

1 **Aging and freezing of active nematic dynamics of cancer-associated fibroblasts by**  
2 **fibronectin matrix remodeling**

3

4

5 Cécile Jacques<sup>1, #</sup>, Louisiane Perrin<sup>1, #</sup>, Joseph Ackermann<sup>2,3†</sup>, Samuel Bell<sup>2,†</sup>, Olivier Zajac<sup>1</sup>,  
6 Ambre Lapierre<sup>1</sup>, Lucas Anger<sup>4</sup>, Clément Hallopeau<sup>1</sup>, Carlos Pérez-González<sup>1</sup>, Lakshmi  
7 Balasubramaniam<sup>4,11</sup>, Xavier Trepat<sup>5,6,7,8</sup>, Benoît Ladoux<sup>4</sup>, Ananyo Maitra<sup>2,9</sup>, Raphael  
8 Voituriez<sup>2,\*</sup>, Danijela Matic Vignjevic<sup>1,10,\*</sup>

9

10

11 <sup>1</sup> Institut Curie, PSL Research University, CNRS UMR 144; F-75005 Paris, France

12 <sup>2</sup> Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005, Paris, France

13 <sup>3</sup> Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS,  
14 Sorbonne Université, Université Paris Cité, F-75005 Paris, France

15 <sup>4</sup> Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France

16 <sup>5</sup> Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and  
17 Technology (BIST), 08028 Barcelona, Spain

18 <sup>6</sup> Facultat de Medicina, Universitat de Barcelona; 08036 Barcelona, Spain

19 <sup>7</sup> Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain.

20 <sup>8</sup> Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina  
21 (CIBER-BBN); 08028 Barcelona, Spain

22 <sup>9</sup> Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris  
23 Université, F-95032 Cergy-Pontoise Cedex, France

24 <sup>10</sup> INSERM, France

25 <sup>11</sup> present address: Wellcome Trust / CRUK Gurdon Institute, University of Cambridge,  
26 Cambridge, UK

27

28

29 #, † These authors contributed equally to this work

30

31

32

33 \*Co-last and co-corresponding authors.

34 Danijela Matic Vignjevic, Equipe Labellisée Ligue Contre le Cancer, [danijela.matic@curie.fr](mailto:danijela.matic@curie.fr),  
35 Raphael Voituriez, raphael.voituriez@sorbonne-universite.fr

36 **Abstract**

37

38 Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types in tumor  
39 stroma. Exhibiting an elongated morphology, CAFs align with each other, closely resembling  
40 nematic ordering in liquid crystal physics. CAFs play a pivotal role in the genesis and  
41 remodeling of the extracellular matrix (ECM), with ECM proteins, especially fibronectin,  
42 reciprocally modulating CAF alignment and coherence. Yet, the intricate feedback loops  
43 between fibronectin deposition and CAF structuring remain largely unexplored. Here, we  
44 combined CAF live imaging, traction force microscopy, ECM microfabrication, and theoretical  
45 modeling to assess how the ECM influences the dynamics of nematically ordered CAFs. We  
46 found that CAFs dynamically orchestrate a fibronectin network that mirrors their nematic  
47 ordering. Over time, this passive nematic ordering of fibronectin, in turn, steers CAF  
48 rearrangement. Contrary to most cellular systems, where defects remain dynamic at a steady  
49 state, the ECM/CAF interplay profoundly alters the behavior of both CAF and ECM nematics,  
50 leading to aging- massive slowdown, and even freezing of defect dynamics. This results in a  
51 CAFs capsule where aligned areas and defects are spatially and temporally fixed, yet active,  
52 exerting forces at the substate and transmitting forces between cells. Functionally, while defects  
53 may be permissive, it is the fibronectin loss-induced fluidization of the CAF capsule that  
54 critically undermines its barrier function.

55 **Introduction**

56

57 The most abundant cell type in the tumor stroma is cancer-associated fibroblasts (CAFs)<sup>1,2</sup>. In  
58 many tumor types, particularly in colorectal, breast, and pancreatic cancers, CAFs and the  
59 extracellular matrix (ECM) form a protective capsule that envelops tumors<sup>3</sup>, and plays a key  
60 role in regulating their evolution. Contrary to the belief that this capsule acts passively to  
61 prevent tumor growth<sup>4-6</sup>, we have recently found that CAFs exert active compression on cancer  
62 cells, thereby triggering mechanical signaling that slows down their proliferation<sup>3</sup>.

63 The ECM is mainly produced and remodeled by CAFs<sup>7,8</sup>. In return, ECM proteins, in particular  
64 fibronectin, facilitate communication among fibroblasts<sup>9-11</sup>. This intercellular communication  
65 favors alignment within the fibroblasts, and coordinates CAFs' supracellular contractility and  
66 dynamics<sup>3</sup>. This results in a reciprocal relationship between ECM-induced cell activities and  
67 cell-driven ECM alterations<sup>10,12</sup>, which were also reported for other cell types at the single cell  
68 level<sup>13-15</sup>. Yet, the impact of this interaction on the integrated organization of the ECM/CAF  
69 capsule and tumor progression is still to be understood.

70 CAFs have an elongated shape and tend to align with each other in a process termed “cell  
71 collision guidance”<sup>16</sup>. In liquid crystal physics, the alignment of the long axis of generic apolar  
72 elongated particles is described as nematic ordering<sup>17-19</sup>. Nematic order inherently involves  
73 “topological defects” (induced by geometric frustration, thermal fluctuations or activity), which  
74 are singular points in space where particles with different orientations meet leading to an ill-  
75 defined local alignment<sup>17, 19</sup>. Recent studies have demonstrated that substrate anisotropy or  
76 topographical patterns—such as ridges—can impose nematic order and stabilize defects in cell  
77 monolayers<sup>20-23</sup>. However, these approaches rely on external cues to direct alignment and arrest  
78 defect motion. In cellular monolayers, defects have been described as spots where biologically  
79 important cellular behaviors such as extrusion, multilayering and/or polarity changes are  
80 favored<sup>24-27</sup>. Therefore, while the aligned CAFs within the capsule create a barrier that prevents  
81 tumor growth and spread, defects in the alignment could provide weak points, allowing cancer  
82 cells to escape. In this context, how the ECM/CAF interaction controls the nematic organization  
83 and defect dynamics of CAF monolayers and what consequences these dynamics can have on  
84 biological functions such as cancer cell dissemination remains unknown.

85 Here, we uncover a distinct mechanism of defect arrest that emerges intrinsically from  
86 ECM/CAF feedback and monolayer aging, rather than imposed substrate cues. In this study,  
87 we combined CAFs live imaging over a long period with traction and stress force microscopy,  
88 ECM patterning, and theoretical modeling to assess how the ECM influences the dynamics of  
89 CAFs' nematic alignment. We found that CAFs dynamically orchestrate a fibronectin network  
90 that mirrors their nematic ordering. In response and over time, the passive nematic ordering of  
91 fibronectin guides the organization of CAFs. While prior work has shown that collagen  
92 remodeling can align fibroblasts<sup>28</sup>, our results reveal that ECM/CAF feedback drives a unique  
93 aging process, leading to dynamic arrest of defects without external guidance. Note that here,  
94 by aging, we mean that the process is non-stationary, but slowly varying in time. In contrast to  
95 most cellular systems described so far, and more generally of active nematic systems, in which

96 defects have a finite density and remain dynamic even in steady state - they move, emerge, and  
97 annihilate over time<sup>17-19, 25</sup> - we show that the ECM/CAF feedback interaction dramatically  
98 impacts the dynamics of both the CAFs and ECM nematic fields, leading to massive slow down  
99 and even freezing of defect dynamics. As a result, both the aligned areas and topological defects  
100 within CAFs and ECM became stationary in both space and time but remained active, with in  
101 particular larger traction forces focused at defects, potentially weakening the CAF layer and  
102 favoring cancer cell dissemination.

103

## 104 **Results**

105

### 106 **CAFs and the fibronectin matrix they produce establish layers with congruent nematic 107 ordering**

108 To investigate whether CAFs exhibit nematic ordering similar to other elongated cells, such as  
109 myoblasts<sup>29-31</sup>, we seeded CAFs isolated from human colorectal tumors on 11 kPa  
110 polyacrylamide (PAA) gels coated with monomeric collagen I to maintain physiological  
111 substrate rigidity<sup>32</sup>. Over time, CAFs established a monolayer, comprising large regions of  
112 aligned cells that formed a nematic order (**Fig. 1A, Supp. Fig. 1 A, B**). This nematic ordering  
113 was disrupted locally by topological defects, with expected charges of +1/2 and -1/2, and  
114 characteristic shapes resembling comets or triangles, respectively. Both defect charges were  
115 observed with a similar density of 1.5 defects/mm<sup>2</sup> within the CAF layer (**Fig. 1B, Supp. Fig.**  
116 **1C**).

117 To examine how these defects influence the deposition and organization of fibronectin by  
118 CAFs, we assessed a correlation between the orientation of CAFs (based on F-actin staining)  
119 and fibronectin once cell monolayer was confluent and nematic order fully established,  
120 approximately 6 days after cell seeding (**Fig. 1C**). The comparative analysis of orientation maps  
121 revealed a similar local orientation between CAFs and fibronectin layers, with a 92± 5% local  
122 correlation of fibers' orientation (4 independent experiments). Even though cell density and  
123 fibronectin deposition were heterogeneous, we did not observe preferential accumulation of  
124 either at defects or in aligned areas (**Supp. Fig. 2A, B**). Of note, CAFs deposited a very small  
125 amount of collagen I (**Supp. Fig. 2C**), as previously shown<sup>3</sup>, indicating that fibronectin is the  
126 predominant ECM component deposited during the course of the experiment.

127 Altogether, this data shows that the deposited fibronectin fibers almost perfectly reproduce the  
128 nematic ordering of the CAFs layer.

129

### 130 **Freezing of the CAFs active nematic is achieved after transient, aging dynamics**

131 Typically, active nematics in both biological materials, such as cell monolayers and artificial  
132 or in silico systems, can reach a chaotic stationary state in which defects emerge, move and  
133 annihilate randomly<sup>17-19</sup>. If the orientation of fibronectin deposition matches the local CAFs  
134 orientation consistently across space and time, then over several days, with CAFs changing

135 dynamically, the cumulative effect of these random orientation signals should produce a  
136 fibronectin layer with uniform density and randomly oriented fibers. Because our observations  
137 contradicted this prediction, we questioned whether the anticipated chaotic stationary dynamics  
138 was occurring within the CAFs' layer. To investigate the dynamics of the defects, we carried  
139 out time-lapse imaging of the CAFs' layer starting 2 days after cell seeding. Over a period of  
140 15 hours, we observed no changes in either the position or shape of the defects (**Supp. Fig. 3A**).  
141 By tracking of the defects' core positions, we generated trajectories relative to the size of the  
142 defect, which provides an estimate of the error in determining the position of the defects. We  
143 found that the defect's total displacement was always significantly smaller than the typical  
144 defect's size, and thus within measurement noise (**Supp. Fig. 3B**); indicating no significant  
145 motion of defects beyond fluctuations. Similar nematic alignment (**Supp. Fig. 4A**) and arrested  
146 defect dynamics (**Supp. Fig. 4B**) were also observed for fibroblasts isolated from normal tissue  
147 adjacent to tumor (normal-associated fibroblasts, NAFs) suggesting that these behaviors are not  
148 restricted to a cancer context.

149 This arrested dynamic is in striking contrast with the dynamic defects observed in various active  
150 nematic systems, including cell monolayers<sup>33</sup>. A natural question arises regarding the timeline  
151 of this process. To analyze the transient dynamics leading to the freezing of the CAF monolayer,  
152 we performed time-lapse imaging of the entire CAF layer starting one day after seeding (**Fig.**  
153 **1D**). The quantification of the evolution of cellular flows by PIV over 48 hours showed a global  
154 slowdown - and almost complete arrest of cellular flows after 3 days (**Fig. 1E**). A comparable  
155 kinetic slowdown was also observed for the speed of both types of defects, as well as for cellular  
156 flows in areas empty of defects (**Fig. 1F, G**), indicating a spatially uniform, scale-independent  
157 aging process. This observed freezing of the flow over time was not dependent on substrate  
158 stiffness (**Supp. Fig. 5A**) or a specific ECM coating (**Supp. Fig. 5B**).

159 Taken together, these results show that the dynamics of defects within the CAFs layer exhibit  
160 slowdown, or aging, which eventually leads to an arrested state.

161

## 162 **In the nematic-ordered layer, a majority of CAFs remain stationary yet actively exert and 163 transmit forces**

164 We next wondered whether the stasis we observed was limited to defects or if it also applies to  
165 the individual CAFs within the nematic ordered layer. In other words, was the whole system  
166 frozen? To monitor the movement of individual CAFs, we genetically modified the CAFs to  
167 express a fluorescent marker (LifeAct-GFP), mixed 20% of these CAFs with unlabeled CAFs  
168 and started time-lapse imaging after nematic order was established. Tracking of the labeled  
169 CAFs over a 15-hour period revealed two distinct types of movements within the monolayer  
170 (**Fig. 2A**). While a few CAFs showed directed, linear movement with higher velocities of  
171 around 6  $\mu\text{m}/\text{h}$  and persistence above 1 (see M&M for definition), the majority of CAFs (92%  
172 of n=199) appeared to be fluctuating around their initial positions, with no preferred direction  
173 of motion. These fluctuating cells displayed slower typical speeds of approximately 1  $\mu\text{m}/\text{h}$ ,  
174 and a persistence below 1, consistent with random motion (**Fig. 2B; Supp. Fig. 6A**). Similar

175 cell dynamics were also observed for NAFs (**Supp. Fig. 4C, D**). This data shows global freezing  
176 of the cellular flow within the full monolayer and not only of defects.

177 Next, we wondered if only cell motility was decreased or if CAFs, in general, became less  
178 active. As CAFs are highly contractile cells <sup>8, 10, 34</sup>, we examined if they remain contractile even  
179 in stalled defects. To assess both the force patterns generated by the CAF layer on the substrate  
180 and the internal stress in the monolayer, we performed traction force and internal stress  
181 microscopy (**Fig. 2C, D**). For each defect topology, multiple samples were collectively  
182 averaged, using their core and direction to align them consistently (for triangle defects, one of  
183 the three equivalent directions was used). While low levels of traction forces and internal  
184 isotropic stress without a discernible pattern were observed in aligned areas, defects show  
185 specific force patterns and isotropic stress patterns similar to other contractile cellular systems  
186 that are not stalled <sup>17, 26</sup>. In the case of comet defects, traction forces were highest at the head of  
187 the comet core, with force directions pointing towards the tail of the comet, with the head of  
188 the comet consistently showing compression (negative isotropic stress) and the tail displaying  
189 tension (positive isotropic stress). For triangle defects, peaks of traction forces were evident at  
190 each triangle vertex with forces directed towards the triangle core; with the center of the triangle  
191 under tension (positive isotropic stress). Thus, even though CAFs and defects in their nematic  
192 layer are frozen, they are still active as cells continue to exert forces, behaving globally as an  
193 active contractile monolayer.

194 Such distinctive patterns at defects could potentially stem from the supracellular units formed  
195 between CAFs. Indeed, the low traction forces observed in the aligned area suggest that forces  
196 are transmitted between the CAFs. As the comet core and triangle vertices are the termini of  
197 aligned areas, the transmission of forces between CAFs is abolished, and forces are transmitted  
198 to the substrate, resulting in the visible peaks of traction in both cases.

199 A possible candidate for such interconnections between CAFs is N-cadherin, a key cell-cell  
200 adhesion protein in mesenchymal cells <sup>35</sup>. Alternatively, CAFs could be linked via stitch  
201 adhesions with fibronectin acting as a glue <sup>9, 11</sup>. To examine how CAFs were connected, we  
202 stained for N-cadherin and fibronectin in CAF layers of varying densities (**Fig. 2E**). At lower  
203 densities, where CAFs were more spread out and less aligned, we observed N-cadherin at cell-  
204 cell junctions. However, as cell density increased, leading to elongated, nematic-ordered CAFs,  
205 N-cadherin presence diminished. Conversely, fibronectin is enriched at the cell periphery as the  
206 CAF density increased. These findings suggest that in a nematic ordered layer, CAFs may be  
207 indirectly interacting via fibronectin.

208 Therefore, the observed lack of directed movement of both defects and individual CAFs within  
209 nematic layers could be attributable to fibronectin depositions interposed between CAFs and  
210 the substrate, potentially immobilizing the system.

211

## 212 **Fibronectin depletion restores the dynamics of cells and defects in CAF nematic layer**

213 To assess whether the immobilization of the CAFs layer dynamics was indeed a result of  
214 fibronectin deposition, we depleted fibronectin in CAFs using siRNA (**Fig. 3A**) and performed

215 time-lapse imaging (**Fig. 3B**). By tracking individual cells using Hoechst labeling of nuclei, we  
216 observed that fibronectin-depleted cells (siFN) exhibited longer and straighter trajectories (**Fig.**  
217 **3C**), and moved with greater persistence and speeds (**Fig. 3D; Supp. Fig. 6B**), compared to  
218 CAFs treated with control siRNA (siCtrl). Thus, upon depletion of fibronectin, the mobility of  
219 CAFs within the layer significantly increased; this points towards a direct role of FN deposition  
220 in the observed aging dynamics, and excludes a density-dependent jamming phenomenon only  
221 (discussed in <sup>36</sup>).

222 Subsequently, we assessed whether the increased motility of CAFs in the absence of fibronectin  
223 also influenced the dynamics of defects in the CAFs' nematic layer. To that end, we performed  
224 time-lapse imaging of CAFs treated either with siCtrl or siFN (**Fig. 3E**). Tracking of the cores  
225 of defects revealed that in the absence of fibronectin, defects become persistent (**Fig. 3F, G;**  
226 **Supp. Fig. 6C**). Indeed, while defects in the layer of control CAFs fluctuated around their initial  
227 position (**Fig. 3F**), defects in the fibronectin-depleted CAFs layer exhibited longer and  
228 straighter trajectories (**Fig. 3F**), moving with greater persistence (**Fig. 3G; Supp. Fig. 6C**). In  
229 particular, comet defects were motile, moving along their head-tail direction, indicating that  
230 fibronectin-depleted CAFs were forming a contractile nematic system <sup>18,26</sup>. Triangle defects, in  
231 contrast, displayed lower speeds and persistence compared to comet defects, likely due to a lack  
232 of a preferred migration direction<sup>24</sup>, as expected in active nematics.

233 Finally, for fibronectin-depleted CAFs, the slowdown of cellular flows was significantly less  
234 pronounced and did not lead to freezing observed in control CAFs (**Fig. 3H**).

235 Therefore, the fact that both individual cells and defects remain more dynamic in the absence  
236 of fibronectin suggests that fibronectin deposition is causing the freezing or aging, of the  
237 system.

238

### 239 **Established fibronectin patterns freeze CAF nematic dynamics and migration of** 240 **individual cells**

241 Until now, we showed that CAF nematic ordering generated fibronectin patterns with the same  
242 nematic order and that fibronectin deposition was necessary for freezing the system. To further  
243 characterize the mechanism of freezing, we tested if the interaction of CAFs with a pre-existing  
244 fibronectin pattern could be sufficient to induce the freezing of the dynamics of the CAF layer.  
245 For this, we cultured CAFs on PAA gels, allowing them to create nematic ordering (**Fig. 4A,**  
246 **B**; CAFs 1). Subsequently, we removed the CAFs to obtain the corresponding fibronectin  
247 patterns with nematic ordering (**Fig. 4A, B; FN 1**). On those fibronectin patterns, we then  
248 seeded new CAFs. Once these CAFs formed a confluent layer, we determined their organization  
249 as well as the organization of the newly deposited fibronectin (**Fig. 4A, B; CAFs 2 and FN 2**).  
250 The comparative analysis of orientation maps revealed a similar local orientation between both  
251 fibronectin patterns and both CAFs layers (**Fig. 4C**). These data show that the fibronectin  
252 pattern was instrumental in instructing the CAFs to align into its specific nematic ordering  
253 configuration.

254 Next, we explored if fibronectin patterns or, alternatively, fibronectin depositions between  
255 CAFs, were responsible for freezing CAF nematics. To discriminate between these  
256 possibilities, we produced fibronectin nematic patterns as described above and seeded either  
257 control CAFs (siCtrl) or fibronectin-depleted CAFs (siFN) on top of them. As observed above,  
258 CAFs aligned according to the fibronectin nematics and defects (**Fig. 4D**). Over a 15-hour  
259 period, no differences were observed in defect position (**Fig. 4E**). Indeed, both, control and  
260 fibronectin-depleted CAFs fluctuated around their position, with a fluctuation range smaller  
261 than the defects' size (**Fig. 4E**). Accordingly, cellular flows were reduced on anisotropic  
262 fibronectin patterns compared to collagen I; as well as on isotropic fibronectin fibers (**Supp.**  
263 **Fig. 7**). By tracking individual CAFs within the nematic layer, we found that fibronectin  
264 patterns were also sufficient to arrest the migration of individual cells, independently of whether  
265 they produce fibronectin (**Fig. 4F, G**). While a subset of CAFs followed the orientation of  
266 fibronectin patterns, direction of migration was not affected by the local fibronectin density  
267 (**Supp. Fig. 8**).

268 Therefore, fibronectin patterns alone were sufficient to arrest the migration of CAFs and defects  
269 within the CAFs layer, even if CAFs are unable to produce fibronectin.

270

## 271 **A minimal model of active nematic with coupling to a dynamic, passive nematic field 272 recapitulates the observed aging and freezing dynamics**

273 So far, experimental observations show that CAFs behave as an active nematic layer that  
274 produces a fibronectin matrix with coinciding nematic order and that CAFs respond and align  
275 with a pre-existing nematic order matrix; as opposed to active nematic systems described  
276 so far, which exhibit a dynamic stationary state, this coupling was found to induce aging  
277 dynamics that eventually lead to a frozen state with immobile topological defects and no  
278 observable cellular flow despite local active fluctuations. In order to show that indeed, with  
279 minimal hypotheses, the coupling of an active nematic cell monolayer with a nematic ECM that  
280 it deposits generically can lead to the slow down and eventually freezing of both defect  
281 dynamics and cellular flows, we developed a minimal theoretical model that recapitulates our  
282 experimental observations (**Fig. 5**; **Supp. Fig. 9**). The model describes minimally the dynamics  
283 of the nematic order parameter  $Q$  of the CAF layer building up on classical active  
284 nematohydrodynamics<sup>17, 19, 26, 29</sup> (see supplementary model (SM) for details):

285 
$$\frac{DQ}{Dt} = \frac{H}{\gamma} - \lambda E + \alpha_M M \quad (1)$$

286 where  $DQ/Dt = \partial_t Q + (\mathbf{v} \cdot \nabla)Q - (Q \cdot \boldsymbol{\Omega} - \boldsymbol{\Omega} \cdot Q)$  is the corotational convective derivative,  
287  $H = -\delta F/\delta Q$  is the so-called molecular field,  $\gamma$  the rotational viscosity,  $\boldsymbol{\Omega} =$   
288  $(\nabla \mathbf{v} - (\nabla \mathbf{v})^T)/2$  the vorticity,  $\lambda$  a flow alignment coupling,  $E = (\nabla \mathbf{v} + (\nabla \mathbf{v})^T)/2$  the strain  
289 rate tensor, and  $F$  the standard free energy of a nematic field that would control the dynamics  
290 in the absence of activity (see SM). The key ingredient that we introduce is the nematic matrix  
291 field  $M$  that encodes the strength and direction of the fibronectin matrix alignment; in turn, the  
292 response of the CAF nematic order to the matrix is taken into account via a phenomenological

293 active coupling  $\alpha_M$  in (1), which favors the alignment of  $Q$  with  $M$ . The assembly-degradation  
294 dynamics of  $M$  can be minimally encoded as

295 
$$\partial_t M = kQ - k_d M, \quad (2)$$

296 where  $k$  is the fibronectin deposition rate (which can be  $M$  dependent to ensure that  $M$  remains  
297 finite) and  $k_d$  a degradation rate (assumed vanishing following our experimental observations).  
298 Note that a comparable coupling between cell orientation and matrix organization has been  
299 proposed in the literature on the basis of agent based models, designed to analyze heterogeneous  
300 cell assemblies<sup>37, 38</sup>; instead, we focus here on confluent cell monolayers for which our  
301 hydrodynamic description is better suited. Finally, force balance on the CAF's layer can be  
302 written

303 
$$\xi v = -\nabla P - \zeta \nabla \cdot Q + \eta \nabla^2 v - H \cdot \nabla Q + \lambda \nabla \cdot H + \nabla \cdot (Q \cdot H - H \cdot Q) \quad (4)$$

304 where  $\xi(M)$  is a potentially anisotropic friction tensor that can depend on  $M$ ,  $P$  a pressure,  $\zeta$  a  
305 classical phenomenological coupling defining the active stress, and  $\eta$  the viscosity. For the sake  
306 of simplicity, we first assumed that the friction  $\xi$  is independent of  $M$ , and considered limit  
307 regimes of either fully compressible (neglecting  $P$  in (4)) or incompressible (where  $P$  is a  
308 Lagrange multiplier enforcing  $\nabla \cdot v = 0$ ). Numerical analysis of the model, in agreement with  
309 analytical arguments following Ref<sup>39</sup>, shows that the velocity of isolated +1/2, comet defects  
310 is given in steady state by

311 
$$v = \frac{v_0}{1 + \alpha_M/k_d}, \quad (5)$$

312 where  $v_0$  is a velocity scale independent of  $k_d$  (see SM), and can thus be dramatically decreased  
313 for either a slow matrix degradation rate ( $k_d \rightarrow 0$ ) or strong alignment interaction  $\alpha_M$  (**Fig. 5B**),  
314 which can be interpreted as the relaxation rate of the nematic field  $Q$  to the matrix field. The  
315 slowdown and even arrest of defects, as is observed in experiments, can thus be triggered by  
316 the alignment interaction  $\alpha_M$  only, even for a friction  $\xi$  assumed independent of  $M$ . The  
317 numerical analysis of the model in general cases with multiple defects shows that this sole  
318 process reproduces the expected difference in the defect velocities for siCtrl and siFN (**Fig. 5D-F**;  
319 **Supp. Fig. 9D; Movie S1**). Of note, in this case, cellular flows are maintained even in  
320 the limit of arrested defects (see SM). To reproduce the observed decrease of both defects  
321 speed and cellular flow speeds in siCtrl experiments, we thus made the further hypothesis that  
322 friction is anisotropic and depends on  $M$  according to  $\xi = aI + bM$  where  $a, b$  are  
323 phenomenological functions of the norm of  $M$  given in SM. This form is consistent with the  
324 observed anisotropy in single-cell dynamics (**Fig. 2B**), and indeed yields an aging dynamics of  
325 the flow field, with a significant decrease in cellular flow speeds over time (**Fig. 5C-E; Supp.**  
326 **Fig. 9E; Movie S1**). This slowdown is, at long times, controlled by the matrix deposition rate  
327  $k$  found to be spatially uniform (and thus scale independent, see **Supp. Fig. 9E, F**), in  
328 agreement with experiments. A further confirmation of the model is given by the experiments  
329 depicted in Fig. 5, where CAFs are plated on a pre-existing FN pattern. This can be readily  
330 implemented in the model by assuming a given random initial condition for the matrix field  $M$ .  
331 We find  $\alpha_M$  by solving numerically the model the dynamics of the cellular field  $\alpha_M$  in this  
332 case quickly relaxes (within a time scale controlled by  $1/k$ ) to a frozen state with  $Q$  matching

333  $M$ , in agreement with experiments (**Supp. Fig. 9G-H**). Finally, the model shows, with minimal  
334 hypotheses, that the coupling of an active nematic cell monolayer with a nematic ECM that it  
335 deposits generically leads to the slowdown and eventually freezing of both defect dynamics and  
336 cellular flows, and this is spatially uniform.

337 To further challenge the model and get insights into the molecular mechanisms involved in the  
338 CAFs / fibronectin matrix interactions, we used a  $\beta 1$  integrin-blocking antibody (AIIIB2).  
339 Remarkably, shortly after integrin inhibition (induced after 24h of unperturbed dynamics), we  
340 observed a clear reawakening of the CAFs' dynamics, characterized by increased cellular flows,  
341 while importantly, the defect density and velocity remained comparable to the control (**Fig.**  
342 **5F**). Strikingly, immunofluorescence staining conducted at the end of 48 hours showed that the  
343 nematic organization of fibronectin remained intact (**Fig. 5G**, correlation of  $0.94 +/- 0.01$ , 3  
344 independent experiments, between CAFs and fibronectin layer), suggesting that the aligning  
345 interaction of cells with the matrix is preserved. This suggests that integrins indeed mediate a  
346 coupling between cellular and ECM nematic fields and are responsible for the slowdown of  
347 cellular flows observed in untreated monolayers. However, this interaction primarily affects the  
348 effective friction of the cell monolayer with the matrix (which indeed is expected to slow down  
349 the cell dynamics, see <sup>17, 40</sup>), while preserving the local alignment of cells with the matrix. The  
350 model successfully recapitulates these observations, as it indeed shows that the orientational  
351 coupling to the matrix alone ( $\alpha_M$ ) is sufficient to freeze the dynamics of the defects, with,  
352 however, non-vanishing cell flows, while a complete freezing of cell flows requires, in addition,  
353 an increased friction  $\xi$  (**Fig. 5C, D; SM**).

354 Altogether, an active hydrodynamic model of the CAF layer shows that the interaction with a  
355 deposited nematic matrix induces feedback that can lead to a slowdown and eventually freezing  
356 of the dynamics of both defects and cellular flows.

357

### 358 **Fibronectin loss–induced fluidization of the CAF capsule enables basement-membrane 359 breach**

360 In tumors, the spatial organization of CAFs and the ECM is tightly linked to the stage of  
361 invasion and is described as tumor-associated collagen signatures (TACS) <sup>8, 41, 42</sup>. In non-  
362 invasive regions (TACS-2), CAFs and ECM align parallel to the tumor edge, forming a capsule-  
363 like structure, well documented in mouse tumors. To assess whether such a capsule also exists  
364 in human cancers, we analyzed freshly resected colorectal tumor tissue. The tumor was rapidly  
365 processed—fixed, sectioned into 700  $\mu\text{m}$  slices, stained, optically cleared, and imaged using  
366 two-photon confocal microscopy. This revealed a distinct CAF capsule in human tumors,  
367 closely resembling the one described in mouse models (**Fig. 6A**).

368 In invasive regions (TACS-3), CAFs and ECM reorient perpendicularly, creating tracks that  
369 facilitate tumor dissemination <sup>8, 41, 42</sup>. This suggests that defects in the CAF capsule could serve  
370 as sites where CAFs reorient, driving the transition from TACS-2 to TACS-3. Alternatively,  
371 mechanical stresses at defects may “pinch” the underlying substrate and tumor cells, piercing  
372 the CAF layer and enabling invasion.

373 To directly test whether defects in the CAF capsule promote cancer-cell invasion, we used a  
374 native basement-membrane invasion assay<sup>43</sup>. CAFs were plated on one side of decellularized  
375 mouse mesenteries and allowed to establish nematic order. Cancer cells were then seeded on  
376 the opposite side. Cultures were maintained for up to 13 days, and invasion events were  
377 quantified at CAF-layer defects versus aligned regions (Fig. 6B). Invasion increased over time,  
378 with a few events on day 8 and a rise by day 13. Although there was a weak correlation between  
379 the number of defects and invasion (Fig. 6C), cancer cells did not invade preferentially at defect  
380 sites compared to well-aligned areas (Fig. 6D). However, invasion itself perturbed the CAF  
381 layer, potentially disrupting nematic order and complicating interpretation.

382 Strikingly, depletion of fibronectin in CAFs markedly enhanced invasion. Because fibronectin  
383 stabilizes the “frozen” nematic state of the CAF capsule, its loss increases nematic fluidity and  
384 weakens barrier function, permitting greater cancer-cell passage (Fig. 6E).

385 Together, these results demonstrate that CAF-layer integrity is crucial for restraining tumor  
386 invasion. While defects in the capsule can contribute, it is the transition from a stable,  
387 fibronectin-stiffened (“frozen”) nematic architecture to a more fluid state that critically  
388 undermines the barrier and enables cancer cells to invade.

389

## 390 Discussion

391 Our study identifies a self-organized feedback between CAFs and fibronectin that transforms  
392 the CAF capsule into a frozen active nematic. CAFs align nematically and deposit fibronectin  
393 fibers with nearly perfect orientational correlation. In turn, this fibronectin matrix stabilizes  
394 CAF alignment, increases frictional coupling, and progressively arrests defect motion and  
395 cellular flows—yielding an “active nematic solid” where defects are immobilized but remain  
396 sites of concentrated mechanical stress. Perturbation experiments confirmed fibronectin’s  
397 central role: its depletion restored CAF and defect motility, while pre-patterned fibronectin  
398 nematics alone were sufficient to arrest CAF dynamics. A minimal active–passive nematic  
399 model reproduced this aging and freezing behavior, and integrin blockade experiments  
400 demonstrated that frictional pinning to fibronectin is key to flow arrest.

401 It is important to emphasize how unique this ECM-driven nematic arrest is compared to other  
402 active nematic systems. In classic active nematics, the active stresses continuously generate  
403  $\pm 1/2$  defect pairs. The  $+1/2$  defects are motile, leading to perpetual defect chaos (active  
404 turbulence) with a steady-state defect density. Only by applying external constraints can such  
405 systems achieve long-lived orientational order or pinned defects. For instance, earlier studies  
406 have shown that imposing substrate anisotropy or micropatterned topography can orient cells  
407 globally and even stabilize defects in place. However, these approaches rely on extrinsic cues  
408 or boundary conditions to control the active nematic. In our system, by contrast, the alignment  
409 and arrest emerge autonomously via the cell–matrix feedback: the cells themselves generate the  
410 aligning field (fibronectin fibers) and the increased friction, without any engineered pattern in  
411 the substrate. Thus, there is an intrinsic suppression of active turbulence in a living cell  
412 monolayer through a two-way coupling with a secreted matrix. This result enriches the  
413 understanding of active matter by showing that active nematics can transition into a new regime

414 when long-lived passive structures are co-generated by the system. Conceptually, the  
415 fibronectin matrix here plays the role of an internal field that stores the memory of the alignment  
416 and builds up over time. Aging and slow-down phenomena are well-known in passive soft  
417 glassy materials; our findings show an active analog where the agents (cells) themselves  
418 produce a structure that causes their collective dynamics to vitrify. We also verified that this  
419 behavior is not limited to CAFs from tumors: normal fibroblasts (NAFs) exhibited the same  
420 ability to form an aligned fibronectin network and reach a frozen nematic state. This suggests  
421 a general biophysical mechanism whereby connective tissue cells can self-organize to suppress  
422 large-scale motion – potentially relevant in wound healing, fibrosis, and other contexts where  
423 fibroblasts densify and lay down matrix.

424 Functionally, the CAF capsule forms a barrier that restrains tumor spread. While defects  
425 correlate with increased invasion, they do not represent preferred breach points; instead, the  
426 decisive step occurs when the capsule fluidizes due to fibronectin loss. Invasion assays showed  
427 that fibronectin depletion markedly enhanced cancer-cell invasion, underscoring that  
428 fibronectin-mediated nematic freezing is essential to barrier integrity. Thus, defects are  
429 permissive but capsule fluidization is decisive for invasion. More broadly, our results  
430 demonstrate that active matter systems can arrest their own dynamics through ECM feedback,  
431 revealing a biophysical mechanism by which stromal organization governs tumor containment  
432 and progression.

433

434 **Acknowledgments:** We thank all members of the DMV lab (especially Réda Bouras for his  
435 assistance with gel generation and cell culture) and Silberzan lab for helpful discussions. The  
436 authors greatly acknowledge the Cell and Tissue Imaging (PICT-IBiSA), Institut Curie,  
437 member of the national infrastructure France-BioImaging (<https://ror.org/01y7vt929>) supported  
438 by the French National Research Agency (ANR-24-INBS-0005 FBI BIOGEN). This work was  
439 supported by the Fondation pour la Recherche Médicale ( FRM N° DGE20111123020), the  
440 Canceropole-IdF (n°2012-2-EML-04-IC-1), InCA (Cancer National Institute, n° 2011-1-  
441 LABEL-IC-4). This work received funding from the European Union’s Horizon 2020 research  
442 and innovation program: European Research Council (ERC) under the grant agreement CoG  
443 772487 (DMV), AdvG 883739 (XT), AvdG 101019835 (BL), SyG SHAPINCELLFATE  
444 (RV), Aviesan ITMO Cancer « Convention Frontières du Vivant» N°18CF156-00 (CJ),  
445 Fondation pour la Recherche Médicale - FRM FDT202106013007 (CJ), Institut National du  
446 Cancer INCa 16712 (BL), the Ligue Contre le Cancer (Equipe labellisée 2019) (BL), LABEX  
447 Who Am I? (ANR-11-LABX-0071) (BL), Fondation ARC pour la Recherche sur le Cancer  
448 (CPG), et ANR (RV), EPSRC grant no EP/R014604/1 (AM). AM was supported in part by a  
449 TALENT fellowship awarded by CY Cergy Paris Université. AM would like to thank the Isaac  
450 Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the  
451 program New statistical physics in living matter: non-equilibrium states under adaptive control,  
452 where a part of the work on this paper was undertaken.

453

454 **Supplementary material**

455 **Movie S1.** Evolution of nematic order and cell dynamics for Ctrl (left), siFN (middle) and  
456 integrin block (right) conditions. Orientational streamlines represent the nematic alignment of  
457 fibroblasts, with topological defects marked as black dots. The color map shows the velocity  
458 field (μm/h). Movies start 10 h after the beginning of the simulation, which is performed in a  
459 closed system of size 2250 × 2250 μm<sup>2</sup>. The red scale bar represents a length of 400 μm.

460 **Supplementary model (SM).**

461

462 **Material and methods**

463 **Human sample**

464 The tissue was fixed in 4% PFA (Electron Microscopy Sciences cat. #15711) for 1h at RT,  
465 washed 3 times in PBS, and then embedded in 3% agarose (Invitrogen cat. #16520050). 700  
466 μm-thick sections were generated using a vibratome (Leica) with a 0.4 mm/s speed and 2 mm  
467 amplitude. About 2 to 3 sections were placed flat inside a cryomold, and after permeabilizing  
468 with 2% Triton X-100 in PBS for 3 days at RT, tissue sections were incubated in blocking  
469 buffer [10% fetal bovine serum, 1% Triton X-100, 4% DMSO in PBS] for 1 day at RT. Primary  
470 antibodies were incubated for 2 days at RT (mouse anti-aSMA Sigma-Aldrich cat. #A2547,  
471 rabbit anti-EpCAM Abcam cat. #ab71976). Samples were rinsed with 0.2% Tween and  
472 incubated with secondary antibodies for 1 day at RT (goat anti-mouse Alexa Fluor 488 and goat  
473 anti-rabbit Alexa Fluor 546, Invitrogen). All incubation steps described previously were done  
474 under gentle orbital shaking conditions. To mount such thick tissues, spacers were placed on a  
475 microscopy slide, and the resulting chamber was filled with clearing solution (RapiClear; cat.  
476 #RC149001). The tissues were immersed in the clearing solution, and a coverslip was mounted  
477 to seal the chamber. Samples were imaged on a 2-photon microscope (Leica SP8 NLO) with a  
478 25X objective (HC IRAPO L 25x/1.0 W, ref # 15506340).

479

480 **Cell culture**

481 For this study, we have used CAFs isolated from colon tumor samples of a patient treated at  
482 Institut Curie Hospital, Paris, with the patient's written consent and approval of the local ethics  
483 committee. CAFs were extracted from fresh tumor samples and immortalized as described  
484 earlier <sup>1-3</sup>. CAFs were cultured on 30 kPa soft substrate plates (ExCellness – PrimeCoat,  
485 Biotech SA). Before being used, plates were plasma-treated for 30 s at 800 mTorr and then  
486 coated with 5 μg/mL of monomeric collagen in DMEM supplemented with 2X Anti-Anti, 12.5  
487 μg/mL Metronidazole B (Braun), and 4 μg/mL Ciprofloxacin (Panpharma). After incubation  
488 overnight at 37°C, 5% CO<sub>2</sub>, dishes were washed with medium before adding the CAFs medium  
489 (DMEM 5% FBS and 1X ITS-A) and seeding approximately 1x10<sup>6</sup> CAFs. CAFs were left to  
490 grow for one week at 37°C 5% CO<sub>2</sub> before being used for experiments.

491 The colon cancer cell line HCT116 expressing cytoplasmic GFP was cultured in DMEM  
492 supplemented with 5% FBS, as previously described <sup>3</sup>.

493

494 **Basement membrane preparation**

495 Basement membranes were extracted from the mesentery of B6N mice females between 8 to 9  
496 months of age (purchased from Charles River). The gut was dissected, and the mesentery was  
497 gently extracted using tweezers, with frequent hydration using PBS supplemented with 2X  
498 Anti-Anti. A piece of mesentery was secured in between two magnetic rings (made in house  
499 and put in PBS containing 2X Anti-Anti. About six mesentery pieces could be extracted from  
500 one mouse. Mesenteries were then decellularized by incubating in 1M NH4OH for 40 min at  
501 room temperature. Decellularized mesenteries were then washed for 40 min at room  
502 temperature in PBS supplemented with 2X Anti-Anti. Sulfo-sampah was applied on both sides  
503 of the mesentery and activated using a UV lamp for 5 min. Mesenteries were then washed for  
504 3 min with 10 mM HEPES and two times for 3 min with PBS supplemented with 2X Anti-Anti  
505 while shaking. Finally, mesenteries were incubated at 4°C overnight with 100 µg/mL of  
506 monomeric collagen I in PBS supplemented with 2X Anti-Anti.  
507

### 508 **Invasion assay**

509 Invasion assays were performed on mesenteries mounted on magnetic rings and were cultivated  
510 in DMEM with either 10% or 1% FBS, 1X ITS-A, 2X Anti-Anti, 12.5 µg/mL Metronidazole  
511 (B. Braun), and 4 µg/mL Ciprofloxacin (Panpharma). First, mesenteries on rings were placed  
512 in 12-well plates with 700 µL medium to have the bottom part of the basement membrane  
513 immersed in media. 2x10<sup>5</sup> CAFs were seeded on the top part of the mesentery in 200 µL  
514 medium per ring. Rings were carefully transferred to the incubator at 37°C and 5% CO<sub>2</sub>. After  
515 40 min, 10% FBS medium was added into each well up to 2 mL. Two days later, rings with  
516 mesenteries were turned upside down, and 2x10<sup>5</sup> HCT116 cells expressing GFP were added on  
517 the opposite side of the CAFs following the same process as for the fibroblasts. The day after,  
518 the medium was changed to reduce the FBS concentration from 10% to 1%. The construct was  
519 then incubated at 37°C and 5% CO<sub>2</sub>, with half of the medium being changed every two days  
520 until the desired invasion time point. Mesenteries were then fixed with 4% PFA for 20 min at  
521 room temperature and imaged using an inverted laser scanning confocal Leica SP8 coupled to  
522 a multi-photon femtosecond Chameleon Vision II laser (680-1350 nm; Coherent) and a 25X  
523 water immersion lens (NA, 1.0). The basement membrane was imaged using second harmonic  
524 generation.  
525

### 526 **Invasion assay analysis**

527 Matlab and Fiji were used to do the analysis.

528 Correlation defect/invasion: For each experiment, the defect area and cancer invasion masks  
529 were manually drawn using Fiji. The masks obtained were transformed into 1 and 0 matrices.  
530 The no-defect areas mask was obtained by reversing the 0 and the 1 of the defect area mask.  
531 The cancer invasion inside the defect area mask was obtained by multiplying the cancer  
532 invasion mask and the defect area mask. The cancer invasion outside the defect area was  
533 obtained by multiplying the cancer invasion mask and the no-defect area mask. For each mask,  
534 the size of the positive area was calculated. The field of view area, called the total area, is also  
535 calculated. Values of interest were then calculated as percentages. Then, the proportion of

536 cancer invasion area toward the proportion of defect area, and the fraction of cancer invasion  
537 in the defect area toward the proportion of cancer invasion area were plotted. The proportion of  
538 cancer invasion in defect and no-defect areas were pulled together into boxplots for each  
539 condition.

540 Invasion siCtrl/siFN: Using a custom-made Matlab code, z-stacks were flattened based on the  
541 basement membrane channel. Then, using the *Orthogonal* view tool in Fiji, the planes below  
542 the basement membrane were identified, and the total area of cancer cells present in these planes  
543 were measured.

544

## 545 **LifeAct GFP and GFP transfection**

546 Fibroblasts were transfected using lentiviral infection. Lentiviruses containing the LifeAct GFP  
547 or the GFP (Addgene; cat. #65656) plasmid with 4  $\mu$ g/mL of Polybrene were added to  
548 fibroblasts and incubated overnight at 37°C, 5% CO<sub>2</sub>. After incubation, fibroblasts were washed  
549 several times with media and then incubated at 37°C 5% CO<sub>2</sub>. After a few days, the transfection  
550 success was checked using a fluorescent microscope. Once the lifeAct-GFP fibroblast  
551 population reached 15 to 20 million cells, fibroblasts were sorted to remove GFP-negative  
552 fibroblasts. Sorted fibroblasts were then cultured as described above.

553

## 554 **PAA gel preparation**

555 PAA gels were prepared on Glass-bottom dishes (Fluorodish, plate 35 mm Ø, Glass 23 mm Ø,  
556 WPI) as previously described<sup>44</sup>. First, plates were treated with 3-amino-propyltrimethoxysilane  
557 (diluted 1:2 with PBS; Sigma-Aldrich/Merck) for 15 min at RT. After three washes with MilliQ  
558 water and air drying, dishes were treated with glutaraldehyde 0.25% in PBS (Sigma-  
559 Aldrich/Merck) for 30 min at RT. After three washes with MilliQ water and air drying, PAA  
560 solution for gels was prepared (see Table 1). Alternatively, a treatment with Bind-silane  
561 (Sigma-Aldrich) dissolved in absolute ethanol (PanReac) and acetic acid (Sigma-Aldrich) at  
562 volume proportions of 1:12:1 for 10 min at RT was done. After three washes with absolute  
563 ethanol and air drying, PAA solution for gels was prepared (see Table 1). For traction force  
564 microscopy experiments, 5  $\mu$ L of 0.2  $\mu$ m red beads FluoSpheres carboxylate-modified  
565 (580/605, Invitrogen) were added to the PAA gel solution. 22.5  $\mu$ L drops of the PAA gel  
566 solution were put in the middle of the dish and covered with 18 mm diameter glass coverslips.  
567 PAA gels were let to polymerize for one hour at RT. Once PAA was polymerized, PBS was  
568 poured into dishes, and glass coverslips were removed using a scalpel and a tweezer. PBS was  
569 removed, and 100  $\mu$ L of 2 mg/mL sulfo-sanpah (Sigma-Aldrich/Merck) was added only onto  
570 PAA gels. Dishes with sulfo-sanpah were then treated with ultraviolet light (365 nm; 5 cm from  
571 source) for 5 min. PAA gels were washed briefly with 10 mM HEPES, followed by two washes  
572 with PBS. Dishes were then incubated with 200  $\mu$ L of 100  $\mu$ g/mL monomeric collagen I (Rat  
573 tail origin, Corning) diluted in 0.2% acetic acid, or 100  $\mu$ g/mL laminin-111 (Thermo Fisher  
574 Scientific cat. #23017015), pipetted only on the PAA gel at 4°C overnight. Dishes were washed  
575 with PBS before the addition of CAFs and culture medium.

| Stiffness (Young Modulus) | PBS    | Acrylamide 40% | Bis-acrylamide 2% | APS | TEMED |
|---------------------------|--------|----------------|-------------------|-----|-------|
| 5 kPa                     | 382,95 | 93,3           | 11                | 2,5 | 0,25  |
| 11 kPa                    | 368,5  | 93,75          | 25                | 2,5 | 0,25  |
| 30 kPa                    | 299,75 | 150            | 37,5              | 2,5 | 0,25  |

576 Table 1. Volumes (in  $\mu$ l) of reagents to prepare different stiffness PAA gels.

577

578 **Time-lapse imaging of nematic ordering evolution over time**

579 15  $\times$  10<sup>4</sup> CAFs treated with either control siRNA (siCtrl) or siRNA against fibronectin (siFN),  
580 were seeded on 11 kPa PAA gels. Alternatively, 15  $\times$  10<sup>4</sup> CAFs were seeded on 5, 11, or 30  
581 kPa PAA gels. After plating, fibroblasts were incubated in DMEM medium containing 10%  
582 FBS, 1X ITS-A, 2X Anti-Anti, 12.5  $\mu$ g/mL Metronidazole (B. Braun), and 4  $\mu$ g/mL  
583 Ciprofloxacin (Panpharma) at 37°C 5% CO<sub>2</sub> for 24 h before imaging. CAFs were imaged using  
584 an inverted Eclipse Ti-2 microscope (Nikon) driven by NIS elements (Nikon) with a fully  
585 motorized stage, a 10X (NA, 0.3) objective, and an incubation system at 37°C, 5% CO<sub>2</sub>. The  
586 entire CAFs layers of each condition were imaged for 50 h, with images taken every 1h.

587

588 **2D traction force microscopy experiment**

589 CAFs were seeded on 11 kPa PAA gel with red beads (580/605, Invitrogen, F8810) and cultured  
590 in DMEM medium containing 10% FBS, 1X ITS-A, 2X Anti-Anti, 12.5  $\mu$ g/mL Metronidazole  
591 (B. Braun), and 4  $\mu$ g/mL Ciprofloxacin (Panpharma) at 37°C 5% CO<sub>2</sub>. The number of cells  
592 seeded depended on the desired cell density at the moment of imaging. During siRNA  
593 experiment, CAFs were treated with either control siRNA (siCtrl) or siRNA against fibronectin  
594 (siFN). CAFs were imaged using an inverted Eclipse Ti-E microscope (NIKON) driven by  
595 Metamorph software (v.7.8.13.0) with a fully motorized stage, a 10X (NA, 0.3) objective, and  
596 an incubation system at 37°C, 5% CO<sub>2</sub>. Beads were imaged using 562/40 nm excitation and  
597 Bright Field was used to image the CAFs. For some experiments, 472/30 nm excitation was  
598 used to image LifeAct-GFP CAFs, while 377/50 nm excitation was used for Hoechst staining.  
599 For each region of interest focusing on one type of topology: two single z slices were taken,  
600 one focusing on the fibroblast plane and one focusing on the beads. Time-lapse imaging lasted  
601 for ~16h, with images taken every 15 min. At the end of imaging, dishes kept on the microscope  
602 stage were carefully washed with PBS before cells were removed with TrypLE Express  
603 (ThermoFisher). Once cells detached from PAA gels, one-time point acquisition was performed  
604 for all positions to obtain the reference points for relaxed gel.

605

606 **2D traction analysis**

607 Using Matlab, traction force experiments were analyzed using scripts previously developed<sup>45</sup>.  
608 First, data were separated into folders corresponding to each position, then positions were  
609 treated separately. For each position, all images were corrected for potential drift, aligned, and  
610 cropped the same way using the image of beads after trypsin treatment as a reference. Using

611 the Particle Image Velocity (PIV) method, the displacement of the beads between traction and  
612 trypsin images was measured on eight-by-eight pixels squares along all images with  
613 overlapping between each square to precise the measure. From the displacement and the gel  
614 settings (finite thickness), traction forces were calculated using Fourier-transform traction  
615 microscopy. The traction magnitudes' maps were plotted for each time point and traction  
616 vectors were plotted on top of the cell images.

617

### 618 **Internal stress analysis**

619 Internal stresses of the cell layer were analyzed using Bayesian Inversion Stress Microscopy  
620 (BISM) script previously developed<sup>46</sup> using Matlab. Internal stresses were calculated from the  
621 traction forces obtained previously using Bayesian inversion theory. BISM doesn't depend on  
622 the physical property of the system such as tissue rheology, and thus doesn't need boundary  
623 conditions. However, the system needs to have a small height compared to its planar surface  
624 and is not reliable very close to the boundary. BISM is based on strong statistical hypotheses  
625 such as the Gaussian distribution of the stresses. Tests performed by Vicent Nier have shown  
626 that BISM is robust and could be applied to different systems as long as they validate the height  
627 condition. Only defects inside the layer were taken to avoid boundary issues. In addition, the  
628 height condition was validated in this study as the fields of view are 825.6  $\mu\text{m}$  by 598.56  $\mu\text{m}$ ,  
629 and CAFs height is about 10-15  $\mu\text{m}$ , so BISM can be applied.

630

### 631 **Defects averaging**

632 Matlab was used to do the analysis. For each experiment, positions were separated into different  
633 types of topology: comet defects, triangle defects, and aligned areas. Positions of each type of  
634 topology were then aligned in the same direction. To do so, the core and direction places of the  
635 defect/aligned area were pointed out of the bright field images (see Fig. 2C for a visual  
636 representation of core and direction places for each type of topology). For each position and  
637 time point, core-centered circles with a radius of 800 pixels were used as masks. These circular  
638 masks were applied to traction force, and internal stress maps to only keep data within the  
639 masks. Rotations of these circular masks with traction force and internal stresses were then  
640 performed to align their directions. Finally, for each type of topology, the averages of all the  
641 circles were calculated to obtain their specific force pattern organization.

642

### 643 **Fibronectin and N-cadherin localization over time**

644 CAFs mixed with 2% GFP-expressing CAFs were seeded, with a total of  $2 \times 10^4$  cells, on 11  
645 kPa PAA gels. Cells were fixed for 10 min at RT in 4% PFA, 3 or 8 days post-seeding. After  
646 several PBS washes, cells were permeabilized with 0.5% Triton X-100 in PBS for 15 min at  
647 RT. Cells were then blocked for 45 min at RT in blocking solution (10% FBS, 0.05% Triton X-  
648 100 in PBS). Primary antibodies (see Table 2) were incubated in blocking solution for 1 h at  
649 RT. Following several washes in 0.05% Tween-20 in PBS wash solution, cells were incubated  
650 with secondary antibodies and Phalloidin (see Table 2) for 1 h at RT. Cells were then washed

651 multiple times with wash solution and stored in PBS at 4°C until imaging. Cells were imaged  
652 using an inverted Eclipse Ti-E microscope (Nikon) with a spinning disk CSU-W1 (Yokogawa)  
653 integrated into Metamorph software (v.7.10.2.240) by Gataca Systems, utilizing a 40X oil  
654 immersion lens (NA, 1.3).

655  
656 N-Cadherin and fibronectin intensities at cell edges were quantified using a semi-automatic  
657 custom macro developed in Fiji software. For each image stack, a representative middle slice  
658 was selected.

659 N-cadherin: GFP+ cells were segmented as particles larger than 600  $\mu\text{m}^2$ . for each segmented  
660 GFP+ cell ROI, a 3-pixel-wide polyline selection was generated, corresponding to the outline  
661 of the cell ROI (*i.e.* membrane signal). Next, the cell ROI was eroded by 2 pixels, and a second  
662 3-pixel-wide polyline selection was generated, corresponding to the outline of the eroded cell  
663 ROI (*i.e.* cytoplasmic signal). Mean pixel intensities were measured for both lines. The mean  
664 intensity of the cytoplasm line was subtracted from that of the membrane line to correct for  
665 background. Values from day 8 were normalized to those from day 3. Manual adjustments were  
666 performed as necessary to specifically measure cell-cell contact borders.

667 Fibronectin: for each GFP+ cell, a 100-pixel-wide line was manually drawn across the  
668 cytoplasm and positioned at the level of the nucleus. The line was positioned perpendicular to  
669 the long axis to cover the entire cell width. From this line, a fluorescence intensity plot profile  
670 was generated, representing fibronectin signal across the cell width. To allow comparison  
671 between cells of different sizes, the cell width was normalized in percentage. Each profile was  
672 divided into bins, and the average fluorescence intensity was calculated within each bin (*e.g.*,  
673 0–5%, 5–10%, etc.). Final data represent the mean intensity distribution across normalized  
674 widths for all analyzed cells.

675

## 676 **Immunostaining**

677 Immunostainings were performed using CAFs growing on 11 kPa PAA gels described above.  
678 Cells were pre-extracted before being fixed. To do so, a 50 mL 2X PEM solution was prepared  
679 in MilliQ water with 3 g PiPES, 1 M MgCl<sub>2</sub>, 100 mM EGTA and pH adjusted at 6.9 using  
680 KOH. First, cells were washed with PBS and then incubated for 30 s at RT with the extraction  
681 solution (0.2% Triton X-100, 50% 2X PEM, 4% PEG 35000 and 5  $\mu\text{M}$  Phalloidin in PBS).  
682 Cells were washed two times with the rinse solution (50% 2X PEM, 2  $\mu\text{M}$  Phalloidin in MilliQ  
683 water) and then incubated in 4% PFA in PBS solution for 20 min at RT. After several washes  
684 with PBS, cells were incubated with the primary antibodies for 1h at RT. Cells were washed  
685 several times with PBS and then incubated with the secondary antibodies for 1h at RT. Cells  
686 were washed several times with PBS and mounted on glass slides with AquaPolyMount.  
687 Stained cells were kept at 4°C before imaging. All the antibodies used during this study and  
688 their concentration are listed in Table 2. Cells were imaged using either an inverted Eclipse Ti-  
689 E microscope (NIKON) with spinning disk CSU-W1 (Yokogawa) integrated into Metamorph  
690 software (v.7.10.2.240) by Gataca Systems, a 60X water immersion lens (NA, 1.27), a 40X  
691 water immersion lens (NA, 1.15), and a 20X (NA, 0.45) objective; or an inverted laser scanning  
692 confocal Leica SP8 coupled to a multi-photon femtosecond Chameleon Vision II laser (680-  
693 1350 nm; Coherent) and a 20X water immersion lens (NA, 1.0).

694

| Antibody                  | Company           | Reference | Concentration | Type      |
|---------------------------|-------------------|-----------|---------------|-----------|
| Rabbit anti-Fibronectin   | Sigma-Aldrich     | F3648     | 1/400         | Primary   |
| Rabbit anti-Collagen I    | Abcam             | ab34710   | 1/200         | Primary   |
| Mouse anti-N Cadherin     | Invitrogen        | 333900    | 1/400         | Primary   |
| DAPI                      | Thermo Scientific | D1306     | 1/200         | Dye       |
| Phalloidin Rhodamine      | Invitrogen        | R415      | 1/150         | Dye       |
| Phalloidin 555            | Thermo Scientific | 16628105  | 1/200         | Dye       |
| Phalloidin 633            | Invitrogen        | A22284    | 1/150         | Dye       |
| Goat anti-Rabbit AF 647   | Thermo Scientific | A32733    | 1/200         | Secondary |
| Goat anti-Mouse AF 488    | Invitrogen        | A11029    | 1/200         | Secondary |
| Donkey anti-Rabbit AF 647 | Invitrogen        | A31573    | 1/200         | Secondary |
| Donkey anti-Rabbit AF 488 | Invitrogen        | A21206    | 1/200         | Secondary |

695 Table 2. The list of antibodies used in this study.

696

## 697 Quantification of cell and fibronectin density

698 Matlab was used to do the analysis. After immunostaining and imaging of large CAFs layers,  
699 the core of defects was automatically detected, and for each position, a circular mask of 400  
700 pixels in diameter was taken. For each mask, the number of nuclei and the sum of pixel values  
701 inside the mask for fibronectin staining were calculated. The rest of the FOV was defined as  
702 no-defect areas. Both were then normalized to the area to obtain the cell and fibronectin density.

703

## 704 Numinately aligned fibronectin network preparation and live imaging

705 To generate a numinately aligned fibronectin network, natural CAFs deposition of fibronectin  
706 was used.  $6 \times 10^4$  CAFs were seeded on 11 kPa PAA gels and cultured for 3 days in DMEM  
707 with 10% FBS, 1X ITS-A, 2X Anti-Anti, 12.5  $\mu$ g/mL Metronidazole (B. Braun), and 4  $\mu$ g/mL  
708 Ciprofloxacin (Panpharma) at 37°C 5% CO<sub>2</sub>. The entire CAF layer was imaged using  
709 brightfield on an Inverted Eclipse Ti-2 (Nikon) full motorized videomicroscope with a 10X  
710 objective (NA, 0.30). CAFs were then removed using 20 mM NH<sub>4</sub>OH and 0.1% Triton X-100

711 in PBS for 3 min at RT. PAA gels were washed several times with PBS and the fibronectin  
712 network was blocked for 15 min at RT, and incubated with the primary antibody for 30 min at  
713 RT. Following several washes in 0.05% Tween-20 in PBS, gels were incubated with the  
714 secondary antibody solution in blocking solution for 30 min at RT. After several washes, the  
715 entire gels were imaged using a videomicroscope (described earlier). PAA gels with the  
716 fibronectin network were kept in PBS with 12.5  $\mu$ g/mL Metronidazole (B. Braun), and 4  $\mu$ g/mL  
717 Ciprofloxacin (Panpharma) at 4°C until seeding with new CAFs. 60,000 CAFs were re-seeded  
718 onto the same gels coated with natively aligned fibronectin for an additional 3 days of  
719 culture. Imaging of CAFs and fibronectin was repeated after these additional 3 days of culture,  
720 as performed before replating. For staining the fibronectin pattern after replating, a secondary  
721 antibody with a different Alexa Fluor was used to distinguish it from the initial fibronectin  
722 staining.

723

## 724 **Isotropic fibronectin network preparation and live imaging**

725 To generate isotropic fibronectin layers, 2-3  $\times 10^5$  CAFs were seeded on 11 kPa collagen I-  
726 coated gels. After 1 day of culture, CAFs were removed using NH<sub>4</sub>OH 20mM, 0.1% Triton-X-  
727 100 in PBS for 3 minutes at RT. Following several PBS washes, the remaining isotropic  
728 fibronectin matrix was stained (see Immunostaining). After imaging of the isotropic fibronectin  
729 pattern, 110,000 CAFs were seeded onto the same gels. Live imaging was performed starting 3  
730 hours post-seeding and continued for 24 hours.

731

## 732 **Quantification of alignment correlation**

733 Matlab and Fiji were used to do the analysis. The Fiji OrientationJ plugin <sup>47</sup> was used for each  
734 experiment to obtain the orientation maps  $\theta$  of the CAFs and fibronectin layers. For each  
735 orientation map  $\theta$ , the cosinus and sinus were calculated. The cosinus matrixes of CAFs and  
736 fibronectin were then multiplied together. Similarly, the sinus matrixes of CAFs and fibronectin  
737 were also multiplied together. Both results were summed together and the absolute value of it  
738 is taken. The mean of this absolute value matrix corresponds to the average alignment  
739 correlation between the CAFs and the fibronectin layer.

740

## 741 **Western Blot**

742 CAFs were seeded on 30 kPa dishes (ExCellness - PrimeCoat, Biotech SA) coated with 5  
743  $\mu$ g/mL of monomeric collagen and treated with either control siRNA (siCtrl) or siRNA against  
744 fibronectin (siFN). After three days, cells were scratched and transferred to a falcon with PBS.  
745 Cells were washed twice with PBS by centrifugation for 2 min at 100 rcf. Cells were then re-  
746 suspended in 50  $\mu$ L of Precellys and sonicated for 15s three times. Samples were boiled at  
747 100°C for 10 min, then spun for 15 min at 15 900 rcf, and supernatants were diluted at one to  
748 five. Samples were then boiled at 95°C for 5 min and the same concentration of each sample  
749 was loaded into a 7,5% TGX gel and let migrate for about 1h. The proteins from the gel were  
750 transferred to a nitrocellulose membrane using Transbloc. The membrane was then incubated  
751 in 5% non-fat milk powder diluted in PBS on a shaker at RT for 1 h. The membrane was cut

752 and then incubated at 4°C overnight with primary antibodies diluted in 1% milk/PBS solution  
753 on a shaker. The membrane was then washed three times for 5 min with PBS while shaking.  
754 The membrane was then incubated at RT for 1 h with the secondary antibodies conjugated with  
755 HRP. The membrane was then washed three times for 5 min with PBS while shaking. Cut  
756 membranes were put back together and the signal was revealed using an ECL substrate and  
757 visualized using a Chemidoc Touch Biorad.

758

## 759 Drugs and siRNA

760 All drugs used in this study are listed in Table 3. Hoechst was added just before the acquisition:  
761 CAFs were washed with PBS and then incubated with Hoechst in PBS for 30 min at 37°C, 5%  
762 CO<sub>2</sub>. After incubation, CAFs were washed twice with PBS, cell medium was added, and  
763 acquisition was started. For siRNA treatment, CAFs were cultured for three days with siRNA  
764 on 30 kPa plates before being transferred on PAA gels. CAFs were then incubated for three  
765 more days with siRNA before launching image acquisition with siRNA present in the medium.

766

| Drugs or siRNA                  | Company       | Reference  | Concentration | Method                                   |
|---------------------------------|---------------|------------|---------------|------------------------------------------|
| AllStars Negative Control siRNA | Qiagen        | 1027281    | 100 nM        | Permanently treated                      |
| Hs_FN1_6 siRNA                  | Qiagen        | SI02664004 | 100 nM        | Permanently treated                      |
| Hs_FN1_7 siRNA                  | Qiagen        | SI02663997 | 100 nM        | Permanently treated                      |
| Hoechst                         | Thermo Fisher | H3570      | 1 / 2 000     | Added before acquisition                 |
| AIIB2                           | EMD Millipore | MABT409    | 10 µg/ml      | Added 24 h after the acquisition started |

767 Table 3. List of the drugs and siRNA used during this study.

768

## 769 Defect trajectory analysis

770 The Fiji OrientationJ plugin was used for each experiment to obtain the orientation maps  $\theta$  of  
771 the CAFs layers at each time point. For each experiment, positions were separated into different  
772 types of defects: comet and triangle defects. Defect cores were chosen to follow defect  
773 trajectory and found using the local nematic order parameter  $Q$ . For each time point, the local  
774 nematic order parameter  $Q$  is calculated from the orientation maps  $\theta$  using the following

775 formula:  $Q=\sqrt{\langle \cos 2\theta \rangle^2 + \langle \sin 2\theta \rangle^2}$ . The defect core was then found from the Q map as its  
776 minimum. Once the position of the defect core at each time point was obtained, translations of  
777 the trajectory coordinates were done to have the first time point of each core at (0,0) in the (x,y)  
778 axis. Velocity and persistence were calculated from each trajectory, using the @msdanalyser<sup>48</sup>  
779 of Matlab for persistence. Finally, all trajectories were plotted together for each type of  
780 topology, and boxplots for the velocities and persistence were obtained.

781

## 782 **Cell trajectory analysis**

783 Cells' trajectory was obtained by using Hoechst to stain nuclei or mixing a small proportion of  
784 LifeAct-GFP expressing CAFs with non-labeled CAFs and performing time-lapse imaging. For  
785 each position, Fiji was used to apply a threshold on images with the fluorescence of interest to  
786 generate binary images where each cell was well separated from the others. Thresholded images  
787 were then uploaded into Ilastik for each position to track cell trajectories. Each cell's trajectory  
788 was saved into a file. Using Matlab, translations of cell trajectory coordinates were then done  
789 to have the first-time point of each cell at (0,0) in the (x,y) axis. Velocity and persistence were  
790 extracted from each trajectory, using the @msdanalyser<sup>48</sup> of Matlab for persistence. Finally,  
791 all cell trajectories were plotted together as well as boxplots for the velocities and persistence  
792 obtained.

793

## 794 **Mean square displacement analysis**

795 All trajectories were analyzed using @msdanalyser<sup>48</sup> in Matlab.

796

## 797 **Quantification of the orientation and the fibronectin density for cell trajectories**

798 CAFs were transfected with either control siRNA (siCtrl) or siRNA against fibronectin (siFN)  
799 and seeded onto preformed fibronectin patterns (see “Nematically aligned fibronectin network  
800 preparation”) at a density of  $6 \times 10^4$  CAFs per gel. 2 days post-seeding, nuclei were stained  
801 with Hoechst, and cells were imaged for 16 h with a 15 min interval (see “Time-lapse imaging  
802 of nematic ordering evolution over time”). In this case, multiple fields of view were acquired  
803 without stitching.

804 Images were processed using Fiji software. Briefly, the Hoechst signal was thresholded to  
805 obtain binary images of nuclei, and cell trajectories were computed using the Trackmate plugin  
806<sup>49</sup>.

807 Orientation: In the Display option window, *Display spots* was unselected, but *Display tracks*  
808 was selected using the *Show entire tracks* option using a single color. The *capture overlay*  
809 action [select the first frame and hide the image] was then used to obtain a binary image of all  
810 trajectories present in the field of view. Using the *Analyze Particle* tool, trajectories were added  
811 to the ROI manager and enlarged by 10 pixels. These enlarged ROIs were then used to get a  
812 mask of the fibronectin layer present below the tracks; everything else in the field of view was

813 filled with black. Finally, the orientation maps were obtained and calculated as described in  
814 “Quantification of alignment correlation”.

815 **Fibronectin density:** In the Display option window, *Display tracks* was unselected, but *Display*  
816 *spots* was selected. Using the TrackScheme, all initial spots were selected, and their  
817 corresponding position were exported using the *Export spots to IJ ROIs* action [export  
818 selection]. These ROIs were then used to measure the mean gray value on the fibronectin  
819 channel. All previous actions were repeated for the final spots.

820

## 821 **Quantification of the evolution of the fluid flow**

822 Using Matlab, the velocity field of the whole CAF layer was calculated using the Particle Image  
823 Velocity (PIV) method. The PIV was used on the bright-field images of the whole CAF layer.  
824 The displacement in CAF position from one timepoint to the next one was measured on one-  
825 hundred-by-one-hundred-pixel squares along all images with overlapping between each square  
826 to precise the measure. From the displacement and time interval between each image, the  
827 velocities were calculated in each square, giving rise to the velocity fields at each time point.  
828 Finally, for each time point and condition, the means of the velocity fields were taken and  
829 plotted over time to show the evolution of the fluid flow.

830

## 831 **References**

- 832 1. Sahai, E. *et al.* A framework for advancing our understanding of cancer-associated fibroblasts. *Nat Rev Cancer* **20**, 174-186 (2020).
- 833 2. LeBleu, V.S. & Kalluri, R. A peek into cancer-associated fibroblasts: origins, functions and  
834 translational impact. *Dis Model Mech* **11** (2018).
- 835 3. Barbazan, J. *et al.* Cancer-associated fibroblasts actively compress cancer cells and modulate  
836 mechanotransduction. *Nat Commun* **14**, 6966 (2023).
- 837 4. Bhattacharjee, S. *et al.* Tumor restriction by type I collagen opposes tumor-promoting effects  
838 of cancer-associated fibroblasts. *J Clin Invest* **131** (2021).
- 839 5. Nia, H.T. *et al.* Solid stress and elastic energy as measures of tumour mechanopathology. *Nat  
840 Biomed Eng* **1** (2016).
- 841 6. Stylianopoulos, T. *et al.* Causes, consequences, and remedies for growth-induced solid stress  
842 in murine and human tumors. *Proc Natl Acad Sci U S A* **109**, 15101-15108 (2012).
- 843 7. Attieh, Y. & Vignjevic, D.M. The hallmarks of CAFs in cancer invasion. *European Journal of Cell  
844 Biology* **95**, 493-502 (2016).
- 845 8. Barbazan, J. & Matic Vignjevic, D. Cancer associated fibroblasts: is the force the path to the  
846 dark side? *Curr Opin Cell Biol* **56**, 71-79 (2019).
- 847 9. Pankov, R., Momchilova, A., Stefanova, N. & Yamada, K.M. Characterization of stitch  
848 adhesions: Fibronectin-containing cell-cell contacts formed by fibroblasts. *Exp Cell Res* **384**,  
849 111616 (2019).
- 850 10. Attieh, Y. *et al.* Cancer-associated fibroblasts lead tumor invasion through integrin-beta 3-  
851 dependent fibronectin assembly. *Journal of Cell Biology* **216**, 3509-3520 (2017).
- 852 11. Barbazan, J., Perez Gonzalez, C., Richon, S., Trepaut, X. & D, M.V. Cancer-associated fibroblasts  
853 actively compress cancer cells and modulate mechanotransduction. *BioRxiv* (2021).
- 854 12. Erdogan, B. *et al.* Cancer-associated fibroblasts promote directional cancer cell migration by  
855 aligning fibronectin. *J Cell Biol* **216**, 3799-3816 (2017).

857 13. Barbier-Chebbah, A., Bénichou, O. & Voituriez, R. Self-Interacting Random Walks: Aging,  
858 Exploration, and First-Passage Times. *Physical Review X* **12**, 011052–011003 (2022).

859 14. d'Alessandro, J. *et al.* Cell migration guided by long-lived spatial memory. *Nat Commun* **12**,  
860 4118 (2021).

861 15. Baschieri, F. *et al.* Fibroblasts generate topographical cues that steer cancer cell migration. *Sci  
862 Adv* **9**, eade2120 (2023).

863 16. Park, D. *et al.* Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation  
864 of cell collisions. *Nat Mater* **19**, 227–238 (2020).

865 17. Doostmohammadi, A., Ignes-Mullol, J., Yeomans, J.M. & Sagues, F. Active nematics. *Nat  
866 Commun* **9**, 3246 (2018).

867 18. Saw, T.B., Xi, W., Ladoux, B. & Lim, C.T. Biological Tissues as Active Nematic Liquid Crystals. *Adv  
868 Mater* **30**, e1802579 (2018).

869 19. Marchetti, M.C. *et al.* Hydrodynamics of soft active matter. *Reviews of Modern Physics* **85**(3),  
870 1143–1189, 1107 (2013).

871 20. Endresen, K.D., Kim, M., Pittman, M., Chen, Y. & Serra, F. Topological defects of integer charge  
872 in cell monolayers. *Soft Matter* **17**, 5878–5887 (2021).

873 21. Kaiyrbekov, K. *et al.* Migration and division in cell monolayers on substrates with topological  
874 defects. *Proc Natl Acad Sci U S A* **120**, e2301197120 (2023).

875 22. Luo, Y. *et al.* Molecular-scale substrate anisotropy, crowding and division drive collective  
876 behaviours in cell monolayers. *J R Soc Interface* **20**, 20230160 (2023).

877 23. Turiv, T. *et al.* Topology control of human fibroblast cells monolayer by liquid crystal elastomer.  
878 *Sci Adv* **6**, eaaz6485 (2020).

879 24. Kawaguchi, K., Kageyama, R. & Sano, M. Topological defects control collective dynamics in  
880 neural progenitor cell cultures. *Nature* **545**, 327–331 (2017).

881 25. Maroudas-Sacks, Y., Garion, L., Shani-Zerbib, L., Braun, E. & Keren, K. Topological defects in the  
882 nematic order of actin fibres as organization centres of Hydra morphogenesis. *Nature Physics*  
883 **17**, 251–259 (2021).

884 26. Saw, T.B. *et al.* Topological defects in epithelia govern cell death and extrusion. *Nature* **544**,  
885 212–216 (2017).

886 27. Guillamat, P., Blanch-Mercader, C., Pernollet, G., Kruse, K. & Roux, A. Integer topological  
887 defects organize stresses driving tissue morphogenesis. *Nat Mater* **21**, 588–597 (2022).

888 28. Palmquist, K.H. *et al.* Reciprocal cell-ECM dynamics generate supracellular fluidity underlying  
889 spontaneous follicle patterning. *Cell* **185**, 1960–1973 e1911 (2022).

890 29. Duclos, G. *et al.* Spontaneous shear flow in confined cellular nematics. *Nat Phys* **14**, 728–732  
891 (2018).

892 30. Duclos, G., Garcia, S., Yevick, H.G. & Silberzan, P. Perfect nematic order in confined monolayers  
893 of spindle-shaped cells. *Soft Matter* **10**, 2346–2353 (2014).

894 31. Sarkar, T. *et al.* Crisscross multilayering of cell sheets. *PNAS Nexus* **2**, pgad034 (2023).

895 32. Handorf, A.M., Zhou, Y., Halanski, M.A. & Li, W.J. Tissue stiffness dictates development,  
896 homeostasis, and disease progression. *Organogenesis* **11**, 1–15 (2015).

897 33. (!!! INVALID CITATION !!! 24–26).

898 34. Glentis, A. *et al.* Cancer-associated fibroblasts induce metalloprotease-independent cancer cell  
899 invasion of the basement membrane. *Nature Communications* **8**, 13 (2017).

900 35. Shih, W. & Yamada, S. N-cadherin as a key regulator of collective cell migration in a 3D  
901 environment. *Cell Adh Migr* **6**, 513–517 (2012).

902 36. Duclos, G., Erlenkämper, C., Joanny, J.-F. & Silberzan, P. Topological defects in confined  
903 populations of spindle-shaped cells. *Nature Physics*, 58–62 (2017).

904 37. Dallon, J.C., Sherratt, J.A. & Maini, P.K. Mathematical modelling of extracellular matrix  
905 dynamics using discrete cells: fiber orientation and tissue regeneration. *J Theor Biol* **199**, 449–  
906 471 (1999).

907 38. Wershof, E. *et al.* Matrix feedback enables diverse higher-order patterning of the extracellular  
908 matrix. *PLoS Comput Biol* **15**, e1007251 (2019).

909 39. Angheluta, L., Chen, Z., Marchetti, M.C. & Bowick, M.J. The role of fluid flow in the dynamics  
910 of active nematic defects. *New Journal of Physics* **23**, 033009 (2021).

911 40. Thampi, S.P., Golestanian, R. & Yeomans, J.M. Active nematic materials with substrate friction.  
912 *Phys Rev E Stat Nonlin Soft Matter Phys* **90**, 062307 (2014).

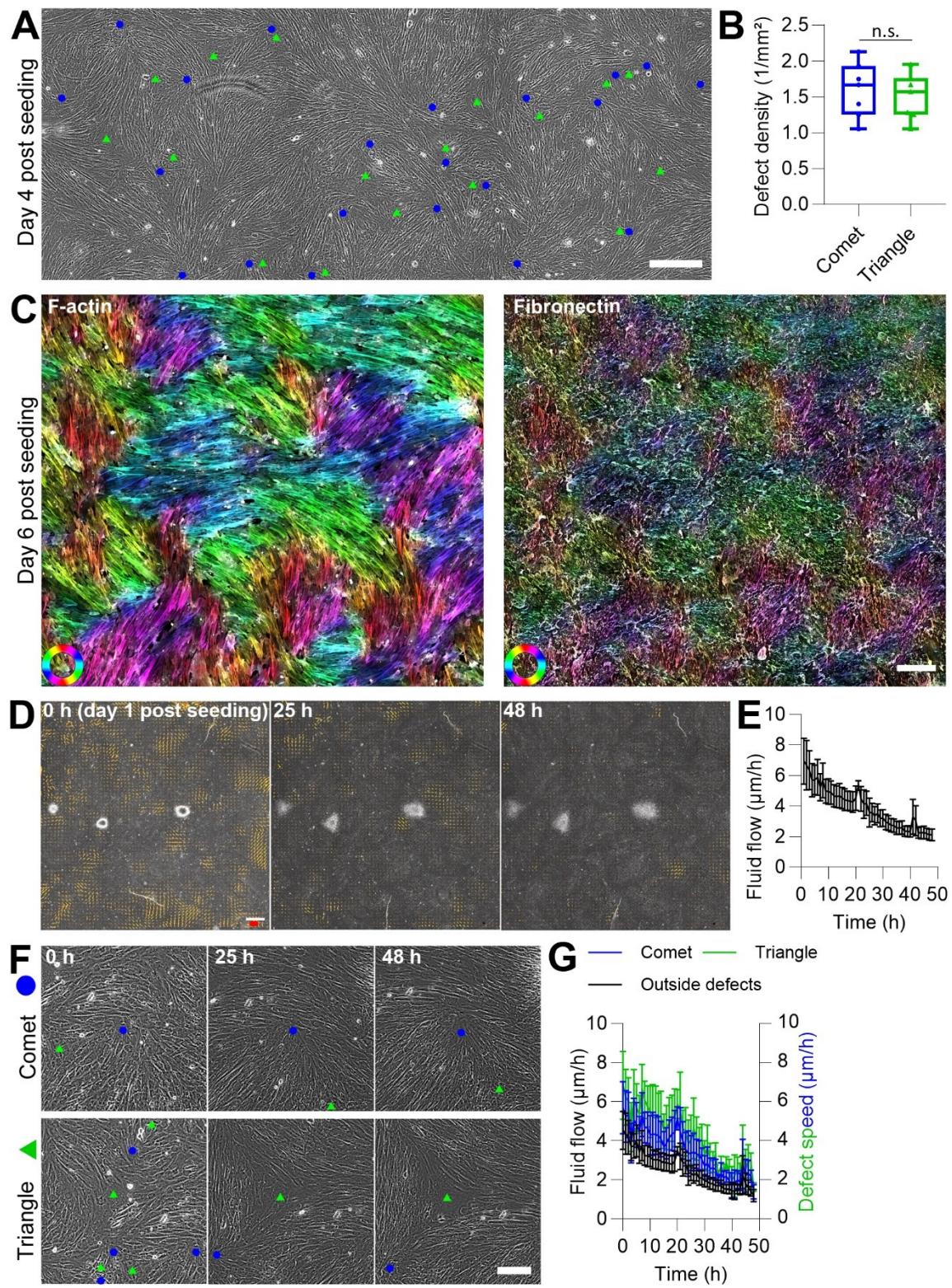
913 41. Conklin, M.W. *et al.* Aligned collagen is a prognostic signature for survival in human breast  
914 carcinoma. *Am J Pathol* **178**, 1221-1232 (2011).

915 42. Provenzano, P.P. *et al.* Collagen reorganization at the tumor-stromal interface facilitates local  
916 invasion. *BMC Med* **4**, 38 (2006).

917 43. Glentis, A. *et al.* Cancer-associated fibroblasts induce metalloprotease-independent cancer cell  
918 invasion of the basement membrane. *Nat Commun* **8**, 924 (2017).

919 44. Perez-Gonzalez, C. *et al.* Mechanical compartmentalization of the intestinal organoid enables  
920 crypt folding and collective cell migration. *Nat Cell Biol* **23**, 745-757 (2021).

921 45. Trepaut, X. *et al.* Physical forces during collective cell migration. *Nature Physics* **5**, 426-430  
922 (2009).


923 46. Nier, V. *et al.* Inference of Internal Stress in a Cell Monolayer. *Biophys J* **110**, 1625-1635 (2016).

924 47. Puspoki, Z., Storath, M., Sage, D. & Unser, M. Transforms and Operators for Directional  
925 Bioimage Analysis: A Survey. *Adv Anat Embryol Cell Biol* **219**, 69-93 (2016).

926 48. Tarantino, N. *et al.* TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK  
927 supramolecular structures. *J Cell Biol* **204**, 231-245 (2014).

928 49. Tinevez, J.Y. *et al.* TrackMate: An open and extensible platform for single-particle tracking.  
929 *Methods* **115**, 80-90 (2017).

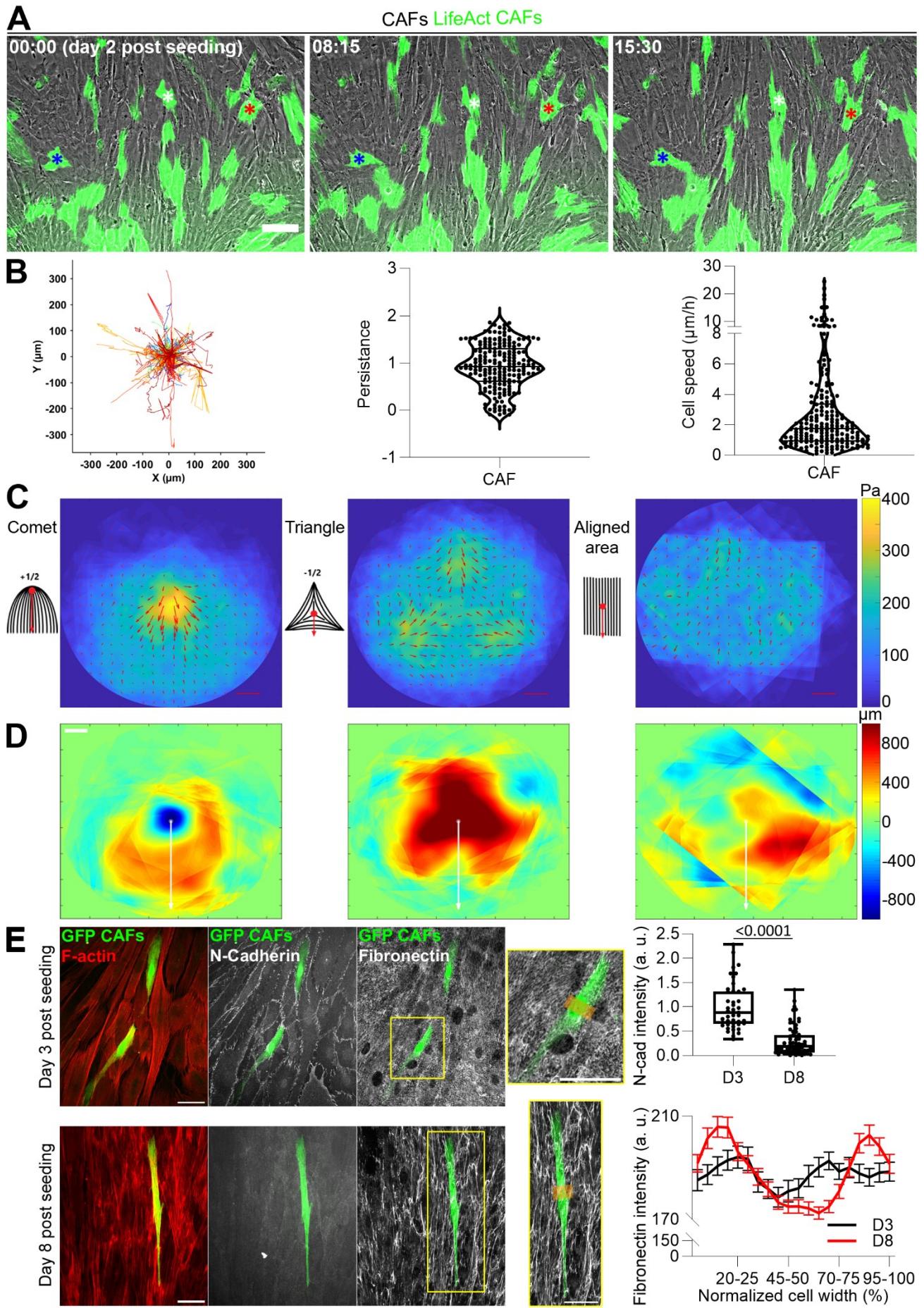
930



**Figure 1. CAFs and fibronectin form highly correlated nematic ordered layers with stationary defects in the CAF layer.**

A) Bright field of a CAF layer cultured on an 11kPa PAA gel for 4 days. Automated detection of topological defects: +1/2 defects or comet defects (blue dots) and -1/2 defects or triangle defects (green triangles). Scale bar: 400  $\mu$ m.

B) Defect density in the nematically ordered CAF layer. Comet and triangle defects are represented in blue and green, respectively. 7 fields of view from 3 independent experiments, unpaired two-sided t-test: p-value = 0.632. Boxplot: middle bar= median, edges bars= 25th and 75th percentiles, whiskers= extent of data.


C) Left: Orientation of CAFs based on F-actin staining (phalloidin); right: orientation of fibronectin network, 6 days after seeding. Cells or fibers with the same orientation are represented with the same color. Colored circle: orientation colormap. Scale bar: 200  $\mu$ m.

D) Bottom: Bright field time-lapse imaging of the CAF layer and evolution of the velocity field over time. Time-lapse started one day after seeding. Orange arrows represent the local velocity vectors. Red scale bar: 400  $\mu$ m/h. White scale bar: 500  $\mu$ m.

E) Evolution of the mean of the velocity field of the CAF layer over time. The black line represents the mean of 3 independent experiments, and the error bars represent the standard error of the mean.

F) Representative automated detection of comet (top, blue circle) and triangle (bottom, green triangle) defects over time. Scale bar: 100  $\mu$ m.

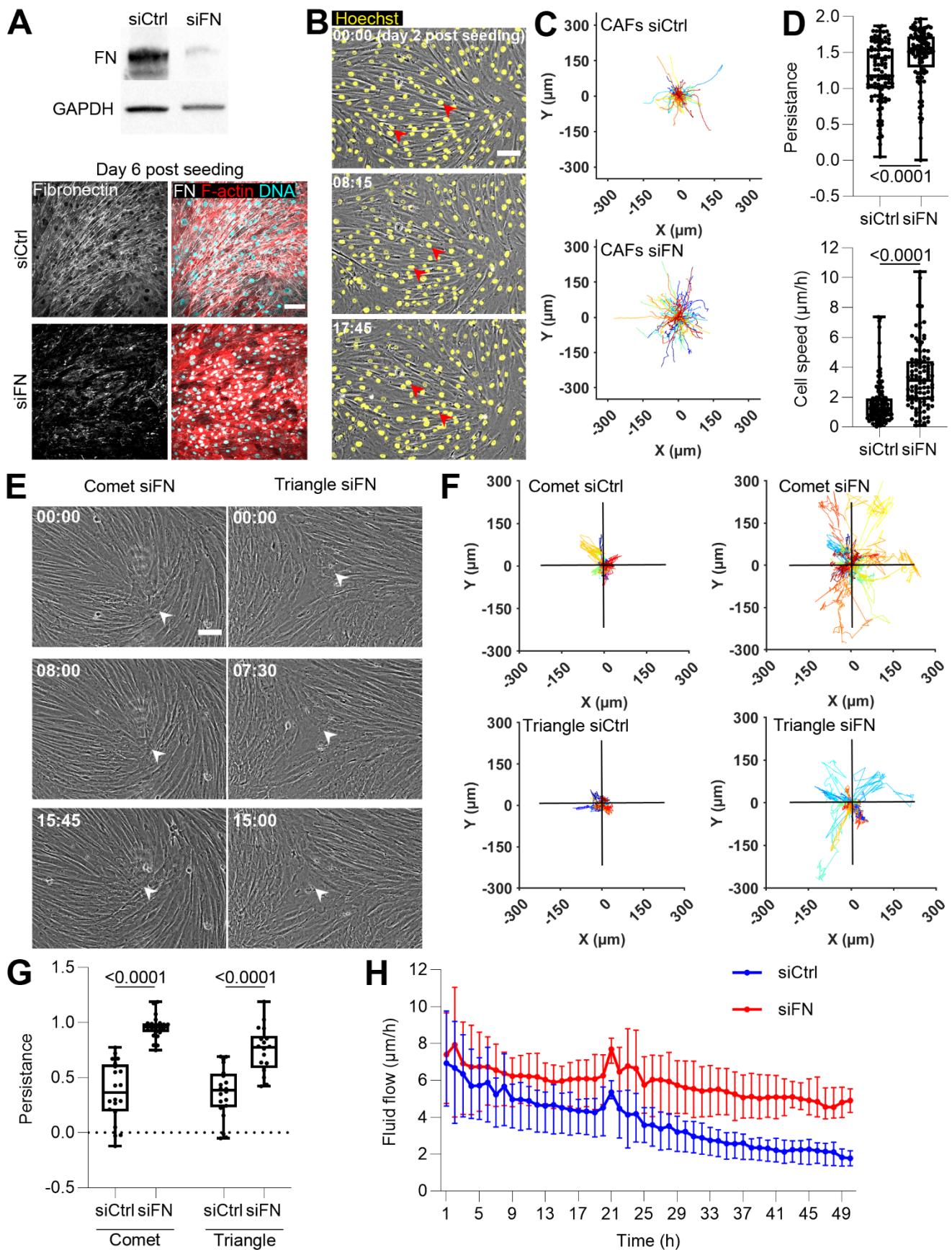
G) Defect speed over time in the nematically ordered CAF layer. Comet and triangle defects are represented in blue and green, respectively. Areas outside defects are represented in black. The lines represent the mean of 3 independent experiments, and the error bars represent the standard error of the mean.



**Figure 2. CAFs in the nematic ordered layer are immobile**

A) Time-lapse imaging of LifeAct-GFP expressing CAFs (green) mixed with unlabeled CAFs 2 days after seeding. Blue, white, and red stars follow the position of three different CAFs over time. Scale bar: 100  $\mu$ m.

B) Left: CAFs trajectories in the whole field of view. Each trajectory represents one CAF, 199 trajectories from 2 independent experiments. See also supplementary figure 6A.


Right: Quantification of CAFs persistence and speed. Each dot represents one CAF, 199 cells from 2 independent experiments.

C) Schemes representing the core and the direction used to average aligned areas, comet, and triangle defects. Average of traction force magnitude maps (colormap) and vectors (red arrows) for aligned areas, comet, and triangle defects. Red scale bar: 800 Pa. 50 comet defects, 42 triangle defects, and 18 aligned areas from 4 independent experiments.

D) Average of isotropic stress maps for aligned areas, comet, and triangle defects. White stars and vectors correspond to the red dot and vectors of the respective scheme in (C). White scale bar: 100  $\mu$ m. 50 comet defects, 42 triangle defects, and 18 aligned areas from 4 independent experiments.

E) Left: Layer of unlabeled CAFs mixed with GFP CAFs (green) fixed at 3 or 8 days post seeding, and stained for F-actin (phalloidin, red), N-cadherin (gray), and fibronectin (gray). Insets show the regions (orange boxes) used for quantification of the fibronectin intensity. Scale bars: 50  $\mu$ m.

Right: For N-cadherin, each dot represents one cell. 45 and 65 cells were analyzed at day 3 and 8, respectively, from 3 independent experiments; Mann Whitney test. Boxplot: middle bar= median, edges bars= 25th and 75th percentiles, whiskers= extent of data. For fibronectin, the quantification was performed on 51 and 134 cells at day 3 (black line) and 8 (red line), respectively. The lines represent the mean of 3 independent experiments, and the error bars represent the standard error of the mean.

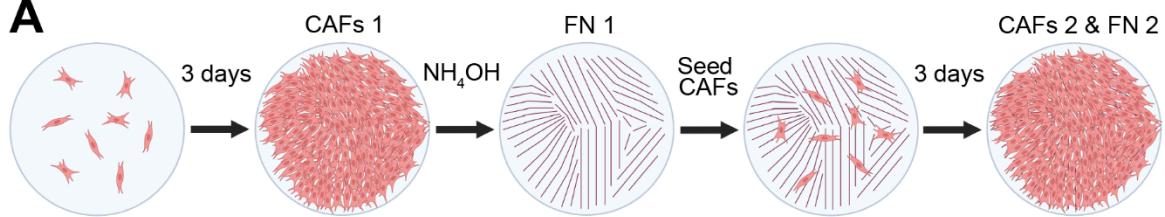
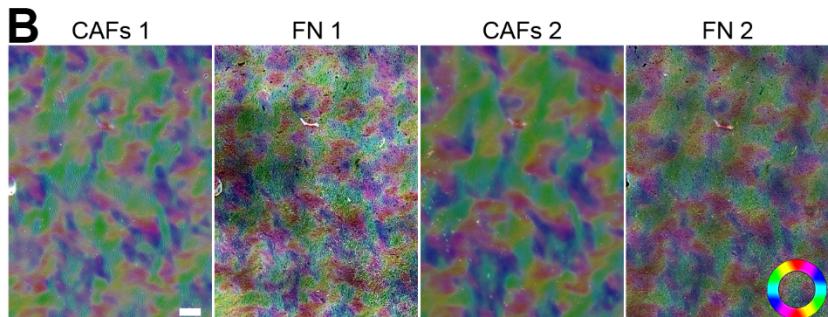
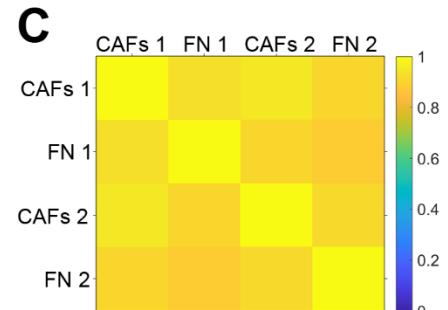
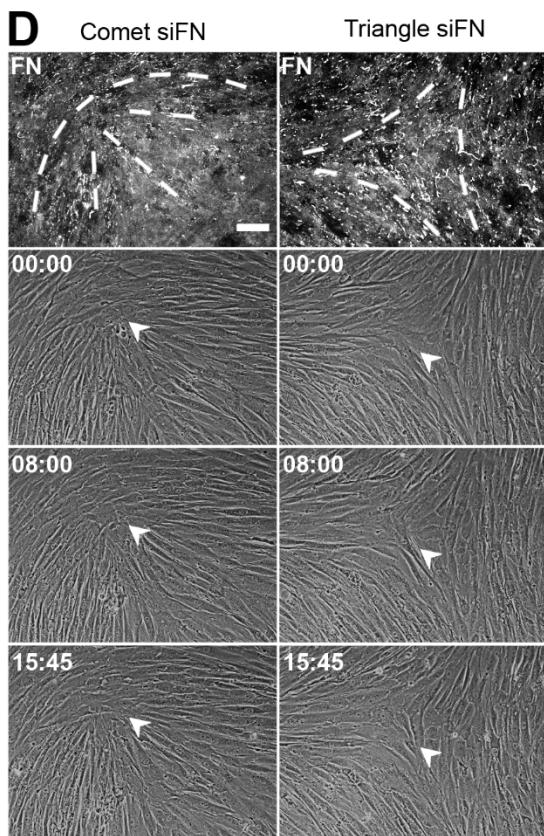
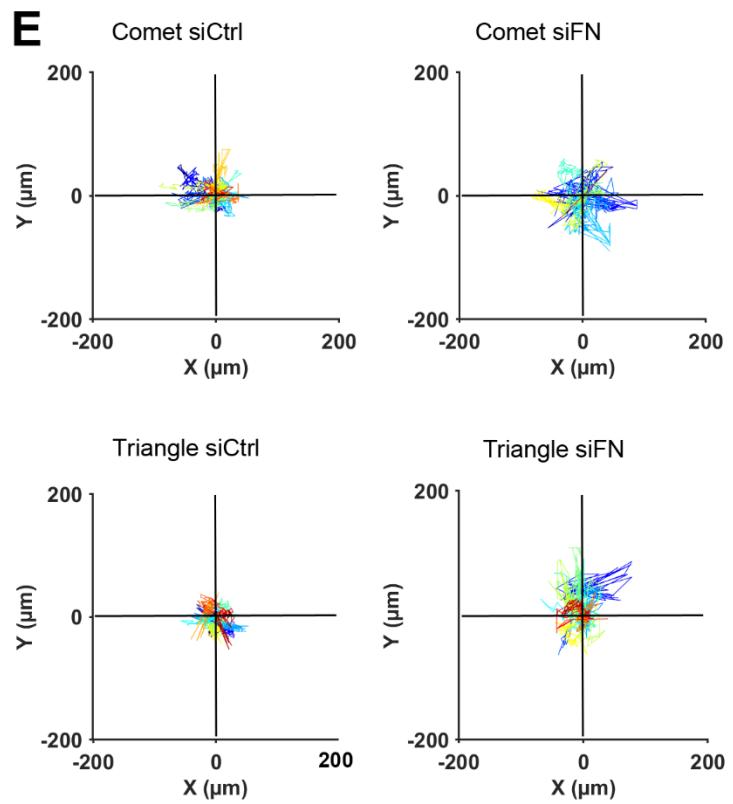
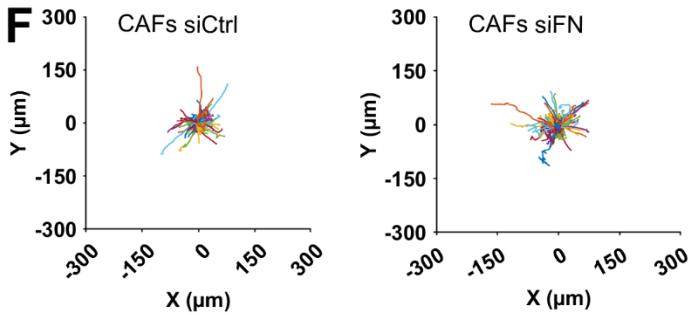
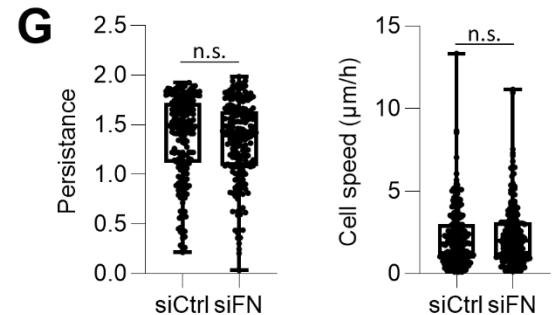


**Figure 3. Dynamics of defects and CAFs is restored upon fibronectin depletion**

A) Depletion of fibronectin in CAFs evaluated by western blot (top) and immunofluorescence (bottom). Cells were transfected with either control siRNA (siCtrl) or siRNA against fibronectin (siFN). GAPDH was used as a loading control. Cells were stained for F-actin (phalloidin, red), DNA (DAPI, cyan), and fibronectin (white) 6 days post seeding. Scale bar: 100  $\mu$ m.

B) Bright field time-lapse imaging of CAFs transfected with siRNA against fibronectin (siFN) and labeled with Hoechst (yellow) 2 days after seeding. Arrowheads follow CAFs over time. Time, hours:minutes. Scale bar: 100  $\mu$ m.

C) Trajectories of CAFs transfected with either control siRNA (siCtrl) or siRNA against fibronectin (siFN). Each trajectory represents one CAF; 100 CAFs for each condition from one experiment. See also supplementary figure 6B.








D) Quantification of persistence (top) and speed (bottom) of CAFs transfected with either control siRNA (siCtrl) or siRNA against fibronectin (siFN). Each dot represents one CAF; 100 CAFs for each condition from one experiment; two-tailed unpaired t-test: p-values mentioned on the graph. Boxplot: middle bar= median, edges bars= 25th and 75th percentiles, whiskers= extent of data.

E) Bright field time-lapse imaging of defect dynamics in fibronectin-depleted CAF layers (siFN) 2 days after seeding. White arrows follow the defect core over time. Time, hours:minutes. Scale bar: 100  $\mu$ m.

F) Trajectories of defect cores in control (siCtrl) and fibronectin-depleted (siFN) CAF layers. Each trajectory represents one defect. siCtrl: 20 comet and 20 triangle defects; siFN: 24 comet and 18 triangle defects from at least 3 independent experiments. Horizontal and vertical black lines represent the defect size (400  $\mu$ m). See also supplementary figure 6C.

G) Quantification of the persistence of defects in control (siCtrl) and fibronectin-depleted (siFN) CAFs layers. Each dot represents one defect; siCtrl: 20 comet and 20 triangle defects; siFN: 24 comet and 18 triangle defects from 5 independent experiments; two-tailed unpaired t-test: p-values mentioned in the graph. Boxplot: middle bar= median, edges bars= 25th and 75th percentiles, whiskers= extent of data.

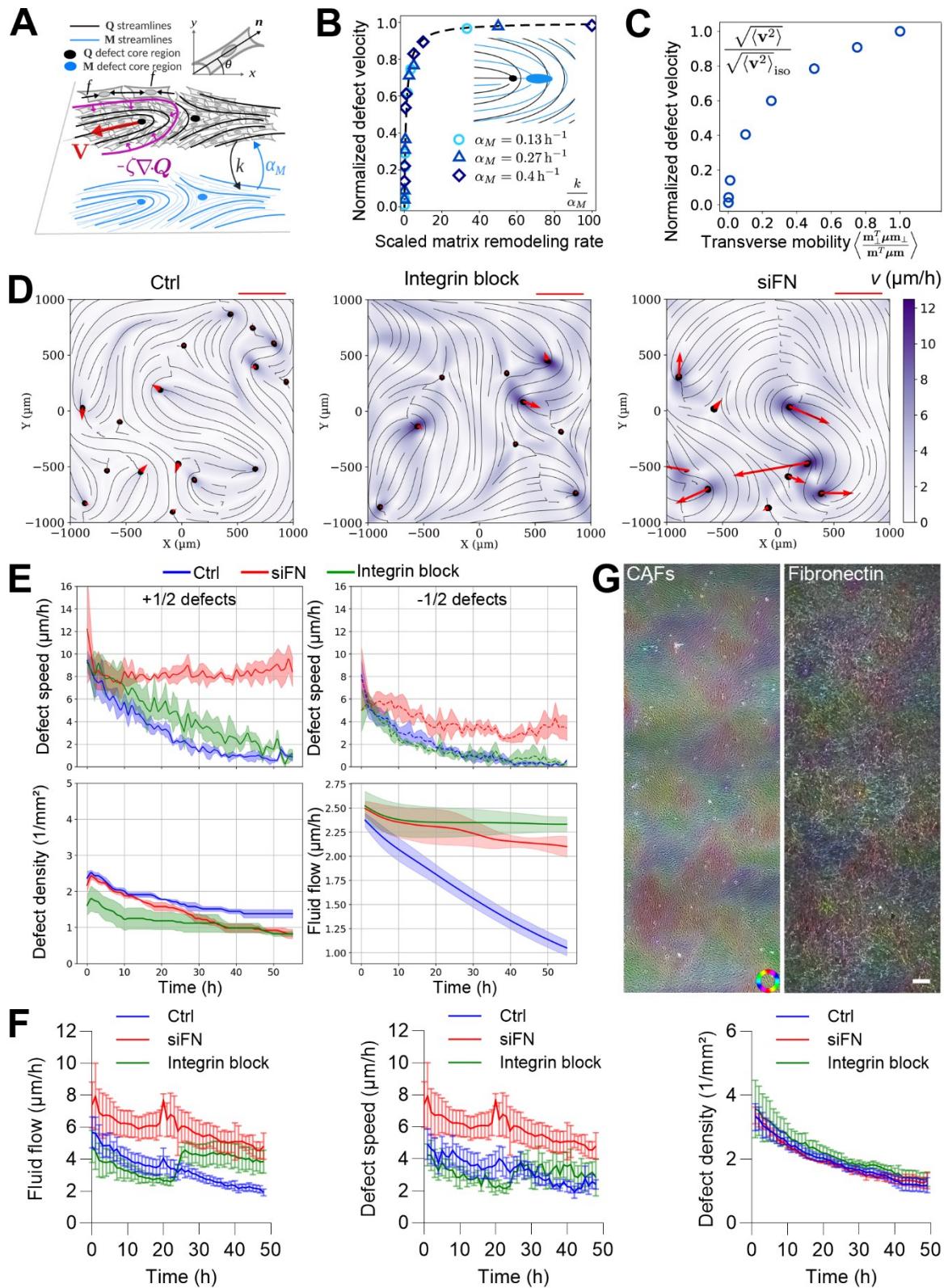
H) Evolution of the mean of the velocity field of control (siCtrl, blue) and fibronectin-depleted (siFN, red) CAF layer over time. The time-lapse started one day after seeding. The line represents the mean of 3 independent experiments, and the error bars represent the standard error of the mean.

**A****B****C****D****E****F****G**

#### Figure 4. Fibronectin patterns freeze CAF nematics

A) Scheme representing the experiment design: CAFs were seeded on 11kPa PAA gel and cultured for three days. CAFs were imaged (CAFs 1) and then removed using NH<sub>4</sub>OH, before staining and imaging of the deposited fibronectin (FN 1). On those fibronectin patterns, new CAFs were seeded and cultured for an additional three days. CAFs were imaged (CAFs 2) and then removed using NH<sub>4</sub>OH, before staining and imaging of the deposited fibronectin (FN 2, representing the sum of FN1 and newly deposited fibronectin).

B) Orientation map of CAFs (CAFs 1 and 2) and fibronectin layers (FN 1 and 2). Colored circle: orientation colormap. Scale bar: 600  $\mu$ m.


C) Mean of the local spatial orientation correlation between the CAFs and fibronectin layers. Results from 3 independent experiments.

D) Fibronectin (FN, gray) stained with specific antibodies, highlights defects - comet (left) and a triangle (right). White dashed lines represent the shape of a comet (left) and a triangle (right). Bright-field time-lapse imaging of defect dynamics in fibronectin-depleted CAFs layers (siFN) seeded on preformed fibronectin patterns 2 days before imaging. White arrowheads follow the positions of defects' cores over time. Time, hours:minutes. Scale bar: 100  $\mu$ m.

E) Trajectories of defect cores in control (siCtrl) and fibronectin-depleted (siFN) CAFs layers seeded on preformed fibronectin patterns. Horizontal and vertical black lines represent defect size (400  $\mu$ m). Each trajectory represents one defect; siCtrl: 18 comets and 12 triangles, siFN: 17 comets and 15 triangles from 3 independent experiments.

F) Trajectories of control CAFs (siCtrl) and fibronectin-depleted CAFs (siFN) seeded on preformed fibronectin patterns 2 days before imaging. Each trajectory represents one CAF (200 cells for each condition, from 3 independent experiments).

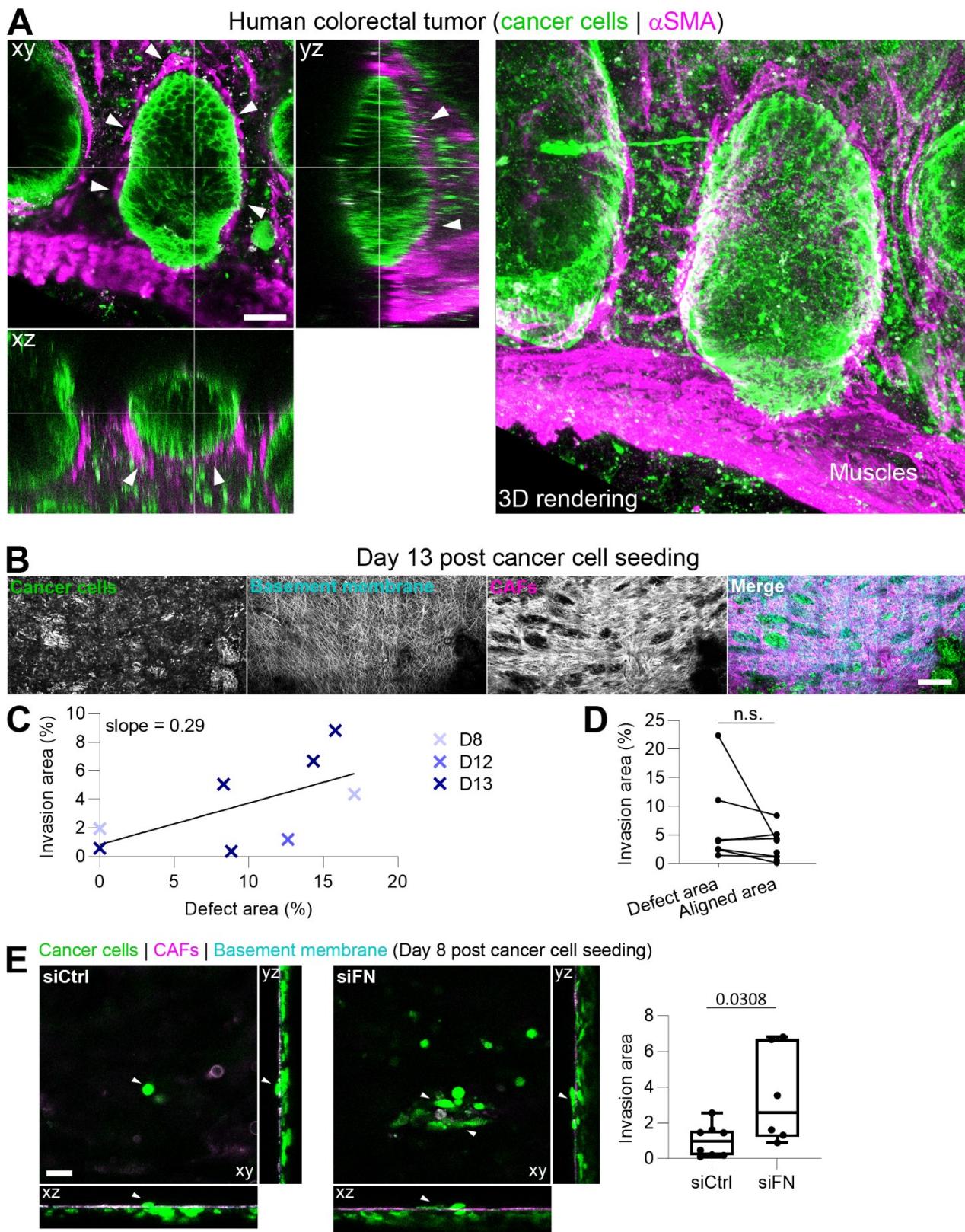
G) Quantification of persistence and velocity of CAFs transfected with either control siRNA (siCtrl) or siRNA against fibronectin (siFN) and seeded on a fibronectin pattern. Each dot represents one CAF (200 cells for each condition, from 3 independent experiments); two-sided unpaired t-test p-value = 0.3527 and 0.4443. Boxplot: middle bar= median, edges bars= 25th and 75th percentiles, whiskers= extent of data, red cross= outliers.



**Figure 5. Theoretical model**

A) The fibroblast layer is modeled as an active nematic. A vector,  $n$ , along the major axis of the cells is used to define the nematic order parameter,  $Q$ . The fibroblasts exert an active stress,  $-\zeta Q$ , where the parameter,  $\zeta$ , is introduced in Eq. 4, and  $\zeta < 0$  for the contractile fibroblast layer. This stress originates from single-cell force compressive dipoles, denoted as  $f$ . Fibroblasts deposit fibers with nematic alignment ( $M$ ) onto a surface at a rate of  $k$ . They also actively reorient to the matrix with coupling  $\alpha_M$ .

B) The velocity of the comoving defects as a function of the scaled remodeling rate,  $k/\alpha_M$ , for different values of matrix coupling,  $\alpha_M$ . The velocities are normalized by the numerical velocity value as  $k \rightarrow +\infty$ . The theoretical scaling for  $v/v_0$  predicted in Eq. (5) is indicated by the black dashed line. A numerical visualization of interacting fibroblast (blue) and matrix (black) defects is added. The core region is shown as the region for which  $S < 0.42$  and  $S_M < 0.35$ .


C) The mean absolute value of the fluid flow velocity on day 3 as a function of friction anisotropy in a control case. The average velocity tends to zero when mobility friction goes to zero.

D) A comparison of siCtrl, siFN, and integrin block ( $\beta 1$  integrin blocking antibody, AIIB2) scenarios on day 3. The color map corresponds to fluid flow velocity (FV), and the arrows correspond to defect velocities. The velocity measure bar corresponds to 5  $\mu\text{m}/\text{h}$  (DV). siCtrl displays low FV and DV; integrin block displays low DV and high FV; and siFN displays both high FV and DV. See also **Movie S1**.

E) Top: Defect velocity for  $+\frac{1}{2}$  (left) and  $-\frac{1}{2}$  (right) defects in different scenarios: siCtrl (blue line), siFN (red line), and integrin block ( $\beta 1$  integrin blocking antibody, AIIB2, green line).  
 Bottom: Defect density (left) and mean fluid flow velocity (right) in different scenarios: siCtrl (blue line), siFN (red line), and integrin block ( $\beta 1$  integrin blocking antibody, AIIB2, green line). Due to full defect freezing, siCtrl has a higher defect density. Conversely, siFN defects have higher velocities. Integrin block and siCtrl share similar mean fluid flow velocity.

F) Evolution of the mean of the velocity field (left), the defect speed (middle) and the defect density (right) of CAF layers in control (combined results of siCtrl and DMSO; Ctrl, bleu line), siFN (red line), or integrin block ( $\beta 1$  integrin blocking antibody, AIIB2, green line) scenarios. AIIB2 was added 24h after the start of the time-lapse. The lines represent the mean of  $>3$  independent experiments, and the error bars represent the standard error of the mean.

I) Orientation of CAFs based on bright field (left) and orientation of fibronectin network (right) 24 h after addition of a  $\beta 1$  integrin blocking antibody (AIIB2). Colored circle: orientation colormap. Scale bar: 200  $\mu$ m.



**Figure 6. Loss of fibronectin in CAFs enhances cancer cell invasion.**

A) 3D imaging of a human colorectal tumor showing cancer cells (EpCAM, green) and CAFs (aSMA, magenta). Note the organization of CAFs around the group of cancer cells (white arrowheads). Orthogonal view and 3D images are shown. Scale bar: 50  $\mu$ m.

B) 3D imaging of HCT116 cancer cells (green), CAFs (magenta) on a native basement membrane (cyan), 13 days post cancer cell seeding. Maximum projection images are shown. Scale bar: 500  $\mu$ m.

C) Correlation between cancer cell invasion area (% of the FOV) and defect area (% of the FOV) inside the CAFs layer. Each cross represents one invasion assay, with the time of invasion indicated in days.

D) Proportion of cancer cells invasion (% of the FOV) at defect areas and aligned areas. One pair of dots represents one invasion assay. Boxplot: middle bar= median, edges bars= 25th and 75th percentiles, whiskers= extent of data. Paired two-sided t-test, p-value = 0.2357.

E) 3D imaging of HCT116 cancer cells (green), CAFs (magenta) on a native basement membrane (cyan), 8 days post cancer cell seeding. CAFs were transfected with either control siRNA (siCtrl) or siRNA against fibronectin (siFN). The xy plane is chosen so that cancer cells that invaded below the CAF layer are visible (see white arrowheads). Scale bar: 100  $\mu$ m.

Right: invasion area (relative to siCtrl) in an invasion assay where CAFs were transfected with either control siRNA (siCtrl) or siRNA against fibronectin (siFN). One dot represents one invasion assay. Boxplot: middle bar= median, edges bars= 25th and 75th percentiles, whiskers= extent of data. Two-sided unpaired t-test.