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Abstract— State-dependent networked dynamic systems are
ones where the interconnections between agents change as a
function of the states of the agents. Such systems are highly
nonlinear, and a cohesive strategy for their control is lacking
in the literature. In this paper, we present two techniques
pertaining to the density control of such systems. Agent states
are initially distributed according to some density, and a
feedback law is designed to move the agents to a target density
profile. We use optimal mass transport to design a feedforward
control law propelling the agents towards this target density.
Kernel density estimation, with constraints imposed by the
state-dependent dynamics, is then used to allow each agent
to estimate the local density of the agents.

I. INTRODUCTION
Networked dynamic systems arise in many synthetic and

natural systems in science and engineering [1]; in particular
multi-agent systems offer an interesting control paradigm.
Each agent augments the system with an additional (local)
computational resource, motivating the concept of distributed
controllers & estimators [2], [3], [4], leading to a notion of
local control versus global control. The latter seeks to design
control laws to guide groups of agents to a desired objective,
and the former seeks to design on-board controllers for each
agent to facilitate their role in the global control law.

A class of the more widely used local control laws is
called consensus, where each agent averages data from
their neighbours to compute a parameter related to their
objective – for example, heading, position or a formation
center [1], [5], [6]. The attractive feature of consensus is
how the interconnections between agents – the so-called
network or graph topology – affect the performance and
agreement characteristics of the algorithm [7], [8]. Graph-
theoretic characteristics, such as symmetry, structural balance
and graph spectra provide additional insights into the control-
theoretic behaviour of consensus [9], [10], [11], [12], [13].

Global controllers for multi-agent systems take many
forms [14], eg., potential field approaches [15], smoothed
particle hydrodynamics [16] and density control [17]. In [18],
[19], density control with only relative measurements of
position between agents is considered, and mean-field control
is used to tackle multi-agent interactions by considering a
mass flow in the large-N limit [20], [21], [22].

The main interest area of the current paper is net-
worked dynamic systems in which the underlying network
is time-varying. Examples of such systems are switching
and proximity-based consensus [1], [6], [23] and the Vicsek
flocking model [24]. State-dependency refers to networks in
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which the underlying graph varies based on the state of the
nodes. State-dependent networks have been considered in [7],
[20], [22], [25], [26], [27], [28], but few underlying princi-
ples for designing controllers to account for this difficult
nonlinearity has been proposed. A wide range of real-life
networked systems are state-dependent.

To tackle this problem, we propose a twofold extension
of the work in [17]. First, we consider state-dependent
networked dynamic systems, instead of single-integrator
dynamics. Second, we propose a control method for these
systems by using a feedback-based density control law that
utilizes optimal mass transport (OMT). OMT was considered
for linear systems in [29], non-linear systems in [30] and
for density tracking of non-interacting agents in [31]. Our
contribution considers OMT for multi-agent systems, in
particular ones with state-dependent dynamics.

In the OMT problem, the initial and final densities ρ0 & ρ1
of the agents are specified. The solution to the problem yields
a time-dependent density profile with boundary conditions
imposed by ρ0, ρ1, and a velocity field that together satisfy
the continuity equation.

We aim to use this velocity field as a feedforward control
input to the state-dependent multi-agent system, coupled with
a density control feedback law. Using a modified form of
kernel density estimation (KDE) that takes into account the
state-dependent dynamics, we will show that the combination
of the two control techniques will allow us to propose
a physically realizable control strategy for state-dependent
networked dynamic systems.

This paper is organized as follows. The mathematical
preliminaries, including notation, optimal mass transport, and
density control with the KDE procedure are reviewed in §II.
The problem statement and paper contributions are outlined
in §III. We present the feedforward controller based on OMT
in §IV, and the state-dependent KDE in §V. Examples are
provided in §VI, and the paper is concluded in §VII.

II. MATHEMATICAL PRELIMINARIES AND
BACKGROUND

A. Mathematical Notation
We follow the standard graph theory notation listed in [1].

A measure space (Σ,A, µ) is a triple containing a sample
space Σ ⊂ Rn, a σ-algebra of subsets of Σ, and a measure
µ that assigns the ‘size’ µ(A) ∈ R+ to a set A ∈ A. The
Borel σ-algebra B is generated from the countable unions,
intersections and complements of open subsets of Rn. The
Lebesgue measure λ assigns to a closed interval [a, b] ⊂ R
the ‘size’ b− a; this can be extended to Rn by considering
products of measures. A measure µ is called absolutely
continuous with respect to a measure ν if ν(A) = 0 =⇒
µ(A) = 0 for A ∈ A; µ is called Lebesgue absolutely
continuous if ν = λ. This is denoted µ � ν. If µ � ν,
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there exists a function f : R→ R+ called a Radon-Nikodym
derivative, or density, of µ with respect to ν. It is denoted
f := dµ

dν , and satisfies the property that for all A ∈ A,
µ(A) =

∫
A
fdν. Let π(x, y) be a joint measure on X × Y .

We denote the set of such joint measures π by P (X ,Y). The
marginal πx of π on X is defined as the push-forward under
the projection map X on X : πx = X#π, where X(x, y) = x.
Similarly, the marginal πy of π on Y is given by πy = Y#π,
where Y (x, y) = y. We denote the convolution of two
functions f, g as f ? g, or the convolution of a function f
and measure µ as f ? µ.

B. Optimal Mass Transport
Informally speaking, the optimal mass transport problem

is to find a mapping between two densities that minimizes
some cost. Formally speaking, we consider two measures1

µ0, µ1 on Rn with equal mass:
∫
Rn dµ0 =

∫
Rn dµ1. The

optimal mass transport problem [32], [33] is to find a
measurable map T : Rn → Rn taking µ0 to µ1 via the
following optimization problem:

minimize
∫
Rn c (x, T (x)) dµ0(x)

subject to
∫
x∈A dµ1(x) =

∫
T (x)∈A dµ0(x),∀A ⊂ Rn,(1)

where c is a cost function depending on the initial and
transported masses. The constraint in Problem (1) means
that µ1 is the push-forward measure of µ0 under the map
T , in that for each Borel set B ∈ B := σ(Rn), we have that
µ1(B) = µ0

(
T−1(B)

)
. This is denoted as T#µ0 = µ1.

A generalization of Problem (1) by Kantorovich is able to
pick out the optimal map T , if it exists, for a certain class
of costs c under the assumption of absolute continuity of the
measures [34]. Here, we consider a joint distribution π(x, y)
on Rn × Rn and solve for the optimal admissible measure
π given some cost c(x, y).

The set of admissible measures π are those whose
marginals are µ0 and µ1: X#π = µ0, Y#π = µ1. This
is equivalent to requiring

π(A× Rn) = µ0(A), π(Rn ×B) = µ1(B) (2)

for all measurable A ⊂ Rn and B ⊂ Rn. The Kantorovich
relaxed optimal mass transport problem [34] is given by

minimize
∫
Rn×Rn c(x, y)dπ(x, y)

subject to π ∈ {π ∈ P (Rn,Rn) s.t. (2) holds} . (3)

Proposition 1 ([32], [33]): For quadratic costs c(x, y) =
‖x− y‖2, the support of the optimal joint measure π∗(x, y)
of Problem (3) is exactly the graph of the optimal map T ∗(x)
minimizing Problem (1).

For quadratic costs, Benamou and Brenier formulated an
equivalent problem in terms of a constrained fluid mechanics
model.

Proposition 2 ([35]): Given Lebesgue absolutely contin-
uous µ0, µ1 with Radon-Nikodym densities ρ0, ρ1 respec-
tively, Problem (3) with quadratic costs is equivalent to

infρ,v
∫
Rn

∫ 1

0
1
2‖v(t, x)‖2ρ(t, x)dtdx

subject to ∂ρ
∂t +∇ · (vρ) = 0

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y).

(4)

1If the measures are Lebesgue absolutely continuous, one can equivalently
consider densities ρ0, ρ1.

Furthermore, the solution to Problem (4) is of the form
v(t, x) = ∇ϕ(t, x), where ϕ(t, x) is the Lagrange multiplier
of the constraints and the solution to the Hamilton-Jacobi
equation ∂tφ+ 1

2 |∇φ|
2 = 0.

Remark 1: The optimal map T ∗ of Problem (3) in the case
of quadratic costs can be reconstructed from the variable
v(t, x) from the solution of Problem (4). This formally
establishes the equivalence stated in Proposition 2 [35].

C. Density Control and Kernel Density Estimation
In [17], a feedback control law to drive a group of

single-integrator agents to a desired density profile ρ1(x, t)
was analyzed. The following feedback law is proposed to
compute the velocity field as a function of the error in density
Φ(x, t) := ρ(x, t)− ρ1(x) as

v(x, t) = −α ∇Φ(x, t)

ρ(x, t)
. (5)

Density control of multi-agent systems is impacted by
the ability of individual agents to discern the local density
profile from measurements of their neighbours. Since the
number of agents is finite, the local density profile must be
approximated from finitely many samples ri(t).

This can be accomplished using kernel density estima-
tion [36], [37]. The kernel density estimate ρ̂(t, x) at any
point x ∈ Rn and time t ∈ R+ is given by

ρ̂(t, x) =

∫
Rn

[
d∏
k=1

1

hk
K

(
x[k] − ξ[k]

hk

)]
dPN (t, ξ). (6)

Here, K : R→ R is called the smoothing kernel, hk is called
the smoothing parameter, and dPN (t, ξ) is a sum of Dirac
measures at sample points:

dPN (t, ξ) =
1

N

∑
r(t)∈S(t)

δ (ξ − r(t)) dξ.

Since δ(·) is the Dirac delta functional, Equation (6) can be
written as

ρ̂(t, x) =
1

N

N∑
i=1

[
d∏
k=1

1

hk
K

(
x[k] − r[k]i

hk

)]
.

The control law (5) then uses the estimate ρ̂(x, t) in place
of knowledge of the true density ρ(x, t), where the sample
points r(t) are taken to be the agent states:

v(x, t) = −α∇(ρ̂(x, t)− ρ1(x))

ρ̂(x, t)
.

In [17], Gaussian kernels were used – this induces an
all-to-all communication; every agent is able to sample
the position every other agent. The control law (5) has a
convergence guarantee listed in Theorem 6 of [17].

III. PROBLEM STATEMENT AND
CONTRIBUTIONS

In this paper, we consider state-dependent networked dy-
namic systems with N agents on a bounded region R ⊂ Rn,
where the ith agent’s state evolves according to the dynamics

ẋi = f(G(x), x) +Bui(x, t), x := (x1, . . . , xn).



OMT Swarm
ρ(x, t)

KDE

v(x, t) x

ρ̂(x, t)

Fig. 1: Block diagram of density control scheme

A prototypical example of such a system is state-dependent
consensus

ẋi =
∑
j 6=i

A(xi, xj) · (xi − xj) + ui, (7)

where the edge weight wij := A(xi, xj) changes depending
on the state of the agent i and its neighbour j. In general,
one can consider an interaction kernel H(x) that generates
a consensus-like dynamics by convolution with the Dirac
measure supported at agent states [20], [22]:

µN (x) =
1

N

N∑
j=1

1{xj}(x) =
1

N

N∑
j=1

δ(x− xj). (8)

Using Equation (8), we can write a general multi-agent
system as

ẋi = (H ? µN ) (xi) + ui.

A simple example motivated by robotics is proximity-based
edge switching, where A(xi, xj) = 1 if ‖xi − xj‖ ≤ r and
0 otherwise, where r is some communication radius. This
corresponds to an interaction kernel H(x) = x1‖x‖≤r(x).

As the number of agents N grows sufficiently large, one
can consider the time-dependent density of agents ρ(x, t)
over a region of the state space. In the context of mean-
field control, the formal large-N limit of the dynamics (7)
produces the mean field dynamics [20], [22],

∂ρ

∂t
+∇x · [(P(ρ(x, t), t) + u) ρ] = 0

P(ρ(x, t), x) =
∫
A(x, y)(y − x)ρ(y, t)dy.

(9)

We now state the contributions of this paper, namely the
feedforward OMT scheme with kernel density estimation
shown in Figure 1.

Contribution 1: Feed-Forward Density Control With Opti-
mal Mass Transport.

We consider a generalization of the Brenier-Benamou
OMT problem (4) with the continuity equation constraint
replaced by the mean-field dynamics (9):

infρ,v
∫ ∫ 1

0
1
2‖v(t, x)‖2ρ(t, x)dtdx

subject to ∂tρ+∇x · [(P(ρ(x, t), x) + v) ρ] = 0

P(ρ(x, t), x) =
∫
A(x, y)(y − x)ρ(y, t)dy

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y).

(10)

The solution to Problem (10) yields two variables with
important physical interpretations. The time-varying density
ρ(t, x) represents the mass of agents with dynamics (7)
with inputs ui(x, t) := v(xi, t); the velocity field v(x, t) is
precisely the input ui given to agent i at position x at time
t.

Problem (10) assumes that the initial and final masses of
agents are distributed in the mean-field limit according to

densities ρ0 and ρ1, respectively. When considering finitely
many agents, any initial density will take the form of
Equation (8) - namely, it will be a Dirac measure supported
at the agent states, also called the empirical density.

Hence, in general, the boundary conditions on the density
in Problem (10) can be either deterministic (in the case of
Dirac measures supported at the agent states), or probabal-
istic (in the sense that the initial/final agent states xi(0) and
xi(1) are randomly distributed according to the densities ρ0
and ρ1). In the latter case, as N → ∞, the Dirac measure
supported at the agent states at time t converges in a formal
sense to the density ρ(·, t) [20], [22].

In either case, we consider the velocity field v(x, t) as a
feed-forward input to the dynamics (7). Since the number
of agents is finite, the empirical density at time t will
only approximate the density ρ(x, t) from the solution of
Problem (10).

Contribution 2: Feedback Density Control with Kernel
Density Estimation and State-Dependent Constraints.

In a state-dependent networked dynamic system, eg.,
Equation (7), the existence of an edge indicates some notion
of information transfer between agents. Hence, a physical
estimation scheme and density control law can only allow i
to sample those agents j such that A(xi, xj) 6= 0. The second
contribution of this paper is to extend the KDE procedure
in [17] by solving a quadratic program for an optimal kernel
that takes into account the state-dependent communication
constraints.

IV. FEEDBACK CONTROL OF STATE-DEPENDENT
NETWORKED DYNAMIC SYSTEMS

Consider the state-dependent consensus dynamics (7).
Let v1(x, t) denote the velocity field from the solution to
Problem (10), and let v2(x, t) denote the velocity field from
the control law (5). Our proposed control law is then given
by the velocity field (with α > 0),

u(x, t) =

v1(x, t)− α∇ (ρ(x, t)− ρ1(x))

ρ(x, t)
0 ≤ t ≤ 1

v2(x, t)− P(µ(x, t), x) t ≥ 1

(11)

P(µ(x, t), x) =

∫
A(x, y)(y − x)µ(y, t)dy.

Of course, the switch at t = 1 is completely arbitrary, and
can be altered by changing the time horizon of Problem (10).

The main result of this section is the following theorem,
an extension of Theorem 6 in [17]. Informally, it states that
as the number of agents in the system tends as N → ∞,
the velocities of the agents performing the state-dependent
control law (11) will vanish asymptotically.

Theorem 1: Consider a system of N agents S(t) on a
bounded region R ⊂ Rn with individual dynamics given
by (7) and with control law (11). Further suppose that
the initial swarm density ρ(x, t) and target density ρ1(x)
satisfy the boundary condition ∇Φ(x, t) = 0 on ∂R. As
t → ∞, for sufficiently large N the error density Φ(x, t)
converges to zero: limt→∞ Φ(x, t) = 0, for x ∈ R and so
ρ̂(x, t) → ρ1(x). Furthermore, the velocities of all agents
vanish asymptotically: limt→∞ ẋ(t) = 0, for x ∈ R.
The proof is discussed in the Appendix.



Fig. 2: Illustration of (proximity-based) state-dependent con-
straints on the KDE procedure. Dotted lines indicate samples
the center agent cannot measure.

V. DENSITY ESTIMATION FOR KERNELS
WITH COMPACT SUPPORT

Consider a state-dependent consensus dynamics as in
Equation (7) where A(xi, xj) is a state-dependent edge
weight. In order to implement the density control law, each
agent must be able to estimate the density of nearby agents to
generate the correct velocity field. In this section, we discuss
optimal kernels designed to achieve this task that are subject
to the state-dependent constraints imposed by A(xi, xj).

The state-dependent constraints in some (informal) sense
denote ‘information transfer’ between agents i and j. If
Aij = 0, then agents i and j cannot detect each other, and the
KDE procedure should reflect this. To illustrate this notion,
consider Figure 2.

In 1D kernel density estimation, there are two parameters
selected a priori that influence the quality of the estimated
probability density function, namely the kernel K and the
smoothing parameter h. We consider an optimal selection
of K subject to the state-dependent constraints; we leave
the task of selecting h for future work. For now, we just
need the following assumption on h as a function of the
number of samples: limN→∞Nh(N) = ∞. The standard
metric for measuring the quality of the estimated probability
density function is given by the mean integrated square error
EMISE := E

[∫
(ρ̂(x)− ρ(x)) dx

]
.

By extracting out the dependence on the number of sam-
ples N , and the choice of smoothing parameter h, one can
obtain the asymptotic mean integrated square error (AMISE)
[36]: EMISE := EAMISE + o

(
(hn)−1 + h4

)
. One can factor

the AMISE into a product of two terms, one depending on
h and one depending on K: EAMISE = C1(K)C2(h), where

C1(K) :=

[(∫
K(x)2dx

)4(∫
x2K(x)dx

)2
]1/5

.

Hence, by fixing a :=
∫
x2K(x)dx depending on the

length of the boundary of our estimation horizon, the
only parameter left to optimize is the roughness of K(x):∫
K(x)2dx. We can write an optimization problem as fol-

lows:

minimize
∫
K(x)2dx

subject to
∫
K(x) = 1,

∫
xK(x) = 0∫

x2K(x) = a2 <∞, K(x) ≥ 0.
(12)

In one dimension, the solution to Problem (12) is given by
[36],

Ka(x) =
3

4

1

a
√

5

[
1−

(
x

a
√

5

)2
]
1{|x|≤a

√
5}. (13)
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Fig. 3: Optimal kernels with unconstrained support, and sup-
port constrained to [−2, 2] \ [1/4, 3/4], with second moment
a = 5−1/2. The unconstrained kernel solution is exactly
given by Equation (13).

We wish to find the solution to a modified version of this
problem where we enforce a compact support constraint
of the form {K(x) = 0, x ∈ A, Ac compact}. To this
end, notice that Problem (12) can be numerically solved by
discretizing it as follows.

Denote the region of the problem as X = {x : |x| ≤ B}.
Discretize X into N points spaced dx apart. Let the vector
x := {xi}Ni=1 ∈ [−B,B]N consist of these points, and let
k := {ki}Ni=1 be the vector of the kernel K evaluated at these
points, i.e. ki = K(xi). Discretizing the integrals yields a
quadratic program of the form:

minimize kT k

subject to
∑N
i=1 kidx = 1,

∑N
i=1 xiki = 0∑N

i=1 x
2
i kidx = a2, ki ≥ 0, 1 ≤ i ≤ N.

(14)

As discussed before, an agent’s state-dependent density
estimate will depend on sampling points from agents that
have an edge between them. Hence, in the density estimate
for agent i, the kernel K will only depend upon the state of
agent i and its neighbours Ni. The density estimate of agent
i is written as

ρ̂i(t, x(t)) =
1

Nhd

∑
j∈Ni

[
d∏
k=1

Ki

(
xi(t)− xj(t)

h
, xj

)]
where the support of the kernel is restricted to the support
of the state-dependent edge weight A(xi, xj):

A(xi, xj) = 0 =⇒ K(h−1(xi − xj), xj) = 0.

To extend Problem (14) to multi-dimensional systems, we
consider multiplicative kernels for xi ∈ Rn, where each di-
mension is estimated independently: K(x) =

∏N
k=1Kk(xk).

This yields the final optimal kernel problem with compact
support constraint. For brevity, we show the explicit form for
the 2D problem, as it is clear (yet notationally cumbersome)
how to write the general ND problem:

minimize
∑Nx

i

∑Ny

j k2ij
subject to

∑Nx

i=1

∑Ny

j=1 kijdxdy = 1, kij ≥ 0, ∀i, j∑Nx

i=1 xikij = 0,
∑Nx

i=1 x
2
i kijdx = a2, ∀j∑Ny

j=1 yjkij = 0,
∑Ny

j=1 y
2
jkijdx = a2, ∀i

kij = 0 if (xi, yj) ∈ A, Ac compact.

It is important to note that removing a compact inter-
val from the kernel may bias the density estimate - this



Fig. 4: Left: Initial density ρ0. Right: Target density ρ1.

Fig. 5: Optimal density profiles over time, and superimposed
agent states using the feedback density control law.

is unavoidable. The compact support constraint defines a
selection-biased distribution (SBD); each agent samples the
distribution g(x) = w(x)ρ(x)/µ, with w(x) = 1Ac(x), µ =∫
w(x)ρ(x)dx. The standard unbiased kernel density esti-

mate of a SBD involves multiplying the kernel by a factor
of µ/w(x) [38], [39], which is unbounded for our choice of
w(x). Techniques for unbiasing ρ̂(x) will be left for future
work.

VI. EXAMPLES

We numerically simulate N = 200 agents with interaction
kernel H(x) = x1‖x‖≤0.01(x). The velocity field P[µ](x) is
evaluated with the Dirac measure (8), effectively yielding N
single-integrator agents that are able to only sample agents
a short distance away from each other.

The optimal mass transport problem was solved using
open-source code, utilizing a primal-dual algorithm [40],
[41]. The density profile and velocity field was calculated
over a 100 × 100 × 100 grid in x, y and t space. The
initial density ρ0(x) was a 2D Gaussian at the center of
a [0, 1]2 grid, and the target density was a ring of 2D
Gaussians, as shown in Figure 4. The superimposed optimal
density profile over time, and the states of the agents over
time integrating the feedback and feedforward control law
are shown in Figure 5. As one can see, the agents are
more organized around the final density distributions when
using the feedback law as opposed to just integrating the
feedforward law, as shown in Figure 6.

VII. CONCLUSION

In this paper, we examined density control of state-
dependent networked dynamic systems. We utilized the opti-
mal mass transport problem to design a feed-forward velocity
field propelling agents with initial conditions sampled from
a density profile ρ0 to some target density ρ1. We then

Fig. 6: Optimal density profiles over time, and superimposed
agent states with only the feedforward control.

tackled the problem of using a density feedback control law
with sparse measurements dictated by the state-dependent
edge switching constraints of the agents. We utilized kernel
density estimation to convert measurements of neighboring
agents into a local estimate of the swarm density, which
was then used to calculate a feedback density control law.
In particular, a quadratic program was designed to find the
optimal kernel subject to the state-dependent edge switching.

There are many open problems remaining, here we discuss
several. First, the selection of an optimal interaction distance
r = h for proximity-based edge switching. This will depend
on, for example, ρ0, ρ1 and N . If h is large, this will
require more on-board computation and sensing capability; if
h is small, agents will be isolated. Second, one can consider
the task of determining a state-dependent kernel yielding an
unbiased estimate of ρ.

APPENDIX
We now state the proof of Theorem 1.

Proof: First, recall the following theorem about con-
sistency of the estimate ρ̂(x, t).

Theorem 2 ([42]): Consider a kernel density estimation
scheme for the target density ρ(x). Suppose the smoothing
parameter h is chosen as a function of the number of samples
N : limN→∞Nh(N) =∞. Then, at each point of continuity
x of ρ, the estimator ρ̂N (x) is weakly consistent in that for
all ε > 0, limN→∞ P (|ρN (x)− ρ(x)| > ε) = 0.
By Theorem 2, under the assumption on the smoothing
parameter h, we have that as N → ∞, ρ̂(t, x) → ρ(t, x)
with probability 1 for any finite t.

Consider the following Lyapunov function:

V (t) =

∫
R

(
ρ(x, t)

α

)2

ẋT ẋ dx. (15)

As N → ∞, the velocity field ẋ approaches the mean-
field limit [20]: ẋ = P(µ, t) + u(x, t), where P(µ, x) =∫
A(x, y)(y − x)µ(y, t)dy, and µ := µ(y, t) is the measure

satisfying ∂t + ∇ · ((P(µ, t) + u(x, t))µ) = 0. Under the
control law (11), it follows that for sufficiently large t, the
Lyapunov function (15) can be written as

V (t) =

∫
R
∇Φ(x, t)T∇Φ(x, t)dx.



The time derivative of V (t) is then given by

V̇ (t) = α

∫
R
ξ(x, t)T∆ξ(x, t)dx,

where ξ(x, t) := ∇Φ(x, t). Since ∇Φ(x, t) = 0 on ∂R, we
have that ξ(x, t) = 0 on ∂R which is a Dirichlet boundary
condition. It follows that V̇ (t) < 0 since the Dirichlet
problem for the Laplace operator has strictly negative eigen-
values [43].

Therefore, by LaSalle’s Invariance Principle, we can con-
clude that limt→∞∇Φ(x, t) = 0, and so limt→∞Φ(x, t) =
constant. However, since ∇Φ(x, t) = 0 on ∂R,
the mass

∫
R Φ(x, t)dx is conserved for all t > 0

(in that
∫
R Φ(x, t)dx = 0) and so we have that∫

R ρ̂(x, t)dx =
∫
R ρ(x, t)dx. Consequently, it follows

that limt→∞Φ(x, t) = 0, and hence limt→∞ ρ(x, t) =
limt→∞ ρ̂(x, t) which completes the proof.
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