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We derive an effective equation of motion within the steady-state subspace of a large family of Markovian
open systems (i.e., Lindbladians) due to perturbations of their Hamiltonians and system-bath couplings. Under
mild and realistic conditions, competing dissipative processes destructively interfere without the need for fine-
tuning and produce no dissipation within the steady-state subspace. In quantum error-correction, these effects
imply that continuously error-correcting Lindbladians are robust to calibration errors, including miscalibrations
consisting of operators undetectable by the code. A similar interference is present in more general systems if one
implements a particular Hamiltonian drive, resulting in a coherent cancellation of dissipation. On the opposite
extreme, we provide a simple implementation of universal Lindbladian simulation.

Understanding how to reservoir-engineer [ 1] open quantum
systems is important for the success of noisy intermediate-
scale quantum (NISQ) [2] technologies. In this context, one
often encounters the problem of experimentally controlling
time-evolution within a particular subspace of states, e.g.,
in order to stabilize states [3-7] and phases of matter [8—
12], generate gates using Zeno dynamics [13—-16], or protect
against unwanted errors [17-22]. Resolving this problem re-
volves around variants of either perturbation theory or adi-
abatic elimination. In the case of interest here, one applies
a perturbation O to an unperturbed Lindbladian £ [23-27]
such that the resulting leading-order time-evolution within the
steady-state subspace of £ is governed by an effective Lind-
bladian Lgk. In general, Ly is difficult to put explicitly in
Lindblad form since there is a complex interplay between dis-
sipation and coherent evolution inherent in £ and arising from
O. Cases in which L (to 1% [28-30] or 2™ [31-42] or-
der in O) can be simplified are highly sought after since they
yield physical intuition, are numerically tractable, and provide
Hydrogen-atom-like starting points for more complex scenar-
ios. Due to the aforementioned complexity, such cases are
scarce relative to the many combinations of steady-state struc-
tures [43], perturbation types [44, Sec. 6.1], and features of £
[45, Sec. 2.1].

In this Letter, we derive an Lg for arbitrary Hamilto-
nian and jump-operator perturbations to certain £ admitting
decoherence-free subspaces (DFS) [46—48], demonstrating
surprising and (to an extent) generic interference effects. Be-
ing an extension of an effective operator formalism (EOF) [33]
applicable to a variety of Rydberg [49-51], photonic [52, 53],
and trapped-ion [22] platforms, our formalism and its pre-
dicted interference effects should be observable in and useful
to many quantum technologies.

Minimal example.—To gain intuition into the interference
effects, consider first a simple three-level system {|0),|1), |e)}
[see Fig. 1(a)] where the excited level |e) resides at an en-
ergy H = dle){e|l and decays into |0) under jump opera-
tor F = \T |0){e| (with corresponding dissipator D[F](-) =
F()F - %{FTF, (9)}). The states {|0), |1)} form a DFS. Now,
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Figure 1. (color online) (a) A three-level open system with unper-
turbed steady states {|0),|1)} (forming a DFS), Hamiltonian H =
dle){e|, and jump F (black arrows). To leading order, a jump pertur-
bation f (red wavy arrow) induces two processes which destructively
interfere with each other [see Eq. (1)]: one is simply f itself while the
other occurs via a virtual transition though |e) via FT f (green dotted-
dashed arrow). (b) Sketch of the block matrix formed by jumps F*
satisfying the condition (4) necessary for a generalized interference
effect. Each jump operator occupies its own block. The levels M
represent the DFS while Hd are decaying via the unperturbed Lind-
bladian £ = {H, F’} (5). (c) Energy levels of a system satisfying the
assumptions of the EJOF. The perturbations include Hamiltonian (V;
blue dotted arrows) and jump perturbations {f!, f}.

assume a small additional decay |1) — |0) arising from the
same coupling to the bath as the |e) — |0) decay. Under such
decay, F' — F + f with perturbation f = /y|0)(1| and I" > 7.
Naturally, one would think that the leading-order O(y) dissi-
pation due to f will be D[ f]. However, our formalism identi-
fies an additional O(y) effective process that interferes with
this dissipation via the virtual transition 1) — |e) — [0).
While neither the strong (F) nor the weak (f) dissipation
alone cause the |1) — [e) part of that transition, perturbing
F'F = (F+ /)'(F + f) in D[F] yields the term F1f o le)(1]
which, when followed by F, produces that transition. That
transition is also mediated by the inverse of the non-Hermitian
“Kamiltonian” K = (6 — 4I')le){e| governing evolution of |e).



Leading-order dissipative evolution within the DFS is a su-
perposition of both processes and is governed by Ly with
effective jump operator

s
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Ri=f+iFK'F'f =y 0)(1]. (1)

In the limit of large energy ¢ > T, the virtual |[1) — |e) — |0)
transition is off-resonant, the second term in F goes to zero,
and one reduces to the intuitive case (fer = f). However,
when I' > §, destructive interference between the two terms
makes the effective dissipation disappear entirely (Fo = 0).
Although this cancellation can be understood nonperturba-
tively using dark-state physics [54], here we show that the per-
turbative interference holds much more generally than previ-
ously thought. Generalizing this three-level example, F = 0
at zero energy for f = +/y|0){(¢] with any |i/). Extending to
four or more levels, we will see that F¢ = 0 for a much larger
family of {F, f}.

Generic cancellation.—It is uncommon in Hamiltonian per-
turbation theory for a correction to be zero for any perturba-
tion (unless a symmetry is present). In this example, we ob-
serve such a cancellation not due to symmetry, but to inherent
destructive interference between generalizations of the two
processes discussed above. Consider an N + 2-level system
{10>,11), le), |h), - - - } with {|0),]|1)} forming a DFS with corre-
sponding projection g = [0){0] + |1){1|. To simplify notation,
we partition operators O into four corners [30]: Og = IOl
acting on the DFS, Og = IgOlg (with Ig = 1 — Ig) acting on
the N decaying states, the “lowering operator” Om = IgOlg
mapping decaying states into the DFS, and the “raising op-
erator” O = IgOIg taking states out of the DFS. Assume
no Hamiltonians (H = 0, for now) and an unperturbed jump
F = Fm, meaning that F maps one directly into the DFS (™)
from the decaying space (). This jump can have any com-
bination of the 2N decay channels from the N excited states
into {|0), 1)}, with the only restriction that it is surjective,

F(F'F) " F' = Iy @)

Interestingly, randomly generated jumps do this: all but a
measure-zero set of F' = Fig consisting of random entries [55]
satisfy (2). For now, perturb F with any small f satisfying
f= f;, i.e., any f not mapping M3 into Bd. Applying Eqs. (1,2)
yields the effective jump

Bi=fa-F(FF) Ff=fa-fw=0 O

to leading order in any jump perturbation fmy. (We will later
prove that fg doesn’t participate at all.) Therefore, a random
jump F = Fg perturbed by any small perturbation not map-
ping out of the DFS generically produces no leading-order dis-
sipation within the DFS.

This cancellation can be extended to multiple unperturbed
jumps F¢, granted that (2) holds for each F¢ and the additional
“orthogonality” condition

F'F"" = 5,0 F'F" (4)

is satisfied. This condition implies that a block matrix consist-
ing of {F} will look like Fig. 1(b). Conditions (2,4) imply that
K =3 (~LF9F ™ and F'K™'F“T oc I, yielding once
again no dissipative evolution (F:;f = 0) for any { f;[}. Having
described the most interesting effect, we now state our general
result—a formalism for tackling perturbations to a large class
of Lindbladians.

General result.—Let the unperturbed Lindbladian £ consist
of a Hamiltonian H and jump operators F¢,

L) ==ilH, -1+ ) DIF1(). (5)
¢

Consider coherent and dissipative perturbations, respectively,

H—-H+V and Ft > Fl+ 7t (6)
Since L governs the evolution of a system coupled to a bath
[10, 56, 57], V is a modification of the system Hamilto-
nian while f¢ modifies the system-bath coupling. If £ is a
desired reservoir engineering operation, then {V, f} can be
thought of as uncontrollable coherent evolution and miscal-
ibrations in the engineered dissipation, respectively. The re-
sulting superoperator perturbation has terms both 1 and 2"
order in {V, f’}, O = O; + O,, and perturbation theory within
the steady-state subspace yields the Lindbladian [58, Supple-
ment]

Leit = PO, — PO L7'OP,, @)

where £7! is the Drazin pseudoinverse [28, Eq. (D4)] and the
asymptotic projection P, = 7—L L~ (with T identity) projects
onto all steady states of £ [30, 45]. The above expression
is not particularly illuminating as it is not in Lindblad form.
However, since Lgf is a Lindbladian, it must be expressible
in terms of some effective Hamiltonian Heg, jump operators
Ig%, and/or a completely positive (CP) map Egi and its adjoint
&l [24, Prop. 5], all depending on the unperturbed pieces
{H, F'} and perturbations {V, f’}. Generally, the expressions
may not be simple and the dependence not explicit, but we
are able to express L in Lindblad form given the following
assumptions. We assume £ admits a unique DFS /g and that
(A) the unperturbed Hamiltonian acts only on the decaying
subspace (H = Hg) and (B) unperturbed jump operators map
decaying states directly into the DFS (F¢ = Fé). We assume
these hold from now on, noting there are no restrictions on
{V, f%); see Fig. 1(c) for an example. To simplify L, we
introduce Kamiltonians

K=H-4> FIF (8a)
¢

Ket =Va—1 Y (FTfg+ fm F') . (8b)
14

As we have seen, K = Kg and its corresponding superoperator

KO =~i(KO)~OK')



govern evolution within B [45, Sec. 2.1.3]. As we will see
shortly, pieces of the effective Kamiltonian Kt = (Kot ) map
one out of and into the DFS. We picked K to depend only on
{Va, fmg} because { Vg, fig} participate differently and {Vg, fg}
do not feature to this order. The resulting simplified L (7) is
as follows [55].

Proposition (EJOF). Let L be a Lindbladian with a unique
DFS Ig, Hamiltonian Hg, and jump operators {FE[H} (5). Per-
turb L with a Hamiltonian V and jump perturbations { f¢} (6).
The effective Lindbladian (7) within the DFS is

Lot () = =il Heg, ()] + " DIELI ()
t

+ &t ()= 3 8L (D, (), ©)

where the effective Hamiltonian, jumps, and CP map are

Het = 1 (vBH - KeﬂK*‘Keﬁ) + H.c. (10a)
Fi = fay— F'K™' Kot (10b)
(10c)

)=~ 3P K (GO 1) P
(R4

This effective jump-operator formalism (EJOF) reduces to
the EOF [33] (see also [36, Lemma 3]) when f¢ = 0 (and Vg =
0). Therefore, the EOF, derived via adiabatic elimination, can
alternatively be derived using time-independent perturbation
theory [55].

The first term (10a) represents the resulting coherent evo-
lution within the DFS. It consists of Vjg, a 1%-order effect,
and the effective Hamiltonian Ke4K ™! Kot + H.c. reminiscent
of Hamiltonian perturbation theory. In the latter, Kq¢ (8b)
maps states in the kernel (#) of K into the range (Hd) using
both coherent (Vi) and dissipative (F'¢ fé) terms, returning
via Vg and ng , respectively, with the “energy” denomina-
tor determined by K~'. Thus there are cross-terms consist-
ing of leaving via dissipation and returning via a Hamilto-
nian and visa-versa. Interestingly, the participating dissipa-
tive perturbation fé cannot map one out of the DFS, instead
conspiring with F'¢ to provide the dissipative analogue of Vg.
A similar story occurs in the effective jump Feﬁf (10b) and is
the key reason behind the highlighted cancellation. The first
part of FY comes from the first piece ROR = ¥, Dlfig]
in Eq. (7), which is itself a Lindbladian. However, the sec-
ond piece —R0;L7'0P, which surprisingly is not a Lind-
bladian, contributes the interference term F'K~'Key. This
term consists of leaving the DFS through (Kef)g and return-
ing to the DFS via F’ while paying an “energy” penalty de-
termined by the eigenvalues of K. The third term (10c) [with
Szﬁ(l) =D fH; fé] results from a nonzero fé, mapping one
out of the DFS and recovering via F¢, with “energy” denomi-
nator determined by the superoperator K=" (-) # K~ (-) K=,
This term has no analogue in Hamiltonian 2"-order perturba-
tion theory because it directly connects M to B via one in-
stance of fig. If K is diagonalizable, we can easily express

K~ using the eigendecomposition of K. However, this for-
malism remains valid even for non-diagonalizable K [55].

Coherent cancellation.—In our previous examples, we as-
sumed H = V = 0 since any initial coherent evolution spoils
the interference effect. We now expand those examples to
nonzero Hamiltonians H # 0 # V, showing how to restore the
interference spoiled by H with a judicious choice of V. We
maintain conditions (2,4) and let f = 0, so only {Hef, Ffy}
contribute to L (10). The presence of H in K (8a) means
that F'K~'FY is no longer the DFS identity and F:f)f # 0.
However, since the return to the DFS in Igﬁf occurs via dis-
sipation only, Vi does not contribute to F. Exploiting this
effect, we pick

V=§Z(F”f"—f”F‘)+f/ (11)

¢

to cancel the FT f¢ term in K, leaving us with (Keft)gg = Vig
that is dependent only on the coherent perturbation. Picking
Vg = KX (FOF)'Ff* + H.c., the K out front cancels
the K~! in F:;f and removes fé via the same effect as that in
Eq. (3). In other words, if H # 0, one can use a particular
coherent perturbation to cancel leading-order effects due to
unwanted jump perturbations f; [55].

Universal dissipation.—In a quick detour from canceling
unwanted dissipation, let us instead use a customizable V to
see what possible dissipation within ®§ we can generate (c.f.
[35]). We assume to have full control over the perturbations,
showing that restricting them to { Vg, fé} allows universal dis-
sipation within the DFS. First, by letting V = 0 in Eq. (11),
we cancel Kq-dependent terms in both {Heg, I*;‘f’f} (10a-b) and
obtain Legt = {Vim, fé}. Second, letting d be the dimension of
the DFS, a general Lgf has d” — 1 jump operators {f¢}. There-
fore, if £ has at least d> — 1 independent jump operators F?,
L generates any dissipation within #5.

Continuous error-correction.—In conventional QEC, one
starts out in a logical state located in the codespace (™) and
attempts to correct errors caused by an error channel & by
acting with a recovery channel R. Ideally, & consists of cor-
rectable noise, so RE = I [59, 60]; we focus on a similar case
here. We consider a continuous QEC, where one has the abil-
ity to correct noise via an infinitesimal version of the recovery
L =R - T [61], whose jumps are the Kraus operators {R’} of
R (and we additionally removed the DFS-identity Kraus oper-
ator R” o Ixg). Instead of perturbing £ with another Lindbla-
dian representing external noise, we consider perturbations to
the jump operators of £, which represent miscalibration of the
recovery itself. Such noise is important since a recovery map
is never perfect in real life. It consists of detectable errors fﬂg
(which we assume are correctable by L), undetectable errors
fé (which are not correctable since they act nontrivially within
the codespace [60]), recovery errors ng, and correctable errors
fEé. The EJOF shows that small imperfections of all types do
not harm the quantum information.

Since £ = R — 1 comes from a recovery operation, each
jump F? is an isometry from a subspace of B (corresponding



to a distinct error syndrome) into the codespace. Such F¢ au-
tomatically satisfy conditions (2,4) and, since R is a channel
from Ha to M, 3, FTF* = Ig [45, Sec. 2.1.4]. Let us fur-
ther assume that miscalibrations mapping out of the codespace
form a channel, £(-) = Y, fé ) fg, consisting of correctable
noise, i.e., RE(p) o« p for all p € M. Application of the EJOF
results in the following.

Corollary. Let L = R— 1 with corresponding recovery chan-
nel R(-) = Y, FC(-) F¢ such that {F' = Fé} satisfy condi-
tions (2,4). Assume small miscalibrations { f[} in the recovery,
Ft — F' + f¢, such that the pieces {fé}form a noise channel
correctable by R. To leading order, the miscalibrations {f*}
do not induce errors within the codespace,

Lot = 0. (12)

To prove the above, we have to show that each line in
Eq. (10) is zero. First, the simple structure of £ lets us sim-
plify all Kamiltonian inverses: K = —%IEH and K(pg) = —px
for any pg. Plugging this into Heg (10a) and using condition
(4) yields Het = 0. Similarly, and most surprisingly, the inter-
ference effect discussed above cancels the undetectable mis-
calibrations, yielding I*;‘;f = 0 (10b). Lastly, simplifications to
K and the condition on { fé} yield the trivial CP map (10c),
Eeit(p) = ~RK'E(p) = RE(p) o p for all p € M.

The above robustness corollary shows that even unde-
tectable miscalibrations fé in continuous error-recovery op-
erations do not affect the codespace. Qualitatively, it is a
statement that holds for any recovery R that maps into the
codespace after one action and is applied rapidly (allowing us
to consider £ = R — 7). For example, the statement holds
for continuous recoveries for the three-qubit repetition [62]
and binomial [63] codes. For the former, Iy = [000)<000]| +
[111)(111], and its jumps F* = IgX’ (for qubits £ € {1,2,3}
and {X, Y, Z} the usual Pauli matrices) satisfy conditions (2,4).
Terms f¢ oc X’ are corrected by the continuous recovery while
f¢ oc Z are canceled out due to interference, despite being un-
detectable by the code. The terms f¢ oc Y cannot be corrected
since X¢ and Y* are not simultaneously correctable; picking a
code correcting both solves this problem.

We cannot make the same statement about all recovery op-
erations since the assumptions of the EJOF no longer hold.
The assumption F¢ = F é amounts to the jumps recovering all
states (in their range) back into the codespace after one ac-
tion. Another set of cases is where F* = Fjg does not map all
states immediately into the codespace, but instead keeps cer-
tain states uncorrected (i.e., in Bd) after one action by, e.g., only
correcting errors occurring in a localized region [45, Sec. 3.4].
Such systems include local recoveries for topological codes
and the above corollary unfortunately does not apply to them.
Similarly, we cannot guarantee robustness when there is an
inherent Hamiltonian (Hg # 0). While we can still use V
to coherently cancel any undetectable miscalibrations fu‘; (so
that }gﬁf = 0) as in the coherent cancellation example above,
the presence of H ! in Eet (10c) obstructs us from being able

4

to correct any detectable errors fﬂg. So Let = 0 only when
either ff = 0 # H or visa versa.

Conclusion.—We develop an effective jump-operator for-
malism to tackle general perturbations to a particular class
of Lindbladians relevant in quantum optics and error correc-
tion. We explicitly solve for the effective Lindbladian Leg
governing perturbation-induced evolution within the steady-
state subspace of an unperturbed Lindbladian £. Using this
formalism, we uncover an interference effect that is a general-
ized version of the interference observed in dark-state physics.
This interference occurs in generic Lindbladians of the type
we study and can be applied to show that Lindbladian-based
error-correction operations are robust to both detectable and
undetectable calibration noise. While this interference is de-
stroyed when the unperturbed system has a Hamiltonian piece,
it can be reinstated with a certain Hamiltonian perturbation.
This formalism also provides a simple way to realize univer-
sal Lindbladian simulation.
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APPENDIX: PROOF OF THE EJOF

Proposition. Let L be a Lindbladian with a unique DFS Iy, Hamiltonian Hg, and jump operators {FE[H}. Perturb L with
Hamiltonian V and jump perturbations {f*}. The effective Lindbladian (S5) within the DFS is

Lot () = =il Hetr, (V] + D DIFL1 () + Eerr () = 1 {E5, (D, ()} (S
14
where the effective Hamiltonian, jumps, and CP map are
Heit = % (Vi — KettK ™' Ket) + H.c. (S2a)
Fe = Jag— F'K™' Ket (S2b)
it () == Y FIK (fo () fg ) Y. (S2c)
0,0

A similar proof of the EOF [33] using open-system perturbation theory was performed in Ref. [45], Sec. 4.3.5. The adjoint of
a superoperator &(-) = X3, A; (1) B; is&f() =Y ; AZT () B;. The perturbation O to £ consists of contributions from V and f" [44,
Sec. 6.1]. Let us conveniently split O into various superoperators responsible for different processes. First, define the generalized
commutator [A, B]* = AB — BA" and Kamiltonians K = H — % S FOF and Kot = Vg — % e ( ng + FO fé). Then, construct
the superoperators

V) =-i|Ve -5 ) U F+ Ff.0) (S3a)
4

Kett (-) = —i[ Keir, ()]* (S3b)

F ()= (FrO £+ fFOFT). (S3c)

¢
Split O = O; + O, with O, containing one instance of either f¢ or V in each term and O, containing two:
01 =V+ 7<eff +F (S4a)
0, =) DUf. (S4b)
¢

Second-order perturbation theory within the DFS yields the effective Lindbladian [58, Supplement]
Lo = ROR ~ROK'OR =T + 7. (S5)

We have simplified £~ to K~! in the second term 7> due to the assumption that there is no additional dissipation within F,
F, E% =0 [45, Sec. 2.1.3]. As opposed to Hamiltonian perturbation theory, here the asymptotic projection £ [30, 45] corresponds
to a quantum channel arising from the infinite-time limit of evolution due to £, , = lim,_,, e'~. This channel is trace-preserving,
so it is not merely acting on the DFS since it has to map states initially in B into the DFS. We use an analytical formula for it
[30, Prop. 3], which for this particular DFS case is

R()=Pu()-Pelly O =Pg()- > Fog O FT. (S6)
4

Above, the four-corners projection superoperators are P () = Ig(-) g and Py (1) = Ig () Ig, and Ay = PyAPg given any
square combination F5. Above, we have substituted £~ for K~ and used P LPg () = X, F' () FI7 [45, Eq. (2.8)]. We use
this block notation to derive the EJOF, introducing the remaining four-corners projectors P (-) = Ig (-) Ig and Pg (-) = Iy () Iy,
noting that they are orthogonal and can add (e.g., #® = B + ). Most importantly, note that

R =PeP = PPy =PePPux., (S7)

so £ maps all states into B and destroys knowledge of all coherences W between the DFS and the decaying states.



1. The term 7,

Inserting 1 = Py + P and using Eq. (S7), we have
T1 = (?ZOPE) o (Pﬁﬂ) =P (OE + PEHOPE) P = OE + Z)QPEHOPE , (SS)

so we only need two superoperator elements, Og and PgOP, for this term. Note that we have applied R P = P and replaced
the rightmost £ with P since the states we are perturbing are in #3. The former element is a projection of O onto the DFS while
the latter is a leakage term into the decaying space. These elements are listed below for all of the terms A € {V, Ket, T, D[ f an
of O.

A P PeAPx

% —i[Vm, ()] 0
Kt 0 0

F 0 0

DI/ DL O) = g £5. O) Lo

Luckily, PgAPm = 0 for A € {K, V} due to the fact that their constituents act from one side at a time (the no-leak property;
see [30, Sec. I.B]). Also, PgF Pm = 0 since its constituent F' t = Fé cannot map one into B by construction. From the above
table, we see that V contributes the first term in He (S2a) and D[ f¢] contributes the dissipator D[ fé]. We cannot yet combine
all f£ terms because we still need to act on PgD[f‘1Pg with R (S6):

> PPEDU Pe() = - > F K (f5 O f ) F'T = Ean () . (S9)
14 (x4

This provides the first term for the Eg-dependent part of .I£eff (S1). To complete the derivation of 77, we need to prove that
Euh) = X¢ fg fé. The anticommutator term should be Siﬁ(lﬁ) since Eefr is a channel from M to itself, but padding with Ig

doesn’t make any difference and looks simpler. Note that H = Hg commutes with I and so K#(Ig) = — Y, FOTF". Plugging
this into Szﬁ(l ) cancels the K~'¥, yielding

€ = w3 = B = 5 1)
l v ¢ ¢

This provides the anticommutator term for the Eg¢-dependent part of L (S1). We are left with the Keg-dependent terms in Heg
(S2a) and Fef (S2b), which come from 775.

2. The term 7,

This term is more difficult since two actions of the perturbation are present. We likewise need to determine which su-
peroperator elements are required for the calculation. Since K~! does not act on B (K~ = 7(;), the first part of 75 is
K'OR = K (PaO 1P + PgO1Pm)R. However, we can see that PzO,Pe = 0 from the previous table, so only %K'
participates. Inserting this into 75 and using Eq. (S7) yields

Ty = — (Pg01Pa + PPg01Pa) K (PaO1Pr) - (S11)

Therefore, three elements are relevant; they are listed in the table below for all of the terms A € {V, K, F } of Oy:

A PaAPx PaAPa P AP
% 0 0 0

Kett  —il(Keim O1* —il(Ker)g, ()] —i[(Keft)am, ()1*
F 0 0 Yo (FOC) fag + 15O FE)

The first part K~! (P@O1Pm) in T3 (S11) is shared by all terms, so we simplify it first by noting that the superoperator inverse
‘K; can be written in terms of operator inverses due to the restriction F¢ = F, é [45, Eq. (2.8)],

Ka =Kz O +Kg' ()=—-i()K"+iK™" ()= i[K™",()]*. (S12)



Plugging this and the first column of the above table into the first part of 75 yields
*
K (P01 Pm) () = [K™ (Ko (01*] = K~ Kest () + Hec, (813)

where we remember that the state (-) € B and only (Keft ) can map (-) into B (so that K ~! acts on the result). In the last equality,
we let (Kef)g — Kerr since adding (Kes)m does not make any difference, i.e., K ’I(Keff)EE = 0. Now let us plug this simplified
first part as well as all of the nonzero terms from the table into 75:

Ts = — (PeKeitPs + PeF P + PPaKeiPp) (K~ Kert () + Hec.) . (S14)

We now determine the contribution coming from each of the three terms in the leftmost parentheses. Using the above table and
substituting (Kes)m — Keft in the first line below, the first two terms are simple:

~PaKeiPas (K™ Kot () + H.c) = i| KeK ™ Ker, ()] (S152)
~PuT Pas (K Kot () + Hee) = = ) (FK ' Kest () fg + Hec) (S15b)
t

For the third term, note first this curious formula that we will use to eliminate the inverse coming from £Pg:
Tk or) = KK (K OKT) =K O (316)
for any operator () € Hd. Plugging in Eq. (S6) and applying the above formula yields

— PP Ko P (K™ Ket () + Hoe) = Y FIK™ Kegt () KiK' TF1Y (S17)
t

3. Combining 7 and 7>

Plugging the Ecg-dependent terms (S9,510), all Vig- and fé—dependent terms in the first table above, and Egs. (S15,S17) yields
the effective Lindbladian

Lot () = =il Hoft, ()] + it () = {E(Im), (V) + 5 {Kett K™ Kest = H.c., ()]
+ Z DIf] () + F' K™ Kot () KLy K™ TFT = (FIK™ Ko () fig + Hec) , (S18)
4

where we have absorbed the Hermitian part of KeK ™' Kei into Hesr. Remarkably, the last term in the second line and the third
line simplify to 3, D[F¢ ot]- Collecting all of the terms in the second line that act nontrivially from both sides into Feft makes

this more clear, leaving only the anticommutator term )., F effF gff to be determined from the last term below:

Lot () = =il Hetr, ()] + Eetr () = (ELy ), O} + D FLe (Y F i = % {Z Ju fiy = i (Kot K™ Kot — H.c.), (~)} : (S19)
7
Let us now write Kett = Vig + 4G + H.c., where Gg = 3, F'' ff.. We abbreviate VS} = (V)" and similarly for G. Plugging this
into K and simplifying yields
—i (KoK ™' Kot — Hec.) = = iV (K™ = K™') Vg + G5 (K™ - K77) G
—3GL (K + K Vg - Ve (K + K1) G (520)

We obtain the same for ), F' ng gﬁ f:; fé to finish the proof. For this, we have to use another curious identity that is proven
using the definition of K,

Z KR FRT = —i(K - k7MY (S21)
4

Plugging this in, splitting Kes into Vig and Gg, and simplifying yields

ZFngéff f fgg = _l( Kot K™ Keff - H.C.) . (S22)
£



