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Abstract: The Rayleigh-Plesset equation (RPE) is a nonlinear ordinary differential 

equation (ODE) of second order that governs the dynamics of a spherical bubble and 

plays an essential role in interpreting many real-world phenomena involving the presence 

of bubbles in engineering and medical fields. In the present paper, we present a relatively 

comprehensive analysis of the analytical solutions of the RPE.  The integrability of the 

Rayleigh-Plesset equation is investigated and discussed using the Painlevé test. Lie 

symmetry groups are employed subsequentially to obtain several exact solutions to the 

simplified Rayleigh-Plesset equations. 
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Introduction 

The Rayleigh-Plesset equation (hereafter RPE) and its variants frequently appear in the 

engineering fields with applications to multiphase flows and acoustics (Plesset and 

Prosperetti 1977, Lauterborn and Kurz 2010). It is the equation that governs the dynamics 

of microbubbles, many of which are widely used as ultrasound contrast agents. This 

second-order nonlinear ODE hence is of particular importance to the biomedical imaging 

(Sarkar, Shi et al. 2005, De Jong, Emmer et al. 2009). Although voluminous numerical 

investigations of the RPE have been done in the engineering fields (Lauterborn and Kurz 

2010),  some unexplained phenomena, such as emissions of subharmonics (Faez, Emmer 

et al. 2013) and nonlinear responses of gas bubbles at linear dynamical range (Xia, Paul 

et al. 2014, Xia, Porter et al. 2015), may still require analytical solutions for fully 

understanding its dynamical behaviours. Analytical solutions to the RPE without the 

surface tension term (named Rayleigh equation) were obtained by using hypergeometry 

functions (Kudryashov and Sinelshchikov 2015). The closed-form solution to a 

simplified RPE was also found through Weierstrass elliptic functions (Mancas and Rosu 

2016). In both of these studies, the effect of the viscous term was neglected.  

Due to the symmetries of solvable equations sensitive to the coefficients in differential 

equations, finding systematic methods that guarantee the solvability of arbitrary 

differential equations is not easy (Bryant, Griffiths et al. 1995, Schwarz 2000, Oliveri 



2010, Tiwari, Pandey et al. 2013). Additionally, solvable equations may not admit Lie 

symmetry groups (Muriel and Romero 2011, Morando 2015). These may explain that no 

analytical solution to the RPE (in this paper Eq.(4)) has been found in the literature by far.  

In this paper, we study the integrability and solvability of the RPE with the method of 

Painlevé test and Lie symmetry analysis (Lie group method), and thus focus on the 

second-order ordinary differential equation in a geometric perspective, which is in the 

form of  
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More specifically, we study the Rayleigh-Plesset equation (RPE) for a free gaseous 

bubble in an incompressible liquid, which may be written as (Franc and Michel 2004) 
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where R  is the instantaneous radius of the bubble, 0gP  the pressure inside the gas bubble, 

0R  the initial radius, k  the polytropic constant of the inside gas,   the density of the 

surrounding liquid,   the viscosity of the liquid,   the surface tension of the liquid, and 

( )p t  the excitation pressure. To focus on the mathematical aspect, we non-

dimensionalize the above equation by assuming 0R ,   and 0p  to be characteristic scales 

of bubble radius R ( 0R  ), time t , and pressure p , that is 
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Thus we have the following non-dimensionalized RPE (the star symbol is omitted) 
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where 
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here Re  is the Reynolds number, We  the Webber number, Th  the Thoma cavitation 

number and np  the pressure number. 

Painlevé test 

More than one hundred years ago, the French mathematician Paul Painlevé and his 

colleagues discovered that any second order rational ordinary differential equation 

without movable branching points could be transformed into the following six Painlevé  

equations (Noumi 2004) 
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The solutions to the above equations are called Painlevé transcendents. We can discuss 

the integrability of the RPE by checking if there exist movable singularities. We may 

write the Eq.(4) again in the form of  
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or 
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where 
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According to the principle of Painlevé test, Eq.(7) is globally integrable if the function f  

is rational in R , algebraic in R  and analytic in t . In Eq.(8) f  is not algebraic with 

respect to R  and thus the equation is not globally integrable. Furthermore, an ordinary 

differential equation is said to have Painlevé property if all the movable singularities of 

all its solutions are poles (Baldwin and Hereman 2006). A singularity is movable if it 

depends on the constants of integration of the ODE. We can use Laurent series solutions 

of the differential equation to check if the RPE has Painlevé property. The Laurent series 

is written in the form of  
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where 0 ( ) 0a t   and 0t t = − . The leading order terms (with the lowest exponent of τ) 

will dominate the behaviors of the solution ( )R t . By the analysis of the coefficient of the 

leading term, we can detect if any movable singularities exist. This can be done by 

checking whether the equation is solvable with respect to the leading term of Eq.(9). 

Therefore, substituting the following relation 

 0( )R t a  −=   (10) 

into the RPE Eq.(6), we obtain the following relation for the leading power as  

 ( ) 05 2 0a + =   (11) 

The solution to the above equation is 2 / 5 = − , which is impossible since it has to be an 

integer. As a result, the RPE does not pass the Painlevé test and hence does not have 

Painlevé property.  

Using the Laurent series we can easily see that, in Eq.(6),  the coefficients of the leading 

term are dominant and thus determined by the left-hand side term R and the first term of 

the right-hand side 
23 / 2R R−   because both of them have the lowest exponent of τ. Eq.(6) 

is similar to P3 or P4 of the Painlevé transcendents, but complicated by the coefficients.  It 

suggests that the coefficients of a differential equation play a critical role in solving the 

differential equation analytically. Therefore, the RPE cannot pass the Painlevé test. In the 

following sections, the possible analytical solutions to RPE type equations are discussed 

with using symmetry analysis.  

Symmetry Analysis 



Since looking at the domain and codomain of a given differential equation as a product 

manifold can be naturally generalized to the jet manifold, it provides a more unified and 

concise language to the Lie symmetry method by studying jet bundles and corresponding 

Cartan distributions of the differential equation. We plan to discuss the problem here 

using the machinery of jet bundles. We shall first introduce some basic concepts relevant 

to the present paper, readers who wish to explore more details can go to (Saunders 1989, 

Krasil’shchik and Vinogradov 1999) 

Let ( , , )E M  be a locally trivial smooth bundle over a smooth manifold M , of which 

the set of sections is ( )  { : }Mid    = =  . The r-jet bundle manifold associated 

with the bundle can be defined as  
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pj  is called r-jet of   at p . Thus, the disjoint union of 

the fiber manifolds  
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forms a smooth vector bundle ( ( ), , )r

rJ M  that is called jet bundle. The construction 

also induces affine bundles 
,( ( ), , ( ))r k

r kJ J    , here k r    and 
0 ( )J E = . 

Suppose ( )rJ  , Let ( )rr J    be the graph of r-jets,  then the span of all planes 

tangent to the graph  |r

   is called the Cartan plane  . The disjoint union of the 

Cartan planes  
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is an integrable distribution that is called the Cartan distribution, which is the basic 

geometric structure on the manifold ( )rJ  . 

Given an ordinary differential equation as  

 ( , , , ) 0F t R R R =   

Then the set  
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defines a submanifold in 
32 ( ) ( , , )J  =  . The Cartan distribution on the 2-jet 

manifold in the local coordinates then can be characterized by the following contact 

forms  
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of which the restriction on the equation  induces the Cartan distribution on the equation 

(Krasil’shchik and Vinogradov 1999, Xia 2015) 

 ( ) T  =    

where T  is the tangent space on the equation at  . A maximal integral manifold of the 

Cartan distribution ( )  is called a general solution to the equation .  

As for the RPE in this paper, we can define a nowhere vanishing vector field on 
0 ( )J   

spanned by 
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which is also generated by a one-parameter group 
0( ( ))C J   . Then X  is called the 

Lie point symmetry if its lifting on 
2 ( )J   is in the form of  
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Furthermore, if 
1( ( ))C J   , we call X the Lie contact symmetry. One can quickly 

check that the lifting of Lie symmetries preserve the Cartan distribution (Krasil’shchik 

and Vinogradov 1999, Xia 2015), e.g.  

 ( )( 2)
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We know that some differential equations can be solved though they do not admit any lie 

symmetry. Some authors then proposed new symmetry methods by which their Lie 

algebras are not closed. In this paper, we remind readers that the so-called λ-symmetry 

(Muriel and Romero 2011) is nothing but with the following expression 
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where 
1( ( ))C J  . Since it has not given new results for our equations, we do not 

present the λ-symmetry analysis here. 

Lie point symmetries 

Lie point symmetry analysis of the similar type of the equation has been done by some 

authors (Maksimov 2004, Tiwari, Pandey et al. 2013), whereas none of the works relates 

them to the RPE, in the following section, we will present some primary results for the 

RPE Eq.(4). 

Recall the one-parameter Lie transformation group of the form (Xia 2011) 
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and the corresponding infinitesimal generator (Lie algebra) 
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Also, the second prolongation (lifting) of the vector field X  can be written as 
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By applying  
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the determining equations can be obtained. Usually, solving the determining equations is 

not easier than solving the original differential equations. It is the reason why the Lie 

group method was not of much practical use before the developing of modern computers. 

Right now by using CAS software or related packages, we can readily solve the systems 

of linear partial differential equations. For the RPE Eq.(4), the determining equations 

obtained by using MAPLE are as follows 
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It is not difficult to check in the CAS software MAPLE that, the only solution to above 

equations is zero with arbitrary ( )p t  or the equation coefficients. This fact is somewhat 

the drawback of all kinds of symmetry analysis. Their symmetries are very much 

sensitive to those coefficients and boundary conditions, and hence it is unable to 

guarantee the general solutions to a given differential equation. That is the motivation we 

carry out Lie symmetry analysis on the equations of specific physical meanings.  We 

shall then analyze the possible solutions by specifying coefficients and the unknown 

function ( )p t  properly. 

Case 1: 0( ) constp t p= = . In this case, the physical meaning corresponds to the 

behaviors of a gas bubble under hydrostatic pressure. Then a solution to the above four 

determining equations is 

 const, 0 =     =   (21) 

It correlates to a one-dimensional Lie subalgebra 
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which is corresponding to a translation group along x-axis. An invariant solution for the 

equation thus can be obtained 
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It is the equilibrium radius of the bubble at hydrostatic pressure 0p . Furthermore, the Lie 

subalgebra allows reduction of the equation into the following first order ODE 
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here we denote 
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as a matter of convenience.  

Case 1.1: The viscosity and surface tension are not included. Thus, Eq.(24) is reduced to  
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 Let the initial condition to be (0) 0R =  or (1) 0y = , we will have 
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When the polytropic constant 1k = , the above solution (28) is reduced to the previous 

result (Mancas and Rosu 2016).  Substituting the above equation into Eq.(4), and 

applying an additional initial condition (0) 1R = , we have 
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Eq.(29) characterizes how the radius of a bubble evolved under varying hydrostatic 

pressures. It is a more general case considering the impact of polytropic constant, which 

could be substantial in engineering applications. For example, a gas bubble in a liquid 

exchanges gas with the surrounding liquid and thus the gas content inside the bubble also 

alters. And Eq.(29) is capable of characterizing how the evolution of the radius is affected 

by the gas content.   

Case 1.2: Continuing on the Rayleigh equation, if the excitation pressure has the form of 
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which corresponds to the acoustic field inside an experimental flask (Maksimov 2004). In 

this situation, its determining equations can be obtained as  
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where a , b  and c  are arbitrary constants. For a special case 1a b c k= = = = , we have 
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Case 2: 2 / 3, We 0k =    = . In this case, we manually set the polytropic constant 1k  , 

which may not refer to any explicit physical meaning. However, it is the case that the 

solvable Lie subalgebra can be obtained. Meanwhile, Given the excitation pressure 

 ( )
( )

c
p t

at b
=  

+
  (33) 

then we have  



 ( , ) ( , )
2

,
a

t R at b t R R    = = +   (34) 

and the Lie subalgebra is 

 ( )
2

a
X at b R

t R

 
= + +

 
  (35) 

For the special case 1a b c= = = , we have the invariant solution in the form of 
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Case 3: 1/ 3, 1/ Re 0k =   = . In this case, we neglect the impact of viscosity and assume 

the excitation pressure is in the form of 
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we have 
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again let 1a b c= = = , the invariant solution to this case is  
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Discussion  

We have shown that, from the abovementioned analysis, the RPE does not pass the 

Painlevé test nor admit Lie symmetry groups generally. However, the particular cases of 



the Rayleigh-Plesset equation have invariant solutions corresponding to several physical 

meanings. We may also analyze the integrability of the equation by reviewing it from the 

physical perspective. Multiplying Eq.(4) by the integral factor 2R R  and assuming 1k = , 

we will have 
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The above form of the Rayleigh-Plesset equation is nothing but the balance of energy. 

The first term refers to the kinetic energy of a bubble; the second term relates to the 

interface dissipation due to the viscosity of the surrounding medium; the third term refers 

to potential energy of the surface tension; the forth term refers to the input energy; and 

the last term refers to the potential energy of the gas inside the bubble. Rearrange the 

order of the above equation  
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Therefore, in Eq.(42) we can easily see that the coefficient of the second term

/ ThRe ( )R p t R+ , which also depends on the time variable and cannot be written into the 

time derivative, determines possible first integrations of the Rayleigh-Plesset equation.   

Conclusions 

The integrability of the Rayleigh-Plesset equation was studied using both the Painlevé 

test and Lie symmetry analysis. Although the equation generally cannot be transformed 

into any of the six Painlevé equations, solutions to some simplified Rayleigh-Plesset 

equation are still achievable. Several invariant solutions of specific physical meanings 

were presented. The physical parameters (as the coefficients in the equation) have a 

significant impact on the possibility of obtaining analytical solutions. The Rayleigh-

Plesset equation does not admit any Lie symmetry groups when the value of the 

polytropic constant is higher than one; meanwhile, the undetermined function ( )p t  

contributes to the complexity of Lie symmetry analysis. Thus, the invariant solutions can 

be only obtained by choosing proper coefficients and the unknown function ( )p t . 
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