

Mitochondrial Protein Carboxyl-Terminal Alanine-Threonine Tailing Promotes Human Glioblastoma Growth by Regulating Mitochondrial Function

Bei Zhang^{1,†}, Ting Cai^{1,†}, Esha Reddy¹, Yuanna Wu¹, Isha Mondal², Yinglu Tang¹, Adaeze
cholastical Gbufor¹, Jerry Wang^{1,‡}, Yawei Shen^{3,4}, Qing Liu^{3,4}, Raymond Sun², Winson S Ho²,
Rongze Olivia Lu^{2,*}, Zhihao Wu^{1,*}

6

⁷ ¹ Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern
⁸ Methodist University, Dallas, TX 75275, USA.

⁹ ² Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA.

³ Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.

¹¹ ⁴ Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.

12

13

14 [†] These authors contributed equally.

¹⁵ [‡] Current address: McCombs School of Business, University of Texas at Austin, Austin, TX
¹⁶ 78712, USA

17 * Correspondence authors: Rongze Olivia Lu (rongze.lu@ucsf.edu); Zhihao Wu
18 (zhihaowu@smu.edu)

19

20 **Highlights**

21 • Glioblastoma (GBM) cells have a disturbed RQC pathway

22 • msiCAT-tailing on ATP5 α in GBM cells increases mitochondrial membrane potential

23 • This msiCAT-tailing prevents MPTP opening

24 • ATP5 α msiCAT-tailing also inhibits drug-induced apoptosis in GBM cells

25 • Blocking msiCAT-tailing impedes the overall growth of GBM cells

26

27 **Abstract**

28 The rapid and sustained proliferation of cancer cells necessitates increased protein production,
29 which, along with their disrupted metabolism, elevates the likelihood of translation errors.
30 Ribosome-associated quality control (RQC), a recently identified mechanism, mitigates
31 ribosome collisions resulting from frequent translation stalls. However, the precise
32 pathophysiological role of the RQC pathway in oncogenesis remains ambiguous. Our research
33 centered on the pathogenic implications of mitochondrial stress-induced protein carboxyl-
34 terminal alanine and threonine tailing (msiCAT-tailing), a specific RQC response to translational
35 arrest on the outer mitochondrial membrane, in glioblastoma (GBM). The presence of msiCAT-
36 tailed mitochondrial proteins was observed commonly in glioblastoma stem cells (GSCs). The
37 exogenous introduction of the mitochondrial ATP synthase F1 subunit alpha (ATP5 α) protein,
38 accompanied by artificial CAT-tail mimicking sequences, enhanced mitochondrial membrane
39 potential ($\Delta\Psi_m$) and inhibited the formation of the mitochondrial permeability transition pore
40 (MPTP). These alterations in mitochondrial characteristics provided resistance to staurosporine
41 (STS)-induced apoptosis in GBM cells. Consequently, msiCAT-tailing can foster cell survival
42 and migration, whereas blocking msiCAT-tailing via genetic or pharmacological intervention can
43 impede GBM cell overgrowth.

44

45 **Impact Statement**

46 The Carboxyl-Terminal Alanine-Threonine-tailed protein ATP5 α helps glioblastoma
47 mitochondria maintain a high membrane potential and keep the permeability transition pore
48 closed, thereby promoting tumor growth and increasing resistance to apoptosis.

49

50

51

52 **Introduction**

53 Proteins are vital to biological processes, and their overproduction is particularly crucial for
54 rapidly proliferating cells, such as those found in cancer. To cope with this increased demand,
55 cancer cells extensively reform the initiation, elongation, and termination phases of their protein
56 synthesis (1). However, heightened protein translation elevates the chance of errors (2). Coupled
57 with metabolic perturbations such as energy fluctuations and redox imbalances, the capacity to
58 address disruptions during translation becomes indispensable. Ribosome-associated quality
59 control (RQC) is a recently discovered suite of rescue mechanisms in eukaryotes that detect and
60 resolve stalled, decelerated, or collided ribosomes during translation elongation or termination (3,
61 4).

62 RQC is a multi-step process initiated by the ZNF598/RACK1 complex, which recognizes
63 the distinctive 40S-40S interface on collided ribosomes, triggering the ubiquitination of specific
64 40S subunit proteins (5, 6). Subsequently, the ASC-1 complex separates the leading ribosome (7,
65 8). Following this, events that transpire include: ribosomal subunit dissociation and recycling (9),
66 modification of the nascent peptide chains by C-terminal alanine and threonine addition (CAT-
67 tailing) (10), release of CAT-tailed products from the 60S subunits by ANKZF1/VMS1 (11), and
68 degradation of aberrant peptides by the Ltn1/VCP/NEMF complex (4). The functional
69 significance of CAT-tailed proteins produced during RQC remains incompletely understood.
70 They may facilitate Ltn1-mediated ubiquitination (12) and promote the degradation of defective
71 nascent peptides by exposing lysine residues (13, 14). Nonetheless, they are also prone to
72 forming detergent-insoluble aggregates (15, 16). Furthermore, contingent upon the nature of the
73 original protein and its subcellular location, CAT-tailed proteins might possess specific, albeit
74 currently unclear, functions. Notably, CAT-tailed proteins have been implicated in the

75 pathogenesis of several neurodegenerative diseases, indicating a significant role in their
76 progression (17-19).

77 Cancerous cells exhibit increased translation irregularities, including stop codon
78 readthrough (20), frame-shifting (21), and oxidative stress-induced ribosomal arrest (22), which
79 suggests a potential role for the RQC pathway. While CAT-tail modification of mitochondrial
80 proteins due to compromised RQC has been noted in HeLa cells, the mechanistic involvement of
81 RQC factors in cancer biology remains largely unexplored (17). Notably, the expression profile
82 of various RQC factors (e.g., ASCC3, ABCE1, ANKZF1, and VCP) is dysregulated in cancer
83 (23-26). Interestingly, RQC factors can display opposing functions in cancer development and
84 suppression depending on specific circumstances, with some factors like ABCE1, ASCC3, and
85 VCP suppressing cancer cell growth upon downregulation (23, 24, 26), while others like
86 NEMF/Clbn and ZNF598 may promote it upon inhibition (27, 28). This suggests a nuanced,
87 context-dependent role for RQC components in cancer cells, influenced by both genetic and
88 environmental factors. A recent study investigated the mechanism of ANKZF1 in mitochondrial
89 proteostasis and its impact on glioblastoma multiforme (GBM) progression (29). However, this
90 study employed a non-physiological mitochondria-targeted GFP to induce matrix proteotoxicity,
91 leaving the role of endogenous mitochondrial proteins in this process ambiguous.

92 Mitochondrial stress leads to co-translational import anomalies, eliciting widespread
93 CAT-tailing (mitochondrial stress-induced CAT-tail or msiCAT-tail) of nuclear-encoded
94 mitochondrial proteins, including C-I30 (Complex-I 30 kDa subunit protein, NDUS3) (17, 30).
95 The functional ramifications of these msiCAT-tailed proteins in mitochondrial biology remain
96 poorly elucidated. Given that CAT-tailing imparts new properties to proteins, it may contribute to
97 the distinctive features of cancer cell mitochondria, such as hyperpolarization (31, 32) and

98 resistance to drug-induced apoptosis linked to a high mitochondrial membrane potential ($\Delta \phi_m$)
99 (33-35). This membrane potential across the inner membrane of mitochondria, essential for ATP
100 production by OXPHOS, is sustained by the electron transport chain (Complexes I to IV), which
101 pumps protons (H^+) into the intermembrane space (36), and ATP synthase (Complex V), which
102 leverages this gradient (37). While numerous malignant cells exhibit reduced OXPHOS despite
103 high energy demands (38), the mechanisms by which they maintain or elevate $\Delta \Psi_m$ remain an
104 unresolved question (31).

105 In this study, we investigated msiCAT-tailing modification on the mitochondrial ATP
106 synthase F1 subunit alpha (ATP5 α). We discerned that msiCAT-tailed ATP5 α is present in GBM.
107 The mimic short-tailed ATP5 α (ATP5 α -AT3 in subsequent studies) can integrate into the ATP
108 synthase, leading to an augmented $\Delta \Psi_m$ and attenuated mitochondrial permeability transition
109 pore (MPTP) assembly and opening. Consequently, msiCAT-tailed ATP5 α enhances GBM cell
110 resistance to programmed cell death induced by staurosporine (STS) and temozolomide (TMZ),
111 thereby fostering cancer cell survival, proliferation, and migration. Conversely, impeding
112 msiCAT-tailing diminishes cancer cell growth and resensitizes GBM cells to apoptosis. Our
113 findings underscore the involvement of CAT-tailed mitochondrial proteins in tumorigenesis and
114 emphasize the significance of the RQC pathway in oncobiology. These outcomes suggest that
115 components and products of the RQC pathway may offer promising therapeutic targets for GBM.

116

117 **Results**

118 ***Presence of msiCAT-tailed Proteins in Glioblastoma Cells***

119 While dysregulation of individual ribosome-associated quality control (RQC) factors is
120 documented across various cancers (e.g., adenocarcinoma, non-small cell lung, prostate, and
121 colon carcinomas), a comprehensive analysis of the RQC pathway in glioblastoma (GBM) has
122 been lacking (23-26). Our analysis of transcriptomic data from a cohort of 153 GBM patients and
123 206 healthy controls, sourced from public datasets, revealed significantly elevated expression
124 (logFC (fold change) > 1 ; adj.P.Val < 0.001) of RQC pathway genes, such as *ABCE1*, *ASCC1-3*,
125 *RACK1*, and *VCP*, in GBM cells(39). Conversely, *ANKZF1* was significantly downregulated
126 (logFC = -0.43, adj.P.Val = 0.0005) (Figure 1A, Table 1). The expression change in these genes
127 implies activation of the RQC pathway and potential accumulation of CAT-tailed proteins in
128 GBM. Mitochondrial stress-induced protein mitochondrial Complex-I 30 kDa (C-I 30, also
129 known as NDUS3), an endogenous RQC substrate with msiCAT-tails, was previously identified
130 in HeLa cells (17). Examination of patient-derived GBM stem cells (GSCs) and normal neural
131 stem cells (NSCs) revealed that GSCs, unlike NSCs, exhibited several msiCAT-tailed
132 mitochondrial proteins, including NDUS3, COX4 (Cytochrome c Oxidase subunit 4), and ATP5 α
133 (ATP synthase F1 subunit alpha). Consistent with the detection of these msiCAT-tailing signals,
134 increased NEMF (Nuclear Export Mediator Factor) levels (10) and decreased ANKZF1 (Ankyrin
135 Repeat and Zinc-finger Peptidyl tRNA Hydrolase 1) expression (11) were observed in patient-
136 derived GSCs (Figure 1B), further indicative of enhanced CAT-tailing activation, mirroring
137 bioinformatics findings in GBM samples. A murine GBM model exhibited analogous RQC
138 pathway alterations, with increased NEMF and decreased ANKZF1 expression in transplanted
139 SB28 gliomas compared to normal brain tissue (Figure 1 – Figure Supplement 1A, B).

140 The subsequent experiments were conducted using two GBM cell lines, SF268 (SF in
141 figures) (40) and GSC827 (GSC in figures) (41), and two control cell lines, SVG p12 (SVG in
142 figures) and Normal Human Astrocytes E6/E7/hTERT (NHA in figures) (42). RQC protein
143 expression analysis revealed decreased ANKZF1 and increased ABCE1, ASCC3, and NEMF
144 expression in GSC827 and SF268 cells, consistent with findings in patient-derived GSCs (Figure
145 1 – Figure Supplement 1C). Intriguingly, induction of CAT-tailing on a Flag-tagged β -globin
146 reporter via a non-stop protein translation system demonstrated significantly higher CAT-tailed
147 protein (β -globin-nonstop) production in GBM cells (43). This process was inhibitable by the
148 CAT-tailing elongation inhibitor anisomycin and NEMF knockdown (sgNEMF), but not
149 cycloheximide treatment, as evidenced by a decreased ratio of CAT-tailed (Red) to non-CAT-
150 tailed bands (Green) (Figure 1C).

151 Next, to investigate the biological implications of CAT-tailing, artificial CAT-tails were
152 introduced to mitochondrial proteins. Due to the variability in CAT-tailing, prior research
153 simulated this process by adding alanine-threonine (AT) repeat tails to the C-terminus of
154 mitochondrial proteins (17). According to recent studies, the chosen tail sequence can be
155 stabilized by its high threonine content (44, 45). ATP5 α , a highly abundant mitochondrial protein
156 with roles in cancer, was selected to study the unique functions of CAT-tailed forms (46, 47).
157 siATP5 α knockdown first confirmed the upper band signal in GSCs as authentic ATP5 α ,
158 demonstrated by its disappearance concurrent with the main band's weakening (Figure 1 –
159 Figure Supplement 2A). Then, we confirmed that this upper band signal corresponded to changes
160 in CAT-tailing, which could be effectively inhibited by NEMF knockdown and anisomycin
161 treatment (Figure 1 – Figure Supplement 2B). Due to the indistinct nature of the endogenous
162 msiCAT-tailed ATP5 α signal, exogenously expressed Flag-ATP5 α was utilized here.

163 To investigate the potential new function provided by CAT-tailed proteins, control (SVG
164 and NHA) and GBM (SF268 and GSC827) cell lines overexpressed ATP5 α with three (ATP5 α -
165 AT3) or twenty (ATP5 α -AT20) AT repeats. Consistent with earlier findings, only the long-tailed
166 ATP5 α -AT20 exhibited post-translational modifications and detergent-resistant insoluble
167 aggregates, appearing as slower migrating bands and a high molecular weight smear in protein
168 electrophoresis (Figure 1D). Based on comparing exogenously expressed (indicated by red boxes)
169 to endogenous proteins (indicated by green boxes), GBM cell lines (GSC827, SF268) showed
170 increased accumulation of ATP5 α -AT20 compared to control cells (SVG, NHA). This
171 accumulation may occur due to increased stability and reduced degradation of long-tailed
172 proteins, a malfunctioning protein quality control system, enhanced cellular tolerance to protein
173 accumulation, or a combination of these factors. Subcellular localization analysis showed that the
174 short AT tail (AT3) did not significantly alter ATP5 α 's mitochondrial localization, similar to the
175 tailless protein. However, a significant portion of ATP5 α -AT20 was found in the cytoplasm near
176 mitochondria, forming protein aggregates, with the highest proportion in highly malignant GSC
177 cells (Figure 1 – Figure Supplement 2C, D). Notably, poly-glycine-serine tails (short, GS3, and
178 long, GS20) did not induce insoluble protein aggregation or intracellular punctate distribution
179 (Figure 1 – Figure Supplement 2E-G), highlighting the importance of specific amino acid
180 composition.

181 Importantly, in GBM cells, both exogenous tailed proteins and the endogenous ATP5 α
182 formed clusters attached to the outer mitochondrial membrane (Figure 1E, F). Similar aggregate
183 formation in GBM cells was also observed with other mitochondrial proteins, such as NDUS3
184 (Figure 1 – Figure Supplement 3A, B). Furthermore, we examined the mouse GBM models.
185 Akin to *in vitro* culture, ATP5 α in transplanted SB28 glioma formed more punctate signals and

186 did not always colocalize with the mitochondrial marker TOM20 (Figure 1 – Figure Supplement
187 3C-E). These findings collectively indicate a disruption of the RQC pathway, leading to the
188 presence of msiCAT-tailed proteins in GBM cells.

189

190 ***msiCAT-tailed ATP5 α Elevates Mitochondrial Membrane Potential ($\Delta\Psi_m$)***

191 Some cancer cells exhibit altered mitochondrial physiology, maintaining or increasing
192 mitochondrial membrane potential ($\Delta\Psi_m$) despite reduced respiration. This was observed in
193 patient-derived GSC cells, which demonstrated higher $\Delta\Psi_m$ but lower ATP production than
194 control NSC cells (Figure 2A, B). Similarly, GBM cell lines, GSC827 and SF268, displayed
195 comparable or higher $\Delta\Psi_m$ and lower ATP levels relative to the control NHA cell line (42)
196 (Figure 2 – Figure Supplement 1A-C). Genetic inhibition of msiCAT-tailing, via NEMF
197 knockdown (sgNEMF) or ANZKF1 overexpression (oeANZKF1) (Figure 2 – Figure Supplement
198 1D), as well as pharmacological inhibition by anisomycin treatment, effectively reduced $\Delta\Psi_m$ in
199 GBM cells but not in NHA cells (Figure 2C, D).

200 Our next investigation of msiCAT tail proteins revealed their impact on mitochondrial
201 function. Expression of Flag-tagged ATP5 α -AT3 and ATP5 α -AT20 in GBM and control cell
202 lines elevated $\Delta\Psi_m$ specifically in GBM cells (Figure 2E). Overexpression of ATP5 α -GS3 and
203 ATP5 α -GS20 did not exhibit this effect (Figure 2 – Figure Supplement 1E). To our surprise,
204 even with suppressed endogenous CAT-tailing through sgNEMF and oeANZKF1 in GSC cells,
205 the introduced AT3 and AT20 proteins could still effectively elevate $\Delta\Psi_m$ (Figure 2F, G). This
206 finding suggests that CAT-tailing of ATP5 α may be a significant contributor to the observed
207 mitochondrial phenotype (Figure 2G). Blue Native Polyacrylamide Gel Electrophoresis (BN-

208 PAGE) illustrated distinct effects based on CAT-tail length. ATP5 \square -AT3 integrated into the
209 mitochondrial respiratory chain complex, whereas ATP5 \square -AT20 formed high molecular weight
210 complexes or remained as monomers (Figure 2H). In mitochondrial physiological activity assays
211 using the Agilent Cell Mitochondrial Stress Test, the oxygen consumption rate (OCR) was
212 directly measured to assess mitochondrial respiration. Our findings indicate that expressing both
213 ATP5 \square -AT3 and ATP5 \square -AT20 negatively impacted mitochondrial oxidative phosphorylation.
214 This impairment leads to a reduction in ATP synthesis, basal respiration, and maximal respiration
215 rates (Figure 2I-L). These data suggest that both short and long tails on ATP5 \square proteins influence
216 mitochondrial function, although potentially through different mechanisms. Short CAT-tails may
217 directly act on ATP synthase function and thus affect the respiratory chain complex, while long
218 CAT-tails form protein aggregates, causing mitochondrial proteostasis stress and thus indirectly
219 affecting mitochondrial respiration (17, 29). This differential impact of CAT-tail length suggests
220 a nuanced regulation of mitochondrial function mediated by ATP5 \square modifications.

221

222 ***msiCAT-tailing Influences Mitochondrial Permeability Transition Pore (MPTP) Dynamics***

223 Beyond its traditionally recognized role in ATP production, the F₁F₀ ATP synthase has garnered
224 increasing attention as a potential structural component of the mitochondrial permeability
225 transition pore (MPTP) complex (48-50). Given the possibility that CAT-tailed proteins like
226 ATP5 \square might modulate MPTP function, this investigation sought to elucidate the mechanism by
227 which msiCAT-tailing modulates MPTP dynamics (open-close state). Comparative analyses
228 conducted in GBM and control cells revealed that MPTP in GSC827 cells predominantly exists
229 in a closed conformation, indicated by strong Calcein signals. Notably, the treatment of

230 anisomycin, a pharmacological CAT-tailing inhibitor, effectively induced MPTP opening in
231 GSC827 cells, as indicated by decreased Calcein signals (Figure 3A, B). This effect was
232 concomitant with the diminished aggregation of endogenous ATP5 α (Figure 3E, F). Furthermore,
233 corroborative evidence was obtained through genetic manipulation. Specifically, genetic
234 inhibition of CAT-tailing via NEMF knockdown (sgNEMF) resulted in a similar decrease in
235 Calcein signaling and a reduction in ATP5 α accumulation (Figure 3C, D, G, H), aligning with the
236 results obtained using anisomycin. In contrast, treatment with cycloheximide, a general
237 translation inhibitor, did not significantly alter Calcein or ATP5 α aggregation signals (Figure 3 –
238 Figure Supplement 1A-D), suggesting that non-specific translation inhibition does not impact the
239 mitochondrial MPTP state. The crucial role of CAT-tail modifications on ATP5 α in modulating
240 MPTP status was further substantiated by the observation that overexpression of artificially
241 synthesized AT repeat tails (AT3 and AT20) restored Calcein signals despite the inhibition of
242 endogenous CAT-tailing (Figure 3 – Figure Supplement 1E).

243 The MPTP is recognized to participate in the transient efflux of protons, calcium ions
244 (Ca^{2+}), and other signaling molecules from the mitochondrial matrix during brief opening
245 episodes (51). To quantitatively evaluate the MPTP open/closed state, the mitochondrial Ca^{2+}
246 Retention Capacity (CRC) assay was employed, which measures the amount of Ca^{2+} required to
247 elicit MPTP opening. Our results revealed that GSC827 cells exhibited a greater CRC value than
248 NHA cells. Pre-treatment with anisomycin or knockdown of NEMF (sgNEMF) significantly
249 decreased the CRC in GBM cells, indicating MPTP opening upon the loss of CAT-tailed proteins
250 (Figure 3I, J). Consistent with Calcein staining results (Figure 3 – Figure Supplement 1A, B),
251 cycloheximide treatment did not substantially alter CRC measurements (Figure 3 – Figure
252 Supplement 2A, B). Conversely, enhancing CAT-tailing (e.g., via oeNEMF and siANKZF1) led

253 to an increase in CRC (Figure 3 – Figure Supplement 2A, B), although this effect was less
254 pronounced in GSCs, potentially due to their inherently active CAT-tailing and closed MPTP.

255 To further investigate the impact of specific AT repeat tails on MPTP opening, artificial
256 AT repeat tails on ATP5 \square were introduced into GBM cells. It was found that the short AT tail
257 (AT3) inhibited MPTP opening, while the long AT tail (AT20) displayed a weaker effect (Figure
258 3K, L), potentially due to their different integration into ATP synthase (Figure 2G). Complex co-
259 immunoprecipitation assay did not detect direct interactions between ATP5 \square with AT3 or AT20
260 tails and MPTP components Cyclophilin D (Cyp-D) and adenine nucleotide translocator 2
261 (ANT2) (Figure 3 – Figure Supplement 2C). However, Cyp-D expression was reduced upon
262 ectopic expression of ATP5 \square -AT3 and ATP5 \square -AT20, suggesting decreased MPTP formation
263 (Figure 3 – Figure Supplement 2D). Intriguingly, BN-PAGE analysis revealed that both ATP5 \square -
264 AT3 and ATP5 \square -AT20 altered ANT1/2-containing complexes, with expected bands disappearing
265 (indicated by *) and aggregates forming (at the top), supporting the notion that ATP synthase is
266 integrated into the MPTP supercomplex due to the spatial proximity of the ANT1/2 complex and
267 ATP synthase (Figure 3M). In conclusion, msiCAT-tailed ATP5 \square proteins, particularly those with
268 short AT3 tails, are integrated into ATP synthase and have a substantial influence on modulating
269 MPTP status.

270

271 ***msiCAT-Tailing Boosts GBM Cell Migration and Resistance to Apoptosis***

272 The elevated mitochondrial membrane potential ($\Delta\Psi_m$) and constricted MPTP resulting from
273 msiCAT-tailed ATP5 \square and other mitochondrial proteins may enhance cellular stress resilience.
274 We first investigated how the msiCAT-tailing mechanism affects GBM cells at the cellular level.

275 MTT assays (52) revealed that overexpressing short (AT3) and long (AT20) AT repeat tails, fused
276 to ATP5 α , significantly improved GBM cell viability, but not that of NHA cells (Figure 4A, B).
277 However, short (GS3) and long (GS20) GS repeat tails did not affect GBM cell viability (Figure
278 4 – Figure Supplement 1A). In addition, *in vitro* transwell migration assays (53) and wound
279 healing assays (54) showed that GBM cells overexpressing AT repeat-tailed ATP5 α exhibited
280 increased cell invasion and accelerated wound healing, indicating enhanced cell migration
281 (Figure 4C, D, Figure 4 – Figure Supplement 1B, C). Notably, neither ATP5 α alone nor GS
282 repeat-tailed proteins showed comparable changes (Figure 4 – Figure Supplement 1D, E).
283 Furthermore, overexpressing AT3- and AT20-tailed proteins effectively conferred phenotypes
284 associated with increased GBM cell activity, such as enhanced survival and migration, even with
285 inhibited endogenous CAT-tailing machinery activity (e.g., sgNEMF and oeANKZF1) (Figure
286 4E-G). It is worth noting that ANKZF1 knockdown in U87 and U251 cell lines can cause
287 aberrant mitoGFP accumulation, possibly reducing cellular adaptability (29), suggesting varying
288 mitochondrial adaptability to proteostasis stress across cell lines. Supporting this, initial
289 experiments showed that mild expression of ATP5 α -AT3 and ATP5 α -AT20 did not induce strong
290 mitochondrial proteotoxic responses, as evidenced by the lack of significant upregulation in
291 *LONP1*, *mtHSP70*, and *HSP60* mRNA levels (Figure 4 – Figure Supplement 1F).

292 GBM cells exhibit increased resistance to staurosporine (STS)-induced apoptosis,
293 supported by fewer TUNEL-positive cells (Figure 4 – Figure Supplement 2A, B) and markedly
294 diminished PARP-1 (Poly ADP-ribose polymerase) cleavage (Figure 4 – Figure Supplement 2C),
295 a marker of AIF-mediated apoptosis (55). To investigate the role of CAT-tailed ATP5 α proteins in
296 this resistance, we overexpressed proteins with mimetic tails in GBM cells. Overexpression of
297 both short tail (ATP5 α -AT3) and long tail (ATP5 α -AT20) significantly enhanced resistance to

298 STS-induced apoptosis, as shown by TUNEL staining (Figure 4H, I) and flow cytometry (Figure
299 4 – Figure Supplement 2D, E), indicating a strong link between protein CAT-tailing and
300 tumorigenesis. In contrast, control short (GS3) and long (GS20) GS tails failed to confer such
301 resistance (Figure 4 – Figure Supplement 2F, G). Consistent with these findings, overexpression
302 of artificial CAT-tailed ATP5 α proteins also increased the resistance of GBM cells to
303 temozolomide (TMZ)-induced apoptosis (Figure 4J). Taken together, these results suggest that
304 RQC-induced CAT-tailing on ATP5 α protein plays a role in GBM resistance to drug-induced
305 apoptosis.

306

307 ***RQC Pathway Inhibition hinders GBM Cell Progression***

308 Prior research indicates the RQC pathway's mediated msiCAT-tailing plays an important role in
309 GBM progression, suggesting it as a potential therapeutic target. To explore this, patient-derived
310 Glioblastoma Stem Cell (GSC) lines were treated with anisomycin, an inhibitor of CAT-tailing.
311 GSC lines displayed higher sensitivity to anisomycin than normal neural stem cells (NSCs)
312 (Figure 5A). Similarly, genetic inhibition of the RQC pathway via NEMF knockdown (sgNEMF)
313 or ANKZF1 overexpression (oeANZKF1) in the SF268 GBM cell line also suppressed GBM
314 growth (Figure 5B). Notably, control NHA cell proliferation was also inhibited by these genetic
315 changes, indicating the broad significance of NEMF and ANKZF1 in cell proliferation (Figure
316 5C). The RQC pathway appears to have a more pronounced effect on GBM cell migration. In *in*
317 *vitro* transwell assays, sgNEMF or oeANZKF1 notably decreased GBM cell migration without
318 affecting NHA cells (Figure 5D, E). Consistently, anisomycin treatment impaired GSC cell
319 migration, but not NHA cell migration (Figure 5F, G).

320 Further investigation revealed the RQC pathway's involvement in GBM cell anti-
321 apoptosis, with initial findings pointing to alterations in mitochondrial functions. Prior studies
322 demonstrated that genetic or pharmacological inhibition of the RQC pathway led to a significant
323 decrease in GBM mitochondrial membrane potential ($\Delta\Psi_m$) (Figure 2C, D). In GSC cells,
324 anisomycin treatment promoted mitochondrial permeability transition pore (MPTP) opening, an
325 effect not seen in NHA cells (Figure 3A-D). Consequently, GBM cell lines with genetically or
326 pharmacologically inhibited RQC pathways were more susceptible to STS-induced apoptosis,
327 evidenced by elevated executioner caspase 3/7 activity (Figure 5 – Figure Supplement 1A),
328 enhanced PARP-1 cleavage (Figure 5 – Figure Supplement 1B, C), increased TUNEL staining
329 (Figure 5H-K), and flow cytometry analysis (Figure 5 – Figure Supplement 1D-G). Notably,
330 general translation inhibition using cycloheximide did not elicit the same apoptotic response
331 (Figure 5 – Figure Supplement 1A, D, E). Finally, the RQC pathway was also implicated in
332 temozolomide (TMZ)-induced cell death. Combining anisomycin with TMZ significantly
333 reduced GBM cell survival (Figure 5L) and effectively inhibited GSC spheroid growth (Figure
334 5M, N). In summary, the RQC pathway plays a critical role in multiple aspects of GBM
335 progression, including proliferation, migration, and survival under apoptotic stress.

336

337 **Discussion**

338 The Ribosome-associated Quality Control (RQC) pathway plays a crucial role in managing
339 aberrant proteins produced during translation. This study focused on understanding the
340 consequences of RQC-mediated modification, specifically the addition of msiCAT tails, on
341 mitochondrial proteins such as ATP5 α in glioblastoma (GBM) cells. The findings reveal that
342 GBM cells harboring msiCAT-modified ATP5 α exhibit a unique metabolic profile. Despite a
343 reduction in ATP synthesis, these cells maintain their mitochondrial membrane potential ($\Delta\Psi_m$),
344 a key factor for cellular function and survival. Furthermore, they demonstrate enhanced cell
345 survival and motility, characteristics associated with increased tumor invasiveness and metastasis.
346 Notably, the presence of msiCAT-modified ATP5 α confers resistance to apoptosis triggered by
347 staurosporine (STS), potentially by modulating the mitochondrial permeability transition pore
348 (MPTP), a critical regulator of cell death pathways, as illustrated in Figure 6. These identified
349 traits contribute to an increased aggressiveness of tumors, suggesting that the RQC pathway
350 plays a critical role in cancer cell survival and proliferation. Encouragingly, a recent study also
351 demonstrated the RQC pathway's involvement in a *Drosophila* model of Notch overexpression-
352 induced brain tumors (56). The findings imply modulating the RQC pathway could serve as a
353 promising complementary strategy to existing chemotherapy regimens. By targeting this specific
354 pathway, therapeutic interventions might effectively disrupt the mechanisms that allow cancer
355 cells to evade apoptosis and sustain their energy production under stress, potentially leading to
356 improved treatment outcomes for patients with GBM and other cancers characterized by similar
357 protein modifications.

358 The study of ATP synthase behavior in cancer holds particular importance. During
359 carcinogenesis, ATP synthase frequently relocates to the plasma membrane, where it is referred

360 to as ectopic ATP synthase (eATP synthase). These eATP synthases exhibit catalytic activity,
361 facilitating ATP production in the extracellular space to foster a favorable tumor
362 microenvironment (57). Research indicates that eATP synthase assembles initially in
363 mitochondria before being transported to the cell surface via microtubules (47). However, the
364 specific type of ATP synthase delivered to the plasma membrane remains unclear. Future
365 investigations into the localization of CAT-tailed eATP synthase may offer valuable insights into
366 this process.

367 Multiple mitochondrial proteins in cancer cells can likely undergo CAT-tailing in a
368 similar way. These msiCAT-tailed peptides may have varied impacts on mitochondria and cells
369 due to differences in their base proteins. For instance, CAT-tailed COX4 protein might
370 substantially and directly diminish mitochondrial respiratory efficiency. Examining the
371 individual roles of these proteins is important, as the combined effect of their defects may be
372 crucial in understanding observed mitochondrial changes in cancer. A minor caveat here is that
373 the observed effect of the CAT-tails' presence primarily stems from artificial CAT-tail sequences
374 with a high threonine content, rather than the endogenous CAT-tail protein. It is possible that
375 other sequence components could lead to different effects (44). A recent study found that
376 ANKZF1 knockdown inhibited GBM progression by causing abnormal protein accumulation in
377 mitochondria (29). This, combined with our data, suggests that balanced ANKZF1 expression
378 and activity are vital for cancer proliferation. Both excess and deficiency may alter cellular
379 adaptability. A minor flaw of that study was the use of a mitochondrial-localized non-stopped
380 GFP protein to induce proteostasis stress and the lack of direct biochemical evidence of CAT-
381 tailed proteins. Our research focuses on endogenous proteins for a detailed analysis of their
382 impact on mitochondria. The rationale is that highly expressed, non-physiological ectopic

383 proteins might cause general proteostasis failure, masking the specific functions of endogenous
384 proteins. Additionally, the studies used different cell lines. GSC, a patient-derived GBM cell line
385 with greater stemness, might have a distinct mitochondrial status and RQC pathway activity
386 compared to U87 or U251 cell lines. Thus, the conclusions of the two studies are not
387 contradictory but rather complementary, both demonstrating the significance of RQC in
388 tumorigenesis. Our study delves into the mechanistic role of the RQC pathway in GBM,
389 identifying new potential targets for future treatments.

390 An in-depth investigation into the quantification of nuclear genome-encoded
391 mitochondrial proteins modified via the msiCAT-tailing mechanism using sophisticated mass
392 spectrometry is a compelling area for future research. Recent work by Lv et al., published in *Cell*
393 *Reports*, revealed that the cytoplasmic E3 ligase Pirh2 and the mitochondrial protease ClpXP
394 work in conjunction with the established NEMF-ANKZF1 system to break down mitochondrial
395 protein aggregates resulting from ribosome stalling (58). The increased presence of ClpXP in
396 various cancers could potentially be linked to an increase in msiCAT-tailing products in
397 mitochondria, though further studies are needed to clarify ClpXP's role in mitochondrial RQC
398 (59). Moreover, ClpXP influences the levels of multiple mitochondrial proteins. Our own
399 experiments showed that ATP5 α proteins lacking msiCAT-tails were the most challenging to
400 express ectopically. Proteins with shorter tails (AT3) expressed more readily, while those with
401 longer tails (AT20) exhibited the highest expression levels but also tended to form SDS-insoluble
402 aggregates. This regulatory effect could be mediated by ClpXP-dependent degradation or
403 potentially through transcriptional control. PGC-1 α , the peroxisome proliferator-activated
404 receptor gamma co-activator, is a key regulator of mitochondrial biogenesis in mammals (60).
405 By binding to and activating nuclear transcription factors, PGC-1 α triggers the transcription of

406 nuclear genome-encoded mitochondrial proteins and the mitochondrial transcription factor Tfam.
407 Tfam, in turn, activates mitochondrial genome transcription and replication (61). Distinguishing
408 between these regulatory possibilities will necessitate future research, including a meticulous
409 examination of mRNA levels for msiCAT-tailed targets and analysis of PGC-1 α and Tfam
410 binding to transcriptional elements.

411 MPTP is a complex, supramolecular channel traversing the inner mitochondrial
412 membrane, characterized by its non-selective ion permeability, calcium dependence, and
413 multifaceted functionality. Despite extensive investigations into its functional attributes and
414 regulatory mechanisms, the precise molecular architecture of the MPTP remains elusive (62).
415 Several theoretical models have been posited to elucidate the MPTP's structural composition.
416 Firstly, the VDAC/ANT/Cyp-D model (63) proposed an assembly of voltage-dependent anion
417 channels (VDAC), adenine nucleotide translocators (ANT), and cyclophilin D (Cyp-D) as the
418 structural basis; however, subsequent genetic analyses have introduced substantial controversy
419 regarding the integral role of these proteins within the MPTP complex (64-67). Secondly, the
420 ATP synthase model posits that MPTP formation involves dimers or reconstituted c-rings of ATP
421 synthase (48, 49). While this hypothesis presents an intriguing perspective, empirical
422 confirmation of ATP synthase's role as a definitive structural element of the pore remains
423 inconclusive, with a body of conflicting research surrounding this proposition. Thirdly, the
424 contemporary prevailing hypothesis suggests the MPTP is constituted by a large complex,
425 termed the ATP synthasome, comprising ANT and ATP synthase, with Cyp-D serving a
426 regulatory function over the complex's dynamic behavior (68).

427 The MPTP activity is modulated by mitochondrial membrane potential ($\Delta\Psi_m$), which
428 reciprocally influences mitochondrial ion homeostasis and energy metabolism (69, 70). Our

429 study elucidates a dual function of msiCAT-tailed ATP5 α protein in cancer cells: stabilization of
430 a high membrane potential, thereby mitigating MPTP induction, and direct inhibition of MPTP
431 functionality through participation in its assembly. While MPTP's critical role in cell death is
432 established, the premise that MPTP inhibition enables cancer cell evasion of drug-induced
433 programmed cell death has lacked substantial evidence. This study furnishes empirical support
434 for this hypothesis, demonstrating that GBM cells, notably glioblastoma stem cells (GSC),
435 exhibit markedly reduced MPTP activity relative to control cells. This reduced activity is directly
436 correlated with the CAT-tailing modification of the ATP synthase subunit. These observations are
437 concordant with prior research indicating that genetic mutations or post-translational
438 modifications in specific ATP synthase subunits can modulate MPTP activity. The findings
439 highlight a novel mechanism through which cancer cells may develop resistance to therapeutic
440 interventions by manipulating mitochondrial function (71, 72).

441

442 **Materials and Methods**

443 ***Key resources table***

444 Please see the appendix.

445

446 ***Cell lines and cell culture conditions***

447 The human astroglia cell line SVG p12 (ATCC, cat. CRL-8621) and the human glioma cell line
448 SF268 were from Dr. Rongze Olivia Lu. Both cell lines were cultured in DMEM (ATCC, cat.
449 #302002) with 10% FBS (Biowest, cat. S1620-100) and penicillin/streptomycin (GibcoTM, cat.
450 15140122). SF268 clones should be maintained in complete DMEM supplemented with 400
451 µg/mL G418 (Gibco, cat. 10131027). The 0.25% trypsin solution (ATCC, cat. #SM2003C) was
452 used to passage cells. The normal human astrocytes NHA E6/E7/hTERT cell line was from Dr.
453 Russell O. Pieper, UCSF Brain Tumor Research Center. Cells are cultured in ABMTM Basal
454 Medium (Lonza, cat. CC-3187) and AGMTM SingleQuotsTM Supplements (Lonza, cat. CC-4123).
455 CorningTM AccutaseTM Cell Detachment Solution (Corning, cat. 25058CI) was used to passage
456 cells. GSC827, a patient-derived human glioma stem cell line, was from Dr. Chun-Zhang Yang at
457 NIH. The NSC, NSC26, patient-derived GSC33, GSC22, GSC99, GSC105, and GSC107 cell
458 lines used in this study were kindly provided by Dr. John S Kuo at the University of Texas,
459 Austin. Derivation of these lines from patient GBM specimens is described earlier (73). Detailed
460 characterizations of the GSC lines (not GSC105 & 107) are available in their previous
461 publication (74). GSC 105 & 107 are not previously published. GSC cells were cultured in
462 Neural basal-A Medium (Gibco, cat. #10888022) with 2% B27 (Gibco, cat. #17504044), 1% N2
463 (Gibco, cat. #17502048), 20 ng/ml of EGF and FGF (Shenandoah Biotechnology Inc. cat. PB-

464 500-017), Antibiotic-Antimycotic (Gibco, cat. #15240062), and L-Glutamine (Gibco, cat.
465 #250300810). Cells could be cultured in both spherical and attached (on Geltrex, Thermo Fisher,
466 cat. A1413202) forms. CorningTM AccutaseTM Cell Detachment Solution (Corning, cat. 25058CI)
467 was used to passage cells.

468 Cells were transfected with X-tremeGENETM HP DNA Transfection Reagent (Sigma, cat.
469 6366244001) following the standard protocol. For single clone selection, SF268 cells were
470 treated with 800 µg/ml G418 for 5 days. The cells were then seeded into a 96-well plate at a
471 density of 1/100 µL. Positive clones were verified by immunofluorescence staining and
472 immunoblotting. Cells were maintained in complete DMEM containing 400 µg/mL G418. GBM
473 cell lines were subjected to a 4-hour pre-treatment at 37°C using either anisomycin (20 nM or
474 200 nM, Fisher Scientific, cat. AAJ62964MF) or cycloheximide (100 µg/mL, Fisher Scientific,
475 cat. AC357420010) in medium, as detailed in the conducted experiments.

476

477 ***Primers, plasmids, and viruses***

478 Plasmids pcDNA3.1+/C-(K)-DYK-ATP5F1A (pATP5[∅] control), pcDNA3.1+/C-(K)-DYK-
479 ATP5F1A-AT3 (pATP5[∅]-AT3), pcDNA3.1+/C-(K)-DYK-ATP5F1A-AT20 (pATP5[∅]-AT20),
480 pcDNA3.1+/C-(K)-DYK-ATP5F1A-GS3 (pATP5[∅]-GS3), and pcDNA3.1+/C-(K)-ATP5F1A-
481 DYK-GS20 (pATP5[∅]-GS20) were generated by GenScript Inc. Plasmids pCMV-5×FLAG-β-
482 globin-control (5FBG-Ctrl) and pCMV-5×FLAG-β-globin-non-stop (5FBG-nonstop) were
483 generated by Dr. Hoshino (Nagoya City University) and Dr. Inada (Tohoku University) (43).
484 pCMV6-DDK-NEMF (oeNEMF) was from ORIGENE Inc. (cat. RC216806L3).

485 Viruses (and plasmid used to generate viruses) are pLV[CRISPR]-hCas9:T2A:Neo-

486 U6>Scramble[gRNA#1] (sgControl/sgCtrl), pLV[CRISPR]-hCas9:T2A:Neo-
487 U6>hNEMF[gRNA#1579] (sgNEMF), pLV[Exp]-Bsd-EF1A>ORF_Stuffer (pLV-control),
488 pLV[Exp]-EGFP:T2A:Puro-EF1A>mCherry (pLV-control-2/oeCtrl), pLV[Exp]-Bsd-
489 EF1A>hANKZF1[NM_001042410.2]/HA (oeANKZF1), and pLV[Exp]-mCherry/Neo-
490 EF1A>hANKZF1[NM_001042410.2] (oeANKZF1) were made by VectorBuilder Inc.

491 Primers (5' to 3') used for RT-PCR are:

<i>LONP1</i>	lonp1_forward: TGCCTTGAACCCCTCTCTAC
NR_076392.2	lonp1_reverse: TCTGCTTGATCTTCTCCTCC
<i>mtHSP70</i>	mthsp70_forward: ACTCCTCCATTATCCGCC
NM_004134.7	mthsp70_reverse: ACCTTGCTTGTACCTTCC
<i>HSP60</i>	hsp60_forward: ACCTGCTCTTGAAATTGCC
NM_002156.5	hsp60_reverse: CAATCCCTCTCTCCAAACAC
<i>ACTB</i>	actb_forward: TGTGAGACCTTCAACACC
NM_001101.5	actb_reverse: ATGTCACGCACGATTCC

492

493 ***Neurosphere formation assay of GSCs***

494 The GSC spheroids were dissociated using Accutase for 2□min. Cells were resuspended in a
495 single-cell suspension and grown under non-adherent conditions. Cells were seeded in 12-well
496 plates at a density of 0.25×10^6 cells/well and cultured in 3 mL culture medium for 24 hours. 20
497 nM of anisomycin and 150 μ M of temozolomide (TMZ) were added to the culture medium and
498 the cells were treated for 96 hours. Spheroids were imaged under a 10x objective, captured using
499 QCapture, and analyzed with ImageJ. Spheroids larger than 50 μ m were counted.

500

501 ***Differential gene expression analysis using the public database***

502 The raw RNA-seq data used for the analysis were obtained from the University of California,
503 Santa Cruz Xenabrowser (cohort: TCGA TARGET GTEx, dataset ID:
504 TcgatargetGtex_rsem_gene_tpm, <https://xena.ucsc.edu/>). Subsets were then created to include
505 only TCGA glioma (GBM), GTEx Brain Frontal Cortex, and GTEx Cortex samples. Differential
506 expression analysis was conducted using the “Limma” package (R version: 4.3.1). The
507 Benjamini-Hochberg method was used for multiple testing correction to control the false
508 discovery rate (FDR). Cut-off of adjusted p-value (adj.P.Val) was set at 0.001; cut-off of the
509 absolute fold change was set at 2 (logFC > 1). The code is available without restrictions at
510 https://github.com/yuanna23/GBM_elife.

511

512 ***Immunostaining***

513 Cells were cultured on sterile coverslips until 80% confluency. For immunostaining, cells were
514 washed with phosphate-buffered saline (PBS) solution thrice. Then, 4% formaldehyde (Thermo
515 Fisher, cat. BP531-500) was applied to cells for fixation for 30 min at room temperature. After
516 fixation, cells were washed with PBS solution containing 0.25% Triton X-100 (PBSTx) (Thermo
517 Fisher, cat. T9284) thrice, and blocked with 5% normal goat serum (Jackson Immuno, cat. 005-
518 000-121) for 1 hour at room temperature. Cells were then incubated with primary antibodies
519 overnight in a humidified chamber at 4°C. The next day, cells were washed by PBSTx thrice and
520 incubated with secondary antibodies for 2 hours at room temperature. After washing, cells were
521 stained with 300 nM DAPI (Thermo Fisher, cat. 57-481-0) for 5 min at room temperature and

522 mounted in Fluoromount-G Anti-Fade solution (Southern Biotech, cat. 0100-35). Images were
523 captured using a Zeiss LSM 800 confocal microscope with a 40x oil objective lens and AiryScan
524 processing. The primary antibodies used in the study were rabbit anti-ATP5a (Cell Signaling, cat.
525 #18023), mouse anti-TOMM20 (1:500, Santa Cruz, cat. sc-17764), rabbit anti-MTCO2 (1:500,
526 Proteintech, cat. 55070-1-AP), and mouse anti-NDUS3 (1:1000, Abcam, cat. ab14711). The
527 secondary antibodies were Alexa fluor 633-, 594-, 488-conjugated secondary antibodies (1:300,
528 Invitrogen, cat. A21071, A11036, A32732).

529

530 ***SDS-PAGE and immunoblotting***

531 Cells or isolated mitochondria were solubilized in cell lysis buffer containing 50 mM Tris-HCl
532 pH 7.4, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 5 mM EDTA, and 1x protease inhibitor
533 (Bimake, cat. B14002). Protein concentration was measured by using the Bradford assay
534 (BioVision, cat. K813-5000-1). Samples were separated in a 4-12% Tris-Glycine gel (Invitrogen,
535 cat. WXP41220BOX) and proteins were transferred to a PVDF membrane (Millipore, cat.
536 ISEQ00010). The membranes were then blocked with 5% non-fat dry milk (Kroger) for 50 min
537 at room temperature and probed with primary antibodies overnight at 4°C. Membranes were
538 washed with Tris-buffered saline with 0.1% Tween 20 (TBST) solution thrice and then incubated
539 with secondary antibodies for 1 hour at room temperature. Blots were detected with ECL
540 solution (PerkinElmer, cat. NEL122001EA) and imaged by Chemidoc system (BioRad). The
541 intensity of blots was further analyzed by ImageJ software. The primary antibodies used were
542 mouse anti-Actin (1:1000, Santa Cruz, cat. sc-47778), rabbit anti-NEMF (1:1000, Proteintech,
543 cat. 11840-1-AP), mouse anti-ANKZF1 (1:1000, Santa Cruz, cat. sc-398713), mouse anti-ATP5a
544 (Abcam, cat. ab14748), mouse anti-NDUS3 (1:1000, Abcam, cat. ab14711), rabbit anti-COX4

545 (Abcam, cat. ab209727), mouse anti-Flag (1:1000, Sigma, cat. F1804), rabbit anti-ANT1/2
546 (1:1000, Proteintech, cat. 17796-1-AP), rabbit anti-CypD (1:1000, Proteinetch, cat. 15997-1-AP),
547 rabbit anti-PARP1 (1:1000, Abclonal, cat. A0942), rabbit anti-GAPDH (1:1000, Abclonal, cat.
548 A19056). The secondary antibodies used were goat anti-rabbit IgG (1:5000, Invitrogen, cat.
549 G21234), goat anti-mouse IgG (1:5000, Invitrogen, cat. PI31430).

550

551 ***Mitochondrial isolation, blue Native PAGE, and western blotting***

552 Cells were homogenized using Dounce homogenizer in ice-cold homogenization buffer
553 containing 210 mM mannitol (Fisher Sci, cat. AA3334236), 70 mM sucrose (Fisher Sci, cat.
554 AA36508A1), 5 mM HEPES (Fisher Sci, cat. 15630106), pH 7.12, 1 mM EGTA (Fisher Sci, cat.
555 28-071-G), and 1x protease inhibitor. The homogenate was centrifuged at 1500 g for 5 min. The
556 resultant supernatant was centrifuged at 13000 g for 17 min. The supernatant was collected as the
557 cytosol portion, and the pellet (the mitochondria portion) was washed with homogenization
558 buffer and centrifuged at 13000 g for 10 min. For Blue Native PAGE, the mitochondrial samples
559 were solubilized in 5% digitonin (Thermo Fisher, cat. BN2006) on ice for 30 min and then
560 centrifuged at 20,000 g for 30 min. The supernatant contains solubilized mitochondrial proteins
561 and was mixed with 5% G-250 (GoldBio, cat. C-460-5) and 1x NativePAGE sample buffer
562 (Invitrogen, cat. BN2008) (final G-250 concentration is 25% of the digitonin concentration).
563 Mitochondrial protein concentration was measured by using the Bradford assay. Samples were
564 separated in 3-12% Bis-Tris Native gel (Invitrogen, cat. BN1001BOX) and then transferred to a
565 PVDF membrane. Membranes were fixed with 8% acetic acid (Thermo Fisher, cat. 9526-33),
566 and then blocked and probed with antibodies as described above for Western blotting.

567

568 ***Mitochondrial membrane potential assays***

569 Mitochondrial membrane potential of GSC cells was measured using Image-iTTM TMRM
570 (Invitrogen, cat. I34361). Cells were cultured in 96-well black plates at a density of 1×10^5 cells
571 per well overnight in an incubator with 5% CO₂ at 37°C. Cells were incubated with TMRM (100
572 nM) for 30 min at 37°C. Then, cells were washed with PBS solution three times. Fluorescence
573 changes at excitation/emission of 548/574 nm were monitored with a Cytation 5 plate reader
574 (BioTek). Mitochondrial membrane potential was also measured using JC-10 (AdipoGen, cat.
575 50-114-6552). Cells were cultured in 96-well black plates at a density of 5×10^4 cells per well
576 overnight in an incubator with 5% CO₂ at 37°C. Cells were incubated with JC-10 (10 µg/ml) for
577 45 min at 37°C. Then, cells were washed with PBS solution twice. Fluorescence changes at
578 excitation/emission of 535/595 nm for JC-10 aggregates and at 485/535 nm for JC-10 monomers
579 were monitored with a Synergy 2 Reader (BioTek). Mitochondrial membrane potential was
580 quantified as the fluorescence of JC-10 aggregates/monomers (595/535 nm).

581

582 ***Seahorse cell mitochondrial stress assays***

583 The oxygen consumption rate (OCR) of cells was measured using the Seahorse Cell Mito Stress
584 Test kit following the user guide (Agilent, cat. 103010-100). Briefly, cells were cultured
585 overnight in testing chambers at a density of 8,000 cells per well in an incubator with 5% CO₂ at
586 37°C. Cells were then washed twice with assay medium containing Seahorse XF DMEM
587 medium (Agilent, cat. 103575-100) supplemented with 1 mM pyruvate, 2 mM glutamine, and 10
588 mM glucose. They were subsequently incubated in the assay medium for 1 hour in an incubator
589 without CO₂ at 37°C. Cells were treated with compounds in the order of oligomycin (1.5 µM),

590 carbonyl cyanide-4 (trifluoromethoxy), phenylhydrazone (FCCP, 1.0 μ M), and
591 Rotenone/Antimycin (0.5 μ M). The OCR of cells was monitored by using Seahorse XF HS Mini
592 (Agilent).

593

594 ***Mitochondrial MPTP assay***

595 The status of mitochondrial permeability transition pore was measured using Invitrogen™
596 Image-IT™ LIVE Mitochondrial Transition Pore Assay Kit (Invitrogen, cat. I35103). Cells were
597 cultured in 35 mm glass-bottom dishes overnight in an incubator with 5% CO₂ at 37°C. Cells
598 were washed twice with the modified Hank's Balanced Salt Solution (HBSS, Thermo Fisher, cat.
599 14025092) containing 10 mM HEPES, 2 mM L-glutamine and 0.1 mM succinate (Thermo
600 Fisher, cat. 041983.A7) and incubated with the labeling solution (1 μ M Calcein, 0.2 μ M
601 MitoTracker Red, 1 mM Cobalt Chloride) for 15 min at 37°C. Cells were then washed with
602 HBSS twice and imaged at excitation/emission of 494/517 nm for Calcein and at 579/599 nm for
603 MitoTracker Red by using the Zeiss confocal microscope.

604

605 ***Mitochondrial Ca²⁺ retention capacity assay***

606 The mitochondrial calcium retention capacity (CRC) was measured on a CytaION 5 reader at
607 excitation/emission of 506/592 nm using the membrane-impermeable fluorescent probe Calcium
608 green-5N (Invitrogen, cat. C3737). Isolated mitochondria samples (0.75 mg protein/mL) were
609 incubated in 1 mL swelling medium supplemented with 10 mM succinate, 1 μ M Calcium green-
610 5N, inorganic phosphate, and cyclosporine A (Thermo Fisher, cat. AC457970010). One Ca²⁺
611 addition was 1.25 nmol (1 mL volume). Only the MPTP opening in the presence of cyclosporine

612 A was induced by high amounts of added calcium (30 nmol Ca²⁺ in the last two additions). The
613 CRC value was calculated as total Ca²⁺ accumulated in the mitochondria per unit (1 mg protein).

614

615 ***MTT assay***

616 Cell proliferation was measured by using the MTT assay kit (Roche, cat. 11465007001). Cells
617 were cultured in 96-well plates at a density of 2000 cells per well overnight in an incubator with
618 5% CO₂ at 37°C. Cells were treated with MTT labeling reagent for 4 hours at 37°C. The
619 solubilization buffer was added to the cells, and then the cells were incubated overnight at 37°C.
620 Absorbance changes of the samples at 550 nm were monitored by using a Synergy 2 Reader
621 (BioTek).

622

623 ***Wound healing assay***

624 Cells were seeded into 6-well plates and cultured for 24-48 hours to reach a confluent cell
625 monolayer. Cells were treated with serum-free medium overnight before mechanical scratching
626 (54). Images of the wounds were taken at 0, 24, and 48 hours. Wound areas were measured by
627 using the wound healing plugin of ImageJ. Wound Coverage % = 100% x [A_{t=0h}-A_{t=Δh}]/A_{t=0h}
628 (A_{t=0h} is the area of the wound measured immediately after scratching *t* = 0h, A_{t=Δh} is the area of
629 the wound measured *h* hours after the scratch is performed).

630

631 ***Cell migration assay***

632 Cell migration was measured by using Transwell assays (Corning, cat. CLS3422). Cells were

633 cultured in Transwell inserts at a density of 1×10^5 cells per well for 3 hours in an incubator at
634 37°C with 5% CO₂. The top inserts were supplemented with DMEM medium only, and the
635 bottom wells were supplemented with DMEM medium with 20% Fetal Bovine Serum. After
636 incubation, the cells on the apical side of the Transwell insert membrane were removed using a
637 cotton applicator. The cells on the bottom side of the insert were rinsed with PBS twice and fixed
638 in 70% ethanol (Thermo Fisher, cat. R40135) for 15 min at room temperature. After fixation,
639 inserts were placed into an empty well to allow the membrane to dry. Then, the insert was
640 incubated with 0.2% crystal violet (Sigma, cat. V5265) for 5 min at room temperature. The insert
641 was rinsed with water twice, and images were captured by using a microscope with a 20x
642 objective. Cell numbers were quantified using ImageJ.

643

644 ***TUNEL staining***

645 The apoptosis was measured by a TUNEL assay kit (ApexBio, cat. K1134). Cells were cultured
646 on sterile cover slips until 80% confluence and washed with PBS thrice. Then, 4% formaldehyde
647 was applied to cells and fixed for at 4°C 25 min. After fixation, cells were washed with PBS
648 twice and incubated with 20 µM proteinase K (Invitrogen, cat. 25530049) for 5 min at room
649 temperature. Then, cells were rinsed with PBS thrice and incubated in 1x equilibration buffer for
650 10 min at room temperature. Cells were stained with FITC or Cy3 labeling mix for 1 hour at
651 37°C in a humidified chamber. Cells were washed by PBS thrice and stained with DAPI for 5
652 min at room temperature. Cells were mounted in the Fluoromount-G Anti-Fade solution and
653 imaged at 520 nm for FITC or at 570 nm for Cy3 by using the Zeiss confocal microscope.

654

655 ***Caspase-3/7 activity assay***

656 Caspase-3/7 activity was measured by using CellEvent™ Caspase-3/7 Detection Reagents
657 (Invitrogen, cat. C10432) following the manufacturer's protocol. Specifically, cells were seeded
658 in a 96-well black plate with a clear bottom at a density of 5×10^4 cells per well and incubated
659 overnight in the incubator with 5% CO₂ at 37°C. Cells were then incubated with 1x staining
660 solution for 30 min at 37°C. Fluorescence changes at excitation/emission of 485/525 nm were
661 monitored with a Synergy 2 Reader (BioTek).

662

663 ***Annexin V-FITC/Propidium Iodide (PI) apoptosis detection***

664 Annexin V-FITC/PI apoptosis assay was performed by using the FITC Annexin V Apoptosis
665 Detection Kit with PI (BioLegend, cat. 640914). Briefly, 1×10^5 cells were collected in 100 µL of
666 staining buffer. Then, cells were incubated with 5 µL of Annexin V-FITC and 2.5 µL of PI for 15
667 min at room temperature in the dark. Following incubation, 400 µL of binding buffer was added
668 to the stained cells. Flow cytometry analysis of the fluorescence was performed using a Soni
669 SH800 Cell Sorter.

670

671 ***Mitochondria ATP measurement via fluorescence imaging of ATP-red***

672 BioTracker™ ATP-red dye (Millipore, cat. SCT045) is a fluorogenic indicator for ATP in
673 mitochondria (75). Cells cultured in monolayer conditions were incubated in medium with
674 5 µM ATP-red for 15 min in an incubator at 37°C with 5% CO₂. Mitochondria were also
675 labeled by incubating cells with 100 nM MitoTracker-Green (Invitrogen, cat. M7514) for 15 min

676 to normalize their mass. Before measurement, cells were washed twice with culture medium, and
677 then fresh medium was added. Cells were imaged in a 37°C chamber with 5% CO₂ at
678 excitation/emission of 510/570 nm for ATP-red and at excitation/emission of 490/516 nm for
679 MitoTracker-Green by using the Zeiss confocal microscope. The ATP-red signals could also be
680 measured by a Synergy 2 Reader (BioTek).

681

682 ***Co-immunoprecipitation***

683 Cells were lysed in the buffer containing 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 10% glycerol,
684 1% TritonX-100, 5 mM EDTA, and 1x protease inhibitor. Soluble samples were incubated with
685 1.5 µL ATP5 β antibody at 4°C with mixing overnight. 25 µL of protein A/G magnetic beads
686 (Pierce, cat. 88802) were added to the co-IP samples and incubated at 4°C with mixing
687 overnight. Samples were washed with washing buffer thrice and then applied to SDS-PAGE
688 analysis.

689

690 ***Mice and immunostaining***

691 Animal studies were approved by the University of California, San Francisco Institutional
692 Animal Care and Use Committee (IACUC, AN195636-01) and were performed following the
693 guidelines of the National Institutes of Health (NIH).

694 For orthotopic brain tumor models, 8-to-10-week-old C57BL/6J mice (male and female
695 in equal numbers) were used for i.c. studies. Cell lines (GL261, SB28) were suspended in
696 DMEM for inoculation. Mice were anesthetized with isoflurane, and 30,000 tumor cells were
697 injected orthotopically in 3 µL. Using a stereotactic frame, a burr hole was formed on the skull

698 via a 0.7 mm drill bit 1.5mm laterally to the right and 1.5mm rostrally from the bregma, and a
699 noncoring needle (26s gauge; Hamilton) was used to inject the cells at a depth of 3mm into the
700 brain from the burr hole. The skin incision was sutured. Mice were then monitored daily. Mouse
701 SB28 tumor tissue and wild-type mouse brain tissue were collected at the survival endpoint.

702 Frozen tissue sections were thawed at room temperature for 20 min and rinsed with PBS
703 three times. Tissues were then fixed in 4% formaldehyde for 15 min at room temperature. After
704 washing in PBS, tissues were permeabilized with 0.01% Triton X-100 + 0.1% Tween-20 for 15
705 min and then blocked by using 5% normal goat serum and M.O.M. blocking reagent (Vector
706 Laboratories, cat. BMK-2202) for 1 hour at room temperature. Tissues were then incubated with
707 primary antibodies overnight in a humidified chamber at 4°C. After washing in PBST, tissues were
708 incubated with secondary antibodies for 1 hour. After washing again in PBST, tissues were
709 stained with 300 nM DAPI for 5 min and mounted in Fluoromount-G Anti-Fade solution. Images
710 were taken using a Zeiss LSM 800 confocal microscope. The primary antibodies used in the
711 study were mouse anti-ATP5a (1:500, Abcam, cat. Ab14748), rat anti-TOMM20 (1:500, Abcam,
712 cat. Ab289670), rabbit anti-NEMF (1:500, Proteintech, cat. 11840-1-AP), mouse anti-ANKZF1
713 (1:500, Santa Cruz, cat. sc-398713), chicken anti-GFP (1:500, Abcam, cat. Ab13970). The
714 secondary antibodies were Alexa Fluor 633-, 594-, 488-conjugated secondary antibodies (1:300,
715 Invitrogen, cat. A21071, A11036, A32732).

716

717 **Statistics**

718 Statistical analyses were performed using GraphPad Prism 9.4. Chi-squared test and unpaired
719 Student's t-test were used for comparison. $P < 0.05$ was considered significant, except in gene

720 expression analysis (Figure. 1A). *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$; ns,
721 not significant. All data were expressed as means \pm s.e.m. This study's replicates, samples,
722 groups, and experiments were biologically independent, except in Table 1. The “n” numbers for
723 each assay are indicated in the figure legends.

724

725 ***Materials availability***

726 Plasmids and other reagents generated in this study will be made available to researchers by
727 contacting zhihaowu@smu.edu. The patient-derived materials are proprietary to Prof. John S.
728 Kuo, but available on personal requests via standard institution/university agreements.

729

730 ***Code availability***

731 The code used for differential gene expression analysis is available without restrictions at
732 https://github.com/yuanna23/GBM_elife.

733

734 ***Data availability***

735 Source Data 1 contains all the numerical data used to generate the figures and all the original
736 images present in the final figures.

737

738 **References**

739 1. Robichaud N, et al. Translational Control in Cancer. *Cold Spring Harbor perspectives in*
740 *biology*. 2019;11(7).

741 2. Dever TE, and Green R. The elongation, termination, and recycling phases of translation
742 in eukaryotes. *Cold Spring Harbor perspectives in biology*. 2012;4(7).

743 3. Kim KQ, and Zaher HS. Canary in a coal mine: collided ribosomes as sensors of cellular
744 conditions. *Trends in biochemical sciences*. 2022;47(1).

745 4. Brandman O, et al. A ribosome-bound quality control complex triggers degradation of
746 nascent peptides and signals translation stress. *Cell*. 2012;151(5).

747 5. Juszkiewicz S, and Hegde RS. Initiation of Quality Control during Poly(A) Translation
748 Requires Site-Specific Ribosome Ubiquitination. *Molecular cell*. 2017;65(4).

749 6. Sundaramoorthy E, et al. ZNF598 and RACK1 Regulate Mammalian Ribosome-
750 Associated Quality Control Function by Mediating Regulatory 40S Ribosomal
751 Ubiquitylation. *Molecular cell*. 2017;65(4).

752 7. Hashimoto S, et al. Identification of a novel trigger complex that facilitates ribosome-
753 associated quality control in mammalian cells. *Scientific reports*. 2020;10(1).

754 8. Juszkiewicz S, et al. The ASC-1 Complex Disassembles Collided Ribosomes. *Molecular*
755 *cell*. 2020;79(4).

756 9. Shao S, and Hegde RS. Reconstitution of a minimal ribosome-associated ubiquitination
757 pathway with purified factors. *Molecular cell*. 2014;55(6).

758 10. Shen PS, et al. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-
759 independent elongation of nascent chains. *Science (New York, NY)*. 2015;347(6217).

760 11. Verma R, et al. Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains

761 from stalled ribosomes. *Nature*. 2018;557(7705).

762 12. Kostova KK, et al. CAT-tailing as a fail-safe mechanism for efficient degradation of
763 stalled nascent polypeptides. *Science (New York, NY)*. 2017;357(6349).

764 13. Lytvynenko I, et al. Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated
765 Quality Control. *Cell*. 2019;178(1).

766 14. Sitron CS, et al. Aggregation of CAT tails blocks their degradation and causes
767 proteotoxicity in *S. cerevisiae*. *PloS one*. 2020;15(1).

768 15. Choe YJ, et al. Failure of RQC machinery causes protein aggregation and proteotoxic
769 stress. *Nature*. 2016;531(7593).

770 16. Yonashiro R, et al. The Rqc2/Tae2 subunit of the ribosome-associated quality control
771 (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation.
772 *eLife*. 2016;5.

773 17. Wu Z, et al. MISTERMINATE Mechanistically Links Mitochondrial Dysfunction With
774 Proteostasis Failure. *Molecular cell*. 2019;75(4).

775 18. Li S, et al. Quality-control mechanisms targeting translationally stalled and C-terminally
776 extended poly(GR) associated with ALS/FTD. *Proc Natl Acad Sci U S A*.
777 2020;117(40):25104-15.

778 19. Rimal S, et al. Inefficient quality control of ribosome stalling during APP synthesis
779 generates CAT-tailed species that precipitate hallmarks of Alzheimer's disease. *Acta
780 neuropathologica communications*. 2021;9(1).

781 20. Wang N, and Wang D. Genome-wide transcriptome and translatome analyses reveal the
782 role of protein extension and domestication in liver cancer oncogenesis. *Molecular
783 genetics and genomics : MGG*. 2021;296(3).

784 21. Champagne J, et al. Oncogene-dependent sloppiness in mRNA translation. *Molecular*
785 *cell*. 2021;81(22).

786 22. Rubio A, et al. Ribosome profiling reveals ribosome stalling on tryptophan codons and
787 ribosome queuing upon oxidative stress in fission yeast. *Nucleic acids research*.
788 2021;49(1).

789 23. Dango S, et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent
790 DNA alkylation repair and cancer cell proliferation. *Molecular cell*. 2011;44(3).

791 24. Gao J, et al. Suppression of ABCE1-Mediated mRNA Translation Limits N-MYC-Driven
792 Cancer Progression. *Cancer research*. 2020;80(17).

793 25. Zhou X, et al. High ANKZF1 expression is associated with poor overall survival and
794 recurrence-free survival in colon cancer. *Future oncology (London, England)*.
795 2019;15(18).

796 26. Costantini S, et al. Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and
797 Therapeutic Target in Cancer. *International journal of molecular sciences*. 2021;22(18).

798 27. Bi X, et al. Drosophila caliban, a nuclear export mediator, can function as a tumor
799 suppressor in human lung cancer cells. *Oncogene*. 2005;24(56).

800 28. Yang Q, and Gupta R. Zinc finger protein 598 inhibits cell survival by promoting UV-
801 induced apoptosis. *Oncotarget*. 2017;9(5).

802 29. Li G, et al. ANKZF1 knockdown inhibits glioblastoma progression by promoting
803 intramitochondrial protein aggregation through mitoRQC. *Cancer letters*. 2024.

804 30. Gehrke S, et al. PINK1 and Parkin control localized translation of respiratory chain
805 component mRNAs on mitochondria outer membrane. *Cell metabolism*. 2015;21(1).

806 31. Forrest MD. Why cancer cells have a more hyperpolarised mitochondrial membrane

807 potential and emergent prospects for therapy. *bioRxiv*. 2015.

808 32. Shi Y, et al. Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma.
809 *Nature*. 2019;567(7748).

810 33. Guièze R, et al. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition
811 in Lymphoid Malignancies. *Cancer cell*. 2019;36(4).

812 34. Ramamoorthy MD, et al. Reserpine Induces Apoptosis and Cell Cycle Arrest in Hormone
813 Independent Prostate Cancer Cells through Mitochondrial Membrane Potential Failure.
814 *Anti-cancer agents in medicinal chemistry*. 2018;18(9).

815 35. Heerdt BG, et al. Growth properties of colonic tumor cells are a function of the intrinsic
816 mitochondrial membrane potential. *Cancer research*. 2006;66(3).

817 36. Zorova LD, et al. Mitochondrial membrane potential. *Analytical biochemistry*. 2018;552.

818 37. Maria A, et al. *Biochemistry, Electron Transport Chain*. StatPearls Publishing; 2020.

819 38. Liberti MV, and Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells?
820 *Trends in biochemical sciences*. 2016;41(3).

821 39. Varn FS, et al. Glioma progression is shaped by genetic evolution and microenvironment
822 interactions. *Cell*. 2022;185(12).

823 40. Rutka JT, et al. Establishment and characterization of five cell lines derived from human
824 malignant gliomas. *Acta neuropathologica*. 1987;75(1).

825 41. Kim E, et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation
826 and promotes tumorigenicity of glioblastoma stem-like cells. *Cancer cell*. 2013;23(6).

827 42. Sonoda Y, et al. Formation of intracranial tumors by genetically modified human
828 astrocytes defines four pathways critical in the development of human anaplastic
829 astrocytoma. *Cancer research*. 2001;61(13).

830 43. Saito S, et al. The Hbs1-Dom34 protein complex functions in non-stop mRNA decay in
831 mammalian cells. *The Journal of biological chemistry*. 2013;288(24).

832 44. Chang WD, et al. Threonine-rich carboxyl-terminal extension drives aggregation of
833 stalled polypeptides. *Molecular cell*. 2024;84(22).

834 45. Khan D, et al. Mechanochemical forces regulate the composition and fate of stalled
835 nascent chains. *bioRxiv : the preprint server for biology*. 2024.

836 46. Morgenstern M, et al. Definition of a High-Confidence Mitochondrial Proteome at
837 Quantitative Scale. *Cell reports*. 2017;19(13).

838 47. Chang YW, et al. Spatial and temporal dynamics of ATP synthase from mitochondria
839 toward the cell surface. *Communications biology*. 2023;6(1).

840 48. Alavian KN, et al. An uncoupling channel within the c-subunit ring of the F1FO ATP
841 synthase is the mitochondrial permeability transition pore. *Proceedings of the National
842 Academy of Sciences of the United States of America*. 2014;111(29).

843 49. Giorgio V, et al. Dimers of mitochondrial ATP synthase form the permeability transition
844 pore. *Proceedings of the National Academy of Sciences of the United States of America*.
845 2013;110(15).

846 50. Bonora M, et al. Role of the c subunit of the FO ATP synthase in mitochondrial
847 permeability transition. *Cell cycle (Georgetown, Tex)*. 2013;12(4).

848 51. Ichas F, et al. Mitochondria are excitable organelles capable of generating and conveying
849 electrical and calcium signals. *Cell*. 1997;89(7).

850 52. Stockert JC, et al. Tetrazolium salts and formazan products in Cell Biology: Viability
851 assessment, fluorescence imaging, and labeling perspectives. *Acta histochemica*.
852 2018;120(3).

853 53. Justus CR, et al. In vitro cell migration and invasion assays. *Journal of visualized*
854 *experiments : JoVE*. 2014(88).

855 54. Grada A, et al. Research Techniques Made Simple: Analysis of Collective Cell Migration
856 Using the Wound Healing Assay. *The Journal of investigative dermatology*. 2017;137(2).

857 55. Mashimo M, et al. The 89-kDa PARP1 cleavage fragment serves as a cytoplasmic PAR
858 carrier to induce AIF-mediated apoptosis. *The Journal of biological chemistry*. 2021;296.

859 56. Khaket TP, et al. Ribosome stalling during c-myc translation presents actionable cancer
860 cell vulnerability. *PNAS nexus*. 2024;3(8).

861 57. Comelli M, et al. F1FO ATP Synthase Is Expressed at the Surface of Embryonic Rat
862 Heart-Derived H9c2 Cells and Is Affected by Cardiac-Like Differentiation. *Journal of*
863 *cellular biochemistry*. 2016;117(2).

864 58. Lv L, et al. NEMF-mediated Listerin-independent mitochondrial translational
865 surveillance by E3 ligase Pirh2 and mitochondrial protease ClpXP. *Cell reports*.
866 2024;43(3).

867 59. Cormio A, et al. Mitochondrial Caseinolytic Protease P: A Possible Novel Prognostic
868 Marker and Therapeutic Target in Cancer. *International journal of molecular sciences*.
869 2021;22(12).

870 60. Ventura-Clapier R, et al. Transcriptional control of mitochondrial biogenesis: the central
871 role of PGC-1alpha. *Cardiovascular research*. 2008;79(2).

872 61. Wu Z, et al. Mechanisms controlling mitochondrial biogenesis and respiration through
873 the thermogenic coactivator PGC-1. *Cell*. 1999;98(1).

874 62. Endlicher R, et al. The Mitochondrial Permeability Transition Pore-Current Knowledge
875 of Its Structure, Function, and Regulation, and Optimized Methods for Evaluating Its

899 72. Carraro M, et al. The Unique Cysteine of F-ATP Synthase OSCP Subunit Participates in
900 Modulation of the Permeability Transition Pore. *Cell reports*. 2020;32(9).

901 73. Clark PA, et al. Activation of multiple ERBB family receptors mediates glioblastoma
902 cancer stem-like cell resistance to EGFR-targeted inhibition. *Neoplasia (New York, NY)*.
903 2012;14(5).

904 74. Zorniak M, et al. Differential expression of 2',3'-cyclic-nucleotide 3'-phosphodiesterase
905 and neural lineage markers correlate with glioblastoma xenograft infiltration and patient
906 survival. *Clinical cancer research : an official journal of the American Association for
907 Cancer Research*. 2012;18(13).

908 75. Wang L, et al. A Multisite-Binding Switchable Fluorescent Probe for Monitoring
909 Mitochondrial ATP Level Fluctuation in Live Cells. *Angewandte Chemie (International
910 ed in English)*. 2016;55(5).

911

912 **Figure Legends**

913 **Figure 1. Evidence for msiCAT-tailing on mitochondrial proteins in GBM cells**

914 (A) RQC gene expression levels in GBM tumor tissues (n=153) compared to normal brain
915 tissues (n=206) (unpaired Student's t-test; *, logFC (fold change)>1; adj.P.Val<0.001). (B)
916 Western blot analysis of msiCAT-tailed mitochondrial proteins and RQC factors in patient-
917 derived GSC and control NSC cells, using ACTIN as the loading control. Red arrowheads
918 indicate short CAT-tailed mitochondrial proteins; “short” and “long” refer to exposure time; the
919 red numbers represent fold changes compared to controls (NSC). (C) Western blot of 5×FLAG-
920 tagged β-globin reporter proteins in GBM and control cells, showing more CAT-tailed proteins
921 in GBM cells, using ACTIN as the loading control. The red numbers represent fold changes
922 compared to controls (NHA without any treatment); the purple numbers represent the ratio of red
923 (CAT-tailed) to green (non-CAT-tailed) sections. (D) Western blot of overexpressed ATP5α-
924 AT3 and ATP5α-AT20 in GBM and control cells, using GAPDH as the loading control;
925 arrowheads indicate endogenous ATP5α, ATP5α-AT3, ATP5α-AT20, and oligomers/aggregates
926 of msiCAT-tailed ATP5α proteins. The purple numbers represent the ratio of red (exogenous) to
927 green (endogenous) sections. (E) Immunofluorescence staining shows endogenous ATP5α
928 protein aggregates in GBM cells, with TOM20 (red) as a mitochondrial marker. White arrows
929 indicate ATP5α protein aggregates. (F) Quantification of E (n=3; chi-squared test; ***, P <
930 0.001; ****, P < 0.0001); the total number of cells counted is indicated in the columns.

931

932 **Figure 2. Impact of msiCAT-tailed ATP5α proteins on mitochondrial functions in GBM**
933 **cells**

934 (A) TMRM staining shows a high mitochondrial membrane potential in patient-derived GSC
935 cells (n=3; unpaired Student's t-test; ***, $P < 0.001$; ****, $P < 0.0001$). (B) ATP measurement
936 shows a low mitochondrial ATP production in patient-derived GSC cells (n=3; unpaired
937 Student's t-test; **, $P < 0.01$; ***, $P < 0.001$). (C, D) JC-10 staining reveals a reduced
938 mitochondrial membrane potential in GBM cells, but not in NHA control cells, upon both genetic
939 (C) and pharmacological (D) inhibition of the msiCAT-tailing pathway (n=3; unpaired Student's
940 t-test; ***, $P < 0.001$; ****, $P < 0.0001$; ns, not significant). (E) JC-10 staining reveals an
941 increased mitochondrial membrane potential in GBM cells, but not in control cells, upon
942 overexpression of ATP5 β -AT3 and ATP5 β -AT20 (n=3; unpaired Student's t-test; ****, $P <$
943 0.0001; ns, not significant). (F) Western blot of FLAG-tagged ATP5 β , NEMF, and ANKZF1 in
944 GBM cells and control cells, using ACTIN as the loading control. (G) JC-10 staining reveals an
945 increased mitochondrial membrane potential in GBM cells, but not in NHA control cells, upon
946 overexpression of ATP5 β -AT3 and ATP5 β -AT20 with concurrent genetic inhibition of the
947 endogenous msiCAT-tailing pathway (n=3; unpaired Student's t-test; *, $P < 0.05$; **, $P < 0.01$).
948 (H) BN-PAGE western blot of ATP5 β and Flag shows that ATP5 β -AT3 is incorporated into the
949 mitochondrial Complex-V (ATP synthase), while ATP5 β -AT20 forms high molecular weight
950 protein aggregates in GBM cells. SC: respiratory supercomplex; C-V: Complex-V/ATP synthase.
951 (I, K) Oxygen consumption rate (OCR) data indicate a reduction in mitochondrial oxygen
952 consumption in SF268 cells expressing ATP5 β -AT3 and ATP5 β -AT20. Oligomycin (1.5 μ M),
953 FCCP (1.0 μ M), and rotenone/antimycin A (R/A, 0.5 μ M) were sequentially added. (J, L)
954 Statistics of mitochondrial respiration parameters in (I, K), including non-mitochondrial
955 respiration, basal respiration, maximum respiration, spare respiration, proton leaks, and ATP

956 production (n=3; unpaired Student's t-test; *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ****, $P <$
957 0.0001; ns, not significant).

958

959 **Figure 3. msiCAT-tailing product regulates MPTP status in GBM cells**

960 (A, C) MPTP activity assay shows reduced mitochondrial permeability transition pore opening in
961 GSC cells compared to NHA (control) cells. Pharmacological (A, anisomycin 200 nM) and
962 genetic (sgNEMF) inhibition of CAT-tailing reverse it. (B, D) Quantification of (A, C) (n=3;
963 unpaired Student's t-test; ****, $P < 0.0001$; ns, not significant). (E, G) Immunofluorescence
964 staining shows that anisomycin treatment (E) and sgNEMF (G) inhibit endogenous ATP5 β
965 protein aggregation in GBM cells, using TOM20 (red) as a mitochondrial marker. (F, H)
966 Quantification of (E, G) (n=3; chi-squared test; *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$); the
967 total number of cells counted is indicated in the columns. (I) The calcium retention capacity
968 (CRC) assay of isolated mitochondria, measured using the Calcium Green-5N dye, reveals a
969 significantly higher CRC in GBM cells compared to control NHA cells. CsA (Cyclosporin A,
970 MPTP inhibitor) serves as a positive control. (J) Statistic of (I) shows attenuated CRC in
971 mitochondria pretreated with anisomycin or with sgNEMF (n=10; unpaired Student's t-test; ***,
972 $P < 0.001$; ****, $P < 0.0001$). (K) MPTP activity assay shows that ectopic expression of ATP5 β -
973 AT3 and ATP5 β -AT20 inhibits MPTP opening in GBM cells. (L) Quantification of (K) (n=3;
974 unpaired Student's t-test; ****, $P < 0.0001$). (M) BN-PAGE western blot shows that ATP5 β -
975 AT3 and ATP5 β -AT20 expression alters ANT1/2 protein patterns in GBM cells, resulting in a
976 missing band (circled in yellow dashed line), and formation of high molecular weight aggregates.
977 SC: respiratory supercomplex; C-V: Complex V/ATP synthase.

978

979 **Figure 4. msiCAT-tailed ATP5 β protein promotes GBM progression**

980 (A) MTT assay indicates increased proliferation caused by ATP5 β -AT3 and ATP5 β -AT20
981 expression in GBM cells (n=3; unpaired Student's t-test; **, $P < 0.01$; ***, $P < 0.001$). (B) MTT
982 assay indicates no change in proliferation caused by ATP5 β -AT3 and ATP5 β -AT20 expression in
983 NHA cells (n=3; unpaired Student's t-test; ns, not significant). (C) Transwell assay reveals
984 enhanced migration induced by ATP5 β -AT3 and ATP5 β -AT20 expression in GBM (SF) cells but
985 not in control (NHA) cells. (D) Quantification of (C) shows the number of migrated cells (n=3;
986 unpaired Student's t-test; ***, $P < 0.001$; ns, not significant). (E) MTT assay indicates an
987 increased proliferation in GBM cells, upon overexpression of ATP5 β -AT3 and ATP5-AT20
988 with concurrent genetic inhibition of the endogenous msiCAT-tailing pathway (n=3; unpaired
989 Student's t-test; *, $P < 0.05$; **, $P < 0.01$). (F) Transwell assay reveals enhanced migration upon
990 overexpression of ATP5 β -AT3 and ATP5 β -AT20 with concurrent genetic inhibition of the
991 endogenous msiCAT-tailing pathway. (G) Quantification of (F) shows the number of migrated
992 cells (n=3; unpaired Student's t-test; ***, $P < 0.001$; ****, $P < 0.0001$). (H) TUNEL staining
993 shows that staurosporine (STS, 1 μ M)-induced apoptosis is attenuated by ATP5 β -AT3 and
994 ATP5 β -AT20 expression in GBM cells, using TUNEL-Cy3 as an apoptotic cell indicator and
995 DAPI as a nucleus indicator. (I) Quantification of (H) shows the percentage of TUNEL-positive
996 cells in the population (n=3; unpaired student's t-test; ***, $P < 0.001$), using DMSO as the
997 vehicle control. (J) MTT assay indicates an enhanced resistance to temozolomide (TMZ, 150
998 μ M) induced by ATP5 β -AT3 and ATP5 β -AT20 expression. The TMZ-treated/SF-Ctrl group is
999 used as the control (n=3; unpaired Student's t-test; ***, $P < 0.001$).
1000

1001 **Figure 5. Inhibition of msiCAT-tailing impedes GBM progression**

1002 (A) Cell viability assay shows greater sensitivity to anisomycin treatment in patient-derived GSC
1003 cells than control NSC cells at 48 hours (n=3; unpaired Student's t-test; **, $P < 0.001$; ****, P
1004 <0.0001; compared to controls at the corresponding dose). (B) MTT assay indicates reduced
1005 GBM cell proliferation by genetic inhibition of the msiCAT-tailing pathway (n=3; unpaired
1006 Student's t-test; **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$, compared to controls at the
1007 corresponding time). (C) MTT assay indicates reduced NHA cell proliferation by genetic
1008 inhibition of the msiCAT-tailing pathway (n=3; unpaired Student's t-test; **, $P < 0.01$; ****, P
1009 <0.0001, compared to controls at the corresponding time). (D, F) Transwell assay reveals that
1010 both genetic (D) and pharmacological (F) inhibition of the msiCAT-tailing pathway hampers the
1011 migration of GBM cells but not control cells. (E, G) Quantification of (D, F) showing the
1012 number of migrated cells (n=3; unpaired Student's t-test; ***, $P < 0.001$; ****, $P < 0.0001$; ns,
1013 not significant). (H, J) TUNEL staining reveals that both genetic (H) and pharmacological (J)
1014 inhibition of the msiCAT-tailing pathway promote STS-induced apoptosis in GBM cells,
1015 utilizing TUNEL-Cy3 as an apoptotic cell marker and DAPI as a nuclear stain. (I, K)
1016 Quantification of (H, J) showing the percentage of TUNEL-positive cells in the population (n=3;
1017 unpaired Student's t-test; **** $P < 0.0001$), using DMSO as the vehicle control. (L) MTT assay
1018 shows that pharmacological inhibition of the msiCAT-tailing pathway decrease the resistance of
1019 GBM cells to temozolomide (TMZ, 150 μ M) treatment (n=3; unpaired Student's t-test; * $P <$
1020 0.05; **, $P < 0.01$). (M) The neurosphere formation assay shows that reduced spheroid formation,
1021 caused by pharmacological inhibition of the msiCAT-tailing pathway, can synergize with TMZ in
1022 GBM cells. (N) Quantification of (M) (n=3; unpaired Student's t-test; **, $P < 0.01$).
1023

1024 **Figure 6. Impact of msiCAT-tail modified ATP5 α protein on mitochondrial function in**
1025 **GBM cells**

1026 In healthy cells, ATP5 α protein, encoded by the nuclear genome, is imported into the
1027 mitochondrial matrix via the TOM/TIM complex through co-translational import and
1028 incorporated into ATP synthase (Left). Conversely, in GBM cells, the CAT-tailed ATP5 α protein
1029 can either form aggregates near the mitochondrial outer membrane or be imported into the
1030 mitochondria. Within the mitochondrial matrix, proteins with shorter CAT-tails readily integrate
1031 into ATP synthase, disrupting its functionality. This dysfunction is characterized by a reduced
1032 ATP synthesis rate and proton (H $^{+}$) accumulation, resulting in an elevated mitochondrial
1033 membrane potential ($\Delta\Psi_m$). These alterations in ATP synthase ultimately trigger malfunction of
1034 the MPTP, consequently affecting cell proliferation, migration, and resistance to drug-induced
1035 apoptosis (Right).

1036

1037 **Supplementary Figure and Table Legends**

1038 **Figure 1 – Figure Supplement 1. RQC pathway activity in GBM cells**

1039 (A) Immunofluorescence staining shows elevated NEMF and reduced ANKZF1 endogenous
1040 protein levels in the tumor tissue of the GBM mouse model compared to wild-type brain tissue.
1041 Tumor identification is indicated by GFP (green). (B) Quantification of A (n=3; unpaired
1042 Student's t-test; ****, $P < 0.0001$). (C) Western blot analysis of select RQC factors in control cell
1043 lines (SVG, NHA) and GBM cell lines (SF268, GSC827), using ACTIN as the loading control.
1044 Red numbers represent fold changes in protein levels relative to controls (SVG).

1045

1046 **Figure 1 – Figure Supplement 2. AT repeat sequences mimicking CAT-tails induce protein
1047 aggregates in cells**

1048 (A) Western blot analysis of ATP5 α in GSC and NHA cells, using GAPDH as the loading control.
1049 The purple arrowhead indicates the modified ATP5 α form; “short” and “long” refer to exposure
1050 time. Red numbers represent fold changes in protein levels relative to controls (the leftmost
1051 bands); purple numbers represent fold changes in protein levels of the modified ATP5 α form
1052 relative to the control (the leftmost band). (B) Western blot analysis of Flag-tagged ATP5 α in
1053 GSC and control cells, using ACTIN as the loading control. The red arrowhead indicates the
1054 modified Flag-ATP5 α form. (C) Immunofluorescence staining shows that Flag-tagged ATP5 α -
1055 AT3 and ATP5 α -AT20 (green) form aggregates in GBM and control cells, using TOM20 (red) as
1056 a mitochondrial marker. (D) Quantification of C (n=3; chi-squared test; ***, $P < 0.001$; ****, P
1057 < 0.0001); the total number of cells counted is indicated in the columns. (E) Western blot of
1058 Flag-tagged ATP5 α -GS3 and ATP5 α -GS20 in GBM cells, using ACTIN as the loading control.
1059 (F) Immunofluorescence staining shows that Flag-tagged ATP5 α -GS3 and ATP5 α -GS20 (green)

1060 do not form aggregates in GBM cells, using TOM20 (red) as a mitochondrial marker. (G)
1061 Quantification of F (n=3; chi-squared test; ns, not significant); the total number of cells counted
1062 is indicated in the columns.

1063

1064 **Figure 1 – Figure Supplement 3. Aggregation of CAT-tailed mitochondrial proteins**
1065 **observed *in vivo***

1066 (A) Immunofluorescence staining shows that endogenous NDUS3 protein aggregates in GBM
1067 cells, with TOM20 (red) as a mitochondrial marker. White arrows indicate NUDS3 protein
1068 aggregates. (B) Quantification of A (n=3; chi-squared test; *, P < 0.05); the total number of cells
1069 counted is indicated in the columns. (C) Immunofluorescence staining reveals that endogenous
1070 ATP5 \square protein forms aggregates in tumor tissue from the GBM mouse model, but not in wild-
1071 type brain tissue, using TOM20 (blue) as a mitochondrial marker. Tumor identification is
1072 indicated by GFP (green). White arrowheads indicate ATP5 \square (red) aggregates. Yellow lines
1073 indicate the regions selected for intensity analysis in (D). (D) Fluorescence intensity profiles
1074 show the signals of ATP5 \square (red) and TOM20 (blue) in wild-type and tumor tissues. Black arrows
1075 indicate ATP5 \square aggregates located outside of mitochondria. (E) Quantification of C (n=3; chi-
1076 squared test; ****, P < 0.0001); the total number of cells counted is indicated in the columns.

1077

1078 **Figure 2 – Figure Supplement 1. Aberrant mitochondrial function in GBM cells**

1079 (A) JC-10 staining reveals elevated mitochondrial membrane potentials in GBM cells compared
1080 to NHA (control) cells (n=3; unpaired Student's t-test; ***, P < 0.001). (B) Analysis with
1081 BioTracker ATP \square red dye staining shows reduced mitochondrial ATP production in GBM cells
1082 compared to NHA (control) cells, using MitoTracker Green as the mitochondrial mass indicator

1083 for normalization. (C) Quantification of (B) (n=3; unpaired Student's t-test; ****, $P < 0.0001$).
1084 (D) Western blot of NEMF and ANKZF1 in GBM and control cells, confirming the successful
1085 overexpression and knockdown of target proteins, using ACTIN as the loading control. (E) JC-10
1086 staining reveals no change of mitochondrial membrane potential in GBM cells, upon
1087 overexpression of ATP5 α -GS3 and ATP5 α -GS20 (n=3; unpaired Student's t-test; ****, $P <$
1088 0.0001; ns, not significant).

1089

1090 **Figure 3 – Figure Supplement 1. Cycloheximide does not impact mitochondrial functions**

1091 (A) MPTP activity assay shows that MPTP opening is not affected by the cycloheximide
1092 treatment (100 μ g/mL) in cells. (B) Quantification of (A) (n=3; unpaired Student's t-test; ns, not
1093 significant). (C) Immunofluorescence staining reveals no inhibition of endogenous ATP5 α
1094 protein aggregation by cycloheximide (100 μ g/mL) treatment in GBM cells, using TOM20 (red)
1095 as a mitochondrial marker. (D) Quantification of (C) (n=3; chi-squared test; ns, not significant);
1096 the total number of cells counted is indicated in the columns. (E) MPTP activity assay reveals the
1097 increased Calcien signal in GBM cells, upon overexpression of ATP5 α -AT3 and ATP5 α -AT20
1098 with concurrent genetic inhibition of the msiCAT-tailing pathway (n=3; unpaired Student's t-test;
1099 **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$).

1100

1101 **Figure 3 – Figure Supplement 2. The CAT-tailed ATP5 α variant has no interaction with**
1102 **MPTP proteins**

1103 (A) Calcium retention capacity (CRC) assay of isolated mitochondria, measured with Calcium
1104 Green-5N dye, upon cycloheximide (100 μ g/mL) treatment and CAT-tailing enhancement

1105 (oeNEMF and siANKZF1). (B) Statistic of (A) shows changes in CRC in GBM cells or control
1106 cells (n=10; unpaired Student's t-test; **, $P < 0.01$; ***, $P < 0.001$). (C) Co-immunoprecipitation
1107 data show no direct interaction between ATP5 β and either CypD or ANT1/2 can be found in
1108 GBM cells. Red arrowheads indicate target proteins. (D) Western blotting of cytosolic and
1109 isolated mitochondrial fractions shows ATP5 β -AT3 expression reduces CypD levels in GBM
1110 cells, using TOM20 as a mitochondrial marker and loading control.

1111

1112 **Figure 4 – Figure Supplement 1. Effect of GS repeat tails on GBM proliferation and**
1113 **migration**

1114 (A) MTT assay indicates no significant change in GBM proliferation upon ATP5 β -GS3 and
1115 ATP5 β -GS20 expression (n=3; unpaired Student's t-test; **, $P < 0.01$; ns, not significant). (B)
1116 Wound-healing assay reveals enhanced GBM migration upon ATP5 β -AT3 and ATP5 β -AT20
1117 expression. (C) Quantification of (B) shows an increased healing rate, indicated by scratch
1118 wound coverage at both 24 and 48 hours (n=3; unpaired Student's t-test; **, $P < 0.01$). (D)
1119 Transwell assay reveals no significant alteration in GBM migration upon ATP5 β -GS3 and
1120 ATP5 β -GS20 expression. (E) Quantification of (D) shows the number of migrated cells (n=3;
1121 unpaired Student's t-test; ns, not significant). (F) qRT-PCR reveals no increase in mRNA levels
1122 of mitochondrial unfolded protein response genes, as normalized to *ACTB* as the control (n=4;
1123 unpaired Student's t-test; **, $P < 0.01$; ns, not significant).

1124

1125 **Figure 4 – Figure Supplement 2. GBM cells exhibit increased resistance to apoptosis**

1126 (A) TUNEL staining shows that GBM cells are more resistant to staurosporine (STS, 1 μ M)-
1127 induced apoptosis compared to control cells, using TUNEL-Cy3 as an apoptotic cell indicator

1128 and DAPI as a nucleus indicator. (B) Quantification of A shows the percentage of TUNEL-
1129 positive cells in the population (n=3; unpaired Student's t-test; ***, $P < 0.0001$; ****, $P <$
1130 0.0001), using DMSO as the vehicle control. (C) Western blot analysis of PARP shows that GBM
1131 cells are more resilient against STS-induced apoptosis at 30-, 90-, and 180-min post-treatment.
1132 Cleaved PARP is used as an apoptosis marker. ACTIN and GAPDH are used as loading controls.
1133 Red numbers below each blot represent the ratios of cleaved PARP (c-PARP) to total PARP
1134 protein. (D, F) Flow cytometry analysis using Annexin V-FITC/Propidium Iodide (PI) staining
1135 shows alterations in apoptosis rates in GBM cells upon ATP5 β -AT3, ATP5 β -AT20, ATP5 β -GS3,
1136 and ATP5 β -GS20 expression. The apoptotic cell population (Annexin V positive, PI negative) is
1137 represented in the fourth quadrant (right lower). (E, G) Quantification of (D, F) shows the
1138 percentages of apoptotic cells (n=3; unpaired Student's t-test; **, $P < 0.001$; ***, $P < 0.0001$).
1139

1140 **Figure 5 – Figure Supplement 1. No effect of Cycloheximide on GBM apoptosis response**

1141 (A) Caspase-3/7 activity assay shows increased apoptosis in GBM cells caused by anisomycin
1142 treatment (n=3; unpaired Student's t-test; ***, $P < 0.001$; ****, $P < 0.0001$; compared to the
1143 control group (DMSO) at the corresponding time). (B, C) Western blot analysis of PARP in
1144 anisomycin-treated and cycloheximide-treated GSC cells indicates that pharmacological
1145 inhibition of the msiCAT-tailing pathway enhances STS-induced apoptosis, using ACTIN as a
1146 loading control. Red numbers below each blot represent the ratios of cleaved PARP (c-PARP) to
1147 total PARP protein. (D, F) Flow cytometry analysis using Annexin V-FITC/Propidium Iodide
1148 (PI) staining shows alterations in apoptosis rates in GBM cells upon genetic (D) and
1149 pharmacological (F) inhibition of the msiCAT-tailing pathway. The apoptotic cell population
1150 (Annexin V positive, PI negative) is represented in the fourth quadrant (right lower). (E, G)

1151 Quantification of (D, F) shows the percentages of apoptotic cells (n=3; unpaired Student's t-test;

1152 **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$; ns, not significant).

1153

Table 1. Differential expression analysis of RQC genes in GBM patients compared to healthy controls

Gene	logFC	AveExpr	t	P.Value	adj.P.Val
<i>RACK1</i>	2.224548565	9.048113333	19.24641934	2.62E-57	6.69E-56
<i>ASCC3</i>	1.738216567	2.717246389	19.27211713	2.05E-57	5.27E-56
<i>ASCC1</i>	1.689584768	4.257915556	17.8774401	1.20E-51	2.18E-50
<i>ASCC2</i>	1.471467207	4.153399167	15.9118075	1.43E-43	1.68E-42
<i>ABCE1</i>	1.32826428	3.81695	13.79248369	4.69E-35	3.60E-34
<i>VCP</i>	1.050066326	6.321021667	9.828944092	2.33E-20	9.31E-20
<i>GIGYF2</i>	0.985695112	3.786421389	10.25440005	8.00E-22	3.41E-21
<i>MAP3K20</i>	0.962218073	1.863793889	8.711292467	1.10E-16	3.75E-16
<i>PELO</i>	0.92860628	2.2885625	10.60122263	4.85E-23	2.18E-22
<i>KLHDC10</i>	0.854921284	3.492322222	9.064976509	8.08E-18	2.88E-17
<i>EDF1</i>	0.82091202	8.444505	7.278600017	2.12E-12	5.94E-12
<i>XRNI</i>	0.809119864	1.518371111	8.54020086	3.80E-16	1.26E-15
<i>LTN1</i>	0.786409776	1.9716	9.962815742	8.14E-21	3.32E-20
<i>MKRN1</i>	0.769369764	5.745359444	7.400071791	9.65E-13	2.74E-12
<i>RCHY1</i>	0.652647968	4.276126111	6.840213538	3.40E-11	8.93E-11
<i>ZNF598</i>	0.62380412	4.006663611	6.043582081	3.76E-09	8.90E-09
<i>HBS1L</i>	0.291107388	4.701389722	2.72853772	0.006672805	0.010370549
<i>NEMF</i>	0.194631373	4.566962778	2.575063266	0.010419695	0.015855894
<i>ANKZF1</i>	-0.436070986	4.620298333	-3.65005718	0.000300886	0.000525859

1155 **Funding Information**

1156 **National Institute of General Medical Sciences (R35GM150190)**

1157 • Zhihao Wu

1158 **National Institute of Neurological Disorders and Stroke (R01NS126501)**

1159 • Rongze Olivia Lu

1160 **Cancer Prevention and Research Institute of Texas (RP210068)**

1161 • Zhihao Wu and Rongze Olivia Lu

1162 **Southern Methodist University (Dedman College Dean's Research Council grant)**

1163 • Zhihao Wu

1164 **SPARK-South Carolina Alzheimer's Disease Research Center (ARDC Pilot Grant)**

1165 • Qing Liu

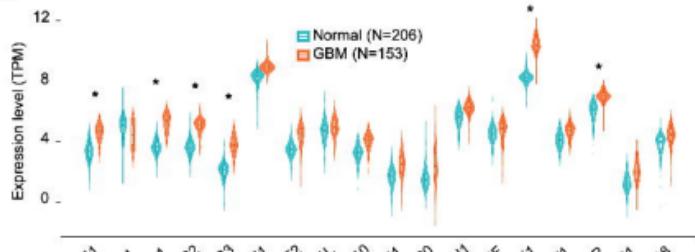
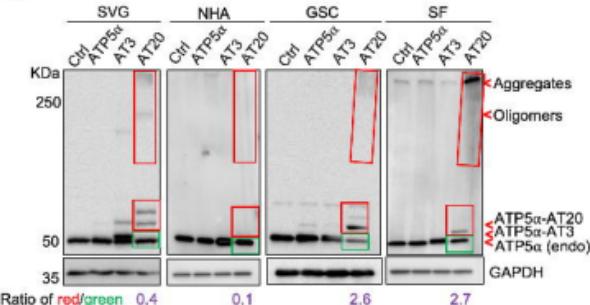
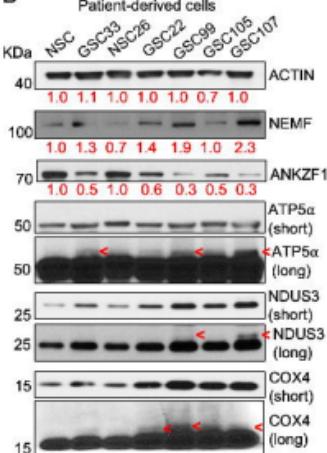
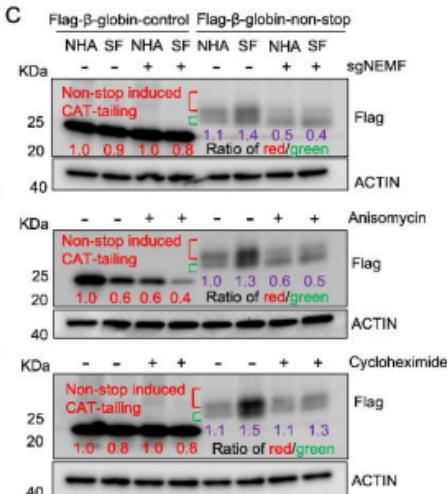
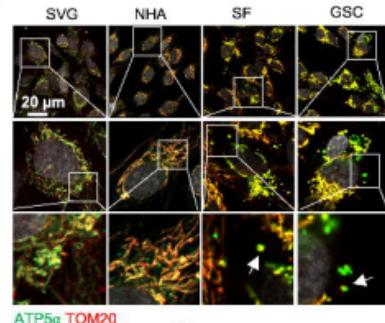
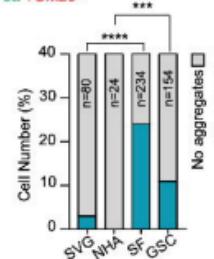
1166

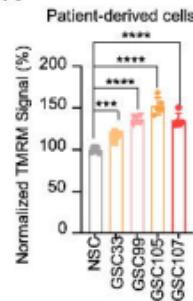
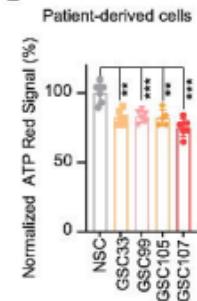
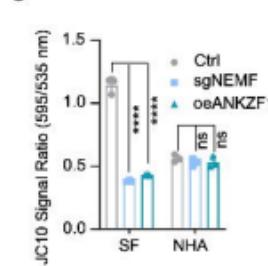
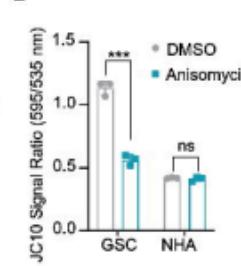
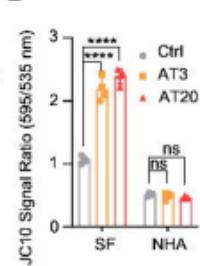
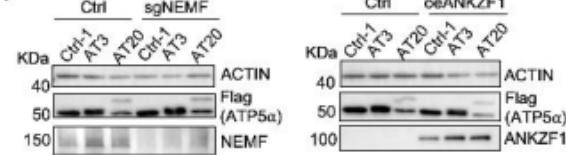
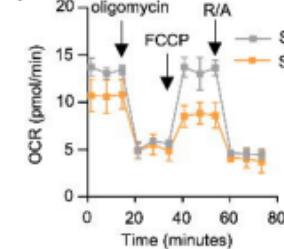
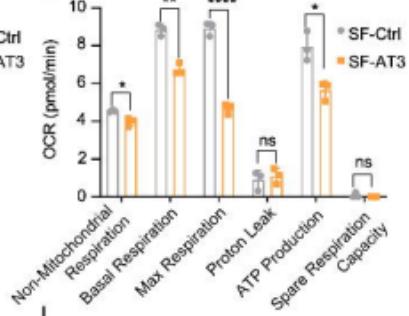
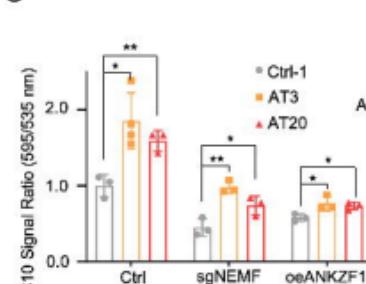
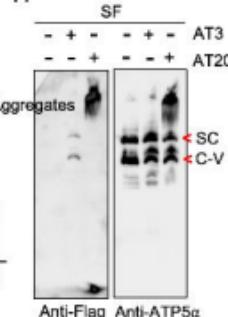
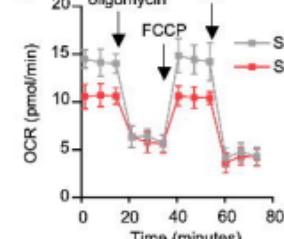
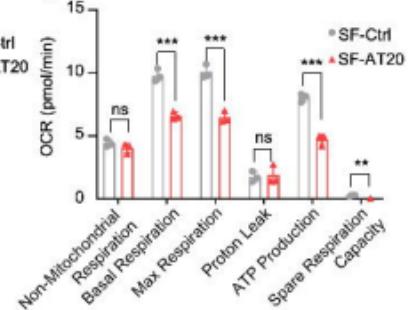
1167 The funders had no role in the study design, data collection, and interpretation, or in the decision

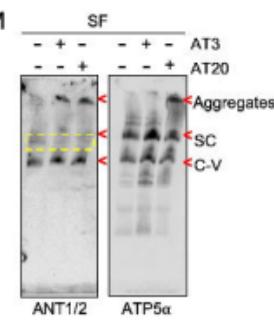
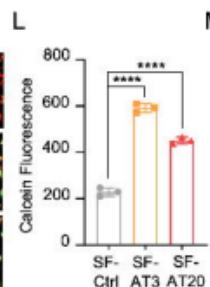
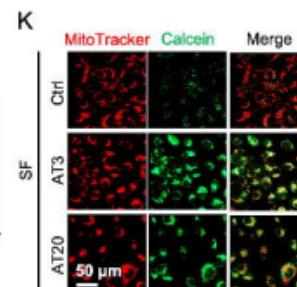
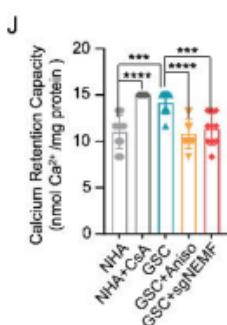
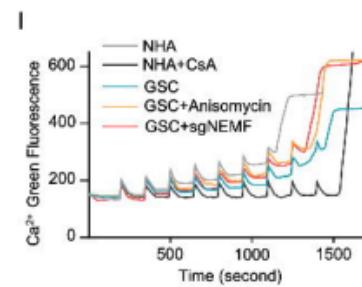
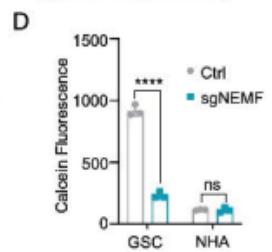
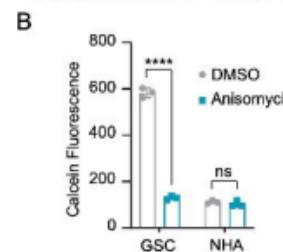
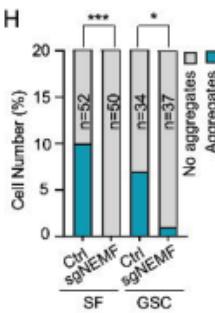
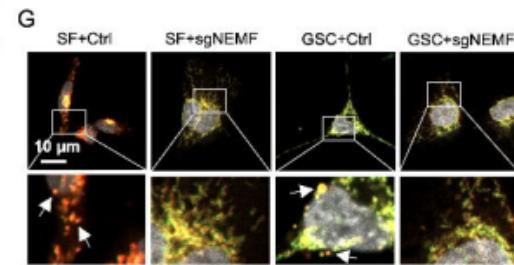
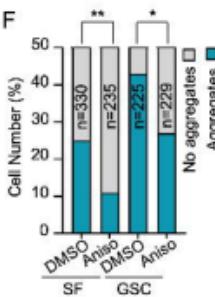
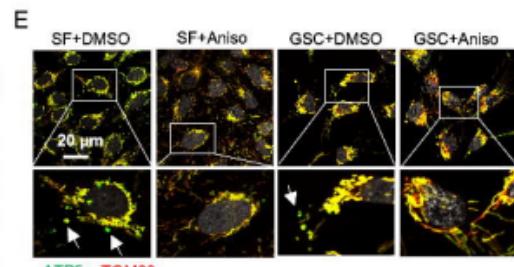
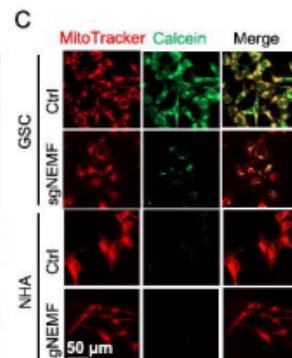
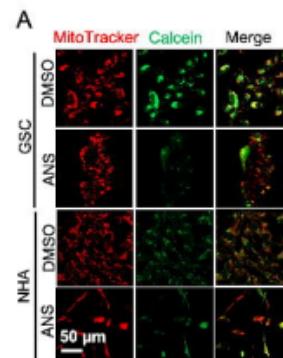
1168 to submit the work for publication.

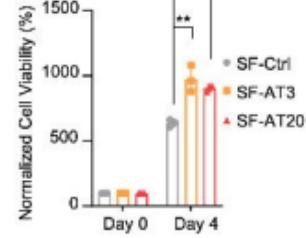
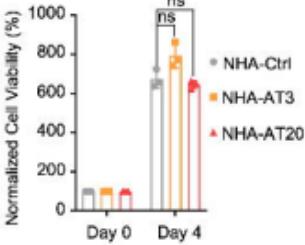
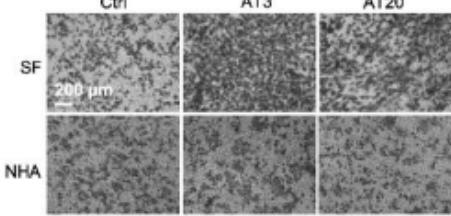
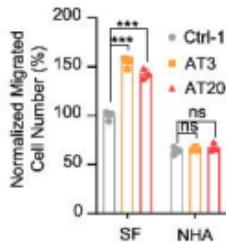
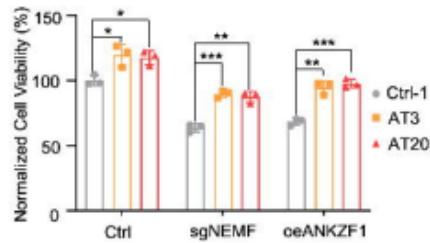
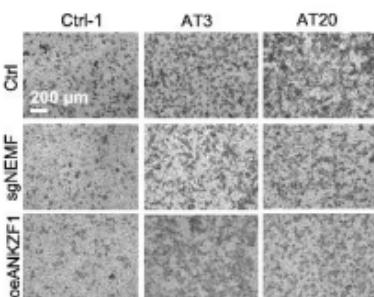
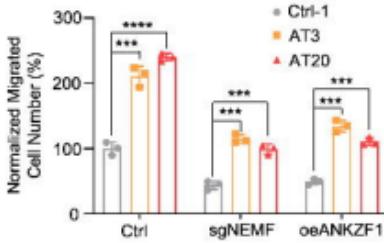
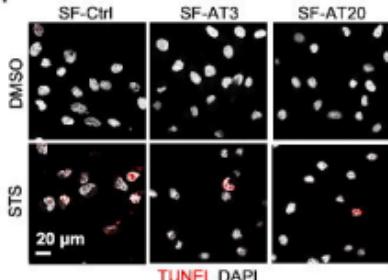
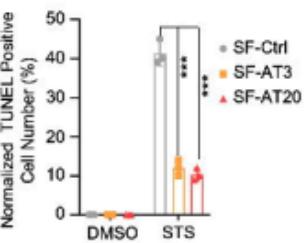
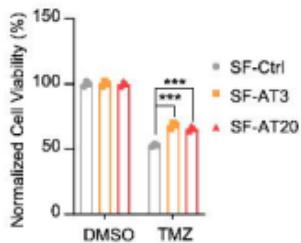
1169

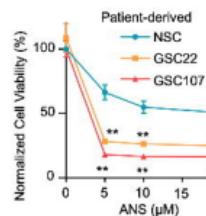
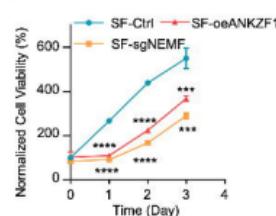
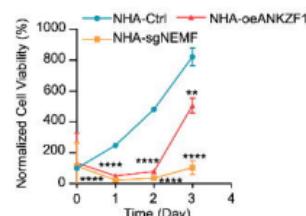
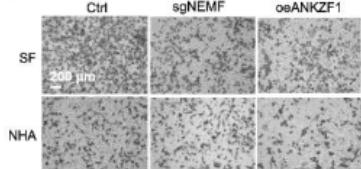
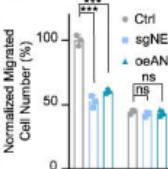
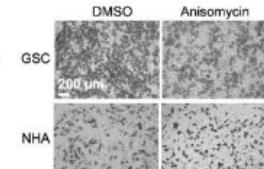
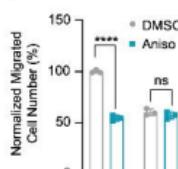
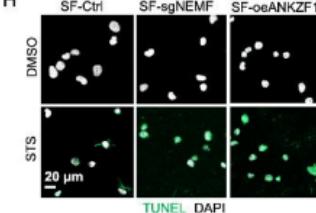
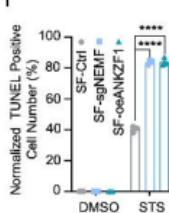
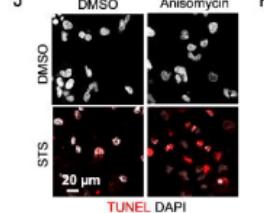
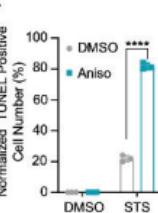
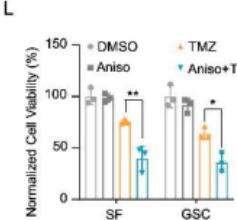
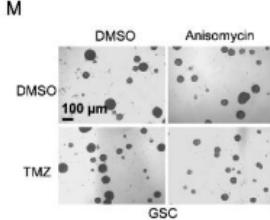
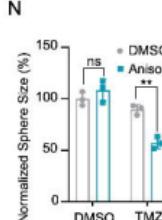
1170 **Acknowledgements**

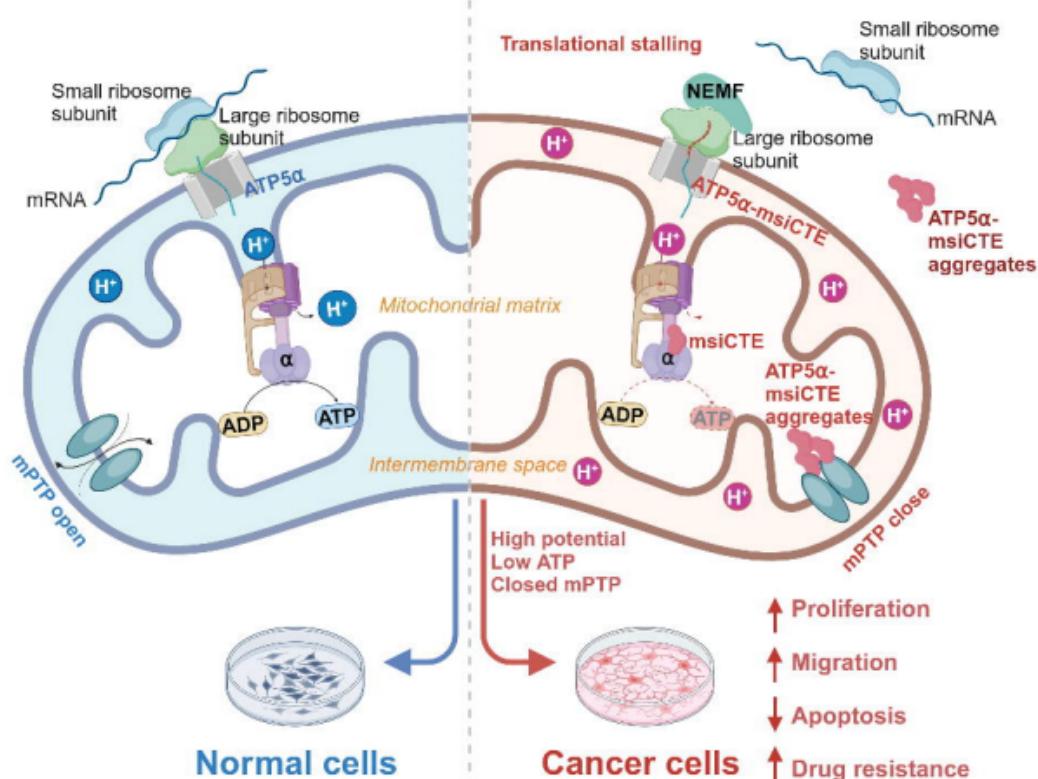






1171 The patient-derived GSC and NSC lines were a gift from Dr. John S. Kuo at the University of













1172 Texas, Austin. We are also grateful to Dr. Chunzhang Yang at the National Cancer Institute and














1173 Dr. Russell O. Pieper at the University of California, San Francisco, for the cell lines. We thank











1174 Dr. Hoshino at Nagoya City University and Dr. Inada at Tohoku University for providing the
1175 plasmids. We also thank the members of the Wu lab at Southern Methodist University and the
1176 members of the Lu lab at UCSF for their assistance and discussions.















1177


A**D****B****C****E****F**

A**B****C****D****E****F****I****J****G****H****K****L**

A**B****C****D****E****F****G****H****I****J**

A**B****C****D****E****F****G****H****I****J****K****L****M****N**

