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Abstract 63 

Innate lymphoid cells (ILCs) are rare, tissue-resident innate lymphocytes that functionally 64 
mirror CD4+ T helper cell lineages but lack antigen receptors. Type 3 ILCs (ILC3s) are 65 
enriched in the gut, airways, and mucosal lymphoid tissues, where they regulate inflammation 66 
and promote barrier integrity. To define the regulatory architecture of primary human ILC3s, 67 
we map promoter-anchored chromosomal contacts using high-resolution, low-input Promoter 68 
Capture Hi-C (PCHi-C) in these cells alongside CD4+ T cells. By combining statistical 69 
detection with a PCHi-C-adapted Activity-by-Contact approach, we link promoters to distal 70 
regulatory elements, identifying hundreds of ILC3-specific contacts. We use these maps to 71 
connect genome-wide association study (GWAS) risk variants for Crohn’s disease to target 72 
genes using multiCOGS, a Bayesian framework that integrates PCHi-C with summary-statistic 73 
imputation and multivariate fine-mapping. This analysis highlights both known and 74 
unanticipated candidates, including CLN3, a causal gene for the neurodevelopmental Batten 75 
disease. Using a mouse ILC3-like cell line, we show that Cln3 is downregulated upon cytokine 76 
stimulation, and Cln3 overexpression alters stimulation-induced transcriptional programmes 77 
and cytokine secretion. Extending this approach, we generate a catalogue of ILC3-linked risk 78 
genes for five additional autoimmune conditions and show that they are enriched for regulators 79 
of the ILC3 inflammatory response identified in a CRISPR interference screen. Together, 80 
these findings illuminate long-range gene control in ILC3s and prioritise known and newly 81 
implicated autoimmune risk genes with potential roles in this clinically important cell type.   82 

  83 
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Introduction 84 

Innate lymphoid cells (ILCs) play crucial roles in inflammation and immunity, as well as in 85 
tissue development and homeostasis1,2. ILCs develop from common lymphoid progenitors and 86 
share many features with CD4+ T lymphocytes, but do not express rearranged T cell 87 
receptors3. Therefore, rather than acting as part of the adaptive immune system, ILCs respond 88 
to cytokines and pathogens from the environment by producing regulatory cytokines and 89 
exerting immunomodulatory activity4,5.  90 
 91 
Three main types of ILCs have been identified based on their cytokine profiles and the 92 
transcription factors regulating their development and function2,3. The first group includes 93 
tissue-resident ILC1s that play a role in immune defence against viruses and certain 94 
bacteria6,7. The second group consists of ILC2s, which regulate airway and skin inflammatory 95 
responses and are implicated in disorders such as asthma and atopic dermatitis6. Finally, the 96 
third group includes lymphoid tissue-inducer cells, which are involved in lymph node 97 
development, and ILC3s, which participate in host defence and the maintenance of epithelial 98 
barrier homeostasis2–4. The ILC3 population is distributed across multiple tissues, including 99 
the gut, where they are essential for mucosal homeostasis and barrier integrity8. ILC3-derived 100 
cytokines such as IL-17 and IL-22 promote epithelial cell renewal and release of antimicrobial 101 
peptides9. However, overexpression of these cytokines in the gut has been associated with 102 
the development or exacerbation of Crohn’s disease (CD)10–12.  103 
 104 
Immune disorders, including CD, are known to have a significant genetic component, with 105 
genome-wide association studies (GWAS) identifying hundreds of disease susceptibility 106 
variants associated with these conditions13. Given the importance of ILCs in immune control, 107 
it is highly plausible that some of these variants affect ILC function. However, as most GWAS 108 
variants are non-coding and these studies are, by design, cell-type agnostic, identifying causal 109 
genes and cell types implicated by GWAS variants is often challenging.    110 
 111 
GWAS variants are strongly enriched at transcriptional enhancers14–16, and therefore, cell 112 
type-specific maps of active enhancers and enhancer-promoter connections provide important 113 
clues for the functional interpretation of GWAS findings17,18. Recent studies have mapped ILC 114 
enhancers by the assay for transposase-accessible chromatin (ATAC-seq) and chromatin 115 
immunoprecipitation (ChIP-seq) for the H3K27ac histone mark, identifying putative key 116 
regulators of ILC identity and their downstream targets based on proximal gene assignment19–117 
23. However, enhancers often localise large distances (up to megabases) away from their 118 
target gene promoters, physically contacting them in the 3D space of the nucleus in a cell-119 
type-specific manner. Therefore, robust and sensitive identification of enhancer-promoter 120 
contacts, which is instrumental for inferring the effector genes of non-coding GWAS variants, 121 
requires robust and sensitive profiling of chromosomal architecture.  122 
 123 
Chromosome conformation capture assays such as Hi-C, which are based on the proximity 124 
ligation of cross-linked, digested chromatin, provide powerful tools for connecting enhancers 125 
and GWAS variants with target genes24,25. The conventional Hi-C technique theoretically 126 
allows the detection of all pairwise chromosomal contacts across the genome. However, the 127 
complexity of the resulting sequencing libraries requires extremely high sequencing coverage 128 
to achieve the sensitivity and resolution needed for the detection of specific enhancer-129 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2026. ; https://doi.org/10.1101/2022.10.19.512842doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512842
http://creativecommons.org/licenses/by/4.0/


 

 
 

4 

promoter contacts. This challenge can be addressed by techniques such as Capture Hi-C that 130 
selectively enrich Hi-C material for contacts involving, at one end, regions of interest such as 131 
gene promoters26–29. Over the last decade, we and others have demonstrated the power of 132 
Promoter Capture Hi-C (PCHi-C) in determining transcriptional regulatory circuitries and in 133 
linking enhancers and disease-associated genetic variants with putative target genes30–36. In 134 
foundational studies30,31, we applied this approach to 17 abundant human primary blood cell 135 
types and developed COGS (Capture Hi-C Omnibus Gene Score), a Bayesian approach for 136 
prioritisation of GWAS target genes using statistical fine-mapping and PCHi-C data. Results 137 
from this work were incorporated into major variant-to-gene resources, including OpenTargets 138 
Genetics37 and Priority Index38. However, the PCHi-C protocol used in these studies required 139 
dozens of millions of input cells, precluding the analysis of rare cell types. 140 
 141 
Here, we address this limitation by using a high-resolution and efficient PCHi-C protocol to 142 
profile the cis-regulatory wiring of ILC3s isolated from human tonsils30. We detect promoter-143 
enhancer contacts in PCHi-C data using a combination of our established statistical 144 
interaction-calling methodology (CHiCAGO)39,40 and a newly developed adaptation of the 145 
Activity-by-Contact14,41 (ABC) approach to PCHi-C data that we term Activity-by-Captured-146 
Contact (ABCC). We develop a modified PCHi-C-aware GWAS gene prioritisation algorithm, 147 
multiCOGS, that incorporates summary statistics imputation and multivariate statistical fine-148 
mapping, and use it to prioritise known and novel genes for CD through chromatin contacts. 149 
Several of the genes are uniquely prioritised using PCHi-C data from ILC3s but not CD4+ T 150 
cells, including the CLN3 gene, mutations in which underpin ~80% of cases of the 151 
neurodegenerative disorder Batten disease42,43. We show that this gene is downregulated 152 
upon cytokine stimulation of mouse ILC3s, and Cln3 overexpression in an ILC3-like mouse 153 
cell line influences stimulation-responsive transcriptional programmes and cytokine 154 
production. Finally, expanding multiCOGS to five additional autoimmune conditions, we 155 
generate a catalogue of effector genes implicating ILC3s and show that they are enriched 156 
among putative regulators of ILC3 inflammatory function. Together, our results shed light on 157 
ILC3 cis-regulatory circuitries and prioritise autoimmune risk effector genes with potential roles 158 
in this clinically important cell type. 159 

Results 160 

A compendium of promoter-anchored chromosomal contacts in human 161 
ILC3s 162 

To profile promoter-anchored chromosomal contacts in type 3 innate lymphoid cells (ILC3s), 163 
we employed our low-input DpnII-based PCHi-C protocol44,45 on ILC3s extracted from human 164 
tonsils (Fig. 1A). Significant promoter contacts were detected with CHiCAGO39 at a single-165 
fragment resolution, as well as after pooling the ‘other end’ fragments into ~5 kb bins, while 166 
leaving the baited promoter-containing fragment unbinned (Methods)40. Using this approach, 167 
we detected 31,003 contacts between promoters and promoter-interacting regions (PIRs) at 168 
a single-fragment resolution and 58,632 contacts in 5 kb bins (Fig. 1B; Table S1; Data S1-S2 169 
at https://osf.io/aq9fb). Binning resulted in the detection of longer-range contacts, as we 170 
reported previously in other cell types40 (Fig. 1C, D). A joint dimensionality reduction analysis46 171 
of ILC3 promoter interaction profiles with those detected in 17 abundant blood cell types using 172 
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HindIII-based PCHi-C segregated ILC3s with other lymphoid cell types, consistent with the 173 
notion that patterns of promoter interactions reflect the cells’ lineage history30 (Fig. S1A; see 174 
Methods).  175 
 176 
The increased resolution afforded by using DpnII in Hi-C library generation enabled capturing 177 
alternative transcription start sites (ATSSs) for 6,789 genes located on separate DpnII 178 
fragments. Remarkably, genes with captured ATSSs displayed distinct interaction landscapes 179 
across isoforms (Fig. S1B, C, D). The three ATSSs of the INPP4B gene provide examples of 180 
the multiple degrees of contact sharing across its 14 PIRs included in the analysis (Fig. 1E). 181 
 182 
Next, we explored the epigenetic status of detected PIRs and compared the chromatin profile 183 
of ILC3s with those of 88 other blood cell types detected by the Ensembl regulatory build47. 184 
As expected, at both fragment and 5-kb resolution ILC3 PIRs were enriched for markers of 185 
accessible and/or active enhancers (ATAC, H3K27ac) and active transcription (H3K4me3), 186 
based on public data in this cell type isolated from tonsils of pediatric donors21 (“active PIRs”, 187 
Fig. 1F). Nearly half of all accessible and/or active ILC3 PIRs (47.8%, 8,718/18,231) 188 
overlapped with annotated CTCF motifs or CTCF binding events in at least one of the 189 
Ensembl-profiled cell types (Fig. 1G), consistent with the key role of CTCF in 3D chromosomal 190 
organisation. However, only 3% of active/open regions in ILC3s (636/18,231) contained 191 
Ensembl enhancer annotations48, while nearly 20% of accessible and/or active PIRs 192 
(3,411/18,231) did not have any functional annotations in the Ensembl data (Fig. 1G). 193 
 194 
We then considered the overlap of the active and/or accessible PIRs in ILC3s with those in 17 195 
abundant blood cell types profiled with PCHi-C at HindIII resolution30. In contrast to chromatin 196 
annotations, the majority of active/accessible PIRs in ILC3s also had promoter contacts in 197 
these blood cell types (~80.4%, 12,409/15,435). Furthermore, ~60% of the active PIRs 198 
(9,054/15,435) contacted the same gene promoters in both ILC3s and other blood cells (Data 199 
S3 at https://osf.io/aq9fb). Consistent with previous observations, this result confirms that 200 
patterns of promoter-enhancer contacts are more preserved across related lineages 201 
compared with enhancer activity in cis49. We then probed the relationship between enhancer-202 
promoter connectivity and gene expression. For this, we integrated promoter-enhancer 203 
interactions detected here with publicly available single-cell gene expression data (scRNA-204 
seq) in human mucosal tissue ILC3s50. In agreement with epigenetic studies in other cell 205 
types,30 we observed a significant positive correlation between the number of active and/or 206 
open PIRs and gene expression (Fig. S1E). 207 
 208 
Overall, our analysis provides a high-resolution compendium of promoter contacts in ILC3s, 209 
including novel ILC3-specific regulatory elements and divergent contacts at ATSSs. 210 

Inference of enhancer-promoter interactions using Activity-by-Captured-211 
Contact (ABCC) complements significant interaction detection 212 

To further increase the sensitivity of detecting functional promoter-enhancer chromosomal 213 
interactions from PCHi-C data, we adapted the Activity-by-Contact (ABC) approach41 originally 214 
developed for Hi-C. In contrast to CHiCAGO, which detects significant interactions relative to 215 
a distance-dependent background, ABC considers any observed contact frequency between 216 
a chromatin region and a promoter as potentially functionally meaningful, irrespective of 217 
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whether this frequency exceeds that expected by chance. In addition, while CHiCAGO scores 218 
are independent of enhancer activity levels at the PIRs, ABC incorporates both contact 219 
frequency and enhancer activity into the final metric (“ABC score”)41. 220 
 221 
In our adaptation of ABC, which we term ‘Activity-by-Captured Contact’ (ABCC), we estimated 222 
contact frequencies from imputed PCHi-C data, leveraging the statistical modelling of these 223 
data produced by CHiCAGO for the imputation task (Fig. 2A, Fig. S2A, S2B, see Methods). 224 
To validate the ability of the ABCC algorithm to detect functional enhancer-promoter pairs, we 225 
took advantage of CRISPR interference (CRISPRi) enhancer perturbation data in K562 cells, 226 
which was generated to validate the original ABC approach14. As inputs for ABCC, we used 227 
public epigenetic annotations in K562 cells and our previously generated high-coverage PCHi-228 
C data in their physiological counterparts, erythroblasts30. These analyses demonstrated the 229 
power of ABCC to predict functional enhancer-promoter links from lineage-relevant PCHi-C 230 
and chromatin readouts (Fig. S2C). In contrast, using PCHi-C data from lymphoid cells at an 231 
equivalent coverage reduced ABCC performance (Fig. S2C). In addition, joint clustering of 232 
the ABCC profiles generated for four primary blood cell types successfully reconstructed the 233 
lineage relationships between them (Fig. S2D). These results highlighted the potential of 234 
ABCC to infer lineage-specific cis-regulatory architecture. In comparison with CHiCAGO, 235 
ABCC generally detected shorter-range promoter interactions, which was expected due to its 236 
reliance on raw contact frequencies (Fig. S2E). Both ABCC- and CHiCAGO-detected contacts 237 
were enriched for markers of accessible (DNase-seq) and/or active (H3K27ac) enhancers, 238 
with regions called by both approaches showing the highest enrichment for these marks (Fig. 239 
S2F). Taken together, these results suggest that ABCC and CHiCAGO detect complementary 240 
subsets of regulatory promoter contacts. 241 
 242 
Applying the ABCC algorithm to ILC3 PCHi-C data produced 18,877 putative enhancer-243 
promoter pairs across 17,690 genes (Fig. S2F; Data S4 at https://osf.io/aq9fb). Similarly to 244 
CHiCAGO-detected PIRs, there was a positive association between the number of ABCC 245 
enhancers and gene expression (Fig. 2B). However, ABCC-detected interactions generally 246 
spanned shorter distances than CHiCAGO-detected pairs (median distance ~69 kb vs ~108 247 
kb, respectively, p-value < 2.2e-16, Wilcoxon rank-sum test) (Fig. 2C), and the two sets of 248 
contacts showed only a limited overlap (8.4%; Data S5 at https://osf.io/aq9fb). Nonetheless, 249 
as expected, both CHiCAGO PIRs and ABCC enhancers were enriched for active and open 250 
chromatin features, as well as CTCF binding sites and/or annotated motifs (Fig. 2D). 251 
Representative examples of jointly detected regulatory landscapes are shown in Fig. 2E. We 252 
combined ABCC- and CHiCAGO-detected promoter contacts for downstream analyses, 253 
referring to them collectively as PIRs hereafter. 254 
 255 

Comparative analysis of promoter interactomes between ILC3 and CD4+ 256 
T cells identifies shared and differential regulatory circuitries   257 

ILC3s share developmental similarities51,52 and common “immune modules” with CD4+ T 258 
cells52–54, prompting us to use this abundant cell type for comparative analysis and 259 
identification of ILC3-specific regulatory circuits. To this end, we generated and processed 260 
high-resolution PCHi-C data for CD4+ T cells using the same protocol, identifying 31,252 and 261 
87,348 interactions at single-fragment and 5 kb resolution, respectively (Data S6 and S7 at 262 
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https://osf.io/aq9fb). In addition, we detected 30,258 enhancer-gene pairs with ABCC across 263 
16,956 genes (Data S8 and S9 at https://osf.io/aq9fb), 30% of which were shared with ABCC 264 
pairs identified in ILC3s. Differential analysis of chromatin interactions between ILC3s and 265 
CD4+ T cells with Chicdiff55 revealed a total of 19,038 cell-type-specific interactions (1,818 at 266 
fragment resolution and 17,220 at 5 kb resolution) across 3,664 genes (weighted adjusted p-267 
value <0.05) (Fig. 3A). As expected, we also detected a significant association between 268 
differential interactions and differential expression (chi-squared = 23.938, df = 1, p-value = 269 
9.948 x 10-7) (Fig. 3B; Data S10 at https://osf.io/aq9fb).  270 
 271 
Genes with increased ILC3-specific chromatin contacts were enriched for annotation terms 272 
such as “regulation of innate immune response,” including NFKB1 (NF-κB signaling), TLR3 273 
(innate immune receptor), and IFNG (effector cytokine), and “regulation of immune effector 274 
process”, including IL23R (controlling ILC3 activation and cytokine production), IL1R1, 275 
TNFSF4, and SOCS5 (negative feedback on cytokine signalling) (Fig. 3C; Fig. S3A; Table 276 
S2). In contrast, genes with CD4+ T cell-specific contacts were involved in “regulation of T cell 277 
activation” (e.g. CD3E, CD86, CTLA4, IL6, FOXN1) and “negative regulation of the MAPK 278 
cascade” (e.g. DUSP14, DUSP16, PTPN6) (Fig. 3C; Fig. S3B; Table S3).  279 
 280 
We also identified 194 genes with differential contacts between ILC3s and CD4+ T cells, 281 
including BCL2, FYN, CD226 (activating receptor on T and NK/ILC3-like cells), and CCR7 282 
(guiding ILC3 positioning and migration) (Fig. 3C; Fig. S3C; Table S4). Notably, many genes 283 
with ILC3- and/or CD4+ T cell-specific contacts converged on pathways such as TCR 284 
signalling and T cell activation (e.g. IL23R, RORC, NFKB1, CD300A, PIK3R1, ZAP70, CTLA4, 285 
CD3E, CD226, ITK, CD28, CCR7), indicating differences in the regulatory wiring of these 286 
genes in ILC3s and their adaptive immune counterparts. In contrast, genes with similar contact 287 
profiles across both cell types were associated with processes such as histone modification, 288 
chromatin remodelling, and lymphocyte proliferation and differentiation (Fig. S3; Table S5), 289 
reflecting their shared functionality in both cell types.  290 
 291 
In conclusion, our comparative chromosomal interaction analysis highlights both shared and 292 
distinct regulatory wiring of ILC3s and CD4+ T cells, reflecting their specialised roles in innate 293 
versus adaptive immune responses and coordinated regulation of immune activation 294 
pathways.   295 

Promoter-interacting regions in ILC3s and CD4+ T cells are enriched for 296 
genetic variants associated with autoimmune disorders 297 

Genetic risk variants for complex diseases are strongly enriched at transcriptional 298 
enhancers14–16. Therefore, we investigated whether regulatory elements interacting with gene 299 
promoters in ILC3s and CD4+ T cells were enriched for genetic susceptibility to human traits 300 
and diseases, using the RELI algorithm56 (Fig. 4A; see Methods). Briefly, RELI determines 301 
significantly enriched overlaps between selected genomic loci (here, promoter-interacting 302 
regions intersecting open chromatin or H3K27ac signals in ILC3s based on public data) and 303 
trait-associated genetic variants. This is done by comparing the observed overlaps with a null 304 
distribution of artificially created variant sets with similar linkage disequilibrium (LD) 305 
characteristics to the trait-associated variants56. A practical advantage of RELI over the 306 
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commonly used stratified LD score regression57 is that it does not require summary statistics 307 
data and can be performed on sets of significant SNPs reported in the GWAS Catalog58.  308 
 309 
Out of the 495 analysed traits and diseases tested from the GWAS Catalog, genetic risk loci 310 
for 21 human traits were significantly enriched at promoter-linked putative regulatory elements 311 
in ILC3s (BH adjusted p-value < 0.05; Fig. S4A, Table S6; see Methods). Autoimmune 312 
diseases were overrepresented among these traits (according to the ontology EFO:0005140; 313 
p-value = 1.077 x 10-5, hypergeometric one-tailed test), affecting a broad array of organs and 314 
tissues that ILC3s are known to reside in. These included the gut (CD, celiac disease, 315 
ulcerative colitis, primary sclerosing cholangitis), airways (asthma, hay fever), and the central 316 
nervous system (multiple sclerosis). We also noted several traits of peripheral blood cells, 317 
including platelet width, lymphocyte count, and corpuscular volume (Table S6).  318 
 319 
In CD4+ T cells, 22 traits were significantly enriched at promoter-interacting regulatory 320 
elements of CD4+ T cells (BH adjusted p-value < 0.05; Fig. S4B), with significant correlation 321 
between the two cell types (R2 = 0.845822, df = 10, 95% CI (0.5284, 0.9558), p = 0.00052; 322 
Fig. 4B), in line with the assumption that CD4+ T cells and ILC3 cells share many cis-323 
regulatory circuits. However, several traits displayed cell-type specificity, such as allergic 324 
sensitisation, mouth ulcers, and IgG glycosylation in ILC3s, and primary biliary cirrhosis, 325 
rheumatoid arthritis, and systemic lupus erythematosus in CD4+ T cells (Table S6). 326 
 327 
Among the autoimmune disorders, CD risk variants were particularly highly enriched within 328 
the active PIRs of both ILC3s and CD4+ T cells (~2.3-fold enrichment in both cell types, p-329 
value = 1.41 x 10-8 in ILC3s and p-value = 2.41 x 10-10 in CD4+ T cells). We confirmed this 330 
observation using stratified LD score regression (Fig. 4C). While the critical role of CD4+ T 331 
cells in CD is well-established59–62, the connection between ILC3s and CD pathogenesis is 332 
more recent. ILC3s are thought to influence inflammatory processes in CD, such as GM-CSF 333 
signalling and overexpression of the cytokines IL-22, IL-17, and IFN-γ11,63. We next sought to 334 
leverage PCHi-C data to prioritise genes linked to CD risk variants in these cell types. 335 
 336 

MultiCOGS prioritises genes linked to Crohn’s disease risk based on 337 
multivariate fine-mapping of imputed GWAS signals and promoter 338 
contacts in ILC3 and CD4+ T cells 339 

To identify putative causal variants and genes for CD in ILC3s and CD4+ T cells, we extended 340 
our previously published Bayesian prioritisation algorithm, COGS30,31, which provides a single 341 
measure of support (“COGS score”) for each gene’s association with a trait of interest, 342 
calculated based on the location of fine-mapped GWAS signals within (i) gene coding regions, 343 
(ii) gene promoters, and (iii) promoter-interacting regions.  344 

 345 
Despite its demonstrated utility in prioritising gene candidates in a range of human 346 
traits30,31,64,65, we identified areas for improvement in COGS. First, if the summary statistics 347 
underlying the trait-associated loci are too sparse, COGS may miss likely causal variants 348 
intersecting promoter-interacting regions. To mitigate this, we imputed additional trait-349 
associated variants using an established summary statistics-based methodology66. Second, 350 
the original statistical fine-mapping approach utilised in COGS assumes at most a single 351 
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causal variant per linkage disequilibrium (LD) block, whereas the latest evidence suggests 352 
that trait-associated LD blocks can contain multiple causal variants67. To address this, we 353 
updated the COGS algorithm to enable integration with recently developed multivariate fine-354 
mapping approaches, such as SuSiE68–70 (Fig. 4D; see Methods). Finally, we accounted for 355 
both CHiCAGO- and ABCC-detected promoter-interacting regions. We refer to the updated 356 
version of COGS as “multiCOGS”. 357 

 358 
We ran multiCOGS on the CD GWAS meta-analysis by de Lange et al.71 using the 359 
compendium of CHiCAGO- and ABCC-detected promoter-interacting regions in ILC3s or 360 
CD4+ T cells. At the previously established COGS score cutoff of 0.530, we prioritised 109 361 
genes in ILC3s (Fig. 4E) and 118 genes in CD4+ T cells (Fig. S5A; Table S7). The majority 362 
of genes were prioritised based on 3D proximity of non-coding trait-associated variants to gene 363 
promoters, either by PCHi-C or ABCC (Fig. S5B). ABCC contributed to around 11% of the 364 
prioritised genes in both cell types (Fig. S5C). At first examination, we noted many candidate 365 
genes with roles in immune processes already known to be dysregulated in inflammatory 366 
bowel disease (IBD)72–74. Examples include cytokine signalling (IL10, IL1RL1, LTBR, IL2RA, 367 
IFNGR2, TNFSF8), autophagy (ATG16L1, GPR65), and antimicrobial processes in the gut 368 
(PTPN2, IRF8)75,76. The prioritised genes also highlighted IL-23/Th17 signalling (for example, 369 
RORC, NFKB1, IL2RA, and TYK2), a known immune axis in CD pathology77, and known 370 
transcriptional regulators (FOS, TSC22D1, RBPJ). In several loci, multiCOGS prioritised 371 
several compelling gene candidates, based on multiple credible sets. For example, in ILC3s, 372 
two credible sets of variants in chr7p implicated the IKZF1 gene (encoding the Ikaros 373 
transcription factor) by PCHi-C interactions, and the DDC gene (encoding dopamine regulator 374 
L-dopa decarboxylase) by ABCC pairing (Fig. S5D). Ikaros, an established critical regulator 375 
of immune cell development78, also scored highly in the original COGS algorithm. However, 376 
the more distal DDC gene, which has recently emerged as a potential regulator of immune 377 
cell infiltration79, scored well below the prioritisation threshold (Table S7). This demonstrates 378 
the potential of multiCOGS and ABCC for highlighting previously missed gene candidates.79  379 
 380 
We next explored more closely how the results of multiCOGS compared with those from our 381 
previously published COGS pipeline, which used univariate fine mapping without imputation 382 
and was based purely on CHiCAGO results without ABCC (hereafter referred to as “classic 383 
COGS”). Classic COGS resulted in substantially smaller prioritised gene sets (55 genes in 384 
ILC3 cells and 75 genes in CD4+ T cells with COGS score > 0.5) (Table S7). As examples, 385 
we note that compelling candidate genes such as IL12RB2 and IL15RA (in ILC3s), TNFSF15, 386 
and ICAM3 (in CD4s), and NFKB1, BATF, ICAM1 and TNFSF8 (in both cell types) were only 387 
prioritised in multiCOGS (Table S7). Moreover, we discovered that both of the novel aspects 388 
of multiCOGS (imputation and multivariate fine mapping) contributed substantially to the 389 
increased number of genes prioritised in comparison with classic COGS (Fig. S6A). For the 390 
majority of genes, multiCOGS prioritisation scores were similar or higher than in conventional 391 
COGS in both ILC3s and CD4s (Fig. S6B). Only five genes prioritised by conventional COGS 392 
had sub-threshold scores in multiCOGS, including JAK2 (see Fig. S6C and Supplementary 393 
Note 1).  394 
 395 
Next, we searched for prior evidence of association of all multiCOGS-prioritised genes with 396 
CD (or IBD, more broadly) by querying the top CD genes in OpenTargets, curated gene-to-397 
disease databases, and functional studies37,80–83. We found that over half of multiCOGS-398 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2026. ; https://doi.org/10.1101/2022.10.19.512842doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512842
http://creativecommons.org/licenses/by/4.0/


 

 
 

10 

prioritised genes in ILC3s (61/109) and CD4s (67/118) were not previously implicated in these 399 
databases (Table S8). These newly prioritised genes included compelling candidates such as 400 
ubiquitin-specific peptidase 49 (USP49), adding to the existing evidence for the role of protein 401 
ubiquitination in IBD development84, and lymphotoxin beta receptor (LTBR), known to be 402 
important for gut epithelial cell IL-23 production85. In particular, 23 genes selectively prioritised 403 
in ILC3s (Fig. 4F) were not previously linked to CD in the studied datasets. These included 404 
genes with unexpected functions, such as the neurotransmitter DOPA decarboxylase (DDC), 405 
and a lysosomal/endosomal transmembrane protein (CLN3). CLN3 is involved in lipid 406 
trafficking and catabolism86,87, and mutations in this gene cause Batten disease, a group of 407 
lysosomal storage disorders characterised by progressive neurodegeneration88. 408 
 409 
Taken together, by accounting for imputed variants and multiple causal variants per locus, 410 
multiCOGS expands the ability to discover candidate genes in complex trait loci using 411 
promoter interactions.  412 

Prioritised gene candidates in ILC3 cells implicate inflammatory 413 
processes in CD aetiology 414 

We explored the biological functions of the 109 prioritised CD genes in ILC3s based on their 415 
public gene set annotations (Table S9). Seven biological states or processes were 416 
significantly enriched among the gene candidates: IL6-JAK-STAT3 signalling, TNFα signalling 417 
via NFκB, IL2-STAT5 signalling, inflammatory response, allograft rejection, IFNγβ response, 418 
and TGFβ signalling (Hallmark gene sets; Fig. S7A). Molecular functions included cytokine 419 
receptor activity and NAD+ metabolic activity (GO Term Molecular Functions, Fig. S7B). We 420 
saw the strongest enrichment of cell-type signatures for tissue-resident immune cells, 421 
including gastric and duodenal immune cells, as well as monocytes, dendritic cells, and 422 
basophils in the lung (Fig. S7C). We also noted the signature for ILC progenitor cells in fetal 423 
lung89, driven by the genes IL1R1, ICAM1, IFNGR2, PLCG2, CCR6, and RORC (adjusted p = 424 
0.0176). Enriched curated pathways highlighted immune-mediated diseases, including 425 
rheumatoid arthritis, neuroinflammation, IBD, and bacterial infection (WikiPathways; Fig. 426 
S7D). Other relevant pathways included T cell differentiation and signalling of IL-18, a key 427 
cytokine for ILC3 function90 (Fig. S7C). Leveraging published IBD patient gene sets91, we also 428 
found enrichment for genes differentially expressed in the rectum in patients with CD (adjusted 429 
p-value = 1.38 x 10-4) and ulcerative colitis (adjusted p-value = 0.0156) (Table S9, Fig. S7E). 430 

 431 
We then investigated which transcription factors (TFs) might regulate the CD gene candidates 432 
in ILC3s using two methods. First, we used a gene-centric approach to identify 433 
overrepresented genes predicted to be targeted by a given TF (TF targets from MSigDB). This 434 
analysis highlighted the architectural protein HMGA1 and the known inflammatory response 435 
regulator NFκB (Table S9 and Fig. 5A). Second, we used a region-centric approach, 436 
searching for enrichment of predicted TF binding sites across a range of cell types at the PIRs 437 
of CD candidate genes in ILC3s. We found significant enrichment for 97 TFs (Fig. 5B, Table 438 
S10), many of which were previously implicated in inflammatory response, including 439 
IKZF1/Ikaros92, BATF93, and NFKB3/RELA94–96, which are all highly expressed in ILC3s (Fig. 440 
5C) and have established roles in ILC3 biology. Two examples of potential long-range 441 
regulation of CD candidate genes by putative TF binding at PIRs are shown in Fig. 5D and E. 442 
In the first example, the promoter of the IKZF1 gene contacts two upstream PIRs, each 443 
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containing a separate credible set of fine-mapped CD susceptibility variants and bearing 444 
marks of open and active chromatin (ATAC-seq and H3K27ac peaks) in ILC3s. Based on data 445 
from lymphoblastoid cell lines, these PIRs recruit multiple TFs: IKZF1 itself, as well as BATF, 446 
NFKB3, ATF2, and the architectural proteins CTCF and SA1 (Fig. 5D). In the second example, 447 
the promoter of IL1R1 contacts CD risk variant-containing PIRs that have accessible 448 
chromatin in ILC3s and contain CTCF binding signals in lymphoblastoid cell lines (Fig. 5E).  449 
 450 
Jointly, these results propose inflammatory signalling genes as causal candidates for CD 451 
susceptibility in ILC3s. 452 
 453 
CLN3 contributes to ILC3 inflammatory capacity 454 
We next focused on CLN3, a gene implicated in the neurodevelopmental disorder Batten 455 
disease. CLN3 was selectively prioritised as a CD risk gene in ILC3s, but not CD4+ T cells, 456 
and has not previously been linked to CD or other immune-mediated diseases. Examination 457 
of the SuSIE fine-mapped CD GWAS locus underlying CLN3’s prioritisation revealed a 458 
credible set of variants overlapping two regions considered by multiCOGS. The first region is 459 
an ILC3-specific CLN3 PIR located 14.2 kb downstream of the canonical CLN3 TSS (red band 460 
in Fig. 6A). The second region lies between exons 10 and 11 of the canonical CLN3 transcript, 461 
adjacent to an annotated internal promoter (first dark blue band in Fig. 6A). Unexpectedly, we 462 
found that both regions lacked chromatin accessibility and enhancer activity signals in ILC3s, 463 
as well as in all other cell types included in the Ensembl Regulatory Build database (Fig. 6A). 464 
Data from lymphoblastoid cell lines97 showed enrichment for the H3K36me3 mark, which is 465 
typically associated with transcriptional elongation98 and facultative heterochromatin99 (Fig. 466 
6A). To seek complementary evidence for a regulatory role of this locus, we queried the 467 
OpenTargets database100 for possible colocalisation between the CD risk signal and known 468 
CLN3 expression quantitative trait loci (eQTLs). CD risk GWAS and CLN3 expression were 469 
likely to share a joint causal genetic signal (posterior probability ≥ 0.8, as determined by 470 
coloc101 and reported in OpenTargets) in whole blood102,103, monocytes104,105, thyroid103, small 471 
intestine103, and cerebellum103. Notably, the same CD GWAS signals also colocalised with 472 
eQTLs for nearby genes, including APOBR, which is located ~2 kb downstream of CLN3 in a 473 
divergent orientation, suggesting a complex regulatory architecture at this locus. 474 

To further investigate the role of the CLN3 locus in ILC3s, we used mouse MNK-3 cells as a 475 
tractable model for ILC3 activation and effector function. We found that Cln3 expression was 476 
downregulated upon stimulation of MNK-3 cells with IL-23 and IL-1β, cytokines that are 477 
essential for ILC3 effector function106,107 (Fig. 6B, left). Consistent with this observation, 478 
analysis of published RNA-seq data from primary mouse ILC3s stimulated with TL1A108 also 479 
showed reduced Cln3 expression (Fig. 6B, left). Notably, the adjacent gene Apobr was 480 
similarly downregulated under IL-23/IL-1β stimulation (Fig. 6B, right), in line with eQTL-based 481 
evidence of coordinated regulation of these genes in humans.

102,103,104,105 In contrast, TL1A 482 
stimulation did not affect Apobr expression (Fig. 6B, right). 483 
 484 
To interrogate the transcriptional consequences of stimulation-induced Cln3 repression, we 485 
used CRISPR activation (CRISPRa; dCas9-VP64 + MS2-p65-HSF1) to prevent Cln3 486 
downregulation in MNK-3 cells during stimulation. CRISPRa targeting produced an 487 
approximately threefold increase in Cln3 expression in stimulated MNK-3 cells (Fig. 6B, left). 488 
Notably, Apobr expression was also increased in both basal and stimulated conditions (Fig. 489 
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6B, right), potentially reflecting local effects of CRISPRa targeting, but also mirroring the 490 
coordinated regulation observed at this locus (Fig. 6B). Bulk RNA-seq analysis revealed 491 
widespread transcriptional changes following Cln3 CRISPRa, with 519 differentially expressed 492 
genes in unstimulated cells and 722 in stimulated cells relative to scrambled gRNA controls 493 
(DESeq2 adjusted p-value < 0.05; Fig. 6C and S8A; Table S11 and Data S10 at 494 
https://osf.io/aq9fb). These genes were enriched for pathways involved in 495 
lymphocyte differentiation, activation, and proliferation, including upregulation of Cd23r, Cd74, 496 
and Fas, and downregulation of the inflammatory serine proteases Gzmb and Gzmc (Fig. 6D, 497 
Fig. S8B). Notably, more than half of the genes differentially expressed in stimulated Cln3-498 
CRISPRa cells overlapped with genes altered by IL-23/IL-1β or TL1A stimulation in Cln3-499 
unperturbed cells108 (Fig. 6E), suggesting that sustained Cln3 expression counteracts 500 
canonical activation-associated transcriptional programmes. In contrast, CRISPR interference 501 
(CRISPRi; dCas9-KRAB)-mediated knockdown of Cln3 resulted in few transcriptional changes 502 
beyond Cln3 and Apobr themselves (Fig. S8C, D; Table S11; Data S11 at 503 
https://osf.io/aq9fb). Notably, these included upregulation of Nos2, a gene previously 504 
implicated in limiting ILC3-driven intestinal inflammation107. 505 
 506 
Given the coordinated regulation of Cln3 and Apobr expression upon ILC3 stimulation, the 507 
limited transcriptional impact of further Cln3 knockdown in activated cells, and the pronounced 508 
effects of Cln3 overexpression, we next asked whether the CLN3 protein modulates ILC3 509 
effector function at a post-transcriptional level. CLN3 is a lysosomal and endosomal protein 510 
with established roles in vesicular trafficking, lysosomal homeostasis, and protein 511 
turnover109,110,111, processes that are central to cytokine storage and secretion. Therefore, we 512 
ectopically overexpressed Cln3 in MNK-3 cells and measured cytokine secretion under basal 513 
and inflammatory conditions. Overexpression of the myc-tagged CLN3 construct was 514 
confirmed by RT-qPCR and immunoblotting (Fig. S8E, F). As expected, MNK-3 cells 515 
constitutively secreted IL-22 and GM-CSF, with further induction of these cytokines upon 516 
stimulation, whereas IL-17 production was restricted to stimulated conditions (Fig. 6F and 517 
S8G). Notably, CLN3 overexpression significantly reduced the secretion of IL-17, IL-22, and 518 
GM-CSF by stimulated MNK-3 cells (Fig. 6F and S8G). Basal IL-22 and GM-CSF secretion 519 
were also reduced in the absence of stimulation (Fig. 6F and S8G). Viable cell numbers were 520 
quantified at the end of cytokine secretion assays and showed no difference under basal 521 
conditions, with a modest reduction in Cln3-overexpressing cells following stimulation (Fig. 522 
S8H). 523 
 524 
Collectively, these results highlight the Batten disease gene Cln3 and the broader Cln3/Apobr 525 
locus as regulators of ILC3 inflammatory output, revealing a previously unrecognised role for 526 
this locus in shaping ILC function. 527 

MultiCOGS prioritises candidate genes for six autoimmune diseases with 528 
potential roles in ILC3 inflammatory function 529 

Building on the methodologies and data generated in this study, we extended multiCOGS 530 
analysis in ILC3s and CD4+ T cells to five other autoimmune GWAS datasets in addition to 531 
CD with available summary statistics that showed enrichment at ILC3 PIRs in the RELI 532 
analysis: adult-onset asthma, IBD, ulcerative colitis (UC), primary sclerosing cholangitis (PSC) 533 
and celiac disease. Across the six traits and two cell types, we detected a total of 332 534 
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prioritised disease candidate genes (multiCOGS score > 0.5), of which 251 were prioritised in 535 
ILC3 cells (Fig. 7A) and 266 in CD4+ T cells (Table S12). As expected from their shared 536 
aetiology, the three traits relating to inflammatory bowel disease (CD, UC, and IBD) clustered 537 
together with respect to gene-level multiCOGS scores, while asthma formed an outgroup (Fig. 538 
7A). 539 
 540 
A total of 66 candidate genes were prioritised in ILC3s only, and 81 in CD4+ T cells only (Table 541 
S12). Notable ILC3-specific candidate genes included several cytokines and receptors 542 
involved in type I immune response, such as CCR2 (celiac disease), BCL6 and IL17A (both 543 
asthma), as well as the IL-18 receptor (IL18R1), which we previously prioritised for CD, and 544 
here also prioritised for celiac disease and asthma. We also noted family members of 545 
butyrophilin (BTN) proteins–immunomodulatory transmembrane proteins involved in 546 
recognition of microbial antigens–prioritised in both CD and asthma (BTN3A1 and BTN3A2), 547 
specific to ILC3 cells. Finally, we noted that CLN3 was prioritised for the broader IBD trait 548 
(multiCOGS score 0.538, Table S12) in addition to CD, again selectively in ILC3s.  549 
 550 
Pathway analysis of the prioritised genes across the analysed traits revealed shared enriched 551 
GO terms for inflammatory processes such as cytokine binding and immune receptor activity 552 
(Fig. 7B; Table S13A). To gain further insight into the role of the prioritised genes in ILC3 553 
inflammatory function, we turned to a recent CRISPRi screen for putative regulators of IL-22 554 
expression in MNK-3 cells following IL-23/IL-1β stimulation112 (Fig. 7C). Of the multiCOGS 555 
gene candidates across all profiled autoimmune diseases, six were significant positive 556 
regulators and five were significant negative regulators of IL-22 protein production, as detected 557 
by the CRISPRi screen (Table S13B and labelled in red in Fig. 7D and 7E). Among the IL-22 558 
activators were three candidate genes for IBD-related traits, all with known strong roles in IL-559 
22 activation (IL23R, BATF, and RORC). The remaining three IL-22 activators were all 560 
candidate genes for asthma alone: GNA15, SESN1, and GATA3, of which only GATA3 has 561 
been previously reported to directly activate IL-22 in ILC3s113. Meanwhile, the five multiCOGS 562 
genes putatively downregulating IL-22 production were all associated with IBD-related traits 563 
(PTPN2, NEMF, HCLS1, PPP5C, and KXD1). Of these, only PTPN2 has direct evidence for 564 
IL-22 repression, through STAT3 dephosphorylation114. The other putative IL-22 negative 565 
regulators have diverse functions in protein homeostasis (NEMF), actin remodelling (HCLS1), 566 
stress signalling (PPP5C), and lysosome localisation (KXD1). Overall, multiCOGS genes were 567 
significantly enriched among the genes scoring highly for positive IL-22 regulation (GSEA p = 568 
0.0284, Table S13C; genes driving the association labelled in Fig. 7D), implicating the control 569 
of ILC3 activation as an important mechanism underpinning the effects of the prioritised genes 570 
on autoimmune disease risk.  571 
 572 
In summary, this analysis expands the compendium of prioritised GWAS gene candidates with 573 
potential roles in ILC3s to six autoimmune disease traits and demonstrates the potential role 574 
of many prioritised genes in ILC3 inflammatory function. 575 
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 576 

Discussion 577 

In this study, we present high-resolution promoter interaction profiling in ILC3s, revealing tens 578 
of thousands of promoter contacts with enhancers and GWAS variants associated with 579 
multiple immune diseases, including those that are unique to ILC3s compared with their 580 
phenotypically related counterparts in the adaptive immune system, CD4+ T cells. ILC3s are 581 
a relatively rare cell type that cannot be easily expanded in vivo, which makes their 582 
chromosomal interaction profiling challenging. Indeed, this problem precluded ILC3 profiling 583 
by standard Hi-C alongside type 2 ILCs in a recent mouse study115. Robust Capture Hi-C 584 
profiling typically requires even higher cell numbers. Our efficient PCHi-C protocol44 and the 585 
use of a four-cutter enzyme (DpnII) have enabled a higher-resolution analysis of human ILC3s 586 
in this study, adding these clinically-relevant cells to the ever-expanding array of cell types 587 
with available promoter interactome maps, including the 17 abundant blood cell types that we 588 
profiled previously using high-coverage PCHi-C at a six-cutter enzyme (HindIII) resolution30. 589 
While emerging technologies provide complementary solutions for the inference of enhancer-590 
promoter relationships, such as through the correlated activities of these elements across cell 591 
types or single cells, genetic evidence and high-throughput perturbation screens, 3D 592 
genomics-based approaches continue to offer unique advantages by delivering 593 
mechanistically-grounded information in high throughput at a reasonable cost and time 594 
investment.  595 
 596 
Unlike in our previous studies, here we take advantage of two conceptually different 597 
computational analysis strategies for detecting promoter contacts from Capture Hi-C data. The 598 
first strategy is based on our established CHiCAGO pipeline to detect ‘significant contacts’ – 599 
i.e., those whose frequency significantly exceeds the expectation at a given distance and 600 
technical noise levels. The second strategy is based on the adaptation of the ABC 601 
approach14,41 to Capture Hi-C data (the Activity-by-Captured-Contact method, ABCC), which, 602 
in contrast, considers the raw contact frequency rather than its significance. As expected from 603 
this conceptual difference, ABCC prioritises shorter-range contacts compared with CHiCAGO, 604 
resulting in the largely non-overlapping sets of identified contacts and GWAS-prioritised 605 
genes. However, the longer-range contacts detected using CHiCAGO, which were also 606 
enriched for active enhancers, drive the majority of our identified disease associations. From 607 
the practical point of view, therefore, these two approaches are largely complementary, and 608 
their combined use is warranted. Mechanistically, this suggests that at short linear distances, 609 
the background frequencies of promoter-enhancer contacts arising from constrained Brownian 610 
motion are sufficient for the functional interactions between these regions. In contrast, at 611 
longer ranges, additional factors (e.g., cohesin-mediated loops) are likely required to facilitate 612 
the statistically unusual contact frequencies and enable functional interactions.  613 
 614 
We find a strong enrichment for CD-associated SNPs within the ILC3 PIRs, consistent with 615 
recent findings showing that superenhancers specific to ILC3 or Th17 cells, rather than to ILC1 616 
or Th1 cells, preferentially contain CD-associated variants21. Using our multiCOGS strategy 617 
that integrates GWAS data processed with multivariate statistical fine-mapping with 618 
information on enhancer-promoter links from PCHi-C, we prioritise a total of 109 genes in 619 
ILC3s, 29 of which are not detected in CD4+ T cells. Notably, the number of multiCOGS-620 
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prioritised genes has increased considerably compared with the results obtained with our 621 
previously developed COGS pipeline30,31. The key improvements of multiCOGS include 622 
summary statistics-based imputation and allowing for multiple causal variants per linkage 623 
disequilibrium (LD) block. At the molecular level, the increased recall of prioritised genes 624 
reflects the fact that the same LD block often contains multiple regulatory elements (including 625 
promoter-proximal and distal enhancers). Variants within each of these elements may have 626 
largely independent effects from one another49,67 and from those within protein-coding 627 
regions116. Furthermore, we identify cases, such as IKZF1/DDC, where multiple causal 628 
variants in the same LD block intersect the regulatory elements of different candidate genes, 629 
leading to their joint prioritisation. These results reinforce the notion that the assumption of a 630 
single causal variant per LD block used by many established GWAS analysis methods 631 
(particularly those based on summary data) is unnecessarily restrictive and may miss key 632 
genetic mechanisms underpinning disease processes.  633 
 634 
While the enrichment of GWAS signals within enhancers was first demonstrated over a 635 
decade ago16, with the first studies leveraging 3D information for enhancer-gene assignment 636 
following shortly thereafter117–119, the majority of GWAS gene prioritisation studies to date still 637 
do not consider 3D chromosomal data120. Nonetheless, several computational approaches for 638 
variant-to-gene assignment integrating fine-mapped GWAS signals with 3D genomics 639 
information and other sources of evidence are now becoming available. For example, FUMA 640 
SNP2GENE provides the option to identify candidate genes via enhancer-promoter 641 
interactions, but does not integrate fine-mapping SNP probabilities121. In addition, the L2G 642 
(locus-to-gene) pipeline uses a machine learning algorithm that integrates multiple features, 643 
including Capture Hi-C122. L2G provides an interpretable output that shows the relative 644 
contributions of many factors, including QTL colocalisation, genomic distance, VEP scores123, 645 
and enhancer-promoter interactions, towards an overall gene score per credible set. L2G is 646 
available on the OpenTargets platform37, but it is not easily adaptable to new functional data. 647 
Finally, H-MAGMA incorporates Hi-C-derived chromatin interactions to refine SNP-to-gene 648 
assignment for non-coding GWAS variants, but does not integrate them into a probabilistic 649 
framework124. MultiCOGS complements these efforts by providing an unsupervised and 650 
interpretable Bayesian framework based on cell-type-specific, mechanistically-grounded 651 
readouts that can be applied to 3D genomic data in cell types relevant to the disease context. 652 
 653 
Using multiCOGS across six autoimmune traits to prioritise disease risk-linked genes with 654 
potential roles in ILC3s, we produce a compendium of 251 genes, including both known and 655 
potentially novel candidates. Integration with a CRISPRi screen for genes affecting ILC3 656 
inflammatory response provides a first indication of their potential role in ILC3 biology. This 657 
includes 11 prioritised genes that were detected as putative IL-22 activators and repressors 658 
in the CRISPRi screen125. However, further targeted experiments are still required to gain a 659 
deeper understanding of the functional role of the prioritised genes in ILC3 biology and their 660 
contribution to autoimmune disease risk.  661 
 662 
The Cln3 gene, prioritised in our analysis for CD risk in ILC3s but not in CD4+ T cells, underlies 663 
the majority of cases of the neurodevelopmental disorder Batten disease. While immune 664 
features have been reported in Batten disease and other lysosomal disorders126,127, the 665 
function of Cln3 in the immune system remains poorly understood. Here, we show that Cln3 666 
expression is downregulated upon cytokine stimulation of mouse ILC3s, and that Cln3 667 
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overexpression in an ILC3-like mouse cell line impacts stimulation-induced transcriptional 668 
programmes and cytokine production. In contrast, CRISPRi knockdown of Cln3 did not show 669 
a pronounced phenotype in our model system, and, consistent with this, was not detected as 670 
a significant hit in the CRISPRi screen for regulators of ILC3 inflammatory response.125 CLN3 671 
is a transmembrane lysosomal protein with established roles in vesicular trafficking and 672 
lysosomal homeostasis128. Consistent with this biology, our functional data support a role for 673 
activation-induced downregulation in promoting the inflammatory capacity of ILC3s. In addition 674 
to its trafficking functions109,110,111, recent studies have demonstrated that CLN3 is required for 675 
the catabolism of glycerophospholipids87,129, which are key structural components of cellular 676 
membranes and have emerging regulatory roles in innate immune signalling. Accordingly, 677 
Cln3 knockdown in mouse monocytes was shown to interfere with LPS-induced secretion of 678 
the inflammatory cytokine IL-6,130. These observations raise the possibility that CLN3 may 679 
influence immune effector functions through effects on membrane composition, vesicular 680 
dynamics, or both. Together, our findings implicate CLN3 in the regulation of ILC3 681 
inflammatory function and CD risk, raising the possibility that inflammatory processes may 682 
contribute to gastrointestinal manifestations observed in CLN gene deficiency.131  683 
 684 
Notably, the region harbouring the fine-mapped CD susceptibility variants in the CLN3 locus 685 
lacks active chromatin signals in ILC3s, as well as in other cell types represented in the 686 
Ensembl Regulatory Build. This suggests that regulatory activity at this locus may be highly 687 
context-specific, potentially emerging only under inflammatory conditions or within discrete 688 
cellular states. Supporting this notion, H3K36me3 deposition across this region in 689 
lymphoblastoid cell lines was recently proposed as a mark of enhancers that are ‘poised’ for 690 
rapid activation132. However, CD-associated variants in this locus may also exert regulatory 691 
effects through alternative mechanisms. Several fine-mapped variants in the CLN3 locus are 692 
linked to alternative polyadenylation of the CLN3 transcript’s 3’UTR across multiple 693 
tissues133,134, a mechanism that can influence mRNA stability and translational efficiency and 694 
is increasingly recognised as a contributor to complex disease risk134. In addition, CLN3 was 695 
reported to undergo splicing-dependent transcriptional activation135, further expanding the 696 
range of potential regulatory mechanisms operating at this locus. The regulatory complexity 697 
of the CLN3 locus is further augmented by its detection as an eQTL for multiple neighbouring 698 
genes across diverse cell types. In monocytes, this locus is also an eQTL for the known CD 699 
gene IL27, with an opposite direction of allelic effect and a lower statistical significance relative 700 
to CLN3 itself105,136. Notably, IL27 is not appreciably expressed in either mouse or human 701 
ILC3s. In addition, CLN3 shares eQTLs with, and is divergently expressed from, the 702 
apolipoprotein B receptor gene APOBR. Consistent with this, we show that Cln3 and Apobr 703 
are co-regulated upon IL-23/IL-1β stimulation in a mouse ILC3-like cell line. APOBR has a 704 
recognised role in lipid uptake in myeloid cells137, but its function in the lymphoid compartment 705 
remains unclear and is likely mechanistically distinct from that of CLN3.  706 
 707 
Human ILC3s in our study are derived from tonsillectomy material, but their regulatory 708 
elements show an enrichment for variants associated with immunological disorders affecting 709 
a broad range of tissues. This is consistent with findings from single cell genomics suggesting 710 
that cell type, rather than tissue type, is likely to be the driving factor behind variation in 711 
chromatin accessibility and gene expression138,139. Furthermore, ILC3s from regularly inflamed 712 
tonsils have a closer cytokine profile to mucosal-resident ILC3 populations than ILC3s from 713 
resting lymph nodes or peripheral blood140. Focused studies in relevant physiological contexts 714 
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and disease models will further establish the role of ILC3s in mediating the effects of genetic 715 
variation. These analyses are, however, complicated by the rarity of ILC3s and a lack of robust 716 
human cell line models for this cell type, as well as the strong influence of organismal and 717 
environmental factors, which are difficult to reproduce in a laboratory setting either in vitro or 718 
in vivo, on autoimmune disease pathogenesis. 719 

In conclusion, we present updated methodologies for profiling and detecting promoter-720 
anchored interactions and for leveraging these data to interpret GWAS signals. Using this 721 
framework, we provide a comprehensive catalogue of regulatory chromatin contacts and 722 
candidate autoimmune risk genes in ILC3s, and take initial steps toward their functional 723 
validation. These findings advance our understanding of ILC3 biology and the contributions of 724 
this rare cell type to disease, and highlight the utility of our approach for dissecting regulatory 725 
architecture in other rare cell types and complex traits. 726 

Methods 727 

Human ILC3 cell isolation 728 

Three children requiring tonsillectomy were recruited to a prospective study at a tertiary 729 
academic care centre through the division of Pediatric Otolaryngology-Head and Neck Surgery 730 
at Cincinnati Children's Hospital Medical Center with an institutional review board (IRB) 731 
approval. Criteria for enrollment in the study included a history of sleep-disordered breathing 732 
or recurrent or chronic tonsillitis requiring removal of the tonsillar tissue. Consent was obtained 733 
from parents in the perioperative suite on the day of the procedure. Subjects were excluded 734 
from the study if the tonsillar tissue was acutely infected or if anatomic abnormalities were 735 
present requiring a more detailed pathologic evaluation post the surgical procedure. Samples 736 
were labelled with a de-identified barcode and transferred to the research team for further 737 
processing.  738 
 739 
Next, tonsils were dissociated into a single-cell suspension as previously described141,142. 740 
Briefly, Human tonsil tissue was processed by mincing with scissors, followed by transfer of 741 
up to 4g of tissue to a gentleMACS C tube (Miltenyi Biotec) containing 8 mL of phosphate-742 
buffered saline (PBS) with 0.5 mg/mL collagenase D and 3000 U/mL DNase I, then dissociated 743 
on a GentleMACS Octo Dissociator (Miltenyi Biotec) using “program C (Spleen program 2 744 
followed by spleen program 3).” Tissue homogenates were incubated in a 37°C water bath for 745 
15 minutes, then dissociated again using “program C” and transferred through a 100 μm cell 746 
strainer into 20mL RPMI containing 10% human AB serum (Sigma Aldrich). Next, the cell 747 
suspension was overlaid on 10mL of Ficoll-Paque PLUS (GE Healthcare) and subjected to 748 
density-gradient separation via centrifugation for 20 min at 1800 rpm, 20°C, slow acceleration 749 
and no brake. Leukocytes were collected from the interphase layer and then washed with 750 
50mL of PBS for 6 minutes at 1600 rpm, 20°C.  751 
 752 
Single cell suspensions of tonsil mononuclear cells were subjected to positive selection with 753 
anti-human-CD3, anti-human-CD19 and anti-human-CD14 (Miltenyi Biotec) and transferred 754 
through LD columns (Miltenyi Biotec) according to the manufacturer's guidelines (Fig. S9). 755 
The depleted cell suspension flowthrough was collected into a 15mL conical tube and then 756 
centrifuged for 5 minutes at 1200rpm, 20°C. Subsequently, cells were labelled with 757 
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LIVE/DEAD™ Fixable Near-IR dead cell stain kit (Invitrogen). Next, cells were labeled with 758 
sorting antibody cocktail which contained negative linage (Lin-) CD19 Brilliant Violet (BV)421 759 
(HIB19), CD14-BV421 (63D3) and CD3-BV421 (OKT3), and the following antibodies: CD45- 760 
FITC, (HI30), CD94-PerCP-Cy5.5 (DX22), CD127-PE-Cy7 (A019D5), cKit-BV510 (104D2) 761 
and NKp44-Alexa Fluor (AF)647 (P44-8) all purchased from Biolegend (San Diego, CA), 762 
CRTH2-PE (301109, R&D). ILC3 cells were sorted based on the expression of CD45+Lin-763 
CD127+CD94-CRTH2-cKit+NKp44+, similarly to Bar-Ephraim et al. Cell sorting was 764 
performed using a FACSAria II sorter (BD Biosciences, Mountain View, CA, USA). Post sorting 765 
sorted ILC3 cells were washed with PBS for 5 minutes at 1200rpm, 20°C and then incubated 766 
in 100 uL of 2% formaldehyde (in PBS) for 10 minutes, followed by the addition of 0.125M 767 
glycine. Next, cells were centrifuged at 400g for 5 minutes at 4°C, resuspended with cold PBS 768 
and centrifuged again at 400g for 5 minutes at 4°C, supernatant was discarded, and cells were 769 
snap-frozen in liquid nitrogen and then stored at -80°C prior to PCHi-C analysis. 770 

Human CD4+ T cell isolation 771 

Total CD4+ lymphocytes were obtained from PBMCs from venous blood by negative selection 772 
using EasySep Human CD4+ T Cell Enrichment kit (Catalog #19052) from STEMCELL 773 
Technologies. Purified CD4+ T cells were washed with PBS for 5 minutes at 1200 rpm, 20°C 774 
and then incubated in 100 μL of 2% formaldehyde (in PBS) for 10 minutes, followed by the 775 
addition of 0.125M glycine. Next, cells were centrifuged at 400g for 5 minutes at 4°C, 776 
resuspended with cold PBS and centrifuged again at 400g for 5 minutes at 4°C, supernatant 777 
was discarded, and cells were snap-frozen in liquid nitrogen and then stored at -80°C prior to 778 
PCHi-C analysis. Two replicates of 1 million and two more replicates of 50,000 cells were used 779 
to generate PCHi-C datasets. The samples were obtained from two male donors after written 780 
informed consent under studies “A Blueprint of Blood Cells,” REC reference 12/EE/0040, and 781 
“Genes and mechanisms in type 1 diabetes in the Cambridge BioResource,” REC reference 782 
05/Q0106/20; both approved by the NRES Committee East of England – Cambridgeshire and 783 
Hertfordshire.  784 

Promoter Capture Hi-C 785 

Promoter Capture Hi-C was performed as previously described44. Cells were lysed in a lysis 786 
buffer (30 minutes on ice), and digested with DpnII (NEB) overnight at 37°C while rotating (950 787 
rpm). Restriction overhangs were filled in with Klenow (NEB) using biotin-14-dATP (Jena 788 
Bioscience), and ligation was performed in the ligation buffer for 4 hours at 16°C (T4 DNA 789 
ligase; Life Technologies). After overnight de-crosslinking at 65°C, the ligated DNA was 790 
tagmented to produce fragments of 300-700 bp. Ligation products were isolated using MyOne 791 
C1 streptavidin beads (Life Technologies), followed by washing with Wash&Binding buffer and 792 
nuclease-free water. Isolated Hi-C ligation products on the beads were then used directly for 793 
PCR amplification, and the final Hi-C library was purified with AMPure XP beads (Beckman 794 
Coulter). Promoter Capture Hi-C was performed using a custom-designed Agilent SureSelect 795 
system following the manufacturer’s protocol. The PCHi-C libraries were paired-end 796 
sequenced (100 bp) on an Illumina HiSeq 2500 machine at a sequencing depth of ~400 million 797 
reads per sample (Table S1). 798 
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PCHi-C data pre-processing and detection of significant interactions  799 

Sequencing data from three ILC3 PCHi-C biological replicates were aligned to the hg38 800 
genome assembly using Bowtie2143 and quality-controlled using HiCUP144. Quality metrics for 801 
all generated PCHi-C datasets are reported in Table S1. Significant interactions were then 802 
detected across the replicates by CHiCAGO39 as previously described40 at single DpnII 803 
fragment resolution and in bins of fragments approximately 5 kb in length, with the baited 804 
promoter fragments left solitary (unbinned).  805 
 806 
Leaving the baited DpnII fragment unbinned meant that nearly every baited fragment was 807 
occupied by a single protein-coding gene promoter. In contrast, a third (33%) of baited 808 
fragments in the HindIII-based Capture Hi-C design (with a median fragment size of 4 kb) 809 
contained two or more promoters. Therefore, leaving the baited fragment unbinned 810 
significantly improved the resolution and interpretability of analyses such as (multi)COGS. 811 
 812 
For CHiCAGO analysis at single-fragment resolution, p-value weights were estimated 813 
following our previously described procedure40 and are listed in Table S11; default p-value 814 
weights were used for the 5 kb analysis. A CHiCAGO score cutoff of ≥5 was used for both 815 
resolutions. A consensus list of promoter interactions was compiled from non-redundant 816 
contacts detected at the fragment and 5 kb resolutions.  817 
 818 
Integration with HindIII Promoter Capture Hi-C data 819 
Our previous PCHi-C study in 17 abundant human primary blood cell types, including both 820 
lymphoid and myeloid cells30 was performed using a 6 bp restriction enzyme HindIII, unlike 821 
the 4-bp cutter enzyme DpnII used in the current study. Since restriction fragment size affects 822 
the distance distribution of contacts detected in Hi-C-related methods40,145,146, direct 823 
comparison across these two datasets is challenging. To partially address this issue, we 824 
pooled the reads in the DpnII-based ILC3 data into genomic windows corresponding to HindIII 825 
fragments and re-processed the data with HiCUP using the hg19 genome assembly and 826 
HindIII parameters. We then identified significant interactions using CHiCAGO39 with the 827 
default HindIII-based parameters and integrated them with the significant interactions from the 828 
Javierre et al. study30. To assess the similarity of promoter-interaction patterns in ILC3s with 829 
the cell types profiled in Javierre et al., we first ran a joint PCA analysis. We noted that PC1 830 
(accounting for <10% of the variance) clearly segregated the three ILC3 replicates from the 831 
remaining cell types, and therefore most likely corresponded to the difference in PCHi-C 832 
methods, resolution and sequencing depth. We disregarded PC1 and focused on PC2, PC3, 833 
and PC4, accounting for 6.16%, 3.7%, and 3.16% of variance across all tissues, respectively 834 
(components beyond PC4 accounted for <3.1% of variance each and were disregarded). For 835 
visualisation purposes, we combined these three components using the UMAP non-linear 836 
dimensionality reduction algorithm implemented in the umap package in R147, obtaining the 837 
plot shown in Fig. S1A. 838 

Alternative promoter analysis 839 

We used the CHiCAGO results for ILC3 PCHi-C data at 5 kb resolution to profile PIR sharing 840 
between alternative promoters. First, we identified a set of genes that had more than one 841 
baited promoter, with each promoter having at least one significant interaction with a 842 
CHiCAGO score of ≥5 with ≥5 reads. We defined fully shared PIRs as those that interacted 843 
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with all baited alternative promoters for the same gene, and partially shared PIRs as those 844 
that interacted with a subset of alternative promoters for the same gene. We defined distinct 845 
PIRs as those that only interacted with a single promoter fragment (CHiCAGO score ≥5). To 846 
increase the stringency with which we called PIRs “distinct”, we applied two further criteria. 847 
First, if a PIR interacted with another alternative promoter at a lenient CHiCAGO score ≥3, we 848 
defined that PIR as shared. Second, if the adjacent fragment to the PIR in question interacted 849 
with another alternative promoter at a CHiCAGO score ≥3, we also defined that PIR as shared. 850 
We note that, under our classification rules, the PIRs of genes with only two alternative 851 
promoters included in the analysis can only be classified as “fully shared” or “distinct”. 852 
Therefore, the “partially shared” PIR category was only applicable to the subset of genes with 853 
more than two baited alternative promoters. 854 

Epigenomic data pre-processing 855 

For epigenetic data analysis in ILC3s, the SRA accession list was downloaded from the GEO 856 
accession GSE77299. The SRA files were converted to FASTQ file,s and sequencing 857 
adapters were trimmed from reads using trim galore 858 
(https://github.com/FelixKrueger/TrimGalore). The reads were filtered by PHRED score ≥30 859 
and examined for proper pairing with a mate (when paired-end). The sequencing quality and 860 
duplication level were checked using FastQC 861 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequences were mapped to 862 
the hg38 reference genome using STAR with modifications for aligning ChIP-seq and ATAC-863 
seq reads. Samtools148 was used to select reads with a MAPQ score of 255, which is the flag 864 
for uniquely mapping reads from STAR149. ATAC-seq reads were filtered, retaining properly 865 
paired and oriented reads using the samflag=3. PCR duplicates were removed using 866 
samtools. We then removed reads that fell within blacklisted regions using Bedtools150 867 
intersect. The final filtered BAM file was then converted to a BED file using Bedtools bamtobed. 868 
This conversion breaks read-pairing and ensures each read contributes to peak identification 869 
with MACS2151. The ATAC-seq reads in BED format were shifted by +4 bp on the (+) strand, 870 
and -5 bp on the (-) strand to account for the Tn5 transposase cut site. Peaks were called 871 
using MACS2 using three biological replicates per sample as the treatment group with an input 872 
ChIP-seq control sample. The replicate correlation between the ATAC-seq samples was poor, 873 
with a <10% overlap between biological replicates. This result was consistent with the high 874 
level of duplication and low peak count (8,852) in the worst sample (SRR3129112). Thus, our 875 
ATAC-seq results were limited to the sample withthe  best quality metrics (SRR3129113). In 876 
total, we detected 34,077 H3K27ac peaks and 72,825 ATAC-seq peaks. For epigenetic data 877 
analysis in CD4+ T cells, we used BLUEPRINT epigenome datasets from male donors 878 
C002Q1, S008H1, and S007G7. 879 

Activity-By-Captured-Contact (ABCC) 880 

For a given gene-enhancer pair, the ABC score is the normalised product of enhancer Activity 881 
(proxied by the levels of chromatin accessibility and relevant histone modifications) and 882 
Contact (proxied by 3D contact frequency detected from a chromosome conformation capture 883 
assay)14,41. In the original implementation of ABC, Activity is estimated as the geometric mean 884 
of read counts of DHS/ATAC-seq peaks and Contact by KR-normalised Hi-C contact 885 
frequency between the respective element and gene promoter41. The resulting product is 886 
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divided by the sum of all ABC values for a given gene from enhancers within a 5-megabase 887 
window around the transcription start site: 888 

𝐴𝐵𝐶	𝑆𝑐𝑜𝑟𝑒!,# 	= 	
𝐴! × 𝐶!,#

𝛴𝒆	𝒘𝒊𝒕𝒉𝒊𝒏	𝟓	𝑴𝒃	𝒐𝒇	𝑮	𝐴$ × 𝐶$,#
 889 

To adapt ABC for PCHi-C data, we took advantage of the CHiCAGO normalisation algorithm 890 
and developed an imputation procedure in the normalised counts space based on the inferred 891 
decay of interaction read counts with distance.  As we do not expect the frequency of 892 
enhancer-promoter contacts to fall below levels expected due to Brownian collision, for a given 893 
pair of fragments involving a baited promoter, we selected the maximum between the 894 
CHiCAGO-normalised observed read counts (Nobs) and expected read counts Nexp estimated 895 
as: 896 

Nexp = Bmean/(si*sj), 897 
where Bmean is the CHiCAGO-estimated Brownian noise level and si and s,j and the bait- and 898 
other end-specific scaling factors. For promoters that could not be baited in the Capture Hi-C 899 
design and those that were filtered out due to QC fail, we estimated the expected normalised 900 
read count directly from the interaction distance d, using the distance function f(d) fitted by 901 
CHiCAGO. Due to the strong bias of the distance function d towards the very short range 902 
interactions (<1.5kbp) and to ensure we do not disregard long-distance interactions, in the 903 
imputation procedure we introduced a contact frequency cap for candidate enhancers that are 904 
closer than at least one fragment away from the bait equal to the contact frequency prediction 905 
of distance function d at 1.5 kbp (median fragment length). Please refer to Additional File 1 in 906 
the publication presenting the CHiCAGO pipeline39 for the formal definition of these 907 
parameters and their estimation procedures. 908 
 909 
The imputed normalised read counts were used as Contact data in the ABC pipeline, and the 910 
public H3K27ac and ATAC-seq data in ILC3s processed as described above were used to 911 
compute Activity. To validate the ABCC approach, we took advantage of the high-throughput 912 
CRISPRi-FlowFISH data from Fulco et al.41, which presented the impact of perturbing ~3,500 913 
enhancer elements on the expression of 30 genes in K562 cells. Since PCHi-C data for K562 914 
cells are not currently available, we used our previously published PCHi-C dataset in the 915 
related primary cell type, erythroblasts30, to generate the ABC scores based on these data 916 
and the ATAC-Seq and H3K27ac ChIP-Seq datasets for K562 cells from Fulco et al. In 917 
comparison with the original ABC scores from Fulco et al. based on pooling conventional Hi-918 
C data from multiple cell types, our approach showed a higher precision (69.1% vs 58.3%) at 919 
the same level of recall (58.3%) of CRISPRi-FlowFISH-validated enhancer-promoter pairs 920 
(Fig. S2). To select ABCC score cutoff, we optimised the Pearson correlation between per-921 
gene ABCC numerator and gene expression (RABC-GE), in an approach inspired by Xu et al.152. 922 
We opted to use a single ABCC score cutoff of 0.023 in all analysed cell types, as it was close 923 
to the maximum RABC-GE in each cell type, as well as to the cutoff of 0.02 that yielded an optimal 924 
precision-recall of CRISPRi-FlowFISH-validated enhancer-promoter pairs in K562 cells.  925 

Microarray gene expression data analysis  926 

The microarray CEL files were downloaded from the GEO accession number  GSE78896. The 927 
CEL files were then analysed using AltAnalyze (http://www.altanalyze.org/). Probes were 928 
filtered for a DABG (detection above background) as previously described153. Probes were 929 
collapsed to the gene level and RMA-normalised using the AltAnalyze platform.  930 
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RNA-seq data analysis 931 

Human ILC3 RNA-seq data were downloaded from the GEO accession number GSE130775. 932 
Salmon154 was used to quasi-map reads to transcripts. Reads were aligned to the hg38 933 
genome assembly. The transcript counts were then imported and collapsed to gene counts 934 
using Tx import. 935 
  936 
Mouse ILC3 differential RNA-seq data analysis was performed using DESeq2155. In brief, the 937 
gene count matrices were downloaded from GEO (GSE120723) and the standard DESeq2 938 
algorithm was run according to the vignette. Low-count genes were pre-filtered before running. 939 
The following parameters were used to report significantly differentially expressed genes: 940 
alpha = 0.05 and adjusted p-value < 0.05. 941 
 942 
PIR enrichment for epigenomic features 943 
For each gene, sets of adjacent PIRs for each gene (detected at the fragment or 5 kb 944 
resolution or the merged PIR sets for each gene) were collapsed together to obtain “collapsed 945 
PIRs” (cPIRs). Trans-chromosomal PIRs were removed. The observed proportion of cPIRs 946 
overlapping epigenomic features of interest (ATAC-seq, H3K27ac or H3K4me3, respectively) 947 
was computed using the foverlaps function from the data.table package in R. To obtain the 948 
expectation for this proportion, we repeated this analysis for random cPIRs that were 949 
generated by “transplanting” each set of all cPIRs for each gene to randomly selected genes 950 
in a manner preserving the size and spatial localisation of the cPIRs with respect to each other 951 
and the respective baited promoter fragment. This “transplantation” was repeated 100 times 952 
for all genes (baited promoter fragments), and the mean proportion of random cPIRs 953 
overlapping epigenomic features of interest (over 100 permutations), as well as the standard 954 
deviation of this quantity, were compared with the proportion of overlap for the observed 955 
cPIRs. Compared with the PIR enrichment estimation algorithm implemented in CHiCAGO 956 
(peakEnrichment4Features), this permutation procedure preserves not only each PIR’s 957 
distance from bait, but also the spatial relationships between multiple PIRs of the same gene. 958 

LOLA enrichment analysis 959 

We performed LOLA v1.18156 enrichment analysis to assess whether active and/or open 960 
regulatory elements of multiCOGS-prioritised genes were enriched for specific transcription 961 
factor binding sites and chromatin features compared to all genes tested by multiCOGS.  962 
 963 
We defined active/open PIRs as those with overlapping ATAC-seq or H3K27ac ChIP-seq 964 
peaks within significant PIRs identified by promoter capture Hi-C interactions (CHiCAGO) or 965 
predicted by our ABCC algorithm for multiCOGS-prioritised genes. The background universe 966 
comprised all active/open PIRs from the same datasets for all tested genes. Regions were 967 
converted to GRanges objects using the GenomicRanges package, and enrichment was 968 
tested using the LOLA core pipeline with the LOLA Core RegionDB, using default parameters. 969 
Significant enrichments were defined as those with q-value < 0.05. 970 

RELI analysis 971 

RELI56 (v0.1.1a) was used to find enrichment of genetic variants in promoter-interacting 972 
regions (PIRs) that are accessible and marked with activating epigenetic markers (H3K27ac 973 
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and ATAC-seq). In brief, RELI tests genomic features such as ATAC-seq, ChIP-seq, or PIRs 974 
for statistically significant overlaps with known disease risk variants identified from genome-975 
wide association studies. Risk variants are expanded to linkage disequilibrium blocks (LD 976 
blocks) with variants that have an R2 value ≥ 0.8. LD blocks are then intersected with the 977 
genetic feature BED files. A null distribution is generated using randomly shuffled LD blocks 978 
(n=1,000) and performing the intersection with the feature files. A p-value is generated by 979 
comparing the observed number of intersections in the test to the null distribution. 980 
 981 
Promoter-interacting regulatory elements were determined as input for RELI as follows. The 982 
PIR sets were the union of PCHi-C interactions (CHiCAGO score ≥ 5, binned to 5 kb or DpnII 983 
fragment-level resolution) and  ABC enhancers, excluding any trans-chromosomal 984 
interactions. Regulatory elements were then defined as the union of peaks of open chromatin 985 
and H3K27ac in ILC3 and CD4+ T cells (using ATAC-seq and ChIP-seq data as above). The 986 
true intersection between these regulatory elements and PIRs in each cell type was then 987 
determined using pybedtools intersect. The coordinates for these regions were lifted over from 988 
hg38 to hg19 using UCSC liftOver (v. 377), then sorted and merged for use with RELI. RELI 989 
was run against all 495 traits with ≥ 10 independent risk loci and of European ancestry in the 990 
GWAS Catalog. Bonferroni and Benjamini-Hochberg p-value correction were performed with 991 
the Python package statsmodels, with alpha=0.05 (family-wise error rate of 5%; the probability 992 
that at least one of the predictions is a false positive). Traits with the BH-adjusted p-value < 993 
0.05 were defined as significant. For depicting RELI results, we labelled only significant traits 994 
with enrichment ≥2. 995 
 996 

Standard COGS 997 

To run standard COGS30,31, we adapted the code from the R package rCOGS 998 
(https://github.com/ollyburren/rCOGS) to use the data.table framework instead of 999 
GenomicRanges for optimised speed and to enable both the standard COGS and multiCOGS 1000 
analyses (see Code availability). We used linkage disequilibrium blocks calculated for 1001 
GRCh38 from https://github.com/jmacdon/LDblocks_GRCh38157 and minor allele frequencies 1002 
from the 1000 Genomes Project, European individuals. Protein-coding SNPs were identified 1003 
using VEP version 99.2 (https://github.com/Ensembl/ensembl-vep). We obtained gene 1004 
transcription start sites (Havana and Ensembl/Havana merge) from Ensembl GRCh38 release 1005 
88 (March 2017), matching the version used to design the DpnII promoter capture system. We 1006 
included promoters irrespective of whether they were targeted in the capture system, enabling 1007 
COGS to prioritise all gene targets where the causal variants fell near the gene promoter 1008 
(defined as +/- 5 DpnII fragments from the transcription start site). PIRs with CHiCAGO 1009 
interaction scores ≥5 or ABC scores of ≥0.04 were used as COGS input. The results for each 1010 
protein-coding gene were linked across datasets using Ensembl gene IDs as primary 1011 
identifiers. The Major Histocompatibility Complex was removed (GRCh38 6:28510120-1012 
33480577) prior to running COGS. 1013 

Sources of prior mechanistic evidence for CD genes 1014 

Datasets used to compare the COGS prioritised genes with previously functionally validated 1015 
genes were: OpenTargets37 (L2G gene prioritisation score > 0.5 for five CD studies71,158–161), 1016 
the IBDDB database of functionally validated targets80, a functional screen of IBD genes81, 1017 
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experimentally validated IBD and CD genes from DisGeNET82 that had evidence 1018 
“AlteredExpression”, “Biomarker”, “Posttranslationalmodification”, or “Therapeutic” or CD-1019 
containing exonic variants in a recent IBD exome study83. 1020 

Multivariate GWAS fine-mapping 1021 

The Sum of Single Effects (SuSIE) model allows for multiple causal variants within a GWAS 1022 
locus68,69. We downloaded summary data for Crohn’s disease71 (GCST004132), Ulcerative 1023 
colitis71 (GCST004133), Inflammatory Bowel Disease71 (GCST004131), Celiac Disease162 1024 
(GCST000612), Adult onset Asthma163 (GCST007799) and Primary Sclerosing Cholangitis164 1025 
(GCST004030) from the GWAS Catalog. and used LD block data for EUR from lddetect 1026 
(https://bitbucket.org/nygcresearch/ldetect-data/src/master/), which we liftOvered165 to hg38 to 1027 
divide the data into approximately independent blocks.  We used EUR samples from phased 1028 
1000 Genomes Phase 3 data, downloaded from 1029 
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html, to generate LD matrices.  We 1030 
used these matrices to first impute the summary statistic data within blocks using the published 1031 
method66.  For blocks with appreciable association signals (minimum p < 10-6), we used the 1032 
susieR package68,69 to fine-map the data. We defined “detected signals” as those for which 1033 
SuSiE could calculate a 95% credible set, and used the posterior inclusion probabilities (PIP) 1034 
for each SNP for each signal thus detected as input for multiCOGS, described below. For the 1035 
remaining blocks, or where susieR failed to find any signals meeting our criteria, we fine-1036 
mapped using the single causal variable approach, as previously described30,31, and used the 1037 
posterior probabilities of association as input for multiCOGS. 1038 
 1039 

multiCOGS 1040 

We modified the COGS algorithm to account for the inclusion of multiple association signals 1041 
in a region (“multiCOGS”). While in standard COGS, fragment-level scores are calculated by 1042 
summing variant-level posterior inclusion probabilities (PIP, calculated as above) within a 1043 
given fragment and LD block, multiCOGS considers each credible set within each LD block 1044 
and forms an overall gene score as probability that at least one of the multiple fine-mapped 1045 
signals is linked, through PCHi-C, to the gene of interest:     1046 

 1047 
multiCOGSscoregene=1−∏(1−Scoregene,LDblock,credSet). 1048 

 1049 
To reveal the contributions of the four categories of genomic loci underlying the prioritised 1050 
genes (PCHi-C PIRs, ABC enhancers, promoter proximal regions and coding SNPs) we 1051 
additionally ran multiCOGS on each category separately by specifying the feature.names 1052 
argument in the compute_cogs function.  1053 

Assessing the biological function of CD-prioritised genes 1054 

The Gene2Func tool in FUMA (v1.5.2) was run using all multiCOGS genes with a score ≥0.5, 1055 
Ensembl version 102, and GTex v8. As a background, we used all genes with assigned 1056 
multiCOGS scores in ILC3s, of which 17,984 had a recognised Ensembl Gene ID in FUMA. 1057 
Multiple testing correction was done via the Benjamini-Hochberg method (FDR) with an 1058 
adjusted p-value cutoff of 0.05 and a minimum of 2 genes in a set. The MsigDB version was 1059 
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v7.0. We additionally checked for enrichment of multiCOGS genes in The Inflammatory 1060 
Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) 1061 
Framework91. We filtered the 496 datasets of differentially expressed (DE) genes (adjusted p-1062 
value < 0.05 and absolute log2 fold change ≥2) that were compared across the same tissues 1063 
and selected only sets with a maximum of 2,000 DE genes, to avoid mis-estimation of the 1064 
normalised enrichment score, resulting in 24 datasets. Then we ran the enricher function in 1065 
the R package clusterProfiler166 (version 4.2.2) for all multiCOGS genes with a score ≥0.5. 1066 
 1067 
Cell culture 1068 

Mouse MNK-3 cells112 and the derived lines were cultured in DMEM with glucose/pyruvate/ L-1069 
glutamine supplemented with 10% fetal bovine serum, 1X penicillin-streptomycin, 10 ng/ml 1070 
mouse recombinant IL-2 and IL-7 (R&D Systems), and 50 µM 2-mercaptoethanol. Media for 1071 
CRISPRi MNK-3 (MNK-3i) cells contained 10 µg/ml blasticidin S, and media for CRISPRa 1072 
MNK-3 (MNK-3a) cells contained 10 µg/ml blasticidin S and 1250 µg/ml hygromycin B. MNK-1073 
3i/a cells with sgRNA additionally received 2 µg/ml puromycin. MNK-3 activation was induced 1074 
with 10 ng/ml IL-1β and 10 ng/ml IL-23 (R&D Systems).  1075 
 1076 

CRISPR activation and interference 1077 

MNK-3i cells were generated as described167 from parental MNK-3 cells. In brief, MNK-3 cells 1078 
were transduced with lentivirus containing pLenti CMV rtTA3 Blast (Addgene #26429), 1079 
selected by blasticidin S, and then infected with TRE3G-dCas9-KRAB-P2A-mCherry 1080 
lentivirus. Following incubation with doxycycline, mCherry-positive cells were subcloned, and 1081 
Western blot analysis confirmed robust expression of doxycycline-inducible dCas9-KRAB. 1082 
MNK-3a cells were lentivirally engineered from MNK-3 to constitutively express the dCas9-1083 
VP64 fusion gene (Addgene #61425) and the MS2-p65-HSF1 transactivator complex 1084 
(Addgene #89308), selected by blasticidin S and hygromycin B, and subcloned. All cells were 1085 
tested for mycoplasma. 1086 

Sequences for Cln3-targeting and scrambled gRNAs were based on published sgRNA 1087 
libraries for MNK-3i168 and MNK-3a169 are listed in Table S14 alongside RT-qPCR primer 1088 
sequences. sgRNA sequences and their reverse complement were synthesised by Sigma, 1089 
annealed, and cloned into lenti sgRNA(MS2)_puro optimised backbone (Addgene #73797) for 1090 
MNK-3a or sgOpti (Addgene #85681) for MNK-3i using Esp3I digestion as previously 1091 
described170. sgRNA plasmid integration was confirmed by Sanger Sequencing (Ohio State 1092 
Comprehensive Cancer Center Genomics Core, Columbus, OH, USA). Lentiviral plasmids 1093 
pMD2.G (Addgene #12259) and psPAX2 (Addgene #12260) were transfected along with the 1094 
sgRNA plasmid into HEK293T cells (Mirus TransIT-293T transfection reagent). Lentivirus 1095 
media was harvested and filtered 48-72 hr post-transfection. Puromycin selection began 36 1096 
hr after lentiviral guide transduction into MNK-3i/a cells in the presence of polybrene. Bulk 1097 
transduced populations were used for experiments and maintained in selection antibiotics. 1098 
RT-qPCR confirmed repression (MNK-3i lines after 48 hr doxycycline incubation) or 1099 
overexpression (MNK-3a) of target genes relative to Actb and respective scramble control 1100 
(Trizol RNA isolation; Verso cDNA synthesis).  1101 
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To induce CRISPRi guide expression, MNK-3i stably expressing Cln3-targeting and 1102 
scrambled (Scr) gRNAs were incubated with 2 µg/ml doxycycline for 48 hr. To confirm 1103 
stimulation, cells were harvested 21 hr after cytokine stimulation and stained for intracellular 1104 
IL-17F and IL-22 (eBioscience IL-22 clone 1H8PWSR and IL-17F clone eBio18F10; BD Life 1105 
Sciences Cytofix/Cytoperm kit). Expression of IL-17F and IL-22 was assessed on 1106 
FACSymphony (BD Life Sciences) and compared against a respective scrambled control.  1107 

RNA-sequencing 1108 

RNA was harvested by spin column (Qiagen RNeasy kit)  for polyA-selected 2x150bp bulk 1109 
RNAseq (Illumina platform, University of Cincinnati Genomics, Epigenomics, and Sequencing 1110 
Core, Cincinnati, OH, USA). RNA-seq samples were generated in triplicate. 1111 
 1112 
Raw paired-end RNA-seq reads were quantified using kallisto (v0.48.0) against the mouse 1113 
reference transcriptome (GENCODE release M32, GRCm39). Transcript indices were first 1114 
generated with kallisto index, and transcript abundances were quantified for each sample 1115 
using kallisto quant with 100 bootstrap replicates. Transcript-level abundance estimates were 1116 
subsequently summarised to the gene level in R using the tximport package (v1.30.0) together 1117 
with a transcript-to-gene mapping file. Sample metadata, including experimental condition, 1118 
CRISPR status, and replicate information, were compiled into a metadata table. Gene-level 1119 
count matrices generated by tximport were then used as input for normalisation and differential 1120 
expression analysis with DESeq2 (v1.38.0). Sample metadata, including experimental 1121 
condition, CRISPR status, stimulation, and replicate information, were compiled into a 1122 
metadata table. 1123 

Gene-level count matrices were then used for normalisation and differential expression 1124 
analysis with DESeq2 (v1.38.0). A variance-stabilising transformation (rlog) was applied for 1125 
visualisation and principal component analysis to identify batch effects. Differential expression 1126 
analyses were performed using linear models incorporating relevant covariates. For wild-type 1127 
samples, stimulation status was tested while including CRISPR type as a batch covariate. For 1128 
CRISPRa and CRISPRi samples, models including interaction terms between CRISPR 1129 
treatment and stimulation were used to assess treatment-specific effects. Adjusted p-values 1130 
were calculated using the Benjamini-Hochberg method, and genes with adjusted p-values < 1131 
0.05 were considered statistically significant. 1132 

RNA isolation and quantitative RT–PCR 1133 

Total RNA was isolated from snap-frozen cells using QIAshredder columns and the RNeasy 1134 
spin-column system (QIAGEN). Complementary DNA (cDNA) was synthesised using the 1135 
High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific). 1136 

Quantitative PCR was performed using TaqMan chemistry with TaqMan Fast Advanced 1137 
Master Mix (Thermo Fisher Scientific) on a QuantStudio 5 Real-Time PCR System (Thermo 1138 
Fisher Scientific). Cln3 expression was quantified using the TaqMan Gene Expression Assay 1139 
Mm00487021_m1 and normalised to the housekeeping gene Hprt using assay 1140 
Mm03024075_m1. Reactions were performed in technical triplicate. Relative gene expression 1141 
was calculated using the ΔΔCt method, with MNK-3 cells electroporated with GFP mRNA used 1142 
as the reference control condition. 1143 
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Design and generation of in vitro-transcribed mRNA 1144 

The protein-coding sequence of mouse Cln3 was based on the longest annotated transcript 1145 
(NM_001146311.3 / ENSMUST00000084589.11). A Myc epitope tag was inserted near the N 1146 
terminus, between amino acid residues 3 and 4, within a predicted disordered and cytoplasmic 1147 
region of the protein. The resulting coding sequence was synthesized and used for in vitro 1148 
transcription by ApexBio. 1149 

In vitro–transcribed mRNA was generated with a Cap 1 structure and incorporated N1-1150 
methylpseudouridine. Transcripts contained a poly(A) tail and were supplied in RNase-free 1151 
sodium citrate buffer (pH 6.4) at a concentration of 1 mg ml⁻¹. Control mRNA encoding GFP 1152 
was generated using the same chemistry. 1153 

mRNA electroporation and cytokine stimulation 1154 

MNK-3 cells were electroporated with IVT mRNA using the ATx electroporation system 1155 
(MaxCyte). 1.0×10⁷ cells were electroporated in a 100 µl reaction containing 20 µg of GFP or 1156 
myc-tagged Cln3 mRNA (2 µg per 10⁶ cells) using the “Optimization 8” program. Following 1157 
electroporation, cells were rested for 15 min at 37 °C and then incubated for 15 min at 37 °C 1158 
in pre-warmed medium supplemented with 10 µg/mL DNase I (Thermo Fisher Scientific), 5mM 1159 
MgCl₂, and 1 mM CaCl₂ before transfer to complete MNK-3 culture medium. 1160 

At 24 hr post-electroporation, cells were seeded at 3.0×10⁵ cells per well in 24-well plates. 1161 
Transfected cells were cultured for an additional 24 hr in the presence or absence of 1162 
recombinant mouse 10 ng/mL IL-1β and 10 ng/mL IL-23 (R&D Systems). At 48 hr post-1163 
electroporation, supernatants were collected, clarified by centrifugation, and stored at −20 °C. 1164 
Viable cell numbers were determined by trypan blue exclusion. 1165 

ELISA assay 1166 

Cytokines in cell culture supernatants were quantified by ELISA using DuoSet kits for mouse 1167 
IL-17, IL-22, and GM-CSF (R&D Systems) according to the manufacturer’s instructions. When 1168 
necessary, samples were diluted to fall within the dynamic range of the standard curve. 1169 
Absorbance was measured at 450 nm with wavelength correction at 560 nm using a GloMax 1170 
Discover microplate reader (Promega). Cytokine concentrations were determined by 1171 
interpolation from standard curves using a four-parameter logistic fit.  1172 

Data were analysed using GraphPad Prism. Statistical significance was assessed using 1173 
unpaired Welch’s t-tests (single experiment) or linear mixed-effects models with genotype as 1174 
a fixed effect and experiment as a random effect (multiple experiments). 1175 

Immunoprecipitation and immunoblotting 1176 

MNK-3 cells were electroporated with GFP or myc-tagged Cln3 mRNA as described above 1177 
and harvested 24 hr later. Cells were lysed in a non-denaturing buffer containing 50 mM Tris-1178 
HCl, 150 mM NaCl, 1 mM EDTA, 1% n-dodecyl-β-D-maltoside (DDM), 10% glycerol, and 1179 
protease phosphatase inhibitors (Thermo Fisher Scientific). Lysates were clarified by 1180 
centrifugation at 4 °C. 1181 

Myc-tagged proteins were enriched by incubation of clarified lysates with Myc-Trap agarose 1182 
beads (ChromoTek) for 1 hr at 4 °C with rotation. Beads were washed in buffer containing 1183 
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0.05% DDM, and bound proteins were recovered for analysis. Input, unbound, and bound 1184 
fractions were quantified by BCA assay (Thermo Fisher Scientific), denatured in LDS sample 1185 
buffer with reducing agent, and resolved by SDS–PAGE on 4–12% Bis-Tris gels (Thermo 1186 
Fisher Scientific). Proteins were transferred to PVDF membranes, stained with Revert 700 1187 
Total Protein Stain (LI-COR), and imaged prior to immunoblotting. 1188 

Membranes were blocked and probed with antibodies against myc tag (Cell Signaling 1189 
Technology #2278, 1:1000) or GFP (Invitrogen #A-11122, 1:2000). Fluorescent secondary 1190 
antibodies were used at 1:10,000 and blots were imaged using the Odyssey DLx Imaging 1191 
System (LI-COR). 1192 

Querying a CRISPRi screen for regulators of ILC3 inflammatory 1193 
response for multiCOGS-prioritised genes 1194 

The analysis is based on data from Table S5 in Brown et al125, containing a gene-level analysis 1195 
of a CRISPRi screen in MNK-3i cells. In the experiments performed by Brown et al., MNK-3i 1196 
cells were induced with doxycycline to express CRISPRi (dCas9-KRAB) machinery and were 1197 
transduced with a lentiviral gRNA library targeting 20,003 genes. The cells were then 1198 
stimulated by IL-23 and IL-1β and sorted into subpopulations expressing high and negative 1199 
levels of the inflammatory cytokine IL-22 released by activated ILC3s. The quantity of each 1200 
sgRNA in IL22Neg and IL22High cells was detected through PCR amplification and next-1201 
generation sequencing. To focus on sgRNA targeting expressed genes, the genes were 1202 
filtered to those with an average transcript per million (TPM) of ≥2.5 in RNAseq data from 1203 
MNK-3i+scramble (sgSCR) cells treated with dox (48 hr) and stimulated with 10 ng/ml IL-1β/23 1204 
(21 hr). The “test” command from MAGeCK (version 0.5.9.5) 171 was applied to generate 1205 
normalised (method = total) gene-level rankings using Robust Rank Aggregation (RRA). The 1206 
sgRNA enriched in the IL22Neg population pointed towards genes positively regulating IL-22 1207 
production, implicating them in ILC3 inflammatory response. In contrast, sgRNA showing 1208 
enrichment in the IL-22High population points to ILC3 ‘anti-inflammatory’ genes.  1209 
 1210 
In the present study, we first filtered the genes in Table S5 from in Brown et al125 to those that 1211 
had been profiled in the multiCOGS experiment, based on an identical gene name between 1212 
the mouse and human data, leading to a total set of 6438 genes. The genes were ranked 1213 
based on their MAGeCK score for positive or negative regulation of IL-22 production. We then 1214 
ran GSEA against each of these rankings, for the 142 multiCOGS genes for inflammatory 1215 
traits, using the “pathway” function in MAGeCK. We considered significant CRISPRi genes to 1216 
be those with an adjusted p-value < 0.05 in the gene-level RRA analysis. 1217 

Data availability 1218 

Raw PCHi-C data generated in this study for ILC3s are deposited in the Gene Expression 1219 
Omnibus (GEO) under the accession number GSE216267. Processed R data files containing 1220 
CHiCAGO scores at the fragment-level and 5kb-binned resolution can be found in the same 1221 
repository. PCHi-C data for CD4+ T cells were deposited to the European Genome-Phenome 1222 
Archive (EGA) under managed access in accordance with the conditions of donor consent, 1223 
under the accession number EGAS50000001316. Raw RNA-seq reads and counts for the 1224 
CLN3 CRISPRi/a experiments in MNK-3 cells are deposited in GEO under the accession 1225 
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number GSE313942. Supplementary Data files, including significant CHiCAGO interactions 1226 
at fragment-level and 5kb resolution in ILC3 and CD4+ T cells, ABCC pairs in both cell types 1227 
and DESeq2 objects for the CLN3 CRISPRi/a experiments, were deposited to Open Science 1228 
Framework (https://osf.io/aq9fb). 1229 

Code availability 1230 

Most scripts for analyses used in the paper are available at 1231 
https://github.com/vmalysheva/ILC3 and https://github.com/malyshevalab/hILCs_CHi-C, with 1232 
the following exceptions: CHiC-ABC (https://github.com/pavarte/PCHIC-ABC-Prediction), 1233 
RELI (https://github.com/tacazares/spivakov_pchic_ILC_CD4), SuSiE 1234 
(https://github.com/chr1swallace/cd-finemapping-scripts), COGS and multiCOGS 1235 
(https://github.com/FunctionalGeneControl/multiCOGS).   1236 
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Figures 1688 
 1689 

  1690 
 1691 
Figure 1. Compendium of promoter interactions in ILC3s. A. Outline of the study.  1692 
B. Chromosomal interaction binning strategy. The analysis is done in two modes: fragment resolution 1693 
(no binning) and 5kb binning. In the 5kb binning mode, the baited (captured) fragment containing a gene 1694 
promoter, is left unbinned to enable high-resolution linkage between the promoter and distal enhancers. 1695 
Interactions uniquely detected in one mode only are shown as red arcs, and those detected in both 1696 
modes are shown as grey arcs. The numbers of significant interactions are given for each mode 1697 
individually and merged across both modes (see Methods for details). C. Comparison of promoter-PIR 1698 
distance distributions for PIRs detected at fragment and 5kb resolution. D. Example of chromosomal 1699 
interactions for the SMYD2 gene at fragment and 5kb resolution. The inset shows a zoomed-in view of 1700 
the promoter interactions detected at fragment resolution. E. Example of multiple degrees of contact 1701 
sharing between alternative promoters for the INPP4B gene. Captured alternative promoters are 1702 
indicated by red arrows and blue dashed lines. The transcripts driven by these promoters (based on 1703 
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Ensembl 94) are shown in blue, and other INPP4B transcripts are shown in grey. Transcripts for 1704 
processed pseudogenes are shown in light blue and lincRNAs in green. PIRs are categorised as fully 1705 
shared between alternative promoters (dark grey arcs), partially shared (light grey arcs) or distinct (red 1706 
arcs). F. Enrichment of PIRs for the markers of active enhancers and promoters (H3K27ac and 1707 
H3K4me3) and accessible chromatin (ATAC) in hILC3s. The error bars represent 95% confidence 1708 
intervals, accounting for error propagation. G. Characterisation of active and/or open ILC3 PIRs at 1709 
merged fragments as per Ensembl annotations and CTCF motifs. 1710 
 1711 

 1712 
Figure 2. Combining ABCC and CHiCAGO to link distal elements with target genes.  1713 
A. Schematic depicting the adaptation of the Activity-By-Contact (ABC) model for use with PCHi-C data, 1714 
termed Activity-By-Captured-Contact (ABCC). B. Correlation between gene expression and ABC 1715 
numerator score summed across all predicted enhancers per gene. The dashed line shows a mixed 1716 
model fit via restricted maximum likelihood, with the shaded area around the line representing the 1717 
confidence interval. C. Interaction distance comparison across CHiCAGO-specific, ABCC-specific and 1718 
shared interactions. D. Enrichment for markers of active/open regulatory elements in CHiCAGO-1719 
specific, ABCC-specific, and shared regulatory elements. E, F. Representative examples of CHiCAGO- 1720 
and ABCC-detected contacts (for SLU7 and ZMAT2 promoters). The dashed line shows expected 1721 
counts estimated using the CHiCAGO distance function. PIRs detected with CHiCAGO at 5 kb 1722 
resolution are shown as red dots and shading, with ABCC as blue dots and shading and by both 1723 
approaches as green points and shading. Black filled dots represent imputed counts considered by 1724 
ABCC, corresponding to the maximum value between observed and expected counts. Unfilled dots 1725 
represent observed counts falling below expected values. 1726 
 1727 
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 1728 
 1729 
Figure 3. Differential enhancer-promoter interactions between ILC3s and CD4+ T cells.  1730 
A. Volcano plot of differential interactions between ILC3s and CD4+ T cells detected by Chicdiff, 1731 
highlighting those of selected immune-related genes (CLN3, IL1R1, GADD45A, NFKB, IL23R, PLCL1, 1732 
IKZF1). B. Relationship between differential expression (DESeq2, adjusted p < 0.05) and differential 1733 
wiring of promoter contacts (Chicdiff, adjusted p < 0.05). C. Gene Ontology enrichment analysis of 1734 
genes with stronger contacts in ILC3s (top), CD4+ T cells (bottom) or a mixture of contacts that are 1735 
stronger in either cell type (middle), showing biological processes related to immune cell activation, 1736 
adhesion, and differentiation. Bubble size reflects the number of genes; colour indicates adjusted p-1737 
values. The bar plot shows the overlap between differentially wired genes (as evaluated by Chicdiff) in 1738 
ILC3s and CD4+ T cells.  1739 
 1740 
  1741 
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 1742 
Figure 4. Statistical integration of PCHi-C results in ILC3s and CD4+ T cells with GWAS enables 1743 
gene prioritisation for Crohn’s disease (CD).  A. Schematic of the RELI algorithm used for estimating 1744 
the enrichment of genetic risk loci within PIRs. B. RELI enrichment of risk variants in ILC3 vs CD4+ T 1745 
cell PIRS across 495 diseases and traits. Traits with log10(BH corrected p-value in ILC3s) < 0.05 are 1746 
labelled. C. Stratified LD score regression analysis for enrichment of CD risk heritability at PIRs of ILC3s 1747 
and CD4+ T cells. D. Schematic of the multiCOGS algorithm. E. Manhattan plot of multiCOGS gene 1748 
prioritisation scores for CD risk based on GWAS integration with promoter interactions in ILC3s. Genes 1749 
with multiCOGS scores above 0.5 are labelled. F. Comparison of multiCOGS scores for CD obtained 1750 
with promoter interactions detected in ILC3s and CD4+ T cells. Prioritised genes are labelled in green 1751 
(multiCOGS scores > 0.5 in ILC3s only), blue (multiCOGS scores > 0.5 in CD4+ T cells only) and black 1752 
(multiCOGS scores > 0.5 in both cell types). All other genes are shown as grey dots. 1753 
 1754 
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 1755 
 1756 
Figure 5. Characterisation of genes associated with CD risk prioritised by multiCOGS in ILC3s 1757 
and their putative TF regulators. A. Significant sets of multiCOGS-prioritised genes predicted to bind 1758 
specific TFs in their promoter regions, according to the MSigDB TF targets database, detected using 1759 
the GENE2FUNC pipeline in FUMA121. TF sets are labelled (rows), with the proportion of all multiCOGS 1760 
genes per set and the associated p-values shown on the top panel, and the gene names on the bottom 1761 
panel.  B. Enrichment analysis for TF binding sites at active PIRs for genes prioritised by multiCOGS 1762 
vs active PIRs of all genes submitted to multiCOGS analysis. C. Expression of TFs enriched at the PIRs 1763 
of prioritised genes. Outliers are removed for clarity. D and E. Examples of genes prioritised by 1764 
multiCOGS for CD (IKZF1, and IL1R1), showing patterns of TF binding in lymphoblastoid cell lines, and 1765 
posterior probability profiles of classic COGS and multiCOGS. Vertical dark blue and light blue bands, 1766 
respectively, highlight annotated gene promoters and promoter-proximal regions (+/- 5 restriction 1767 
fragments) considered in (multi)COGS analysis in addition to PIRs. Vertical red bands highlight PIRs 1768 
harbouring CD risk-associated SNPs with high posterior probability of inclusion. Orange arcs 1769 
correspond to significant interactions (CHiCAGO score > 5) at 5kb resolution for IKZF1 (E) and IL1R1 1770 
(F), respectively.  1771 
 1772 
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 1773 
Figure 6. Evidence for the role of CLN3 in ILC3 inflammatory function. A.  Interaction profile of the 1774 
human CLN3 promoter alongside the tracks of TF binding, blood eQTLs, CD GWAS and SuSiE 1775 
posterior probabilities of inclusion. Dark blue and light blue bands, respectively, highlight the locations 1776 
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of annotated CLN3 promoters and promoter-proximal regions (+/- 5 restriction fragments) considered 1777 
by multiCOGS in addition to PIRs. Red band highlights the ILC3-specific PIR containing CD-associated 1778 
SNPs with high posterior probability of inclusion. Orange and purple arcs, respectively, depict significant 1779 
interactions (CHiCAGO score > 5) in ILC3s at 5kb and single-fragment resolution.  B. Up- and down-1780 
regulation of Cln3 and Apobr upon TL1A stimulation in mouse primary ILC3s (RNA-seq data from 1781 
Ref.108) and upon IL-23/IL-1β stimulation in CLN3-targeted CRISPRi and CRISPRa MNK-3 cells (RNA-1782 
seq data from this study). C. Differential expression of genes in IL-23/IL-1β-stimulated Cln3-CRISPRa 1783 
MNK-3 cells relative to scrambled gRNA controls. Red dots - differentially expressed genes (stimulated 1784 
Cln3-CRISPRa DEGs, DESeq2 adjusted p-value < 0.05), with other genes shown as green dots. D. 1785 
Network-style representation of GO term enrichment analysis of stimulated Cln3-CRISPRa DEGs. E. 1786 
Changes in the expression of stimulated Cln3-CRISPRa DEGs (dots) upon either IL-23/IL-1β or TL1A 1787 
stimulation of unperturbed MNK-3 cells (data from Ref.108). F. Evidence that Cln3 overexpression 1788 
decreases inflammatory cytokine secretion. MNK-3 cells were electroporated with GFP mRNA (black) 1789 
or Cln3-myc mRNA (red), then cultured either unstimulated (top row) or stimulated with IL-1β and IL-23 1790 
(bottom row) for 24 hr. Cytokine concentrations (IL-17, IL-22, GM-CSF) in culture supernatants were 1791 
quantified by ELISA. Each point represents an individual biological replicate (n=10 per condition). The 1792 
data shown are from one representative experiment of three independent experiments performed. 1793 
Dotted line indicates the lower limit of quantification for each assay. Statistical significance was 1794 
assessed using an unpaired Welch’s t-test. p<0.01 (**), p<0.001 (***), p<0.0001 (****). 1795 
 1796 
 1797 
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 1798 
Figure 7. A compendium of prioritised genes in ILC3s for six autoimmune diseases.  1799 
A. MultiCOGS results across asthma, primary sclerosing cholangitis (PSC), Celiac Disease, Crohn’s 1800 
Disease (CD), Inflammatory Bowel Disease (IBD) and Ulcerative Colitis (UC) in ILC3 cells. Rows 1801 
represent each gene that scored at least 0.5 in one of the traits. Colours show the multiCOGS score in 1802 
each trait. Clustering on genes (rows) and traits per cell type (columns) is based on Euclidean distance. 1803 
B. Significant hallmark pathways identified in at least one of the traits in ILC3 cells by GO term analysis. 1804 
C. Schematic of the MNK-3 CRISPRi screen for detecting genes involved in the regulation of IL-22 1805 
signalling125. D. multiCOGS genes for all six traits visualised among the CRISPRi results, which are 1806 
ranked by evidence of positive IL-22 regulation in the MNK-3i cells. The multiCOGS genes with p < 0.05 1807 
in the screen are labelled in red. MultiCOGS genes driving GSEA signal (“leading edge”) are labelled 1808 
in grey. E. Similar to D, but for genes ranked by score for negative IL-22 regulation in the MNK-3i screen. 1809 
Red labels indicate multiCOGS genes significant in the screen at p < 0.05. Since GSEA for multiCOGS 1810 
genes among IL-22 repressors was not significant, the leading edge genes are not labelled. CD: Crohn’s 1811 
Disease, IBD: Inflammatory Bowel Disease, GSEA: Gene Set Enrichment Analysis, PSC: primary 1812 
sclerosing cholangitis, UC: Ulcerative Colitis. 1813 
  1814 
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Supplementary Figures 1815 
 1816 

 1817 
 1818 
Figure S1. Compendium of promoter-enhancer interactions in ILC3s.  A. UMAP of CHiCAGO 1819 
scores detected for PCHi-C in ILC3s versus public data in 17 primary human blood cell types30. B. 1820 
Scheme representing the classification of PIRs detected at alternative transcription start sites (ATSS) 1821 
of the same gene: ‘fully shared’ (shared across all captured ATSSs), partially shared and distinct 1822 
(unique to a single ATSS). C. Pie chart showing the degree of enhancer sharing across alternative 1823 
transcription start sites (ATSS) for short-range contacts. D. Distance distribution of ATSS-specific and 1824 
shared PIRs at 5kb binned (baits unbinned) resolution. Top panel - interactions up to 1Mb (Kruskal-1825 
Wallis test p < 2.22e-16; pairwise Wilcoxon test p = 8.68e-6 [partially shared vs fully shared], p = 4.46e-1826 
8 [partially shared vs distinct] and p < 2.22e-16 [fully shared vs distinct]; bottom panel - interactions up 1827 
to 50kb (Kruskal-Wallis test p = 7.65e-5; pairwise Wilcoxon test p = 9.8e-5 [partially shared vs fully 1828 
shared], p = 6e-4 [partially shared vs distinct] and p = 1 [fully shared vs distinct]). E. Correlation between 1829 
gene expression and number of regulatory elements identified in CHiCAGO PIRs at fragment and 5kb 1830 
(solitary baits) resolution. 1831 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2026. ; https://doi.org/10.1101/2022.10.19.512842doi: bioRxiv preprint 

https://paperpile.com/c/0EulcZ/RjoLc
https://doi.org/10.1101/2022.10.19.512842
http://creativecommons.org/licenses/by/4.0/


 

 
 

48 

 1832 
 1833 
Figure S2. Benchmarking the ABCC approach with public data. A. Density distribution of promoter 1834 
interactions inferred from observed PCHi-C contact frequencies (pink) and those imputed using the 1835 
CHiCAGO distance function (cyan) across genomic interaction distances. B. Contact frequency 1836 
distributions stratified by distance. Observed PCHi-C contacts are shown in green, imputed contacts 1837 
(using expected frequencies estimated using the CHiCAGO distance function) are shown in blue. 1838 
Similarly to standard ABC, frequency capping is introduced for short-range imputed contacts (<5kb). C. 1839 
Precision–recall curves benchmarking the predictive performance of different scoring approaches for 1840 
enhancer–promoter interactions in erythroblasts. Curves compare the scoring across: CHiCAGO-1841 
detected contacts, Activity alone, Distance alone, the conventional ABC score, and PCHi-C-based 1842 
ABCC score in two modes: “matched” -  using PCHi-C cell-type specific profile for erythroid cells and 1843 
“swapped”, in which a PCHi-C dataset with a similar read coverage from a different cell type, CD4+ T 1844 
cells, is used instead. MCC: Matthews correlation coefficient, an alternative to the AUC metric that is 1845 
more informative under class imbalance and more sensitive to performance at a fixed decision 1846 
threshold175. D. Enrichment of epigenetic markers at PIRs: DNase - chromatin accessibility and 1847 
H3K27ac - active enhancers (left panel) and distance distribution of ABCC-specific, PCHiC-specific and 1848 
shared enhancer-promoter links (right panel) in K562 cells for 0.023 ABCC threshold. E. Hierarchical 1849 
clustering heatmap of enhancer–promoter interactions predicted with ABCC across cell types 1850 
(erythroblasts, B cells, CD4+ T helper cells, CD8+ T cells). 1851 
 1852 
  1853 
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 1854 
 1855 
Figure S3. Genes with differential contacts in ILC3s and CD4+ T cells. A. Hierarchical clustering of 1856 
ILC3s and CD4+ T cells PCHi-C datasets. B-D. Examples of captured promoters with differential wiring 1857 
between ILC3s and CD4+ T cells: promoters with stronger (B) and weaker (C) contacts in ILC3s 1858 
compared with CD4+ T cells, as well as with both types of contacts (D). 1859 
 1860 
 1861 
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 1862 
 1863 
Figure S4. Supplementary information for the RELI analysis of risk loci enriched in ILC3 and 1864 
CD4+ T-cell PIRs. A-B. RELI enrichment of risk variants in ILC3s (A) and CD4s PIRs (B) across 495 1865 
diseases and traits. Traits with log10(BH corrected p-value in ILC3s) < 0.001, number of loci per trait > 1866 
10, and enrichment > 2.2 are labelled. C. Adjusted p-value of RELI enrichment of risk variants ILC3s vs 1867 
CD4s PIRs across 495 diseases and traits. Traits with log10(BH corrected p-value in ILC3s) < 0.05 are 1868 
labelled.  1869 
 1870 
 1871 
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 1872 
 1873 
Figure S5. MultiCOGS prioritises gene sets in Crohn’s Disease. A. Manhattan plot showing 1874 
multiCOGS for CD risk based on promoter contacts in CD4+ T cells. B. Heatmaps of region 1875 
contributions to multiCOGS scores in ILC3s and CD4s in CD. C. Illustration of genes that were only 1876 
prioritised for CD with the addition of ABCC, in ILC3s and CD4s. In each graph, the multiCOGS score 1877 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2026. ; https://doi.org/10.1101/2022.10.19.512842doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512842
http://creativecommons.org/licenses/by/4.0/


 

 
 

52 

with and without ABCC is plotted for all genes that were prioritised in the full multiCOGS run (score > 1878 
0.5 with ABCC). D. Illustration of multiCOGS prioritisation of IKZF1 and DDC in ILC3s in the 7p locus. 1879 
In this locus, multivariate fine mapping identifies two credible sets of variants (yellow bars), whereas 1880 
univariate fine mapping only detects one. PCHi-C interactions connect these likely causal variants to 1881 
the IKZF1 promoter (first blue bar). However, ABCC interactions also connect one of the credible sets 1882 
to the DDC promoter (second blue bar). Thus, multiCOGS prioritises both genes, whereas classic 1883 
COGS prioritises only IKZF1. 1884 
 1885 

 1886 
 1887 
Figure S6. Comparison of gene prioritisation for Crohn’s Disease in classic COGS versus 1888 
multiCOGS. A. Comparison of prioritised gene sets between classic COGS, classic COGS plus 1889 
imputation, and multiCOGS (i.e. imputation plus multivariate fine mapping, processed via the 1890 
multiCOGS algorithm) for CD. Shown for ILC3s and CD4+ T cells. B. Comparison of COGS scores and 1891 
multiCOGS scores for genes in ILC3 cells (top) and CD4+ T cells (bottom) for CD. Green labels indicate 1892 
genes prioritised in multiCOGS only, blue in classic COGS only, and black in both. C. Plot of the JAK2 1893 
locus, showing the shift of the most likely causal variant from the promoter of JAK2 to a region around 1894 
20kb upstream of the promoter upon multivariate fine mapping, leading to a lower multiCOGS vs classic 1895 
COGS score. No chromosomal interactions were observed between this region and the JAK2 promoter 1896 
in ILC3 or CD4+ T cells. 1897 
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 1898 
 1899 
Figure S7. Biological annotation of multiCOGS CD genes in ILC3s. A-D. Enriched gene sets among 1900 
multiCOGS genes detected using the GENE2FUNC pipeline in FUMA121, for the following 1901 
databases: (A) MSigDB hallmark sets, (B) GO molecular functions, (C) MSigDB cell type signatures, 1902 
(D) MSigDB WikiPathways. E. Enrichment analysis for differentially expressed gene sets among 1903 
multiCOGS genes in the TAMMA IBD database. 1904 
 1905 
 1906 
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 1907 
 1908 
Figure S8. Additional information on the role of Cln3 in ILC3 inflammatory function.   1909 
A. Comparison of differentially expressed genes in IL23/IL-1βl-stimulated vs unstimulated Cln3-1910 
CRISPRa cells (relative to scrambled gRNA controls). B. GO term enrichment analysis for genes 1911 
differentially expressed upon CLN3-CRISPRa stimulation. C. Differential expression of genes in IL23/IL-1912 
1βl-stimulated Cln3-CRISPRi MNK-3 cells vs scrambled gRNA controls. Red - differentially expressed 1913 
genes (DESeq2 adjusted p-value < 0.05), green - all other genes. D. Differential expression of genes 1914 
in unstimulated Cln3-CRISPRi MNK-3 cells vs scrambled gRNA controls. Red - differentially expressed 1915 
genes (DESeq2 adjusted p-value < 0.05), green - all other genes. E. Cln3 expression in MNK-3 cells 1916 
electroporated with Cln3-myc mRNA or GFP mRNA. Transcript abundance was quantified by qPCR, 1917 
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normalised to Hprt, and expressed relative to the GFP mRNA control. Each point represents an 1918 
independent experiment. Statistical significance was assessed using a paired Welch’s t-test, p<0.05 1919 
(*). F. Verification of CLN3-myc protein expression and Myc tag-dependent pulldown. MNK-3 cells were 1920 
lysed, subjected to immunoprecipitation using Myc-Trap agarose, and resolved by reducing SDS-1921 
PAGE. “I” = input lysate; “U” = unbound fraction; “B” = bead-bound fraction. Immunoblotting with anti-1922 
myc tag antibody detected a ~65–80 kDa Cln3-myc species selectively enriched in the bound fraction. 1923 
G. Cytokine secretion upon Cln3 overexpression across independent experiments. MNK-3 cells were 1924 
electroporated with GFP mRNA (black) or Cln3-myc mRNA (red) and cultured for 24 hr under 1925 
unstimulated (top row) or IL-1β + IL-23–stimulated (bottom row) conditions. Cytokine concentrations 1926 
(IL-17, IL-22, GM-CSF) in culture supernatants were quantified by ELISA. Each symbol represents a 1927 
biological replicate from two independent experiments (triangles vs circles). The dotted horizontal line 1928 
indicates the lower limit of quantification for each assay. Statistical significance was assessed using a 1929 
linear mixed-effects model with experiment as a random effect and transfection as a fixed effect (n=13–1930 
14 per condition). Solid grey lines indicate group means, with dotted grey bands indicating 95% 1931 
confidence intervals of the fixed-effect. H. Cell numbers upon Cln3 overexpression with and without 1932 
inflammatory stimulation. MNK-3 cells were electroporated with GFP mRNA (black) or Cln3-myc mRNA 1933 
(red) and cultured for 24 hr in unstimulated (left) or IL-1β + IL-23–stimulated (right) media. Each symbol 1934 
represents a biological replicate from two independent experiments (triangles vs circles). Lines connect 1935 
the experiment-specific means. Viable cell numbers were quantified by trypan blue exclusion. The 1936 
dotted line indicates the number of cells seeded at 0 hr. Statistical significance was assessed using a 1937 
linear mixed-effects model with experiment as a random effect and transfection as a fixed effect (n=13–1938 
14 per condition). Not significant (ns), p<0.001 (***). 1939 
 1940 

 1941 
 1942 
Figure S9. Flow cytometry gating strategy for isolation of human ILC3s from tonsils. 1943 
 1944 
  1945 
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Supplementary Note 1.  1969 
 1970 
MultiCOGS resulted in loss of five candidate genes in one or both cell types, compared with 1971 
classic COGS (JAK2, CREM, FRS2, IL18R1 and RP11-894J14.5; see Fig. S6B). Of these, 1972 
we were intrigued by the loss of JAK2 in both cell types, because it is a well-noted candidate 1973 
gene in IBD, with JAK inhibitors already used to treat ulcerative colitis and CD172. The COGS 1974 
score for JAK2 was substantially lower across both cell types when genetic imputation and 1975 
multivariate fine mapping were employed (classic COGS score ~1 in both cell types, 1976 
multiCOGS score ~0.01 in ILC3s and ~0.03 in CD4s). Upon examining the locus, we 1977 
discovered that fine mapping with the univariate methodology (Wakefield synthesis173) 1978 
identified the most likely causal variant as rs1887428 (PPI = 0.999) at the JAK2 promoter, but 1979 
summary statistic imputation combined with multivariate fine mapping (SuSIE69) prioritised the 1980 
variant rs1327500 (PPI = 0.663), in a region ~20 kb upstream of JAK2, without detectable 1981 
promoter contacts in ILC3 cells or CD4+ T cells (Fig. S6C). However, considering that both 1982 
rs1887428 and rs1327500 are eQTLs for JAK2 in blood cells, according to eQTLGen174, JAK2 1983 
remains a strong candidate in this locus by genetic association. 1984 
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