .85, p <.001) . We further investigated 

the stability of tonotopic maps in two additional ways, performing model fitting on both individual subjects 

and on fold-wise and subject-wise split-halves of the dataset (see Methods and Supplementary 

Material S2). After ranking individual subject maps by out of sample variance explained, a generally 

consistent tonotopic arrangement was revealed in the top 5 subjects. These patterns, however, were less 

conspicuous in the middle 5 subjects and virtually no tonotopic arrangement was discernible in the bottom 

5 subjects (Figure S2A). However, the split-half analyses revealed stable parameter estimates, both at 

across-subject and across-fold splits of the data (Figure S2B -E). Together, this illustrates that a large 

amount of data/high signal to noise ratio is required to recover the tonotopic organization we report - 

possibly accounting for why smaller-scale studies often yield inconsistent conclusions about tonotopic 

organization. 

  

2.2. Global Speech Selectivity 
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 We characterised category selectivity via a speech-selective model, derived from a linear 

combination of the CSS-predicted responses to speech and nonspeech stimuli (see Methods). Figure 2C 

depicts the improvement in generalisation performance for the speech-selective model over the initial 

CSS model. Notably, there is very little improvement around HG, but robust improvements in performance 

can be observed around STG. Speech selectivity (defined by difference between speech and nonspeech 

beta-weights) increases ventro-laterally along an axis that roughly aligns and overlaps with STG (Figure 

2D). Figure 2E depicts the μ parameters estimated by the CSS model, with transparency weighted by 

speech-selective model improvement. Interestingly, this reveals that speech-selective regions primarily 

occupy the same low-frequency portions of the tonotopic map along STG that were associated with a 

decline in CSS performance (i.e. region iv in 2B).  

 

[INSERT FIGURE 2 HERE] 

 

2.3. Decomposition of Functional and Anatomical Parameters. 

The preceding modeling has quantified basic spectral tuning properties, as well as category 

selectivity in auditory cortex. Spectral tuning has been consistently linked to anatomical and myelo-

architectural properties. For instance, the auditory core has been linked to a highly myelinated region on 

HG 23,24   and surface curvature has been linked to frequency tuning 21. Furthermore, delineation of 

auditory fields based solely on functional data remain controversial 7,25. It is therefore important to 

consider how our functional quantifications relate to anatomical and myelo-architectural properties. A 

succinct, hypothesis-free way of revealing the low dimensional structure of these relationships is via a 

principal components analysis (PCA), which can reveal the spatial organization of otherwise hidden 

response dimensions. 

Our estimated functional parameters (the CSS parameters μ, FWHM, n, as well as speech 

selectivity) are depicted in Figures 3A-D alongside structural parameters of the HCP data (i.e. myelin 

density, cortical thickness, sulcal depth and curvature) in Figures 3E-H. We decomposed this wide set of 

parameters into its low-dimensional structure via weighted PCA 26. The first 3 components, which together 

accounted for 83% of the variance explained and showed a high degree of consistency across 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2026. ; https://doi.org/10.1101/2021.07.05.447566doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.447566
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

hemispheres are illustrated in Figures 3I-M. The feature loadings for each component are summarised in 

Figure 3I above the components themselves in Figures 3J-M.  

The PCA components reveal separable modes of organisation, ranging from spatially broad to 

intricate, that differ substantially in their relations to structural and functional parameters. Component 1, 

for instance, reflects a broad pattern of spatial organisation mostly tied to the structural features, 

increasing in a roughly postero-medial to antero-lateral direction around the medial tip of HG to STG 

(Figure 3K). Functionally, it also reflects a tendency for μ, FWHM and n to decrease and speech 

selectivity to increase towards STG. We note that the spatial profile of this component is broadly 

consistent with that revealed by a complementary hypothesis-free decomposition of auditory cortex, 

wherein acoustically driven responses were observed towards HG, whereas voxels whose response 

poorly explained by frequency statistics and better explained by speech-selectivity were observed 

towards STG (see component 5 of 27). Component 2 (Figure 3L) which has a clear resemblance to the 

preferred frequency data in Figure 2B, exhibits a more intricate structure that is most strongly tied to the 

parameters estimated by the CSS model. In particular, it depicts a region on HG characterised by low μ 

and FWHM surrounded laterally and medially by regions preferring higher frequencies with more 

compressive responses. This component illustrates well the previously observed tendency for higher 

frequencies to be observed at increased sulcal depth 21 - as well as for high frequency regions to be 

associated with larger bandwidths 28. Moreover, it also depicts increased non-linearity (lower values of n) 

in regions surrounding HG, consistent with the greater nonlinearity observed in non-primary sensory 

regions of the visual cortex 29.  Component 3 (Figure 3M) depicts a prominent, heavily myelinated region 

on HG flanked medially by high FWHM and curvature. Since increased myelin density has been linked to 

the location of primary sensory cortices, including human A1 23, and myelination here is associated with 

lower curvature, we interpret the spatial profile of this component as being consistent with presence of a 

primary ‘core’ region that runs along HG. These patterns of organisation revealed by the PCA were also 

highly consistent in the ‘early’ and ‘late’ subjects (Supplementary Figure S3). 

 

[INSERT FIGURE 3 HERE] 
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2.4. ROI-based Quantification of Functional Properties 

 To provide spatial precision to our quantifications, we next defined a set of regions of interest 

(ROIs) based on the presence of tonotopic reversals 22,30,  as well as variations in tuning width 28,31 (here 

defined as FWHM), speech selectivity 27,32 and myelin density 33 (see Methods for details and alternative 

ROI definitions). The resulting scheme, comprising of 3 ‘core’ ROIs (A1, R, RT) and 4 ‘belt’ ROIs (MBelt, 

LBelt, P1 and P2) is depicted in Figure 4A-B. To provide a simplified visual representation of the 

tonotopic gradients present in the data, we fit a linear model to the μ data in each ROI, with the cartesian 

coordinates of the flattened cortical surface as regressors. These predictions, depicted in Figures 4A-4B 

capture the tonotopic structure of the data very well (R2  = .71, B =.99, p < .001) . 

 With ROIs established, we next examined their functional properties. The per-ROI distributions of 

functional parameters are depicted in Figures 4C-F. Between-ROI pairwise differences in these 

parameters were assessed via weighted-bootstrap procedures (see Methods). Since this results in 21 

pairwise tests per parameter (with the majority revealing detectable differences), we restrict this section to 

a brief summary of the salient patterns in the data. The p values associated with each pairwise difference 

are depicted in Figures 4G-J. 

 In terms of variance explained by the CSS model (Figure 4C) the poorest model performances 

are observed in ROIs occupying the peripheral extremes of the tonotopic population (MBelt, P1 and P2), 

likely reflecting the principle that responses more remote from primary sensory regions will be less yoked 

to the low-level sensory properties of the stimulus. The ROIs vary substantially in speech-preference 

(Figure 4D) with the highest speech preferences observed laterally to the core (LBelt, P1, P2). The 

FWHM parameter was associated with the least robust differences between ROIs: there was a relatively 

small range of FWHM values in core regions, but substantial ranges of low and high values in non-core 

ROIs (Figure 4E). This pattern entailed that all core ROIs had detectably lower FWHM relative to MBelt, 

but were not detectably different from, or were larger than ROIs lateral to the core. The most robust 

differences between ROIs were detected for the exponent parameter n (Figure 4F). Responses became 

more compressive with increased distance laterally from the core across LBelt, P1 and P2. More medially, 

A1, R and MBelt had higher n values than all other regions. 
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Previous studies of auditory cortex have indicated that preferred frequency is positively 

associated with tuning bandwidth 28,34, indicative of a Weber's-law type effect that mirrors the relation 

between pRF size and eccentricity observed in visual cortical field maps 9. We observed that the scaling 

of FWHM with μ varied systematically across ROIs, with increasingly positive relationships observed in 

regions more lateral to the core (Figure 4K). 

Finally, since our initial inspection of the speech-selective model outcomes implied spatial 

anisotropies in the relationship between preferred frequency and speech selectivity (Figure 2F),  we 

formally characterised this relationship within each ROI (Figure 4L). In core regions, speech selectivity is 

low and relatively independent of μ, but this relationship becomes strongly negative in regions lateral to 

the core. This pattern of results validates our observation that speech-selective regions tend to occupy 

low frequency portions of the tonotopic map, specifically those residing outside the core.  

 
[INSERT FIGURE 4 HERE] 

 
 

3. Discussion 

 Drawing inspiration from computational models of vision, our analysis elucidates the 

computational motifs and modes of organisation that underlie naturalistic auditory processing in human 

cortex. Previous studies have generated a somewhat unclear and inconsistent picture of the finer level 

tonotopic organisation in auditory cortex. In part, this can be attributed to diversity in methodological and 

analytic variables such as scanner field strength 16, complexity of stimuli 28, modeling approach35, spatial 

smoothing36 and criteria for designating voxels for analysis37. Beyond these, a large contributor is the 

simple limitation in the quantity of data analysed, both in terms of the number of subjects and the data per 

subject. To our knowledge, our modeling exploits a volume of data that far exceeds previous tonotopic 

mapping studies, implying an unprecedented level of statistical power. Here, we observed tonotopic 

reversals along HG, consistent with the tripartite A1/R/RT field organization proposed in other primates 38. 

Furthermore, we observe structured tonotopic organization both lateral and medial to HG - allowing us to 

define multiple cortical gradient maps beyond traditionally defined ‘core’ regions. As such, our data 

provides a working model of human auditory organization beyond the core regions A1 and R.  
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  Speech selectivity was primarily observed in close proximity to STG, consistent with the long-

established cortical site attributed to speech processing 39. Our data extend these findings by quantifying 

the basic spectral tuning properties of both these and more primary regions, clarifying the computational 

motifs that characterise the transition from acoustically-driven to speech-selective auditory cortex. Our 

quantifications are in excellent agreement with a recent hierarchical model of human speech processing 

that proposes a medial to lateral sequence of  ‘spectral’ to ‘articulatory’ to ‘semantic’ representations that 

progress from HG to STG to STS 40.  Here, we reveal a similar trajectory reflected in the tuning properties 

of a sequence of medially to laterally oriented tonotopic maps. In A1, we observed n values very close to 

.3, a biologically interpretable value for the first auditory cortical site, since it is consistent with the degree 

of amplitude compression performed by the input sensory organ -  the cochlea 1. From A1, there was a 

medial to lateral gradient of increased compressivity, consistent with the proposed ‘cascade’ architecture 

of the visual hierarchy - wherein later regions add nonlinearities to the outputs from earlier regions 41,42.  

In vision, such nonlinearities have functional benefits - allowing the responses of face or object selective 

neurons to tolerate stimuli that appear in different sizes or locations of their receptive field 43. Considered 

with previous observations, our data indicate that similar mechanisms may support flexible tolerance of 

salient auditory ‘objects’ such as vocalisations. For instance, Marmoset data indicate that spectrally 

nonlinear responses in ‘harmonic template neurons’ may be optimised for encoding vocalisations 44. 

However these analyses were restricted to the auditory core, preventing conclusions about the trajectory 

of spectral nonlinearity across auditory fields. Moreover, the translatability of such a proposal based on 

these data is equivocal; complex, pitch-sensitivity is instead primarily evidenced outside core regions in 

humans 45,46. Here, we explicitly modeled spectral nonlinearity and speech selectivity throughout auditory 

cortex, revealing a shared medial to lateral trajectory that may reflect the hierarchical transition from low-

level spectral representations to flexible phonemic representations that are relatively invariant to acoustic 

differences. Such inferences about more complex aspects of receptive fields highlight the utility of 

modeling compression at the cortical level, not just the input stage. 

In addition to the spectral nonlinearity quantified here, there is evidence for temporally nonlinear 

responses in auditory cortex - BOLD responses to long-duration stimuli are less than predicted by the 

linear prediction from briefer duration stimuli 47. Studies of visual cortex have indicated increased 
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temporal subadditivity in higher-level regions, mimicking the profile of spatial compressivity 48. It is 

possible that a similar shared trajectory of spectral and temporal compressivity also underlies responses 

in auditory cortex. As such, an important goal for future work is to develop a space-time model that 

interrogates both spectral and temporal nonlinearities. 

 We observed increasingly finely-tuned, speech-selective receptive fields in low frequency portions 

of more lateral tonotopic maps. This implies the cortical magnification of spectral features diagnostic of 

speech and natural soundscapes. By extension, it may reflect information-theoretic efficient coding 

principles, as illustrated by the observation that learned kernels optimised for encoding speech predict the 

positive frequency-bandwidth association observed in cochlear filters 49.   

The close relationship between category and spectral selectivity would seem to point more to the 

proposed non-hierarchical structure of auditory cortex 50 , but similar phenomena also characterise high-

level sites of visual cortical hierarchy. The fusiform face area (FFA) has a combined preference for faces 

and central visual field locations, whereas the parahippocampal place area (PPA) prefers environmental 

scenes and peripheral visual field locations 51 - links between topography and category-selectivity that 

reflect their computational goals. It is therefore revealing that speech selectivity was relatively 

independent of preferred frequency in core regions - whereas this relation was strongly negative in 

regions lateral to the core. This anisotropy in tuning properties agrees with the auditory processing 

hierarchy implied by recent neural network models, that progresses from a ‘front end’ that performs a 

relatively stimulus category-agnostic analysis of arbitrary sounds towards more advanced regions that are 

increasingly optimised for salient sound categories, such as speech 6. It is important to note, however, 

that natural sounds contain correlations between low and higher-order features - such as the covariation 

of speech sounds and low frequency energy modulations. As such, the low frequency tuning estimated in 

speech-selective regions could reflect genuine spectral tuning, or a simple epiphenomenon of higher 

responses to speech sounds - creating a circular impasse. One powerful approach to address this issue 

is to compare responses to natural and ‘model matched’ stimuli that decorrelate low-level and high-level 

natural sound statistics. Such studies have revealed large divergences in the responses of non-primary 

regions that were hidden by feature correlations in natural stimuli 18. In the present case, however, we 
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note that low frequency tuning along STG replicates findings revealed by simple pure-tone stimuli 15,28,36, 

speaking against the idea that it reflects a simple product of higher responses to speech sounds.  

It is essential to reflect on potential caveats of leveraging naturalistic stimuli for mapping unimodal 

responses. First, an audiovisual stimulus could be considered suboptimal for tonotopic mapping due to 

interaereal inhibitory responses between visual and auditory cortices 52,53 - heteromodal sensory data can 

compete for access to attentional and memory resources 54. However, in more naturalistic contexts, 

cross-modal stimulation bestows many benefits - particularly in humans. For example, synchronous 

audiovisual presentations have been found to increase both the reliability and precision of responses in 

auditory cortex 55,56.  The ability to exploit the visual source of auditory information (for instance, a 

speaker's mouth) provides rhythm and amplitude information that assists a listener in directing attention 

towards the relevant auditory envelope, thereby boosting sensory responses 57,58 . Such phenomena 

concord with the notion that merging the senses results in a more robust cross-modal percept that 

augments auditory scene analysis 59. Moreover, despite crossmodal auditory influences on visual cortex, 

robust retinotopic maps have been revealed from the same HCP movie-watching data that are highly 

consistent with those derived from unimodal visual stimulus presentations 12. These considerations, 

together with the consistency of the principles we reveal with those derived from unimodal auditory 

stimulation, highlight the utility of naturalistic movie stimuli for revealing principles of auditory organization. 

 Second, to enhance signal to noise ratio, our central analyses were conducted on across-subject 

averaged data. As such, they do not capture the idiosyncrasies of individual subjects - which are 

particularly prominent in non-primary areas. Despite this limitation, increasing the SNR in this way yields 

tangible benefits. This is illustrated by the outcomes of individual subject analyses (Supplementary 

Material S2), which indicate that a large amount of data is required to recover parameter estimates with 

good generalization performance. This notion is reinforced by the recent discovery of topographic 

organization in both the cerebellum 60 and hippocampus 12 , which can be attributed to the unprecedented 

SNR offered by extensive across-subject averaging afforded by large, carefully aligned datasets such as 

the HCP dataset.  Using traditional anatomical co-alignment methods, across subject averaging would 

risk regression to the mean via neighbouring tonotopic regions merging together, due to the individual 

variability of cortical field map sizes and positions 7. As such, the vivid tonotopic arrangement we observe 
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speaks both to the robustness of tonotopy as an organising principle and also to the robustness of the 

HCP cross-subject alignment. Critically, the HCP data were aligned by leveraging ‘areal features’ (myelin 

and resting state connectivity maps) explicitly optimised to align primary sensory cortices 61,62, from which 

our analyses will have benefited greatly relative to traditional alignment based on cortical folding patterns. 

We must recognise, however, that alignment of regions positioned remotely from primary areas via this 

method is likely less optimal. This, combined with our conservative criteria for selecting vertices for 

analysis (see Methods and Supplementary Material S6), possibly impeded detection of subtle tonotopic 

arrangements in some non-primary regions. For instance, inconsistent with one recent phase-encoding 

study 36 the dorsal fields of the STS effectively demarcated the ventral boundary of tonotopic responses 

(Supplementary Figure S5). The speech-selective tonotopic portions of STG may represent initial stages 

of speech processing wherein the spectral properties of speech sounds begin transformation into more 

abstract representations 28. The neighbouring STS, which exhibits complex multi-modal responses with 

little visuo-spatial selectivity 63 or spectral selectivity, may represent a site wherein socially relevant 

features are coded from abstracted forms of audiovisual signals 64.    

Our study also reveals some interesting implications for estimating pRF size. First, psychophysics 

experiments allow stimulation to be optimized for estimating pRF size across a range of frequencies, 

whereas naturalistic stimulation limits this range. The frequency profile of naturalistic soundscapes may 

therefore lead to an underestimated pRF size at higher frequencies. Secondly, pRF size is conceptually 

difficult to define when the underlying system exhibits the compressive behavior observed here and linear 

models typically overestimate pRF size in such cases 29. We compensate for this by normalising by the 

exponent and estimating pRF size by simulating responses to infinitesimally punctate stimulation (see 

Methods) - but this cannot circumvent the inherent interaction between stimulation extent and pRF size 

implied by compressivity. Common to all fMRI studies is the limitation that voxels containing neurons with 

diverse preferred frequencies (e.g. along HG) would likely be estimated to have larger pRF sizes than 

regions with homogenous preferred frequencies (e.g. along STG). Lastly, whilst we capture more 

complex response profiles than a linear model, estimates of pRF size only reflect the width of a main 

spectral peak. It has been demonstrated that portions of nonprimary auditory cortex exhibit sensitivity to 

multiple frequency bands at an octave distance from one another, harmonically related intervals, or with 
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no clear relation 31,44,45.  As such, our measure of pRF size approximates the width of a simple population 

response function - likely reflecting something fundamentally different from ‘bandwidth’ as estimated from 

single cell recordings. Together, these difficulties may account for the inconsistent frequency-bandwidth 

relations observed in human fMRI studies, with some indicating principled relationships 28 and others 

revealing no clear relationships 15,46. 

We must also consider disjunctures that heavily constrain the analogies we draw between vision 

and audition. Firstly, retinotopic mapping models a mobile sensory array that samples locations of the 

visual field, whereas tonotopic mapping models the spectral signature of auditory signals largely 

incommensurate with their spatial location. This difference likely explains why pRF sizes are reliably 

larger in more advanced regions of visual cortex 10,29, whereas a range of narrowly and broadly tuned 

pRFs can be found outside the auditory core 15,28. Effective processing of objects, faces and scenes are 

facilitated by location invariance and pooling signals from large extents of the initial sensory space 29. 

Conversely, pooling large extents of frequency space could impede high level tasks such as speech 

processing, since speech sounds tend to occupy restricted and predictable portions of the sensory space 

(primarily low frequencies).  

Another divergence is that primary auditory cortex would also occupy a later position in a 

processing hierarchy than its visual counterpart, since there is a more extensive sequence of auditory 

than visual nuclei in subcortex 1,2 with comparatively later layers of neural networks best explaining 

responses in primary auditory cortex 6. Information in ‘primary’ auditory regions thus represents a 

relatively processed format of the initial sensory data. Accordingly, additional explanatory power could be 

derived from modeling other principled dimensions of auditory data, such as periodicity 65 , selectivity for 

stimulus categories such as music 27 and spatial cognition or explicit recognition task contrasts 66,67.  

To summarise, via a novel application of a nonlinear population receptive field model to 

naturalistic stimuli, we elucidate the detailed topography of human auditory cortex. This clarified the major 

sensory reference frame that underpins higher level auditory cognition, and revealed computational motifs 

that mirror classical hallmarks of the visual system. Such similarity may reflect common organisational 

principles shared across multiple sensory systems, aiding the discovery of novel topographic 

organisational structures in the representation of other senses. 
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Methods 

Participants and Stimuli 

 Data were taken from the 174 participants of the HCP movie-watching dataset 19,20. The sample 

consisted of 104 females and 70 males (M age 29.3 years, SD = 3.3) born in Missouri, USA. 88.5% of the 

sample identified as ‘White’ (4.0% ‘Asian’, ‘Hawaiian or Other Pacific Island’, 6.3% ‘Black or African 

American’ 1.1% unreported). The English language comprehension ability of the sample (as assessed by 

age-adjusted NIH Picture Vocabulary Test68 scores)  was above the national average of 100 (M = 110, 

SD = 15). 

 Participants were scanned while watching short (ranging from 1 to 4.3 minutes in length) 

independent and Hollywood film clips that were concatenated into movies of 11.9 - 13.7 minutes total 

length. Before each clip, and after the final clip was displayed, there were 20 second ‘rest’ periods 

wherein there was no auditory stimulation and only the word ‘REST’ presented on the screen. There were 

4 separate functional runs, wherein observers viewed 4 separate movies. All 4 movies contained an 

identical 83 second ‘validation’ sequence at the end of the movie. Audio was scaled to ensure that no 

video clips were too loud or quiet across sessions and was delivered by Sensimetric earbuds that provide 

high-quality acoustic stimulus delivery while attenuating scanner noise. Movie audio format was set to 

AAC-LC , 192 kbps, stereo, with a sampling rate of 44.1 kHz, entailing a frequency range of <= 22 kHz. 

Spectrograms for each of the movies are available in Supplementary Material S7. Full details of the 

procedure and experimental setup are reported in the HCP S12000 release reference manual.  

 

Data Format and Preparation. 

Ultra-high field fMRI (7T) data from the subjects were used, sampled at 1.6 mm isotropic 

resolution and a rate of 1 Hz 19. For all analyses, the Fix independent component analysis-denoised time-

course data, sampled to the 59,000 vertex-per-hemisphere areal feature-based cross-subject alignment 

method (MSMAll- 62) surface format was used. These data are freely available from the HCP project 

website. The MSMAII method is optimised for aligning primary sensory cortices based on variations in 

myelin density and resting state connectivity maps 61,62 . Because of the unreliable relation between 
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cortical folding patterns and functional boundaries, MSM method takes into account underlying cortical 

microarchitecture, such as myelin, which is known to match sensory brain function better than cortical 

folding patterns alone 69. Previous research has demonstrated that such an approach improves the cross-

subject alignment of independent task fMRI datasets while at the same time decreasing the alignment of 

cortical folding patterns that do not correlate with cortical areal locations 62. 

 For the purposes of cross-validation, we ensured that functional runs sampled only unique 

stimulus content. We did this by removing the final 103 seconds of each movie and corresponding 

functional data that corresponded to the identical ‘validation’ sequence and the final rest period. For each 

run, BOLD time series data were then converted to percent signal change. We next applied a high-pass 

filter to the data. We implemented this via a Savitzky Golay filter (3rd order, 210 seconds in length), which 

is a robust, flexible filter that allowed us to tailor our parameters to reduce the influence of  low frequency 

components of the signal unrelated to the content of the experimental stimulation (e.g. drift, generic 

changes in basal metabolism). The effect of this temporal filtering on data and model predictions is 

illustrated in Figure S1E.  

We decided to create two time-course averages that reflect a pre-existing split in the HCP 

dataset. Specifically, each participant viewed one of two slightly different versions of the movies. As such, 

performing analyses on the full set of subjects required us to respect any differences in the videos and 

resulting design matrices. Accordingly, we created two across-participant time course averages. The 

‘early’ subject was averaged across the participants that viewed the versions of the videos before August 

21st, 2014 (N = 42). The ‘late’ subject was averaged across the participants that viewed the movie after 

this date (N = 132). In addition to respecting the minor differences in the videos that were presented, 

dividing the data in this way also allowed us to characterise the split reliability of parameter estimates and 

also assess the impact of statistical power, which differs between these two across-participant folds.  

 

Design Matrix 

 To create a design matrix for our pRF modeling, the original .mp4 file for the movies were 

converted to a .wav audio file and then submitted to a Fourier transform via scipy’s ‘signal.spectrogram’ 

function, to generate spectrograms that represent the power spectral density of the audio signal. The 
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resulting spectrograms were then mean-downsampled into the TR resolution and normalised via division 

by the corresponding per-movie, per-frequency standard deviations. 

 

Compressive Spectral Summation pRF Model 

 A pRF model is a parsimonious encoding model that characterises the relationship between a 

stimulus and the response from a tuned population of neurons 10. We modeled the pRF as a 1D Gaussian 

function defined over log auditory frequency (Hz). The model generates a predicted response by 

computing a weighted sum of the pRF and the spectrogram and then applying a static power-law 

nonlinearity. This can be expressed formally as: 

𝑅𝐸𝑆𝑃	 = 	 [𝑆(𝑓)𝐺(𝑓)]! 

𝐺(𝑓) 	= 	𝑒	
(𝑓 − 𝜇)!

2𝜎!  

where RESP is the predicted response, f is the auditory frequency, S is the spectrogram, G is a 

Gaussian, n is an exponent parameter and μ and σ are parameters that control the mean and standard 

deviation of the Gaussian. The resulting timecourses (RESP) generated by the model were convolved 

with a double-gamma hemodynamic response function. Finally, to be conservative, and respect the same 

temporal filtering that was applied to the underlying data, our model predictions were also filtered with an 

identical Savitzky-Golay filter to that applied to the functional data.  We incorporated a power-law 

nonlinearity in our modeling to capture a wide range of response properties with a single parameter that is 

straightforward to interpret. Lower values of n indicate greater compressive nonlinearity and imply that 

smaller amounts of overlap between the prf and the stimulus produce larger responses. In vision, these 

more compressive response properties are characteristic of later regions of the visual hierarchy 43. In 

application to spatial vision, this model has been referred to as the compressive spatial summation (CSS) 

model 29. Here, in its application to audition and the spectral domain, we refer to it as a compressive 

spectral summation model. In such a model, it is important to account for the fact that the effective size of 

a pRF is influenced not only by σ, but also by n, since nonlinearity implies that pRFs with a small σ may 

still respond strongly to frequencies remote from μ if n is highly compressive. A pRF’s response profile to 
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‘point’ stimuli placed across frequency space is therefore a Gaussian that is scaled by n. The standard 

deviation of this Gaussian profile can therefore be calculated by correcting for this scaling via 

normalisation by n. 

 We therefore performed the following adjustment to σ: 

𝜎"#$ =
𝜎
√𝑛

 

Importantly, this definition of pRF size is derived from input-output characteristics - meaning that it 

can be applied to any model of an auditory receptive field 29. To provide a final measure of pRF size, we 

calculated the full width half maximum of these adjusted pRF functions in kHz. Alternative definitions of 

pRF size expressed in octaves are presented in Supplementary Material S8. 

Model Fitting and Vertex Selection 

 CSS model 

 Model fits for each vertex in the brain were obtained by finding parameter combinations that 

maximized the correlation between the predicted and observed fMRI time-courses. This parameter search 

consisted of a coarse-to-fine strategy. We first performed an initial coarse grid search of μ and σ values, 

based on the initial parameter space sampled in a previous pRF study of auditory cortex 15 . μ was 

bounded between .088 kHz and 8 kHz and σ had an upper bound of 4. The best fitting parameters from 

this set were then used as starting parameters for a nonlinear search algorithm (scipy’s minimize function, 

using the L-BFGS-B method) which uses nonlinear minimization to find the pRF model parameters μ and 

σ that maximize the correlation between the pRF-predicted time-series and the observed fMRI time-

course. These parameters for μ and σ were then submitted as starting parameters to a final iterative 

search, wherein the full set of model parameters - μ, σ and additionally the exponent parameter (n) were 

estimated.  

 To assess the generalisation performance of the pRF models, we used a leave-one-run-out 

cross-validation strategy. Models were fit to four separate folds of data. In each fold, the training data 

were concatenated across 3 movies and the fitted parameters were used to generate predictions for the 

left out movie. The out-of-sample performance of these predictions was then assessed by the coefficient 
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of determination (R2). All pRF model fitting procedures were carried out using procedures from a 

dedicated python package: prfpy. To summarise the fold-wise parameter estimates, we calculated across-

fold averages of the parameters in a manner that was weighted by the corresponding out-of-sample R2. 

This procedure was carried out for both the ‘early’ and ‘late’ subject before the parameters obtained from 

each were again weighted-averaged to provide final parameters.  

  To focus our analysis and select vertices for further analyses, we used a conservative, null-model 

based criterion to exclude non-tonotopic vertices (Supplementary Material S6 and Supplementary 

Figure S9). These procedures resulted in a ‘tonotopic population’ consisting of 3760 from the total 

118584 cortex vertices being included in further analyses. We did not perform any spatial-smoothing of 

data or model parameters at any point in analysis or presentation of our data. 

 

 Speech-selective model 

 In addition to purely tonotopic responses captured by the CSS model, it is important to 

characterise the combination of both tonotopic and speech-selective responses. To this end, we 

additionally fit a simple speech-selective model that involved a linear combination of the separate CSS 

model-predicted responses to speech and nonspeech stimuli. HCP movie files were privately uploaded to 

YouTube. We employed YouTube’s auto-captioning algorithm to provide an initial estimate of the onset 

and offset times of speech sounds. These initial estimates were then manually fine-tuned by NH. 

Corrections mostly involved adding brief speech sounds that occured in the presence of ambient noise, or 

adjusting offset times, which were occasionally estimated to occur beyond the actual duration of the 

speech. With onset and offset times refined, we created two new design matrices. The speech design 

matrix was created by coding parts of the spectrogram overlapping with nonspeech sounds as 0. The 

nonspeech design matrix was the inverse - with all instances of speech coded as 0. We then used the 

parameters estimated by the CSS model to generate predictions based on these new speech and non-

speech design matrices. These predictions were then entered as regressors for the design matrix of the 

speech-selective model, wherein we estimated the linear combination of the speech and non-speech 

regressors that minimised the error between the predicted and observed timecourses for every cortical 

location separately. Hence, this model estimated independent beta weights for speech and non-speech 
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sounds whilst assuming μ σ and n are fixed for periods of speech and nonspeech. Generalisation 

performance was evaluated with the same cross-validation strategy as reported for the CSS model.  

 

Individual Subject Fitting 

To focus our analysis of individual subjects, we restricted our model fitting to the tonotopic 

population of 3760 vertices derived from the aggregated data. Otherwise, identical model fitting 

procedures were applied as described in Model Fitting and Vertex Selection. To depict the stability of 

the tonotopic maps in individual HCP participants, we ranked individuals based on the median out of 

sample variance explained across this population and display data from the top, middle and bottom 5 

ranked participants (see Supplementary Figure S2A).  

 

ROI Definitions 

Approaches to delineating distinct regions of auditory cortex are heterogenous, ranging from a 

simple, binary distinction between ‘core’ and ‘non-core’ regions 15,27, to extrapolating detailed non-human 

primate atlases onto human data 30,37, or defining multiple regions as remote as the STS based solely on 

tonotopic reversals 36 . This diversity may reflect the preference for ‘lumping’ versus ‘splitting’ of distinct 

cortical areas 9. To respect this range of perspectives, we used 3 strategies to define regions of interest 

(ROIs) within which to provide spatial precision to our quantifications. A detailed account of each of these 

strategies is provided in Supplementary Material S4 and Supplementary Figures S4-S5. A separate 

controversy concerns the orientation of the auditory core with respect to HG, which is also discussed in 

Supplementary Material S4. Here in the main text, we report quantifications for ROIs defined in our own 

‘splitting’ scheme, wherein we delineate between 7 core and belt regions based on the presence of 

tonotopic reversals 22,30, variations in tuning width 28,31 (here defined as FWHM), degree of speech 

selectivity 27,32 and myelination 33. For completeness, in Supplementary Material S5 and 

Supplementary Figures S6-S9, we provide equivalent quantifications for ROIs defined in two alternative 

schemes: i) a simple ‘lumping’ scheme that binarizes the tonotopic population of vertices into ‘core’ and 

‘non-core’ regions and ii) a ‘neutral’ scheme, that ignores our own model parameters and uses the 

existing HCP multi-modal parcellation of auditory cortices 61.  
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Bootstrapping Procedure 

p-values were computed using 104 fold bootstrap procedures, with the estimation of parameters 

(mean differences, regression slopes) for each bootstrap sample weighted by out-of-sample R2. To test 

whether bootstrapped distributions differed from a certain threshold, p-values were defined as the ratio of 

bootstrap samples below versus above that threshold multiplied by 2 (all reported p-values are two-

tailed). All p values were then corrected for multiple comparisons across ROIs using a false discovery rate 

correction. For any comparisons wherein all bootstrapped samples fell on one side of the threshold, the p 

value was coded as 1/104. For presentation, we -log10 transformed p values resulting from a positive 

difference between a given reference and comparison ROI (resulting in positive values) and log10 

transformed p values resulting from negative differences (resulting in negative values). The same 

transformation was applied to p values resulting from positive v negative associations between variables. 

All reported p values thus reside on a scale between -4 and 4. 
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Figures: 

 

 

Figure 1. Modeling Approach. Participants were presented with an audiovisual movie. To create a design 
matrix for our modeling, we extracted the audio track of this movie and decomposed it into a spectrogram 
that represents the power spectral density of the audio signal. The spectrogram for a 5 minute segment of 
a movie is shown. A predicted timecourse is generated by taking the dot product of the spectrogram and 
a Gaussian function defined over log frequency (Hz), parameterised by its peak position (μ) and size (σ). 
Subsequently a static nonlinearity (n) is applied to the timecourse before convolution with a hemodynamic 
response function. Representative model fits, as well as the effect of varying each parameter on model 
predictions are depicted in Supplementary Figure S1.  
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Figure 2. A) Shows preferred frequency (μ) of the tonotopic population of vertices that were designated 
for further analysis (see Methods) rendered onto flattened and semi-inflated representations of the 
cortical surface. The 2D colormap depicts μ across the x axis and generalisation performance (Xval R2) 
defined by transparency across the y axis.  B) Depicts zoomed-in views of the data from A. C) Depicts the 
difference in out-of-sample performance (Xval R2 diff) between the speech-selective and CSS models. D) 
Depicts category preferences (speech v nonspeech). E) Depicts the μ estimated by the CSS model 
weighted by model improvement offered by the speech-selective model. Primarily low-frequencies near 
STG are visible, indicating that speech selectivity is observed at low-frequency portions of non-primary 
tonotopic maps 
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Figure 3. Panels A-D depict functional parameters of the data derived from the CSS and speech 
selective models. Panels E-H depict averaged statistics for myelo-architectural and structural parameters. 
I) Depicts the feature loadings onto each of the 3 principal components. J) Shows the 3 components 
overlaid in RGB color space, as depicted by the color-wheel. Panels K-M depict the individual 
components.  
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Figure 4. Panel A (left to right) shows the ROI definitions, with ROI color corresponding to the colours of 
the violin /marginal density plots in the remaining figures (left), the μ data (middle) and the linear fit to the 
μ data per ROI (right) for the left hemisphere. Panel B shows the same for the right hemisphere. Panels 
C-F show the per ROI distributions for out-of-sample variance explained by the CSS model (C), speech 
selectivity (D), FWHM (E) and n (F). Violins are normalised to have equal maximum width. The 5th, 50th 
and 95th percentiles of the distributions are demarcated by white horizontal lines. Panels G-J depict the 
between-ROI pairwise differences for each of the corresponding parameters in panels C-F. The values in 
each cell are signed log10  transformed p values. Larger values for a parameter in a reference ROI (y 
axis) compared to a comparison ROI (x axis) are assigned positive values (p values are -log10 
transformed). Smaller values in the reference ROI are assigned negative values (p values are log10 
transformed). p values that do not reach the false discovery rate corrected alpha level of .05 are marked 
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by a cross in the corresponding cell. Panel K shows hexbin plots for the relationship between μ and 
FWHM in each ROI. The cells at the bottom left of each plot depict the same signed log10  transformed p 
values (now with positive values signifying positive relationships). Panel L shows hexbin plots for the 
relationship between μ and speech selectivity. The corresponding colorbar for all p values can be found at 
the bottom of the figure.  
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