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Mark passed away on the 13th of January 2023. He was not only a valued colleague but also a friend 
and mentor to many of us. His brilliant mind and insightful mind will be sorely missed. 
 
Abstract. The relationship between the geometry of neural representations and 
the task being performed is a central question in neuroscience1–6. The primate 
prefrontal cortex (PFC) is a primary focus of inquiry, as it can encode 
information with geometries that either rely on past experience7–13  or are 
experience agnostic3,14–16. One hypothesis is that PFC representations should 
evolve with learning4,17,18, from a format that supports exploration of all possible 
task rules to a format that minimises the encoding of task-irrelevant 
features4,17,18 and supports generalisation7,8. Here we test this idea by recording 
neural activity from PFC when learning a new rule (‘XOR rule’) from scratch. We 
show that PFC representations progress from being high dimensional, 
nonlinear and randomly mixed to low dimensional and rule selective. Upon 
generalising the rule to novel stimuli, these representations further evolve into 
an abstract, stimulus-invariant geometry. These findings reconcile previously 
conflicting accounts of PFC function by demonstrating how neural 
representations adapt across distinct stages of learning. 
 
Two seemingly discrepant accounts propose that PFC neural activity should track 
either low-8–13,19 or high-dimensional3,14–16 representations of the environment. 
Traditionally, it has been proposed that PFC cells are tuned adaptively to task-relevant 
information, leading to low-dimensional neural activity13. This results in the population 
displaying structured selectivity patterns, as commonly observed after training on a 
cognitive task (Fig. 1a, low-dimensional) 13. A contrasting hypothesis suggests that the 
PFC may rely on high-dimensional, nonlinearly mixed representations of task features 
to support complex cognition (Fig. 1a, high-dimensional)3,14. According to this notion, 
the PFC serves as a nonlinear kernel such that when a low-dimensional input is 
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projected onto it, dimensionality expands, and a wide repertoire of responses can be 
generated15,16. 
 
Recently, it has been proposed that the PFC is capable of transitioning between high- 
and low-dimensional representations across learning, to accommodate the changing 
demands of the environment 4,17,18,20. For example, early in learning, high-dimensional 
representations may allow flexible exploration of all possible input–output mappings 
(“contingencies”) in order to discriminate which task rules are currently relevant 3,14,16. 
This is because a high-dimensional representation allows for a high number of linearly 
separable task features (Fig. 1a). Conversely, once an animal has learnt that only one 
set of contingencies is relevant, a low-dimensional representation may be used to 
encode task-relevant features more robustly4,17–19. Moreover, these low-dimensional 
representations may enable generalisation to novel contexts, since aligning new with 
old representations is likely easier when fewer dimensions must be considered. 
(Supp. Fig. 1)7,8. In other words, different stages of learning impose different demands 
on the neural population. Learning could thus shape neural dimensionality and 
progressively push neural activity towards different solutions along the trade-off 
between discriminability and generalisability, i.e., from a high-dimensional regime 
towards a low-dimensional regime18,20.  
 
Here, we tested this idea in two macaque monkeys which learnt an exclusive-or (XOR) 
rule – a problem that can be solved by a range of representations, from low- to high-
dimensional (Fig. 1a)19. Importantly, we tracked how the dimensionality and geometry 
of PFC representations changed across multiple training sessions of an XOR rule that 
was entirely new to the animals at the start of recording (experiment 1) and during 
subsequent generalisation of this rule to a new stimulus set (experiment 2). We used 
a classical conditioning paradigm in which the nonlinear combination of the features 
of two objects presented in succession (XOR) predicted the outcome of the trial. 
Importantly, the animals were only required to fixate through both experiments21–24. 
Later, we also show that our results hold in a previously collected delayed match-to-
sample task25–27. 
 
Across two experiments, we found that during early stages of learning, PFC activity 
was high-dimensional, with individual neurons exhibiting nonlinear and randomly 
mixed selectivity. As learning progressed, population activity became increasingly low-
dimensional, with structured selectivity emerging predominantly for task-relevant 
variables. When novel combinations of stimuli were introduced, PFC representations 
reorganised such that new and familiar conditions aligned along a shared axis, 
enabling the reuse of a common neural code. These findings demonstrate that 
learning reshapes both the dimensionality and geometry of neural representations in 
the PFC, promoting low-dimensional and abstract encoding when animals 
continuously engage in a single task structure. 
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Figure 1. Potential effects of learning on neural geometry in the prefrontal cortex. Learning can 
reduce or expand neural dimensionality, changing how many linear decoding axes can be implemented 
on neural firing rates (discriminability). a, High-dimensional representations enable high discriminability. 
A high-dimensional regime allows the strong separation of all task features using three possible readout 
axes (left), whereas a low-dimensional representation only allows task-relevant features to be strongly 
separated (right). b, Each neuron can be represented as a point in the 3-dimensional selectivity space 
spanned by colour, shape, and XOR (their interaction). In the random model, selectivity is distributed 
according to a spherical Gaussian distribution in this space (Methods, generative models); the 
covariance matrix is computed between the selectivity coefficients; zero-mean Gaussian noise (𝜎	 =
	0.7) was added to each selectivity coefficient to illustrate measurement bias under finite sampling. c, 
Analogous to b but for the minimal model; neurons are strongly selective only for the XOR (interaction 
between colour and shape), as this is the only feature that is necessary to solve the task. 

Generative models of nonlinear random and minimal selectivity 
We first wanted to understand how the geometry of the neural representations could 
change over the course of learning. We thus explored the geometries produced by two 
generative models of neural selectivity with different discriminability-generalisability 
trade-offs4,17: (i) a high-dimensional geometry produced by non-linear random mixed 
selectivity3,14–16,28 (high discriminability, low generalisability); and (ii) a low-dimensional 
geometry produced by structured, minimal selectivity (low discriminability, high 
generalisability)10,12,29–33.  The former is a well-established geometry (e.g., inherent in 
reservoir computing models15,16) whereas the latter was inspired by work suggesting 
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that PFC neurons flexibly adapt their selectivity to current task demands13. These 
models make distinct predictions about the distribution of selectivity to the task-
relevant variables in a 3-dimensional selectivity space (colour, shape, and their 
nonlinear interaction, i.e., XOR). We refer to minimal or random selectivity when 
describing the distribution of selectivity and to low- or high-dimensional geometry when 
referring to the respective representations generated by these distributions (see 
Discussion for a detailed distinction between dimensionality and selectivity). 
 
In selectivity space, each axis represents a units’ response to one stimulus variable 
(e.g., high shape selectivity = higher firing rate for square than diamond, Fig. 1b). 
Hypothetically, one could imagine different distributions of variable encoding within 
this selectivity space. The properties of these distributions are determined by a 
covariance matrix: the diagonal elements describe the strength of coding of each 
variable (variance) whereas the off-diagonal entries determine the strength of the 
relationship between variables (covariance). In our generative models neural firing 
rates were simply constructed as a linear combination of task variables (colour, shape 
and XOR inputs represented using one-hot encodings; see Methods, generative 
models for details) with a specified covariance matrix of selectivities to the task 
variables. In line with previous studies, the high-dimensional model was constructed 
by allowing selectivity to linear (colour and shape) and nonlinear (XOR) features to be 
distributed randomly according to a spherical Gaussian distribution (Fig. 1b). In 
contrast, in the minimally structured XOR selectivity model, neurons were only strongly 
selective for the nonlinear interaction (i.e., the XOR; Fig. 1c). One possible way of 
constructing such a model is considering biologically plausible limits on neural firing 
rates (minimising net firing rate). In line with this, we derived this model mathematically 
and demonstrated that it minimises total firing rate activity while maximising task 
performance (see Supp. Materials, section 1). Consistent with this, we found that 
feedforward networks trained using backpropagation to perform the task while also 
minimising a metabolic cost term converge to the minimal XOR selectivity model (see 
Supp. Fig. 2a-h; Methods, optimised feedforward networks). Please note that 
alternative mechanisms, such as initialisation or presence of noise, could be also 
applied to learn a similar minimal selectivity model10,34. In line with prior accounts17,35, 
XOR decoding in the low-dimensional model was more robust to noise (Supp Fig. 2i) 
and required fewer units to implement a stable readout (see Supp. Fig. 2j).  
 
We established a metric to measure whether neural activity is better described by the 
random or minimal model. We first fitted a linear model regression to surrogate data 
generated by both our generative models, in which task variables (colour, shape, and 
colour x shape (XOR)) were used as predictors of each unit’s firing rate (see Methods, 
model section; for similar analysis see36,37; Supp. Fig. 3a,b). Then we measured the 
average within-model distance between two covariance matrices drawn from the 
random model (Supp. Fig. 3c, red line; Methods, eq. 4) and the average between-
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model distance between the covariances drawn from the random and the minimal 
model (Supp. Fig. 3d, blue line, Methods, eq. 5). To test whether our measure 
captures learning dynamics, we constructed four artificial populations with varying 
proportions of random and minimal selectivity. As the proportion of the minimal model 
in this mixed population increased, it became more dissimilar to the average random 
model and more similar to the average minimal model (Supp. Fig. 3c, black line). A 
reflected version of these results held true when the minimal model was used as 
reference (Supp. Fig. 3d). 
 
Subsequently, to gain insight into the task geometries that these models generated, 
we employed an established technique3,14 and trained linear decoders to decode all 
three task variables in both models. As previously suggested3,14, a randomly mixed 
selectivity model yielded a high-dimensional task representation, allowing for all 
variables, including the nonlinear XOR, to be decoded (Supp. Fig. 3e, red; cf. Fig. 1a, 
far left). In contrast, for the minimal model, only the XOR combination of shape and 
colour, and not shape or colour independently, could be decoded (Supp. Fig. 3e, blue; 
cf. Fig. 1a, far right). While both models can perform the task, we expected their 
representation of the XOR variable to differ fundamentally. On the one hand, the 
minimal model by design should represent the XOR in a format that generalises over 
all other task variables. On the other hand, this is not guaranteed in the random model. 
We verified this intuition using cross-generalised decoding, a method in which a linear 
decoder is trained to decode a given task variable (e.g., XOR = True vs. XOR = False) 
on a given set of task conditions (e.g., blue colour) and tested on a different set of task 
conditions7 (e.g., green colour; see Methods section, cross-generalised decoding). We 
found that for the random model, cross-generalised decoding was at chance-level for 
all task variables (Supp. Fig. 3f, red). This is because the random model, by design, 
exhibits no reliable structure in its representation of variables and therefore these 
dimensions are represented randomly in relation to each other. In contrast, the minimal 
model displayed maximal cross-generalised decoding for the XOR variable (Supp. 
Fig. 3f, blue), indicating that it can be decoded regardless of which set of task 
conditions the decoder is trained and tested on. This suggests that the minimal model 
is able to represent the XOR in a highly cross-generalisable format (Fig. 1a, far right). 
Consequently, the minimal model also exhibits below-chance cross-generalised 
decoding for colour and shape (see Supp. Fig. 3g, h). Next, we directly compared 
neural data at each stage of learning to the selectivity (random vs minimal) and neural 
geometry (low- vs high-dimensional) generated by these models. 

Learning a single task reduces neural dimensionality in the prefrontal cortex 
In experiment 1, the animals were trained to combine a colour stimulus (either blue or 
green) with a subsequently presented shape (either square or diamond) in a nonlinear 
fashion to predict the reward (the XOR between colour and shape) outcome of the trial 
(Fig. 2a,b). Using a semi-chronic multielectrode system we sequentially recorded 376 
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neurons from the lateral PFC across both macaques (Fig. 2c; see Methods, data 
acquisition and pre-processing). Moving electrodes between sessions ensured that a 
new sample of neurons was obtained in each session. Importantly, to capture learning 
dynamics, we started recording from the first session in which the animals were 
exposed to the task. Experimental sessions were split into four learning stages for 
each animal separately. Data for each stage was combined across animals. A sliding-
window approach was used to utilise all available trials while ensuring an equal 
number of trials per learning stage; each stage comprised approximately equal 
numbers of training sessions (see for details see Methods, data acquisition and pre-
processing). Selectivity analyses were run in the time window before the animals 
received feedback about the outcome of the trial (i.e., reward; for details see Methods, 
data acquisition and pre-processing).  
 
We first assessed learning behaviourally by examining the animals' tendency to 
terminate non-rewarded trials before the potential reward onset (shape-locked period, 
Fig. 2b) by breaking fixation (Fig. 2d). This was quantified by calculating a trial 
termination index, i.e. the ratio of terminated non-rewarded trials to terminated 
rewarded trials, which we tracked across different learning stages (see Methods, trial 
termination for details). Over the course of learning, the animals increasingly 
differentiated between rewarded and non-rewarded trials (𝑟 = .56, 𝑝 < 0.01; Fig. 2d). 
We next investigated which learning strategy the animals adopted. One possibility is 
that they memorised each stimulus combination and its associated outcome (a flat 
strategy; Supp. Fig. 4a). Alternatively, they may have used a hierarchical strategy, in 
which colour served as a first-order policy cue guiding subsequent context-dependent 
processing of shape (Supp. Fig. 4b). To distinguish between these strategies, we 
analysed switch costs (see Methods, switch costs for details), comparing the animals' 
ability to terminate non-rewarded trials following a change in colour versus shape from 
the previous trial (Supp. Fig. 4c,d). We found no evidence of shape switch costs (𝑟 =
.01, 𝑝 = 0.41;  Supp. Fig. 4e), whereas colour switch costs increased over learning 
(𝑟 = .37, 𝑝 < 0.05;  Supp. Fig. 4f) and were significantly greater than shape switch 
costs (𝑟 = .36, 𝑝 < 0.05; Supp. Fig. 4g). These results suggest that animals 
increasingly relied on colour as a higher-order cue, consistent with the adoption of a 
hierarchical learning strategy. 
 
We next applied our linear decoding analyses to the neural recordings to establish 
whether the emergence of this behavioural strategy was accompanied by changes in 
the dimensionality of neural representations. At the beginning of training (learning 
stage 1, grey lines), the animals exhibited a high-dimensional geometry that allowed 
for colour, shape and XOR to be decoded, reminiscent of the high-dimensional model 
(Fig. 2e-g). This was especially prominent in the period prior to the reward delivery.  
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Figure 2. Neural representations in macaque PFC during learning of a single task. a, In 
Experiment 1, animals were incentivised to combine two passively viewed task features (colour and 
shape) in a non-linear fashion (XOR). For example, blue+square and green+diamond combinations 
were rewarded, whereas blue+diamond and green+square were not. b, Timeline of task events in a 
single trial. c, Neural data was collected from the lateral surface of the prefrontal cortex in two macaque 
monkeys (see Methods, data acquisition and pre-processing for further details). d, The tendency of 
animals to terminate trials in the shape-locked trial period plotted as a ratio of termination numbers in 
not rewarded and rewarded trials (illustrated as a function of learning). e-g, Time resolved linear 
decoding in stage 1(grey) and stage 4(black) of colour, shape, and XOR, respectively; the pale orange 
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shaded areas denote the time windows in which permutation tests were conducted to assess 
differences between stage 1 and stage 4 decoding scores; vertical three dashed lines show the onset 
of the colour, shape and the outcome, respectively. h, Schematic of narrow and broad shape trials 
(width feature). This feature was not predictive of reward. i, Temporally resolved linear SVM decoding 
of width. j, Time resolved neural dimensionality as measured by shattering dimensionality (all possible 
task dichotomies excluding colour, shape, width and XOR). k,l, Neural selectivities in learning stages 
1(k) and 4 (l) computed in the late shape-locked period ([t!""#$, t%""#$], shape-locked). Each point 
represents the selectivity of one neuron for each of the task variables (colour, shape and XOR). We 
show all 3 possible pairs of the 3 axes. The contour plots represent a kernel density estimate of the 
data, with each ring corresponding approximately to 1, 2, and 3 standard deviations from the mean. 
The right panels show the covariance matrix of the selectivities computed from the data for stage 1 of 
learning (k) and stage 4 of learning (l). m, Relative Euclidean distance between the covariance matrix 
of selectivity coefficients from the data ([t!""#$, t%""#$], shape-locked) and the covariance matrix 
expected from random selectivity (with matched total variance) as a function of learning (Methods, 
measuring similarity between selectivity distributions). Red and blue, respectively, error bars show 
mean (±1	𝑠. 𝑑. over 1000  randomly drawn models) of the relative Euclidean distance between the 
covariance matrix of the random, respectively minimal, model (with matched total variance to the data) 
and the covariance matrix expected from random selectivity; black error bars show standard deviation 
of relative distance between the observed covariance and random covariance (±1	𝑠. 𝑑. over 1000 
random models). n, Same as panel d but we show the relative distance of the observed covariance 
(([t!""#$, t%""#$], shape-locked) from the covariance matrix expected from minimal selectivity (with 
matched total variance). All p-values were calculated from permutation tests (***, 𝑝	 < 	0.01; **, 𝑝	 <
0.01; *, 𝑝	 < 	0.05; †, 𝑝	 < 	0.1; 𝑛. 𝑠., not significant).  
 
Over the course of learning (stage 1 vs stage 4) we observed a reduction in colour 
decoding (𝑝 < 0.05, one-sided) and shape decoding (𝑝 < 0.001, one-sided) but not 
XOR decoding (Fig. 2e-g, grey vs black lines). The shape stimuli also had a feature 
that was irrelevant for the prediction of the outcome: width (Fig. 2h). Similarly to colour 
and shape, the decoding of this feature also decreased over learning (𝑝 < 0.01, one-
sided). The reduction of colour and shape coding as well as stable output-relevant 
feature (XOR) decoding was predicted by a transition from a high-dimensional to a 
low-dimensional model (Supp. Fig. 3e, red vs blue).  
 
We next explicitly tested whether the dimensionality of neural representations changed 
over learning (as measured with shattering dimensionality; see ref. 14 and Methods, 
decoding for details). A neural representation described by three binary input 
dimensions (colour, shape and width) results in 35 dichotomies (division into two sets 
of four stimuli) that can be theoretically decoded. We found that the mean decoding 
accuracy of all dimensions (excluding colour, shape, width and XOR) decreased 
significantly over learning (𝑝 < 0.01, one-sided; Fig. 2j). Additionally, a principal 
component analysis computed on condition averages revealed that the proportion of 
variance explained by the first principal component increased as a function of learning 
(𝑀!"#$%	' = 0.466	𝑣𝑠	𝑀!"#$%	( = 0.581, 𝑝 < 0.05, one-sided; Supp. Fig. 4h; for details 
see Methods, Principal component analysis).  
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We next tested whether changes to neural dimensionality were reflected in changes 
to selectivity. We fitted a linear regression to our data, just as we did for our generative 
models (Supp. Fig. 3a, b), in which task variables (colour, shape, and colour x shape 
(XOR)) were used as predictors of each neuron’s firing rate. We then examined how 
selectivity coefficients changed over learning (Fig. 2k, learning stage 1 and Fig. 2l, 
learning stage 4).  We compared the covariance structure of these selectivity 
coefficients (Fig. 2k, l, bottom right) to the covariances obtained from the random 
selectivity model and minimal selectivity model (Supp. Fig. 3a, b; covariance). At the 
beginning of learning (stage 1), PFC cells were randomly distributed in selectivity 
space resembling the high-dimensional model (𝑝 = 0.332, one-sided, Fig. 2m and 𝑝 =
.99, one-sided, Fig. 2n). However, in late learning (stage 4), selectivity diverged away 
from randomly mixed selectivity (𝑝 < 0.001, one-sided, Fig. 2m, compare black and 
red lines) and converged towards the minimal model (𝑝 < 0.001, one-sided, Fig. 2n, 
compare black and blue lines). 
 
We replicated a similar pattern of decoding and selectivity results on data sorted by 
the trial termination index. Here, the behavioural measure served as a performance 
indicator, and sessions were sorted separately for each animal before being pooled 
into four pseudopopulations across animals (see Methods, trial termination measure; 
Supp. Fig. 4i-o). Furthermore, we also performed a re-analysis of an existing 
dataset25–27 in which recordings were taken from primate ventral and dorsolateral PFC 
before and after learning a delayed match-to-sample task that was similar in structure 
to ours (for details see Methods, existing lPFC dataset; Supp. Fig. 5). We found that 
learning again pushed neural activity in the PFC towards a minimal regime. 
 
Our findings indicate that neural activity in the PFC shifts between two distinct 
selectivity regimes as learning progresses. Initially, the PFC maximally expanded the 
representational space by encoding all available variables. Subsequently, after a 
combination of task variables that predicted the trial's outcome were identified, neural 
activity became increasingly low-dimensional. Such changes to neural dimensionality 
can be associated with simultaneous changes in neural geometry, potentially 
supporting more abstract representations (Supp. Fig. 3f). To test this, we employed 
cross-generalised decoding and, consistent with our generative models, observed a 
strong increase in cross-generalised XOR decoding across learning (𝑝 < 0.001, one-
sided; Supp. Fig. 4p). Although this effect is consistent with abstraction, it could also 
reflect motor-preparation or reward-prediction signals injected into the PFC in the 
rewarded XOR condition (XOR==True). To directly assess whether an abstract, task-
relevant dimension emerges independently of such signals, we conducted experiment 
2, introducing a new task instance that preserved the same underlying structure. 
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Learning a single task structure promotes abstract neural geometry in the PFC 
In experiment 2, we introduced a new colour pair (stimulus set; Fig. 3a) that followed 
the same shape–outcome associations as the previous colour pair (context, Fig. 3b). 
Similar to experiment 1, we recorded neural activity from the very first session in which 
the animals were exposed to the new stimulus set and divided the experimental 
sessions into four distinct learning stages. To explore learning-induced changes to 
neural dimensionality, we again employed linear decoding. We next compared these 
metrics to changes in the structure of neural selectivities. During the colour-locked 
period, PFC activity could now represent three distinct variables (Supp. Fig. 6a): 
context (i.e., the colour indicating the relevant shape–outcome rule), stimulus set (set 
1 vs. set 2), and the nonlinear interaction between context and stimulus set (XOR 2). 
Using these three variables we constructed selectivity models analogous to those in 
Fig. 2k,l (Supp. Fig. 6b-c). Critically, in this design, context was the only task-relevant 
variable, whereas both the stimulus set and its nonlinear interaction with context (XOR 
2) were irrelevant. We predicted that, as in experiment 1, PFC activity would transition 
from high-dimensional and nonlinearly mixed to low-dimensional and structured, with 
cells becoming increasingly selective for the task-relevant variable (Supp. Fig. 6a). 
Additionally, randomly interleaving stimulus set 1 trials and stimulus set 2 trials allowed 
us to test whether a shared neural representation would be used for both stimulus 
sets. Importantly, none of the analyses performed on activity during the colour-locked 
period were confounded by motor preparation or reward prediction, as the shape 
information required to predict reward had not yet been presented. 
 
We first examined the propensity of animals to terminate trials when the new stimulus 
set indicated a lack of reward, similar to the patterns observed in experiment 1. Over 
the course of learning with stimulus set 2, animals increasingly terminated non-
rewarded trials more frequently than rewarded ones (𝑟 = .52, 𝑝 < 0.05, Fig. 3c). 
Additionally, a facilitation effect was observed when comparing the first three sessions 
of experiment 2 (stimulus set 2 only) to the first three sessions of experiment 1 
(stimulus set 1). Specifically, animals demonstrated significantly more adaptive trial 
termination early in the learning process with stimulus set 2 compared to stimulus set 
1 (𝑝	 < 	0.01, Fig. 3d). This early behavioural benefit may be attributed to the utilisation 
of the previously acquired task representation as a scaffold. Subsequently, we thus 
investigated how the neural representations of both stimulus sets interacted 
throughout the learning process. 

Similarly to experiment 1, we hypothesised that the PFC would strongly represent all 
three variables—stimulus set, context, and XOR 2 (i.e., context × stimulus set)—at the 
beginning of learning, consistent with a high-dimensional coding regime (left, Supp. 
Fig. 6a), and would then progressively transition to a low-dimensional representation 
in which most neurons are selective for context, the only task-relevant variable (right, 
Supp. Fig. 6b). To test this hypothesis, we first employed linear decoding (Fig. 3e-g). 
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We found that both stimulus set decoding (𝑝 < 0.001, one-sided) and XOR 2 decoding 
(𝑝 < 0.05, one-sided) significantly decreased over learning, whereas context decoding 
remained stable across learning stages, mirroring the decoding results from 
experiment 1. Furthermore, we observed a significant reduction in shattering 
dimensionality during the colour-locked period as learning progressed (𝑝 < 0.01, one-
sided). No learning-related changes were detected for shape or XOR representations 
(Supp. Fig. 7a, b). Notably, width decoding further declined with learning in 
experiment 2 (𝑝 < 0.05, one-sided; Supp. Fig. 7c). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2026. ; https://doi.org/10.1101/2023.04.24.538054doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538054
http://creativecommons.org/licenses/by/4.0/


 12 

Figure 3. Neural representations in macaque PFC during learning of two instances of the same 
task structure. a, b, New colours (pink and khaki, stimulus set 2) were introduced in experiment 2, 
sharing the same shape–reward mapping as the learned colours (blue and green, stimulus set 1). c, 
Analogous to Fig. 2a but computed for stimulus set 2 trials. d, Comparison of the trial terminations 
observed in the first 3 sessions (per animal) in experiment 1 (when only stimulus set 1 was presented) 
and 3 first sessions (per animal) in experiment 2 for stimuli set 2 trials only. e-g, Temporally resolved 
linear SVM decoding stimulus set, XOR 2 (set*context) and context; the pale orange shaded areas 
denote the time windows in which permutation tests were conducted to assess differences between 
stage 1 and stage 4 decoding scores. Horizontal dotted lines represent chance-level decoding whereas 
vertical dotted lines indicate the onset of the colour, shape and the trial outcome. h, Time resolved 
neural dimensionality as measured by shattering dimensionality (mean over all 3 possible task 
dichotomies in the colour-locked period, i.e., mean over panels e-g) in stage 1 and stage 4. i-l, Neural 
selectivities in learning stages 1-4 computed in the colour-locked period ([t&""#$, t%""#$]). Each point 
represents the selectivity of one neuron for each of the task variables (set, XOR 2 and context). We 
show all 3 possible pairs of the 3 axes. The contour plots represent a kernel density estimate of the 
data, with each ring corresponding approximately to 1, 2, and 3 standard deviations from the mean. 
The right panels show the covariance matrix of the selectivities. m, n, Analogous to Fig. 2m,n; compares 
set, XOR 2 and context selectivities ([t&""#$, t%""#$], colour-locked)  to idealised random and minimal 
models as a function of learning. All p-values were calculated from permutation tests (***, 𝑝	 < 	0.01; **, 
𝑝	 < 0.01; *, 𝑝	 < 	0.05; †, 𝑝	 < 	0.1; 𝑛. 𝑠., not significant).  

To determine whether these dimensionality changes were reflected in the structure of 
neural selectivity, we analysed selectivity for the three task variables (context, set, and 
XOR 2) at each learning stage and compared the population profiles to idealised 
random and minimal models (Supp. Fig. 6b and c, respectively). In stage 1, neural 
selectivity significantly diverged from the random model and was inconsistent with the 
minimal model (𝑝 < 0.001, one-sided; Fig. 3m), driven by a strong preference for the 
stimulus set variable (stage 1; Fig. 3i). We interpret this as a novelty effect, with 
different neural responses for novel vs. familiar stimuli. In stage 2 (Fig. 3k), PFC 
selectivity shifted away from this initial set-selective regime and converged toward a 
profile consistent with randomly mixed selectivity (𝑝 = 0.825, one-sided; stage 2; Fig. 
3m). From there, it gradually transitioned toward the minimal regime in stages 3 and 
4 (Fig. 3j,l), reflecting increasingly structured and task-relevant coding (𝑠𝑡𝑎𝑔𝑒	3: 𝑝 <
0.05, one-sided, 𝑠𝑡𝑎𝑔𝑒	4: 𝑝 < 0.05, one-sided, Fig. 3m; 𝑠𝑡𝑎𝑔𝑒	3: 𝑝 < 0.01, one-sided, 
𝑠𝑡𝑎𝑔𝑒	4: 𝑝 < 0.05, one-sided, Fig. 3n). Together with experiment 1, these results 
identify random mixed selectivity as a critical stage in early learning, even when new 
information must first be integrated with existing representations. Subsequently, 
whether learning a completely novel task (experiment 1) or a task related to prior 
knowledge (experiment 2), the PFC progressively converged towards minimal 
selectivity. 

We next examined whether the observed changes in dimensionality were 
accompanied by changes in neural geometry. Specifically, we assessed how task 
variables—context, shape, and XOR—were coded across stimulus sets. For example, 
we asked whether the decision boundary separating the two contexts in stimulus set 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2026. ; https://doi.org/10.1101/2023.04.24.538054doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538054
http://creativecommons.org/licenses/by/4.0/


 13 

1 (blue vs. green) was the same as that in stimulus set 2 (pink vs. khaki; Fig. 3b). We 
found that at the beginning of learning (stage 1) PFC cells that were selective to 
context in stimulus set 1 tended to be not selective to context in stimulus 2 (𝑟 =
−.15, 𝑝 > 0.05, one-sided, Fig. 4a, left). After learning, in stage 4, the same neurons 
exhibited context selectivity that generalised across stimulus sets (𝑟 = .37, 𝑝 < 0.001, 
one-sided, Fig. 4a, right). Consistent with this, correlations between single-neuron 
context selectivity across colour pairs increased progressively over learning (𝑝 < 0.01, 
one-sided, Fig. 4b). These changes at the single-neuron level were mirrored by a 
reorganisation of population geometry. To quantify this, we trained a linear SVM to 
decode context in stimulus set 1 and evaluated its performance on stimulus set 2, and 
vice versa (see Methods, cross-stimulus set generalisation; Fig. 4c-d). At the end of 
learning (stage 4), context decoding robustly generalised across stimulus sets, 
indicating that a common decision boundary was used regardless of the stimulus set 
presented (𝑝 < 0.001, one-sided; Fig. 4c, right). This geometry emerged with learning, 
reflected in an increase in cross-set generalised decoding from stage 1 to stage 4. 
(𝑝 < 	0.05, one-sided; Fig. 4d, grey, ‘cross-decoding’). Note that context was equally 
decodable in both early and late learning, indicating that the observed change in 
geometry was not driven by a change in the presence or absence of context 
information (𝑝	 > 	0.05, two-sided; Fig. 4d, black, ‘decoding’). These generalisation 
effects were robust to how learning was discretised into stages (Supp. Fig. 7e). 
Moreover, context cross-set generalisation reached the ceiling level of simple context 
decoding after learning (Supp. Fig. 7f), indicating that an abstract, stimulus-invariant 
geometry came to dominate the neural representation of context. 

 
Figure 4. The PFC aligns new and old task representations as a function of learning. a, Selectivity 
of PFC neurons in stage 1 and stage 4 for context in set 1 and set 2 in the colour-locked period. The 
line of best fit is shown in black. b, Correlation between selectivity coefficients (computed in the colour-
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locked period, [t"#$, t%""#$]) for context (context 1 vs context 2) in stimulus set 1 and  stimulus set 2 in 
late the colour-locked period plotted as a function of learning (cf. panel a). c, Temporally resolved cross-
generalised decoding of context (trained on set 1 and tested on set 2, and vice-versa); pale orange 
shading indicates when the decoding and selectivity analyses in panels a-d were performed. Horizontal 
dotted lines represent chance-level decoding whereas vertical dotted lines indicate the onset of the 
colour, shape and the trial outcome. The bar plot represents the average cross-set generalisation score 
of stage 1 and stage 4 compared against a null distribution obtained after shuffling trial labels (grey-
shaded areas). d, Decoding (black) and cross-generalised decoding (grey) of context as a function of 
learning in the colour-locked period (pale orange area in panel c). The grey shaded areas indicate 
combined chance-level cross-set gen. decoding. e-l, Analogous to a-d but for shape and XOR coding 
and selectivity. All p-values were calculated from permutation tests (***, p < 0.01; **, p <0.01; *, p < 
0.05; †, 𝑝	 < 	0.01; n.s., not significant).  
 
Stimulus set-invariant representations were also observed for shape and XOR. For 
shape, PFC neurons showed no significant alignment of selectivity across stimulus 
sets at stage 1 (𝑟	 = 	0.15, 𝑝	 > 	0.05, one-sided) but exhibited significant alignment 
after learning at stage 4 (𝑟	 = 	0.48, 𝑝	 < 	0.001, one-sided; Fig. 4e). This increase in 
correlation was learning-dependent (𝑝	 < 	0.05, one-sided; Fig. 4f). Cross-set 
generalised decoding of shape was significant both early (stage 1; 𝑝	 < 	0.05, one-
sided) and late (stage 4;	𝑝	 < 	0.001, one-sided; Fig. 4g). Although, shape decoding 
did not change with learning (𝑝	 > 	0.05, two-sided; Fig. 4h, black), cross-set 
generalised shape decoding increased over learning (𝑝	 < 	0.05, one-sided; Fig. 4h, 
grey). These effects were robust across learning discretisations (Supp. Fig. 7g). As 
for context, cross-stimulus-set generalisation approached the ceiling of simple shape 
decoding after learning, indicating dominance of a stimulus set-invariant 
representational geometry (Supp. Fig. 7h). For XOR, selectivity alignment and cross 
-set generalised decoding were already high at stage 1 and remained high at stage 4 
(Fig. 4i–k), with learning providing no further improvement in these measures (Fig. 4j, 
l). These results were robust across learning discretisations (Supp. Fig. 7i), and 
cross-set generalised XOR decoding remained near ceiling throughout learning 
(Supp. Fig. 7j). 
 
Together these results show that even when new information fits an existing task 
schema, the PFC traverses a representational trajectory from high-dimensional, mixed 
coding toward low-dimensional, task-relevant abstraction. Critically, abstraction 
emerges via progressive alignment of neural geometry across stimulus sets, with 
some variables (XOR) generalising almost instantly, while others (context, shape) 
require representational reorganisation.  
 
 
Discussion  
 
The prefrontal cortex has the capacity to generate both low-dimensional and high-
dimensional representations, each of which presents a unique trade-off between 
generalisability and discriminability. However, the conditions under which each regime 
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is employed currently remain unclear. Our study investigated how the dimensionality 
and geometry of neural activity changed over learning. We observed that, as learning 
progressed, neural activity in the PFC transitioned from being high-dimensional with 
high-discriminability to being low-dimensional and abstract. This transition in the 
representational strategy was accompanied by a change patterns of single cell 
selectivity, from random and nonlinearly mixed towards minimal and structured. The 
structured representations that emerged during learning then supported the 
generalisation of the learned rule to a novel stimulus set.18,20 
 
We found that the PFC transitioned from a high- to a low-dimensional regime over 
multiple days of exposure to a complex task. This corroborates the findings of 
Hirokawa et al.,12 who found that neural activity covaried with behaviourally relevant 
variables, thus occupying a low-dimensional manifold. On the other hand, some 
studies have suggested that an increase in neural dimensionality is predictive of 
performance14. It is possible that the structure of the task and training provides an 
explanation for these contrasting findings18. In our study, recordings were initiated from 
the onset of task training, spanning a period of five weeks, with animals experiencing 
the entire task structure from the first session. In contrast, many other investigations 
into the primate PFC's involvement in complex cognitive tasks train animals in a 
fashion that decomposes the task into multiple subcomponents and either builds up 
task knowledge across training14 or presents them in a serial (block-wise) manner7,38. 
Additionally, whereas in our study one source of information (width) was always 
irrelevant, in other studies information becomes periodically relevant and irrelevant 
across multiple blocks, which may promote encoding of currently irrelevant 
information37. These training differences may promote information encoding in a high-
dimensional manner that favours discriminability over abstraction. 
 
The acquisition of a low-dimensional representation following the learning of a single 
XOR rule raises the question of which regime the PFC might adopt when confronted 
with more complex tasks. Although XOR operations necessitate nonlinear integration 
and abstraction from sensory input, they can be reduced to simple stimulus-response 
pairings once the rule has been learnt or when a memory-based strategy is utilised. 
However, some tasks are more difficult to decompose, as they require switching 
between multiple orthogonal or conflicting subtasks. It has been suggested18,20 that in 
conditions requiring the performing of multiple tasks in series, a high-dimensional 
representation could be employed by the PFC in order to maximise flexibility and 
prevent interference. 
 
Our analytical approach aligns with a growing body of work that emphasises the 
connection between population structure and neural coding39. Specifically, we 
investigated how diverse forms of single-cell selectivity contribute to the geometry and 
dimensionality of population-level representations. Our results reveal a negative 
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correlation between neural dimensionality and the emergence of structured selectivity. 
However, the direction of this relationship may be more nuanced and task-dependent. 
For instance, a highly structured population with pure selectivity for multiple variables 
might exhibit higher dimensionality than a randomly mixed population responding to 
fewer variables, even if the latter is nonlinear. 
 
Our findings suggest that the PFC could employ a multi-phase learning strategy, 
involving distinct temporal dynamics. Initially, novel tasks could be solved via flexible, 
reservoir-like dynamics, bypassing the need for immediate synaptic plasticity. As 
training progresses over longer timescales, the PFC could gradually refine its local 
connectivity, optimising for performance. This dual-phase approach enables both rapid 
adaptation and efficient resource allocation, echoing models of the cerebellum-motor 
cortex interactions, where the cerebellum rapidly drives cortical activity through input 
control40. Similarly, an external region could modulate the PFC's activity on shorter 
timescales, enabling flexible high-dimensional representations. Over time, the PFC's 
intrinsic circuitry would consolidate these representations and assume direct task 
control. Future research could explore the geometry of task representations acquired 
at different learning stages and the critical role of synaptic plasticity in this process. 
 
The implicit assumption in many experimental paradigms is that the animals are 
presented with tasks as tabula rasa, devoid of prior knowledge or training. However, 
it is unlikely that the animal's entire experimental history, including life experience, is 
irrelevant to a given task. Our second experiment allowed us to address this issue and 
explicitly explore the interactions between already learnt and new information. In line 
with previous predictions7,17, we found that when a new task instance is added, both 
the new and old instances were rapidly aligned to common axes and sensory 
differences between them were collapsed. Notably, different task motifs exhibited 
distinct generalisation timescales: the XOR representation generalised early in 
learning, while the context motif required weeks of training to generalise. This disparity 
likely reflects differences in their structural composition. The XOR rule's use of 
identical shapes across tasks likely facilitated rapid alignment, leveraging existing 
neural encoding schemes. In contrast, the context motif's novel colours necessitated 
additional encoding and adaptation in the prefrontal cortex, slowing generalisation. 
This suggest that PFC’s representational alignment is modulated by the degree of 
overlap between prior and novel stimuli. Shared features could thus promote efficient 
transfer of learned representations, while novel features could impose additional 
encoding demands.  
 
It is perhaps surprising that, given the key role of the PFC in the development and 
acquisition of structured knowledge, only a few studies have investigated how the 
structure of PFC representations changes during several training days of an entirely 
novel task 41,42. By tracking changes in neural activity across learning, it is possible to 
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identify the biological principles that are required to produce representations 
supporting higher cognitive functions43. Future experiments should extend this 
paradigm, to track changes in learning even more complex and naturalistic tasks44; 
those that have a compositional structure45,46; the influence of different learning 
curricula47; and how these representations change within the same individual neurons 
as opposed to pseudo populations48–50.   
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Methods 
 
Data and task  
 
Animals and task. Two adult male rhesus macaques, monkey 1 and monkey 2, were 
trained in this study. The experiments were conducted in line with the Animals 
(Scientific Procedures) Act 1986 of the UK and licensed by a Home Office Project 
License obtained after review by Oxford University’s Animal Care and Ethical Review 
committee. The procedures followed the standards set out in the European 
Community for the care and use of laboratory animals (EUVD, European Union 
directive 86/609/EEC). The animals were seated in a sound- and lighting-attenuated 
experimental booth. Their heads were restrained and faced a 19-inch screen. The 
centre of the screen was aligned with a neutral eye position. The animals performed a 
passive object-association task (Fig. 2a-b). Importantly, the animals were accustomed 
to an experimental setting but had no previous exposure to the task or stimuli 
introduced in this protocol. Neural recordings were collected from the first session as 
one of the main aims of the study was to capture learning dynamics. In the first 
experiment, the animals were presented with a colour and a shape, a nonlinear 
combination of which predicted reward (Fig. 2a-b). In experiment 2, a second set of 
stimuli was additionally introduced to test whether the rule learnt in the first experiment 
cross-generalised to the new sensory domain (Fig. 3a). The colours used in the 
coloured circles were designed in the CIELab colour space51. The L parameter 
(luminance) was kept constant which ensured that the stimuli were approximately 
isoluminant; parameters a and b varied with regard to valence but not value which 
resulted in a circular colour representation51. As colours were randomly assigned to 
conditions for each animal, this circular representation ensured that regardless of 
which colour pair was assigned to which XOR mapping, the initial colour 
similarity/dissimilarity within colour pair was kept constant. Additionally, in both 
experiments, the second object had two features: one relevant for reward prediction 
(shape, Fig. 2a) and one irrelevant (width, Fig. 2h) (for the duration and sequence in 
which stimuli were presented see Fig. 2b) The trial sequence was randomised. All 
trials with fixation errors were excluded. The dataset contained on average 237.9 
(𝑆𝐷 = 23.9) and 104.8 (𝑆𝐷 = 2.3) trials for each of the 8 conditions in experiment 1, 
and 101.0 (𝑆𝐷 = 18.6) and 54 (𝑆𝐷 = 1.1) trials per each of the 16 conditions in 
experiment 2, for monkey 1 and monkey 2, respectively. 
 
Data acquisition and pre-processing. Before the start of the experimental protocol, a 
titanium head holder with two recording chambers was placed and fixed with stainless 
steel screws in each animal. The frontal recording chambers were implanted over the 
lateral prefrontal cortex (lPFC) of the right hemisphere in both animals. Data from a 
second chamber targeting inferotemporal cortex in the right hemisphere are not 
considered here. A craniotomy was made beneath each chamber to enable 
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electrophysiological recording. Recording locations for each animal are shown in 
Supplementary Figure 8. Surgical procedures were carried out under general 
anaesthesia and were aseptic. A semi-chronic micro-drive system (SC-96, Gray 
Matter Research) with 1.5 mm interelectrode spacing, interfaced to a multichannel 
data acquisition system (Cerebus System, Blackrock Microsystems) was used for 
frontal recordings. Data were recorded over a total of 25 daily sessions in each monkey 
(monkey 1: 17 sessions in experiment 1 and 8 sessions in experiment 2; monkey 2: 
10 sessions in experiment 1 and 15 sessions in experiment 2). The switch to 
experiment 2 was made after the animal showed a robust reward prediction signal. 
Notably, electrodes were manually advanced by a minimum of 62.5	𝜇𝑚 before every 
session to ensure that activity from new cells was recorded. Neural activity was 
amplified, filtered (300	𝐻𝑧 − 10	𝑘𝐻𝑧), and stored for offline pre-processing and 
analysis. Cluster separation was applied (valley seeking algorithm), and the binary 
spike train was smoothed using a Gaussian window (𝜎 = 50𝑚𝑠). We collected spiking 
activity from 146 and 230 neurons in experiment 1 and from 205 and 151 neurons in 
experiment 2, for monkey 1 and monkey 2, respectively. Only cells sampled from the 
ventral and dorsal lateral frontal cortex were included in the data (Supp. Fig. 8). No 
neurons were excluded based on their selectivity profiles. Importantly, as the focus of 
this study was to track how learning influenced neural geometry and not the magnitude 
of firing (e.g., repetition suppression effects), we z-scored firing rates of each neuron 
across the whole session. The obtained firing rate data were then epoched from 
200	𝑚𝑠 before to 1200	𝑚𝑠 after the colour onset. Next, the full set of sessions in each 
animal were divided up into four learning stages and then sessions in each stage were 
pooled across animals, e.g., the first learning stage was comprised of first 5 sessions from 
monkey 1 and first 3 sessions from monkey 2. We found that four learning stages were 
sufficient to capture learning-induced effects. To assess whether the choice of 
learning-stage discretisation influenced the results in Fig. 4, we repeated the analyses 
using 3, 4, 5, and 6 learning stages. For all discretisations, each stage was required 
to include a minimum of six sessions, ensuring adequate statistical power. For the 
three- and four-stage schemes, sessions were grouped into approximately equal 
blocks. For the five- and six-stage schemes, a sliding-window approach was used 
(e.g., stage 1 = sessions 1–6, stage 2 = sessions 5–10) to maintain comparable neuron 
counts and hence statistical power across discretisations. All analyses were 
implemented in Python using custom-written code and run on combined data (monkey 
1 and 2). Two types of analyses were used in this study: (1) timepoint-resolved, where 
a specific method was applied to every time point in the epoch to track how 
representations evolved in trial time, and (2) time-averaged, where a method was run 
on time-averaged data (e.g., [t)*!, t+))*!], colour-locked or shape-locked) in the time 
window preceding the shape display or trial outcome. In the former time window, we 
examined the neural geometry when only the colour information is known, whereas 
just before outcome onset, we examined whether neural geometry reflected the colour 
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and the shape and their combination (XOR) before the animals received feedback 
about the value of the trial. 
 
Adaptive trial termination and switch costs. To assess learning, we measured the 
proportion of trial terminations through fixation breaking in both rewarded and non-
rewarded trials. Specifically, for each session, we counted the number of trial 
terminations in rewarded and non-rewarded trials when fixation breaking occurred 
during the shape-locked period (Fig. 2b), a phase where all necessary information for 
outcome prediction is available but the reward is not yet delivered. These counts were 
then normalised by dividing by the total number of fixation errors recorded in the 
session. The adaptive trial termination measure was computed by dividing the 
normalised non-reward trial count by the normalised rewarded trial count for each 
session separately. We next divided sessions into four learning stages and fitted a 
linear regression model with learning stage as the predictor of the adaptive trial 
termination. To estimate the p-value, we employed a permutation approach, 
randomising the session-to-learning stage association (𝑛 = 10,000 permutations). 
Switch costs were computed by comparing correct trial termination counts between 
colour-switch and colour-repeat trials; to isolate colour-specific effects, shape-switch 
costs were subtracted from colour-switch costs. 
 
Existing lPFC dataset. We also used an existing dataset of electrophysiological 
recordings25 which have been described in detail previously26,27. In brief, neural activity 
was recorded from the ventral and dorsal lateral PFC (similar to the areas targeted in 
this study) in four rhesus monkeys who performed a feature match-to-sample task. 
More specifically, the animals were required to report after a delay period whether the 
shape of the first stimulus was the same as the shape of the second stimulus. Note 
that a match/no-match rule is equivalent to an XOR rule. Importantly, neural activity 
was recorded before the animals were exposed to the task rule (passive viewing) and 
after they had learned the rule. As both correct match and correct no-match trials were 
rewarded, the match/no-match signal was not confounded with a reward prediction 
signal.  To test whether neural activity was pushed towards a minimal regime in such 
experimental conditions we employed the same decoding and selectivity measures as 
used in the analysis of our dataset (see Fig. 2). We examined neural data averaged 
across the presentation of the second stimulus and the subsequent delay period 
([t)*!, t,)))*!]; stimulus 2-locked).  Furthermore, neural activity was analysed for all 
stimulus pairs combined. For the 8 stimuli, we paired them into 4 sets of pairs and 
performed our analyses separately on each pair of stimuli (and averaged results over 
all 4 pairs) so that chance decoding was the same as in our dataset (i.e., 50%). 
 
 
Models 
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Multiple linear regression. We can model the firing rate 𝒓 of a neuron (either from our 
generative models or our data) at a given time point as a linear combination of the 
three main task variables: colour, shape and the interaction between colour and shape 
(the XOR term):  
 
 

𝒓 = 𝐗𝜷 + 𝝐 
(1) 

 
where 𝒓 is a vector of 1x	K dimensionality containing the time-averaged firing rates for 
K trials; 𝐗 is the design matrix of dimensionality K	x	D where rows correspond to the K 
trials and columns correspond to the value of the D task variables such as colour, 
shape and XOR (D = 3) in each trial. 𝜷 is a D-by-1 vector populated with the 
coefficients for each of the task variable estimated for the 𝑛th neuron. Finally, 𝝐 
contains K residuals. The 𝜷 vector specifies the coordinates of the 𝑛th neuron in the 
selectivity space spanned by D task variables (Fig. 1b,c and Fig. 2k,l). That is, every 
neuron can be represented as a point in a space where each axis corresponds to the 
cell’s selectivity for a task variable. An equivalent linear model was employed to 
characterise the firing rate for neurons in experiment 2 as a linear combination of the 
three variables context, stimulus set, and the non-linear mixture of context and 
stimulus set (XOR2). 
 
Generative models. Neural selectivity can be defined by the matrix 𝐒-#"# =
(S.-)'/./0,'/-/2, where  each row 𝑛 corresponds to a unit and each column 𝑑 contains 
the regression coefficient for one task variable. In experiment 1, these variables were 
colour, shape, and their interaction (colour × shape; XOR); in experiment 2, they were 
stimulus set, the interaction between stimulus set and context (XOR 2), and context. 
This cloud of points is then centred by removing the mean (∑ 𝑆.- = 0. , for each of the 
𝐷 task variables). Here, we explored two types of selectivity distributions and their 
representational properties. Firstly, we examined a random mixed selectivity model in 
which selectivities are captured by a spherical multivariate Gaussian distribution 
𝐒3#.-4*	~	𝒩-(𝟎, 𝜎,𝚰𝒅). In such a model, all variables can be decoded equally well from 
the population resulting in a high-dimensional representation and there is poor cross-
generalisation between variables. The second selectivity model we examine results 
from a system performing the task while being constrained to exhibit low overall firing 
rates (i.e., a form of metabolic cost). We derived analytically that maximising XOR 
(experiment 1) or the context (experiment 2) decodability while minimising such a 
metabolic cost results in units being selective only to the task-relevant variable and 
having no selectivity to the linear terms (colour or shape; Supp. Materials Section 1). 
A matrix describing the selectivity of such a population can be thus formulated as 
𝐒*6.6*#7 	~	𝒩-[𝟎, 𝜎,diag(0,0,1)`, where the covariance matrix is an diagonal matrix 
with two first diagonal terms equal to zero and the third equal to one. We call this the 
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minimal model. Importantly, to allow comparisons between the observed selectivity 
and model selectivity (minimal or random), the generative models were constructed 
using parameters derived from the data.  Specifically, we used the mean value of 
diagonal entries of the covariance matrix 𝚺b-#"# estimated from 𝐒-#"# to set the value 
of the variance parameter 𝜎, in both 𝐒3#.-4* and 𝐒*6.6*#7 (note that this ensures that 
both models have the same total variance). Furthermore, we showed that multiple 
linear regression was able to recover the underlying minimal and random models from 
artificially generated firing rates under various levels of noise (Supp. Fig. 9). To mimic 
measurement variability under finite sampling, we added zero-mean Gaussian noise 
(𝜎	 = 	0.7) to the generated selectivity coefficients (Fig. 1, Supp. Fig. 6). Quantitative 
comparisons were performed between the observed neural selectivity coefficients and 
the corresponding idealised noise-free models (Supp. Fig. 3a, b). 
 
Optimised feedforward networks. We used 𝑁 = 400	units in these networks and their 
firing rates were described by eq. 1 with 𝜎 = 2. The output 𝒛 of these networks was 
given by a softmax readout 
 

𝒛 = Softmax(𝐖89:𝒓 + 𝒃), 
(2) 

where 𝐖89: are the two sets of readout weights (connecting the hidden layer to the 
readout unit 1 (XOR == 0) and weights connecting the hidden layer to readout unit 2 
(XOR == 1)) and 𝒃 is the readout bias. We optimized these networks with back-
propagation using a canonical cross-entropy cost function 
 

ℒ = ℋ(𝒑, 𝒛) +	 ;
,0
‖𝒓‖,,, 

 
(3) 

where the first part of eq. 3 denotes the cross-entropy loss ℋ(𝒑, 𝒛) between the true 
probabilities of reward 𝒑 (which were equal to 0 or 1, depending upon the stimuli for 
that trial) and the model’s readout probabilities 𝒛 and the second term corresponds to 
a metabolic cost on all firing rates. Before training, the values of the 𝜷’s were drawn 
randomly from a Gaussian distribution with 0 mean and variance 0.05, and elements 
of 𝐖89: and 𝒃 were set to 0. We trained two types of models: (1) with no regularisation 
(𝜆 = 0; Supp. Fig. 2a) and (2) with high regularisation (𝜆 = 20;	Supp. Fig. 2b). In line 
with our predictions, selectivity to task variables in models trained with high 
regularisation converged on the minimal selectivity regime whereas models trained 
with no regularisation produced randomly mixed selectivity (Supp. Fig. 2c,d). This 
network formulation maps directly onto the selectivity space examined in experiment 
2—stimulus set, stimulus set × context, and context—with context as the task-relevant 
variable as the XOR was not explicitly solved within the network but was provided as 
an input feature, differing from other inputs only in its relevance to the output. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2026. ; https://doi.org/10.1101/2023.04.24.538054doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538054
http://creativecommons.org/licenses/by/4.0/


 27 

 
 
Analysis methods  
 
Decoding. To test what information was represented by the observed neural 
population as a function of learning, we employed linear SVM decoding7,14. In contrast 
to the regression analysis, where the regression coefficients was estimated for every 
neuron separately, decoding analyses were run on pseudo-populations. This 
approach enhanced statistical power, reducing the likelihood of Type II errors, and 
mitigated the impact of session-specific sampling bias. Given the varying number of 
trials per session (both within and between animals), a sliding window method was 
employed to utilise all available data. Specifically, each session was divided into three 
windows, each matching the size of the session with the fewest trials (𝑛 = 801). Neural 
activities (𝑡𝑟𝑖𝑎𝑙𝑠	𝑥	𝑛𝑒𝑢𝑟𝑜𝑛	𝑥	𝑡𝑖𝑚𝑒) for the first 801 trials in each session during learning 
stage 1 were combined along the neuron axis to form a pseudo-population. This 
procedure was repeated for the middle and final 801 trials across each learning stage. 
This resulted in a matrix  𝐗 = (X<.")'/</=,'/./0,'/"/> for each of the time windows and 
each of the four learning stages, where the first dimension corresponds to K trials, the 
second dimension corresponds to N neurons (combined from two animals), and the 
last dimension corresponds to T time points. Then binary SVM classifiers were used 
to decode the task variables (colour, shape, width and XOR in experiment 1 and 
context, stimulus set, stimulus set x context (XOR 2), shape, width and XOR in 
experiment 2) at each time point for temporally resolved decoding (Fig. 2e,f,g,i; Fig. 
3e,f,g; Fig. 4a,e,i; Supp. Fig. 4i-l; Supp. Fig. 7a-c). The statistical tests were run on 
firing rates average in broad time windows covering the entire feature presentation 
period (denoted by the pale orange shaded areas). An equivalent decoding procedure 
was used when analysing generative models (Supp. Fig. 3e). Decoding was 
performed in a cross-validated way where K trials were split randomly into set 1 and 
set 2, with each containing 50% of trials. The decoder was fitted using the set 1 and 
tested on set 2. The procedure was then repeated using set 2 as the training set and 
set 1 as the test set. Both decoding scores were then averaged. This procedure was 
repeated 10 times for different random splits of trials in sets 1 and 2, and these 10 
resulting scores were then averaged. The decoding results were averaged over three 
time windows. 
 
Shattering dimensionality. To estimate shattering dimensionality7,14 in experiment 
1(Fig. 2j), we used the same decoding approach as described above except that we 
averaged decoding scores over all 35 possible dichotomies that could be theoretically 
represented given the task structure (i.e., three linear variables form a cube in state 
space that can be dissected into two sets of 4 vertices in 35 possible ways; see Supp. 
Fig. 10 for illustration). We estimated the decodability of each of these dichotomies 
and tracked their mean decoding accuracy as a function of learning. Exploring the 
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theoretically maximal dimensionality of the colour-locked neural representations in 
experiment 2 using shattered dimensionality, where two linear variables (colour, 
stimulus set) were used, resulted in the identification of 3 (colour, stimulus set, colour 
x stimulus set (XOR2)) theoretically possible binary decoding problems. We tracked 
the mean of these dimensions over time (Fig. 3h).  
 
Cross-generalised decoding. To examine the neural geometry of the task variables we 
used cross-generalised SVM decoding35. In contrast to a typical cross-validation 
procedure, the testing happens not only on trials that were previously not seen but 
also on trials that correspond to different conditions. To achieve a high cross-
generalisation score, it is therefore not sufficient to generalise across trial-wise noise 
but also to generalise across conditions7. Specifically, the labels of eight unique 
conditions (2	𝑐𝑜𝑙𝑜𝑢𝑟𝑠	𝑥	2	𝑠ℎ𝑎𝑝𝑒𝑠	𝑥	2	𝑤𝑖𝑑𝑡ℎ𝑠; see Supplementary Fig. 11a) were split 
into two sets of four labels each, depending on the tested variable (e.g., colour 1 labels 
vs colour 2 labels; see Supplementary Fig. 11b). Each subset was further divided 
into a training set and a testing set (colour 1 vs colour 2 training set and colour 1 vs 
colour 2 testing set). A decoder was trained on the training set and then tested on the 
testing set, and vice versa; the two scores were then averaged. We identified 36 
possible train-test splits (see Supplementary Fig. 11c), and the cross-generalised 
decoding score was obtained by averaging these scores. This method was used to 
determine whether the format of a task variable is abstract, meaning the variable is 
encoded in the same format as a function of the remaining task variables. Note that 
some of the train-test splits correspond to decoding a task variable as a function of a 
single other variable (e.g., decoding colour as a function of shape; see 
Supplementary Fig. 11c, shaded geometries), while others examine the decoding of 
the variable as a function of a mix of variables.  
 
Cross-stimulus set generalisation (decoding and selectivity analyses). Cross-
generalised decoding performed for experiment 2 data (both run on time-resolved and 
time-averaged firing rates; Fig. 4a,e,i and Fig. 4b,f,j respectively) differed in one 
aspect from the algorithm described in the Cross-generalised decoding section. As the 
aim of the analysis described here was to identify the neural format of the main task 
variables used across stimulus sets, only one splitting variable was used (i.e., stimulus 
set) to obtain cross-generalisation scores for the task-relevant variables (context, 
shape, and XOR). This reduced the possible cross-generalisation decoding axes to 
four possible binary decoding problems (e.g., when performing cross-generalised 
decoding for the colour variable we can: (1) train on differentiating colour 1 from colour 
2 in stimulus set 1 and test on differentiating colour 3 from colour 4 in stimulus set 2, 
(2) train on differentiating colour 3 from colour 4 in stimulus set 2 and test on 
differentiating colour 1 from colour 2 in stimulus set 1, (3) train on differentiating colour 
1 from colour 3 and test on differentiating colour 2 from colour 4, and (4) train on 
differentiating colour 2 from colour 4 and test on differentiating colour 1 from colour 3; 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2026. ; https://doi.org/10.1101/2023.04.24.538054doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538054
http://creativecommons.org/licenses/by/4.0/


 29 

these four decoding scores were then averaged). Using this procedure, we explored 
the cross-stimulus set generalisation potential of the colour, shape, width and XOR 
variables. Additionally, to test how selectivity of PFC cells changed as a function of 
learning in experiment 2 we employed a Pearson correlation metric. Specifically, we 
compared how similar the colour, shape and XOR coefficients in stimulus set 1 are to 
coefficients for the same variables in stimulus set 2 (Fig. 4c, d, g, h, k, l), which yielded 
three correlation scores for each of the main task variables (Supp. Fig. 7d, e, f). This 
was done for each of the four learning stages to explore whether selectivity for stimulus 
set 1 aligns with selectivity for stimulus set 2 as a function of learning, consistent with 
a shared abstract representation. 
 
Measuring similarity between selectivity distributions. To test the observed neural 
population for the presence of random mixed or minimal selectivity (Fig. 1b,c, and Fig. 
2k,l), we firstly obtained regression coefficients for the three variables of interest 
(colour, shape and XOR; eq. 1) and constructed the selectivity space 𝐒-#"#. To assess 
the similarity of 𝐒-#"# to 𝐒*6.6*#7 and 𝐒3#.-4*	,	we computed the covariance matrix of 
𝐒-#"# (𝚺b-#"#) as well as the covariance matrices of the expected random and minimal 
distributions given 𝐒-#"# (𝚺b*6.6*#7 and 𝚺b3#.-4*; see Generative models). Finally, we 
calculated the normalised distance of the observed selectivity from model random 
selectivity 
 

𝑑6?34*	3#.-4*(𝚺b) =
@𝚺BC𝚺B'()*+,-@𝟐C	𝔼(@𝚺

B'()*+,-C𝚺B'()*+,-@𝟐)

𝔼(@𝚺B'()*+,-C𝚺B'-'*'-)/	@𝟐)C	𝔼(@𝚺
B𝒊()*+,-C𝚺B𝒊()*+,-@𝟐)

	, 

(4) 
and the normalised distance of the observed selectivity to minimal selectivity  
 

𝑑6?34*	*6.6*#7(𝚺b) =
@𝚺BC𝚺B'-'*'-)/@𝟐C	𝔼(@𝚺

B'-'*'-)/C𝚺B'-'*'-)/@𝟐)

𝔼(@𝚺B'()*+,-C𝚺B'-'*'-)/	@𝟐)C	𝔼(@𝚺
B𝒊-'*'-)/C𝚺B𝒊-'*'-)/@𝟐)

. 

(5) 
where the subscript 𝑖 denotes a random draw and the expectations were computed 
over 1000 draws. From both the denominators and numerators, the distance within 
each of the models was subtracted to centre the measure around 0. More specifically, 
𝔼(|𝚺b𝒊3#.-4* − 𝚺b𝒊3#.-4*|𝟐)(the expected difference between two different randomly 
drawn selectivity distributions from the random model) was, for example, subtracted 
from the denominator and numerator of 𝑑?34*	3#.-4* to account for within model 
distance. Additionally, both 𝑑?34*	3#.-4* and 𝑑?34*	*6.6*#7 were normalised by the 
distance between selectivities generated using both generative models 
(𝔼(|𝚺b63#.-4* − 𝚺b6*6.6*#7	|𝟐)) which resulted in the metrics being bounded between 0 
and 1 (when |𝚺b-#"# − 𝚺b*6.6*#7|𝟐 is equal or smaller than |𝚺b3#.-4* − 𝚺b*6.6*#7	|𝟐). This 
was done to allow for a comparison of similarity estimates across learning stages. The 
Euclidean distance metric was chosen as the main analysis tool in this study based 
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on simulations in which we generated different proportions of random and minimal 
selectivity across a single population (from 0% minimal and 100% of random to 100% 
minimal and 0% random) and compared the precision with which multiple metrics 
recovered the true proportions. We compared the Euclidean distance metric to the 
PAIRs metric, which has been used previously in the literature12,28, and to the 
symmetric Kullback–Leibler divergence estimate (KL divergence) which benefits from 
a strong theoretical basis and is assumption-agnostic. We found that, compared to the 
KL divergence and PAIRs metrics, the Euclidean distance measure yielded the highest 
precision of tracking learning-induced changes to neural selectivity (Supp. Fig. 12a,b). 
Specifically, our simulations showed that both the KL divergence and PAIRs can be 
used to precisely identify extreme selectivity regimes (either strong random selectivity 
or strong minimal selectivity) but fail at identifying intermediate selectivity regimes 
showing a strong bias towards random mixed selectivity (Supp. Fig. 12a,b). As the 
focus of this study was to track learning dynamics, a metric that allows to identify a 
broad range of selectivity regimes was chosen for the final analysis. Nonetheless, the 
results from experiment 1 (Fig. 2m,n) were broadly replicated using the symmetric KL 
divergence estimate (Supp. Fig. 12c,d) and PAIRs (Supp. Fig. 12e,f).  
 
Principal Component Analysis. PCA was used as a measure of neural dimensionality 
in experiment 1(Supp. Fig. 4h). Firstly, pseudo populations were constructed for each 
learning stage using the same procedure as described in the Decoding section. Then, 
firing rates were averaged in the time window preceding the outcome presentation 
([t())*!, t+))*!], shape-locked;). Next, principal components were run on condition 
averages. This was done separately for each learning stage. To compute how the 
variance explained (ratio) by the first PC changed as a function of learning, trials were 
randomly split into test and train 10 times; PCA was fitted then on train trials and the 
test trial firing rates were projected onto them to compute variance explained. The 
results from 10 random splits were then averaged. Note that width 1 and width 2 trials 
were pooled together. The null distribution for the permutation test was computed by 
randomly shuffling neurons between stage 1 and stage 4, and repeating the described 
PCA procedure (𝑛 = 500). 
 
 
Statistical testing 
 
Decoding and cross. gen. decoding. Throughout the study, we employed non-
parametric permutation tests to test statistical significance within each learning stage 
and between learning stages (learning-induced effects). Two types of null distributions 
were thus constructed: (1) for statistical testing of above chance-level decoding 
analyses the labels describing the trial dimension (𝑘) of the pseudo-population matrix 
𝐗 = (X<.")'/</=,'/./0,'/"/> were randomly permuted 1000 times; (2) to test for 
learning-induced effects on decoding scores, the matrices 𝐗!"#$%	' and 𝐗!"#$%	( were 
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concatenated along the neuron dimension (𝑛) and then 1000 new 𝐗′!"#$%	' and 𝐗′!"#$%	( 
matrices were generated by randomly assigning neurons to either 𝐗′!"#$%	' or 𝐗′!"#$%	(. 
One-sided tests were used when testing the predictions of the minimal model and two-
sided tests were used when no differences were expected.  
 
Selectivity measures. To test whether observed selectivity was dissimilar to the 
random selectivity regime and similar to minimal selectivity regime 1000 random and 
minimal models were generated using data-derived parameters for each learning 
stage. Next, the 𝑑3#.-.?34*	3#.-. and 𝑑3#.-.?34*	*6.. distances were computed for 1000 
randomly generated models according to eq. 4 and eq. 5 (with 𝚺b3#.-4* as input) to 
serve as null distributions for both comparisons. Note that the observed selectivity was 
compared to random model selectivity when analysing the data’s similarity to random 
(Fig. 2m; Fig. 3m) as well as minimal selectivity (Fig. 2n, Fig. 3n). Furthermore, as in 
experiment 2 we tested whether selectivity for task variables was similar in stimulus 
set 1 to variables in stimulus set 2 and whether this selectivity alignment changed over 
learning, two null distributions were thus constructed: (1) statistically significant 
selectivity alignment was assessed by comparing the observed correlation to a 
distribution (𝑛 = 1000) of correlations obtained after shuffling one of the selectivity 
vectors; (2) learning-induced effects in selectivity alignment were assessed by 
comparing the observed difference in alignment between stage 1 and stage 4 to a 
distribution of differences computed after randomly shuffling neurons between stage 
1 and 4.  
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Learning shapes neural geometry in the prefrontal cortex 
Supplementary materials  
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Section 1.1: How to set selectivity parameters for optimal XOR decoding 
 

We assume that neural activities 𝒙 of 𝑵 neurons are given by the following regression 
model  

𝒙 = 	𝜷)	 + 𝛿J,J2	𝜷K	 + 𝛿!,!2	𝜷L	 +	𝛿J,J2	𝛿!,!2	𝜷M + 𝜼 
(1) 

Where  𝜷K	, 𝜷L	, 𝜷M are the regression ‘coefficients’ for colour, shape, and the interaction 
term, respectively, 𝛿J,J2	 = 1 if the colour 𝑐 is colour 1 and -1 otherwise (same for 𝛿!,!2	 
for shapes 𝑠), and 𝜼~	𝒩(𝟎, 𝚺'). Therefore,  
 

𝒙|𝑟'	~	𝒩(𝝁32	 , 𝚺') 
 (2) 

𝒙|𝑟,	~	𝒩(𝝁33	 , 𝚺,). 
(3) 

Where 𝑟'	 is one XOR condition (i.e., 𝑐 = 1, 𝑠 = 1 or  𝑐 = 2, 𝑠 = 2) and 𝑟,	 is the other 
XOR condition (i.e., 𝑐 = 1, 𝑠 = 2 or  𝑐 = 2, 𝑠 = 1) and 𝚺, is some noise covariance 
matrix. Note that with the inclusion of the interaction term, it is sufficient to separate 
the two XOR conditions. We now calculate 𝝁32	 and 𝝁33	: 
 

𝝁33	 =	
𝜷)	 + 𝜷K	 + 𝜷L	 +	𝜷M

2 +
𝜷)	 − 𝜷K	 − 𝜷L	 +	𝜷M

2 	 

= 𝜷)	 + 𝜷M	 
(4) 

 
and, 

𝝁33	 =	
𝜷)	 − 𝜷K	 + 𝜷L	 −	𝜷M

2 +
𝜷)	 + 𝜷K	 − 𝜷L	 −	𝜷M

2 	 

= 𝜷)	 − 𝜷M	 
(5) 

 
Therefore, 
 

𝒙|𝑟'	~	𝒩(𝜷)	 +	𝜷M , 𝚺,) 
(6) 

 
𝒙|𝑟,	~	𝒩(𝜷)	 −	𝜷M , 𝚺,). 

(7) 
 
Therefore, we need 𝜷M > 0 to be able to separate the two XOR conditions. 
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Section 1.2: An energy cost on unnecessary neural activity 
 
If we also consider minimising the squared norm of neural activity for each condition 
(i.e., an energy cost), we have 
 

𝔼 �|𝒙J,!|
,� = 𝔼�𝒙J,!�

N	𝔼�𝒙J,!� + Tr(𝚺') 
(8) 

 
where the subscripts 𝑐 and 𝑠 correspond to colour and shape indices, respectively. 
Therefore, 

𝔼 �|𝒙',,|
,� = (𝜷) − 𝜷K + 𝜷L − 𝜷M)N	(𝜷) − 𝜷K + 𝜷L − 𝜷M) + Tr(𝚺') 

(9) 

𝔼 �|𝒙,,'|
,� = (𝜷) + 𝜷K − 𝜷L − 𝜷M)N	(𝜷) + 𝜷K − 	𝜷L − 𝜷M) + Tr(𝚺') 

(10) 

𝔼 �|𝒙','|
,� = (𝜷) − 𝜷K − 𝜷L + 𝜷M)N	(𝜷) − 𝜷K − 𝜷L + 𝜷M) + Tr(𝚺') 

(11) 

𝔼 �|𝒙,,,|
,� = (𝜷) + 𝜷K + 𝜷L + 𝜷M)N	(𝜷) + 𝜷K + 𝜷L + 𝜷M) + Tr(𝚺') 

(12) 

Therefore, the total mean energy cost 𝑚 is given by 

𝑚	 =
1
4	 � � 𝔼�|𝒙J,!|

,�
!O',,JO',,

 

(13) 
=	𝜷)

N𝜷) +	𝜷K
N𝜷K +	𝜷L

N𝜷L +	𝜷M
N𝜷M 	+ Tr(𝚺') 

(14) 
=	‖𝜷)‖, +	‖𝜷K‖, +	‖𝜷L‖, +	‖𝜷M‖, + Tr(𝚺') 

(15) 
 
To minimise 𝑚 while keeping 𝜷M > 0, which we need for performance, we can set 
𝜷) = 𝜷K = 𝜷L = 𝟎		which gives  
 

𝑚	 = 	‖𝜷M‖, 	+ Tr(𝚺') 
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(16) 
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Section 2: supplementary figures  
 
 

Supplementary figure 1. Different solutions to the discriminability-generalisability trade-off 
when a new stimulus set is being learnt. Low-dimensional representations are more likely to support 
high generalisability. When the task representation is high-dimensional (left), aligning new with old 
stimuli becomes a harder problem as all task variables must be jointly aligned; in this case, it is not 
trivial that the XOR discriminant from one task would correctly differentiate the XOR feature in the 
second task, particularly if high discriminability of the remaining variables is to be maintained. By 
contrast, when the neural code is low-dimensional (right), both tasks can more readily be aligned to a 
common axis, enabling a shared XOR discriminant that generalises across tasks.  
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Supplementary figure 2. Optimised feedforward networks converge to the minimal XOR 
selectivity model. Twenty feedforward networks were trained (10 with high levels of regularisation and 
10 with no regularisation) to perform the XOR task. a, b, Selectivity observed in no and high 
regularisation networks, respectively; models of random (red ellipses) and minimal selectivity (blue 
ellipses) well approximated the observed selectivity. c, d, After training, low regularisation networks 
converged on a random mixed selectivity regime and high regularisation networks on a minimal XOR 
regime. e, post-training XOR decoding (linear SVM) for both no and high regularisation models. f, No 
regularisation models exhibited substantially lower metabolic cost (cf. Supp. materials eq. 8). g, h, 
Colour and shape decoding (linear SVM) for no and high regularisation models, respectively. i, j, 
Comparison of XOR decoding obtained from minimal and random generative models as a function of 
population size (i) and noise (𝜎) levels (j). Dashed grey line shows chance-level decoding.  
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Supplementary figure 3. Predictions from random mixed and minimal selectivity models.  a, Each 
neuron can be represented as a point in the 3-dimensional selectivity space spanned by colour, shape, 
and XOR (their interaction). In the random mixed model, selectivity is distributed according to a 
spherical Gaussian distribution in this space (Methods, generative models); the covariance matrix is 
computed between the selectivity coefficients. b, Analogous to a but for the minimal model; neurons 
are selective only for the XOR (interaction between colour and shape), as this is the only feature that is 
necessary to solve the task.  c, Relative distance between the covariance matrices of either the random 
(red), minimal (blue) or the model with varying proportions of minimal selectivity (black) to the random 
selectivity model. d, Same as panel c but the distance is calculated relative to the minimal selectivity 
model. Red and blue error bars show standard deviations (±1	𝑠. 𝑑. over 1000 randomly drawn models; 
see Methods, measuring similarity between selectivity distributions) of the relative Euclidean distance 
between the covariance matrix of the random and the minimal model (with matched total variance to 
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the data; standard deviation of random-to-minimal distance is too small to be visible; red) and relative 
Euclidean distance between the covariance matrix expected from two randomly drawn minimal models 
(blue); black error bars show the standard deviation of the relative distance between the surrogate 
covariance (with varying proportions of minimal selectivity) and random covariance (±1	𝑠. 𝑑. over 1000 
random models). e, Mean (over 100 models) decoding of task variables for the random (red) and 
minimal (blue) models. Dashed grey line shows chance-level decoding. f, Mean (over 100 models) 
cross-generalised decoding of task variables for the random (red) and minimal (blue) models. Dashed 
grey line shows chance-level decoding. g, h, Relationship between high XOR cross-gen. decoding and 
below chance colour cross-gen. decoding. The clustering of all rewarded trials (XOR == True) and non-
rewarded trials (XOR == False) on opposite sides of an axis (representing the abstract XOR) results in 
high cross-gen. decoding for the XOR (g). Consequently, colour exhibits below-chance cross-gen. 
decoding. This occurs because some colour decoding axes are inverted between training and testing 
splits, leading to 0% accuracy scores (h; left), while others assign a single class label to all examples 
when testing, resulting in a 50% score (h; right). The same argument holds for shape. 
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Supplementary figure 4. Decoding of task variables as a function of learning and behaviour in 
experiment 1. a , b, The animals could adopt two possible strategies to learn the task: (a) memorising 
every stimulus–outcome pairing, or (b) using a hierarchical strategy in which colour served as a first-
order policy cue, guiding subsequent context-dependent processing of shape. To differentiate between 
these strategies, colour and shape switch costs were computed. c, Shape switch costs: trial termination 
rates were compared between trials in which the shape changed vs. remained the same on consecutive 
trials. d, Analogous illustration but for colour switch costs. e, f, g, Trial termination switch costs for 
colour, shape, and the difference between colour switch costs and shape switch costs, plotted as a 
function of learning stage. h, variance explained (ratio) by the first principal component plotted as a 
function of learning (see Methods, principal component analysis for details). i-o, Analogous to Figure 2 
but run on sessions sorted by proportion of adaptive trial termination (TT); statistical tests were 
conducted on firing rates averaged over the time window indicated in pale orange. p, r, s, Temporally 
resolved cross-generalised decoding of XOR(p), colour(r), and shape(s) in stage 1 and stage 4; the 
pale orange shaded areas indicate the time window in which statistical tests were run. All p-values were 
calculated from permutation tests (***, 𝑝	 < 	0.01; **, 𝑝	 < 0.01; *, 𝑝	 < 	0.05; †, 𝑝	 < 	0.01; 𝑛. 𝑠., not 
significant).   
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Supplementary figure 5. The re-analysis of Constantinidis et al.25–27 dataset. We employed the 
same analysis methods as in Fig. 2 to test whether the PFC activity reported in Constantinidis et al. 
converged on a minimal XOR model. a, the covariance matrix describing relations between the 
selectivity for stimulus 1, stimulus 2 and their interaction (XOR) in the pre-learning phase of the 
experiment. b, Same as panel a but post learning. c, Relative Euclidean distance between the 
covariance matrix of observed selectivity coefficients  over learning and the covariance matrix expected 
from random selectivity (with matched total variance) (Methods, measuring similarity between selectivity 
distributions). d, Same as panel c but we show the relative distance from the covariance matrix 
expected from minimal selectivity (with matched total variance). e, Decoding of task variables for pre- 
and post-learning stages. f, Cross-generalised decoding of task variables plotted as a function of 
learning. g, h, Learning-induced accuracy differences in decoding and cross-generalised decoding, 
respectively. Shaded areas in e-h illustrate chance-level decoding obtained by shuffling trial labels (for 
details see Methods, statistical testing). All p-values were calculated from permutation tests (***, p < 
0.01; **, p <0.01; *, p < 0.05; n.s., not significant). 
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Supplementary figure 6. Hypothesised effects of learning on neural geometry and selectivity in 
the prefrontal cortex in experiment 2. Like in Figure 1, learning is depicted as reducing neural 
dimensionality, changing how many strong linear decoding axes can be implemented on neural firing 
rates (discriminability). a, A high-dimensional regime allows the strong separation of all task features 
using three possible readout axes (left), whereas a low-dimensional representation only allows task-
relevant features to be strongly separated (right). b, Each neuron can be represented as a point in the 
3-dimensional selectivity space spanned by stimulus set, stimulus set x context (XOR 2), and context 
(Fig. 3b). In the random model, selectivity is distributed according to a spherical Gaussian distribution 
in this space (Methods, generative models); the covariance matrix is computed between the selectivity 
coefficients; zero-mean Gaussian noise (𝜎	 = 	0.7) was added to each selectivity coefficient to illustrate 
measurement bias under finite sampling.  c, Analogous to b but for the minimal model; neurons are 
strongly selective only for the context, as this is the only feature that is necessary to solve the task. 
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Supplementary figure 7. Decoding and selectivity results in experiment 2. a-c, Temporally 
resolved linear SVM decoding for shape, XOR and width; the pale orange shaded areas indicate the 
time window in which statistical tests were run. Horizontal dotted lines represent chance-level decoding 
whereas vertical dotted lines indicate the onset of the colour, shape and the trial outcome. d, Temporally 
resolved cross-generalised decoding of width (trained on set 1 and tested on set 2 (and vice-versa)). e, 
Context cross-set generalisation results remain consistent across different learning discretisations; 
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analogues to Figure 4d computed for 3, 4 (original), 5 and 6 learning stages (see Methods, data 
acquisition and pre-processing for details). f, Cross-set context generalisation normalised by linear 
context decoding (cf. panel e, black vs grey lines). Cross-set generalisation performance is expressed 
as a proportion of linear context decoding (ceiling) across learning stages. Positive values indicate 
geometries in which colour 1 vs colour 2 generalises to colour 3 vs colour 4, whereas negative values 
indicate the flipped geometry (colour 1 vs colour 2 generalises to colour 4 vs colour 3). Grey shaded 
areas indicate the null distribution obtained by shuffling trial labels. g,h, Analogous to e-f but computed 
for shape cross-set generalisation. i,j, Analogous to e-f but computed for XOR cross-set generalisation. 
All p-values were calculated from permutation tests (***, 𝑝	 < 	0.01; **, 𝑝	 < 0.01; *, 𝑝	 < 	0.05; †, 𝑝	 <
	0.01; 𝑛. 𝑠., not significant).   
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Supplementary figure 8. Electrode locations in monkey 1 (a) and monkey 2 (b) and their 
comparison (c).  
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Supplementary figure 9. Linear regression recovers underlying generative models. a, Pearson 
correlation and R2 computed between the covariance matrix of recovered selectivity and true underlying 
selectivity (when minimal generative model was used) for different levels of noise. b, Selectivity 
coefficients obtained after running a linear regression plotted for each unit in selectivity space (for σ =
2); minimal model overlaid in blue; covariance matrix computed between the recovered selectivity 
coefficients. c,d, Analogous to a,b but when the random model was used to generate data; random 
model overlaid in red. Shaded areas in a and c indicate the mean ±1	𝑠. 𝑑. computed over 100 different 
initialisations.  
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Supplementary figure 10. Schematic depiction of shattering dimensionality in the XOR task in 
experiment 1. a. Colour, shape, and width form a cube in the input space, with each of the 8 vertices 
representing a unique combination of these input variables. b. The vertices can be divided into two 
equally sized groups of four vertices each, representing a binary classification problem. c. All 35 
theoretically possible binary problems (red vs. green vertices) are obtained by randomly splitting the 
vertices into two equally sized groups. Dimensions 1, 10, 15, and 21 correspond to colour, shape, XOR, 
and width, respectively. The grey and white backgrounds indicate whether a dimension is linear (can 
be split by a plane, e.g. dimension 1) or nonlinear (cannot be split by a plane, e.g. dimension 3), 
respectively. Colour intensity corresponds to spatial depth, with solid colours signifying vertices closer 
to the viewer and pale colours signifying those farther away. 
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Supplementary figure 11. Schematic depiction of cross-generalised decoding of the variables. 
a. Colour (blue vs green), shape (diamond vs square), and width (narrow vs broad) form a cube in the 
input space, with each of the 8 vertices representing a unique combination of these input variables. b, 
To test whether a variable is encoded in an abstract format relative to a single variable, two binary linear 
classification problem were defined. Firstly, a classifier was trained on differentiating that variable (e.g. 
colour) only on a subset of trials (e.g., diamond shape trials). Next, this classifier was tested on the 
remaining subset of trials (e.g., square shape trials). For example, a high score obtained from such a 
decoding procedure indicates that the same representation of colour was used as a function of different 
levels of shape, a hallmark of abstract coding.  c, To test whether a variable (e.g., colour) has an 
abstract format relative to all remaining task variables, this procedure needs to be repeated for all 
possible train and test splits (when colour 1 is always on the left and colour 2 is always on the right side 
of the cube). These 36 scores are then averaged to obtain cross-generalised decoding of colour. Some 
of the test-train splits correspond to task variables like shape, width and XOR (grey background) while 
others represent a mixture of input variables.    
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Supplementary figure 12. The precision of Euclidean distance, symmetric KL estimate and 
PAIRS metrics in tracking learning-induced changes to neural selectivity. a, Relative Euclidean 
distance between the covariance matrix of selectivity coefficients obtained from a simulated mixed 
population (random-minimal) and the covariance matrix expected from pure random selectivity plotted 
as a function of minimal selectivity proportions (0-100%; for details see methods, measuring similarity 
between selectivity distributions). Coloured annotations indicate mean R2 values computed between 
the true proportions (dotted lines) and estimated proportions (coloured bold lines). b, Same as panel a 
but we show the relative distance from the covariance matrix expected from minimal selectivity; shaded 
areas illustrate mean ±1	𝑠. 𝑑. for each of the metrics computed from 1000 randomly drawn selectivity 
models. c, d Selectivity results from experiment 1(Fig. 2m,n) computed using symmetric KL divergence 
estimate. e, f Selectivity results from experiment 1(Fig. 2m,n) computed using the PAIRS metric.  
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