
ar
X

iv
:1

80
9.

06
85

0v
1 

 [
m

at
h.

C
O

] 
 1

8 
Se

p 
20

18

A new Fibonacci identity and its associated

summation identities

Kunle Adegoke

adegoke00@gmail.com

Department of Physics and Engineering Physics,

Obafemi Awolowo University, 220005 Ile-Ife, Nigeria

Abstract

We derive a new Fibonacci identity. This single identity subsumes important known

identities such as those of Catalan, Ruggles, Halton and others, as well as standard

general identities found in the books by Vajda, Koshy and others. We also derive

several binomial and ordinary summation identities arising from this identity; in par-

ticular we obtain a generalization of Halton’s general Fibonacci identity.

1 Introduction

As usual, the Fibonacci numbers, Fn, and the Lucas numbers, Ln, n ∈ Z, are defined by:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2), F−n = (−1)n−1Fn (1.1)

and
L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 (n ≥ 2), L−n = (−1)nLn . (1.2)

Both (Fn)n∈Z and (Ln)n∈Z are examples of a Fibonacci-like sequence. We define a Fibonacci-
like sequence, (Gn)n∈Z, as one having the same recurrence relation as the Fibonacci se-
quence, but with arbitrary initial terms. Thus, given arbitrary integers G0 and G1, not
both zero, we define

Gn = Gn−1 +Gn−2 (n ≥ 2) ; (1.3)

and also extend the definition to negative subscripts by writing the recurrence relation as

G−n = G−n+2 −G−n+1 . (1.4)

In section 2, it will be shown that

G−n = (−1)n(LnG0 −Gn) . (1.5)

In this paper, we will derive the following identity involving Fibonacci numbers and Fibonacci-
like numbers:

Fa−bGn+m = Fm−bGn+a + (−1)a+b+1Fm−aGn+b ,

valid for all integers a, b, n and m.
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Various summation identities emanating from this identity will be derived. In particular,
we will derive (section 3, identity (3.9))the following generalization of Halton’s identity (see
Halton [3, identity (23)]):

k∑

j=0

(−1)j
(
k

j

)

F
j
a−bF

k−j
m+aGn+(a−b)k+(m+b)j = (−1)(a+b)kF k

m+bGn .

2 An identity involving Fibonacci and Fibonacci-like numbers

Theorem 1. The following identity holds for arbitrary integers a, b, m and n:

Fa−bGn+m = Fm−bGn+a + (−1)a+b+1Fm−aGn+b .

Proof. Since both sequences (Fn) and (Gn) have the same recurrence relation, we choose a
basis set in (Fn) and express the numbers from (Gn) in this basis. We write

Gn+m = λ1Fm−b + λ2Fm−a , (2.1)

where a, b, n and m are arbitrary integers and the coefficients λ1 and λ2 are to be deter-
mined. Setting m = a and m = b, in turn, gives

Gn+a = λ1Fa−b, Gn+b = λ2Fb−a . (2.2)

Multiplying through identity (2.1) by Fa−bFb−a gives

Fa−bFb−aGn+m = λ1Fa−b
︸ ︷︷ ︸

Gn+a

Fb−aFm−b + λ2Fb−a
︸ ︷︷ ︸

Gn+b

Fa−bFm−a . (2.3)

Thus, we find

Fa−bFb−aGn+m = Fb−aFm−bGn+a + Fa−bFm−aGn+b

= Fb−aFm−bGn+a + (−1)a+b+1Fb−aFm−aGn+b ;

so that the identity of the theorem is satisfied identically if a = b and numerically if
a 6= b.

Since the left hand side of the identity of Theorem 1 does not change under the interchange
of m and n and the interchange of a and −b and b and −a, we also have the following
identities:

Fa−bGn+m = Fm+aGn−b + (−1)a+b+1Fm+bGn−a , (2.4)

Fa−bGn+m = Fn−bGm+a + (−1)a+b+1Fn−aGm+b (2.5)

and
Fa−bGn+m = Fn+aGm−b + (−1)a+b+1Fn+bGm−a . (2.6)

If we set a = 0 = m, b = −n in identity (2.5) and use the fact that F2n = FnLn, we have

G−n = (−1)n(LnG0 −Gn) ,

providing a direct access to negative-index Fibonacci-like numbers.
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The presumably new identity in Theorem 1 includes, as particular cases, most known three-
term recurrence relations involving Fibonacci numbers, Lucas numbers and the generalized
Fibonacci numbers. We will give a couple of examples to illustrate this.

Setting a = 0 and b = m− n in the identity of Theorem 1 gives

Fn−mGn+m = FnGn + (−1)n+m+1FmGm , (2.7)

which is a generalization of Catalan’s identity:

Fn−mFn+m = F 2
n + (−1)n+m+1F 2

m . (2.8)

Using m = 0 and a = c+ b in the identity and re-arranging the terms, we find

Fc+bGn+b − FbGn+b+c = (−1)b+1FcGn , (2.9)

which is a generalization of Vajda [6, Formulas (19a) and (19b)].

Setting a = 0 and b = −m in the identity of Theorem 1 gives

Gn+m + (−1)mGn−m = LmGn , (2.10)

which is Vajda [6, Formula 10a].

Setting b = 0, a = k and m = 2k in the identity of Theorem 1 gives

Fn+2k = LkFn+k + (−1)n+kFkFn , (2.11)

which is Ruggles’ identity [2, 5].

Setting b = −a in the identity of Theorem 1 gives

F2aGn+m = Fm+aGn+a − Fm−aGn−a , (2.12)

with the special case
Gn+m = Fm+1Gn+1 − Fm−1Gn−1 , (2.13)

which is a generalization of the following identity (Halton [3, Identity (63)], Koshy [4,
Identity (44), page 89]):

Fn+m = Fm+1Fn+1 − Fm−1Fn−1 . (2.14)

Setting b = 2k, a = 1 and b = 2k, a = 0, in turn, in the identity of Theorem 1 produces

F2k−1Gn+m = Fm−2kGn+1 + Fm−1Gn+2k (2.15)

and
F2kGn+m = FmGn+2k − Fm−2kGn . (2.16)

Identity (2.16) is a generalization of the following well-known addition formula (Vajda [6,
Formula (8)]):

Gn+m = Fm−1Gn + FmGn+1 . (2.17)

Setting a = n and b = −m in the identity of Theorem 1 produces

F2mG2n = Fn+mGn+m − Fn−mGn−m . (2.18)
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3 Summation identities involving Fibonacci and Fibonacci-like

numbers

3.1 Binomial summation identities

Lemma 1 ([1, Lemma 3]). Let (Xn) be any arbitrary sequence. Let Xn, n ∈ Z, satisfy

a three-term recurrence relation hXn = f1Xn−α + f2Xn−β, where h, f1 and f2 are non-

vanishing complex functions, not dependent on n, and α and β are integers. Then,

k∑

j=0

(
k

j

)

f
k−j
2 f

j
1Xn−βk+(β−α)j = hkXn , (3.1)

k∑

j=0

(−1)j
(
k

j

)

f
k−j
2 hjXn+(α−β)k+βj = (−1)kfk

1Xn (3.2)

and
k∑

j=0

(−1)j
(
k

j

)

f
k−j
1 hjXn+(β−α)k+αj = (−1)kfk

2Xn , (3.3)

for k a non-negative integer.

Theorem 2. The following identities hold for positive integer k and arbitrary integers a,

b, n, m:
k∑

j=0

(−1)(a+b+1)(k−j)

(
k

j

)

F
j
m−bF

k−j
m−aGn−(m−b)k+(a−b)j = F k

a−bGn , (3.4)

k∑

j=0

(−1)(a+b)j

(
k

j

)

F
j
a−bF

k−j
m−aGn−(a−b)k+(m−b)j = (−1)(a+b)kF k

m−bGn , (3.5)

k∑

j=0

(−1)j
(
k

j

)

F
j
a−bF

k−j
m−bGn+(a−b)k+(m−a)j = (−1)(a+b)kF k

m−aGn , (3.6)

k∑

j=0

(−1)(a+b+1)(k−j)

(
k

j

)

F
j
m+aF

k−j
m+bGn−(m+a)k+(a−b)j = F k

a−bGn , (3.7)

k∑

j=0

(−1)(a+b)j

(
k

j

)

F
j
a−bF

k−j
m+bGn−(a−b)k+(m+a)j = (−1)(a+b)kF k

m+aGn (3.8)

and
k∑

j=0

(−1)j
(
k

j

)

F
j
a−bF

k−j
m+aGn+(a−b)k+(m+b)j = (−1)(a+b)kF k

m+bGn . (3.9)

Proof. To derive identities (3.4) – (3.6), write the identity of Theorem 1 as

Fa−bGn = Fm−bGn−(m−a) + (−1)a+b+1Fm−aGn−(m−b) ;

identify h = Fa−b, f1 = Fm−b, f2 = (−1)a+b+1Fm−a, Xn = Gn, α = m − a, β = m− b and
use these in Lemma 1. Identities (3.7) – (3.9) are obtained from identities (3.4) – (3.6) by
interchanging a and −b and b and −a.
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Particular cases of identities (3.4) – (3.9) are the pure Fibonacci binomial summation iden-
tities

k∑

j=0

(−1)(a+b+1)(k−j)

(
k

j

)

F
j
m−bF

k−j
m−aFn−(m−b)k+(a−b)j = F k

a−bFn , (3.10)

k∑

j=0

(−1)(a+b)j

(
k

j

)

F
j
a−bF

k−j
m−aFn−(a−b)k+(m−b)j = (−1)(a+b)kF k

m−bFn , (3.11)

k∑

j=0

(−1)j
(
k

j

)

F
j
a−bF

k−j
m−bFn+(a−b)k+(m−a)j = (−1)(a+b)kF k

m−aFn , (3.12)

k∑

j=0

(−1)(a+b+1)(k−j)

(
k

j

)

F
j
m+aF

k−j
m+bFn−(m+a)k+(a−b)j = F k

a−bFn , (3.13)

k∑

j=0

(−1)(a+b)j

(
k

j

)

F
j
a−bF

k−j
m+bFn−(a−b)k+(m+a)j = (−1)(a+b)kF k

m+aFn (3.14)

and
k∑

j=0

(−1)j
(
k

j

)

F
j
a−bF

k−j
m+aFn+(a−b)k+(m+b)j = (−1)(a+b)kF k

m+bFn ; (3.15)

and the corresponding identities involving both Fibonacci and Lucas numbers:

k∑

j=0

(−1)(a+b+1)(k−j)

(
k

j

)

F
j
m−bF

k−j
m−aLn−(m−b)k+(a−b)j = F k

a−bLn , (3.16)

k∑

j=0

(−1)(a+b)j

(
k

j

)

F
j
a−bF

k−j
m−aLn−(a−b)k+(m−b)j = (−1)(a+b)kF k

m−bLn , (3.17)

k∑

j=0

(−1)j
(
k

j

)

F
j
a−bF

k−j
m−bLn+(a−b)k+(m−a)j = (−1)(a+b)kF k

m−aLn , (3.18)

k∑

j=0

(−1)(a+b+1)(k−j)

(
k

j

)

F
j
m+aF

k−j
m+bLn−(m+a)k+(a−b)j = F k

a−bLn , (3.19)

k∑

j=0

(−1)(a+b)j

(
k

j

)

F
j
a−bF

k−j
m+bLn−(a−b)k+(m+a)j = (−1)(a+b)kF k

m+aLn (3.20)

and
k∑

j=0

(−1)j
(
k

j

)

F
j
a−bF

k−j
m+aLn+(a−b)k+(m+b)j = (−1)(a+b)kF k

m+bLn . (3.21)

We remark that Halton’s identity [3, Identity 23], from which he derived a very large
number of identities of different kinds, involving the Fibonacci numbers, is a particular
case of identity (3.15), being an evaluation at b = 0.
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3.2 Non-binomial summation identities

Lemma 2 ([1, Lemma 1]). Let (Xn) and (Yn) be any two sequences such that Xn and Yn,

n ∈ Z, are connected by a three-term recurrence relation hXn = f1Xn−α+ f2Yn−β, where h,

f1 and f2 are arbitrary non-vanishing complex functions, not dependent on n, and α and β

are integers. Then, the following identity holds for integer k:

f2

k∑

j=0

f
k−j
1 hjYn−kα−β+αj = hk+1Xn − fk+1

1 Xn−(k+1)α .

Theorem 3. The following identities hold for a, b, m, n and k arbitrary integers:

Fa−b

k∑

j=0

(−1)(a+b)jG
k−j
m+bG

j
m+aGn−(a−b)k+m+b+(a−b)j

= (−1)(a+b)kFnG
k+1
m+a + (−1)a+b+1Fn−(a−b)(k+1)G

k+1
m+b

(3.22)

and

Fa−b

k∑

j=0

(−1)(a+b)jG
k−j
m−aG

j
m−bGn−(a−b)k+m−a+(a−b)j

= (−1)(a+b)kFnG
k+1
m−b + (−1)a+b+1Fn−(a−b)(k+1)G

k+1
m−a .

(3.23)

Proof. To prove identity (3.22), write identity (2.4) as

Gm+aFn = (−1)a+bGm+bFn−(a−b) + Fa−bGn+m+b , (3.24)

identify h = Gm+a, f1 = (−1)a+bGm+b, f2 = Fa−b, Xn = Fn, Yn = Gn+m+b, α = a− b and
β = 0 and use these in Lemma 2. Identity (3.23) is obtained from identity (3.22) through
the transformation a → −b, b → −a.

Lemma 3 ([1, Lemma 2]). Let (Xn) be any arbitrary sequence, where Xn, n ∈ Z, satisfies

a three-term recurrence relation hXn = f1Xn−α + f2Xn−β, where h, f1 and f2 are arbitrary

non-vanishing complex functions, not dependent on r, and α and β are integers. Then, the

following identities hold for integer k:

f2

k∑

j=0

f
k−j
1 hjXn−kα−β+αj = hk+1Xn − fk+1

1 Xn−(k+1)α , (3.25)

f1

k∑

j=0

f
k−j
2 hjXn−kβ−α+βj = hk+1Xn − fk+1

2 Xn−(k+1)β (3.26)

and

h

k∑

j=0

(−1)jfk−j
2 f

j
1Xn−(β−α)k+α+(β−α)j = (−1)kfk+1

1 Xn + fk+1
2 Xn−(β−α)(k+1) . (3.27)

6



Theorem 4. The following identities hold for arbitrary integers a, b, n, m and k:

(−1)a+b+1Fm−a

k∑

j=0

F
k−j
m−bF

j
a−bGn−(m−a)k−(m−b)+(m−a)j

= F k+1
a−b Gn − F k+1

m−bGn−(m−a)(k+1) ,

(3.28)

Fm−b

k∑

j=0

(−1)(a+b+1)(k−j)F
k−j
m−aF

j
a−bGn−(m−b)k−(m−a)+(m−b)j

= F k+1
a−b Gn − (−1)(a+b+1)(k+1)F k+1

m−aGn−(m−b)(k+1) ,

(3.29)

Fa−b

k∑

j=0

(−1)(a+b)jF
k−j
m−aF

j
m−bGn−(a−b)k+(m−a)+(a−b)j

= (−1)(a+b)kF k+1
m−bGn + (−1)a+b+1F k+1

m−aGn−(a−b)(k+1) ,

(3.30)

(−1)a+b+1Fm+b

k∑

j=0

F
k−j
m+aF

j
a−bGn−(m+b)k−(m+a)+(m+b)j

= F k+1
a−b Gn − F k+1

m+aGn−(m+b)(k+1) ,

(3.31)

Fm+a

k∑

j=0

(−1)(a+b+1)(k−j)F
k−j
m+bF

j
a−bGn−(m+a)k−(m+b)+(m+a)j

= F k+1
a−b Gn − (−1)(a+b+1)(k+1)F k+1

m+bGn−(m+a)(k+1) ,

(3.32)

and

Fa−b

k∑

j=0

(−1)(a+b)jF
k−j
m+bF

j
m+aGn−(a−b)k+(m+b)+(a−b)j

= (−1)(a+b)kF k+1
m+aGn + (−1)a+b+1F k+1

m+bGn−(a−b)(k+1) .

(3.33)

Proof. In Lemma 3, with Xn = Gn, use the h, f1, f2, α and β obtained in the proof of
Theorem 2.

In particular, we have the pure Fibonacci summation identities

(−1)a+b+1Fm−a

k∑

j=0

F
k−j
m−bF

j
a−bFn−(m−a)k−(m−b)+(m−a)j

= F k+1
a−b Fn − F k+1

m−bFn−(m−a)(k+1) ,

(3.34)

Fm−b

k∑

j=0

(−1)(a+b+1)(k−j)F
k−j
m−aF

j
a−bFn−(m−b)k−(m−a)+(m−b)j

= F k+1
a−b Fn − (−1)(a+b+1)(k+1)F k+1

m−aFn−(m−b)(k+1) ,

(3.35)

Fa−b

k∑

j=0

(−1)(a+b)jF
k−j
m−aF

j
m−bFn−(a−b)k+(m−a)+(a−b)j

= (−1)(a+b)kF k+1
m−bFn + (−1)a+b+1F k+1

m−aFn−(a−b)(k+1) ,

(3.36)
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(−1)a+b+1Fm+b

k∑

j=0

F
k−j
m+aF

j
a−bFn−(m+b)k−(m+a)+(m+b)j

= F k+1
a−b Fn − F k+1

m+aFn−(m+b)(k+1) ,

(3.37)

Fm+a

k∑

j=0

(−1)(a+b+1)(k−j)F
k−j
m+bF

j
a−bFn−(m+a)k−(m+b)+(m+a)j

= F k+1
a−b Fn − (−1)(a+b+1)(k+1)F k+1

m+bFn−(m+a)(k+1) ,

(3.38)

and

Fa−b

k∑

j=0

(−1)(a+b)jF
k−j
m+bF

j
m+aFn−(a−b)k+(m+b)+(a−b)j

= (−1)(a+b)kF k+1
m+aFn + (−1)a+b+1F k+1

m+bFn−(a−b)(k+1) ;

(3.39)

and the corresponding results involving Fibonacci and Lucas numbers:

(−1)a+b+1Fm−a

k∑

j=0

F
k−j
m−bF

j
a−bLn−(m−a)k−(m−b)+(m−a)j

= F k+1
a−b Ln − F k+1

m−bLn−(m−a)(k+1) ,

(3.40)

Fm−b

k∑

j=0

(−1)(a+b+1)(k−j)F
k−j
m−aF

j
a−bLn−(m−b)k−(m−a)+(m−b)j

= F k+1
a−b Ln − (−1)(a+b+1)(k+1)F k+1

m−aLn−(m−b)(k+1) ,

(3.41)

Fa−b

k∑

j=0

(−1)(a+b)jF
k−j
m−aF

j
m−bLn−(a−b)k+(m−a)+(a−b)j

= (−1)(a+b)kF k+1
m−bLn + (−1)a+b+1F k+1

m−aLn−(a−b)(k+1) .

(3.42)

(−1)a+b+1Fm+b

k∑

j=0

F
k−j
m+aF

j
a−bLn−(m+b)k−(m+a)+(m+b)j

= F k+1
a−b Ln − F k+1

m+aLn−(m+b)(k+1) ,

(3.43)

Fm+a

k∑

j=0

(−1)(a+b+1)(k−j)F
k−j
m+bF

j
a−bLn−(m+a)k−(m+b)+(m+a)j

= F k+1
a−b Ln − (−1)(a+b+1)(k+1)F k+1

m+bLn−(m+a)(k+1) ,

(3.44)

and

Fa−b

k∑

j=0

(−1)(a+b)jF
k−j
m+bF

j
m+aLn−(a−b)k+(m+b)+(a−b)j

= (−1)(a+b)kF k+1
m+aLn + (−1)a+b+1F k+1

m+bLn−(a−b)(k+1) .

(3.45)
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3.3 Sums involving products of Fibonacci or Fibonacci-like num-

bers in the denominator of the summand

Lemma 4. Let (Xn) and (Yn) be any two sequences such that Xn and Yn, n ∈ Z, are

connected by a three-term recurrence relation hXn = f1Xn−α + f2Yn−β, where f1 and f2
are arbitrary non-vanishing complex functions, not dependent on n, and α, β and k are

integers. Then,

XnXn−α(k+1)f2

k∑

j=0

hk−jf
j
1

Yn−β−αk+αj

Xn−αk+αjXn−α−αk+αj

= hk+1Xn − fk+1
1 Xn−α(k+1) .

Theorem 5. The following identities hold for values of a, b, m, n, k for which the summand

is non-singular in the summation interval:

FnFn−(a−b)(k+1)Fa−b

k∑

j=0

(−1)(a+b)j G
k−j
m+aG

j
m+bGn+m+b−(a−b)k+(a−b)j

Fn−(a−b)k+(a−b)jFn−a+b−(a−b)k+(a−b)j

= FnG
k+1
m+a − (−1)(a+b)(k+1)Fn−(a−b)(k+1)G

k+1
m+b ,

(3.46)

FnFn−(a−b)(k+1)Fa−b

k∑

j=0

(−1)(a+b)j G
k−j
m−bG

j
m−aGn+m−a−(a−b)k+(a−b)j

Fn−(a−b)k+(a−b)jFn+b−a−(a−b)k+(a−b)j

= FnG
k+1
m−b − (−1)(a+b)(k+1)Fn−(a−b)(k+1)G

k+1
m−a .

(3.47)

Proof. In Lemma 4, make the identification Xn = Fn and Yn = Gn+m+b and use the f1, f2,
h, α and β obtained in the proof of Theorem 3.

Particular cases of identities (3.46) and (3.47) are the following:

FnFn−(a−b)(k+1)Fa−b

k∑

j=0

(−1)(a+b)j F
k−j
m+aF

j
m+bFn+m+b−(a−b)k+(a−b)j

Fn−(a−b)k+(a−b)jFn−a+b−(a−b)k+(a−b)j

= FnF
k+1
m+a − (−1)(a+b)(k+1)Fn−(a−b)(k+1)F

k+1
m+b ,

(3.48)

FnFn−(a−b)(k+1)Fa−b

k∑

j=0

(−1)(a+b)j F
k−j
m−bF

j
m−aFn+m−a−(a−b)k+(a−b)j

Fn−(a−b)k+(a−b)jFn+b−a−(a−b)k+(a−b)j

= FnF
k+1
m−b − (−1)(a+b)(k+1)Fn−(a−b)(k+1)F

k+1
m−a ;

(3.49)

and

FnFn−(a−b)(k+1)Fa−b

k∑

j=0

(−1)(a+b)j L
k−j
m+aL

j
m+bLn+m+b−(a−b)k+(a−b)j

Fn−(a−b)k+(a−b)jFn−a+b−(a−b)k+(a−b)j

= FnL
k+1
m+a − (−1)(a+b)(k+1)Fn−(a−b)(k+1)L

k+1
m+b ,

(3.50)

FnFn−(a−b)(k+1)Fa−b

k∑

j=0

(−1)(a+b)j L
k−j
m−bL

j
m−aLn+m−a−(a−b)k+(a−b)j

Fn−(a−b)k+(a−b)jFn+b−a−(a−b)k+(a−b)j

= FnL
k+1
m−b − (−1)(a+b)(k+1)Fn−(a−b)(k+1)L

k+1
m−a .

(3.51)
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Lemma 5. Let (Xn) be any arbitrary sequence. Let Xn, n ∈ Z, satisfy a three-term

recurrence relation hXn = f1Xn−α + f2Xn−β, where f1 and f2 are non-vanishing complex

functions, not dependent on n, and α, β and k are integers. Then, the following identities

hold for arbitrary integers n, α, β and k for which the summand is not singular in the

summation interval:

XnXn−α(k+1)f2

k∑

j=0

hk−jf
j
1

Xn−β−αk+αj

Xn−αk+αjXn−α−αk+αj

= hk+1Xn − fk+1
1 Xn−α(k+1) , (3.52)

XnXn−β(k+1)f1

k∑

j=0

hk−jf
j
2

Xn−α−βk+βj

Xn−βk+βjXn−β−βk+βj

= hk+1Xn − fk+1
2 Xn−β(k+1) , (3.53)

and

XnXn−(β−α)(k+1)h

k∑

j=0

(−1)jfk−j
1 f

j
2

Xn+α−(β−α)k+(β−α)j

Xn−(β−α)k+(β−α)jXn−β+α−(β−α)k+(β−α)j

= fk+1
1 Xn + (−1)kfk+1

2 Xn−(β−α)(k+1) .

(3.54)

Theorem 6. The following identities hold for values of a, b, m, n, k for which the summand

is non-singular in the summation interval:

(−1)a+b+1Fm−aGnGn−(m−a)(k+1)

k∑

j=0

F
k−j
a−b F

j
m−bGn−m+b−(m−a)k+(m−a)j

Gn−(m−a)k+(m−a)jGn−(m−a)−(m−a)k+(m−a)j

= F k+1
a−b Gn − F k+1

m−bGn−(m−a)(k+1) ,

(3.55)

Fm−bGnGn−(m−b)(k+1)

k∑

j=0

(−1)(a+b+1)jF
k−j
a−b Fm−a

jGn−(m−a)−(m−b)k+(m−b)j

Gn−(m−b)k+(m−b)jGn−(m−b)−(m−b)k+(m−b)j

= F k+1
a−b Gn − (−1)(a+b+1)(k+1)F k+1

m−aGn−(m−b)(k+1) ,

(3.56)

Fa−bGnGn−(a−b)(k+1)

k∑

j=0

(−1)(a+b)jF
k−j
m−bF

j
m−aGn+m−a−(a−b)k+(a−b)j

Gn−(a−b)k+(a−b)jGn−(a−b)−(a−b)k+(a−b)j

= F k+1
m−bGn − (−1)(a+b)(k+1)F k+1

m−aGn−(a−b)(k+1) ,

(3.57)

(−1)a+b+1Fm+bGnGn−(m+b)(k+1)

k∑

j=0

F
k−j
a−b F

j
m+aGn−m−a−(m+b)k+(m+b)j

Gn−(m+b)k+(m+b)jGn−(m+b)−(m+b)k+(m+b)j

= F k+1
a−b Gn − F k+1

m+aGn−(m+b)(k+1) ,

(3.58)

Fm+aGnGn−(m+a)(k+1)

k∑

j=0

(−1)(a+b+1)jF
k−j
a−b Fm+b

jGn−(m+b)−(m+a)k+(m+a)j

Gn−(m+a)k+(m+a)jGn−(m+a)−(m+a)k+(m+a)j

= F k+1
a−b Gn − (−1)(a+b+1)(k+1)F k+1

m+bGn−(m+a)(k+1) ,

(3.59)

and

Fa−bGnGn−(a−b)(k+1)

k∑

j=0

(−1)(a+b)jF
k−j
m+aF

j
m+bGn+m+b−(a−b)k+(a−b)j

Gn−(a−b)k+(a−b)jGn−(a−b)−(a−b)k+(a−b)j

= F k+1
m+aGn − (−1)(a+b)(k+1)F k+1

m+bGn−(a−b)(k+1) .

(3.60)
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Proof. In Lemma 5, make the identification Xn = Gn and use the f1, f2, h, α and β

obtained in the proof of Theorem 4.

In particular, we have the pure Fibonacci identities:

(−1)a+b+1Fm−aFnFn−(m−a)(k+1)

k∑

j=0

F
k−j
a−b F

j
m−bFn−m+b−(m−a)k+(m−a)j

Fn−(m−a)k+(m−a)jFn−(m−a)−(m−a)k+(m−a)j

= F k+1
a−b Fn − F k+1

m−bFn−(m−a)(k+1) ,

(3.61)

Fm−bFnFn−(m−b)(k+1)

k∑

j=0

(−1)(a+b+1)jF
k−j
a−b Fm−a

jFn−(m−a)−(m−b)k+(m−b)j

Fn−(m−b)k+(m−b)jFn−(m−b)−(m−b)k+(m−b)j

= F k+1
a−b Fn − (−1)(a+b+1)(k+1)F k+1

m−aFn−(m−b)(k+1) ,

(3.62)

Fa−bFnFn−(a−b)(k+1)

k∑

j=0

(−1)(a+b)jF
k−j
m−bF

j
m−aFn+m−a−(a−b)k+(a−b)j

Fn−(a−b)k+(a−b)jFn−(a−b)−(a−b)k+(a−b)j

= F k+1
m−bFn − (−1)(a+b)(k+1)F k+1

m−aFn−(a−b)(k+1) ,

(3.63)

(−1)a+b+1Fm+bFnFn−(m+b)(k+1)

k∑

j=0

F
k−j
a−b F

j
m+aFn−m−a−(m+b)k+(m+b)j

Fn−(m+b)k+(m+b)jFn−(m+b)−(m+b)k+(m+b)j

= F k+1
a−b Fn − F k+1

m+aFn−(m+b)(k+1) ,

(3.64)

Fm+aFnFn−(m+a)(k+1)

k∑

j=0

(−1)(a+b+1)jF
k−j
a−b Fm+b

jFn−(m+b)−(m+a)k+(m+a)j

Fn−(m+a)k+(m+a)jFn−(m+a)−(m+a)k+(m+a)j

= F k+1
a−b Fn − (−1)(a+b+1)(k+1)F k+1

m+bFn−(m+a)(k+1) ,

(3.65)

and

Fa−bFnFn−(a−b)(k+1)

k∑

j=0

(−1)(a+b)jF
k−j
m+aF

j
m+bFn+m+b−(a−b)k+(a−b)j

Fn−(a−b)k+(a−b)jFn−(a−b)−(a−b)k+(a−b)j

= F k+1
m+aFn − (−1)(a+b)(k+1)F k+1

m+bFn−(a−b)(k+1) ;

(3.66)

and the corresponding identities involving Lucas and Fibonacci numbers:

(−1)a+b+1Fm−aLnLn−(m−a)(k+1)

k∑

j=0

F
k−j
a−b F

j
m−bLn−m+b−(m−a)k+(m−a)j

Ln−(m−a)k+(m−a)jLn−(m−a)−(m−a)k+(m−a)j

= F k+1
a−b Ln − F k+1

m−bLn−(m−a)(k+1) ,

(3.67)

Fm−bLnLn−(m−b)(k+1)

k∑

j=0

(−1)(a+b+1)jF
k−j
a−b Fm−a

jLn−(m−a)−(m−b)k+(m−b)j

Ln−(m−b)k+(m−b)jLn−(m−b)−(m−b)k+(m−b)j

= F k+1
a−b Ln − (−1)(a+b+1)(k+1)F k+1

m−aLn−(m−b)(k+1) ,

(3.68)

Fa−bLnLn−(a−b)(k+1)

k∑

j=0

(−1)(a+b)jF
k−j
m−bF

j
m−aLn+m−a−(a−b)k+(a−b)j

Ln−(a−b)k+(a−b)jLn−(a−b)−(a−b)k+(a−b)j

= F k+1
m−bLn − (−1)(a+b)(k+1)F k+1

m−aLn−(a−b)(k+1) ,

(3.69)

11



(−1)a+b+1Fm+bLnLn−(m+b)(k+1)

k∑

j=0

F
k−j
a−b F

j
m+aLn−m−a−(m+b)k+(m+b)j

Ln−(m+b)k+(m+b)jLn−(m+b)−(m+b)k+(m+b)j

= F k+1
a−b Ln − F k+1

m+aLn−(m+b)(k+1) ,

(3.70)

Fm+aLnLn−(m+a)(k+1)

k∑

j=0

(−1)(a+b+1)jF
k−j
a−b Fm+b

jLn−(m+b)−(m+a)k+(m+a)j

Ln−(m+a)k+(m+a)jLn−(m+a)−(m+a)k+(m+a)j

= F k+1
a−b Ln − (−1)(a+b+1)(k+1)F k+1

m+bLn−(m+a)(k+1) ,

(3.71)

and

Fa−bLnLn−(a−b)(k+1)

k∑

j=0

(−1)(a+b)jF
k−j
m+aF

j
m+bLn+m+b−(a−b)k+(a−b)j

Ln−(a−b)k+(a−b)jLn−(a−b)−(a−b)k+(a−b)j

= F k+1
m+aLn − (−1)(a+b)(k+1)F k+1

m+bLn−(a−b)(k+1) .

(3.72)
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