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Abstract

We derive a new Fibonacci identity. This single identity subsumes important known
identities such as those of Catalan, Ruggles, Halton and others, as well as standard
general identities found in the books by Vajda, Koshy and others. We also derive
several binomial and ordinary summation identities arising from this identity; in par-
ticular we obtain a generalization of Halton’s general Fibonacci identity.

1 Introduction

As usual, the Fibonacci numbers, F),, and the Lucas numbers, L,, n € Z, are defined by:
Fo=0 Fi=1 F,=F, 1+ F,»(n>2), F,=(-1)""'F, (1.1)
and
LO = 2, L1 = 1, Ln = Ln—l -+ Ln_g (TL Z 2), L_n = (—1)nLn . (12)

Both (F},),ez and (L, ),ez are examples of a Fibonacci-like sequence. We define a Fibonacci-
like sequence, (G, )nez, as one having the same recurrence relation as the Fibonacci se-
quence, but with arbitrary initial terms. Thus, given arbitrary integers G, and Gy, not
both zero, we define

Gn=Gp 1+ G, 2(n>2); (1.3)

and also extend the definition to negative subscripts by writing the recurrence relation as
G =G pnyo—G_py1. (1.4)

In section 2, it will be shown that
G_,=(—1D)"(L,Gy — G,). (1.5)

In this paper, we will derive the following identity involving Fibonacci numbers and Fibonacci-
like numbers:
Fa—bGn+m = m—bGn+a + (_1)a+b+1Fm—aGn+b 5

valid for all integers a, b, n and m.
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Various summation identities emanating from this identity will be derived. In particular,
we will derive (section 3, identity (3.9))the following generalization of Halton’s identity (see
Halton [3, identity (23)]):

k
Z ( )Fi bFrlziL:—aGn-i-(a_b)k-i-(m-i-b)j (— 1)(a+b ka—I—bG

Jj=

2 Anidentity involving Fibonacci and Fibonacci-like numbers

Theorem 1. The following identity holds for arbitrary integers a, b, m and n:

Fa—bGn+m - m—bGn+a + (_1)a+b+1Fm—aGn+b .

Proof. Since both sequences (F,) and (G),) have the same recurrence relation, we choose a
basis set in (F},) and express the numbers from (G,,) in this basis. We write

Gn—l—m - )\lFm—b + >\2Fm—a ) (21)

where a, b, n and m are arbitrary integers and the coefficients A\; and Ay are to be deter-
mined. Setting m = a and m = b, in turn, gives

Gn+a - )\1Fa—b> Gn—i—b = )\2Fb—a . (22)

Multiplying through identity (2.1) by F,_Fy_, gives

Fa—be—aGn—i-m = )\1Fa—b Fb—aFm—b + )\2Fb—a Fa—me—a . (23)
~—— ——
Gn+a Gn+b

Thus, we find

Fa—be—aGn—i-m - Fb—aFm—bGn—i-a + Fa—me—aGn—i-b
= Fb—aFm—bGn—l—a + (_1>a+b+1Fb—aFm—aGn+b ;

so that the identity of the theorem is satisfied identically if @ = b and numerically if
a # b. O

Since the left hand side of the identity of Theorem 1 does not change under the interchange
of m and n and the interchange of a and —b and b and —a, we also have the following
identities:

FytGrim = FongaGrop + (1) G, (2.4)

Fa—bGn+m = n—me—I—a + (_1)a+b+1Fn—aGm+b (25)
and

Fa—bGn+m = Fn—i—aGm—b + (_1)a+b+1Fn+me—a . (26)

If we set @ =0 =m, b= —n in identity (2.5) and use the fact that F», = F},L,,, we have
G_,=(—1)"(L,Go — Gp),

providing a direct access to negative-index Fibonacci-like numbers.



The presumably new identity in Theorem 1 includes, as particular cases, most known three-
term recurrence relations involving Fibonacci numbers, Lucas numbers and the generalized
Fibonacci numbers. We will give a couple of examples to illustrate this.

Setting a = 0 and b = m — n in the identity of Theorem 1 gives
FrmGogm = F,Gp + (=1)""" M EL.G (2.7)
which is a generalization of Catalan’s identity:
FymFrpi = F2 4 (1) E2 (2.8)
Using m = 0 and @ = ¢ + b in the identity and re-arranging the terms, we find
FoyGriy — FyGrspre = (—1)"1EG,, (2.9)

which is a generalization of Vajda [6, Formulas (19a) and (19b)].
Setting a = 0 and b = —m in the identity of Theorem 1 gives

Grim + (=)™ G = LG, (2.10)

which is Vajda [6, Formula 10a).
Setting b = 0, a = k and m = 2k in the identity of Theorem 1 gives

Frior = LiFoyr + (=1)" 7" FyF, (2.11)

which is Ruggles’ identity [2, 5].
Setting b = —a in the identity of Theorem 1 gives
F2aGn+m - Fm+aGn+a - Fm—aGn—a ) (212)
with the special case
Gn—i—m = m+1Gn+l - Fm—lGn—l ) (213)

which is a generalization of the following identity (Halton [3, Identity (63)], Koshy |4,
Identity (44), page 89]):
Fn+m = m+1Fn+1 — B (214)

Setting b = 2k, a = 1 and b = 2k, a = 0, in turn, in the identity of Theorem 1 produces
FZk—lGn—l—m - m—2an+1 + Fm—lGn+2k (215)

and
F2an+m - FmGn+2k - Fm—2an . (216)

Identity (2.16) is a generalization of the following well-known addition formula (Vajda |6,
Formula (8)]):

Goim = Frno1Gr + F Gy (2.17)
Setting a = n and b = —m in the identity of Theorem 1 produces
F2mG2n = Fn+mGn+m - Fn—mGn—m . (218)



3 Summation identities involving Fibonacci and Fibonacci-like
numbers

3.1 Binomial summation identities

Lemma 1 (|1, Lemma 3|). Let (X,,) be any arbitrary sequence. Let X, n € Z, satisfy
a three-term recurrence relation hX, = f1X,_o + foX,_p, where h, f1 and fs are non-
vanishing complex functions, not dependent on n, and o and 3 are integers. Then,

k
Z( )fz—fl n—i+(3-a)i = N Xan (3.1)

k
Z ( )fz_ W Xy ta—pias; = (1) X, (3.2)
Jj=
and
Z (_1)] (]) -fl _]h]Xn+(ﬁ—a)k+aj = (_1)k.f§Xn s (33)
=0

for k a non-negative integer.

Theorem 2. The following identities hold for positive integer k and arbitrary integers a,
b, n, m:

A B
> (et )( j)Fr]n—bFrkn—jaGn—(m—b)k‘i‘(a—b)j = Fy G, (3.4)
‘]:
k
Z a+b <]>Fg , k JG (a—b)t (m—b);j ( 1)(a+b ka bGn7 (3.5)
7=0
k
Z ( )F S Fn Gt ety m—a)y = (=1)TEL G, (3.6)
Jj=
- k
(08 () B G msanetonns = FE G (37)
=0 J
D (—1letts (J)F G (@ miay = (=D TR G (3.8)
=0
and
- k
5 1 () FL Gty = (CDEL LG 39)
=0

Proof. To derive identities (3.4) — (3.6), write the identity of Theorem 1 as
Fa—bGn = Fm—bGn—(m—a) + ( 1)a+b+1Fm aG (m—b) 3

identify h = F,_y, fi = Fpsp, fo = (1), . X, =G,,a=m—a, 3=m—band
use these in Lemma 1. Identities (3.7) — (3.9) are obtained from identities (3.4) — (3.6) by
interchanging a and —b and b and —a. O



Particular cases of identities (3.4) — (3.9) are the pure Fibonacci binomial summation iden-

tities
k B\ .
Z ettt )< -)Fg@—bFfz:JaFn—(m—b)m(a—b)j = Fy ,F,
p= J
k k
> (e (])F‘z vF P oy (my; = (—1)TOFFE
7=0
K A .
> (=1 <j ) Fl F  Pata s mea)y = (=) TONEL_F,
7=0
k 2
Z (_1)(a+b+1)(k_j) ( )Ffjn—l—aFrlziL:—bFn—(m+a)k+(a—b)j = Ff_bFn )
=0 J
k k
> (= (])Fg F i P (o= (meay = (—1) R ERF,
7=0
and
k
Z ( )Fg pFonsa Frt(abpsmnyy = (=1)@TOFEE L F,
7=0

and the corresponding identities involving both Fibonacci and Lucas numbers:

k
kN ;i —j
Z (a+b+l (k—7) ( ) an_bFT]:L_]aLn_(m_b)k_l_(a_b)j = Ff_bLn )

Jj=0 J

DE (j)Fg pFm b L (@t mv)j = (1) FEL L,

uMw

k
Z ( )Fj ka_ Ln+(a—b)k+(m—a)j = (_1)(a+b)kF7]7€1—aLn>

j=0

.

(“"‘b"‘l (k=7) <k) FJ Fk JLn (m+a)k+(a—b)j Ff—bL" !
J

m+a~ m+b

M” QM”

a k—j a
ierey (J)FCz vFn L (@bt (ma)j = (1) “TFEY L,

J=0

and

( )Fi o d Lo tamtyes (matyj = (—1)@TORER L,

QMk

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

We remark that Halton’s identity [3, Identity 23|, from which he derived a very large
number of identities of different kinds, involving the Fibonacci numbers, is a particular

case of identity (3.15), being an evaluation at b = 0.



3.2 Non-binomial summation identities

Lemma 2 (|1, Lemma 1]). Let (X,,) and (Y,) be any two sequences such that X,, and Yy,
n € Z, are connected by a three-term recurrence relation hX, = f1.X,_o+ foY,_s, where h,
f1 and fy are arbitrary non-vanishing complex functions, not dependent on n, and o and 3
are integers. Then, the following identity holds for integer k:

k
f2 Z fl _]ijn—ka—ﬁ—l—aj - hk+1Xn - {H—an—(k-i-l)a .

J=0

Theorem 3. The following identities hold for a, b, m, n and k arbitrary integers:

k
Fap Z (— 1)(a+b)j G ];_Jr]bGﬁnJmGn—(a—b)k+m+b+(a_b) j
=0 (3.22)

= (=) @FEGEL + (=) F, e GEEL

and

k

Fa—b Z (_1)(a+b)jG]:n_—jaGZn_bGn—(a—b)k+m—a+(a—b)j
=0 (3.23)

= (- 1)(a+b kg Gk—i—lb + (- 1)a+b+1Fn_(a B k+1)G51+_1a-
Proof. To prove identity (3.22), write identity (2.4) as
Gm—l—aFn = (_1)a+me+bFn—(a—b) + Fa_bGn+m+b ) (324)

identify h = Gpia, f1 = (=1 Grie, fo = Fuv, X = Fo, Yoo = Grymasy, @ = a — b and
f =0 and use these in Lemma 2. Identity (3.23) is obtained from identity (3.22) through
the transformation a — —b, b — —a. O

Lemma 3 (|1, Lemma 2|). Let (X,) be any arbitrary sequence, where X,,, n € 7, satisfies
a three-term recurrence relation hX, = f1X,_o + foX,_p, where h, f1 and fo are arbitrary
non-vanishing complex functions, not dependent on r, and o and 3 are integers. Then, the
following identities hold for integer k:

k
f2 Z .fl _jthn—ka—B—i-aj - hk+an - ff+1Xn—(k+1)a 5 (325)
k ..

fi Z fo W Xy parsy = DX, — T X )8 (3.26)

and

k
RY (1Y 17 X papirasg-ari = (DA X+ AT X peayrny - (3:27)
7=0



Theorem 4. The following identities hold for arbitrary integers a, b, n, m and k:

k
(=) E Y FE L FT G neae (b (m—a)
; (3.28)
- FfjblG FkHG a)(k+1) 5
k
a —3) ok
F,._ Z (_1)( +b+1)(k J)Fm ]aFg bGn—(m—b)k—(m—a)+(m—b)j (3 29)
Jj=0 .
— Ff+b1G ( )(a+b+1)(k+1)Fk+1 G, (mb)(k1) »
k
a k
Fa—bZ( 1)( ) T JaFrjn bGn—(a—b)k—l—(m—a)—l—(a—b)j (3 30)
J=0 :
= ( 1)(a+b ka+lG +( )a+b+1Fk+l Gn—(a b)(k+1) »
( a+b+1F m+b ZFrle-]aFg b n—(m—l—b)k—(m—i—a)—l—(m—l—b)j (3 31)
= FffblG Fr]:L—I-i—-aGn—(m—i-b)(k-i-l) )
k
“ o b i
Fm+a Z (_1)( Sl ])Fm—l—Jij—bGn—(m—i—a)k—(m—i—b)—i—(m—i—a)j (3 32)
J=0 :
Ff+b1G ( )(a+b+1)(k+l)Fylzi%;Gn—(m—i-a)(k—i—l) ’
and
k
a k
Fap Z ( 1>( ol Fm-}-ijnj"b—i-aGn—(a—b)k+(m+b)+(a—b)j (3 33)
Jj=0 .

_ ( 1)(a+b ka-H G + ( )a+b+1F:~:_%Gn (a—b) (k1) -

m4a

Proof. In Lemma 3, with X,, = G,,, use the h, fi, fo, a and [ obtained in the proof of
Theorem 2. O

In particular, we have the pure Fibonacci summation identities

a b+1 k—
( ot F ZF ]F] n—(m a)k—(m—>b)+(m—a)j

(3.34)
= FME, — Fr B mea) (et 1)
k
Frs Z (_1)(a+b+1)(k_j)Fr]:L_—]z'ng_bFn—(m—b)k—(m—a)—l—(m—b)j
pa (3.35)
— Ffj_ban ( 1)(a+b+1)(k‘+l)Fk2+1 Fn—(m b)(k+1)
k . .
Fop ) (=) ET L, (P oty mea)+(ab)i
gt (3.36)

_ ( 1)(a+b)ka+1F 4 ( 1)a+b+1Fk+1 Fn (a—b)(E+1) »

7



k
. o
(=) e Z o F Fo (mab)b—(m-+a)+(m-+b);
=0

= Ffjban - Fk+l Fn—(m+b)(k+1) )

m-+ta
k
Frna Y (1) @D EE S L B mt )k (mesh)+ (mta);
§=0
= FIF, — (=1) et P ma) (1) »
and
k
Fuy» (=1 Er IR Fo (bt (mtb) +(a=b)s
§=0

= (1) O F 4 (=) T L P (et

and the corresponding results involving Fibonacci and Lucas numbers:

k

a k—j 1j
()" g Z E L F L (m—a)k—(m—b)+(m—a);

=0
= Fy Ly — Fy L mea) (k1)
!

. I

Frp Z (_1)( L) ])Fm—]aFg_bLn—(m—b)k—(m—a)+(m—b)j
=0

= Ffjban _ (_1)(a+b+1)(k+1)Fylfqtan—(m—b)(k—i-l) :
k
BV ke 1
Fap Z (_1)( )7 Fm—jaFnjl_bLn—(a—b)k+(m—a)+(a—b)j
j=0
= (=) O L+ (=) T B Lo (bt

!
a k—j j
(=1)* T F Z ot F Ly (meb)k—(m+a)+ (m+b);
=0

= F L, — F L ) (o)

m+a

hE

a —3) mk—Jj mJ
Frga ) (1) @D B B Lo (moayh—(meb) - (m-+a)s
7=0
= Ffjban - (_1)(a+b+1)(k+l)Fr]::-})[’n—(m—i-a)(k—i-l) )
and
k
b ok i
Fa Z (_1)( 0 Fm—i-]bFT]n—i-aLn—(a—b)k+(m+b)+(a—b)j
=0

= (=) “TREE Ly 4+ (1) R L (b -

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)



3.3 Sums involving products of Fibonacci or Fibonacci-like num-
bers in the denominator of the summand

Lemma 4. Let (X,,) and (Y,) be any two sequences such that X,, and Y,, n € Z, are
connected by a three-term recurrence relation hX, = fiX,—o + foY,_p, where fi and f,
are arbitrary non-vanishing complex functions, not dependent on n, and «, 5 and k are
integers. Then,

k
i g Yn— —ak+ay
Xan—a(k+1)f2 Z hk_]fle oakta) = hk+1Xn - f1k+1Xn—a(k+1) .

n—ak+aj Xn—a—ak—l—aj

Jj=0

Theorem 5. The following identities hold for values of a, b, m, n, k for which the summand
15 non-singular in the summation interval:

CGE T G G (0 bkt (ab)s
FnFn—(a—b)(k+1)Fa_b (—1)(a+b)] + +b ™~ ntm+b—(a—b)k+(a—b)j

<.
Il >
o

Fro—(a—t)kt-(a=b)j Frn—atb—(a—b)k+(a—b); (3.46)
= FuGyll, — (1)U E Gy
k (asD)j Gk—bej G N Y
Foln(a—v) (k1) Fa—b (—1) atb)j m—b—m—a—nrm—a—{a— a—
(a=b)(k+1) ; Fo—(a=b)k+(a—b)j Fntb—a—(a—b)k+(a—b); (3.47)

= F,GHL — (=)@ R gy GEEL

Proof. In Lemma 4, make the identification X,, = F}, and Y,, = G,,.,,1p and use the fi, fo,
h, o and [ obtained in the proof of Theorem 3. O

Particular cases of identities (3.46) and (3.47) are the following:

k A .
o b Etmab—(a—b)k (a—b)j
FnFn— amb) (ki1 Fa—b (_1)(a+b)] m+at m+b J
e ; Fr—(a=b)k+(a=b)j Fn—atb-(a=b)k+(a-b); (3.48)
= F,Frt — (—D)O IR men Fit,
- F'IFi R .
) A e
j=0 Fn—(a—b)k+(a—b)jFn+b—a—(a—b)k+(a—b)j (3,49)
= F F0 — (D) @EIE o wen FRt
and
i LFin L .
FnFn—(a—b)(k—l—l)Fa—b Z (_1)(a+b)j mta”mybntmtb-(a—b)k+(a—b)j
5=0 B (@b t+(a-b)j Fn—atb—(a—b)k+(a—b);j (3.50)
= B LA — (=)D e L
k ki .
- L, L) — Ln+m—a—(a—b)k+(a—b)'
FnFn— a—b) (K 1Fa—b (_1>(a+b)y m—bHm—a j
et ; Fo—(a=b)k+(a—b)j Frntbv—a—(a—b)k+(a—b)j (3.51)

= oLy — (—1)(a+b)(k+l)Fn—(a—b)(kﬂ)LfnJ’_la .



Lemma 5. Let (X,,) be any arbitrary sequence. Let X,, n € Z, satisfy a three-term
recurrence relation hX, = f1X,_o + f2X,_g, where fi and fo are non-vanishing complex
functions, not dependent on n, and o, 5 and k are integers. Then, the following identities
hold for arbitrary integers m, o, B and k for which the summand is not singular in the
summation interval:

k
i rJj Xn— —ak+aj
XnXomarn fo D Wl gt = WX, = i Xy, (352)
j:(] n—o (&%) n—oa—o (e%)
k ¢ .
Xan—ﬁ(k+1)f1 Z hk_]fg Y n—§6k+ﬁj = hk-i—an _ féﬁ_an—ﬁ(k-i—l) ’ (3.53)
e n—pBk+BjAn—B—pBk+Bj
and

k
Xn—i—a—(ﬁ—a)k-l—(ﬁ—a)j
Xan—(ﬁ ) (k+1) h fk ]f
;0 b X (-t (B-a) Xn-pra—(B-a)b+ (B (3.54)

X 4+ (=D T X (—a)(et1)
Theorem 6. The following identities hold for values of a, b, m, n, k for which the summand
1s non-singular in the summation interval:

k

( 1)a+b+1Fm aG Gn—m a)(k+1) Z

=0

k
]F Gn—m—i—b—(m—a)k-‘r(m—a)j

n (m—a)k+(m—a)j Gn—(m—a)—(m—a)k—i—(m—a)j (355)
k+1 k+1
= F5 Gy — Fot G mea) (k1) »

a k—
)( I F T B o G ()= (bt (m—b)s

k
bG Gn (m—0b)(k+1) Z
7=0

— Flic—l-blG ( )(a+b+1)(k+1)Fk+1 Gn (mb)(kt1) »

G (m—b)k+ (m—1)j G (m—b)— (m—b)k+ (m—b); (3.56)

k s k—i
—1)\(a+b)j pk=i pi G oo s
Fa—bGnGn—(a_b)(k+1) E ( ) m—b- m—a + (a—b)k+(a—b)j

= Gr@-tht(a-0)i Gn(a-b)—(a-b)k+(a—b); (3.57)
_ Fk+1G ( )(a+b)(k+1)Fk+1 Gn—(a D) (k1) 5
atbr1 : Fy I F oG ac (meb)he ()]
(_1) i +bG Gn_(m+b F ZO n— (m+b)k+(m+b)j Gn—(m+b)—(m+b)k+(m+b)j (3-58)
= FM G — Fy G i) h41) »
FnaGnGrn(maa)(k+1) i L ngn_(m+b)_(m+a)k+(mJ.ra)j
‘= Gu-(mrakronta) G(m+a)-(mta)k+(m+a)j (3.59)

Fk+1G ( )(a+b+1)(k+1)F:::;_%,Gn—(m-i-a)(k‘l'l) 5

and
k " !
oy GG ess) Z (—1) @I EE T F? o Gtmsb— (a—b)bt(amb)j
s G- (a=b)k+(a=b)j Gn—(a—b)—(a—b)k-+(a—b); (3.60)
— Frl:L—l—i—le o ( 1)(a+b)(k+1)F1€+1Gn_ a b)(k+1)

10



Proof. In Lemma 5, make the identification X,, = G, and use the fi, fo, h, a and

obtained in the proof of Theorem 4.

In particular, we have the pure Fibonacci identities:

k k— j

(=) E, _F, Fom—a)(k+1) Z )

= n (m—a)k+(m— a)jFn—(m—a)—(m—a)k+(m—a)j
= Pyt Fy = FY S F meay (k) »

k
P Fu P m—b)(is1) Z

J=

a k—
(— 1)< T P P (ma)— (m—b)kt (m—b)

Fo— =)kt (m=b)j Frie (m—b) = (m—b)k+(m—b);

— Fakj-ban ( 1)(a+b+1)(k+1)Fk+1 Fn—(m b)(k+1)
i
(_1)( )i Fm_]bFr]n—aFn—i-m—a—(a—b)k+(a—b)j
Fo—(a-b)k+(a—b)j Fn—(a—b)— (a=b)k-+(a—b);

— MR (- 1)(a+b)(k+1)Fk+1Fn_(a D) -

k

k
Fo v F, —(a—b)(k+1) Z
=0

Fk ]Fr]n g,Fn—m—a—m b)k+(m+b)j
(_1)a+b+1Fm+bFnF mab) (k1) + (m+b)k+(m+b)j

—0 Fn—(m+b)k+(m+b) 'Fn—(m+b)—(m+b)k+(m+b)j

J=
= FM = Fr B by (k1)

m-+a

k +b+ k— / I +a)k+(m—+
1) a+b+1)j F j F., bj n—(m+b)—(m-+a)k-+(m+a)j
m+a EL m+a)(k+1) F +a)k+(m+ j
I I ( ) Z F,_ (m+a)k+(m+a)jL'n—(m+a)—(m+a)k+(m+a)j

= FyF, = (= 1)(a+b+1)(k+1)Frl,iﬁFn—(era)(kH) ;

and

k u k
Fa o FoFoayosn Z (—1)¢ +b)]Fm+J¢1Fnj~b+bFn+m+b—(a—b)k—i—(a—b)j

J=0

Fo—(a—b)k+(a—b)j Frn—(a—b)— (a—b)k+(a—b);

— PR, — (C)ePEEE

and the corresponding identities involving Lucas and Fibonacci numbers:

o
F, ) FyyLn—mav—(m-—a)k+(m—a);j

k
(_1)a+b+1Fm—aLnLn—(m—a)(k—l—l)
jz Ln—(m—a)k—l—(m—a)j Ln—(m—a)—(m—a)k—l—(m—a)j

— Fk-i—lL . Fk—l—lL ) (k1)

k ki .
_1)(atb+D)i Ip AL o o
ol ryieeny S (=1) A (m—a)—(m—b)k+(m—b)j
7=0

= F’f+b1 L, —(— 1)(a+b+l)(k+1) Fk+l I

L m—) ket (m—b)j Ln— (m—b)— (m—b)k+(m—b);
n—(m—>b)(k+1) »

a+b)]Fk jF] Ln+m—a—(a—b)k+(a—b)j

k
FoyLy, Ln—(a b)(k+1) Z

e L —(a—b)k+(a—b)j Ln—(a—b)— (a—b)k+(a—b);

— Fj:l-l;%)Ln ( 1)(a+b)(k+1)Fk+1 Ln—(a b)(k+1) 7
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(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)



k k—
F jFrJn aLn—m—a—m b)k+(m+b)j
(= 1) Fop Lo L ey (k1) Z e (D))

]:

Ly (ms) k- (m4b)j Lin—(m+-b)— (m-+b) k- (m+b)j (3.70)

= Fi ) Ly — F 2 L ety (k1)

m+a

(—1)(@tb+)i Ff__gFm+bjLn_(m+b)_(m+a)k+(m+a)j

k
Fm aLnLn— m-+a)(k+1
+ ( + )( + ) Z Ln—(m+a)k+(m+a) 'Ln—(m+a)—(m+a)k+(m+a)j (371)

J=0

= Ffj_ban (— 1)(a+b+1)(k+l)Fiﬂ;Ln—(me)(kﬂ) )

and

F bL L b)(k zk: a+b)]Frlz+jaFm+bLn+m+b—(a—b)k+(a_b)j
n—(a— 1
(a=b)(k+1) o Ly (a—b)k-+(a—b)j Ln—(a—b)— (a—b)k+(a—b); (3.72)

= Fi L, — (= 1) ) Fo L eyt -
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