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Mark passed away on the 13t of January 2023. He was not only a valued colleague but also a friend
and mentor to many of us. His brilliant mind and insightful mind will be sorely missed.

Abstract. The relationship between the geometry of neural representations and
the task being performed is a central question in neuroscience’=. The primate
prefrontal cortex (PFC) is a primary focus of inquiry, as it can encode
information with geometries that either rely on past experience’-'* or are
experience agnostic®'4-6, One hypothesis is that PFC representations should
evolve with learning*17-18, from a format that supports exploration of all possible
task rules to a format that minimises the encoding of task-irrelevant
features*'7:'® and supports generalisation’-2. Here we test this idea by recording
neural activity from PFC when learning a new rule (‘XOR rule’) from scratch. We
show that PFC representations progress from being high dimensional,
nonlinear and randomly mixed to low dimensional and rule selective. Upon
generalising the rule to novel stimuli, these representations further evolve into
an abstract, stimulus-invariant geometry. These findings reconcile previously
conflicting accounts of PFC function by demonstrating how neural
representations adapt across distinct stages of learning.

Two seemingly discrepant accounts propose that PFC neural activity should track
either low-8-1319 or high-dimensional®14-16 representations of the environment.
Traditionally, it has been proposed that PFC cells are tuned adaptively to task-relevant
information, leading to low-dimensional neural activity'3. This results in the population
displaying structured selectivity patterns, as commonly observed after training on a
cognitive task (Fig. 1a, low-dimensional) 3. A contrasting hypothesis suggests that the
PFC may rely on high-dimensional, nonlinearly mixed representations of task features
to support complex cognition (Fig. 1a, high-dimensional)314. According to this notion,
the PFC serves as a nonlinear kernel such that when a low-dimensional input is
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projected onto it, dimensionality expands, and a wide repertoire of responses can be
generated’5:16,

Recently, it has been proposed that the PFC is capable of transitioning between high-
and low-dimensional representations across learning, to accommodate the changing
demands of the environment#17:1820_ For example, early in learning, high-dimensional
representations may allow flexible exploration of all possible input—output mappings
(“contingencies”) in order to discriminate which task rules are currently relevant 31416,
This is because a high-dimensional representation allows for a high number of linearly
separable task features (Fig. 1a). Conversely, once an animal has learnt that only one
set of contingencies is relevant, a low-dimensional representation may be used to
encode task-relevant features more robustly*'7-1°, Moreover, these low-dimensional
representations may enable generalisation to novel contexts, since aligning new with
old representations is likely easier when fewer dimensions must be considered.
(Supp. Fig. 1)78. In other words, different stages of learning impose different demands
on the neural population. Learning could thus shape neural dimensionality and
progressively push neural activity towards different solutions along the trade-off
between discriminability and generalisability, i.e., from a high-dimensional regime
towards a low-dimensional regime18-20,

Here, we tested this idea in two macaque monkeys which learnt an exclusive-or (XOR)
rule — a problem that can be solved by a range of representations, from low- to high-
dimensional (Fig. 1a)'°. Importantly, we tracked how the dimensionality and geometry
of PFC representations changed across multiple training sessions of an XOR rule that
was entirely new to the animals at the start of recording (experiment 1) and during
subsequent generalisation of this rule to a new stimulus set (experiment 2). We used
a classical conditioning paradigm in which the nonlinear combination of the features
of two objects presented in succession (XOR) predicted the outcome of the trial.
Importantly, the animals were only required to fixate through both experiments?!-24,
Later, we also show that our results hold in a previously collected delayed match-to-
sample task25-27,

Across two experiments, we found that during early stages of learning, PFC activity
was high-dimensional, with individual neurons exhibiting nonlinear and randomly
mixed selectivity. As learning progressed, population activity became increasingly low-
dimensional, with structured selectivity emerging predominantly for task-relevant
variables. When novel combinations of stimuli were introduced, PFC representations
reorganised such that new and familiar conditions aligned along a shared axis,
enabling the reuse of a common neural code. These findings demonstrate that
learning reshapes both the dimensionality and geometry of neural representations in
the PFC, promoting low-dimensional and abstract encoding when animals
continuously engage in a single task structure.
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Figure 1. Potential effects of learning on neural geometry in the prefrontal cortex. Learning can
reduce or expand neural dimensionality, changing how many linear decoding axes can be implemented
on neural firing rates (discriminability). a, High-dimensional representations enable high discriminability.
A high-dimensional regime allows the strong separation of all task features using three possible readout
axes (left), whereas a low-dimensional representation only allows task-relevant features to be strongly
separated (right). b, Each neuron can be represented as a point in the 3-dimensional selectivity space
spanned by colour, shape, and XOR (their interaction). In the random model, selectivity is distributed
according to a spherical Gaussian distribution in this space (Methods, generative models); the
covariance matrix is computed between the selectivity coefficients; zero-mean Gaussian noise (¢ =
0.7) was added to each selectivity coefficient to illustrate measurement bias under finite sampling. ¢,
Analogous to b but for the minimal model; neurons are strongly selective only for the XOR (interaction
between colour and shape), as this is the only feature that is necessary to solve the task.

Generative models of nonlinear random and minimal selectivity

We first wanted to understand how the geometry of the neural representations could
change over the course of learning. We thus explored the geometries produced by two
generative models of neural selectivity with different discriminability-generalisability
trade-offs*17: (i) a high-dimensional geometry produced by non-linear random mixed
selectivity314-16.28 (high discriminability, low generalisability); and (ii) a low-dimensional
geometry produced by structured, minimal selectivity (low discriminability, high
generalisability)0.1229-33 The former is a well-established geometry (e.g., inherent in
reservoir computing models'®16) whereas the latter was inspired by work suggesting
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that PFC neurons flexibly adapt their selectivity to current task demands?3. These
models make distinct predictions about the distribution of selectivity to the task-
relevant variables in a 3-dimensional selectivity space (colour, shape, and their
nonlinear interaction, i.e., XOR). We refer to minimal or random selectivity when
describing the distribution of selectivity and to low- or high-dimensional geometry when
referring to the respective representations generated by these distributions (see
Discussion for a detailed distinction between dimensionality and selectivity).

In selectivity space, each axis represents a units’ response to one stimulus variable
(e.g., high shape selectivity = higher firing rate for square than diamond, Fig. 1b).
Hypothetically, one could imagine different distributions of variable encoding within
this selectivity space. The properties of these distributions are determined by a
covariance matrix: the diagonal elements describe the strength of coding of each
variable (variance) whereas the off-diagonal entries determine the strength of the
relationship between variables (covariance). In our generative models neural firing
rates were simply constructed as a linear combination of task variables (colour, shape
and XOR inputs represented using one-hot encodings; see Methods, generative
models for details) with a specified covariance matrix of selectivities to the task
variables. In line with previous studies, the high-dimensional model was constructed
by allowing selectivity to linear (colour and shape) and nonlinear (XOR) features to be
distributed randomly according to a spherical Gaussian distribution (Fig. 1b). In
contrast, in the minimally structured XOR selectivity model, neurons were only strongly
selective for the nonlinear interaction (i.e., the XOR; Fig. 1¢). One possible way of
constructing such a model is considering biologically plausible limits on neural firing
rates (minimising net firing rate). In line with this, we derived this model mathematically
and demonstrated that it minimises total firing rate activity while maximising task
performance (see Supp. Materials, section 1). Consistent with this, we found that
feedforward networks trained using backpropagation to perform the task while also
minimising a metabolic cost term converge to the minimal XOR selectivity model (see
Supp. Fig. 2a-h; Methods, optimised feedforward networks). Please note that
alternative mechanisms, such as initialisation or presence of noise, could be also
applied to learn a similar minimal selectivity model'%34. In line with prior accounts'”-35,
XOR decoding in the low-dimensional model was more robust to noise (Supp Fig. 2i)
and required fewer units to implement a stable readout (see Supp. Fig. 2j).

We established a metric to measure whether neural activity is better described by the
random or minimal model. We first fitted a linear model regression to surrogate data
generated by both our generative models, in which task variables (colour, shape, and
colour x shape (XOR)) were used as predictors of each unit’s firing rate (see Methods,
model section; for similar analysis see¢37; Supp. Fig. 3a,b). Then we measured the
average within-model distance between two covariance matrices drawn from the
random model (Supp. Fig. 3c, red line; Methods, eq. 4) and the average between-
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model distance between the covariances drawn from the random and the minimal
model (Supp. Fig. 3d, blue line, Methods, eq. 5). To test whether our measure
captures learning dynamics, we constructed four artificial populations with varying
proportions of random and minimal selectivity. As the proportion of the minimal model
in this mixed population increased, it became more dissimilar to the average random
model and more similar to the average minimal model (Supp. Fig. 3c, black line). A
reflected version of these results held true when the minimal model was used as
reference (Supp. Fig. 3d).

Subsequently, to gain insight into the task geometries that these models generated,
we employed an established technique®'# and trained linear decoders to decode all
three task variables in both models. As previously suggested3'4, a randomly mixed
selectivity model yielded a high-dimensional task representation, allowing for all
variables, including the nonlinear XOR, to be decoded (Supp. Fig. 3e, red; cf. Fig. 1a,
far left). In contrast, for the minimal model, only the XOR combination of shape and
colour, and not shape or colour independently, could be decoded (Supp. Fig. 3e, blue;
cf. Fig. 1a, far right). While both models can perform the task, we expected their
representation of the XOR variable to differ fundamentally. On the one hand, the
minimal model by design should represent the XOR in a format that generalises over
all other task variables. On the other hand, this is not guaranteed in the random model.
We verified this intuition using cross-generalised decoding, a method in which a linear
decoder is trained to decode a given task variable (e.g., XOR = True vs. XOR = False)
on a given set of task conditions (e.g., blue colour) and tested on a different set of task
conditions” (e.g., green colour; see Methods section, cross-generalised decoding). We
found that for the random model, cross-generalised decoding was at chance-level for
all task variables (Supp. Fig. 3f, red). This is because the random model, by design,
exhibits no reliable structure in its representation of variables and therefore these
dimensions are represented randomly in relation to each other. In contrast, the minimal
model displayed maximal cross-generalised decoding for the XOR variable (Supp.
Fig. 3f, blue), indicating that it can be decoded regardless of which set of task
conditions the decoder is trained and tested on. This suggests that the minimal model
is able to represent the XOR in a highly cross-generalisable format (Fig. 1a, far right).
Consequently, the minimal model also exhibits below-chance cross-generalised
decoding for colour and shape (see Supp. Fig. 3g, h). Next, we directly compared
neural data at each stage of learning to the selectivity (random vs minimal) and neural
geometry (low- vs high-dimensional) generated by these models.

Learning a single task reduces neural dimensionality in the prefrontal cortex

In experiment 1, the animals were trained to combine a colour stimulus (either blue or
green) with a subsequently presented shape (either square or diamond) in a nonlinear
fashion to predict the reward (the XOR between colour and shape) outcome of the trial
(Fig. 2a,b). Using a semi-chronic multielectrode system we sequentially recorded 376
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neurons from the lateral PFC across both macaques (Fig. 2c; see Methods, data
acquisition and pre-processing). Moving electrodes between sessions ensured that a
new sample of neurons was obtained in each session. Importantly, to capture learning
dynamics, we started recording from the first session in which the animals were
exposed to the task. Experimental sessions were split into four learning stages for
each animal separately. Data for each stage was combined across animals. A sliding-
window approach was used to utilise all available trials while ensuring an equal
number of trials per learning stage; each stage comprised approximately equal
numbers of training sessions (see for details see Methods, data acquisition and pre-
processing). Selectivity analyses were run in the time window before the animals
received feedback about the outcome of the trial (i.e., reward; for details see Methods,
data acquisition and pre-processing).

We first assessed learning behaviourally by examining the animals' tendency to
terminate non-rewarded trials before the potential reward onset (shape-locked period,
Fig. 2b) by breaking fixation (Fig. 2d). This was quantified by calculating a trial
termination index, i.e. the ratio of terminated non-rewarded trials to terminated
rewarded trials, which we tracked across different learning stages (see Methods, trial
termination for details). Over the course of learning, the animals increasingly
differentiated between rewarded and non-rewarded trials (r = .56,p < 0.01; Fig. 2d).
We next investigated which learning strategy the animals adopted. One possibility is
that they memorised each stimulus combination and its associated outcome (a flat
strategy; Supp. Fig. 4a). Alternatively, they may have used a hierarchical strategy, in
which colour served as a first-order policy cue guiding subsequent context-dependent
processing of shape (Supp. Fig. 4b). To distinguish between these strategies, we
analysed switch costs (see Methods, switch costs for details), comparing the animals'
ability to terminate non-rewarded trials following a change in colour versus shape from
the previous trial (Supp. Fig. 4c,d). We found no evidence of shape switch costs (r =
.01,p = 0.41; Supp. Fig. 4e), whereas colour switch costs increased over learning
(r =.37,p < 0.05; Supp. Fig. 4f) and were significantly greater than shape switch
costs (r =.36,p < 0.05; Supp. Fig. 4g). These results suggest that animals
increasingly relied on colour as a higher-order cue, consistent with the adoption of a
hierarchical learning strategy.

We next applied our linear decoding analyses to the neural recordings to establish
whether the emergence of this behavioural strategy was accompanied by changes in
the dimensionality of neural representations. At the beginning of training (learning
stage 1, grey lines), the animals exhibited a high-dimensional geometry that allowed
for colour, shape and XOR to be decoded, reminiscent of the high-dimensional model
(Fig. 2e-g). This was especially prominent in the period prior to the reward delivery.
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Figure 2. Neural representations in macaque PFC during learning of a single task. a, In
Experiment 1, animals were incentivised to combine two passively viewed task features (colour and
shape) in a non-linear fashion (XOR). For example, blue+square and green+diamond combinations
were rewarded, whereas blue+diamond and green+square were not. b, Timeline of task events in a
single trial. ¢, Neural data was collected from the lateral surface of the prefrontal cortex in two macaque
monkeys (see Methods, data acquisition and pre-processing for further details). d, The tendency of
animals to terminate trials in the shape-locked trial period plotted as a ratio of termination numbers in
not rewarded and rewarded trials (illustrated as a function of learning). e-g, Time resolved linear
decoding in stage 1(grey) and stage 4(black) of colour, shape, and XOR, respectively; the pale orange
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shaded areas denote the time windows in which permutation tests were conducted to assess
differences between stage 1 and stage 4 decoding scores; vertical three dashed lines show the onset
of the colour, shape and the outcome, respectively. h, Schematic of narrow and broad shape trials
(width feature). This feature was not predictive of reward. i, Temporally resolved linear SVM decoding
of width. j, Time resolved neural dimensionality as measured by shattering dimensionality (all possible
task dichotomies excluding colour, shape, width and XOR). k,I, Neural selectivities in learning stages
1(k) and 4 (I) computed in the late shape-locked period ([tsoomss tsoomsl, Shape-locked). Each point
represents the selectivity of one neuron for each of the task variables (colour, shape and XOR). We
show all 3 possible pairs of the 3 axes. The contour plots represent a kernel density estimate of the
data, with each ring corresponding approximately to 1, 2, and 3 standard deviations from the mean.
The right panels show the covariance matrix of the selectivities computed from the data for stage 1 of
learning (k) and stage 4 of learning (I). m, Relative Euclidean distance between the covariance matrix
of selectivity coefficients from the data ([tiooms, tsoomsl, Shape-locked) and the covariance matrix
expected from random selectivity (with matched total variance) as a function of learning (Methods,
measuring similarity between selectivity distributions). Red and blue, respectively, error bars show
mean (t1s.d. over 1000 randomly drawn models) of the relative Euclidean distance between the
covariance matrix of the random, respectively minimal, model (with matched total variance to the data)
and the covariance matrix expected from random selectivity; black error bars show standard deviation
of relative distance between the observed covariance and random covariance (+1s.d. over 1000
random models). n, Same as panel d but we show the relative distance of the observed covariance
(([ta00ms, tsoomsl, Shape-locked) from the covariance matrix expected from minimal selectivity (with
matched total variance). All p-values were calculated from permutation tests (***, p < 0.01; **, p <
0.01;*,p < 0.05; 1, p < 0.1; n.s., not significant).

Over the course of learning (stage 1 vs stage 4) we observed a reduction in colour
decoding (p < 0.05, one-sided) and shape decoding (p < 0.001, one-sided) but not
XOR decoding (Fig. 2e-g, grey vs black lines). The shape stimuli also had a feature
that was irrelevant for the prediction of the outcome: width (Fig. 2h). Similarly to colour
and shape, the decoding of this feature also decreased over learning (p < 0.01, one-
sided). The reduction of colour and shape coding as well as stable output-relevant
feature (XOR) decoding was predicted by a transition from a high-dimensional to a
low-dimensional model (Supp. Fig. 3e, red vs blue).

We next explicitly tested whether the dimensionality of neural representations changed
over learning (as measured with shattering dimensionality; see ref. ' and Methods,
decoding for details). A neural representation described by three binary input
dimensions (colour, shape and width) results in 35 dichotomies (division into two sets
of four stimuli) that can be theoretically decoded. We found that the mean decoding
accuracy of all dimensions (excluding colour, shape, width and XOR) decreased
significantly over learning (p < 0.01, one-sided; Fig. 2j). Additionally, a principal
component analysis computed on condition averages revealed that the proportion of
variance explained by the first principal component increased as a function of learning
(Mstqge1 = 0.466 vs Mgq40 4 = 0.581,p < 0.05, one-sided; Supp. Fig. 4h; for details
see Methods, Principal component analysis).
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We next tested whether changes to neural dimensionality were reflected in changes
to selectivity. We fitted a linear regression to our data, just as we did for our generative
models (Supp. Fig. 3a, b), in which task variables (colour, shape, and colour x shape
(XOR)) were used as predictors of each neuron’s firing rate. We then examined how
selectivity coefficients changed over learning (Fig. 2k, learning stage 1 and Fig. 2I,
learning stage 4). We compared the covariance structure of these selectivity
coefficients (Fig. 2k, I, bottom right) to the covariances obtained from the random
selectivity model and minimal selectivity model (Supp. Fig. 3a, b; covariance). At the
beginning of learning (stage 1), PFC cells were randomly distributed in selectivity
space resembling the high-dimensional model (p = 0.332, one-sided, Fig.2m and p =
.99, one-sided, Fig. 2n). However, in late learning (stage 4), selectivity diverged away
from randomly mixed selectivity (p < 0.001, one-sided, Fig. 2m, compare black and
red lines) and converged towards the minimal model (p < 0.001, one-sided, Fig. 2n,
compare black and blue lines).

We replicated a similar pattern of decoding and selectivity results on data sorted by
the trial termination index. Here, the behavioural measure served as a performance
indicator, and sessions were sorted separately for each animal before being pooled
into four pseudopopulations across animals (see Methods, trial termination measure;
Supp. Fig. 4i-0). Furthermore, we also performed a re-analysis of an existing
dataset?>-?7 in which recordings were taken from primate ventral and dorsolateral PFC
before and after learning a delayed match-to-sample task that was similar in structure
to ours (for details see Methods, existing IPFC dataset, Supp. Fig. 5). We found that
learning again pushed neural activity in the PFC towards a minimal regime.

Our findings indicate that neural activity in the PFC shifts between two distinct
selectivity regimes as learning progresses. Initially, the PFC maximally expanded the
representational space by encoding all available variables. Subsequently, after a
combination of task variables that predicted the trial's outcome were identified, neural
activity became increasingly low-dimensional. Such changes to neural dimensionality
can be associated with simultaneous changes in neural geometry, potentially
supporting more abstract representations (Supp. Fig. 3f). To test this, we employed
cross-generalised decoding and, consistent with our generative models, observed a
strong increase in cross-generalised XOR decoding across learning (p < 0.001, one-
sided; Supp. Fig. 4p). Although this effect is consistent with abstraction, it could also
reflect motor-preparation or reward-prediction signals injected into the PFC in the
rewarded XOR condition (XOR==True). To directly assess whether an abstract, task-
relevant dimension emerges independently of such signals, we conducted experiment
2, introducing a new task instance that preserved the same underlying structure.
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Learning a single task structure promotes abstract neural geometry in the PFC

In experiment 2, we introduced a new colour pair (stimulus set; Fig. 3a) that followed
the same shape—outcome associations as the previous colour pair (context, Fig. 3b).
Similar to experiment 1, we recorded neural activity from the very first session in which
the animals were exposed to the new stimulus set and divided the experimental
sessions into four distinct learning stages. To explore learning-induced changes to
neural dimensionality, we again employed linear decoding. We next compared these
metrics to changes in the structure of neural selectivities. During the colour-locked
period, PFC activity could now represent three distinct variables (Supp. Fig. 6a):
context (i.e., the colour indicating the relevant shape—outcome rule), stimulus set (set
1 vs. set 2), and the nonlinear interaction between context and stimulus set (XOR 2).
Using these three variables we constructed selectivity models analogous to those in
Fig. 2k,l (Supp. Fig. 6b-c). Critically, in this design, context was the only task-relevant
variable, whereas both the stimulus set and its nonlinear interaction with context (XOR
2) were irrelevant. We predicted that, as in experiment 1, PFC activity would transition
from high-dimensional and nonlinearly mixed to low-dimensional and structured, with
cells becoming increasingly selective for the task-relevant variable (Supp. Fig. 6a).
Additionally, randomly interleaving stimulus set 1 trials and stimulus set 2 trials allowed
us to test whether a shared neural representation would be used for both stimulus
sets. Importantly, none of the analyses performed on activity during the colour-locked
period were confounded by motor preparation or reward prediction, as the shape
information required to predict reward had not yet been presented.

We first examined the propensity of animals to terminate trials when the new stimulus
set indicated a lack of reward, similar to the patterns observed in experiment 1. Over
the course of learning with stimulus set 2, animals increasingly terminated non-
rewarded trials more frequently than rewarded ones (r =.52,p < 0.05, Fig. 3c).
Additionally, a facilitation effect was observed when comparing the first three sessions
of experiment 2 (stimulus set 2 only) to the first three sessions of experiment 1
(stimulus set 1). Specifically, animals demonstrated significantly more adaptive trial
termination early in the learning process with stimulus set 2 compared to stimulus set
1 (p < 0.01, Fig. 3d). This early behavioural benefit may be attributed to the utilisation
of the previously acquired task representation as a scaffold. Subsequently, we thus
investigated how the neural representations of both stimulus sets interacted
throughout the learning process.

Similarly to experiment 1, we hypothesised that the PFC would strongly represent all
three variables—stimulus set, context, and XOR 2 (i.e., context x stimulus set)—at the
beginning of learning, consistent with a high-dimensional coding regime (left, Supp.
Fig. 6a), and would then progressively transition to a low-dimensional representation
in which most neurons are selective for context, the only task-relevant variable (right,
Supp. Fig. 6b). To test this hypothesis, we first employed linear decoding (Fig. 3e-g).
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We found that both stimulus set decoding (p < 0.001, one-sided) and XOR 2 decoding
(p < 0.05, one-sided) significantly decreased over learning, whereas context decoding
remained stable across learning stages, mirroring the decoding results from
experiment 1. Furthermore, we observed a significant reduction in shattering
dimensionality during the colour-locked period as learning progressed (p < 0.01, one-
sided). No learning-related changes were detected for shape or XOR representations
(Supp. Fig. 7a, b). Notably, width decoding further declined with learning in
experiment 2 (p < 0.05, one-sided; Supp. Fig. 7c).
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Figure 3. Neural representations in macaque PFC during learning of two instances of the same
task structure. a, b, New colours (pink and khaki, stimulus set 2) were introduced in experiment 2,
sharing the same shape—reward mapping as the learned colours (blue and green, stimulus set 1). c,
Analogous to Fig. 2a but computed for stimulus set 2 trials. d, Comparison of the trial terminations
observed in the first 3 sessions (per animal) in experiment 1 (when only stimulus set 1 was presented)
and 3 first sessions (per animal) in experiment 2 for stimuli set 2 trials only. e-g, Temporally resolved
linear SVM decoding stimulus set, XOR 2 (set*context) and context; the pale orange shaded areas
denote the time windows in which permutation tests were conducted to assess differences between
stage 1 and stage 4 decoding scores. Horizontal dotted lines represent chance-level decoding whereas
vertical dotted lines indicate the onset of the colour, shape and the trial outcome. h, Time resolved
neural dimensionality as measured by shattering dimensionality (mean over all 3 possible task
dichotomies in the colour-locked period, i.e., mean over panels e-g) in stage 1 and stage 4. i-l, Neural
selectivities in learning stages 1-4 computed in the colour-locked period ([t,00ms tsooms])- Each point
represents the selectivity of one neuron for each of the task variables (set, XOR 2 and context). We
show all 3 possible pairs of the 3 axes. The contour plots represent a kernel density estimate of the
data, with each ring corresponding approximately to 1, 2, and 3 standard deviations from the mean.
The right panels show the covariance matrix of the selectivities. m, n, Analogous to Fig. 2m,n; compares
set, XOR 2 and context selectivities ([ty00ms: tsooms], COlour-locked) to idealised random and minimal
models as a function of learning. All p-values were calculated from permutation tests (***, p < 0.01; **,
p <0.01;* p < 0.05;1,p < 0.1; n.s., not significant).

To determine whether these dimensionality changes were reflected in the structure of
neural selectivity, we analysed selectivity for the three task variables (context, set, and
XOR 2) at each learning stage and compared the population profiles to idealised
random and minimal models (Supp. Fig. 6b and c, respectively). In stage 1, neural
selectivity significantly diverged from the random model and was inconsistent with the
minimal model (p < 0.001, one-sided; Fig. 3m), driven by a strong preference for the
stimulus set variable (stage 1; Fig. 3i). We interpret this as a novelty effect, with
different neural responses for novel vs. familiar stimuli. In stage 2 (Fig. 3k), PFC
selectivity shifted away from this initial set-selective regime and converged toward a
profile consistent with randomly mixed selectivity (p = 0.825, one-sided; stage 2; Fig.
3m). From there, it gradually transitioned toward the minimal regime in stages 3 and
4 (Fig. 3j,l), reflecting increasingly structured and task-relevant coding (stage 3:p <
0.05, one-sided, stage 4:p < 0.05, one-sided, Fig. 3m; stage 3:p < 0.01, one-sided,
stage 4:p < 0.05, one-sided, Fig. 3n). Together with experiment 1, these results
identify random mixed selectivity as a critical stage in early learning, even when new
information must first be integrated with existing representations. Subsequently,
whether learning a completely novel task (experiment 1) or a task related to prior
knowledge (experiment 2), the PFC progressively converged towards minimal
selectivity.

We next examined whether the observed changes in dimensionality were
accompanied by changes in neural geometry. Specifically, we assessed how task
variables—context, shape, and XOR—were coded across stimulus sets. For example,
we asked whether the decision boundary separating the two contexts in stimulus set
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1 (blue vs. green) was the same as that in stimulus set 2 (pink vs. khaki; Fig. 3b). We
found that at the beginning of learning (stage 1) PFC cells that were selective to
context in stimulus set 1 tended to be not selective to context in stimulus 2 (r =
—.15,p > 0.05, one-sided, Fig. 4a, left). After learning, in stage 4, the same neurons
exhibited context selectivity that generalised across stimulus sets (r =.37,p < 0.001,
one-sided, Fig. 4a, right). Consistent with this, correlations between single-neuron
context selectivity across colour pairs increased progressively over learning (p < 0.01,
one-sided, Fig. 4b). These changes at the single-neuron level were mirrored by a
reorganisation of population geometry. To quantify this, we trained a linear SVM to
decode context in stimulus set 1 and evaluated its performance on stimulus set 2, and
vice versa (see Methods, cross-stimulus set generalisation; Fig. 4c-d). At the end of
learning (stage 4), context decoding robustly generalised across stimulus sets,
indicating that a common decision boundary was used regardless of the stimulus set
presented (p < 0.001, one-sided; Fig. 4c, right). This geometry emerged with learning,
reflected in an increase in cross-set generalised decoding from stage 1 to stage 4.
(p < 0.05, one-sided; Fig. 4d, grey, ‘cross-decoding’). Note that context was equally
decodable in both early and late learning, indicating that the observed change in
geometry was not driven by a change in the presence or absence of context
information (p > 0.05, two-sided; Fig. 4d, black, ‘decoding’). These generalisation
effects were robust to how learning was discretised into stages (Supp. Fig. 7e).
Moreover, context cross-set generalisation reached the ceiling level of simple context
decoding after learning (Supp. Fig. 7f), indicating that an abstract, stimulus-invariant
geometry came to dominate the neural representation of context.
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Figure 4. The PFC aligns new and old task representations as a function of learning. a, Selectivity
of PFC neurons in stage 1 and stage 4 for context in set 1 and set 2 in the colour-locked period. The
line of best fit is shown in black. b, Correlation between selectivity coefficients (computed in the colour-
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locked period, [tyms, tsooms]) fOr context (context 1 vs context 2) in stimulus set 1 and stimulus set 2 in
late the colour-locked period plotted as a function of learning (cf. panel a). ¢, Temporally resolved cross-
generalised decoding of context (trained on set 1 and tested on set 2, and vice-versa); pale orange
shading indicates when the decoding and selectivity analyses in panels a-d were performed. Horizontal
dotted lines represent chance-level decoding whereas vertical dotted lines indicate the onset of the
colour, shape and the trial outcome. The bar plot represents the average cross-set generalisation score
of stage 1 and stage 4 compared against a null distribution obtained after shuffling trial labels (grey-
shaded areas). d, Decoding (black) and cross-generalised decoding (grey) of context as a function of
learning in the colour-locked period (pale orange area in panel c). The grey shaded areas indicate
combined chance-level cross-set gen. decoding. e-l, Analogous to a-d but for shape and XOR coding
and selectivity. All p-values were calculated from permutation tests (***, p < 0.01; **, p <0.01; *, p <
0.05; 1, p < 0.01; n.s., not significant).

Stimulus set-invariant representations were also observed for shape and XOR. For
shape, PFC neurons showed no significant alignment of selectivity across stimulus
sets at stage 1 (r = 0.15,p > 0.05, one-sided) but exhibited significant alignment
after learning at stage 4 (r = 0.48,p < 0.001, one-sided; Fig. 4e). This increase in
correlation was learning-dependent (p < 0.05, one-sided; Fig. 4f). Cross-set
generalised decoding of shape was significant both early (stage 1; p < 0.05, one-
sided) and late (stage 4;p < 0.001, one-sided; Fig. 4g). Although, shape decoding
did not change with learning (p > 0.05, two-sided; Fig. 4h, black), cross-set
generalised shape decoding increased over learning (p < 0.05, one-sided; Fig. 4h,
grey). These effects were robust across learning discretisations (Supp. Fig. 79g). As
for context, cross-stimulus-set generalisation approached the ceiling of simple shape
decoding after learning, indicating dominance of a stimulus set-invariant
representational geometry (Supp. Fig. 7h). For XOR, selectivity alignment and cross
-set generalised decoding were already high at stage 1 and remained high at stage 4
(Fig. 4i—k), with learning providing no further improvement in these measures (Fig. 4j,
I). These results were robust across learning discretisations (Supp. Fig. 7i), and
cross-set generalised XOR decoding remained near ceiling throughout learning

(Supp. Fig. 7j).

Together these results show that even when new information fits an existing task
schema, the PFC traverses a representational trajectory from high-dimensional, mixed
coding toward low-dimensional, task-relevant abstraction. Ciritically, abstraction
emerges via progressive alignment of neural geometry across stimulus sets, with
some variables (XOR) generalising almost instantly, while others (context, shape)
require representational reorganisation.

Discussion
The prefrontal cortex has the capacity to generate both low-dimensional and high-

dimensional representations, each of which presents a unique trade-off between
generalisability and discriminability. However, the conditions under which each regime
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is employed currently remain unclear. Our study investigated how the dimensionality
and geometry of neural activity changed over learning. We observed that, as learning
progressed, neural activity in the PFC transitioned from being high-dimensional with
high-discriminability to being low-dimensional and abstract. This transition in the
representational strategy was accompanied by a change patterns of single cell
selectivity, from random and nonlinearly mixed towards minimal and structured. The
structured representations that emerged during learning then supported the
generalisation of the learned rule to a novel stimulus set.18-20

We found that the PFC transitioned from a high- to a low-dimensional regime over
multiple days of exposure to a complex task. This corroborates the findings of
Hirokawa et al.,’> who found that neural activity covaried with behaviourally relevant
variables, thus occupying a low-dimensional manifold. On the other hand, some
studies have suggested that an increase in neural dimensionality is predictive of
performance. It is possible that the structure of the task and training provides an
explanation for these contrasting findings'8. In our study, recordings were initiated from
the onset of task training, spanning a period of five weeks, with animals experiencing
the entire task structure from the first session. In contrast, many other investigations
into the primate PFC's involvement in complex cognitive tasks train animals in a
fashion that decomposes the task into multiple subcomponents and either builds up
task knowledge across training'# or presents them in a serial (block-wise) manner’-38,
Additionally, whereas in our study one source of information (width) was always
irrelevant, in other studies information becomes periodically relevant and irrelevant
across multiple blocks, which may promote encoding of currently irrelevant
information3’. These training differences may promote information encoding in a high-
dimensional manner that favours discriminability over abstraction.

The acquisition of a low-dimensional representation following the learning of a single
XOR rule raises the question of which regime the PFC might adopt when confronted
with more complex tasks. Although XOR operations necessitate nonlinear integration
and abstraction from sensory input, they can be reduced to simple stimulus-response
pairings once the rule has been learnt or when a memory-based strategy is utilised.
However, some tasks are more difficult to decompose, as they require switching
between multiple orthogonal or conflicting subtasks. It has been suggested'®20 that in
conditions requiring the performing of multiple tasks in series, a high-dimensional
representation could be employed by the PFC in order to maximise flexibility and
prevent interference.

Our analytical approach aligns with a growing body of work that emphasises the
connection between population structure and neural coding®. Specifically, we
investigated how diverse forms of single-cell selectivity contribute to the geometry and
dimensionality of population-level representations. Our results reveal a negative
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correlation between neural dimensionality and the emergence of structured selectivity.
However, the direction of this relationship may be more nuanced and task-dependent.
For instance, a highly structured population with pure selectivity for multiple variables
might exhibit higher dimensionality than a randomly mixed population responding to
fewer variables, even if the latter is nonlinear.

Our findings suggest that the PFC could employ a multi-phase learning strategy,
involving distinct temporal dynamics. Initially, novel tasks could be solved via flexible,
reservoir-like dynamics, bypassing the need for immediate synaptic plasticity. As
training progresses over longer timescales, the PFC could gradually refine its local
connectivity, optimising for performance. This dual-phase approach enables both rapid
adaptation and efficient resource allocation, echoing models of the cerebellum-motor
cortex interactions, where the cerebellum rapidly drives cortical activity through input
control*?. Similarly, an external region could modulate the PFC's activity on shorter
timescales, enabling flexible high-dimensional representations. Over time, the PFC's
intrinsic circuitry would consolidate these representations and assume direct task
control. Future research could explore the geometry of task representations acquired
at different learning stages and the critical role of synaptic plasticity in this process.

The implicit assumption in many experimental paradigms is that the animals are
presented with tasks as tabula rasa, devoid of prior knowledge or training. However,
it is unlikely that the animal's entire experimental history, including life experience, is
irrelevant to a given task. Our second experiment allowed us to address this issue and
explicitly explore the interactions between already learnt and new information. In line
with previous predictions”'7, we found that when a new task instance is added, both
the new and old instances were rapidly aligned to common axes and sensory
differences between them were collapsed. Notably, different task motifs exhibited
distinct generalisation timescales: the XOR representation generalised early in
learning, while the context motif required weeks of training to generalise. This disparity
likely reflects differences in their structural composition. The XOR rule's use of
identical shapes across tasks likely facilitated rapid alignment, leveraging existing
neural encoding schemes. In contrast, the context motif's novel colours necessitated
additional encoding and adaptation in the prefrontal cortex, slowing generalisation.
This suggest that PFC’s representational alignment is modulated by the degree of
overlap between prior and novel stimuli. Shared features could thus promote efficient
transfer of learned representations, while novel features could impose additional
encoding demands.

It is perhaps surprising that, given the key role of the PFC in the development and
acquisition of structured knowledge, only a few studies have investigated how the
structure of PFC representations changes during several training days of an entirely
novel task 4142, By tracking changes in neural activity across learning, it is possible to
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identify the biological principles that are required to produce representations
supporting higher cognitive functions*®. Future experiments should extend this
paradigm, to track changes in learning even more complex and naturalistic tasks*¢;
those that have a compositional structure*546; the influence of different learning
curricula*’; and how these representations change within the same individual neurons
as opposed to pseudo populations*8-50,
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Methods

Data and task

Animals and task. Two adult male rhesus macaques, monkey 1 and monkey 2, were
trained in this study. The experiments were conducted in line with the Animals
(Scientific Procedures) Act 1986 of the UK and licensed by a Home Office Project
License obtained after review by Oxford University’s Animal Care and Ethical Review
committee. The procedures followed the standards set out in the European
Community for the care and use of laboratory animals (EUVD, European Union
directive 86/609/EEC). The animals were seated in a sound- and lighting-attenuated
experimental booth. Their heads were restrained and faced a 19-inch screen. The
centre of the screen was aligned with a neutral eye position. The animals performed a
passive object-association task (Fig. 2a-b). Importantly, the animals were accustomed
to an experimental setting but had no previous exposure to the task or stimuli
introduced in this protocol. Neural recordings were collected from the first session as
one of the main aims of the study was to capture learning dynamics. In the first
experiment, the animals were presented with a colour and a shape, a nonlinear
combination of which predicted reward (Fig. 2a-b). In experiment 2, a second set of
stimuli was additionally introduced to test whether the rule learnt in the first experiment
cross-generalised to the new sensory domain (Fig. 3a). The colours used in the
coloured circles were designed in the CIELab colour space®'. The L parameter
(luminance) was kept constant which ensured that the stimuli were approximately
isoluminant; parameters a and b varied with regard to valence but not value which
resulted in a circular colour representation®'. As colours were randomly assigned to
conditions for each animal, this circular representation ensured that regardless of
which colour pair was assigned to which XOR mapping, the initial colour
similarity/dissimilarity within colour pair was kept constant. Additionally, in both
experiments, the second object had two features: one relevant for reward prediction
(shape, Fig. 2a) and one irrelevant (width, Fig. 2h) (for the duration and sequence in
which stimuli were presented see Fig. 2b) The trial sequence was randomised. All
trials with fixation errors were excluded. The dataset contained on average 237.9
(SD = 23.9) and 104.8 (SD = 2.3) trials for each of the 8 conditions in experiment 1,
and 101.0 (SD = 18.6) and 54 (SD = 1.1) trials per each of the 16 conditions in
experiment 2, for monkey 1 and monkey 2, respectively.

Data acquisition and pre-processing. Before the start of the experimental protocol, a
titanium head holder with two recording chambers was placed and fixed with stainless
steel screws in each animal. The frontal recording chambers were implanted over the
lateral prefrontal cortex (IPFC) of the right hemisphere in both animals. Data from a
second chamber targeting inferotemporal cortex in the right hemisphere are not
considered here. A craniotomy was made beneath each chamber to enable
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electrophysiological recording. Recording locations for each animal are shown in
Supplementary Figure 8. Surgical procedures were carried out under general
anaesthesia and were aseptic. A semi-chronic micro-drive system (SC-96, Gray
Matter Research) with 1.5 mm interelectrode spacing, interfaced to a multichannel
data acquisition system (Cerebus System, Blackrock Microsystems) was used for
frontal recordings. Data were recorded over a total of 25 daily sessions in each monkey
(monkey 1: 17 sessions in experiment 1 and 8 sessions in experiment 2; monkey 2:
10 sessions in experiment 1 and 15 sessions in experiment 2). The switch to
experiment 2 was made after the animal showed a robust reward prediction signal.
Notably, electrodes were manually advanced by a minimum of 62.5 um before every
session to ensure that activity from new cells was recorded. Neural activity was
amplified, filtered (300 Hz — 10 kHz), and stored for offline pre-processing and
analysis. Cluster separation was applied (valley seeking algorithm), and the binary
spike train was smoothed using a Gaussian window (o = 50ms). We collected spiking
activity from 146 and 230 neurons in experiment 1 and from 205 and 151 neurons in
experiment 2, for monkey 1 and monkey 2, respectively. Only cells sampled from the
ventral and dorsal lateral frontal cortex were included in the data (Supp. Fig. 8). No
neurons were excluded based on their selectivity profiles. Importantly, as the focus of
this study was to track how learning influenced neural geometry and not the magnitude
of firing (e.g., repetition suppression effects), we z-scored firing rates of each neuron
across the whole session. The obtained firing rate data were then epoched from
200 ms before to 1200 ms after the colour onset. Next, the full set of sessions in each
animal were divided up into four learning stages and then sessions in each stage were
pooled across animals, e.g., the first learning stage was comprised of first 5 sessions from
monkey 1 and first 3 sessions from monkey 2. We found that four learning stages were
sufficient to capture learning-induced effects. To assess whether the choice of
learning-stage discretisation influenced the results in Fig. 4, we repeated the analyses
using 3, 4, 5, and 6 learning stages. For all discretisations, each stage was required
to include a minimum of six sessions, ensuring adequate statistical power. For the
three- and four-stage schemes, sessions were grouped into approximately equal
blocks. For the five- and six-stage schemes, a sliding-window approach was used
(e.g., stage 1 = sessions 1-6, stage 2 = sessions 5—-10) to maintain comparable neuron
counts and hence statistical power across discretisations. All analyses were
implemented in Python using custom-written code and run on combined data (monkey
1 and 2). Two types of analyses were used in this study: (1) timepoint-resolved, where
a specific method was applied to every time point in the epoch to track how
representations evolved in trial time, and (2) time-averaged, where a method was run
on time-averaged data (e.9., [toms tsooms], CoOlour-locked or shape-locked) in the time
window preceding the shape display or trial outcome. In the former time window, we
examined the neural geometry when only the colour information is known, whereas
just before outcome onset, we examined whether neural geometry reflected the colour
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and the shape and their combination (XOR) before the animals received feedback
about the value of the trial.

Adaptive trial termination and switch costs. To assess learning, we measured the
proportion of trial terminations through fixation breaking in both rewarded and non-
rewarded trials. Specifically, for each session, we counted the number of trial
terminations in rewarded and non-rewarded trials when fixation breaking occurred
during the shape-locked period (Fig. 2b), a phase where all necessary information for
outcome prediction is available but the reward is not yet delivered. These counts were
then normalised by dividing by the total number of fixation errors recorded in the
session. The adaptive trial termination measure was computed by dividing the
normalised non-reward trial count by the normalised rewarded trial count for each
session separately. We next divided sessions into four learning stages and fitted a
linear regression model with learning stage as the predictor of the adaptive trial
termination. To estimate the p-value, we employed a permutation approach,
randomising the session-to-learning stage association (n = 10,000 permutations).
Switch costs were computed by comparing correct trial termination counts between
colour-switch and colour-repeat trials; to isolate colour-specific effects, shape-switch
costs were subtracted from colour-switch costs.

Existing IPFC dataset. We also used an existing dataset of electrophysiological
recordings?® which have been described in detail previously?627. In brief, neural activity
was recorded from the ventral and dorsal lateral PFC (similar to the areas targeted in
this study) in four rhesus monkeys who performed a feature match-to-sample task.
More specifically, the animals were required to report after a delay period whether the
shape of the first stimulus was the same as the shape of the second stimulus. Note
that a match/no-match rule is equivalent to an XOR rule. Importantly, neural activity
was recorded before the animals were exposed to the task rule (passive viewing) and
after they had learned the rule. As both correct match and correct no-match trials were
rewarded, the match/no-match signal was not confounded with a reward prediction
signal. To test whether neural activity was pushed towards a minimal regime in such
experimental conditions we employed the same decoding and selectivity measures as
used in the analysis of our dataset (see Fig. 2). We examined neural data averaged
across the presentation of the second stimulus and the subsequent delay period
([toms, t2000ms]; Stimulus 2-locked). Furthermore, neural activity was analysed for all
stimulus pairs combined. For the 8 stimuli, we paired them into 4 sets of pairs and
performed our analyses separately on each pair of stimuli (and averaged results over
all 4 pairs) so that chance decoding was the same as in our dataset (i.e., 50%).

Models
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Muiltiple linear regression. We can model the firing rate r of a neuron (either from our
generative models or our data) at a given time point as a linear combination of the
three main task variables: colour, shape and the interaction between colour and shape
(the XOR term):

r=Xp+e
(1)

where r is a vector of 1x K dimensionality containing the time-averaged firing rates for
K trials; X is the design matrix of dimensionality K x D where rows correspond to the K
trials and columns correspond to the value of the D task variables such as colour,
shape and XOR (D = 3) in each trial. B is a D-by-1 vector populated with the
coefficients for each of the task variable estimated for the nth neuron. Finally, €
contains K residuals. The B vector specifies the coordinates of the nth neuron in the
selectivity space spanned by D task variables (Fig. 1b,c and Fig. 2k,l). That is, every
neuron can be represented as a point in a space where each axis corresponds to the
cell’s selectivity for a task variable. An equivalent linear model was employed to
characterise the firing rate for neurons in experiment 2 as a linear combination of the
three variables context, stimulus set, and the non-linear mixture of context and
stimulus set (XOR2).

Generative models. Neural selectivity can be defined by the matrix S;u:q =
(Sna)1sn<n1<a<p, Where each row n corresponds to a unit and each column d contains
the regression coefficient for one task variable. In experiment 1, these variables were
colour, shape, and their interaction (colour x shape; XOR); in experiment 2, they were
stimulus set, the interaction between stimulus set and context (XOR 2), and context.
This cloud of points is then centred by removing the mean (3., S, = 0, for each of the
D task variables). Here, we explored two types of selectivity distributions and their
representational properties. Firstly, we examined a random mixed selectivity model in
which selectivities are captured by a spherical multivariate Gaussian distribution
S,andom ~ Ny (0,02%1,). In such a model, all variables can be decoded equally well from
the population resulting in a high-dimensional representation and there is poor cross-
generalisation between variables. The second selectivity model we examine results
from a system performing the task while being constrained to exhibit low overall firing
rates (i.e., a form of metabolic cost). We derived analytically that maximising XOR
(experiment 1) or the context (experiment 2) decodability while minimising such a
metabolic cost results in units being selective only to the task-relevant variable and
having no selectivity to the linear terms (colour or shape; Supp. Materials Section 1).
A matrix describing the selectivity of such a population can be thus formulated as
Sininimal ~]\fd(0,02diag(0,0,1)), where the covariance matrix is an diagonal matrix
with two first diagonal terms equal to zero and the third equal to one. We call this the
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minimal model. Importantly, to allow comparisons between the observed selectivity
and model selectivity (minimal or random), the generative models were constructed
using parameters derived from the data. Specifically, we used the mean value of
diagonal entries of the covariance matrix Z,,;, estimated from S ., to set the value
of the variance parameter o2 in both S, 40m @Nd Spinima: (NOte that this ensures that
both models have the same total variance). Furthermore, we showed that multiple
linear regression was able to recover the underlying minimal and random models from
artificially generated firing rates under various levels of noise (Supp. Fig. 9). To mimic
measurement variability under finite sampling, we added zero-mean Gaussian noise
(o = 0.7) to the generated selectivity coefficients (Fig. 1, Supp. Fig. 6). Quantitative
comparisons were performed between the observed neural selectivity coefficients and
the corresponding idealised noise-free models (Supp. Fig. 3a, b).

Optimised feedforward networks. We used N = 400 units in these networks and their
firing rates were described by eq. 1 with ¢ = 2. The output z of these networks was
given by a softmax readout

z = Softmax(W,.r + b),

(2)
where W, are the two sets of readout weights (connecting the hidden layer to the
readout unit 1 (XOR == 0) and weights connecting the hidden layer to readout unit 2
(XOR == 1)) and b is the readout bias. We optimized these networks with back-
propagation using a canonical cross-entropy cost function

_ A 2
L=Hp2)+ XT3,

(3)
where the first part of eq. 3 denotes the cross-entropy loss H (p, z) between the true
probabilities of reward p (which were equal to 0 or 1, depending upon the stimuli for
that trial) and the model’s readout probabilities z and the second term corresponds to
a metabolic cost on all firing rates. Before training, the values of the f’s were drawn
randomly from a Gaussian distribution with 0 mean and variance 0.05, and elements
of W, and b were set to 0. We trained two types of models: (1) with no regularisation
(A = 0; Supp. Fig. 2a) and (2) with high regularisation (1 = 20; Supp. Fig. 2b). In line
with our predictions, selectivity to task variables in models trained with high
regularisation converged on the minimal selectivity regime whereas models trained
with no regularisation produced randomly mixed selectivity (Supp. Fig. 2c,d). This
network formulation maps directly onto the selectivity space examined in experiment
2—stimulus set, stimulus set x context, and context—with context as the task-relevant
variable as the XOR was not explicitly solved within the network but was provided as
an input feature, differing from other inputs only in its relevance to the output.
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Analysis methods

Decoding. To test what information was represented by the observed neural
population as a function of learning, we employed linear SVM decoding’-4. In contrast
to the regression analysis, where the regression coefficients was estimated for every
neuron separately, decoding analyses were run on pseudo-populations. This
approach enhanced statistical power, reducing the likelihood of Type Il errors, and
mitigated the impact of session-specific sampling bias. Given the varying number of
trials per session (both within and between animals), a sliding window method was
employed to utilise all available data. Specifically, each session was divided into three
windows, each matching the size of the session with the fewest trials (n = 801). Neural
activities (trials x neuron x time) for the first 801 trials in each session during learning
stage 1 were combined along the neuron axis to form a pseudo-population. This
procedure was repeated for the middle and final 801 trials across each learning stage.
each of the four learning stages, where the first dimension corresponds to K trials, the
second dimension corresponds to N neurons (combined from two animals), and the
last dimension corresponds to T time points. Then binary SVM classifiers were used
to decode the task variables (colour, shape, width and XOR in experiment 1 and
context, stimulus set, stimulus set x context (XOR 2), shape, width and XOR in
experiment 2) at each time point for temporally resolved decoding (Fig. 2e,f,g,i; Fig.
3e,f,g; Fig. 4a,e,i; Supp. Fig. 4i-l; Supp. Fig. 7a-c). The statistical tests were run on
firing rates average in broad time windows covering the entire feature presentation
period (denoted by the pale orange shaded areas). An equivalent decoding procedure
was used when analysing generative models (Supp. Fig. 3e). Decoding was
performed in a cross-validated way where K trials were split randomly into set 1 and
set 2, with each containing 50% of trials. The decoder was fitted using the set 1 and
tested on set 2. The procedure was then repeated using set 2 as the training set and
set 1 as the test set. Both decoding scores were then averaged. This procedure was
repeated 10 times for different random splits of trials in sets 1 and 2, and these 10
resulting scores were then averaged. The decoding results were averaged over three
time windows.

Shattering dimensionality. To estimate shattering dimensionality”-'# in experiment
1(Fig. 2j), we used the same decoding approach as described above except that we
averaged decoding scores over all 35 possible dichotomies that could be theoretically
represented given the task structure (i.e., three linear variables form a cube in state
space that can be dissected into two sets of 4 vertices in 35 possible ways; see Supp.
Fig. 10 for illustration). We estimated the decodability of each of these dichotomies
and tracked their mean decoding accuracy as a function of learning. Exploring the
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theoretically maximal dimensionality of the colour-locked neural representations in
experiment 2 using shattered dimensionality, where two linear variables (colour,
stimulus set) were used, resulted in the identification of 3 (colour, stimulus set, colour
x stimulus set (XOR2)) theoretically possible binary decoding problems. We tracked
the mean of these dimensions over time (Fig. 3h).

Cross-generalised decoding. To examine the neural geometry of the task variables we
used cross-generalised SVM decoding®®. In contrast to a typical cross-validation
procedure, the testing happens not only on trials that were previously not seen but
also on trials that correspond to different conditions. To achieve a high cross-
generalisation score, it is therefore not sufficient to generalise across trial-wise noise
but also to generalise across conditions’. Specifically, the labels of eight unique
conditions (2 colours x 2 shapes x 2 widths; see Supplementary Fig. 11a) were split
into two sets of four labels each, depending on the tested variable (e.g., colour 1 labels
vs colour 2 labels; see Supplementary Fig. 11b). Each subset was further divided
into a training set and a testing set (colour 1 vs colour 2 training set and colour 1 vs
colour 2 testing set). A decoder was trained on the training set and then tested on the
testing set, and vice versa; the two scores were then averaged. We identified 36
possible train-test splits (see Supplementary Fig. 11¢), and the cross-generalised
decoding score was obtained by averaging these scores. This method was used to
determine whether the format of a task variable is abstract, meaning the variable is
encoded in the same format as a function of the remaining task variables. Note that
some of the train-test splits correspond to decoding a task variable as a function of a
single other variable (e.g., decoding colour as a function of shape; see
Supplementary Fig. 11¢, shaded geometries), while others examine the decoding of
the variable as a function of a mix of variables.

Cross-stimulus set generalisation (decoding and selectivity analyses). Cross-
generalised decoding performed for experiment 2 data (both run on time-resolved and
time-averaged firing rates; Fig. 4a,e,i and Fig. 4b.f,j respectively) differed in one
aspect from the algorithm described in the Cross-generalised decoding section. As the
aim of the analysis described here was to identify the neural format of the main task
variables used across stimulus sets, only one splitting variable was used (i.e., stimulus
set) to obtain cross-generalisation scores for the task-relevant variables (context,
shape, and XOR). This reduced the possible cross-generalisation decoding axes to
four possible binary decoding problems (e.g., when performing cross-generalised
decoding for the colour variable we can: (1) train on differentiating colour 1 from colour
2 in stimulus set 1 and test on differentiating colour 3 from colour 4 in stimulus set 2,
(2) train on differentiating colour 3 from colour 4 in stimulus set 2 and test on
differentiating colour 1 from colour 2 in stimulus set 1, (3) train on differentiating colour
1 from colour 3 and test on differentiating colour 2 from colour 4, and (4) train on
differentiating colour 2 from colour 4 and test on differentiating colour 1 from colour 3;
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these four decoding scores were then averaged). Using this procedure, we explored
the cross-stimulus set generalisation potential of the colour, shape, width and XOR
variables. Additionally, to test how selectivity of PFC cells changed as a function of
learning in experiment 2 we employed a Pearson correlation metric. Specifically, we
compared how similar the colour, shape and XOR coefficients in stimulus set 1 are to
coefficients for the same variables in stimulus set 2 (Fig. 4c, d, g, h, k, I), which yielded
three correlation scores for each of the main task variables (Supp. Fig. 7d, e, f). This
was done for each of the four learning stages to explore whether selectivity for stimulus
set 1 aligns with selectivity for stimulus set 2 as a function of learning, consistent with
a shared abstract representation.

Measuring similarity between selectivity distributions. To test the observed neural
population for the presence of random mixed or minimal selectivity (Fig. 1b,c, and Fig.
2k,l), we firstly obtained regression coefficients for the three variables of interest
(colour, shape and XOR; eq. 1) and constructed the selectivity space S;,:,- TO assess
the similarity of S;,:4 10 Siinimar @Nd Syqnaom » W€ computed the covariance matrix of
Saata Zaara) @s well as the covariance matrices of the expected random and minimal
distributions given S;4rq (Eminimar aNd Erandom; S€€ Generative models). Finally, we
calculated the normalised distance of the observed selectivity from model random
selectivity

||§_Eirandom” 2” ]E(”iirandom_iirandom ”2)

d; )= — n < 0
tfrom random( ) ]E(”Zirandom_ziminimal ”2)_ [E(”zirandom_zirandom”2) ’

(4)

and the normalised distance of the observed selectivity to minimal selectivity

||§_Eiminimal” 2” ]E(”Eiminimal_Eiminimal” 2)

d; () === n & dl .
tfrom mlnlmal( ) [E(”zirandom_ziminimal ”2)_ [E(”ziminimal_ziminimal”z)

(5)
where the subscript i denotes a random draw and the expectations were computed
over 1000 draws. From both the denominators and numerators, the distance within
each of the models was subtracted to centre the measure around 0. More specifically,
E(||Z; -z the expected difference between two different randomly

lrandom irandom ” 2)(

drawn selectivity distributions from the random model) was, for example, subtracted
from the denominator and numerator of d¢rom ranaom 10 a@ccount for within model
distance. Additionally, both df,om random @Nd dfrom minimar Were normalised by the
distance between selectivities generated using both generative models
(E(|Z -3 which resulted in the metrics being bounded between 0

lrandom iminimal ”2))
and 1 (when || 440 — meimalnz is equal or smaller than |2, ¢naom — Eminimal ||2). This
was done to allow for a comparison of similarity estimates across learning stages. The

Euclidean distance metric was chosen as the main analysis tool in this study based
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on simulations in which we generated different proportions of random and minimal
selectivity across a single population (from 0% minimal and 100% of random to 100%
minimal and 0% random) and compared the precision with which multiple metrics
recovered the true proportions. We compared the Euclidean distance metric to the
PAIRs metric, which has been used previously in the literature’??®, and to the
symmetric Kullback—Leibler divergence estimate (KL divergence) which benefits from
a strong theoretical basis and is assumption-agnostic. We found that, compared to the
KL divergence and PAIRs metrics, the Euclidean distance measure yielded the highest
precision of tracking learning-induced changes to neural selectivity (Supp. Fig. 12a,b).
Specifically, our simulations showed that both the KL divergence and PAIRs can be
used to precisely identify extreme selectivity regimes (either strong random selectivity
or strong minimal selectivity) but fail at identifying intermediate selectivity regimes
showing a strong bias towards random mixed selectivity (Supp. Fig. 12a,b). As the
focus of this study was to track learning dynamics, a metric that allows to identify a
broad range of selectivity regimes was chosen for the final analysis. Nonetheless, the
results from experiment 1 (Fig. 2m,n) were broadly replicated using the symmetric KL
divergence estimate (Supp. Fig. 12¢,d) and PAIRs (Supp. Fig. 12e,f).

Principal Component Analysis. PCA was used as a measure of neural dimensionality
in experiment 1(Supp. Fig. 4h). Firstly, pseudo populations were constructed for each
learning stage using the same procedure as described in the Decoding section. Then,
firing rates were averaged in the time window preceding the outcome presentation
([ta00ms> tsoomsl), Shape-locked;). Next, principal components were run on condition
averages. This was done separately for each learning stage. To compute how the
variance explained (ratio) by the first PC changed as a function of learning, trials were
randomly split into test and train 10 times; PCA was fitted then on train trials and the
test trial firing rates were projected onto them to compute variance explained. The
results from 10 random splits were then averaged. Note that width 1 and width 2 trials
were pooled together. The null distribution for the permutation test was computed by
randomly shuffling neurons between stage 1 and stage 4, and repeating the described
PCA procedure (n = 500).

Statistical testing

Decoding and cross. gen. decoding. Throughout the study, we employed non-
parametric permutation tests to test statistical significance within each learning stage
and between learning stages (learning-induced effects). Two types of null distributions
were thus constructed: (1) for statistical testing of above chance-level decoding
analyses the labels describing the trial dimension (k) of the pseudo-population matrix

SK=EK,1=SN=N,1=s0=s

learning-induced effects on decoding scores, the matrices X;;qgc 1 and Xg¢qge 4 Were
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concatenated along the neuron dimension (n) and then 1000 new X's;; 5. 1 and X's;q4¢ 4
matrices were generated by randomly assigning neurons to either X', 1 Of X's¢qge a-
One-sided tests were used when testing the predictions of the minimal model and two-
sided tests were used when no differences were expected.

Selectivity measures. To test whether observed selectivity was dissimilar to the
random selectivity regime and similar to minimal selectivity regime 1000 random and
minimal models were generated using data-derived parameters for each learning
stage. Next, the d,qn4.from rana. @A drana from min. distances were computed for 1000
randomly generated models according to eq. 4 and eq. 5 (with Z, ,,40m as input) to
serve as null distributions for both comparisons. Note that the observed selectivity was
compared to random model selectivity when analysing the data’s similarity to random
(Fig. 2m; Fig. 3m) as well as minimal selectivity (Fig. 2n, Fig. 3n). Furthermore, as in
experiment 2 we tested whether selectivity for task variables was similar in stimulus
set 1 to variables in stimulus set 2 and whether this selectivity alignment changed over
learning, two null distributions were thus constructed: (1) statistically significant
selectivity alignment was assessed by comparing the observed correlation to a
distribution (n = 1000) of correlations obtained after shuffling one of the selectivity
vectors; (2) learning-induced effects in selectivity alignment were assessed by
comparing the observed difference in alignment between stage 1 and stage 4 to a
distribution of differences computed after randomly shuffling neurons between stage
1 and 4.
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Learning shapes neural geometry in the prefrontal cortex
Supplementary materials
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Section 1.1: How to set selectivity parameters for optimal XOR decoding

We assume that neural activities x of N neurons are given by the following regression
model

X = BO + 6C,C1 BC + 65,51 ﬂS + 6C,C1 55,51 31 + n
(1)
Where B.,Bs, B; are the regression ‘coefficients’ for colour, shape, and the interaction
term, respectively, 6., = 1 if the colour c is colour 1 and -1 otherwise (same for §;

for shapes s), and n~ V' (0, X,). Therefore,

x|ry ~ N (W, 2q)
(2)
x|r, ~ N (fr, , Zz)-
(3)
Where r, is one XOR condition (i.e., c=1,s =1o0r ¢ =2,s =2) and r, is the other
XOR condition (i.e., c=1,s=2or c¢=2,5s=1) and X, is some noise covariance
matrix. Note that with the inclusion of the interaction term, it is sufficient to separate
the two XOR conditions. We now calculate u,. and u,., :

_ Bo +Bc +Bs + 31+Bo —Bc —Bs + B

Hr, 2 )
=By + B
(4)
and,
_Bo—Bc+Bs—B1 Bo+Bc—Bs— Bi
Hr, = 2 * 2
=Bo — B:
5)
Therefore,
x|ry~N(Bo + B, X)
(6)
x|, ~N(Bo — B, X2)-
(7)

Therefore, we need B, > 0 to be able to separate the two XOR conditions.
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Section 1.2: An energy cost on unnecessary neural activity

If we also consider minimising the squared norm of neural activity for each condition
(i.e., an energy cost), we have

E [[|xcsll’] = Elxes]” Efxes] + Tr(zs)
(8)

where the subscripts ¢ and s correspond to colour and shape indices, respectively.
Therefore,

E[[lx..2]°] = (Bo = Be + Bs = BT (Bo — B + Bs — B) + Tr(Zy)

©)

E [le2ll"] = (Bo + B — Bs — BT (Bo + Bc — Bs — B1) + Tr(Zy)
(10)

E [|leeall’] = (Bo — Be = Bs + BT (Bo — Bc — Bs + Br) + Tr(51)
(11)

E [[lx22]°] = (Bo + Be + Bs + BT (Bo + Be + Bs + B1) + Tr(E:)
(12)

Therefore, the total mean energy cost m is given by
m=y 2, 2. el
(13)
= Bo Bo+ Bc' B+ Bs' Bs+ B Bi +Tr(Zy)

= 11BolI? + IBCIZ + 1BsI1Z + 11811 + Tr(E,) "
(15)

To minimise m while keeping f; > 0, which we need for performance, we can set
Bo = Bc = Bs = 0 which gives

m = |IBlI> + Tr(Z,)
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(16)
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Section 2: supplementary figures

Two XOR tasks

separation by xor separation by xor

:F#*‘f Q.}* @ =

high-dimensional < > low-dimensional
(low-generalisability) (high-generalisability)

learning

Supplementary figure 1. Different solutions to the discriminability-generalisability trade-off
when a new stimulus set is being learnt. Low-dimensional representations are more likely to support
high generalisability. When the task representation is high-dimensional (left), aligning new with old
stimuli becomes a harder problem as all task variables must be jointly aligned; in this case, it is not
trivial that the XOR discriminant from one task would correctly differentiate the XOR feature in the
second task, particularly if high discriminability of the remaining variables is to be maintained. By
contrast, when the neural code is low-dimensional (right), both tasks can more readily be aligned to a
common axis, enabling a shared XOR discriminant that generalises across tasks.
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Supplementary figure 2. Optimised feedforward networks converge to the minimal XOR
selectivity model. Twenty feedforward networks were trained (10 with high levels of regularisation and
10 with no regularisation) to perform the XOR task. a, b, Selectivity observed in no and high
regularisation networks, respectively; models of random (red ellipses) and minimal selectivity (blue
ellipses) well approximated the observed selectivity. ¢, d, After training, low regularisation networks
converged on a random mixed selectivity regime and high regularisation networks on a minimal XOR
regime. e, post-training XOR decoding (linear SVM) for both no and high regularisation models. f, No
regularisation models exhibited substantially lower metabolic cost (cf. Supp. materials eq. 8). g, h,
Colour and shape decoding (linear SVM) for no and high regularisation models, respectively. i, j,
Comparison of XOR decoding obtained from minimal and random generative models as a function of
population size (i) and noise (o) levels (j). Dashed grey line shows chance-level decoding.
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Supplementary figure 3. Predictions from random mixed and minimal selectivity models. a, Each
neuron can be represented as a point in the 3-dimensional selectivity space spanned by colour, shape,
and XOR (their interaction). In the random mixed model, selectivity is distributed according to a
spherical Gaussian distribution in this space (Methods, generative models); the covariance matrix is
computed between the selectivity coefficients. b, Analogous to a but for the minimal model; neurons
are selective only for the XOR (interaction between colour and shape), as this is the only feature that is
necessary to solve the task. ¢, Relative distance between the covariance matrices of either the random
(red), minimal (blue) or the model with varying proportions of minimal selectivity (black) to the random
selectivity model. d, Same as panel ¢ but the distance is calculated relative to the minimal selectivity
model. Red and blue error bars show standard deviations (+1 s.d. over 1000 randomly drawn models;
see Methods, measuring similarity between selectivity distributions) of the relative Euclidean distance
between the covariance matrix of the random and the minimal model (with matched total variance to
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the data; standard deviation of random-to-minimal distance is too small to be visible; red) and relative
Euclidean distance between the covariance matrix expected from two randomly drawn minimal models
(blue); black error bars show the standard deviation of the relative distance between the surrogate
covariance (with varying proportions of minimal selectivity) and random covariance (+1 s.d. over 1000
random models). e, Mean (over 100 models) decoding of task variables for the random (red) and
minimal (blue) models. Dashed grey line shows chance-level decoding. f, Mean (over 100 models)
cross-generalised decoding of task variables for the random (red) and minimal (blue) models. Dashed
grey line shows chance-level decoding. g, h, Relationship between high XOR cross-gen. decoding and
below chance colour cross-gen. decoding. The clustering of all rewarded trials (XOR == True) and non-
rewarded trials (XOR == False) on opposite sides of an axis (representing the abstract XOR) results in
high cross-gen. decoding for the XOR (g). Consequently, colour exhibits below-chance cross-gen.
decoding. This occurs because some colour decoding axes are inverted between training and testing
splits, leading to 0% accuracy scores (h; left), while others assign a single class label to all examples
when testing, resulting in a 50% score (h; right). The same argument holds for shape.
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Supplementary figure 4. Decoding of task variables as a function of learning and behaviour in
experiment 1. a, b, The animals could adopt two possible strategies to learn the task: (a) memorising
every stimulus—outcome pairing, or (b) using a hierarchical strategy in which colour served as a first-
order policy cue, guiding subsequent context-dependent processing of shape. To differentiate between
these strategies, colour and shape switch costs were computed. ¢, Shape switch costs: trial termination
rates were compared between trials in which the shape changed vs. remained the same on consecutive
trials. d, Analogous illustration but for colour switch costs. e, f, g, Trial termination switch costs for
colour, shape, and the difference between colour switch costs and shape switch costs, plotted as a
function of learning stage. h, variance explained (ratio) by the first principal component plotted as a
function of learning (see Methods, principal component analysis for details). i-o, Analogous to Figure 2
but run on sessions sorted by proportion of adaptive trial termination (TT); statistical tests were
conducted on firing rates averaged over the time window indicated in pale orange. p, r, s, Temporally
resolved cross-generalised decoding of XOR(p), colour(r), and shape(s) in stage 1 and stage 4; the
pale orange shaded areas indicate the time window in which statistical tests were run. All p-values were
calculated from permutation tests (***, p < 0.01; **, p <0.01; *, p < 0.05; 1, p < 0.01; n.s., not
significant).
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Supplementary figure 5. The re-analysis of Constantinidis et al.25-27 dataset. We employed the
same analysis methods as in Fig. 2 to test whether the PFC activity reported in Constantinidis et al.
converged on a minimal XOR model. a, the covariance matrix describing relations between the
selectivity for stimulus 1, stimulus 2 and their interaction (XOR) in the pre-learning phase of the
experiment. b, Same as panel a but post learning. ¢, Relative Euclidean distance between the
covariance matrix of observed selectivity coefficients over learning and the covariance matrix expected
from random selectivity (with matched total variance) (Methods, measuring similarity between selectivity
distributions). d, Same as panel ¢ but we show the relative distance from the covariance matrix
expected from minimal selectivity (with matched total variance). e, Decoding of task variables for pre-
and post-learning stages. f, Cross-generalised decoding of task variables plotted as a function of
learning. g, h, Learning-induced accuracy differences in decoding and cross-generalised decoding,
respectively. Shaded areas in e-h illustrate chance-level decoding obtained by shuffling trial labels (for
details see Methods, statistical testing). All p-values were calculated from permutation tests (***, p <
0.01; **, p<0.01; *, p < 0.05; n.s., not significant).
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Supplementary figure 6. Hypothesised effects of learning on neural geometry and selectivity in
the prefrontal cortex in experiment 2. Like in Figure 1, learning is depicted as reducing neural
dimensionality, changing how many strong linear decoding axes can be implemented on neural firing
rates (discriminability). a, A high-dimensional regime allows the strong separation of all task features
using three possible readout axes (left), whereas a low-dimensional representation only allows task-
relevant features to be strongly separated (right). b, Each neuron can be represented as a point in the
3-dimensional selectivity space spanned by stimulus set, stimulus set x context (XOR 2), and context
(Fig. 3b). In the random model, selectivity is distributed according to a spherical Gaussian distribution
in this space (Methods, generative models); the covariance matrix is computed between the selectivity
coefficients; zero-mean Gaussian noise (¢ = 0.7) was added to each selectivity coefficient to illustrate
measurement bias under finite sampling. ¢, Analogous to b but for the minimal model; neurons are
strongly selective only for the context, as this is the only feature that is necessary to solve the task.

42


https://doi.org/10.1101/2023.04.24.538054
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.24.538054; this version posted January 9, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

a shape decoding b xor decoding c width decoding d  width cross-set gen.
Jestage 11 g Jestage 1! ns Jestage 1 stage 11 % !
g 08 Jostage 4 g 08 .§t§S§4 ﬁ g 0.8 lostaged! * g‘ 0.6 Jestage .
3 3 3 3
o 0.6 S 0.6 / o 0.6 Q it/ -
g - s g & L e e 8 04|
00 05 1.0 00 05 1.0 00 05 1.0 00 05 1.0
time (s) time (s) time (s) time (s)
context (3 stages) context (4 stages) context (5 stages) context (6 stages)
J——ns— ] ——ns—— r ns 1
32077 — % — 2077 — s ——— 2 07 *k
© © ©
5 0.6 1 5 0.6 1 5 06
& 05 farmmmmmnnmns S 051 S 0.5 fmzon @ oo
® © © e decoding e cross. dec.
-1 T T T T T T T T T T T T
1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6
learning stage learning stage learning stage learning stage
f context cross-set gen. context cross-set gen.  context cross-set gen. context cross-set gen.
2 l ””” e T T allm e ' T HEm e T T mEEE
e T o] I e [ T o 1 1 1
s Ow s 0w : T : O
o\° - % —d o\o —_ % — o\° —_ % o\° L * % 1
—1 T T T —1 T T T T —1 T T T T T —1 T T T T T T
1 2 3 1 2 38 4 1 2 3 4 5 1 2 3 4 5 6
learning stage learning stage learning stage learning stage
g shape (3 stages) shape (4 stages) shape (5 stages) shape (6 stages)
0.74r— NS — 0.74r——nNS— 074 ———NS— 074 ns 1
oy — t— 7 — % — 3 —— x —— 3 r * 1
© © © ©
5 0.6-.1'70 5 0.6 1 5 5 06
3 3 3 3
T 0.5 @ 0.5 1 © & 0.5
[ B B
1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6
learning stage learning stage learning stage learning stage
h shape cross-set gen. shape cross-set gen. shape cross-set gen. shape cross-set gen.
o 17— T e 1T - o 1T - o 1T mm ] -
£ £ £ £
T .l[ 3 l_ll_l_ 3 .-_-.l_._l_ 3 _l-_l_l_ll__
© k) k) ©
* ] L- NS — * | —_ *x ® ] L x — * ) L * 1
1 2 3 1 2 38 4 1 2 3 4 5 1 2 3 4 5 6
learning stage learning stage learning stage learning stage
i xor (3 stages) Xor (4 stages) xor (5 stages) xor (6 stages)
07{r— ns — 074 r——ns—— 074 ——nNs— 074 r ns 1
3 —ns— & —ns— ——Ns—— 2 . ns 1
© © © ©
S 061 g 06 g 06 £ 06 .,—0\'/———.’-‘
3 3 3 3
e e e ® 0.5 T="""~J dacoding s ¢ross. dec.
1 2 3 1 2 38 4 1 2 3 4 5 1 2 3 4 5 6
learning stage learning stage learning stage learning stage
i xor cross-set gen. Xor cross-set gen. Xor cross-set gen. Xor cross-set gen.
o | T o= - o 1T - o 1T oo - o 17— gm - -
AN S amil § [Rianl i [nlnnnl
8 o -, 3 N -3 d - 3 - _ . 1_
© k) S ©
* L ns — * — t — ® L ns — 1 * L 1 1
—1 T T T —1 T T T T —1 T T T T T —1 T T T T T T
1 2 3 1 2 38 4 1 2 3 4 5 1 2 3 4 5 6
learning stage learning stage learning stage learning stage

Supplementary figure 7. Decoding and selectivity results in experiment 2. a-c, Temporally
resolved linear SVM decoding for shape, XOR and width; the pale orange shaded areas indicate the
time window in which statistical tests were run. Horizontal dotted lines represent chance-level decoding
whereas vertical dotted lines indicate the onset of the colour, shape and the trial outcome. d, Temporally
resolved cross-generalised decoding of width (trained on set 1 and tested on set 2 (and vice-versa)). e,
Context cross-set generalisation results remain consistent across different learning discretisations;
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analogues to Figure 4d computed for 3, 4 (original), 5 and 6 learning stages (see Methods, data
acquisition and pre-processing for details). f, Cross-set context generalisation normalised by linear
context decoding (cf. panel e, black vs grey lines). Cross-set generalisation performance is expressed
as a proportion of linear context decoding (ceiling) across learning stages. Positive values indicate
geometries in which colour 1 vs colour 2 generalises to colour 3 vs colour 4, whereas negative values
indicate the flipped geometry (colour 1 vs colour 2 generalises to colour 4 vs colour 3). Grey shaded
areas indicate the null distribution obtained by shuffling trial labels. g,h, Analogous to e-f but computed
for shape cross-set generalisation. i,j, Analogous to e-f but computed for XOR cross-set generalisation.
All p-values were calculated from permutation tests (***, p < 0.01; **, p <0.01;*,p < 0.05; 1, p <
0.01; n. s., not significant).
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a monkey 1 (WIL) b monkey 2 (WOM)

Supplementary figure 8. Electrode locations in monkey 1 (a) and monkey 2 (b) and their
comparison (c).

45


https://doi.org/10.1101/2023.04.24.538054
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.24.538054; this version posted January 9, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

a recovery of the minimal generative model c recovery of the random generative model
= 1.00——m —~ 1 = 1.00 1
= o testing for T ~ o testing for &
c < c 9 [
2 754 random = 0 2 .75 random =0
& & e testing for “ o e testing for =
[3) - o [ . 9 s)
£ minimal > 5 minimal o
= = TN ——
© S pfoeoe——" ° g -2
c o
0 1 2 0 1 2
noise (o) noise (o) noise (o)
b recovered minimal selectivity d recovered random selectivity
> 4 . 4 > 4 4
g e minimal > g e random >
g o unit sel. > g o unit sel. =
0] °© [0} °
? b B 3
« [ @ []
o Z— 4 o -4 4 ?
Q 3 o —
g R & R
@ -4 -4 @ -4 -4
colour selectivity colour selectivity colour selectivity colour selectivity
covariance covariance
(between coefficients) (between coefficients)
4 1 1
.‘E\ Xor 1 ‘E Xor -
3 3
2 s 0 ° s - 0
2] (2]
2 b ° 2 ¢
_4 -1 T T T -1
shape selectivity c s xor shape selectivit c s xor
p y

Supplementary figure 9. Linear regression recovers underlying generative models. a, Pearson
correlation and R2 computed between the covariance matrix of recovered selectivity and true underlying
selectivity (when minimal generative model was used) for different levels of noise. b, Selectivity
coefficients obtained after running a linear regression plotted for each unit in selectivity space (for ¢ =
2); minimal model overlaid in blue; covariance matrix computed between the recovered selectivity
coefficients. ¢,d, Analogous to a,b but when the random model was used to generate data; random
model overlaid in red. Shaded areas in a and c indicate the mean +1 s.d. computed over 100 different
initialisations.
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Supplementary figure 10. Schematic depiction of shattering dimensionality in the XOR task in
experiment 1. a. Colour, shape, and width form a cube in the input space, with each of the 8 vertices
representing a unique combination of these input variables. b. The vertices can be divided into two
equally sized groups of four vertices each, representing a binary classification problem. ¢. All 35
theoretically possible binary problems (red vs. green vertices) are obtained by randomly splitting the
vertices into two equally sized groups. Dimensions 1, 10, 15, and 21 correspond to colour, shape, XOR,
and width, respectively. The grey and white backgrounds indicate whether a dimension is linear (can
be split by a plane, e.g. dimension 1) or nonlinear (cannot be split by a plane, e.g. dimension 3),
respectively. Colour intensity corresponds to spatial depth, with solid colours signifying vertices closer
to the viewer and pale colours signifying those farther away.
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Supplementary figure 11. Schematic depiction of cross-generalised decoding of the variables.
a. Colour (blue vs green), shape (diamond vs square), and width (narrow vs broad) form a cube in the
input space, with each of the 8 vertices representing a unique combination of these input variables. b,
To test whether a variable is encoded in an abstract format relative to a single variable, two binary linear
classification problem were defined. Firstly, a classifier was trained on differentiating that variable (e.g.
colour) only on a subset of trials (e.g., diamond shape trials). Next, this classifier was tested on the
remaining subset of trials (e.g., square shape trials). For example, a high score obtained from such a
decoding procedure indicates that the same representation of colour was used as a function of different
levels of shape, a hallmark of abstract coding. ¢, To test whether a variable (e.g., colour) has an
abstract format relative to all remaining task variables, this procedure needs to be repeated for all
possible train and test splits (when colour 1 is always on the left and colour 2 is always on the right side
of the cube). These 36 scores are then averaged to obtain cross-generalised decoding of colour. Some
of the test-train splits correspond to task variables like shape, width and XOR (grey background) while
others represent a mixture of input variables.
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Supplementary figure 12. The precision of Euclidean distance, symmetric KL estimate and
PAIRS metrics in tracking learning-induced changes to neural selectivity. a, Relative Euclidean
distance between the covariance matrix of selectivity coefficients obtained from a simulated mixed
population (random-minimal) and the covariance matrix expected from pure random selectivity plotted
as a function of minimal selectivity proportions (0-100%; for details see methods, measuring similarity
between selectivity distributions). Coloured annotations indicate mean R2 values computed between
the true proportions (dotted lines) and estimated proportions (coloured bold lines). b, Same as panel a
but we show the relative distance from the covariance matrix expected from minimal selectivity; shaded
areas illustrate mean +1 s.d. for each of the metrics computed from 1000 randomly drawn selectivity
models. ¢, d Selectivity results from experiment 1(Fig. 2m,n) computed using symmetric KL divergence
estimate. e, f Selectivity results from experiment 1(Fig. 2m,n) computed using the PAIRS metric.
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