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Probabilistic completeness of RRT for geometric
and kinodynamic planning
with forward propagation

Corrigendum
Michal Kleinbort1, Kiril Solovey2, Zakary Littlefield3, Kostas E. Bekris3, and Dan Halperin1

Abstract—The Rapidly-exploring Random Tree (RRT) algo-
rithm has been one of the most prevalent and popular motion-
planning techniques for two decades now. Surprisingly, in spite
of its centrality, there has been an active debate under which
conditions RRT is probabilistically complete. We provide two
new proofs of probabilistic completeness (PC) of RRT with a
reduced set of assumptions. The first one for the purely geometric
setting, where we only require that the solution path has a certain
clearance from the obstacles. For the kinodynamic case with
forward propagation of random controls and duration, we only
consider in addition mild Lipschitz-continuity conditions. These
proofs fill a gap in the study of RRT itself. They also lay sound
foundations for a variety of more recent and alternative sampling-
based methods, whose PC property relies on that of RRT.

Our original publication [1] contains an error in the analysis
of the case of the kinodynamic RRT. Here, we rectify the problem
by modifying the proof of Theorem 2, which, in particular,
necessitated a revision of Lemma 3. Briefly, the original (and
erroneous) proof of Theorem 2 used a sequence of equal-size
balls. The correction uses a sequence of balls of increasing radii.
We emphasize that the correction is in Lemma 3 and the proof
of Theorem 2 only. The main results remain unchanged.

Index Terms—Motion and Path Planning, Nonholonomic Mo-
tion Planning

I. INTRODUCTION

TWo decades ago LaValle and Kuffner presented the
Rapidly-exploring Random Tree (RRT) [2] method for

sampling-based motion planning. Even though numerous al-
ternatives for motion planning have been proposed since then,
RRT remains one of the most widely used techniques today.
This is due to its simplicity and practical efficiency, especially
when combined with simple heuristics.

RRT is especially useful in single-query settings, as it
focuses on finding a single trajectory moving a robot from an
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initial state to a goal state (or region), rather than exploring
the full state space of the problem, as roadmap methods do,
such as PRM [3]. To achieve this objective, RRT grows a
tree, rooted at an initial state, which is periodically extended
towards random state samples until the goal is reached.

Notably, RRT is well suited to complex motion planning
tasks and, in particular, problems involving kinodynamic con-
straints. This is due to the fact that RRT can be implemented
without a steering function, which is difficult to obtain for
many systems with complex dynamics. (This function returns
a path between two states in the absence of obstacles. It corre-
sponds to solving a two-point boundary value problem (BVP),
which may be a difficult task for many dynamical systems.)
Moreover, RRT has low dependence on parameters and is
easily extendable to a variety of domains (e.g., graspRRT
for integrated motion and grasp planning [4]).

Since its introduction, numerous variations and extensions
of RRT have been proposed (see, e.g., [5]–[9]), to allow
improved performance. While RRT is not asymptotically op-
timal (AO) and provably does not converge to the optimal
solution [10], [11], it forms the basis of many AO planners,
including RRT∗ and RRG [11]. In particular, the probabilistic
completeness (PC) of most of the aforementioned RRT-based
algorithms is derived from the PC properties of RRT.

Surprisingly, it is not completely obvious under what con-
ditions RRT is probabilistically complete, especially when
using forward propagation of controls for the kinodynamic
case. Indeed there has been some debate on this issue in the
literature [12], [13]. This paper aims to address this gap.

A. Contribution

We provide two new proofs of PC of RRT. The first one
for the purely geometric setting, where we only require that
the solution path has a certain clearance from the obstacles.
For the kinodynamic case with forward propagation of random
controls and duration, we add mild Lipschitz-continuity con-
ditions. This line of work lays sound foundations for arguing
the probabilistic completeness of the variety of methods whose
PC relies on that of RRT.

Section II describes related work and Section III proceeds
with the probabilistic completeness proof for the geometric
case. Section IV gives a proof for the kinodynamic setting. A
discussion on further research appears in Section V.
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II. RELATED WORK

Sampling-based algorithms are among the state-of-the-art
alternatives for robot motion planning. Since their introduction
in the mid 90’s (e.g., PRM, EST [14] and RRT), they have been
used in numerous robotic tasks. Sampling-based motion plan-
ners are also widely used in various fields other than robotics,
such as computational biology and digital animation. There
are recent reviews that provide a comprehensive coverage of
developments in sampling-based motion planning [15], [16].

Sampling-based planners can potentially provide the fol-
lowing two desirable properties; (i) probabilistic completeness
(PC) and (ii) Asymptotic (near)-optimality (AO). The former
implies that the probability that the planner will return a
solution (if one exists) approaches one as the number of
samples tends to infinity. AO is a stronger property, as it
implies that the cost of the solution returned (if one exists)
by the planning algorithm (nearly) approaches the cost of the
optimal solution as the number of samples tends to infinity.

AO variants of RRT and PRM, i.e., the RRT∗ and PRM∗

methods, have been introduced more recently [11]. The same
line of work introduced another AO planning algorithm, RRG,
which constructs a connected PRM-like roadmap in a single-
query setting. Interestingly, the PC property of both RRT∗ and
RRG relies entirely on the PC property of RRT. Since then,
many variants of RRT∗ and RRG have been devised [17]–[22],
most of which inherit their PC and AO properties from RRG
and RRT∗. A different series of planners implicitly maintain a
PRM structure to guarantee AO planning [23]–[26]. A recent
paper develops precise conditions for PRM-based planners (in
terms of the connection radius used) to guarantee AO [27].

Although RRT∗, PRM∗, and their extensions, were ini-
tially developed to deal with geometric planning, they can
be extended to kinodynamic planning. This requires proper
adjustments to the algorithms and the proofs (see, e.g., [28]–
[35]). Nevertheless, these approaches require the use of a
steering function, which limits their application to systems
for which such a function is readily available. Recent work
proposes a different type of approach, called SST, that em-
ploys only forward propagation [36] and achieves asymptotic
near-optimality. Hauser and Zhou propose a simple yet ef-
fective approach termed AO-RRT, which employs a forward-
propagating RRT as a black-box component [37], to achieve
AO.

A. PC of Kinodynamic RRT

LaValle and Kuffner discuss completeness of RRT in kino-
dynamic setting in one of the early works on the subject [2].
While this work provides strong evidence for the PC of RRT,
it only derives a proof sketch that does not fully addresses
many of the complications that arise in analyzing sampling-
based planners, be it a geometric [9] or kinodynamic setting.
For instance, the proofs in that paper assume the existence
of “attraction sequences” and “basin regions”, whose purpose
is to lead the growth of the RRT tree toward the goal. It is
not clear, however, whether such regions exist at all and for
what types of robotic systems. It is also not clear whether the
number of such regions is finite, and whether it is possible

to produce samples in such regions with positive probability.
Similar concerns were expressed by Caron et al. [13].

Indeed, in 2014, Kunz and Stilman [12] showed that one of
the variants of RRT mentioned in the original RRT paper [2] is
in fact not PC. In particular, they consider RRT which employs
a fixed time step (rather than random propagation time which
we use here) and a best-control input strategy, which picks the
control input that yields the nearest state to the random sample.
For this setting they describe a counterexample consisting of
a specific robotic system for which RRT will have a success
rate of 0. The reason being that the state space reachable by
this type of RRT is a strict subset of the actual reachable space
of the robotic system. Completeness of the other variants was
left as an open question.

PC proofs of RRT under different steering functions and
robot systems were presented in [13] and [38]. Specifically,
Caron et al. [13] consider state-based steering, which is
different than forward propagation of random controls that
we consider here. A setting similar to ours of random
forward propagation was considered in [36] and [39]. It should
be noted, however, that both papers consider a random-tree
planner (and its extensions), which selects the next vertex to
expand in a uniform and random manner among all its vertices,
unlike RRT which expands the nearest neighbor toward a
random sample point. Interestingly, the random tree is AO,
in contrast to RRT which is not AO [10], [11]. Nevertheless,
the selection process employed by RRT allows it to quickly
explore the underlying state space when endowed with an
appropriate metric.

III. PROBABILISTIC COMPLETENESS OF RRT: THE
GEOMETRIC CASE

We start by defining useful notation in Subsection III-A
and then proceed to describe RRT for the geometric case.
Then, in Subsection III-B, we provide the PC proof. We
call the algorithm in this section GEOM-RRT to distinguish
from the kinodynamic version. The geometric case, where
a steering function exists and the dimension of the control
space is identical to the dimension of the state space, can
be considered as a special case of the kinodynamic setting.
Thus, this section can be viewed as an introduction to the
more involved kinodynamic setting, which is analyzed in the
following section.

A. Preliminaries

Let X be the state space, which is assumed to be [0, 1]d (a d-
dimensional Euclidean hypercube), equipped with the standard
Euclidean distance metric, whose norm we denote by ‖·‖. The
free space is denoted by F ⊆ X . Given a subset D ⊆ X we
denote by |D| its Lebesgue measure. We will use Br(x) to
denote the ball of radius r centered at x ∈ Rd. Let xinit ∈ F
denote the start state, and let Xgoal be an open subset of F
denoting the goal region. For simplicity, we assume that there
exist δgoal > 0, xgoal ∈ Xgoal, such that Xgoal = Bδgoal(xgoal).

A motion-planning problem is implicitly defined by the
triplet (F , xinit,Xgoal). A solution to such a problem is a
trajectory that moves the robot from the initial state to the goal
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region while avoiding collisions with obstacles. More formally,
a valid trajectory is a continuous map π : [0, tπ] → F , such
that π(0) = xinit and π(tπ) ∈ Xgoal. The clearance of π is the
maximal δclear, such that Bδclear(π(t)) ⊆ F for all t ∈ [0, tπ].
We require that δclear > 0.

We describe in Algorithm 1 the (geometric) RRT algorithm,
GEOM-RRT, based on [9]. The input for GEOM-RRT consists
of an initial configuration xinit, goal region Xgoal, number
of iterations k, and a steering parameter η > 0 used by
the algorithm. GEOM-RRT constructs a tree T by preform-
ing k iterations of the following form. In each iteration,
a new random sample xrand is returned from X uniformly
by calling RANDOM STATE. Then, the vertex xnear ∈ T
that is nearest (according to ‖ · ‖) to xrand is found using
NEAREST NEIGHBOR. A new configuration xnew ∈ X is
then returned by NEW STATE, such that xnew is on the line
segment between xnear and xrand and the distance ‖xnear−xnew‖
is at most η. Finally, COLLISION FREE(xnear, xnew) checks
whether the path from xnear to xnew is collision free. If so, xnew
is added as a vertex to T and is connected by an edge from
xnear.

Algorithm 1 GEOM-RRT(xinit,Xgoal, k, η)
1: T .init(xinit)
2: for i = 1 to k do
3: xrand ← RANDOM STATE()
4: xnear ← NEAREST NEIGHBOR(xrand, T )
5: xnew ← NEW STATE(xrand, xnear, η)
6: if COLLISION FREE(xnear, xnew) then
7: T .add vertex(xnew)
8: T .add edge(xnear, xnew)
9: return T

To retrieve a trajectory for the robot, the single path in T
from the root state xinit to the goal is found. It can then be
translated to a feasible, collision-free trajectory for the robot
by tracing the configurations along this path.

B. Probabilistic completeness proof

Next we devise a PC proof for GEOM-RRT. Throughout
this section we will assume that there exists a valid trajectory
π : [0, tπ] → F with clearance δclear > 0. Without loss
of generality, assume that π(tπ) = xgoal, i.e., the trajectory
terminates at the center of the goal region. Denote by L the
(Euclidean) length of π. Also, let δ := min{δclear, δgoal}.

Let m = 5L
ν , where ν = min(δ, η), and η is the steering

parameter of GEOM-RRT. Then, define a sequence of m + 1
points x0 = xinit, . . . , xm = xgoal along π, such that the length
of the sub-path between every two consecutive points is ν/5.
Therefore, ‖xi−xi+1‖ 6 ν/5 for every 0 6 i < m. Next, we
define a set of m + 1 balls of radius ν/5, centered at these
points, and prove that with high probability GEOM-RRT will
generate a path that goes through these balls.

We start by proving Lemma 1, which will be used in the
proof of Theorem 1 and specifies a condition for successfully
extending the tree to the goal.

xi xi+1

ν
5 ν

5

x′i

xrand

xnear
≤ ν

Fig. 1. Illustration of the proof of Lemma 1.

Lemma 1. Suppose that GEOM-RRT has reached Bν/5(xi),
that is, T contains a vertex x′i such that x′i ∈ Bν/5(xi). If
a new sample xrand is drawn such that xrand ∈ Bν/5(xi+1),
then the straight line segment between xrand and its nearest
neighbor xnear in T lies entirely in F .

Proof. Denote by xnear the nearest neighbor of xrand among the
RRT vertices. See Figure 1 for an illustration. Then, from the
definition of xnear, it follows that ‖xnear−xrand‖ 6 ‖x′i−xrand‖,
where x′i ∈ Bν/5(xi).

We show that xnear must lie in Bν(xi), implying that
xnearxrand ⊂ F , as xrand ∈ Bν/5(xi+1) ⊂ Bν(xi). From
‖xnear − xrand‖ 6 ‖x′i − xrand‖ and the triangle inequality, we
have:

‖xnear − xi‖ 6 ‖xnear − xrand‖+ ‖xrand − xi‖
6 ‖x′i − xrand‖+ ‖xrand − xi‖.

From the triangle inequality, we have that

‖xrand − xi‖ 6 ‖xrand − xi+1‖+ ‖xi+1 − xi‖,

‖x′i − xrand‖ 6 ‖x′i − xi‖+ ‖xi − xi+1‖+ ‖xi+1 − xrand‖.

Therefore:

‖xnear − xi‖ 6 ‖x′i − xi‖+ 2‖xi+1 − xrand‖+

2‖xi+1 − xi‖ 6 5
ν

5
= ν.

Hence, xnear ∈ Bν(xi) ⊆ F and thus xnearxrand ⊂ F .
Note that ‖xnear − xrand‖ 6 η, since: ‖xrand − xnear‖ 6
‖xrand − x′i‖ 6 ‖x′i − xi‖ + ‖xi − xi+1‖ + ‖xi+1 − xrand‖ 6
3 · ν5 < ν 6 η. The fact that ‖xnear − xrand‖ 6 η, means that
xnew = xrand.

We now prove our main theorem.

Theorem 1. The probability that GEOM-RRT fails to reach
Xgoal from xinit after k iterations is at most ae−bk, for some
constants a, b ∈ R>0.

Proof. Assume that Bν/5(xi) already contains an RRT vertex.
Let p be the probability that in the next iteration an RRT vertex
will be added to Bν/5(xi+1). Recall that due to Lemma 1,
xrand ∈ Bν/5(xi+1) ensures that RRT will reach Bν/5(xi+1).
Since at each iteration i we draw xrand uniformly at random
from [0, 1]d, the probability p that this sample falls inside
Bν/5(xi+1) is equal to |Bν/5|/|[0, 1]d| = |Bν/5|.
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1− p 1− p 1− p 1

p p p p

(0) (1) (2) (m)

Fig. 2. A Markov chain where the success probability p = |Bν/5| is the
probability to uniformly sample from a specific ball of radius ν/5. State
(m) is a terminal state. m successful outcomes imply that the algorithm
finds a path from initial state to goal, where the ith successful outcome
switches from state i to state i+ 1.

In order for GEOM-RRT to reach Xgoal from xinit we need
to repeat this step m times from xi to xi+1 for 0 6 i < m.
This stochastic process can be viewed as a Markov chain
(see Figure 2). Alternatively, this process can be described
as k Bernoulli trials with success probability p. The planning
problem can be solved after m successful outcomes (the ith
outcome adds an RRT vertex in Bν/5(xi)). Note that it is
possible that the process ends after less than m successful out-
comes, i.e., by defining success to be m successful outcomes
we obtain an upper bound on the probability of failure.

Next, we bound the probability of failure, that is, the
probability that the process does not reach state (m), after
k steps. Let Xk denote the number of successes in k trials,
then

Pr[Xk < m] =

m−1∑
i=0

(
k

i

)
pi(1− p)k−i

6
m−1∑
i=0

(
k

m− 1

)
pi(1− p)k−i

6

(
k

m− 1

)m−1∑
i=0

(1− p)k

6

(
k

m− 1

)m−1∑
i=0

(e−p)k =

(
k

m− 1

)
me−pk

=

∏k
i=k−m i

(k − 1)!
me−pk 6

m

(m− 1)!
kme−pk,

where the transitions rely on (i) m � k, (ii) p < 1
2 , and (iii)

(1− p) 6 e−p.
As p,m are fixed and independent of k, the expression
1

(m−1)!k
mme−pk decays to zero exponentially with k. There-

fore, GEOM-RRT with uniform samples is probabilistically
complete.

IV. PROBABILISTIC COMPLETENESS OF RRT UNDER
DIFFERENTIAL CONSTRAINTS

We begin by formulating the kinodynamic problem. Our
assumptions on the robotic system and the environment as well
as the definitions appear in Subsection IV-A and are adapted
from Li et al. [36]. Next, we describe the modifications to
RRT required for solving the kinodynamic problem. Finally,
in Subsection IV-B, we devise a novel PC proof for the
kinodynamic RRT.

A. Preliminaries

We adapt the problem attributes introduced in the previous
section to accommodate the more involved structure of the
kinodynamic case. The state space X ⊆ Rd is a smooth d-
dimensional manifold. Let F ⊂ X denote the free state space.
As before, we assume that there exist xgoal ∈ X , δgoal > 0,
such that Xgoal = Bδgoal(xgoal).

Let U ⊆ RD denote the space of control vectors. The given
system has differential constraints of the following form:

ẋ(t) = f(x(t), u(t)), x(t) ∈ X , u(t) ∈ U. (1)

Trajectories under differential constraints are defined as
follows.

Definition 1. A valid trajectory π of duration tπ is a contin-
uous function π : [0, tπ]→ F . A trajectory π is generated by
starting at a given state π(0) and applying a control function
Υ : [0, tπ]→ U by forward integrating Equation 1.

Similar to prior work [36], we consider control functions that
are piecewise constant:

Definition 2. A piecewise constant control function Υ with
resolution ∆t is the concatenation of constant control functions
Ῡi : [0,∆t] → ui, where ui ∈ U, and 1 6 i 6 k, for some
k ∈ N>0.

We assume that the system is Lipschitz continuous for both
of its arguments. That is, ∃Ku,Kx > 0 s.t. ∀ x0, x1 ∈
X , u0, u1 ∈ U:

‖f(x0, u0)− f(x0, u1)‖ 6 Ku‖u0 − u1‖,

‖f(x0, u0)− f(x1, u0)‖ 6 Kx‖x0 − x1‖.

We describe here the (kinodynamic) RRT algorithm, based
on [2].

Algorithm 2 RRT(xinit,Xgoal, k, Tprop,U)
1: T .init(xinit)
2: for i = 1 to k do
3: xrand ← RANDOM STATE()
4: xnear ← NEAREST NEIGHBOR(xrand, T )
5: t← SAMPLE DURATION(0, Tprop)
6: u← SAMPLE CONTROL INPUT(U)
7: xnew ← PROPAGATE(xnear, u, t)
8: if COLLISION FREE(xnear, xnew) then
9: T .add vertex(xnew)

10: T .add edge(xnear, xnew)
11: return T

The RRT algorithm in dynamic settings with no BVP solver
has the following inputs: start state xinit, goal region Xgoal,
the number of iterations k, the maximal time duration for
propagation Tprop, and the set of control inputs U. Our proof
below assumes that Tprop is positive and independent of k.

Lines 5–7 in Algorithm 2 replace line 5 in Algorithm 1.
Here, a random time duration t is chosen between 0 and Tprop
as well as a random control input u ∈ U. The algorithm uses a
forward propagation approach (function PROPAGATE) from
xnear: control input u is applied for time duration t, reaching a
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new state xnew. Finally, if the trajectory from xnear to xnew
is collision-free, then xnew is added to T together with a
connecting edge to xnear.

B. Probabilistic completeness proof

We prove that RRT for a system with dynamics satisfying
the aforementioned characteristics is PC. To do so, we start
by proving three lemmas. The following lemma, which is
an extension of Theorem 15 from [36], bounds the distance
between the endpoints of two trajectories with similar control
inputs and initial positions, for the same duration.

Lemma 2. Let π, π′ be two trajectories, with the corre-
sponding control functions Υ(t),Υ′(t). Suppose that x0 =
π(0), x′0 = π′(0). Let T > 0 be a time duration such that
for all t ∈ [0, T ] it holds that Υ(t) = u,Υ′(t) = u′. That is,
Υ,Υ′ remain fixed throughout [0, T ]. Then

‖π(T )− π′(T )‖ 6 eKxT∆x+KuTe
KxT∆u,

where ∆x = ‖x0 − x′0‖ and ∆u = ‖u− u′‖.

Proof. From the Lipschitz continuity assumption and the
triangle inequality, we have that

‖f(x0, u)− f(x′0, u
′)‖ 6 Ku∆u+Kx∆x.

As in the proof of Theorem 15 in [36], we will use the Euler
integration method to approximate the value of the trajectory
π at duration T . We divide [0, T ] into ` ∈ N>0 pieces, each
of duration h, i.e., T = ` · h. Let xi, x′i denote the resulting
approximations of the trajectories π, π′ at duration i ·h. From
Euler’s method we have that

xi = xi−1 + h · f(xi−1, u),

x′i = x′i−1 + h · f(x′i−1, u
′).

The proof in [36] shows that

‖x` − x′`‖ < (1 +Kxh)`∆x+KuTe
KxT∆u. (2)

Since (1 +Kxh)` = (1 +KxT/`)
` < eKxT we have that

‖x` − x′`‖ < eKxT∆x+KuTe
KxT∆u.

From the Lipschitz continuity assumption we have that the
Euler integration method converges to the solution of the
Initial value problem. That is, ∀0 < i 6 `,

lim
`→∞, h→0, `h=T

‖π(i · h)− xi‖ = 0,

lim
`→∞, h→0, `h=T

‖π′(i · h)− x′i‖ = 0.

Therefore,

‖π(T )− π′(T )‖ 6 eKxT∆x+KuTe
KxT∆u.

Next, we give a lower bound on the probability of a
successful forward propagation step of RRT (Algorithm 2),
from a given tree node, using a random control u ∈ U and
a random duration t ∈ Tprop. We note that our proof uses a
construction similar to [36, proof of Theorem 17].

xi
xi+1

x′i
κri

ri

κri+1κri+1 − εi

Tκπ

ri+1

Fig. 3. Illustration of Tκ.

Lemma 3. Let π be a trajectory with clearance δ > 0, and
duration τ 6 Tprop. Suppose that the control function Υ is
fixed for all t ∈ [0, τ ], i.e., Υ(t) = u ∈ U. Denote by xi, xi+1

the states π(0), π(τ), respectively. Let ri, ri+1 ∈ R>0 , such
that ri+1 = 4eKxτ · ri and ri+1 6 δ.

Suppose that the propagation step begins at state x′i ∈
Bri(xi) and ends in x′i+1. Then for any κ ∈ (0, 1], εi ∈
(0, κri+1), we have that:

ρi := Pr[x′i+1 ∈ Bκri+1
(xi+1)] > pt·

ζD ·max
(

(4κ−1)eKxτri−εi
KuτeKxτ

, 0
)

|U|
,

where ζD is the Lebesgue measure of the unit ball in RD and
0 < pt 6 1 is some constant.

Proof. Consider a sequence of balls of radius r′ = κri+1−εi,
such that (i) the center ct of each ball lies on π, that is,
ct = π(t) for some duration t ∈ [0, τ ], and (ii) Br′(ct) ⊂
Bκri+1(xi+1). The centers of all such balls constitute a seg-
ment of the trajectory π whose duration is Tκ. See Figure 3
for an illustration.

Fix t ∈ [0, τ ], such that Br′(ct) ⊂ Bκri+1
(xi+1). Addition-

ally denote by urand the random control generated by RRT, and
denote by πt the trajectory corresponding to the propagation
step starting at x′i, using the control urand and duration t. By
Lemma 2, we have that:

‖π(t)− πt(t)‖ < eKxtri +Kute
Kxt∆u,

where ∆u = ‖u− urand‖. Now, we wish to find the value ∆u
such that ‖π(t) − πt(t)‖ < κri+1 − εi, which would imply
that πt(t) = x′i+1 ∈ Bκri+1(xi+1). Thus, we require that

eKxtri +Kute
Kxt∆u < κri+1 − εi.

As ri+1 = 4eKxτ · ri the above constraint yields the condition

eKxtri +Kute
Kxt∆u < κ · 4eKxτri − εi

which implies that

∆u <
(4κeKxτ − eKxt)ri − εi

KuteKxt
.

To ensure that the bound holds for all possible durations t in
the relevant range, we should consider t = τ , which is the
maximal duration there, as the above expression is decreasing
with t. That is, we enforce the following bound

∆u <
(4κeKxτ − eKxτ )ri − εi

KuτeKxτ
=

(4κ− 1)eKxτri − εi
KuτeKxτ

.
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xz vxrand

r

r
5

2r
5

Fig. 4. Illustration of the proof of Lemma 4. z, v are RRT vertices. xrand
is the sampled state. Its nearest neighbor will be a vertex in Br(x).

To summarize, we have shown that for certain values of
t and urand it is guaranteed to have x′i+1 ∈ Bκri+1

(xi+1). It
remains to calculate the probability of randomly choosing such
values. The probability for successful propagation is at least
the (a) probability of choosing a proper t such that π(t) is a
center ct of a small ball Br′(ct) ⊂ Bκri+1

(xi+1) times the (b)
probability for choosing a control input that will cause πt(t)
to fall inside Br′(ct) ⊂ Bκri+1

(xi+1).
Clearly, the probability to choose a proper duration for

propagation is at least pt = Tκ/Tprop > 0. The probability1 to
choose a proper control input is at least:

pu =
ζD ·max( (4κ−1)eKxτri−εi

KuτeKxτ
, 0)

|U|
.

Therefore, the probability for successfully propagating is at
least ρi = pt · pu.

Finally, we prove a lower bound on the probability to grow
the tree from a vertex in a certain ball.

Lemma 4. Let x ∈ Rd be such that Br(x) ⊂ F . Suppose
that there exists an RRT vertex v ∈ B2r/5(x). Let xnear denote
the nearest neighbor of xrand among all RRT vertices (see
Algorithm 2). The probability that xnear ∈ Br(x) is at least
|Br/5|/|X |.

Proof. Suppose that there exists an RRT vertex z 6∈ Br(x), as
otherwise it is immediate that xnear ∈ Br(x). We show that
if xrand ∈ Br/5(x) then xnear ∈ Br(x). See Figure 4 for an
illustration of the proof.

Observe that ‖xrand − v‖ 6 3r/5 and ‖xrand − z‖ > 4r/5.
Thus, v is closer to xrand than z is, implying that z will not
be reported as the nearest neighbor of xrand. If xnear 6= v, then
there must be another RRT vertex y ∈ B3r/5(xrand) ⊂ Br(x)
such that ‖y − xrand‖ is minimal. Finally, the probability to
choose xrand ∈ Br/5(x) is |Br/5|/|X |.

Now we are ready to prove our main theorem.

Theorem 2. Suppose that there exists a valid trajectory π from
xinit to xgoal lying in F , with clearance δclear > 0. Suppose that
the trajectory π has a piecewise constant control function.
Then the probability that RRT fails to reach Xgoal from xinit

1The maxima function guarantees that the probability will be valid, that is,
at least 0.

after k iterations is at most a′e−b
′k, for some constants a′, b′ ∈

R>0.

Proof. Let τ 6 Tprop be a fixed duration for which there exists
` ∈ N>0 such that ` · τ = ∆t.

We choose a set of times t0 = 0, t1, t2, . . . , tm = tπ ,
such that the difference between every two consecutive ones
is τ , where tπ is the duration of π. Let x0 = π(t0), x1 =
π(t1), . . . , xm = π(tm) be states along the path π that
are obtained after duration t0, t1, . . . , tm, respectively. That
is, xi = π(ti). Obviously, m = tπ/τ is some constant
independent of the number of samples.

We now place a set of m+ 1 balls centered at x0, . . . , xm
such that the radius of the ith ball is ri = (4eKxτ )i · r0 for
0 6 i 6 m. Requiring that rm = min{δgoal, δclear}, we obtain
a value for the smallest radius r0. We show that given that
an RRT vertex in the ith ball exists, the probability pi that
in the next iteration RRT will generate a new vertex in the
(i+1)st ball when propagating from a vertex in the ith ball is
bounded from below by a positive constant. More accurately,
we show that pi > p0, where p0 is the probability that RRT
will generate a new vertex in Br1(x1) when propagating from
x0 = xinit and it is positive. The rest of the proof is the same
as that of Theorem 1.

Recall that Lemma 3 shows a lower bound ρi on the prob-
ability of a successful propagation between two consecutive
balls of radii ri, ri+1 placed in xi = π(ti), xi+1 = π(ti+1),
respectively, such that ti+1−ti = τ . Assign κ from Lemma 3
the value 2/5 and fix εi = κr0 = 2r0/5 for all 0 6 i 6 m
(note that εi ∈ (0, κri), as required). Then ρi > 0 for a
duration τ if(

4 · 2

5
− 1

)
eKxτri − εi =

3

5
eKxτri − εi (3)

=
3

5
eKxτri −

2r0
5

> 0. (4)

If the above expression is satisfied for i = 0 then it also must
hold for 1 6 i 6 m as ri > r0. Since eKxτ > 1 for any τ > 0
it must follow that

3

5
eKxτr0 −

2r0
5

>
3

5
r0 −

2

5
r0 =

r0
5
> 0.

Moreover, we may set τ 6 Tprop such that there exists ` ∈ N>0

for which ` · τ = ∆t holds.
Suppose that there exists an RRT vertex v ∈ B2ri/5(xi) ⊂
Bri(xi). We need to bound the probability pi that in the
next iteration the RRT tree will grow from an RRT vertex
in Bri(xi), given that an RRT vertex in B2ri/5(xi) exists, and
that the propagation step will add a vertex to B2ri+1/5(xi+1).
That is, pi is the probability that in the next iteration both
xnear ∈ Bri(xi) and xnew ∈ B2ri+1/5(xi+1).

From Lemma 4, we have that the probability qi that xnear lies
in Bri(xi), given that there exists an RRT vertex in B2ri/5(xi),
is at least |Bri/5|/|X |. Now, since ri > r0 for 0 6 i 6 m− 1,
we have that qi > q0 > 0. From Lemma 3 we have that
the probability for xnew ∈ B2ri+1/5(xi+1) is at least some
positive constant ρi > 0. Moreover, it holds that ρi > ρ0 for
0 6 i 6 m − 1. Hence, for all 0 6 i 6 m − 1 it holds that
pi > p0, where p0 = q0 · ρ0 > 0. The rest of the proof is the
same as that of Theorem 1.
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V. DISCUSSION

Although our proofs assume uniform samples, they can be
easily extended to samples generated using a Poisson point
process, which is preferable in certain settings [11], [27]. An
immediate extension of this work is to verify whether our
proofs hold when other sampling distributions are considered,
e.g., Halton sequences (see [40]).

Another possible direction is to further relax some of the
assumptions made for kinodynamic systems, such as Lipschitz
continuity. Additionally, the work raises the following chal-
lenging research question: Is it possible to extend these proofs
that have a reduced set of assumptions to other sampling-based
planners [14], or informed variants of RRT.

Finally, we mention that the following variants of RRT are
not addressed in the current paper, or in the work of Kunz and
Stilman [12]: (i) random time + best-control input; (ii) fixed
time + random control; (iii) random time larger than a fixed
threshold + random or best control. Whether these variants
are indeed probabilistically complete remains as a question
for future research.
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