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High-resolution promoter interaction analysis implicates genes involved in the

activation of Type 3 Innate Lymphoid Cells in autoimmune disease risk
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Abstract

Innate lymphoid cells (ILCs) are rare, tissue-resident innate lymphocytes that functionally
mirror CD4+ T helper cell lineages but lack antigen receptors. Type 3 ILCs (ILC3s) are
enriched in the gut, airways, and mucosal lymphoid tissues, where they regulate inflammation
and promote barrier integrity. To define the regulatory architecture of primary human ILC3s,
we map promoter-anchored chromosomal contacts using high-resolution, low-input Promoter
Capture Hi-C (PCHi-C) in these cells alongside CD4+ T cells. By combining statistical
detection with a PCHi-C-adapted Activity-by-Contact approach, we link promoters to distal
regulatory elements, identifying hundreds of ILC3-specific contacts. We use these maps to
connect genome-wide association study (GWAS) risk variants for Crohn’s disease to target
genes using multiCOGS, a Bayesian framework that integrates PCHi-C with summary-statistic
imputation and multivariate fine-mapping. This analysis highlights both known and
unanticipated candidates, including CLN3, a causal gene for the neurodevelopmental Batten
disease. Using a mouse ILC3-like cell line, we show that CIn3 is downregulated upon cytokine
stimulation, and CIn3 overexpression alters stimulation-induced transcriptional programmes
and cytokine secretion. Extending this approach, we generate a catalogue of ILC3-linked risk
genes for five additional autoimmune conditions and show that they are enriched for regulators
of the ILC3 inflammatory response identified in a CRISPR interference screen. Together,
these findings illuminate long-range gene control in ILC3s and prioritise known and newly
implicated autoimmune risk genes with potential roles in this clinically important cell type.
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84 Introduction

85 Innate lymphoid cells (ILCs) play crucial roles in inflammation and immunity, as well as in
86 tissue development and homeostasis'2. ILCs develop from common lymphoid progenitors and
87 share many features with CD4+ T lymphocytes, but do not express rearranged T cell
88  receptors®. Therefore, rather than acting as part of the adaptive immune system, ILCs respond
89 to cytokines and pathogens from the environment by producing regulatory cytokines and
90 exerting immunomodulatory activity**.
91
92 Three main types of ILCs have been identified based on their cytokine profiles and the
93 transcription factors regulating their development and function?®. The first group includes
94  tissue-resident ILC1s that play a role in immune defence against viruses and certain
95 bacteria®’. The second group consists of ILC2s, which regulate airway and skin inflammatory
96 responses and are implicated in disorders such as asthma and atopic dermatitis®. Finally, the
97  third group includes lymphoid tissue-inducer cells, which are involved in lymph node
98 development, and ILC3s, which participate in host defence and the maintenance of epithelial
99  barrier homeostasis®™*. The ILC3 population is distributed across multiple tissues, including
100  the gut, where they are essential for mucosal homeostasis and barrier integrity®. ILC3-derived
101 cytokines such as IL-17 and IL-22 promote epithelial cell renewal and release of antimicrobial
102  peptides®. However, overexpression of these cytokines in the gut has been associated with
103 the development or exacerbation of Crohn’s disease (CD)"*"2,
104
105 Immune disorders, including CD, are known to have a significant genetic component, with
106 genome-wide association studies (GWAS) identifying hundreds of disease susceptibility
107  variants associated with these conditions'. Given the importance of ILCs in immune control,
108 itis highly plausible that some of these variants affect ILC function. However, as most GWAS
109 variants are non-coding and these studies are, by design, cell-type agnostic, identifying causal
110  genes and cell types implicated by GWAS variants is often challenging.
111
112  GWAS variants are strongly enriched at transcriptional enhancers'"°, and therefore, cell
113  type-specific maps of active enhancers and enhancer-promoter connections provide important
114  clues for the functional interpretation of GWAS findings'”'®. Recent studies have mapped ILC
115  enhancers by the assay for transposase-accessible chromatin (ATAC-seq) and chromatin
116  immunoprecipitation (ChlP-seq) for the H3K27ac histone mark, identifying putative key
117  regulators of ILC identity and their downstream targets based on proximal gene assignment'®-
118 2. However, enhancers often localise large distances (up to megabases) away from their
119  target gene promoters, physically contacting them in the 3D space of the nucleus in a cell-
120 type-specific manner. Therefore, robust and sensitive identification of enhancer-promoter
121  contacts, which is instrumental for inferring the effector genes of non-coding GWAS variants,
122 requires robust and sensitive profiling of chromosomal architecture.
123
124  Chromosome conformation capture assays such as Hi-C, which are based on the proximity
125  ligation of cross-linked, digested chromatin, provide powerful tools for connecting enhancers
126  and GWAS variants with target genes®*?. The conventional Hi-C technique theoretically
127  allows the detection of all pairwise chromosomal contacts across the genome. However, the
128  complexity of the resulting sequencing libraries requires extremely high sequencing coverage
129 to achieve the sensitivity and resolution needed for the detection of specific enhancer-
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130  promoter contacts. This challenge can be addressed by techniques such as Capture Hi-C that
131  selectively enrich Hi-C material for contacts involving, at one end, regions of interest such as
132  gene promoters?®*?. Over the last decade, we and others have demonstrated the power of
133  Promoter Capture Hi-C (PCHi-C) in determining transcriptional regulatory circuitries and in
134  linking enhancers and disease-associated genetic variants with putative target genes®*=¢. In
135  foundational studies*>*', we applied this approach to 17 abundant human primary blood cell
136  types and developed COGS (Capture Hi-C Omnibus Gene Score), a Bayesian approach for
137  prioritisation of GWAS target genes using statistical fine-mapping and PCHi-C data. Results
138  from this work were incorporated into major variant-to-gene resources, including OpenTargets
139  Genetics®” and Priority Index®. However, the PCHi-C protocol used in these studies required
140 dozens of millions of input cells, precluding the analysis of rare cell types.

141

142  Here, we address this limitation by using a high-resolution and efficient PCHi-C protocol to
143  profile the cis-regulatory wiring of ILC3s isolated from human tonsils*®. We detect promoter-
144  enhancer contacts in PCHi-C data using a combination of our established statistical
145  interaction-calling methodology (CHICAGO)***° and a newly developed adaptation of the
146  Activity-by-Contact™*' (ABC) approach to PCHi-C data that we term Activity-by-Captured-
147  Contact (ABCC). We develop a modified PCHi-C-aware GWAS gene prioritisation algorithm,
148 multiCOGS, that incorporates summary statistics imputation and multivariate statistical fine-
149  mapping, and use it to prioritise known and novel genes for CD through chromatin contacts.
150  Several of the genes are uniquely prioritised using PCHi-C data from ILC3s but not CD4+ T
151  cells, including the CLN3 gene, mutations in which underpin ~80% of cases of the
152  neurodegenerative disorder Batten disease***3. We show that this gene is downregulated
153  upon cytokine stimulation of mouse ILC3s, and Cin3 overexpression in an ILC3-like mouse
154  cell line influences stimulation-responsive transcriptional programmes and cytokine
155  production. Finally, expanding multiCOGS to five additional autoimmune conditions, we
156  generate a catalogue of effector genes implicating ILC3s and show that they are enriched
157  among putative regulators of ILC3 inflammatory function. Together, our results shed light on
158  ILC3 cis-regulatory circuitries and prioritise autoimmune risk effector genes with potential roles
159 in this clinically important cell type.

160 Results

161 A compendium of promoter-anchored chromosomal contacts in human
162 ILC3s

163  To profile promoter-anchored chromosomal contacts in type 3 innate lymphoid cells (ILC3s),
164  we employed our low-input Dpnll-based PCHi-C protocol**“® on ILC3s extracted from human
165 tonsils (Fig. 1A). Significant promoter contacts were detected with CHICAGO*® at a single-
166  fragment resolution, as well as after pooling the ‘other end’ fragments into ~5 kb bins, while
167  leaving the baited promoter-containing fragment unbinned (Methods)*°. Using this approach,
168  we detected 31,003 contacts between promoters and promoter-interacting regions (PIRs) at
169  a single-fragment resolution and 58,632 contacts in 5 kb bins (Fig. 1B; Table S1; Data S1-S2
170  at https://osf.io/aq9fb). Binning resulted in the detection of longer-range contacts, as we
171 reported previously in other cell types*® (Fig. 1C, D). A joint dimensionality reduction analysis*®
172  of ILC3 promoter interaction profiles with those detected in 17 abundant blood cell types using
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173  Hindlll-based PCHI-C segregated ILC3s with other lymphoid cell types, consistent with the
174  notion that patterns of promoter interactions reflect the cells’ lineage history*® (Fig. S1A; see
175  Methods).

176

177  The increased resolution afforded by using Dpnll in Hi-C library generation enabled capturing
178  alternative transcription start sites (ATSSs) for 6,789 genes located on separate Dpnll
179  fragments. Remarkably, genes with captured ATSSs displayed distinct interaction landscapes
180 across isoforms (Fig. S1B, C, D). The three ATSSs of the INPP4B gene provide examples of
181  the multiple degrees of contact sharing across its 14 PIRs included in the analysis (Fig. 1E).
182

183  Next, we explored the epigenetic status of detected PIRs and compared the chromatin profile
184  of ILC3s with those of 88 other blood cell types detected by the Ensembl regulatory build*’.
185  As expected, at both fragment and 5-kb resolution ILC3 PIRs were enriched for markers of
186  accessible and/or active enhancers (ATAC, H3K27ac) and active transcription (H3K4me3),
187  based on public data in this cell type isolated from tonsils of pediatric donors?' (“active PIRs”,
188 Fig. 1F). Nearly half of all accessible and/or active ILC3 PIRs (47.8%, 8,718/18,231)
189  overlapped with annotated CTCF motifs or CTCF binding events in at least one of the
190 Ensembl-profiled cell types (Fig. 1G), consistent with the key role of CTCF in 3D chromosomal
191  organisation. However, only 3% of active/open regions in ILC3s (636/18,231) contained
192  Ensembl enhancer annotations®®, while nearly 20% of accessible and/or active PIRs
193  (3,411/18,231) did not have any functional annotations in the Ensembl data (Fig. 1G).

194

195  We then considered the overlap of the active and/or accessible PIRs in ILC3s with those in 17
196  abundant blood cell types profiled with PCHi-C at Hindlll resolution®. In contrast to chromatin
197  annotations, the majority of active/accessible PIRs in ILC3s also had promoter contacts in
198 these blood cell types (~80.4%, 12,409/15,435). Furthermore, ~60% of the active PIRs
199  (9,054/15,435) contacted the same gene promoters in both ILC3s and other blood cells (Data
200 S3 at https://osf.io/aq9fb). Consistent with previous observations, this result confirms that
201 patterns of promoter-enhancer contacts are more preserved across related lineages
202  compared with enhancer activity in cis*. We then probed the relationship between enhancer-
203 promoter connectivity and gene expression. For this, we integrated promoter-enhancer
204 interactions detected here with publicly available single-cell gene expression data (SCRNA-
205 seq) in human mucosal tissue ILC3s*. In agreement with epigenetic studies in other cell
206 types,* we observed a significant positive correlation between the number of active and/or
207 open PIRs and gene expression (Fig. S1E).

208

209  Overall, our analysis provides a high-resolution compendium of promoter contacts in ILC3s,
210 including novel ILC3-specific regulatory elements and divergent contacts at ATSSs.

211 Inference of enhancer-promoter interactions using Activity-by-Captured-
212 Contact (ABCC) complements significant interaction detection

213  To further increase the sensitivity of detecting functional promoter-enhancer chromosomal
214  interactions from PCHi-C data, we adapted the Activity-by-Contact (ABC) approach*' originally
215  developed for Hi-C. In contrast to CHICAGO, which detects significant interactions relative to
216  adistance-dependent background, ABC considers any observed contact frequency between
217 a chromatin region and a promoter as potentially functionally meaningful, irrespective of
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218  whether this frequency exceeds that expected by chance. In addition, while CHICAGO scores
219 are independent of enhancer activity levels at the PIRs, ABC incorporates both contact
220 frequency and enhancer activity into the final metric (“ABC score”)*'.

221

222  Inour adaptation of ABC, which we term ‘Activity-by-Captured Contact’ (ABCC), we estimated
223  contact frequencies from imputed PCHi-C data, leveraging the statistical modelling of these
224  data produced by CHICAGO for the imputation task (Fig. 2A, Fig. S2A, S2B, see Methods).
225 To validate the ability of the ABCC algorithm to detect functional enhancer-promoter pairs, we
226  took advantage of CRISPR interference (CRISPRI) enhancer perturbation data in K562 cells,
227  which was generated to validate the original ABC approach™. As inputs for ABCC, we used
228  public epigenetic annotations in K562 cells and our previously generated high-coverage PCHi-
229  C data in their physiological counterparts, erythroblasts®. These analyses demonstrated the
230 power of ABCC to predict functional enhancer-promoter links from lineage-relevant PCHi-C
231  and chromatin readouts (Fig. S2C). In contrast, using PCHi-C data from lymphoid cells at an
232  equivalent coverage reduced ABCC performance (Fig. S2C). In addition, joint clustering of
233 the ABCC profiles generated for four primary blood cell types successfully reconstructed the
234  lineage relationships between them (Fig. S2D). These results highlighted the potential of
235 ABCC to infer lineage-specific cis-regulatory architecture. In comparison with CHiCAGO,
236  ABCC generally detected shorter-range promoter interactions, which was expected due to its
237  reliance on raw contact frequencies (Fig. S2E). Both ABCC- and CHICAGO-detected contacts
238 were enriched for markers of accessible (DNase-seq) and/or active (H3K27ac) enhancers,
239  with regions called by both approaches showing the highest enrichment for these marks (Fig.
240  S2F). Taken together, these results suggest that ABCC and CHICAGO detect complementary
241  subsets of regulatory promoter contacts.

242

243  Applying the ABCC algorithm to ILC3 PCHi-C data produced 18,877 putative enhancer-
244  promoter pairs across 17,690 genes (Fig. S2F; Data S4 at htips://osf.io/ag9fb). Similarly to
245 CHICAGO-detected PIRs, there was a positive association between the number of ABCC
246  enhancers and gene expression (Fig. 2B). However, ABCC-detected interactions generally
247  spanned shorter distances than CHiIiCAGO-detected pairs (median distance ~69 kb vs ~108
248 kb, respectively, p-value < 2.2e-16, Wilcoxon rank-sum test) (Fig. 2C), and the two sets of
249  contacts showed only a limited overlap (8.4%; Data S5 at https://osf.io/ag9fb). Nonetheless,
250 as expected, both CHICAGO PIRs and ABCC enhancers were enriched for active and open
251  chromatin features, as well as CTCF binding sites and/or annotated motifs (Fig. 2D).
252  Representative examples of jointly detected regulatory landscapes are shown in Fig. 2E. We
253 combined ABCC- and CHICAGO-detected promoter contacts for downstream analyses,
254  referring to them collectively as PIRs hereafter.

255

256 Comparative analysis of promoter interactomes between ILC3 and CD4+
257 T cells identifies shared and differential regulatory circuitries

258 ILC3s share developmental similarities®*? and common “immune modules” with CD4+ T

259  cells®*™®* prompting us to use this abundant cell type for comparative analysis and
260 identification of ILC3-specific regulatory circuits. To this end, we generated and processed
261 high-resolution PCHi-C data for CD4+ T cells using the same protocol, identifying 31,252 and
262 87,348 interactions at single-fragment and 5 kb resolution, respectively (Data S6 and S7 at
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263  https://osf.io/aq9fb). In addition, we detected 30,258 enhancer-gene pairs with ABCC across
264 16,956 genes (Data S8 and S9 at https://osf.io/aq9fb), 30% of which were shared with ABCC
265  pairs identified in ILC3s. Differential analysis of chromatin interactions between ILC3s and
266  CD4+ T cells with Chicdiff*® revealed a total of 19,038 cell-type-specific interactions (1,818 at
267  fragment resolution and 17,220 at 5 kb resolution) across 3,664 genes (weighted adjusted p-
268 value <0.05) (Fig. 3A). As expected, we also detected a significant association between
269 differential interactions and differential expression (chi-squared = 23.938, df = 1, p-value =
270  9.948 x 107) (Fig. 3B; Data S10 at https://osf.io/aq9fb).

271

272  Genes with increased ILC3-specific chromatin contacts were enriched for annotation terms
273  such as “regulation of innate immune response,” including NFKB1 (NF-kB signaling), TLR3
274  (innate immune receptor), and IFNG (effector cytokine), and “regulation of immune effector
275  process”, including IL23R (controlling ILC3 activation and cytokine production), IL1R1,
276  TNFSF4, and SOCS5 (negative feedback on cytokine signalling) (Fig. 3C; Fig. S3A; Table
277  82). In contrast, genes with CD4+ T cell-specific contacts were involved in “regulation of T cell
278 activation” (e.g. CD3E, CD86, CTLA4, IL6, FOXN1) and “negative regulation of the MAPK
279 cascade” (e.g. DUSP14, DUSP16, PTPNG6) (Fig. 3C; Fig. S3B; Table S3).

280

281  We also identified 194 genes with differential contacts between ILC3s and CD4+ T cells,
282 including BCL2, FYN, CD226 (activating receptor on T and NK/ILC3-like cells), and CCR7
283  (guiding ILC3 positioning and migration) (Fig. 3C; Fig. S3C; Table S4). Notably, many genes
284  with ILC3- and/or CD4+ T cell-specific contacts converged on pathways such as TCR
285  signalling and T cell activation (e.g. IL23R, RORC, NFKB1, CD300A, PIK3R1, ZAP70, CTLA4,
286 CD3E, CD226, ITK, CD28, CCRY), indicating differences in the regulatory wiring of these
287 genesin ILC3s and their adaptive immune counterparts. In contrast, genes with similar contact
288  profiles across both cell types were associated with processes such as histone modification,
289  chromatin remodelling, and lymphocyte proliferation and differentiation (Fig. S3; Table S5),
290 reflecting their shared functionality in both cell types.

291

292  In conclusion, our comparative chromosomal interaction analysis highlights both shared and
293  distinct regulatory wiring of ILC3s and CD4+ T cells, reflecting their specialised roles in innate
294  versus adaptive immune responses and coordinated regulation of immune activation
295  pathways.

296 Promoter-interacting regions in ILC3s and CD4+ T cells are enriched for
297 genetic variants associated with autoimmune disorders

298 Genetic risk variants for complex diseases are strongly enriched at transcriptional
299  enhancers''®. Therefore, we investigated whether regulatory elements interacting with gene
300 promoters in ILC3s and CD4+ T cells were enriched for genetic susceptibility to human traits
301 and diseases, using the RELI algorithm® (Fig. 4A; see Methods). Briefly, RELI determines
302 significantly enriched overlaps between selected genomic loci (here, promoter-interacting
303 regions intersecting open chromatin or H3K27ac signals in ILC3s based on public data) and
304 trait-associated genetic variants. This is done by comparing the observed overlaps with a null
305 distribution of artificially created variant sets with similar linkage disequilibrium (LD)
306 characteristics to the trait-associated variants®®. A practical advantage of RELI over the
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307 commonly used stratified LD score regression®’ is that it does not require summary statistics
308 data and can be performed on sets of significant SNPs reported in the GWAS Catalog®®.

309

310  Out of the 495 analysed traits and diseases tested from the GWAS Catalog, genetic risk loci
311 for 21 human traits were significantly enriched at promoter-linked putative regulatory elements
312 in ILC3s (BH adjusted p-value < 0.05; Fig. S4A, Table S6; see Methods). Autoimmune
313  diseases were overrepresented among these traits (according to the ontology EFO:0005140;
314  p-value = 1.077 x 10°, hypergeometric one-tailed test), affecting a broad array of organs and
315  tissues that ILC3s are known to reside in. These included the gut (CD, celiac disease,
316  ulcerative colitis, primary sclerosing cholangitis), airways (asthma, hay fever), and the central
317  nervous system (multiple sclerosis). We also noted several traits of peripheral blood cells,
318 including platelet width, lymphocyte count, and corpuscular volume (Table S6).

319

320 In CD4+ T cells, 22 traits were significantly enriched at promoter-interacting regulatory
321  elements of CD4+ T cells (BH adjusted p-value < 0.05; Fig. S4B), with significant correlation
322  between the two cell types (R? = 0.845822, df = 10, 95% CI (0.5284, 0.9558), p = 0.00052;
323 Fig. 4B), in line with the assumption that CD4+ T cells and ILC3 cells share many cis-
324  regulatory circuits. However, several traits displayed cell-type specificity, such as allergic
325  sensitisation, mouth ulcers, and IgG glycosylation in ILC3s, and primary biliary cirrhosis,
326  rheumatoid arthritis, and systemic lupus erythematosus in CD4+ T cells (Table S6).

327

328  Among the autoimmune disorders, CD risk variants were particularly highly enriched within
329 the active PIRs of both ILC3s and CD4+ T cells (~2.3-fold enrichment in both cell types, p-
330 value = 1.41 x 10® in ILC3s and p-value = 2.41 x 107" in CD4+ T cells). We confirmed this
331  observation using stratified LD score regression (Fig. 4C). While the critical role of CD4+ T
332 cells in CD is well-established®*%, the connection between ILC3s and CD pathogenesis is
333  more recent. ILC3s are thought to influence inflammatory processes in CD, such as GM-CSF
334  signalling and overexpression of the cytokines IL-22, IL-17, and IFN-y'"%*. We next sought to
335 leverage PCHi-C data to prioritise genes linked to CD risk variants in these cell types.

336

337  MultiCOGS prioritises genes linked to Crohn’s disease risk based on
338 multivariate fine-mapping of imputed GWAS signals and promoter
339 contacts in ILC3 and CD4+ T cells

340 Toidentify putative causal variants and genes for CD in ILC3s and CD4+ T cells, we extended
341  our previously published Bayesian prioritisation algorithm, COGS®*3!, which provides a single
342  measure of support (“COGS score”) for each gene’s association with a trait of interest,
343  calculated based on the location of fine-mapped GWAS signals within (i) gene coding regions,
344 (i) gene promoters, and (iii) promoter-interacting regions.

345

346  Despite its demonstrated utility in prioritising gene candidates in a range of human
347  traits®31%4%5 we identified areas for improvement in COGS. First, if the summary statistics
348 underlying the trait-associated loci are too sparse, COGS may miss likely causal variants
349 intersecting promoter-interacting regions. To mitigate this, we imputed additional trait-
350 associated variants using an established summary statistics-based methodology®®. Second,
351  the original statistical fine-mapping approach utilised in COGS assumes at most a single
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352  causal variant per linkage disequilibrium (LD) block, whereas the latest evidence suggests
353 that trait-associated LD blocks can contain multiple causal variants®’. To address this, we
354  updated the COGS algorithm to enable integration with recently developed multivariate fine-
355  mapping approaches, such as SuSIiE®° (Fig. 4D; see Methods). Finally, we accounted for
356  both CHICAGO- and ABCC-detected promoter-interacting regions. We refer to the updated
357  version of COGS as “multiCOGS”.

358

359 We ran multiCOGS on the CD GWAS meta-analysis by de Lange et al.”’ using the
360 compendium of CHICAGO- and ABCC-detected promoter-interacting regions in ILC3s or
361 CD4+ T cells. At the previously established COGS score cutoff of 0.5°°, we prioritised 109
362 genes in ILC3s (Fig. 4E) and 118 genes in CD4+ T cells (Fig. S5A; Table S7). The majority
363  of genes were prioritised based on 3D proximity of non-coding trait-associated variants to gene
364  promoters, either by PCHi-C or ABCC (Fig. S5B). ABCC contributed to around 11% of the
365  prioritised genes in both cell types (Fig. S5C). At first examination, we noted many candidate
366  genes with roles in immune processes already known to be dysregulated in inflammatory
367 bowel disease (IBD)"?>"*. Examples include cytokine signalling (IL10, ILTRL1, LTBR, IL2RA,
368 IFNGR2, TNFSF8), autophagy (ATG16L1, GPR65), and antimicrobial processes in the gut
369 (PTPN2, IRF8)">®. The prioritised genes also highlighted IL-23/Th17 signalling (for example,
370 RORC, NFKB1, IL2RA, and TYK2), a known immune axis in CD pathology’’, and known
371  transcriptional regulators (FOS, TSC22D1, RBPJ). In several loci, multiCOGS prioritised
372  several compelling gene candidates, based on multiple credible sets. For example, in ILC3s,
373 two credible sets of variants in chr7p implicated the IKZF1 gene (encoding the lkaros
374  transcription factor) by PCHi-C interactions, and the DDC gene (encoding dopamine regulator
375 L-dopa decarboxylase) by ABCC pairing (Fig. S5D). Ikaros, an established critical regulator
376  of immune cell development’®, also scored highly in the original COGS algorithm. However,
377  the more distal DDC gene, which has recently emerged as a potential regulator of immune
378 cell infiltration™, scored well below the prioritisation threshold (Table S7). This demonstrates
379  the potential of multiCOGS and ABCC for highlighting previously missed gene candidates.”
380

381  We next explored more closely how the results of multiCOGS compared with those from our
382  previously published COGS pipeline, which used univariate fine mapping without imputation
383 and was based purely on CHICAGO results without ABCC (hereafter referred to as “classic
384 COGS”). Classic COGS resulted in substantially smaller prioritised gene sets (55 genes in
385 ILC3 cells and 75 genes in CD4+ T cells with COGS score > 0.5) (Table S7). As examples,
386  we note that compelling candidate genes such as IL12RB2 and IL15RA (in ILC3s), TNFSF15,
387 and ICAM3 (in CD4s), and NFKB1, BATF, ICAM1 and TNFSF8 (in both cell types) were only
388  prioritised in multiCOGS (Table S7). Moreover, we discovered that both of the novel aspects
389  of multiCOGS (imputation and multivariate fine mapping) contributed substantially to the
390 increased number of genes prioritised in comparison with classic COGS (Fig. S6A). For the
391 maijority of genes, multiCOGS prioritisation scores were similar or higher than in conventional
392 COGS in both ILC3s and CD4s (Fig. S6B). Only five genes prioritised by conventional COGS
393  had sub-threshold scores in multiCOGS, including JAK2 (see Fig. S6C and Supplementary
394 Note1).

395

396 Next, we searched for prior evidence of association of all multiCOGS-prioritised genes with
397 CD (or IBD, more broadly) by querying the top CD genes in OpenTargets, curated gene-to-
398 disease databases, and functional studies® %3 We found that over half of multiCOGS-
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399  prioritised genes in ILC3s (61/109) and CD4s (67/118) were not previously implicated in these
400 databases (Table S8). These newly prioritised genes included compelling candidates such as
401 ubiquitin-specific peptidase 49 (USP49), adding to the existing evidence for the role of protein
402  ubiquitination in IBD development®, and lymphotoxin beta receptor (LTBR), known to be
403  important for gut epithelial cell IL-23 production®. In particular, 23 genes selectively prioritised
404 in ILC3s (Fig. 4F) were not previously linked to CD in the studied datasets. These included
405 genes with unexpected functions, such as the neurotransmitter DOPA decarboxylase (DDC),
406 and a lysosomal/endosomal transmembrane protein (CLN3). CLN3 is involved in lipid
407 trafficking and catabolism®®’ and mutations in this gene cause Batten disease, a group of
408 lysosomal storage disorders characterised by progressive neurodegeneration®®.

409

410  Taken together, by accounting for imputed variants and multiple causal variants per locus,
411 multiCOGS expands the ability to discover candidate genes in complex trait loci using
412  promoter interactions.

413 Prioritised gene candidates in ILC3 cells implicate inflammatory
414  processes in CD aetiology

415  We explored the biological functions of the 109 prioritised CD genes in ILC3s based on their
416 public gene set annotations (Table S9). Seven biological states or processes were
417  significantly enriched among the gene candidates: IL6-JAK-STAT3 signalling, TNFa signalling
418  via NFkB, IL2-STATS5 signalling, inflammatory response, allograft rejection, IFNyB response,
419 and TGFp signalling (Hallmark gene sets; Fig. S7A). Molecular functions included cytokine
420 receptor activity and NAD+ metabolic activity (GO Term Molecular Functions, Fig. S7B). We
421  saw the strongest enrichment of cell-type signatures for tissue-resident immune cells,
422  including gastric and duodenal immune cells, as well as monocytes, dendritic cells, and
423  basophils in the lung (Fig. S7C). We also noted the signature for ILC progenitor cells in fetal
424  lung®, driven by the genes IL1R1, ICAM1, IFNGR2, PLCG2, CCR6, and RORC (adjusted p =
425 0.0176). Enriched curated pathways highlighted immune-mediated diseases, including
426  rheumatoid arthritis, neuroinflammation, IBD, and bacterial infection (WikiPathways; Fig.
427  S7D). Other relevant pathways included T cell differentiation and signalling of IL-18, a key
428  cytokine for ILC3 function® (Fig. S7C). Leveraging published IBD patient gene sets®', we also
429  found enrichment for genes differentially expressed in the rectum in patients with CD (adjusted
430 p-value = 1.38 x 10™) and ulcerative colitis (adjusted p-value = 0.0156) (Table S9, Fig. STE).
431

432  We then investigated which transcription factors (TFs) might regulate the CD gene candidates
433 in ILC3s using two methods. First, we used a gene-centric approach to identify
434  overrepresented genes predicted to be targeted by a given TF (TF targets from MSigDB). This
435 analysis highlighted the architectural protein HMGA1 and the known inflammatory response
436 regulator NFKB (Table S9 and Fig. 5A). Second, we used a region-centric approach,
437  searching for enrichment of predicted TF binding sites across a range of cell types at the PIRs
438 of CD candidate genes in ILC3s. We found significant enrichment for 97 TFs (Fig. 5B, Table
439 S10), many of which were previously implicated in inflammatory response, including
440  IKZF1/Ikaros®, BATF®, and NFKB3/RELA%, which are all highly expressed in ILC3s (Fig.
441 5C) and have established roles in ILC3 biology. Two examples of potential long-range
442  regulation of CD candidate genes by putative TF binding at PIRs are shown in Fig. 5D and E.
443 In the first example, the promoter of the IKZF1 gene contacts two upstream PIRs, each
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444  containing a separate credible set of fine-mapped CD susceptibility variants and bearing
445  marks of open and active chromatin (ATAC-seq and H3K27ac peaks) in ILC3s. Based on data
446  from lymphoblastoid cell lines, these PIRs recruit multiple TFs: IKZF1 itself, as well as BATF,
447 NFKB3, ATF2, and the architectural proteins CTCF and SA1 (Fig. 5D). In the second example,
448 the promoter of IL1R1 contacts CD risk variant-containing PIRs that have accessible
449  chromatin in ILC3s and contain CTCF binding signals in lymphoblastoid cell lines (Fig. 5E).
450

451  Jointly, these results propose inflammatory signalling genes as causal candidates for CD
452  susceptibility in ILC3s.

453

454  CLN3 contributes to ILC3 inflammatory capacity

455  We next focused on CLN3, a gene implicated in the neurodevelopmental disorder Batten
456  disease. CLN3 was selectively prioritised as a CD risk gene in ILC3s, but not CD4+ T cells,
457  and has not previously been linked to CD or other immune-mediated diseases. Examination
458  of the SuSIE fine-mapped CD GWAS locus underlying CLN3’s prioritisation revealed a
459  credible set of variants overlapping two regions considered by multiCOGS. The first region is
460 an ILC3-specific CLN3 PIR located 14.2 kb downstream of the canonical CLN3 TSS (red band
461 in Fig. 6A). The second region lies between exons 10 and 11 of the canonical CLN3 transcript,
462  adjacent to an annotated internal promoter (first dark blue band in Fig. 6A). Unexpectedly, we
463 found that both regions lacked chromatin accessibility and enhancer activity signals in ILC3s,
464  as well as in all other cell types included in the Ensembl Regulatory Build database (Fig. 6A).
465 Data from lymphoblastoid cell lines®” showed enrichment for the H3K36me3 mark, which is
466 typically associated with transcriptional elongation®® and facultative heterochromatin® (Fig.
467 6A). To seek complementary evidence for a regulatory role of this locus, we queried the
468 OpenTargets database'® for possible colocalisation between the CD risk signal and known
469  CLN3 expression quantitative trait loci (eQTLs). CD risk GWAS and CLN3 expression were
470 likely to share a joint causal genetic signal (posterior probability = 0.8, as determined by
471  coloc™" and reported in OpenTargets) in whole blood'?'%, monocytes'*'%, thyroid'®, small
472  intestine'®, and cerebellum'®. Notably, the same CD GWAS signals also colocalised with
473  eQTLs for nearby genes, including APOBR, which is located ~2 kb downstream of CLN3 in a
474  divergent orientation, suggesting a complex regulatory architecture at this locus.

475  To further investigate the role of the CLN3 locus in ILC3s, we used mouse MNK-3 cells as a
476  tractable model for ILC3 activation and effector function. We found that Cin3 expression was
477  downregulated upon stimulation of MNK-3 cells with IL-23 and IL-1$, cytokines that are
478  essential for ILC3 effector function'®'%” (Fig. 6B, left). Consistent with this observation,
479  analysis of published RNA-seq data from primary mouse ILC3s stimulated with TL1A' also
480 showed reduced Cin3 expression (Fig. 6B, left). Notably, the adjacent gene Apobr was
481  similarly downregulated under IL-23/IL-18 stimulation (Fig. 6B, right), in line with eQTL-based
482  evidence of coordinated regulation of these genes in humans 92103104195 |n contrast, TL1A
483  stimulation did not affect Apobr expression (Fig. 6B, right).

484

485 To interrogate the transcriptional consequences of stimulation-induced CIn3 repression, we
486 used CRISPR activation (CRISPRa; dCas9-VP64 + MS2-p65-HSF1) to prevent Cin3
487  downregulation in MNK-3 cells during stimulation. CRISPRa targeting produced an
488  approximately threefold increase in CIn3 expression in stimulated MNK-3 cells (Fig. 6B, left).
489  Notably, Apobr expression was also increased in both basal and stimulated conditions (Fig.
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490 6B, right), potentially reflecting local effects of CRISPRa targeting, but also mirroring the
491  coordinated regulation observed at this locus (Fig. 6B). Bulk RNA-seq analysis revealed
492  widespread transcriptional changes following CIn3 CRISPRa, with 519 differentially expressed
493 genes in unstimulated cells and 722 in stimulated cells relative to scrambled gRNA controls
494 (DESeq2 adjusted p-value < 0.05; Fig. 6C and S8A; Table S11 and Data S10 at
495  https://osf.io/aq9fb). These genes were enriched for pathways involved in
496 lymphocyte differentiation, activation, and proliferation, including upregulation of Cd23r, Cd74,
497  and Fas, and downregulation of the inflammatory serine proteases Gzmb and Gzmc (Fig. 6D,
498 Fig. S8B). Notably, more than half of the genes differentially expressed in stimulated CIn3-
499 CRISPRa cells overlapped with genes altered by IL-23/IL-18 or TL1A stimulation in CIn3-
500 unperturbed cells'® (Fig. 6E), suggesting that sustained CIn3 expression counteracts
501  canonical activation-associated transcriptional programmes. In contrast, CRISPR interference
502 (CRISPRI; dCas9-KRAB)-mediated knockdown of CIn3 resulted in few transcriptional changes
503 beyond CIn3 and Apobr themselves (Fig. S8C, D; Table S11; Data S11 at
504  https://osf.io/ag9fb). Notably, these included upregulation of Nos2, a gene previously
505 implicated in limiting ILC3-driven intestinal inflammation®”.

506

507  Given the coordinated regulation of CIn3 and Apobr expression upon ILC3 stimulation, the
508 limited transcriptional impact of further CIn3 knockdown in activated cells, and the pronounced
509 effects of CIn3 overexpression, we next asked whether the CLN3 protein modulates ILC3
510 effector function at a post-transcriptional level. CLN3 is a lysosomal and endosomal protein
511  with established roles in vesicular trafficking, lysosomal homeostasis, and protein
512  turnover'®'"%"" processes that are central to cytokine storage and secretion. Therefore, we
513  ectopically overexpressed CIn3 in MNK-3 cells and measured cytokine secretion under basal
514  and inflammatory conditions. Overexpression of the myc-tagged CLN3 construct was
515 confirmed by RT-gPCR and immunoblotting (Fig. S8E, F). As expected, MNK-3 cells
516  constitutively secreted IL-22 and GM-CSF, with further induction of these cytokines upon
517  stimulation, whereas IL-17 production was restricted to stimulated conditions (Fig. 6F and
518  S8G). Notably, CLN3 overexpression significantly reduced the secretion of IL-17, IL-22, and
519  GM-CSF by stimulated MNK-3 cells (Fig. 6F and S8G). Basal IL-22 and GM-CSF secretion
520 were also reduced in the absence of stimulation (Fig. 6F and S8G). Viable cell numbers were
521  quantified at the end of cytokine secretion assays and showed no difference under basal
522  conditions, with a modest reduction in CIn3-overexpressing cells following stimulation (Fig.
523  S8H).

524

525  Collectively, these results highlight the Batten disease gene CIn3 and the broader CIn3/Apobr
526  locus as regulators of ILC3 inflammatory output, revealing a previously unrecognised role for
527  this locus in shaping ILC function.

528 MultiCOGS prioritises candidate genes for six autoimmune diseases with
529  potential roles in ILC3 inflammatory function

530 Building on the methodologies and data generated in this study, we extended multiCOGS
531  analysis in ILC3s and CD4+ T cells to five other autoimmune GWAS datasets in addition to
532 CD with available summary statistics that showed enrichment at ILC3 PIRs in the RELI

533  analysis: adult-onset asthma, IBD, ulcerative colitis (UC), primary sclerosing cholangitis (PSC)
534 and celiac disease. Across the six traits and two cell types, we detected a total of 332
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535  prioritised disease candidate genes (multiCOGS score > 0.5), of which 251 were prioritised in
536 ILC3 cells (Fig. 7A) and 266 in CD4+ T cells (Table $12). As expected from their shared
537  aetiology, the three traits relating to inflammatory bowel disease (CD, UC, and IBD) clustered
538 together with respect to gene-level multiCOGS scores, while asthma formed an outgroup (Fig.
539 7A).

540

541  Atotal of 66 candidate genes were prioritised in ILC3s only, and 81 in CD4+ T cells only (Table
542  S12). Notable ILC3-specific candidate genes included several cytokines and receptors
543  involved in type | immune response, such as CCR2 (celiac disease), BCL6 and IL17A (both
544  asthma), as well as the IL-18 receptor (/L18R1), which we previously prioritised for CD, and
545 here also prioritised for celiac disease and asthma. We also noted family members of
546  butyrophilin (BTN) proteins—immunomodulatory transmembrane proteins involved in
547  recognition of microbial antigens—prioritised in both CD and asthma (BTN3A1 and BTN3A2),
548  specific to ILC3 cells. Finally, we noted that CLN3 was prioritised for the broader IBD trait
549  (multiCOGS score 0.538, Table $12) in addition to CD, again selectively in ILC3s.

550

551 Pathway analysis of the prioritised genes across the analysed traits revealed shared enriched
552 GO terms for inflammatory processes such as cytokine binding and immune receptor activity
553 (Fig. 7B; Table S13A). To gain further insight into the role of the prioritised genes in ILC3
554  inflammatory function, we turned to a recent CRISPRI screen for putative regulators of IL-22
555  expression in MNK-3 cells following IL-23/IL-1B stimulation''? (Fig. 7C). Of the multiCOGS
556 gene candidates across all profiled autoimmune diseases, six were significant positive
557  regulators and five were significant negative regulators of IL-22 protein production, as detected
558 by the CRISPRI screen (Table S13B and labelled in red in Fig. 7D and 7E). Among the IL-22
559 activators were three candidate genes for IBD-related traits, all with known strong roles in IL-
560 22 activation (IL23R, BATF, and RORC). The remaining three IL-22 activators were all
561 candidate genes for asthma alone: GNA15, SESN1, and GATA3, of which only GATA3 has
562  been previously reported to directly activate IL-22 in ILC3s'"3. Meanwhile, the five multiCOGS
563  genes putatively downregulating IL-22 production were all associated with IBD-related traits
564 (PTPN2, NEMF, HCLS1, PPP5C, and KXD1). Of these, only PTPN2 has direct evidence for
565  IL-22 repression, through STAT3 dephosphorylation'®. The other putative IL-22 negative
566 regulators have diverse functions in protein homeostasis (NEMF), actin remodelling (HCLS1),
567  stress signalling (PPP5C), and lysosome localisation (KXD1). Overall, multiCOGS genes were
568 significantly enriched among the genes scoring highly for positive IL-22 regulation (GSEA p =
569  0.0284, Table S13C; genes driving the association labelled in Fig. 7D), implicating the control
570  of ILC3 activation as an important mechanism underpinning the effects of the prioritised genes
571  on autoimmune disease risk.

572

573  In summary, this analysis expands the compendium of prioritised GWAS gene candidates with
574  potential roles in ILC3s to six autoimmune disease traits and demonstrates the potential role
575  of many prioritised genes in ILC3 inflammatory function.
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576

577 Discussion

578 In this study, we present high-resolution promoter interaction profiling in ILC3s, revealing tens
579  of thousands of promoter contacts with enhancers and GWAS variants associated with
580 multiple immune diseases, including those that are unique to ILC3s compared with their
581 phenotypically related counterparts in the adaptive immune system, CD4+ T cells. ILC3s are
582 a relatively rare cell type that cannot be easily expanded in vivo, which makes their
583 chromosomal interaction profiling challenging. Indeed, this problem precluded ILC3 profiling
584 by standard Hi-C alongside type 2 ILCs in a recent mouse study''. Robust Capture Hi-C
585  profiling typically requires even higher cell numbers. Our efficient PCHi-C protocol** and the
586  use of a four-cutter enzyme (Dpnll) have enabled a higher-resolution analysis of human ILC3s
587 in this study, adding these clinically-relevant cells to the ever-expanding array of cell types
588  with available promoter interactome maps, including the 17 abundant blood cell types that we
589  profiled previously using high-coverage PCHi-C at a six-cutter enzyme (Hindlll) resolution®.
590  While emerging technologies provide complementary solutions for the inference of enhancer-
591 promoter relationships, such as through the correlated activities of these elements across cell
592 types or single cells, genetic evidence and high-throughput perturbation screens, 3D
593 genomics-based approaches continue to offer unique advantages by delivering
594  mechanistically-grounded information in high throughput at a reasonable cost and time
595 investment.

596

597  Unlike in our previous studies, here we take advantage of two conceptually different
598 computational analysis strategies for detecting promoter contacts from Capture Hi-C data. The
599 first strategy is based on our established CHICAGO pipeline to detect ‘significant contacts’ —
600 i.e., those whose frequency significantly exceeds the expectation at a given distance and
601  technical noise levels. The second strategy is based on the adaptation of the ABC
602  approach'#' to Capture Hi-C data (the Activity-by-Captured-Contact method, ABCC), which,
603 in contrast, considers the raw contact frequency rather than its significance. As expected from
604 this conceptual difference, ABCC prioritises shorter-range contacts compared with CHIiCAGO,
605 resulting in the largely non-overlapping sets of identified contacts and GWAS-prioritised
606 genes. However, the longer-range contacts detected using CHICAGO, which were also
607  enriched for active enhancers, drive the majority of our identified disease associations. From
608 the practical point of view, therefore, these two approaches are largely complementary, and
609 their combined use is warranted. Mechanistically, this suggests that at short linear distances,
610 the background frequencies of promoter-enhancer contacts arising from constrained Brownian
611 motion are sufficient for the functional interactions between these regions. In contrast, at
612  longer ranges, additional factors (e.g., cohesin-mediated loops) are likely required to facilitate
613  the statistically unusual contact frequencies and enable functional interactions.

614

615  We find a strong enrichment for CD-associated SNPs within the ILC3 PIRs, consistent with
616  recentfindings showing that superenhancers specific to ILC3 or Th17 cells, rather than to ILC1
617  or Th1 cells, preferentially contain CD-associated variants?'. Using our multiCOGS strategy
618 that integrates GWAS data processed with multivariate statistical fine-mapping with
619 information on enhancer-promoter links from PCHi-C, we prioritise a total of 109 genes in
620 ILC3s, 29 of which are not detected in CD4+ T cells. Notably, the number of multiCOGS-
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621 prioritised genes has increased considerably compared with the results obtained with our
622  previously developed COGS pipeline®®®'. The key improvements of multiCOGS include
623 summary statistics-based imputation and allowing for multiple causal variants per linkage
624  disequilibrium (LD) block. At the molecular level, the increased recall of prioritised genes
625 reflects the fact that the same LD block often contains multiple regulatory elements (including
626  promoter-proximal and distal enhancers). Variants within each of these elements may have
627 largely independent effects from one another**®” and from those within protein-coding
628 regions''®. Furthermore, we identify cases, such as IKZF1/DDC, where multiple causal
629 variants in the same LD block intersect the regulatory elements of different candidate genes,
630 leading to their joint prioritisation. These results reinforce the notion that the assumption of a
631  single causal variant per LD block used by many established GWAS analysis methods
632  (particularly those based on summary data) is unnecessarily restrictive and may miss key
633  genetic mechanisms underpinning disease processes.

634

635 While the enrichment of GWAS signals within enhancers was first demonstrated over a
636 decade ago'®, with the first studies leveraging 3D information for enhancer-gene assignment
637  following shortly thereafter''’="° the majority of GWAS gene prioritisation studies to date still
638  do not consider 3D chromosomal data'®®. Nonetheless, several computational approaches for
639 variant-to-gene assignment integrating fine-mapped GWAS signals with 3D genomics
640 information and other sources of evidence are now becoming available. For example, FUMA
641  SNP2GENE provides the option to identify candidate genes via enhancer-promoter
642 interactions, but does not integrate fine-mapping SNP probabilities'?'. In addition, the L2G
643 (locus-to-gene) pipeline uses a machine learning algorithm that integrates multiple features,
644 including Capture Hi-C'??. L2G provides an interpretable output that shows the relative
645  contributions of many factors, including QTL colocalisation, genomic distance, VEP scores'?,
646  and enhancer-promoter interactions, towards an overall gene score per credible set. L2G is
647  available on the OpenTargets platform®’, but it is not easily adaptable to new functional data.
648  Finally, H-MAGMA incorporates Hi-C-derived chromatin interactions to refine SNP-to-gene
649  assignment for non-coding GWAS variants, but does not integrate them into a probabilistic
650 framework'*. MultiCOGS complements these efforts by providing an unsupervised and
651 interpretable Bayesian framework based on cell-type-specific, mechanistically-grounded
652 readouts that can be applied to 3D genomic data in cell types relevant to the disease context.
653

654  Using multiCOGS across six autoimmune traits to prioritise disease risk-linked genes with
655  potential roles in ILC3s, we produce a compendium of 251 genes, including both known and
656  potentially novel candidates. Integration with a CRISPRI screen for genes affecting ILC3
657 inflammatory response provides a first indication of their potential role in ILC3 biology. This
658 includes 11 prioritised genes that were detected as putative IL-22 activators and repressors
659 in the CRISPRI screen'?. However, further targeted experiments are still required to gain a
660 deeper understanding of the functional role of the prioritised genes in ILC3 biology and their
661  contribution to autoimmune disease risk.

662

663  The CIn3 gene, prioritised in our analysis for CD risk in ILC3s but notin CD4+ T cells, underlies
664 the majority of cases of the neurodevelopmental disorder Batten disease. While immune
665 features have been reported in Batten disease and other lysosomal disorders'®'?’  the
666  function of CIn3 in the immune system remains poorly understood. Here, we show that Cin3
667  expression is downregulated upon cytokine stimulation of mouse ILC3s, and that Cin3
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668  overexpression in an ILC3-like mouse cell line impacts stimulation-induced transcriptional
669 programmes and cytokine production. In contrast, CRISPRi knockdown of C/in3 did not show
670 a pronounced phenotype in our model system, and, consistent with this, was not detected as
671  a significant hit in the CRISPRIi screen for regulators of ILC3 inflammatory response.'?> CLN3
672 is a transmembrane lysosomal protein with established roles in vesicular trafficking and
673  lysosomal homeostasis'?®. Consistent with this biology, our functional data support a role for
674  activation-induced downregulation in promoting the inflammatory capacity of ILC3s. In addition
675 toits trafficking functions'®'1%1"" recent studies have demonstrated that CLN3 is required for
676  the catabolism of glycerophospholipids®'?°, which are key structural components of cellular
677 membranes and have emerging regulatory roles in innate immune signalling. Accordingly,
678  CIn3 knockdown in mouse monocytes was shown to interfere with LPS-induced secretion of
679 the inflammatory cytokine IL-6'*°. These observations raise the possibility that CLN3 may
680 influence immune effector functions through effects on membrane composition, vesicular
681  dynamics, or both. Together, our findings implicate CLN3 in the regulation of ILC3
682 inflammatory function and CD risk, raising the possibility that inflammatory processes may
683  contribute to gastrointestinal manifestations observed in CLN gene deficiency.'"

684

685  Notably, the region harbouring the fine-mapped CD susceptibility variants in the CLN3 locus
686 lacks active chromatin signals in ILC3s, as well as in other cell types represented in the
687  Ensembl Regulatory Build. This suggests that regulatory activity at this locus may be highly
688  context-specific, potentially emerging only under inflammatory conditions or within discrete
689  cellular states. Supporting this notion, H3K36me3 deposition across this region in
690 lymphoblastoid cell lines was recently proposed as a mark of enhancers that are ‘poised’ for
691  rapid activation'?. However, CD-associated variants in this locus may also exert regulatory
692  effects through alternative mechanisms. Several fine-mapped variants in the CLN3 locus are
693 linked to alternative polyadenylation of the CLN3 transcripts 3'UTR across multiple
694 tissues'"** a mechanism that can influence mRNA stability and translational efficiency and
695 s increasingly recognised as a contributor to complex disease risk'**. In addition, CLN3 was
696 reported to undergo splicing-dependent transcriptional activation™®, further expanding the
697 range of potential regulatory mechanisms operating at this locus. The regulatory complexity
698 of the CLN3 locus is further augmented by its detection as an eQTL for multiple neighbouring
699 genes across diverse cell types. In monocytes, this locus is also an eQTL for the known CD
700 gene IL27, with an opposite direction of allelic effect and a lower statistical significance relative
701 to CLN3 itself'®'%, Notably, /L27 is not appreciably expressed in either mouse or human
702 ILC3s. In addition, CLN3 shares eQTLs with, and is divergently expressed from, the
703  apolipoprotein B receptor gene APOBR. Consistent with this, we show that CIn3 and Apobr
704  are co-regulated upon IL-23/IL-1 stimulation in a mouse ILC3-like cell line. APOBR has a
705  recognised role in lipid uptake in myeloid cells'’, but its function in the lymphoid compartment
706  remains unclear and is likely mechanistically distinct from that of CLN3.

707

708 Human ILC3s in our study are derived from tonsillectomy material, but their regulatory
709 elements show an enrichment for variants associated with immunological disorders affecting
710  abroad range of tissues. This is consistent with findings from single cell genomics suggesting
711 that cell type, rather than tissue type, is likely to be the driving factor behind variation in
712 chromatin accessibility and gene expression'?'% Furthermore, ILC3s from regularly inflamed
713  tonsils have a closer cytokine profile to mucosal-resident ILC3 populations than ILC3s from
714 resting lymph nodes or peripheral blood'. Focused studies in relevant physiological contexts
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715  and disease models will further establish the role of ILC3s in mediating the effects of genetic
716  variation. These analyses are, however, complicated by the rarity of ILC3s and a lack of robust
717  human cell line models for this cell type, as well as the strong influence of organismal and
718  environmental factors, which are difficult to reproduce in a laboratory setting either in vitro or
719  in vivo, on autoimmune disease pathogenesis.

720 In conclusion, we present updated methodologies for profiing and detecting promoter-
721  anchored interactions and for leveraging these data to interpret GWAS signals. Using this
722  framework, we provide a comprehensive catalogue of regulatory chromatin contacts and
723  candidate autoimmune risk genes in ILC3s, and take initial steps toward their functional
724  validation. These findings advance our understanding of ILC3 biology and the contributions of
725  this rare cell type to disease, and highlight the utility of our approach for dissecting regulatory
726  architecture in other rare cell types and complex traits.

727 Methods

728 Human ILC3 cell isolation

729  Three children requiring tonsillectomy were recruited to a prospective study at a tertiary
730  academic care centre through the division of Pediatric Otolaryngology-Head and Neck Surgery
731 at Cincinnati Children's Hospital Medical Center with an institutional review board (IRB)
732  approval. Criteria for enrollment in the study included a history of sleep-disordered breathing
733  orrecurrent or chronic tonsillitis requiring removal of the tonsillar tissue. Consent was obtained
734  from parents in the perioperative suite on the day of the procedure. Subjects were excluded
735 from the study if the tonsillar tissue was acutely infected or if anatomic abnormalities were
736  present requiring a more detailed pathologic evaluation post the surgical procedure. Samples
737  were labelled with a de-identified barcode and transferred to the research team for further
738  processing.

739

740  Next, tonsils were dissociated into a single-cell suspension as previously described" 2,
741 Briefly, Human tonsil tissue was processed by mincing with scissors, followed by transfer of
742  up to 4g of tissue to a gentleMACS C tube (Miltenyi Biotec) containing 8 mL of phosphate-
743  buffered saline (PBS) with 0.5 mg/mL collagenase D and 3000 U/mL DNase I, then dissociated
744  on a GentleMACS Octo Dissociator (Miltenyi Biotec) using “program C (Spleen program 2
745  followed by spleen program 3).” Tissue homogenates were incubated in a 37°C water bath for
746 15 minutes, then dissociated again using “program C” and transferred through a 100 ym cell
747  strainer into 20mL RPMI containing 10% human AB serum (Sigma Aldrich). Next, the cell
748  suspension was overlaid on 10mL of Ficoll-Paque PLUS (GE Healthcare) and subjected to
749  density-gradient separation via centrifugation for 20 min at 1800 rpm, 20°C, slow acceleration
750 and no brake. Leukocytes were collected from the interphase layer and then washed with
751  50mL of PBS for 6 minutes at 1600 rpm, 20°C.

752

753  Single cell suspensions of tonsil mononuclear cells were subjected to positive selection with
754  anti-human-CD3, anti-human-CD19 and anti-human-CD14 (Miltenyi Biotec) and transferred
755  through LD columns (Miltenyi Biotec) according to the manufacturer's guidelines (Fig. S9).
756  The depleted cell suspension flowthrough was collected into a 15mL conical tube and then
757  centrifuged for 5 minutes at 1200rpm, 20°C. Subsequently, cells were labelled with
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758 LIVE/DEAD™ Fixable Near-IR dead cell stain kit (Invitrogen). Next, cells were labeled with
759  sorting antibody cocktail which contained negative linage (Lin-) CD19 Brilliant Violet (BV)421
760 (HIB19), CD14-BV421 (63D3) and CD3-BV421 (OKT3), and the following antibodies: CD45-
761  FITC, (HI30), CD94-PerCP-Cy5.5 (DX22), CD127-PE-Cy7 (A019D5), cKit-BV510 (104D2)
762  and NKp44-Alexa Fluor (AF)647 (P44-8) all purchased from Biolegend (San Diego, CA),
763 CRTH2-PE (301109, R&D). ILC3 cells were sorted based on the expression of CD45+Lin-
764  CD127+CD94-CRTH2-cKit+NKp44+, similarly to Bar-Ephraim et al. Cell sorting was
765  performed using a FACSAria ll sorter (BD Biosciences, Mountain View, CA, USA). Post sorting
766  sorted ILC3 cells were washed with PBS for 5 minutes at 1200rpm, 20°C and then incubated
767  in 100 uL of 2% formaldehyde (in PBS) for 10 minutes, followed by the addition of 0.125M
768  glycine. Next, cells were centrifuged at 400g for 5 minutes at 4°C, resuspended with cold PBS
769  and centrifuged again at 400g for 5 minutes at 4°C, supernatant was discarded, and cells were
770  snap-frozen in liquid nitrogen and then stored at -80°C prior to PCHi-C analysis.

771 Human CD4+ T cell isolation

772  Total CD4+ lymphocytes were obtained from PBMCs from venous blood by negative selection
773  using EasySep Human CD4+ T Cell Enrichment kit (Catalog #19052) from STEMCELL
774  Technologies. Purified CD4+ T cells were washed with PBS for 5 minutes at 1200 rpm, 20°C
775  and then incubated in 100 pL of 2% formaldehyde (in PBS) for 10 minutes, followed by the
776  addition of 0.125M glycine. Next, cells were centrifuged at 400g for 5 minutes at 4°C,
777  resuspended with cold PBS and centrifuged again at 400g for 5 minutes at 4°C, supernatant
778  was discarded, and cells were snap-frozen in liquid nitrogen and then stored at -80°C prior to
779  PCHi-C analysis. Two replicates of 1 million and two more replicates of 50,000 cells were used
780  to generate PCHi-C datasets. The samples were obtained from two male donors after written
781 informed consent under studies “A Blueprint of Blood Cells,” REC reference 12/EE/0040, and
782  “Genes and mechanisms in type 1 diabetes in the Cambridge BioResource,” REC reference
783  05/Q0106/20; both approved by the NRES Committee East of England — Cambridgeshire and
784  Hertfordshire.

785 Promoter Capture Hi-C

786  Promoter Capture Hi-C was performed as previously described**. Cells were lysed in a lysis
787  buffer (30 minutes on ice), and digested with Dpnll (NEB) overnight at 37°C while rotating (950
788  rpm). Restriction overhangs were filled in with Klenow (NEB) using biotin-14-dATP (Jena
789  Bioscience), and ligation was performed in the ligation buffer for 4 hours at 16°C (T4 DNA
790 ligase; Life Technologies). After overnight de-crosslinking at 65°C, the ligated DNA was
791  tagmented to produce fragments of 300-700 bp. Ligation products were isolated using MyOne
792  CA1 streptavidin beads (Life Technologies), followed by washing with Wash&Binding buffer and
793  nuclease-free water. Isolated Hi-C ligation products on the beads were then used directly for
794  PCR amplification, and the final Hi-C library was purified with AMPure XP beads (Beckman
795  Coulter). Promoter Capture Hi-C was performed using a custom-designed Agilent SureSelect
796  system following the manufacturer's protocol. The PCHi-C libraries were paired-end
797  sequenced (100 bp) on an lllumina HiSeq 2500 machine at a sequencing depth of ~400 million
798  reads per sample (Table S1).
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799 PCHi-C data pre-processing and detection of significant interactions

800 Sequencing data from three ILC3 PCHi-C biological replicates were aligned to the hg38
801 genome assembly using Bowtie2'** and quality-controlled using HICUP'**. Quality metrics for
802  all generated PCHIi-C datasets are reported in Table S1. Significant interactions were then
803 detected across the replicates by CHICAGO®* as previously described*’ at single Dpnll
804  fragment resolution and in bins of fragments approximately 5 kb in length, with the baited
805 promoter fragments left solitary (unbinned).

806

807 Leaving the baited Dpnll fragment unbinned meant that nearly every baited fragment was
808 occupied by a single protein-coding gene promoter. In contrast, a third (33%) of baited
809 fragments in the Hindlll-based Capture Hi-C design (with a median fragment size of 4 kb)
810 contained two or more promoters. Therefore, leaving the baited fragment unbinned
811  significantly improved the resolution and interpretability of analyses such as (multi)COGS.
812

813 For CHICAGO analysis at single-fragment resolution, p-value weights were estimated
814  following our previously described procedure®® and are listed in Table S11; default p-value
815  weights were used for the 5 kb analysis. A CHICAGO score cutoff of 25 was used for both
816  resolutions. A consensus list of promoter interactions was compiled from non-redundant
817  contacts detected at the fragment and 5 kb resolutions.

818

819 Integration with Hindlll Promoter Capture Hi-C data

820  Our previous PCHI-C study in 17 abundant human primary blood cell types, including both
821 lymphoid and myeloid cells®® was performed using a 6 bp restriction enzyme Hindlll, unlike
822  the 4-bp cutter enzyme Dpnll used in the current study. Since restriction fragment size affects
823 the distance distribution of contacts detected in Hi-C-related methods*®'*5#¢  direct
824  comparison across these two datasets is challenging. To partially address this issue, we
825  pooled the reads in the Dpnll-based ILC3 data into genomic windows corresponding to Hindlll
826  fragments and re-processed the data with HICUP using the hg19 genome assembly and
827  Hindlll parameters. We then identified significant interactions using CHICAGO®* with the
828  default Hindlll-based parameters and integrated them with the significant interactions from the
829  Javierre et al. study®. To assess the similarity of promoter-interaction patterns in ILC3s with
830 the cell types profiled in Javierre et al., we first ran a joint PCA analysis. We noted that PC1
831  (accounting for <10% of the variance) clearly segregated the three ILC3 replicates from the
832 remaining cell types, and therefore most likely corresponded to the difference in PCHi-C
833  methods, resolution and sequencing depth. We disregarded PC1 and focused on PC2, PC3,
834  and PC4, accounting for 6.16%, 3.7%, and 3.16% of variance across all tissues, respectively
835  (components beyond PC4 accounted for <3.1% of variance each and were disregarded). For
836  visualisation purposes, we combined these three components using the UMAP non-linear
837  dimensionality reduction algorithm implemented in the umap package in R', obtaining the
838  plot shown in Fig. S1A.

839 Alternative promoter analysis

840  We used the CHICAGO results for ILC3 PCHi-C data at 5 kb resolution to profile PIR sharing
841 between alternative promoters. First, we identified a set of genes that had more than one
842  baited promoter, with each promoter having at least one significant interaction with a
843  CHICAGO score of =25 with =5 reads. We defined fully shared PIRs as those that interacted
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844  with all baited alternative promoters for the same gene, and partially shared PIRs as those
845 that interacted with a subset of alternative promoters for the same gene. We defined distinct
846  PIRs as those that only interacted with a single promoter fragment (CHICAGO score 25). To
847 increase the stringency with which we called PIRs “distinct”, we applied two further criteria.
848  First, if a PIR interacted with another alternative promoter at a lenient CHICAGO score =3, we
849  defined that PIR as shared. Second, if the adjacent fragment to the PIR in question interacted
850  with another alternative promoter at a CHiCAGO score 23, we also defined that PIR as shared.
851  We note that, under our classification rules, the PIRs of genes with only two alternative
852  promoters included in the analysis can only be classified as “fully shared” or “distinct”.
853  Therefore, the “partially shared” PIR category was only applicable to the subset of genes with
854  more than two baited alternative promoters.

855 Epigenomic data pre-processing

856  For epigenetic data analysis in ILC3s, the SRA accession list was downloaded from the GEO
857  accession GSE77299. The SRA files were converted to FASTQ file,s and sequencing
858  adapters were trimmed from reads using trim galore
859  (https://github.com/FelixKrueger/TrimGalore). The reads were filtered by PHRED score =30
860 and examined for proper pairing with a mate (when paired-end). The sequencing quality and
861  duplication level were checked using FastQC
862  (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequences were mapped to
863  the hg38 reference genome using STAR with modifications for aligning ChiP-seq and ATAC-
864  seq reads. Samtools'*® was used to select reads with a MAPQ score of 255, which is the flag
865  for uniquely mapping reads from STAR'®. ATAC-seq reads were filtered, retaining properly
866 paired and oriented reads using the samflag=3. PCR duplicates were removed using
867 samtools. We then removed reads that fell within blacklisted regions using Bedtools'®
868 intersect. The final filtered BAM file was then converted to a BED file using Bedtools bamtobed.
869  This conversion breaks read-pairing and ensures each read contributes to peak identification
870  with MACS2''. The ATAC-seq reads in BED format were shifted by +4 bp on the (+) strand,
871 and -5 bp on the (-) strand to account for the Tn5 transposase cut site. Peaks were called
872  using MACS2 using three biological replicates per sample as the treatment group with an input
873  ChlIP-seq control sample. The replicate correlation between the ATAC-seq samples was poor,
874  with a <10% overlap between biological replicates. This result was consistent with the high
875 level of duplication and low peak count (8,852) in the worst sample (SRR3129112). Thus, our
876  ATAC-seq results were limited to the sample withthe best quality metrics (SRR3129113). In
877  total, we detected 34,077 H3K27ac peaks and 72,825 ATAC-seq peaks. For epigenetic data
878 analysis in CD4+ T cells, we used BLUEPRINT epigenome datasets from male donors
879 C002Q1, S008H1, and S007G7.

880 Activity-By-Captured-Contact (ABCC)

881 For a given gene-enhancer pair, the ABC score is the normalised product of enhancer Activity
882  (proxied by the levels of chromatin accessibility and relevant histone modifications) and
883  Contact (proxied by 3D contact frequency detected from a chromosome conformation capture
884  assay)'"*. In the original implementation of ABC, Activity is estimated as the geometric mean
885 of read counts of DHS/ATAC-seq peaks and Contact by KR-normalised Hi-C contact
886 frequency between the respective element and gene promoter*'. The resulting product is
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887  divided by the sum of all ABC values for a given gene from enhancers within a 5-megabase
888  window around the transcription start site:

Ap X Cg g
Zewithin5Mbof GA, X Co
890 To adapt ABC for PCHi-C data, we took advantage of the CHICAGO normalisation algorithm
891 and developed an imputation procedure in the normalised counts space based on the inferred
892 decay of interaction read counts with distance. As we do not expect the frequency of
893  enhancer-promoter contacts to fall below levels expected due to Brownian collision, for a given
894  pair of fragments involving a baited promoter, we selected the maximum between the
895 CHICAGO-normalised observed read counts (Nobs) and expected read counts Ney, estimated
896 as:
897 Nexp = Bmean/(Si*s)),
898  where Bmean is the CHICAGO-estimated Brownian noise level and s;and s,; and the bait- and
899  other end-specific scaling factors. For promoters that could not be baited in the Capture Hi-C
900 design and those that were filtered out due to QC fail, we estimated the expected normalised
901 read count directly from the interaction distance d, using the distance function f(d) fitted by
902 CHICAGO. Due to the strong bias of the distance function d towards the very short range
903 interactions (<1.5kbp) and to ensure we do not disregard long-distance interactions, in the
904 imputation procedure we introduced a contact frequency cap for candidate enhancers that are
905 closer than at least one fragment away from the bait equal to the contact frequency prediction
906  of distance function d at 1.5 kbp (median fragment length). Please refer to Additional File 1 in
907 the publication presenting the CHICAGO pipeline®® for the formal definition of these
908 parameters and their estimation procedures.
909
910 The imputed normalised read counts were used as Contact data in the ABC pipeline, and the
911 public H3K27ac and ATAC-seq data in ILC3s processed as described above were used to
912  compute Activity. To validate the ABCC approach, we took advantage of the high-throughput
913  CRISPRI-FlowFISH data from Fulco et al.*", which presented the impact of perturbing ~3,500
914  enhancer elements on the expression of 30 genes in K562 cells. Since PCHi-C data for K562
915  cells are not currently available, we used our previously published PCHi-C dataset in the
916  related primary cell type, erythroblasts®, to generate the ABC scores based on these data
917 and the ATAC-Seq and H3K27ac ChlP-Seq datasets for K562 cells from Fulco et al. In
918  comparison with the original ABC scores from Fulco et al. based on pooling conventional Hi-
919  C data from multiple cell types, our approach showed a higher precision (69.1% vs 58.3%) at
920 the same level of recall (58.3%) of CRISPRIi-FlowFISH-validated enhancer-promoter pairs
921  (Fig. S2). To select ABCC score cutoff, we optimised the Pearson correlation between per-
922  gene ABCC numerator and gene expression (Rasc-ce), in an approach inspired by Xu et al."®2,
923  We opted to use a single ABCC score cutoff of 0.023 in all analysed cell types, as it was close
924  tothe maximum Ragc-ce in each cell type, as well as to the cutoff of 0.02 that yielded an optimal
925  precision-recall of CRISPRIi-FlowFISH-validated enhancer-promoter pairs in K562 cells.

889 ABC Scoreg; =

926 Microarray gene expression data analysis

927  The microarray CEL files were downloaded from the GEO accession number GSE78896. The
928 CEL files were then analysed using AltAnalyze (http://www.altanalyze.org/). Probes were
929 filtered for a DABG (detection above background) as previously described'®®. Probes were
930 collapsed to the gene level and RMA-normalised using the AltAnalyze platform.
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931 RNA-seq data analysis

932 Human ILC3 RNA-seq data were downloaded from the GEO accession number GSE130775.
933 Salmon™* was used to quasi-map reads to transcripts. Reads were aligned to the hg38
934 genome assembly. The transcript counts were then imported and collapsed to gene counts
935  using Tx import.

936

937  Mouse ILC3 differential RNA-seq data analysis was performed using DESeq2'®. In brief, the
938 gene count matrices were downloaded from GEO (GSE120723) and the standard DESeq2
939  algorithm was run according to the vignette. Low-count genes were pre-filtered before running.
940 The following parameters were used to report significantly differentially expressed genes:
941 alpha = 0.05 and adjusted p-value < 0.05.

942

943 PIR enrichment for epigenomic features

944  For each gene, sets of adjacent PIRs for each gene (detected at the fragment or 5 kb
945  resolution or the merged PIR sets for each gene) were collapsed together to obtain “collapsed
946  PIRs” (cPIRs). Trans-chromosomal PIRs were removed. The observed proportion of cPIRs
947  overlapping epigenomic features of interest (ATAC-seq, H3K27ac or H3K4me3, respectively)
948 was computed using the foverlaps function from the data.table package in R. To obtain the
949  expectation for this proportion, we repeated this analysis for random cPIRs that were
950 generated by “transplanting” each set of all cPIRs for each gene to randomly selected genes
951 in a manner preserving the size and spatial localisation of the cPIRs with respect to each other
952  and the respective baited promoter fragment. This “transplantation” was repeated 100 times
953 for all genes (baited promoter fragments), and the mean proportion of random cPIRs
954  overlapping epigenomic features of interest (over 100 permutations), as well as the standard
955  deviation of this quantity, were compared with the proportion of overlap for the observed
956 cPIRs. Compared with the PIR enrichment estimation algorithm implemented in CHICAGO
957  (peakEnrichment4Features), this permutation procedure preserves not only each PIR’s
958 distance from bait, but also the spatial relationships between multiple PIRs of the same gene.

959 LOLA enrichment analysis

960 We performed LOLA v1.18"%® enrichment analysis to assess whether active and/or open
961  regulatory elements of multiCOGS-prioritised genes were enriched for specific transcription
962 factor binding sites and chromatin features compared to all genes tested by multiCOGS.

963

964 We defined active/open PIRs as those with overlapping ATAC-seq or H3K27ac ChIP-seq
965 peaks within significant PIRs identified by promoter capture Hi-C interactions (CHIiCAGO) or
966  predicted by our ABCC algorithm for multiCOGS-prioritised genes. The background universe
967 comprised all active/open PIRs from the same datasets for all tested genes. Regions were
968 converted to GRanges objects using the GenomicRanges package, and enrichment was
969 tested using the LOLA core pipeline with the LOLA Core RegionDB, using default parameters.
970  Significant enrichments were defined as those with g-value < 0.05.

971 RELI analysis

972 RELI®® (v0.1.1a) was used to find enrichment of genetic variants in promoter-interacting
973 regions (PIRs) that are accessible and marked with activating epigenetic markers (H3K27ac
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974  and ATAC-seq). In brief, RELI tests genomic features such as ATAC-seq, ChIP-seq, or PIRs
975 for statistically significant overlaps with known disease risk variants identified from genome-
976  wide association studies. Risk variants are expanded to linkage disequilibrium blocks (LD
977  blocks) with variants that have an R? value = 0.8. LD blocks are then intersected with the
978  genetic feature BED files. A null distribution is generated using randomly shuffled LD blocks
979  (n=1,000) and performing the intersection with the feature files. A p-value is generated by
980 comparing the observed number of intersections in the test to the null distribution.

981

982  Promoter-interacting regulatory elements were determined as input for RELI as follows. The
983 PIR sets were the union of PCHi-C interactions (CHICAGO score 2 5, binned to 5 kb or Dpnll
984  fragment-level resolution) and  ABC enhancers, excluding any trans-chromosomal
985 interactions. Regulatory elements were then defined as the union of peaks of open chromatin
986 and H3K27ac in ILC3 and CD4+ T cells (using ATAC-seq and ChIP-seq data as above). The
987  true intersection between these regulatory elements and PIRs in each cell type was then
988 determined using pybedtools intersect. The coordinates for these regions were lifted over from
989  hg38 to hg19 using UCSC liftOver (v. 377), then sorted and merged for use with RELI. RELI
990 was run against all 495 traits with = 10 independent risk loci and of European ancestry in the
991  GWAS Catalog. Bonferroni and Benjamini-Hochberg p-value correction were performed with
992  the Python package statsmodels, with alpha=0.05 (family-wise error rate of 5%; the probability
993 that at least one of the predictions is a false positive). Traits with the BH-adjusted p-value <
994  0.05 were defined as significant. For depicting RELI results, we labelled only significant traits
995  with enrichment =2.

996

997 Standard COGS

998 To run standard COGS*3' we adapted the code from the R package rCOGS

999  (https://github.com/ollyburren/rCOGS) to use the data.table framework instead of
1000  GenomicRanges for optimised speed and to enable both the standard COGS and multiCOGS
1001 analyses (see Code availability). We used linkage disequilibrium blocks calculated for
1002  GRCh38 from https://github.com/imacdon/LDblocks GRCh38"" and minor allele frequencies
1003 from the 1000 Genomes Project, European individuals. Protein-coding SNPs were identified
1004 using VEP version 99.2 (https://github.com/Ensembl/ensembl-vep). We obtained gene
1005 transcription start sites (Havana and Ensembl/Havana merge) from Ensembl GRCh38 release
1006 88 (March 2017), matching the version used to design the Dpnll promoter capture system. We
1007 included promoters irrespective of whether they were targeted in the capture system, enabling
1008 COGS to prioritise all gene targets where the causal variants fell near the gene promoter
1009 (defined as +/- 5 Dpnll fragments from the transcription start site). PIRs with CHICAGO
1010 interaction scores =5 or ABC scores of 20.04 were used as COGS input. The results for each
1011 protein-coding gene were linked across datasets using Ensembl gene IDs as primary
1012  identifiers. The Major Histocompatibility Complex was removed (GRCh38 6:28510120-
1013  33480577) prior to running COGS.

1014  Sources of prior mechanistic evidence for CD genes

1015 Datasets used to compare the COGS prioritised genes with previously functionally validated
1016  genes were: OpenTargets®” (L2G gene prioritisation score > 0.5 for five CD studies’"'%¢-1¢7),
1017  the IBDDB database of functionally validated targets®, a functional screen of IBD genes®',
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1018  experimentally validated IBD and CD genes from DisGeNET®? that had evidence
1019  “AlteredExpression”, “Biomarker”, “Posttranslationalmodification”, or “Therapeutic” or CD-
1020  containing exonic variants in a recent IBD exome study®®.

1021 Multivariate GWAS fine-mapping

1022  The Sum of Single Effects (SuSIE) model allows for multiple causal variants within a GWAS
1023  locus®®®®. We downloaded summary data for Crohn’s disease’’ (GCST004132), Ulcerative
1024  colitis”" (GCST004133), Inflammatory Bowel Disease’' (GCST004131), Celiac Disease'®?
1025 (GCSTO000612), Adult onset Asthma'®® (GCST007799) and Primary Sclerosing Cholangitis'®*
1026  (GCST004030) from the GWAS Catalog. and used LD block data for EUR from Iddetect
1027  (https://bitbucket.org/nygcresearch/Idetect-data/src/master/), which we liftOvered'®® to hg38 to
1028 divide the data into approximately independent blocks. We used EUR samples from phased
1029 1000 Genomes Phase 3 data, downloaded from
1030  https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html, to generate LD matrices. We
1031  used these matrices to first impute the summary statistic data within blocks using the published
1032  method®. For blocks with appreciable association signals (minimum p < 10°), we used the
1033  susieR package®®® to fine-map the data. We defined “detected signals” as those for which
1034  SuSiE could calculate a 95% credible set, and used the posterior inclusion probabilities (PIP)
1035 for each SNP for each signal thus detected as input for multiCOGS, described below. For the
1036  remaining blocks, or where susieR failed to find any signals meeting our criteria, we fine-
1037  mapped using the single causal variable approach, as previously described***', and used the
1038  posterior probabilities of association as input for multiCOGS.

1039

1040 multiCOGS

1041  We modified the COGS algorithm to account for the inclusion of multiple association signals
1042  in a region (“multiCOGS”). While in standard COGS, fragment-level scores are calculated by
1043 summing variant-level posterior inclusion probabilities (PIP, calculated as above) within a
1044  given fragment and LD block, multiCOGS considers each credible set within each LD block
1045 and forms an overall gene score as probability that at least one of the multiple fine-mapped
1046  signals is linked, through PCHI-C, to the gene of interest:

1047

1048 multiCOGSscoregens=1-[](1-Scoregene, bblock,credset)-

1049

1050 To reveal the contributions of the four categories of genomic loci underlying the prioritised
1051 genes (PCHi-C PIRs, ABC enhancers, promoter proximal regions and coding SNPs) we
1052  additionally ran multiCOGS on each category separately by specifying the feature.names
1053 argument in the compute_cogs function.

1054  Assessing the biological function of CD-prioritised genes

1055 The Gene2Func tool in FUMA (v1.5.2) was run using all multiCOGS genes with a score =0.5,
1056  Ensembl version 102, and GTex v8. As a background, we used all genes with assigned
1057 multiCOGS scores in ILC3s, of which 17,984 had a recognised Ensembl Gene ID in FUMA.
1058  Multiple testing correction was done via the Benjamini-Hochberg method (FDR) with an
1059  adjusted p-value cutoff of 0.05 and a minimum of 2 genes in a set. The MsigDB version was
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1060 v7.0. We additionally checked for enrichment of multiCOGS genes in The Inflammatory
1061 Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA)
1062  Framework®'. We filtered the 496 datasets of differentially expressed (DE) genes (adjusted p-
1063  value < 0.05 and absolute log2 fold change =2) that were compared across the same tissues
1064 and selected only sets with a maximum of 2,000 DE genes, to avoid mis-estimation of the
1065 normalised enrichment score, resulting in 24 datasets. Then we ran the enricher function in
1066 the R package clusterProfiler'®® (version 4.2.2) for all multiCOGS genes with a score 20.5.
1067

1068 Cell culture

1069  Mouse MNK-3 cells''? and the derived lines were cultured in DMEM with glucose/pyruvate/ L-
1070  glutamine supplemented with 10% fetal bovine serum, 1X penicillin-streptomycin, 10 ng/ml
1071 mouse recombinant IL-2 and IL-7 (R&D Systems), and 50 uM 2-mercaptoethanol. Media for
1072  CRISPRi MNK-3 (MNK-3i) cells contained 10 pyg/ml blasticidin S, and media for CRISPRa
1073  MNK-3 (MNK-3a) cells contained 10 pyg/ml blasticidin S and 1250 pg/ml hygromycin B. MNK-
1074  3i/a cells with sgRNA additionally received 2 pg/ml puromycin. MNK-3 activation was induced
1075  with 10 ng/ml IL-1B and 10 ng/ml IL-23 (R&D Systems).

1076

1077 CRISPR activation and interference

1078  MNK-3i cells were generated as described'®’ from parental MNK-3 cells. In brief, MNK-3 cells
1079  were transduced with lentivirus containing pLenti CMV rtTA3 Blast (Addgene #26429),
1080 selected by blasticidin S, and then infected with TRE3G-dCas9-KRAB-P2A-mCherry
1081 lentivirus. Following incubation with doxycycline, mCherry-positive cells were subcloned, and
1082  Western blot analysis confirmed robust expression of doxycycline-inducible dCas9-KRAB.
1083 MNK-3a cells were lentivirally engineered from MNK-3 to constitutively express the dCas9-
1084 VP64 fusion gene (Addgene #61425) and the MS2-p65-HSF1 transactivator complex
1085 (Addgene #89308), selected by blasticidin S and hygromycin B, and subcloned. All cells were
1086 tested for mycoplasma.

1087  Sequences for Cln3-targeting and scrambled gRNAs were based on published sgRNA
1088 libraries for MNK-3i'®® and MNK-3a'® are listed in Table S14 alongside RT-gPCR primer
1089  sequences. sgRNA sequences and their reverse complement were synthesised by Sigma,
1090 annealed, and cloned into lenti sgRNA(MS2)_puro optimised backbone (Addgene #73797) for
1091 MNK-3a or sgOpti (Addgene #85681) for MNK-3i using Esp3l digestion as previously
1092  described'”®. sgRNA plasmid integration was confirmed by Sanger Sequencing (Ohio State
1093 Comprehensive Cancer Center Genomics Core, Columbus, OH, USA). Lentiviral plasmids
1094 pMD2.G (Addgene #12259) and psPAX2 (Addgene #12260) were transfected along with the
1095 sgRNA plasmid into HEK293T cells (Mirus TransIT-293T transfection reagent). Lentivirus
1096 media was harvested and filtered 48-72 hr post-transfection. Puromycin selection began 36
1097  hr after lentiviral guide transduction into MNK-3i/a cells in the presence of polybrene. Bulk
1098 transduced populations were used for experiments and maintained in selection antibiotics.
1099 RT-gPCR confirmed repression (MNK-3i lines after 48 hr doxycycline incubation) or
1100  overexpression (MNK-3a) of target genes relative to Actb and respective scramble control
1101 (Trizol RNA isolation; Verso cDNA synthesis).
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1102 To induce CRISPRi guide expression, MNK-3i stably expressing CIn3-targeting and
1103  scrambled (Scr) gRNAs were incubated with 2 pg/ml doxycycline for 48 hr. To confirm
1104  stimulation, cells were harvested 21 hr after cytokine stimulation and stained for intracellular
1105 IL-17F and IL-22 (eBioscience IL-22 clone 1TH8PWSR and IL-17F clone eBio18F10; BD Life
1106  Sciences Cytofix/Cytoperm kit). Expression of IL-17F and IL-22 was assessed on
1107 FACSymphony (BD Life Sciences) and compared against a respective scrambled control.

1108 RNA-sequencing

1109 RNA was harvested by spin column (Qiagen RNeasy kit) for polyA-selected 2x150bp bulk
1110  RNAseq (lllumina platform, University of Cincinnati Genomics, Epigenomics, and Sequencing
1111 Core, Cincinnati, OH, USA). RNA-seq samples were generated in triplicate.

1112

1113  Raw paired-end RNA-seq reads were quantified using kallisto (v0.48.0) against the mouse
1114  reference transcriptome (GENCODE release M32, GRCm39). Transcript indices were first
1115  generated with kallisto index, and transcript abundances were quantified for each sample
1116  using kallisto quant with 100 bootstrap replicates. Transcript-level abundance estimates were
1117  subsequently summarised to the gene level in R using the tximport package (v1.30.0) together
1118  with a transcript-to-gene mapping file. Sample metadata, including experimental condition,
1119  CRISPR status, and replicate information, were compiled into a metadata table. Gene-level
1120  count matrices generated by tximport were then used as input for normalisation and differential
1121  expression analysis with DESeq2 (v1.38.0). Sample metadata, including experimental
1122  condition, CRISPR status, stimulation, and replicate information, were compiled into a
1123  metadata table.

1124  Gene-level count matrices were then used for normalisation and differential expression
1125 analysis with DESeq2 (v1.38.0). A variance-stabilising transformation (rlog) was applied for
1126  visualisation and principal component analysis to identify batch effects. Differential expression
1127  analyses were performed using linear models incorporating relevant covariates. For wild-type
1128  samples, stimulation status was tested while including CRISPR type as a batch covariate. For
1129 CRISPRa and CRISPRi samples, models including interaction terms between CRISPR
1130 treatment and stimulation were used to assess treatment-specific effects. Adjusted p-values
1131 were calculated using the Benjamini-Hochberg method, and genes with adjusted p-values <
1132  0.05 were considered statistically significant.

1133  RNA isolation and quantitative RT-PCR

1134  Total RNA was isolated from snap-frozen cells using QlAshredder columns and the RNeasy
1135  spin-column system (QIAGEN). Complementary DNA (cDNA) was synthesised using the
1136  High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific).

1137  Quantitative PCR was performed using TagMan chemistry with TagMan Fast Advanced
1138  Master Mix (Thermo Fisher Scientific) on a QuantStudio 5 Real-Time PCR System (Thermo
1139  Fisher Scientific). CIn3 expression was quantified using the TagMan Gene Expression Assay
1140 MmO00487021_m1 and normalised to the housekeeping gene Hprt using assay
1141 MmO03024075_m1. Reactions were performed in technical triplicate. Relative gene expression
1142  was calculated using the AACt method, with MNK-3 cells electroporated with GFP mRNA used
1143  as the reference control condition.
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1144  Design and generation of in vitro-transcribed mRNA

1145  The protein-coding sequence of mouse CIn3 was based on the longest annotated transcript
1146 (NM_001146311.3 / ENSMUST00000084589.11). A Myc epitope tag was inserted near the N
1147  terminus, between amino acid residues 3 and 4, within a predicted disordered and cytoplasmic
1148 region of the protein. The resulting coding sequence was synthesized and used for in vitro
1149  transcription by ApexBio.

1150 In vitro—transcribed mRNA was generated with a Cap 1 structure and incorporated N1-
1151 methylpseudouridine. Transcripts contained a poly(A) tail and were supplied in RNase-free
1152  sodium citrate buffer (pH 6.4) at a concentration of 1 mg ml~". Control mMRNA encoding GFP
1153  was generated using the same chemistry.

1154 mMRNA electroporation and cytokine stimulation

1155 MNK-3 cells were electroporated with IVT mRNA using the ATx electroporation system
1156  (MaxCyte). 1.0x107 cells were electroporated in a 100 pl reaction containing 20 ug of GFP or
1157  myc-tagged CIn3 mRNA (2 ug per 108 cells) using the “Optimization 8” program. Following
1158 electroporation, cells were rested for 15 min at 37 °C and then incubated for 15 min at 37 °C
1159  in pre-warmed medium supplemented with 10 uyg/mL DNase | (Thermo Fisher Scientific), 5mM
1160 MgCl,, and 1 mM CaCl, before transfer to complete MNK-3 culture medium.

1161 At 24 hr post-electroporation, cells were seeded at 3.0x10° cells per well in 24-well plates.
1162 Transfected cells were cultured for an additional 24 hr in the presence or absence of
1163  recombinant mouse 10 ng/mL IL-18 and 10 ng/mL IL-23 (R&D Systems). At 48 hr post-
1164  electroporation, supernatants were collected, clarified by centrifugation, and stored at —20 °C.
1165  Viable cell numbers were determined by trypan blue exclusion.

1166 ELISA assay

1167  Cytokines in cell culture supernatants were quantified by ELISA using DuoSet kits for mouse
1168  IL-17,1L-22, and GM-CSF (R&D Systems) according to the manufacturer’s instructions. When
1169  necessary, samples were diluted to fall within the dynamic range of the standard curve.
1170  Absorbance was measured at 450 nm with wavelength correction at 560 nm using a GloMax
1171 Discover microplate reader (Promega). Cytokine concentrations were determined by
1172  interpolation from standard curves using a four-parameter logistic fit.

1173 Data were analysed using GraphPad Prism. Statistical significance was assessed using
1174  unpaired Welch’s t-tests (single experiment) or linear mixed-effects models with genotype as
1175  afixed effect and experiment as a random effect (multiple experiments).

1176  Immunoprecipitation and immunoblotting

1177  MNK-3 cells were electroporated with GFP or myc-tagged CIn3 mRNA as described above
1178  and harvested 24 hr later. Cells were lysed in a non-denaturing buffer containing 50 mM Tris-
1179  HCI, 150 mM NaCl, 1 mM EDTA, 1% n-dodecyl-B-D-maltoside (DDM), 10% glycerol, and
1180 protease phosphatase inhibitors (Thermo Fisher Scientific). Lysates were clarified by
1181  centrifugation at 4 °C.

1182  Myc-tagged proteins were enriched by incubation of clarified lysates with Myc-Trap agarose
1183  beads (ChromoTek) for 1 hr at 4 °C with rotation. Beads were washed in buffer containing
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1184  0.05% DDM, and bound proteins were recovered for analysis. Input, unbound, and bound
1185 fractions were quantified by BCA assay (Thermo Fisher Scientific), denatured in LDS sample
1186  buffer with reducing agent, and resolved by SDS-PAGE on 4-12% Bis-Tris gels (Thermo
1187  Fisher Scientific). Proteins were transferred to PVDF membranes, stained with Revert 700
1188  Total Protein Stain (LI-COR), and imaged prior to immunoblotting.

1189 Membranes were blocked and probed with antibodies against myc tag (Cell Signaling
1190 Technology #2278, 1:1000) or GFP (Invitrogen #A-11122, 1:2000). Fluorescent secondary
1191  antibodies were used at 1:10,000 and blots were imaged using the Odyssey DLx Imaging
1192  System (LI-COR).

1193  Querying a CRISPRI screen for regulators of ILC3 inflammatory
1194  response for multiCOGS-prioritised genes

1195  The analysis is based on data from Table S5 in Brown et al'“”, containing a gene-level analysis
1196  of a CRISPRI screen in MNK-3i cells. In the experiments performed by Brown et al., MNK-3i
1197  cells were induced with doxycycline to express CRISPRi (dCas9-KRAB) machinery and were
1198 transduced with a lentiviral gRNA library targeting 20,003 genes. The cells were then
1199  stimulated by IL-23 and IL-13 and sorted into subpopulations expressing high and negative
1200 levels of the inflammatory cytokine IL-22 released by activated ILC3s. The quantity of each
1201 sgRNA in IL22V9 and IL22"9" cells was detected through PCR amplification and next-
1202  generation sequencing. To focus on sgRNA targeting expressed genes, the genes were
1203 filtered to those with an average transcript per million (TPM) of 22.5 in RNAseq data from
1204  MNK-3i+scramble (sgSCR) cells treated with dox (48 hr) and stimulated with 10 ng/ml IL-1(3/23
1205 (21 hr). The “test” command from MAGeCK (version 0.5.9.5) "' was applied to generate
1206  normalised (method = total) gene-level rankings using Robust Rank Aggregation (RRA). The
1207  sgRNA enriched in the IL22N¢ population pointed towards genes positively regulating 1L-22
1208  production, implicating them in ILC3 inflammatory response. In contrast, sgRNA showing
1209  enrichment in the IL-22"9" population points to ILC3 ‘anti-inflammatory’ genes.

1210

1211 In the present study, we first filtered the genes in Table S5 from in Brown et al'® to those that
1212  had been profiled in the multiCOGS experiment, based on an identical gene name between
1213  the mouse and human data, leading to a total set of 6438 genes. The genes were ranked
1214  based on their MAGeCK score for positive or negative regulation of IL-22 production. We then
1215 ran GSEA against each of these rankings, for the 142 multiCOGS genes for inflammatory
1216 ftraits, using the “pathway” function in MAGeCK. We considered significant CRISPRI genes to
1217  be those with an adjusted p-value < 0.05 in the gene-level RRA analysis.

|125

1218  Data availability

1219 Raw PCHi-C data generated in this study for ILC3s are deposited in the Gene Expression
1220  Omnibus (GEOQO) under the accession number GSE216267. Processed R data files containing
1221  CHICAGO scores at the fragment-level and 5kb-binned resolution can be found in the same
1222  repository. PCHi-C data for CD4+ T cells were deposited to the European Genome-Phenome
1223  Archive (EGA) under managed access in accordance with the conditions of donor consent,
1224  under the accession number EGAS50000001316. Raw RNA-seq reads and counts for the
1225 CLN3 CRISPRIi/a experiments in MNK-3 cells are deposited in GEO under the accession
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1226  number GSE313942. Supplementary Data files, including significant CHICAGO interactions
1227  at fragment-level and 5kb resolution in ILC3 and CD4+ T cells, ABCC pairs in both cell types
1228 and DESeq2 objects for the CLN3 CRISPRIi/a experiments, were deposited to Open Science
1229 Framework (https://osf.io/aq9fb).

1230 Code availability

1231 Most  scripts for  analyses used in the paper are available  at
1232 https://github.com/vmalysheva/lLC3 and https://github.com/malyshevalab/hILCs CHi-C, with
1233 the following exceptions: CHIC-ABC (https://github.com/pavarte/PCHIC-ABC-Prediction),
1234 RELI (https://github.com/tacazares/spivakov pchic ILC CD4), SuSiE
1235  (https://github.com/chr1swallace/cd-finemapping-scripts), COGSs and multiCOGS
1236  (https://github.com/FunctionalGeneControl/multiCOGS).
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Figure 1. Compendium of promoter interactions in ILC3s.A. Outline of the study.
B. Chromosomal interaction binning strategy. The analysis is done in two modes: fragment resolution
(no binning) and 5kb binning. In the 5kb binning mode, the baited (captured) fragment containing a gene
promoter, is left unbinned to enable high-resolution linkage between the promoter and distal enhancers.
Interactions uniquely detected in one mode only are shown as red arcs, and those detected in both
modes are shown as grey arcs. The numbers of significant interactions are given for each mode
individually and merged across both modes (see Methods for details). C. Comparison of promoter-PIR
distance distributions for PIRs detected at fragment and 5kb resolution. D. Example of chromosomal
interactions for the SMYD2 gene at fragment and 5kb resolution. The inset shows a zoomed-in view of
the promoter interactions detected at fragment resolution. E. Example of multiple degrees of contact
sharing between alternative promoters for the INPP4B gene. Captured alternative promoters are
indicated by red arrows and blue dashed lines. The transcripts driven by these promoters (based on
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1704  Ensembl 94) are shown in blue, and other INPP4B transcripts are shown in grey. Transcripts for
1705  processed pseudogenes are shown in light blue and lincRNAs in green. PIRs are categorised as fully
1706  shared between alternative promoters (dark grey arcs), partially shared (light grey arcs) or distinct (red
1707  arcs). F. Enrichment of PIRs for the markers of active enhancers and promoters (H3K27ac and
1708 H3K4me3) and accessible chromatin (ATAC) in hILC3s. The error bars represent 95% confidence
1709 intervals, accounting for error propagation. G. Characterisation of active and/or open ILC3 PIRs at
1710  merged fragments as per Ensembl annotations and CTCF motifs.
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1713  Figure 2. Combining ABCC and CHIiCAGO to link distal elements with target genes.
1714  A. Schematic depicting the adaptation of the Activity-By-Contact (ABC) model for use with PCHi-C data,
1715  termed Activity-By-Captured-Contact (ABCC). B. Correlation between gene expression and ABC
1716 numerator score summed across all predicted enhancers per gene. The dashed line shows a mixed
1717  model fit via restricted maximum likelihood, with the shaded area around the line representing the
1718  confidence interval. C. Interaction distance comparison across CHiCAGO-specific, ABCC-specific and
1719  shared interactions. D. Enrichment for markers of active/open regulatory elements in CHiCAGO-
1720  specific, ABCC-specific, and shared regulatory elements. E, F. Representative examples of CHICAGO-
1721 and ABCC-detected contacts (for SLU7 and ZMAT2 promoters). The dashed line shows expected
1722  counts estimated using the CHICAGO distance function. PIRs detected with CHICAGO at 5 kb
1723  resolution are shown as red dots and shading, with ABCC as blue dots and shading and by both
1724  approaches as green points and shading. Black filled dots represent imputed counts considered by
1725  ABCC, corresponding to the maximum value between observed and expected counts. Unfilled dots
1726  represent observed counts falling below expected values.
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1729

1730  Figure 3. Differential enhancer-promoter interactions between ILC3s and CD4+ T cells.

1731 A. Volcano plot of differential interactions between ILC3s and CD4+ T cells detected by Chicdiff,
1732 highlighting those of selected immune-related genes (CLN3, ILT1R1, GADD45A, NFKB, IL23R, PLCL1,
1733  IKZF1). B. Relationship between differential expression (DESeq2, adjusted p < 0.05) and differential
1734  wiring of promoter contacts (Chicdiff, adjusted p < 0.05). C. Gene Ontology enrichment analysis of
1735  genes with stronger contacts in ILC3s (top), CD4+ T cells (bottom) or a mixture of contacts that are
1736  stronger in either cell type (middle), showing biological processes related to immune cell activation,
1737  adhesion, and differentiation. Bubble size reflects the number of genes; colour indicates adjusted p-
1738  values. The bar plot shows the overlap between differentially wired genes (as evaluated by Chicdiff) in
1739  ILC3s and CD4+ T cells.
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Figure 4. Statistical integration of PCHi-C results in ILC3s and CD4+ T cells with GWAS enables
gene prioritisation for Crohn’s disease (CD). A. Schematic of the RELI algorithm used for estimating
the enrichment of genetic risk loci within PIRs. B. RELI enrichment of risk variants in ILC3 vs CD4+ T
cell PIRS across 495 diseases and traits. Traits with log1o(BH corrected p-value in ILC3s) < 0.05 are
labelled. C. Stratified LD score regression analysis for enrichment of CD risk heritability at PIRs of ILC3s
and CD4+ T cells. D. Schematic of the multiCOGS algorithm. E. Manhattan plot of multiCOGS gene
prioritisation scores for CD risk based on GWAS integration with promoter interactions in ILC3s. Genes
with multiCOGS scores above 0.5 are labelled. F. Comparison of multiCOGS scores for CD obtained
with promoter interactions detected in ILC3s and CD4+ T cells. Prioritised genes are labelled in green
(multiCOGS scores > 0.5 in ILC3s only), blue (multiCOGS scores > 0.5 in CD4+ T cells only) and black
(multiCOGS scores > 0.5 in both cell types). All other genes are shown as grey dots.
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1757  Figure 5. Characterisation of genes associated with CD risk prioritised by multiCOGS in ILC3s
1758  and their putative TF regulators. A. Significant sets of multiCOGS-prioritised genes predicted to bind
1759  specific TFs in their promoter regions, according to the MSigDB TF targets database, detected using
1760  the GENE2FUNC pipeline in FUMA'?'. TF sets are labelled (rows), with the proportion of all multiCOGS
1761 genes per set and the associated p-values shown on the top panel, and the gene names on the bottom
1762  panel. B. Enrichment analysis for TF binding sites at active PIRs for genes prioritised by multiCOGS
1763  vs active PIRs of all genes submitted to multiCOGS analysis. C. Expression of TFs enriched at the PIRs
1764 of prioritised genes. Outliers are removed for clarity. D and E. Examples of genes prioritised by
1765  multiCOGS for CD (IKZF1, and IL1R1), showing patterns of TF binding in lymphoblastoid cell lines, and
1766  posterior probability profiles of classic COGS and multiCOGS. Vertical dark blue and light blue bands,
1767 respectively, highlight annotated gene promoters and promoter-proximal regions (+/- 5 restriction
1768  fragments) considered in (multi)COGS analysis in addition to PIRs. Vertical red bands highlight PIRs
1769  harbouring CD risk-associated SNPs with high posterior probability of inclusion. Orange arcs
1770  correspond to significant interactions (CHICAGO score > 5) at 5kb resolution for IKZF1 (E) and IL1R1
1771 (F), respectively.
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Figure 6. Evidence for the role of CLN3 in ILC3 inflammatory function. A. Interaction profile of the
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1777  of annotated CLN3 promoters and promoter-proximal regions (+/- 5 restriction fragments) considered
1778 by multiCOGS in addition to PIRs. Red band highlights the ILC3-specific PIR containing CD-associated
1779  SNPs with high posterior probability of inclusion. Orange and purple arcs, respectively, depict significant
1780 interactions (CHICAGO score > 5) in ILC3s at 5kb and single-fragment resolution. B. Up- and down-
1781 regulation of CIn3 and Apobr upon TL1A stimulation in mouse primary ILC3s (RNA-seq data from
1782  Ref.'®) and upon IL-23/IL-1B stimulation in CLN3-targeted CRISPRi and CRISPRa MNK-3 cells (RNA-
1783  seq data from this study). C. Differential expression of genes in IL-23/IL-1B-stimulated CIn3-CRISPRa
1784  MNK-3 cells relative to scrambled gRNA controls. Red dots - differentially expressed genes (stimulated
1785  CIn3-CRISPRa DEGs, DESeq?2 adjusted p-value < 0.05), with other genes shown as green dots. D.
1786  Network-style representation of GO term enrichment analysis of stimulated CIn3-CRISPRa DEGs. E.
1787  Changes in the expression of stimulated CIn3-CRISPRa DEGs (dots) upon either IL-23/IL-1B or TL1A
1788  stimulation of unperturbed MNK-3 cells (data from Ref.'%). F. Evidence that CIn3 overexpression
1789  decreases inflammatory cytokine secretion. MNK-3 cells were electroporated with GFP mRNA (black)
1790  or CIn3-myc mRNA (red), then cultured either unstimulated (top row) or stimulated with IL-1B and IL-23
1791 (bottom row) for 24 hr. Cytokine concentrations (IL-17, IL-22, GM-CSF) in culture supernatants were
1792  quantified by ELISA. Each point represents an individual biological replicate (n=10 per condition). The
1793 data shown are from one representative experiment of three independent experiments performed.
1794  Dotted line indicates the lower limit of quantification for each assay. Statistical significance was
1795  assessed using an unpaired Welch’s t-test. p<0.01 (**), p<0.001 (***), p<0.0001 (****).
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1799  Figure 7. A compendium of prioritised genes in ILC3s for six autoimmune diseases.

1800  A. MultiCOGS results across asthma, primary sclerosing cholangitis (PSC), Celiac Disease, Crohn’s
1801 Disease (CD), Inflammatory Bowel Disease (IBD) and Ulcerative Colitis (UC) in ILC3 cells. Rows
1802 represent each gene that scored at least 0.5 in one of the traits. Colours show the multiCOGS score in
1803  each trait. Clustering on genes (rows) and traits per cell type (columns) is based on Euclidean distance.
1804  B. Significant hallmark pathways identified in at least one of the traits in ILC3 cells by GO term analysis.
1805  C. Schematic of the MNK-3 CRISPRi screen for detecting genes involved in the regulation of IL-22
1806  signalling'?®. D. multiCOGS genes for all six traits visualised among the CRISPRIi results, which are
1807  ranked by evidence of positive IL-22 regulation in the MNK-3i cells. The multiCOGS genes with p < 0.05
1808 in the screen are labelled in red. MultiCOGS genes driving GSEA signal (“leading edge”) are labelled
1809  ingrey. E. Similar to D, but for genes ranked by score for negative IL-22 regulation in the MNK-3i screen.
1810  Red labels indicate multiCOGS genes significant in the screen at p < 0.05. Since GSEA for multiCOGS
1811 genes among IL-22 repressors was not significant, the leading edge genes are not labelled. CD: Crohn’s
1812  Disease, IBD: Inflammatory Bowel Disease, GSEA: Gene Set Enrichment Analysis, PSC: primary
1813  sclerosing cholangitis, UC: Ulcerative Colitis.
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1819  Figure S1. Compendium of promoter-enhancer interactions in ILC3s. A. UMAP of CHICAGO
1820  scores detected for PCHi-C in ILC3s versus public data in 17 primary human blood cell types®°. B.
1821 Scheme representing the classification of PIRs detected at alternative transcription start sites (ATSS)
1822  of the same gene: ‘fully shared’ (shared across all captured ATSSs), partially shared and distinct
1823 (unique to a single ATSS). C. Pie chart showing the degree of enhancer sharing across alternative
1824  transcription start sites (ATSS) for short-range contacts. D. Distance distribution of ATSS-specific and
1825  shared PIRs at 5kb binned (baits unbinned) resolution. Top panel - interactions up to 1Mb (Kruskal-
1826  Wallis test p < 2.22e-16; pairwise Wilcoxon test p = 8.68e-6 [partially shared vs fully shared], p = 4.46e-
1827 8 [partially shared vs distinct] and p < 2.22e-16 [fully shared vs distinct]; bottom panel - interactions up
1828  to 50kb (Kruskal-Wallis test p = 7.65e-5; pairwise Wilcoxon test p = 9.8e-5 [partially shared vs fully
1829  shared], p = 6e-4 [partially shared vs distinct] and p = 1 [fully shared vs distinct]). E. Correlation between
1830  gene expression and number of regulatory elements identified in CHICAGO PIRs at fragment and 5kb
1831 (solitary baits) resolution.
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Figure S2. Benchmarking the ABCC approach with public data. A. Density distribution of promoter
interactions inferred from observed PCHi-C contact frequencies (pink) and those imputed using the
CHICAGO distance function (cyan) across genomic interaction distances. B. Contact frequency
distributions stratified by distance. Observed PCHi-C contacts are shown in green, imputed contacts
(using expected frequencies estimated using the CHICAGO distance function) are shown in blue.
Similarly to standard ABC, frequency capping is introduced for short-range imputed contacts (<5kb). C.
Precision—-recall curves benchmarking the predictive performance of different scoring approaches for
enhancer—promoter interactions in erythroblasts. Curves compare the scoring across: CHiIiCAGO-
detected contacts, Activity alone, Distance alone, the conventional ABC score, and PCHi-C-based
ABCC score in two modes: “matched” - using PCHi-C cell-type specific profile for erythroid cells and
“swapped”, in which a PCHi-C dataset with a similar read coverage from a different cell type, CD4+ T
cells, is used instead. MCC: Matthews correlation coefficient, an alternative to the AUC metric that is
more informative under class imbalance and more sensitive to performance at a fixed decision
threshold'”®. D. Enrichment of epigenetic markers at PIRs: DNase - chromatin accessibility and
H3K27ac - active enhancers (left panel) and distance distribution of ABCC-specific, PCHiC-specific and
shared enhancer-promoter links (right panel) in K562 cells for 0.023 ABCC threshold. E. Hierarchical
clustering heatmap of enhancer—promoter interactions predicted with ABCC across cell types
(erythroblasts, B cells, CD4+ T helper cells, CD8+ T cells).
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Figure S3. Genes with differential contacts in ILC3s and CD4+ T cells. A. Hierarchical clustering of
ILC3s and CD4+ T cells PCHi-C datasets. B-D. Examples of captured promoters with differential wiring
between ILC3s and CD4+ T cells: promoters with stronger (B) and weaker (C) contacts in ILC3s
compared with CD4+ T cells, as well as with both types of contacts (D).
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Figure S4. Supplementary information for the RELI analysis of risk loci enriched in ILC3 and
CD4+ T-cell PIRs. A-B. RELI enrichment of risk variants in ILC3s (A) and CD4s PIRs (B) across 495
diseases and traits. Traits with log10(BH corrected p-value in ILC3s) < 0.001, number of loci per trait >
10, and enrichment > 2.2 are labelled. C. Adjusted p-value of RELI enrichment of risk variants ILC3s vs
CD4s PIRs across 495 diseases and traits. Traits with log1o(BH corrected p-value in ILC3s) < 0.05 are
labelled.
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Figure S5. MultiCOGS prioritises gene sets in Crohn’s Disease. A. Manhattan plot showing
multiCOGS for CD risk based on promoter contacts in CD4+ T cells. B. Heatmaps of region
contributions to multiCOGS scores in ILC3s and CD4s in CD. C. lllustration of genes that were only
prioritised for CD with the addition of ABCC, in ILC3s and CD4s. In each graph, the multiCOGS score
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with and without ABCC is plotted for all genes that were prioritised in the full multiCOGS run (score >
0.5 with ABCC). D. lllustration of multiCOGS prioritisation of IKZF1 and DDC in ILC3s in the 7p locus.
In this locus, multivariate fine mapping identifies two credible sets of variants (yellow bars), whereas
univariate fine mapping only detects one. PCHi-C interactions connect these likely causal variants to
the IKZF1 promoter (first blue bar). However, ABCC interactions also connect one of the credible sets
to the DDC promoter (second blue bar). Thus, multiCOGS prioritises both genes, whereas classic
COGS prioritises only IKZF1.
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Figure S6. Comparison of gene prioritisation for Crohn’s Disease in classic COGS versus
multiCOGS. A. Comparison of prioritised gene sets between classic COGS, classic COGS plus
imputation, and multiCOGS (i.e. imputation plus multivariate fine mapping, processed via the
multiCOGS algorithm) for CD. Shown for ILC3s and CD4+ T cells. B. Comparison of COGS scores and
multiCOGS scores for genes in ILC3 cells (top) and CD4+ T cells (bottom) for CD. Green labels indicate
genes prioritised in multiCOGS only, blue in classic COGS only, and black in both. C. Plot of the JAK2
locus, showing the shift of the most likely causal variant from the promoter of JAK2 to a region around
20kb upstream of the promoter upon multivariate fine mapping, leading to a lower multiCOGS vs classic
COGS score. No chromosomal interactions were observed between this region and the JAK2 promoter
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