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1 Introduction

The motion of interacting particles in a surrounding medium can be described by the
Langevin equation, i.e.,

dX, = Vidt, (1.1a)
AV, = —V,(X,)dt — AV,dt + /275~ 1dB,, (1.1b)

where V®; prescribes external and interacting forces between the particles, v > 0 is a
constant describing the magnitude of friction, > 0 is up to a constant the inverse tem-
perature and (B;);>o denotes a d—dimensional Brownian motion discribing the influence
of the surrounding medium. Here we are interested in the scaled equation

1
dX; = -Vgdt, (1.2a)
£
1 1 1
AV = =V (X7)dt — 5 Vidt + g\/§ch (1.2b)

cp. e.g. [16, Chapter 2.2.2]. Small ¢ > 0 represent the overdamped regime. Physically
this corresponds to large friction forces and an appropriate time-scaling (see [16][Chapter
2.2.4] for a physical interpretation). The authors of [19] prove convergence in law of
(X7),>0 as € tends to zero to a solution of the overdamped Langevin equation

dX? = —V®,(X2)dt + V2dB,. (1.3)

Depending on the context a solution to (L3) is also called a distorted Brownian motion.
This convergence is known as the overdamped limit. More generally, we treat a scaling
limit of generalized stochastic Hamiltonian systems (gsHs), i.e.,

1
1 1 1
dVi = =V (X{)dt — 5V (Vi)dt + —V2dB,. (1.4b)

Here ®, is a potential, generalizing the kinetic energy of the particles, i.e., the Hamil-
tonian is given by He(z,v) = ®1(2) + $2(v). Observe that for ®y(v) = %\v|2 we just
recover ([LZal), (L2h). The main result of this paper is to prove convergence in law of

the positions (X7),., of (I4al), (L4D) to (X}),., from (L3) as e — 0. Our assump-
tions on ®; and ®, are so weak that standard results on existence do not apply, see in
particular Assumption and below. Furthermore, our assumptions allow singular
pair interactions like the Lennard-Jones potential. For the pair ® = (®;, ®,) we prove
existence of weak solutions (X7, V/),s, to (LZal), (I.4D) via martingale solutions Pg to
the generator L3 of (LZ4al), (L4N) given through Itd’s formula, i.e.,

Lsf = Eig (Ayf =V, &y -V, f) + % (V@ - Vof — V@, -V, f) (1.5)



for f € CX({Py, Py < 00}). Observe that the linear operator fails in general to be
sectorial, due to the degeneracy of the Laplacian. Hence, the corresponding operator
semigroups are not analytic, which males the analysis more challenging.

As an intermediate step we consider for the scaled velocity potential ®5(-) = ®5(2) +
In (¢?) the pair of potentials ® = (®;,®5). The major challenge is to prove weak
convergence of the position marginals P}ﬁf of martingale solutions PL. corresponding to
LY. as ¢ — 0. This we achieve with analytic and probabilistic methods. The analytic
part consists of a semigroup convergence result, the probabilistic one of a tightness result.
At the end we use this convergence and unitary transformations to show convergence of
the positions of (LZal), (L.4D) to a distorted Brownian motion.

The organization of this paper is as follows. In Section 2 and 3 we closely follow the
approach in [6] where martingale solutions for ®, = 1 lv|* were constructed. Section 2
contains essential m-dissipativity results for the generator (L%, C°({®1, P < c0})) on
L*(pa) and L'(us), where pg is an invariant measure for LY from (LH). In Section 3
we show existence of a martingale solution to L} in terms of a right process. Section 4
gives a brief overview of the functional analytic objects corresponding to the overdamped
Langevin equation ([L3]) and existence of martingale solutions for its generator is shown.
The analytic part for convergence is provided in Section 5. We prove strong convergence
of the semigroups generated by the scaled generators LL.. Note that for each ¢ > 0
the generator L}. is acting on a different Hilbert spaces. Hence, we use the concepts
developed by Kuwae—Shioya in [15] for showing convergence. Section 6 contains the
probabilistic part for convergence. We establish convergence in law of weak solutions
via semigroup convergence and tightness of the family (P}bf)oo- In Section 7 we explain
how these results apply to the original problem, i. e. to prove convergence in law of
the positions (X§),, from (LZa), (L4L) towards (X}),., from (L3). The core results

achieved in this paper may be summarized in the following list:

e We prove that the closure of (LY, C°({®1, Py < 00})) in L' (ug) is the generator of
a sub-Markovian strongly continuous contraction semigroup (7}‘1’1)90, see Theorem

217 ’

e TFor the scaled velocity potential @5 we prove convergence of the associated L*(pg-)
semigroups (ﬂgg)po in the sense of Kuwae—Shioya, see Theorem [5.4]

e We prove weak convergence of the position marginals P}ﬁf, ,£ > 0, to a martingale
solution of the generator of the distorted Brownian motion as ¢ — 0, see Corollary
0. 91

e We give a rigorous proof for the convergence in law of the positions (X7),., of
weak solutions (X7, V/),., to (L4al), (L4h) to the overdamped Langevin equation
as ¢ — 0, see Theorem [7.1]



At this point we would like to point out that all results hold for very large class of
interaction potentials ®; which can also be very singular, e.g., potentials of Lennard—
Jones type are admissible.

Our results are complementary to those in [19] in the following sense: First, there the
authors have to assume the interaction term V®; to be continuous. Second, there the
state space is assumed to be the d—dimensional torus T¢. Due to our weaker assumptions
the weak solutions constructed in our framework require initial distributions which are
absolutely continuous w.r.t. the invariant measure pug. This aspect is more restrictive
than in [19]. Additionally, the ®; in [19] may also depend on € > 0.

2 M-Dissipativity of the Operator L}

The main goal of this section is to establish for a pair ® = (P, P5) of potentials essential
m-dissipativity of the differential operator (LY, C°({®,, Py < 0o})) given by

L<11>f = Avf - vvq)Q : va + VU(PQ : va:f - qu)l . Vyf, f c Cso({(bl, (132 < OO}) (21)

on L'(R*, 1g), where pg is absolutely continuous w.r.t. the Lebesque measure on
(RQd,B(RQd)). In the following we always denote L} by Lg. We follow closely the
argumentation in [6] and generalize the proofs therein for a general velocity potential @,
fulfilling the Assumptions below. Therefore we only prove the parts which actually
differ and refer to [6] for additional details. First we prove essential m-dissipativity on
L*(R*, pg) for locally Lipschitz continuous ®;. Afterwards we use this result to show
the m-dissipativity of the closure of (2.I)) on L'(R??, 1) for singular ®;. The potentials
®,, ®y and their derivatives are considered as functions on R?? and R? simultaneously
in the following way: ®;(z,v) = ®,(z), ®3(z,v) = ®5(v), where (x,v) € R? x R%. For a
(weakly) differentiable function f on R*¢, V, f denotes the d—dimensional (weak) gradi-
ent w.r.t. the first d unit vectors. Corresponding definitions hold for V,, A, A,, 0., Oy,,
i =1,...,d. Expression like V,®, -V, f from (2] are understood as V,®s -V, f(x,v) =
S 0y, Py(2,v)0,, f(x,v). The gradient, the Laplacian and weak partial derivatives of
®, and ®, considered as a function on R? are denoted by V,A,d;, i = 1, ..., d, respec-
tively.

Notation 2.1

Forn € N and a measurable function ¥ : R* — R, where R denotes the extended real
numbers, we define the measure pg by its Radon-Nikodym derivative w.r.t. the Lebesque
measure dz on (R™, B(R™)), i.e.,

dx

We state the assumptions we later assume for the position potential ®; and the velocity
potential ®o:



Assumption 2.2
Let & : RY — R U {00} and q € [2, 00].

(®11) Py is locally Lipschitz continuous, i.e., the restriction of ®1 to an arbitrary
compact subset of R? is Lipschitz continuous. In particular, ®; : R — R.

(®12) Dy is bounded from below and {P; < oo} # (.
(®,3) e~ ds continuous on RY.

(®,4)7 @y is weakly differentiable on {®; < oo} and V&, € Li (RY, ug, ).

Assumption 2.3
Let @5 : R — R U {00}

(Dy1) Dy is B(RY) — B(R) measurable and {®y < 0o} # 0 is open.
(922) Dy is bounded from below and locally integrable on {®y < 0o},

(®23)  Forie{l,..,d} it holds for the distributional derivatives
8i(I)2 e L? ({(I)Q < OO}) and @2@2 el ({(I)Q < OO})

loc loc
(P24) (A —=Vdy-V,02({®y < 00})) is essentially self-adjoint on L*(R%, ug,).

(®95)  There are constants K € (0,00) and o € [1,2) such that it holds
|AD,| < K(1+ VD).

According to Notation 2.I] denote by pe the measure g, 4+, on (RQd, B(RQd)) and by
Ha the Hilbert space L*(R*, ug).

Remark 2.4

(i) Let Q be an open subset of R%. Then it holds f € H,,°(Q) if and only if f has
a representative which is locally Lipschitz continuous in 0 (see [10, Chapter 5.8,
Theorem 4]). Hence, the assumption (®11) implies (12) — ($14)°° apart from the

boundedness from below.

(ii) If we assume instead of (922) the following condition:

—~—

(922) Py is locally bounded on {Py < c0}.

Then in combination with (P25) one can argue similar as in the proof of [{/[Lemma
A6.2.] that @y is continuously differentiable on {®s < oo} and V®q is locally
Lipschitz on {®y < oo},

(iii) Assuming ($12), (914)7, (P22) and (P23) we can consider (Le, C2°({P1, P2 < o0}))
as an operator on LP(R*?, ug) for every p € [1,2].



(iv) Since the measure ug, on R? is locally finite it holds by [3, Proposition 7.2.5]
that pg, is reqular Borel measure on ({Ps < oo}, B({Ps < o0})) and hence by [3,
Proposition 7.4.2] the set C*°({®y < oo}) is dense in L*({®y < oo}, pa,) =
L2<Rd7/~t‘1’2>'

(v) See Remark[4.3 as a reference for sufficient conditions implying (P24).

Proposition 2.5

Let Q C R", n € N, be open and ¥ : @ — R be measurable and locally bounded or
bounded from below and locally integrable. Assume further that the first order distribu-
tional derivatives ¥, i € {1,...,n}, are in L} (), for some p € [1,00|. Then it holds
that e~ € HP(Q) and 0; (e_‘l’) = —0;We Y.

Proof. Let ' C € be open such that ' C € is compact. We need to show that e™? €
H'?(Y). Hence, let p € C°(Y') be arbitrary. Since K := supp(yp) is compact there is
a non-negative y € C>°()') such that y = 1 on K. Obviously e™¥ € L>®(Q) C LP(QY).
By the compact support of y and a regularization as in [1, Lemma 3.16] one can find a
sequence (ug).cy € C°(€Y) such that u, — x¥, as k — oo, in HV1(Q). In the case
of locally bounded W it holds |jug||, < [[xV||, for all £ € N. Otherwise, if C' € R is a
lower bound of W then it holds C' < u(z) for all x € € and all k € N. By switching to a
subsequence which we also denote by (uy)ren We can apply the dominated convergence
theorem, integration by parts and Hoélders inequality to obtain

/e_ql@cp dr = lim [ e " 0;ppdxr = lim /@uke_“’“go dr = /&-\De—% dx.
k—o0 k—o0
o o o) o

O

Under the assumptions ($,2) — ($14)?, ¢ € [2,00] and (P31) — ($23) we obtain the
following proposition and corollary:

Proposition 2.6

(Lg, CX({ Py, P2 < 00})) admits a decomposition into Le = S + A, with symmetric S
and antisymmetric A on C°({®y < co}) w.r.t. the scalar product on He. S and A are
given through

Sf=A0f—Vo®y-Vof, Af =V,®y-Vof — Vod; -V, f, feCT({d), Py < c0}).

Proof. The proof consists of the product rule for Sobolev functions and Proposition
2.9l [

Corollary 2.7
The measure pg is invariant for (Le, C2°({P1, P2 < 00})), i.e., Lo f is integrable w.r.t.
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pa for all f € CX({Py, Py < c0}) and it holds

/ Lof dje = 0. (2.2)

R2d

In particular, (Le, C2°({®1, Py < 00})) is closable and its closure (Lg p, D(Le,)) is dis-
sipative on LP(R*, ug) for every p € [1,2].

Proof. For f € C*({®y, P2 < oo}) one chooses a cut off function n € CX({Py, Py <
o0}), s.t. m = 1 on supp(f) and uses the decomposition from Proposition 2.6l But

Sn, An vanish on supp(f) which implies (2.2)). The dissipativity follows by [8, Lemma
1.8, App. B]. O

2.1 M-Dissipativity for locally Lipschitz continuous ¢; on
LQ(RQda :LL<I>)

Throughout this first part we assume that ®; and ®, fulfill ($11) and (Po1) — (Po5),
respectively. In particular, it holds {®; < oo} = R4

Proposition 2.8

Let (L, D) be a densely defined operator on a Hilbert space H. Furthermore L is assumed
to be symmetric and negative definite. If (L, D) is essentially self-adjoint, then (L, D)
is essentially m-dissipative.

Proof. Since (L, D) is negative definite its closure (f/, D(E)) is dissipative, implying that
1 — L is injective. By assumption it holds R(1 — L)* = N'(1 — L) = {0}. O

Theorem 2.9

Assume ($11) and (P21) — (P25). Then the operator (Le, C°({Py < 00})) is essentially
m-dissipative on He. The strongly continuous contraction semigroup Tf’)po generated
by the closure of (Le, C°({Py < c0})) is sub-Markovian. -

Proof. This proof is based on the idea of the proof of [6, Thm. 2.1]. In the first part
®, is considered to be globally Lipschitz continuous with Lipschitz constant Cg,. The
second part treats the general case. Throughout the first part of the proof all function
spaces consist of complex valued functions. Observe that those spaces are isometric to
the complexification of the real valued function spaces. Furthermore, Lg leaves the real
valued functions invariant. Hence, we show that the complexified operator is essentially
m-dissipative, this proves the theorem for the real cases.

1st part:

The basic idea is to use the unitary transformation

D) + Dy
2

Ut LR, jug) — L*({Dy < 00}),  f s exp (= ). (2.3)
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Formally (Lg, C2°({®2 < co})) transforms under U into the operator

A, P o ®s|?
L=ULsU" = A, + =5 2 |V42| +V, Py -V, — V0 -V, (2.4)

In the following we prove essential m-dissipativity of L on a suitable chosen domain D.
Afterwards we make the transformation in (Z4)) rigorous. Assumption ($®,4) gives us the
negative definite and essentially self-adjoint operator (A — V®, - V, C({Py < 00})) on
L*(RY, pg,). Proposition 2.8 implies that (A — V&, - V,C®({®y < cc0})) is essentially
m-dissipative on L?(R%, jig,). Consider the unitary transformation

1
U<I>2 : LQ(Rdvﬂqh) — LQ({(I)Q < OO})v g — exXp (_éq)Z)g- (25)
Since unitary transformations preserve essential m-dissipativity we have that
Ly = Ug,(A =V, - V)Us, (2.6)

defined on Uy, C°({®2 < 0o}) is an essentially m-dissipative operator on L?({®y < c0}).
Let g € C°({®y < 00}) and f = Us,g. In the following the differential operators A and
V are understood in the distributional sense. Then it holds

Af =A(Us,g) = Ag exp(—%q)Q) +2V (exp(—%cbg)) -Vg+gA exp(—%q)Q). (2.7)
Proposition 28 and (27) lead to
L*({®y < 00}) 2 Lof = U, (A — VP, -V)g (2.8)
= Ag exp(—%ég) + 2V <exp(—%<1>2)) Vg

=Af—gA eXp(—%%) (2.9)

Due to the Assumptions in (®23) and an approximation procedure as in the proof of
2
Proposition one has Aexp(—1®,) = — (% — @) exp(—1®,), which gives in
2.9)
Ady [V,
2 4

Lof = Af + < ) f, for all f € Us,C°({Py < 00}). (2.10)
Note: The single summands |V®,|* f and Ad, f in (2I0) are not necessarily in L*({®, <
o0}). Anyways, Lo f is an element of L?({®5 < co}) which can be seen by (2.8]). Never-
theless, (2Z.10) is a suitable representation of Ly f. Furthermore, Ly is still symmetric and
negative definite because we obtained Ly from a unitary transformation of a symmetric
and negative definite operator.
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So far we only worked on the velocity component. To take the position variable z into
into account we define a new domain Dy C L*({®, < oo},)

Dy = LA(RY) @ Up,C°({®@2 < o0})
= span {R* 5 (z,0) = f(x)g(v) | f € LA(R?), g € Up,C*({®2 < 00})}  (2.11)

where L2(R?) denotes the subspace of L?(R?) with elements vanishing almost everywhere
outside a bounded set. For f = h® g € Dy we set L(f :=h® Log = A, f — Wf +
% f. We extend Lj linearly to Dy. In the following we denote the norm and inner

product of L*({®; < oo}) by ||| and (-, -), respectively. Let’s make some observations
on (L, Do):

(i) (Ly, Dy) is symmetric, negative definite and densely defined.
(ii) (Lgy, Do) is essentially m-dissipative.

We perturb Ly with the multiplication operator (By, Dy) given by the measurable func-
tion

d
iVy®y -z {Py <00} — C, (z,0) = iVy®s(z,0) -z :=10»_ gPs(v)m;.
=1

Since V,®, - z is real valued it follows that By is antisymmetric, in particular, (By, Do)
is dissipative. We consider the complete orthogonal family of projections (FPy), .y given
by

Py L*({®s < 00}) — L*({®2 < 00}), f = gif,
where gi(z,v) = Lp—11(]7],), & € N. Obviously each P, maps Dy into itself and Lj as
well as By commute with each P, on Dy. In order to apply [5, Lemma 3] we need to

show that Bg = PyBy is Ly := P,L{ bounded with L;-bound less then one. By the
Cauchy-Schwarz inequality and the definition of P, we have

(Vo @y - | |f|* < k2 |Vo®o|” | f]7, for f € PyDy. (2.12)

Hence, it suffices to show that |||V, ®s| f||* < a(Lif, f) +b|f]|* holds for some finite
constants a, b independent of f € P,Dy. Therefore, let f € Dy and observe that —A,, is
positive definite on Dy and A,®,f € L*({®y < co}) due to assumption (®53). Due to
the assumptions on f and ®, it holds

|VU(I>2|2
4

A,
9al 17 <4 (=(a, - TEE L SEY ) poaenr ) 2

with both summands on the right-hand side being finite. Let K > 0 and 1 < a < 2 be
the constants from assumption (®25). Then we have the following estimate for the last
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term in (2.I3))

(Ay®of, f) < K (f2 + [V ®s | | f[* d(lﬂv)) (2.14)

{P2<o0}

Holder’s and Young’s inequality imply for the last integral on the right hand side of

@I for p=2, = %

(2 — a)(20K) T

« 1 2 2
< — . .
(921" 1. ) < T [1Vas] 7P+ EZ ORI g (215)
Consequently, for f € Dy the inequality (2I3) becomes
11Vu®a| I < 8(=Lof, ) + CIIfI, (2.16)

with C = 4K (1 + %) Since (2I6) holds we conclude that |V,®s| Py is
L;, bounded with Li;-bound zero and so is Bg for each £ € N. Now we are able to
apply [5, Lemma 3] implying essential m-dissipativity of

Vo> A,dy .
| 42‘ + 22+2VU(I>2-20,D0>. (2.17)

(L,, DQ) = (L6 + Bo, Do) = (Av —

Note: The estimates (2.13)),(2.14),([ZI5) and (2.I6]) also hold for f in the bigger space
L2(RY) @ U, C2*({®2 < 00}).

The set Dy = C®(R?) ® Up,C®({®y < oo}) (analogue definition as for Dy) forms
a core for the closure of (L', Dy), hence, (L', D;) is essentially m-dissipative, too. The
extension of (L', D;) to Dy = S(R?) @ Ug,C>®({®P, < co}) is still dissipative, hence the
closure of (L', D) is a dissipative extension of the closure of (L', D) and therefore their
closures coincide by [11, Chapter 1, Remark 3.8], i.e.,

(L’, S(RY) ® Ug,C({®y < oo})) is essentially m-dissipative. (2.18)
Denote by F the Fourier transform on L?*(R?). Recall the well-knonwn property of F :
F Nzt f) = (=)¥1o*(F1f), for f € S(RY) and s € NE. (2.19)

Let f = f1 ® fo € Dy. Define F,f = Ffi ® fo and extend F, linearly to D, and
afterwards to a unitary transformation on L? ({®y < co}) (similarly as one does for F)
which we also denote by F,. F, leaves the set Dy invariant, because S(R?) is invariant
under F. Using the identity (Z.I9) one obtains

. A, P RN
Lf=F'L'F.f = (Av+ 2 [Vu®y +Vud>2-vx> f. feDs (220

2 4
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We perturb L with the antisymmetric operator (B1, Dy) given by B, f = 4, 0,,®,0,,f,
f € D,. Since @4 is Lipschitz continuous (By, Dy) is well-defined. As in the derivation
of (2.16) we obtain finite constants C; and Cy such that

d
IBLfI| = IVa®1 - Vo £ < C, D (00, f,0u f) = C3, (=Auf, f)
=1
< Cy(=Lyf, )+ Ca | f]1% (2.21)

Since (Lg, Dy) is symmetric it holds that (L{f, f) € R, for f € Dy. Let A be an
arbitrary antisymmetric linear operator on Ds. In particular, for f € D, it holds that
(Af, f) € iR. Hence one obtains

eR ciR

Applying the inequality (2.22)) for the choice A = =V, &, - V. to (22])) one concludes
IVa®y - Vof [ < Cy |(=Lf, £)] + C2 I £ (2.23)

By [7, Chapter 3.1, Lemma 3.9] we deduce that

|V, @, LA

L=L-V,® -V,=A, —
V.0, -V T :

+V, PV, -V,®, -V,

defined on Dj is essentially m-dissipative on L*({®y < oo}).
We apply (222) with A = -V, &y -V, + V., P, -V, to extend (ZI0) for L instead of
Ly, ie.,
V@2 fII* < v [(Lf, )l +MfI*, f € De, (2.24)

for finite constants r, M. We restrict L to D; and observe that essential m-dissipativity
is preserved, since C°(R?) is dense in S(R?) (w.r.t. the Schwartz space topology on
S(R%)). Now we transform via the adjoint of unitary map from (2.3), i.e.,

U*: L2({®y < 00}) — LAR*, ), f — e 2 f, (2.25)
where f = Lipy<oc}f. For f = f1 ® fo € Dy one has U*f = e%fl ® e%fg. Denote by
Uj, the unitary map Uj : L*(R?) — L*(R%, pe, ), f — ¢ f. Due to (Z5), (ZI0), the
product rule for Sobolev functions and Proposition 25 it holds that U* transforms L
back into Le, i.e., we obtain the essentially m-dissipative operator

(ULU,U"Dy) = (La, Uy, C*(RY) ® C2*({®; < o0})) (2.26)

[
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For f € Uj C(R?) @ C*({®5 < o0}) it holds Uf € D; and hence through (Z24) we
obtain

IV ®al fllsy = V@] US|I® < v |(=LUS,Uf)| + M US|
=7 |(~Laf. ol + M IS - (2.27)

The lemma of Fatou guarantees that (2.27)) also holds for f from the closure of (2.26]).
To finish the first part we show that C*°(R?) @ C>°({®, < oo}) is a domain of essential
m-dissipativity for Lg. Since (Lg, C2°(R?) @ C°({®, < oo})) is dissipative by Corollary
27 it suffices due to the essential m-dissipativity of (Z26]) and [11, Chapter 1, Remark
3.8] to show that the closure of (Lg, C®(RY) @ C®({®,y < 0o})) is an extension of (Z.26]).
To this end let f = f' @ f? € U C(R?) @ C°({®5 < 00}). Observe that U C°(RY)
is by Proposition 2.5 a subset of H?(R%). Choose a sequence (f!),en from C®(R?)
such that f! — f!in HY2(R?) and supp(f}) € K, K C R? compact and independent
of n which is possible since f1! is already compactly supported. For f,, := fl® f?, n € N,
it holds by construction and the fact that the density e~®1=®2 of ug is locally bounded
that f, — f, Laf, — Laf and |V, ®s| f,, — |V, Ps| f in Ha as n — oo. This shows
that C>*(RY) @ C*({®y < o0}) is a core for the closure of (Z.26]).

2nd part:

Let ®; be locally Lipschitz continuous. Dissipativity is due to Corollary .7 To prove
m-dissipativity we show that (1 — Lg)C®°({ P2 < oo}) is dense. Since C({®Py < o0})
is dense it suffices to approximate 0 # g € C°({®Py < o00}). Let f € CX({ P2 < o0})
be arbitrary and € > 0. By the compactness of the support of g we can choose cut off
functions x,v € C®°(RY) such that the functions defined by x(x,v) = x(z), v(z,v) =
v(x) fulfil the properties 0 < x < v <1, x = 1 on supp(g), ¥ = 1 on supp(x). It holds
that Le(xf) = xLaf+ fV,Ps-V,x since V,x = 0. By the choice of v and x we obtain

d
10— La)Ou) = 9llug < (0= Lowaa)f =9, 1 V@il > 19l

(2.28)
Since v®; is globally Lipschitz continuous we can use the first part and therein the
inequality (2.27) to estimate the last term in (2.28)) by

<C (H(1 - L(an,cbg))ﬂ

Kvdq,@9) —

1f [V o]

1 o, ) (2.299)

H(vdq+29)

for some positive, finite constant C'. Since L,4, ¢, is dissipative it holds

(fa f)u(y<b1+q>2) < ‘((1 - L(V‘i’l,‘i’z))fa f)u(uq>1+<1>2) < ||f|| (1 - L(V‘i’l,‘i’z))f‘

H(vdq+®9) [, +®y) ’

(2.29b)
Now, (2.29a) and (2.29b) imply

d

d
||f|v<1>z|||ml+%);n@xnws20(H<1—Lwl,@g))fumwg)) Nl (2:30)

1=
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The inequality (Z28) becomes

11 = La)(Xf) = 9l < (1 = Lotya) f — 9]

Hvdq+249)
d
+20 <H<1 B L(”q’l’%))meum«pg) ; 90l
H ~ Loe,a )f - ‘ (v +®q)

d
+2C(|(1 = La, 0)f — 9 o+ |!gy\ﬂwﬁ%));”aixum

H(vdq+

Now we specify our choice of y. Let x be chosen in such a way that 3%, [|0ix],, <

W. Now x,v are fixed. By the first part of the proof we know that L,¢, s, is
e

essentially m-dissipative. Therefore we can choose an element f € C°({®2 < 0o}) such
that [[(1 — Lye,,a,)f — 9|l < inf{3, ||g/| } and we finally obtain

Hodq+29

11~ La) () = gl < €

So far we showed that the closure (Lg, D(Les)) of (Le, Co°({®2 < 0o}) is the generator
of a strongly continuous semigroup of contractions (th))po' The Dirichlet property (see

[17, Definition 1.4.1] for the definition) of (Lg, D(Lg)) follows by [8, Lemma 1.9, App.
BJ] and hence by [17, Proposition 1.4.3] the semigroup (Tt‘l’)t>0 is sub-Markovian. O

Mu@l +&o

Remark 2.10
From the proof of Theorem[Z.9 one sees that the condition (935) can also be extended to
a=2 andO§K<%.

Recalling the decomposition from Proposition we obtain that for the adjoint
(Lo, D(La)) of (La, D(La)) it holds

C®({®y < 0}) C D(Le), Lef=Sf—Af, [feCO®{Py<o0l). (2.31)

For a symmetric velocity potential @y, i.e., ®y(v) = ®y(—v),Vv € R we can use the
velocity reversal as in [4, p. 153] , i.e., the unitary transformation on He given by

U:He — Ha, [f] — [(z,v) — f(z,—0)] (2.32)
to transform (Le, CX({®; < oo}) into the operator (ULeU, UCP({P2 < oo}) =

(Eq,, Ce({P2 < oo})) This implies that the latter is also an essential m-dissipative

operator. Hence, the closure of (f@, Cr{P, < oo})) coincides with the adjoint of the

closure of (Lg, C°({®2 < oo}). Therefore, we assume in the following the additional
assumption:
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Assumption 2.11
(@26) @y is symmetric, i.e., Po(v) = Py(—v), for all v € RY,
The next corollary recaps the previous discussion.

Corollary 2.12

Under the assumptions of Theorem[Z9 and the additional assumption ($26) the formal
adjoint (Le, C°({®y < o0})) is also an essentially m-dissipative Dirichlet operator.
Furthermore, its closure coincides with the adjoint of (Le, D(La)).

2.2 M-Dissipativity for singular ®; on L!(R?*/ yg3)

In this part we merely assume (®,2) — ($14)7, g € [2, o0], for ®; and (P21) — (P26) for
®,. Observe that due to Corollary 27 the operator (Le, C2°({®1, P2 < 0o0})) is closable
on L'(R* pg) and its closure (Lg 1, D(La 1)) is dissipative. The next proposition is
taken from [6, Lemma 3.7]. We only state the parts which are necessary for our needs.

Proposition 2.13
The set CX({®Py < o0}) is contained in D(Le,) and for f € C°({Py < co}) it holds
Lo f=Laf.

Corollary 2.14
(Lg, CX({®, Py < o0})) is essentially m-dissipative on L'(R®? ug) iff its extension
(L@,C?({@Q < OO})) 18.

The next lemma provides a sequence of smooth potentials (@1 ,,),en approximating @,
in a suitable sense. See [6, Lemma 3.10] for the proof.

Lemma 2.15

Let @ = @y fulfill (912), (913), ($14)?. Then there exist smooth ®, = @y, such that
®, < and VP, =3 V& in L] (R?, pg). Furthermore, the family (), )nen s uniformly
bounded from below.

In the following we assume additionally on ®,:
Assumption 2.16
(D7) e, is a finite measure, i.e., pig,(R?) = fpae 2 dv < .

(P28)  The measurable function |V ®s| is square integrable w.r.t. jie,, i.e.,
o [V ®o|? dptg, = fpa [V®o|* €22 dv < 0.
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Theorem 2.17
Assume (912) — ($14)7 and (Po1) — ($28). Additionally one of the following assumptions
are assumed.

1. pg is a finite measure.
2. (®14)? holds for q > d.

Then the operator (Le 1, D(Le.1)) generates a strongly continuous contraction semigroup
(Tﬁ)po on L*(R?? ug). Furthermore, this semigroup is sub-Markovian.

Proof. Together with Theorem 2.9, Corollary [2.14] and Lemma [2.15] we provided all
prerequisites to apply the proof of [6, Theorem 3.11]. The sub-Markovian property of
(Tfi) . holds due to [8, Appendix B, Lemma 1.9]. O

t>

Observe that the velocity reversal U from (2Z32) is also a bijective isometry on the
space L'(R?? 15). Hence, the closure of the formal adjoint (ﬁ¢,0§°({¢1, o, < oo}))
in L'(R?, ug) is the generator of a sub-Markovian stongly continuous contraction semi-

group (T;vbl)tzo on L'(R* 1g). The two semigroups (1}‘1’1) and (T;vbl)tzo give rise to

>0
contraction semigroups (7?71;’)»0 and (ﬁi)t>0 on LP(R?? 1ug) for every p € [1, co] which

are also strongly continuous for p € [1, 00). These semigroups coincide with (Ttﬁ)po and

(Tﬁ)po on L'(R?* 1) N L>®(R??, ug ), respectively (see [4, Lemma 1.3.11] for details).

Lemma 2.18
Let the assumptions of Theorem [2Z17 hold true. Furthermore, let p € [1,00).

(i) The generator (Le p, D(Lae,)) of (Tf;)tzo is given by the closure of (Le.1, D(Le)y)

in LP(R* ug), where D(Ls), = {f € D(Le1) | f,Larf € LP(RM,,uq,)}. In par-
ticular, for f € D(Lg), it holds Lg ,f = Lo f.

(ii) The contraction semigroups (TfL)»o and (T;I)L)po are the adjoints of (Tf;)

‘p—1 ‘p—1 tZO

and (T<I>

respectively.
t,p)tz(]} 4 Y

(iii) The semigroup (Tfm)po is conservative and g 1S invariant for (Tﬁ)po’ i.e.,

T2 1 =1 forallt >0 and fpoa TS f dpte = fpoa f dpia,¥f € LY (R, pig), t > 0.

,O0

The same statements also hold for (ﬂ?w)tzo and (7}‘71’1)20, respectively.
Proof. For part (i) see [4, Lemma 1.3.11], (ii) works analog as in [6, Lemma 3.16].
We prove part (iii): The invariance of ug for (T ﬁ)t>0 holds by Corollary 2.7 i.e.,

Jr2a Lo 1 fdpue =0, for all f € D(Lg ;). The same z;rgument proves invariance of
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we for (Tﬁ)po' The conservativeness follows by (ii) and the invariance of ue for

(T{ﬁ) t>0 and (T{ﬁ) >0 =

3 Existence of Martingale solutions for (Lg 5, D(Ls5))

In this section we use the results of [6, Section 3.4] to state the existence martingale
solutions for operator (L2, D(Ls2)), see Theorem [B.1] for the precise statement. The
core is the result [2, Theorem 1.1] which provides a pug—standard right process which
is associated in the resolvent sense with (L1, D(Ls,1)), see also the last mentioned
reference for the definition of a ue—standard right process. Theorem B.1]isn’t stated in
its full generality as in [6, Theorem 3.1.(iii)]. We restrict ourselves to the cases necessary
for the applications in mind from section [Bl The proof is completely analog to the one
in [6] and is therefore omitted.

Throughout this paper the spaces of continuous functions C ([0,T], E), C ([0, 0), E),
where (F,m) is a metric space and T' € N, are always equipped with the topologies of
uniform convergence on compact sets and the respective Borel o—algebras.

Theorem 3.1

Assume (@12)—((1)14)2, (@15), (@16), (@21)—(@28) Let 0 S h € Ll(de, M@)QLQ(RQC[,M@)
be a probability density w.r.t. pgs. Denote by (-, ), the dual pairing between L'(R*?, 1)
and L®(R* ug). There exists a probability law Py, with initial distribution hug on

C([0,00), {P1, P2 < 00}) which is associated with the semigroup (7?1)»0’ i.e., for all
froes fo € L°(R¥ ) and 0 < t; < ... < ty, k € N, it holds -

k
E l]:[ fi(Xtm ‘/tz)‘| = <h> Tt?,oo(flj}?ftl,oo(f2"'Tt(f,lftk,g,oo(fk—th(fftk,l,oofk)"'))>M<I>'
i=0

(3.1)
In particular, Py, solves the martingale problem for the generator (Le 2, D(Le2)) of
(ng)t>0’ i.e., denote by (X, Vi)io the coordinate process on C([0,00), {®1, Py < 00}).

Then for f € D(Le ) the process (Mt[f])tzo defined by
MY = F(X0, Vi) — f(Xo, Vo) — /M Loof(X,, Vi) ds, t>0, (3.2)

is a martingale w.r.t. the filtration (Ft);5g, Fit = 0 (X5, V5) [0 < s <t), and Pp,.
Additionally, if f> € D(Lgs) and Lo of € L*(R?, ug) then the process (Nt[ﬂ)tzo defined
by

NP = (M) = [ Lan(f2)(X0 Vi) = 2(fLanf) (X, Vi) ds, t20,  (33)

[0,2]

is also a martingale w.r.t. Py, and the filtration (F;),,-
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Remark 3.2

(i) Recall the situation of Theorem[31. For f € D(Lg)) and 0 <t < T < oo the
random variables in (3.2) are well-defined, i.e., Pp,,-a.s. independent of the ug
representative of f and Le o f, see [6]/[Lemma 5.1] for details. In particular it holds

H | Laaf|(X., V) ds
(0,71

STl 2y 1 L@ 2f Nl 120, -
LQ(Ph,u<1>)

Hence, [io7|La f| (X5, Vs)ds is finite Pyq-a.s.. On the negligible event

U {/[Oﬂ |Leof| (Xs, Vi) ds = oo}

TeN

we modify Jio 4 Lo of(Xs, Vs)ds to be zero for all t > 0 to obtain a continuous

version of the process (f[o,t] Leof(Xs, Vi) ds)t>0. Hence, in the following we may

assume that for continuous f the process (Mt[f ])tzo has continuous paths.

(ii) The results from the previous Theorem also hold for the formal adjoint Le, ie.,

for h as in Theorem [31] there exists a law I@)h;@, on C([0,00), {®1, Py < c0}) with
initial distribution hue which is associated with (TAt‘?’l)t>0 in the sense of (31),
see [6, Remark 3.3.]. We use this fact later in the proof of Theorem [G.8.

4 Limit operator and limit process

This section consists of a brief summary of the functional analytic objects related to the
overdamped Langevin equation (LL3]) and the construction of martingale solutions for its
generator. Denote by (By);>, a Brownian motion and recall the overdamped equation

T3)
dX? = -V, (X)) dt + v2dB,. (4.1)

The generator of (AT is given through
Lo f=Af=V®-Vf, feCT({P1 <oo}). (4.2)

Recall the measure jig, on (Rd, B(Rd)) according to Notation 21l Assuming ($,2) —
(®14)? one can use Proposition to check that the operator (Lg,, C°({P1 < o0}))
is symmetric and negative definite on the Hilbert space Ho, = L*(R? ug,), hence,
closable. In particular, one can prove as in Corollary 2.7 [z« Lo, fdue, = 0 for all
feCx({P < oo}). We make additional assumptions on ®;.
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Assumption 4.1

(®15)  The operator (Lg,, CX({P1 < o0})) is closable and its closure is the

. . . )
generator of a strongly continuous contraction semigroup (Ttﬁl)po on He, .

(®16) e, is a finite measure, i.c., g, (RY) = [gae Prdr < 00.

Remark 4.2
The assumption ($15) still allows singular potentials ®1. A very detailed discussion,
including handy sufficient conditions and examples can be found in [6, Section 4.2,4.5].

Theorem 4.3

Assume (®12), (914)%, (®15), ($16). Then the bilinear form (Ep,,C({®) < c0})) is
closable and its closure (Eg,, D(Es,)) is a symmetric, quasi-reqular Dirichlet form. Hence,
there exists a pg, -tight special standard process

Mq’l = (Qufu (ft>t207 (Xt)t207 (P$)$E{<I>1<OO}A)

which is properly associated with (Eo,, D(Ep,)) in the resolvent sense. For each proba-
bility distribution v on {®; < oo} being absolutely continuous w.r.t. je, define the law
Pu(") = Jia,<o0y Pe()dv(z). Then P,-a.s. the paths are continuous and have infinite
life-time.

Proof. Under the assumptions (®;2), (®,4)? one obtains

Eo,(f,9) = —(Lo,f, s, [f,9 € CZ({P1 < o00}). (4.3)

Hence, the form (Ep,,C°({®; < o0})) is closable by [17, Proposition 1.3.3.]. The
quasi-regularity of (g,, D(Es,)) holds by assumption (®,5) and [17, IV.4.a)]. The sub-
Markovian property of (1}%)»0 can be proven as in[2.9 i.e., one shows [za Lo, fdpe, =0
for all f € C°({®, < co}). Hence, [17, Theorem IV.3.5] provides the existence of Mg, .
Denote by (7:?11)»0’ <th’1)°1°)15>0 the semigroups on L'(RY, pg,) and L= (RY, ug, ), respec-

tively, induced by the symmetric sub-Markovian semigroups (7}?21) , see [4, Lemma

>0
1.3.11.].  Denote by (Lgl),D(L%))) the generator of (Jf)f) Using [4, Lemma

>0
1.3.11.(iii)] and assumption (®16) one easily proves [pa Lgl)fd,uq)l = 0 for all f €
D (Lg)). Hence, g, is an invariant measure for the semigroup (7?11)90. Conse-

quently, the semigroup (Ifolo)po is conservative, see also the construction of (Ifolo)po

in [4, Lemma 1.3.11.]. The continuity statement follows immediately by [17, Theorem
V.1111]. 0
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We obtain the analogous statement as in Theorem 3.1l

Corollary 4.4
Let h € LY(RY, pg,) N L2(RY, g, ) be a probability density w.r.t. pg,. Then there exists
a probability law P, on C([0,00),{®1 < co}) with initial distribution hue, which is

associated with the sub-Markovian strongly continuous contraction semigroup (ﬂ%l)po

in the sense that for all fi, ..., fr € L°(R%, pg,) and 0 < t; < ... < ty, k € N, it holds

k
E [H fl(th)] - <h7 ,'Z—‘tcf,loo(fl,‘z—‘tcfl—tl,oo(fz'"ﬂq;:il—tk_g,oo(fk—lnfitk_l,wfk)"'))>M<b17 (44)
1=0

where K denotes integration w.r.t. Ppu, . In particular, the measure Py, solves the
martingale problem for the generator (Le,, D(Lg,)).

Remark 4.5

1. One can prove stronger statements concerning life-time and continuity of the pro-
cess Mg, . Since we only work in the following with laws Py, —as in Corollary[4./]
we restrict ourselves to the weaker statements.

2. In [14] and the references therein strong solutions even for time-dependent and
singular drifts of (I.3) are constructed. Under additional mild regularity assump-
tions on ®; we can show similar as below that weak solution can be constructed
from the measure Pp,, by proving e.g. that the functions flx) =, i=1,...,d
are contained in the domain D(Lg,).

5 Velocity scaling and semigroup convergence

This section consists of a semigroup convergence result. For ¢ > 0 we define a scaled
velocity potential

() = B (g) + In(e%). (5.1)

The constant In(e?) doesn’t affect the generator and is only a renormalization constant.
The assumptions (®51) — ($57) hold true for ®F since they hold true for ®,. Similar
as before we write ®° = (®;,P5). We denote by p. the measure ug-. Hence, Theo-
rem 217 and Theorem B apply also for the operator (L., C°({®;, P < 0o})) defined

on LY(R? 4.) and its closure is denoted by (L(},EJ,D(L(},EJ)). Furthermore, we ob-
tain a strongly continuous contraction semigroups (Tte’2)t>0 = (ﬂ‘gs)po on the Hilbert

space H. = L*(R?? 1.), see Lemma [ZI8 and its previous discussion. The generator
(L}I,EQ, D(L}i,g’z)) of (Tf?z)po we abbreviate by (L., D(L.)). Observe that (L., D(L.)) is
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an extension of (L., C®({®;, P5 < co})) considered as an operator on H.. Additionally

we denote by (77) 1>0 the semigroup (th)l) on Ho := He,. In the following we show

>0
convergence of the Hilbert spaces H. towards the Hilbert space Hy from Section @ in

the sense of Kuwae-Shioya, i.e., there exists a dense subset C of Hy and for every € > 0
there exists a linear map

v, :C— H, (5.2)

such that
lig(l] [We(u) sy, = [Jully, » for allu € C. (5.3)

If (53) holds we say that the family of Hilbert spaces (7—[ )eso converges to H, along the
5)s>0

family (¥.).., and we use the short hand notation H. ——— H,. In this case we say
Ve
that f. € H., € > 0, converges to f € Hy (Notation: f. — f along H. M) Ho) if

£l <=2 1l (5.4)
(fea \I’E(QO)) 8%0 (f 90)3‘-[0 for all pE C. (55)

Furthermore, we prove convergence of the semigroups (TfQ) o € > 0, towards the

semigroup (77),, along H. Wezo, — Hy, i.e., for all t > 0 it holds

E>0 E>0

fe — [ along H. —— H, implies Tj, f. — Tth along H. —> Ho.  (5.6)
To this end, we assume that ®; and ®,, respectively, fulfill the additional assumptions:

Assumption 5.1

(®17)  The measurable function |V ®4| is square integrable w.r.t. pe,, i.e.,
Joa V1 * dpg, = Jga [V e~ dz < 0.

Assumption 5.2
(®29) Py has no singlarities, i.e., {®y = oo} = 0.

Due to (®,7) we can assume pg,(RY) = 1. Furthermore, we define the following maps
Pas Doy 0 1 R — R where o(z,v) = 2 + v, p.(z,v) = z, py(x,v) = v. Next we define
the maps ¥, from (5.2).

Definition 5.3
Let € > 0 and choose a symmetric cut off function n. € C*(RY), s.t

(Z) 77€(U> = 77€<_U>7 fOT allv € Rd; Ne = 1 on 36*2 (0) and S’prp(?]e) C BQ&*Q (0>;
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(ii) |Vn.| < Ce? and |An.| < Ce*, for a finite constant C independent of €.
We choose C = C°({®1 < 0o}) and define the convergence determining function V. by
Ve:C—He, [ (foo)(neopy) (5.7)
Due to Proposition[Z13 and Lemma [Z18(i) it holds ¥.(C) C C>(R*!) C D(L.).

Theorem 5.4

Assume (©12) —(®14)2, (915), (D17), (P21)—(D29) and one of the additional assumptions
(i), (1) of Theorem 217 to hold true. Then it holds, the family of Hilbert spaces (H:).,
converges along the family (V.).., defined in (3.73) towards the Hilbert space Hy as €

tends to zero in the Kuwae-Shioya sense. Furthermore, the semigroups <T£€72)1>0’ e >0,

converge towards (T7),5, along H. Wo)ezo, Ho, i.e., (30) holds.

Proof. We proceed as in [18, Proposition 3.21., Theorem 3.22.], where the special case
Py (v) = 3 lv|* is considered. For sake of completeness we give a short proof. For f € C

we have to show [|W. f|[,, =20 | f1l34,- Using the symmetry of 7. and ®, together with
the transformation (x,v) — (z, —v) we rewrite the norm using the convolution x, i.e.,

JOaf | = [ 125 (e ") (@)e ™ (x) o (5.8)

For a, := fgan2e~*%(v) dv one can show a. =23 1, hence (a;1n36_¢5)6>0 is an approx-
imate identity. Since f? € L'(R?) and e=® € L*°(R%) due to assumption (®;2) the
Holder inequality implies the desired result.

Next we prove convergence of the semigroups generated by (L., D(L.)) in H.. Re-
call that the limit semigroup (7}),s, has the closure of (Lg,, C({®; < oo})) as its
generator. We use that semigroup c_onvergence is equivalent to convergence of the gen-
erators and in particular it suffices to have convergence of the generators on a core for
the limit generator, i.e., we use [4, Theorem 1.5.13], [4, Corollary 1.5.14]. Hence for

f el =Cr{P < oo}) it suffices to show (L.V.f).~g —> Lof along H. ez, — H,.
Let f : RY — R be smooth and i € {1,...,d}. Observe that the function f o o ful-
fills 0,,(f oo) = 0;f o0 = 0,,(f o o). We start with computing the expression L.V, f
explicitly. According the previous observation we obtain

LV.f=(Afoo)n.op,) + (foo)(An.op,) +2(Vfoa) (Vn.op,)
— (V@5 (Vneop,)) (foo) = (Vadi - (Vfoo))mop,
— (V@1 - (Vn.op,)) (foo). (5.9)

E>0

The aim is to establish that (5.9]) converges along H. —) H, towards
Lof =Af -V, -VF. (5.10)
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Ve
Since convergence along H. ooz, H,o is linear (see [15, Lemma 2.1. (3)]) it suffices to

show convergence of the single summands in (5.9), i.e., one shows

1. (foo)(An. op,)

2. (Vfoo)-(Vn.opy) R 0

3. (vmq)l : (Vna © pv)) (f o 0) (¥e)eso

4. (V,®5- (Vn.op,)(foo) along #. == Ho.
5. (Afoa)(neopy) —  Af

6. (Vo®1-(Vfoo))(n.op)  — V& -Vf

To prove convergence in 1.-4. one checks that the respective norms of the elements
converge to zero, see [15, Lemma 2.1. (1)]. But this holds due to the choice of 7. and
a convolution argument as in (B5.8). The statements in 5. and 6. are obtained by the
same convolution argument. Taking 1.-6. together we obtain

(Te)eso 0
LY. f — Lyf along H. ——— Hy, VfeCrX{P < oo}) (5.11)
]

6 Convergence in law of weak solutions

Throughout this section let € > 0 and h. € H. and hy € Hy be probability densities
w.rt. pu. and pg = pe,, respectively. Furthermore, let P, ,. by the martingale so-

lution for (L}I,EQ, D (L}I,EQ)) with initial distribution h.p. given by Theorem [(B.1] and
Prouo be the measure from Corollary 4.4l The measures P,_,. and Py, are defined on

C ([O, 00), {P; < o0} X Rd) and C ([0, 00), {®; < 00}), respectively. In the following we
consider them as measures on C' ([O, 00), de) and C ([0, 00), Rd). Indeed, we consider
the continuous embeddings

igq 1 C ([0,00), {®; < o0} % Rd) — C ([O, oo),RQd) W W,

ia : C ([0,00), {®; < 00}) — C ([0,00), R) ,w > w.
We also denote by Py,_,. and Py, the pushforwards P,,_,_ oy, and Py, oi;', respec-

tively, to ease the notation. Observe that these measures are still associated with the
respective semigroup. Additionally, we define the continuous coordinate projection

Py : C([0,00), R*") — C ([0,00), R, (1, ve)iz0 > (x1)i2o0. (6.1)
In this section we prove weak convergence of Py pe = Phoy o Px! towards Prou, for

€ — 0 as measures on C' ([0, 00), Rd). At first, weak convergence of the finite dimensional

distributions (f.d.d.) is shown via the convergence of the associated semigroups (Tfﬁ)po’

i.e., Theorem [5.4l In a second step we prove tightness implying weak convergence.
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Theorem 6.1

Assume (®12) — (®14)%,(915) — (&,7) and (Po1) — (P29). If h.pe converges weakly
to hopo ® &g, where &y is the Dirac measure in zero on R%, as measures on R*® and
SUP.~q || el 2(,.) < 00 then the f.d.d. of Py .. converge weakly to the f.d.d. of Ppy,, as
e —0.

Proof. Let (Xt),5, and (X, Vi),5, be the coordinate processes on C ([O, oo),]Rd) and
C ([0,00), R??), respectively. Then it holds X, o Py = p, o (X,, V) for all ¢ > 0.
Let 0 < t; < ... < t, k € N and define Pi;ls """ o= IP’ffE“E o (th,...,th)_l and
Pllet = Ppouy © (X, oo, Xip) 7' Additionally, let F' @ R% — R be of the form
F(zy,..ox) =TI, fi(x), fi € C(RY), i = 1,...,k. By the association of P,_,. with
(Tﬁa)t>0 and Ty, = T2, on L*(R*, pu.) N L*°(R*, 1) it holds

FalIP’hXE’ZI8 """ b — /]R2d he Ttel,2(f1 oprtzftl,Q(fQ Op$"'niftk,1,2fk °pg))...) dpe. (6.2)

Rdk

Observe that for g € C>(R?) the constant sequence g o p, € H. converges to g along

H. —>(qjg)g>0 Ho. Furthermore, for f, — f along H,. M Ho it holds (gop,)f- — g

Applying Theorem (. 4land the previous observations inductively we see that F!* con-

Ve
verges to Fyl ot = (AT (for Ty, fr).-.) along H. @oezo, Ho. Furthermore,

the densities h. converge weakly towards hg along H. @eero, Ho by [20][Lemma 2.13].
We conclude

Xt,eote L1t =0 Ttk t1yeest
Fap,t _(hE,FE 5 (ho, Fy 0= fou F P

Rdk

Since the functions F' of this kind are strongly separating [9, Chapter 3, Theorem 4.5]
yields the claim. O

To prove tightness we choose an appropriate metric m on our state space R?? inducing
the euclidean topology. Let ¢ € {1,..,d} and define the functions f;, g; in the following
way:

fi iR R, (2,0) =z + v, g R —=R, (z,0) = . (6.3)

Let the metric m on R?? be given by

m((x,v), (Z,0)) = ; [fi((z, 0)) = fil(Z,0))] + [g:((2,0)) — g:((F, 0))] (6.4)

We need further assumptions on ®; and @5, respectively.
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Assumption 6.2
(018)  fra |2/ e de < oo, k=1,2

(219)  fra |[VP1[* e ® da < 0.

Assumption 6.3
(D210) fra |v]* e ®dv < 00, k=1,2
(Po11)  fpa |[VOo[* =22 dv < 0.

Due to (®,6) and (P27) the measure pg is finite, hence, w.l.o.g. we assume that p. is a
probability measure for all €. For h. = 1 the measure . is invariant for P, for all e > 0,
i.e., the one dimensional distributions of P, are given by p.. Furthermore, the family
fie, 0 < & < 1, is tight. Denote by (L., D(L.)) the generator of the adjoint semigroup

(th?)tzo'
Lemma 6.4

Assume (©12), (®13), (215) — (19) and (P21) — (P27), (229) — (P211). For the functions
firgi, 1 €{1,..,d}, defined in (6.3) it holds f;, f?, gi,97 € D(L.) N D(L.) and

L. fi = —0,,®1, Leff =2+ 2fiL.f; (6.5)

Legi = —0,, 95 — 0,91, Leg? = 2+ 2giLg;, (6.6)
Proof. Due to Proposition and Lemma ZT8|(i) we know that C'°°(R??) is contained
in D(L.) N D(L.). The assertions follow using suitable cut off functions. O
Remark 6.5

Observe that the assumptions of the previous lemma imply that the coordinate process
(X4, Vi) on C ([0, oo),RZd) is a weak solution to (I4d), (1.4Y) for 5 instead of Py
and ¢ = 1 with initial distributions hepr. under Py_, . Indeed, let i € {1,...,d}. Due

to Lemma we know that the function g; is in D(L.). By (3.3) we know that the
1evi=1,.d
quadratic cross-variations of the continuous d— dimensional martingale (Mt[g'}’a);o is

given by
<M[9i]’5 7\][9j]75> S
5 ¢ 170y

where 6;; denotes the Kronecker delta. Using Lévy’s characterization of Brownian mo-
1ovi=1,.d
tion, we see that (Mt[gl}’s);o is \/2 times a d—dimensional Brownian motion. Com-

a1e\i=1,.d g
puting the quadratic variation of (Mt[fl gl]’e)po we obtain Mt[fl 9ile — forallt > 0.



25

Hence, by comparing (I4d), (1.4Y) with (32) for fi — ¢; and g; we constructed a
d—dimensional Brownian motion (By)i>o and a stochastic process (X, Vi)iso such that

{T7d). (T4 holds.

For T' € N and a metric space (E,r) we define the time restriction Ry and time reversal
operator rr:

Ry ZC([O, OO), E) — C([O,T], E),w = W0, 1]
rr:C([0,T], E) — C([0,T], E),w — w(T — ).

For a measure P on C([0,00), E) we define P := P o R;'. We need two additional
lemmata. Their proofs are elementary.

Lemma 6.6

Let (E,r) be a metric space, (Py,), oy be a family of Probability measures on C ([0, 00), E)
and § > 0. If Kz C C ([0,T), E) is a totally bounded set such that inf,en PL(K7r) > 1—2
for all T € N. Then the set K = ey Ry K7 s totally bounded in C ([0, 00), E) and it
holds inf, ey P, (K) > 1 — 6.

Lemma 6.7

Assume (E,T) is a topological vector space, carrying the Borel o-algebra. Let X',
i = 1,2 be a E—valued random variables on the probability space (1, Fn,Py), n € N.
Assume that the families (P, (X} € -)) i = 1,2, are tight. Then also the family
(P(Xp + X2 € ),y @5 tight.

neN’

Theorem 6.8

Assume (912), ($13), (P15) — ($19) and (P21) — (P7), (P29) — (Po11).  The family
(Po.). g 18 tight as measures on C ([0, oo),RQd).

Proof. In the following we always consider R?? to be equipped with the metric m from

(64)) and let T' € N be arbitrary. By Lemma it suffices to show that the family of
time restrictions (Pgs) . is tight for all T € N. For ¢ € {1,...,d} the functions f;, g;
€

from (6.3]) induce measurable maps fi, 9 defined by
fi:€(0,T),R*) — C([0,T].R),w > fiow,

analogous definition for g;. Due to the Arzela-Ascoli theorem a set A C C([0,T], R?*?) is
totally bounded iff f;(A), g:(A4) C C([0,T],R) are totally bounded for all i € {1,...,d}.
Hence, it suffices to prove tightness separately for the following kind of measures on

C([0,T],R):
1. (P} o f;l)oo defl.,dh, 2. (P o g;1)6>0 vie{l,..d. (6.8)

In the following let i € {1,...,d} and denote integration w.r.t. IP’Z; by EI.
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1. Consider the semimartingale decomposition from (3.2)):
FX V) = M = LX) dr + fi(Xo Vo), te[0.T). (6.9)

This implies that f; can be written as the sum of the C([0, T], R)-valued random vari-
ables (Mt[fi},e)te[o,T]’ (fot L.fi( X, V}) dr)te[OvT} and (f;(Xo, Vo))tejo,r], see also Remark

B.2(7). Due to Lemma it suffices to show separately that the laws of the single
-1

summands are tight. We start with the family P}, o ((Mt[f i]’e) ) , € > 0. Since
€ t€[0,T]

the initial distributions of this family of measures are tight, it suffices to show a bound
for the increments, see [13][Chapter 2, Problem 4.11]. Therefore, let 0 < s <t < T.
Since f? € D(L.) and L.f; € L*(R*, 1), 33) and (63) imply that the quadratic

variation process of (Mt[f "}’5) is given by a constant times ¢. We obtain tightness

te[0,7
by the following estimate which is due to the Burkholder-Davis-Gundy inequality,

BT (M — MU=y < C(t — s)2. (6.10)

Due to (6.3), the Holder inequality and the fact that y. is invariant for P, we find for

-1
the variation part IP’ZE o <<f0t L.fi(X,,V,) dr)te[o T}) , € > 0, the following estimate
implying tightness 7

E7 l(/t Lgfi(x,.,w)drﬂ < (t— 5)2ug,(RY) /]R 01| dpa,. (6.11)

Tightness of the laws of the last summand follows by the weak convergence of the
initial distributions and the continuity of f;. We conclude that for i € {1,...,d} and
T € N the family (IP’C:E o fi1)es0 is tight.

2. It holds g; € D(L.) N D(L.). Observe that P or;' is associated with the ad-
joint semigroup (Tiz)tzo, see [12, Lemma 3.9(iii)], hence, P} o rpt = I@’Zg Explicit
computation yields the following decomposition

1 . N N
9:(X0, Vi) = gi(Xo, Vo) =5 (M7 + NI§:5(rr) — M7 (rr))
1 rt N
+§/ (Legs — Leg)(X,, Vo) ds, te[0,T].  (6.12)
0

As above, we consider (6.I2]) as a decomposition of the random variable §;. Tight-
_ -1
ness of Pl o ((Mf“s)te[o,ﬂ) , € > 0, can be shown as in (GI0). For the sum-
rgis€ _ Ar9ic€ T -1 _ »T : i s€
mand (MTft(TT) M7 (TT))te[O,T} we use P, ory" = P, . Since (Mt )te[oﬂ

is a martingale w.r.t. I@’ZE tightness follows as ([6.I0). Due to Proposition we
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A

have for the last summand %(Lagi — L.g;) = —0,, Py, implying tightness of the laws
1
P’ o ((]g(Lagi — Legi)(Zs) ds)te[o T]) , € >0, as in (G.11]), which finishes the proof.

]
Combining Theorem [6.1] and Theorem we obtain

Corollary 6.9
Under the assumptions of Theorem [61 and Theorem the measures (Piug) o O
15

C ([O, 00), Rd) converge weakly to Py, for e — 0.

Proof. By Theorem [6.1] it suffices to prove tightness of (IP’X

hsus)€>0' The map Px from

(6.1)) is continuous, hence, tightness of (Pp.,.). ., implies tightness of (Pi us) e Now
3
let 6 > 0 and choose K C C ([0, oo),RQd) compact s.t. sup,.o P, (K°¢) < &
€ Sups>0”h‘5”L2(#5)

Again we denote by E. integration w.r.t. P, .

Phope (K°) = Ee [1xcehe (Xo, Vo)l < /Py (K [[hell 12,y < 0.

7 Overdamped limit of generalized stochastic
Hamiltonian systems

Let us recall the scaled gsHs (L4al), (L4D)
1
dX; = EVQQ(Vf)dt,
1 1 1
AV = —-V O (X7)dt — ZV@,(V7)dt + g\/§dBt,

We summarize our final result in the following theorem. To formulate the theorem define
the map U, : R* — R*, (z,v) — (z,%), ¢ > 0. In the following we denote by p the
measure fig.

Theorem 7.1

Assume (®11) — (919) and (Po1) — (®Po11). Let € > 0, h, € LY(R*, 1) N L2(R?*, u) and
h € LYRY, pg,) N L*(RY, g, ) be a probability densities w.r.t. p and pg,, respectively.
Assume further that hep converges weakly to hjig, ® dg as € — 0 and sup,~ fpea h2dp <
oo. There exists a weak solution (X;,Vy)~, to (I4d), (1-4Y) with initial distribution
hepi. Furthermore, denote by Py, the martingale solution to the generator of (1.3) from

Corollary (4.4 Then the laws L <(Xt€)t20)7 e >0, converge weakly to Ppy, —as measures
on C ([O, oo),Rd) as e — 0.
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Proof. Let € > 0 and recall ®5, (L., D(L.)), (TfQ) o He and H. from the beginning of

t>

Section B The generator of (IL4al), (L.4D)) is given by

Laf = 5 (Auf ~ Vs Vof) + L (V.00 Vuf — V.00 9,f). € O (@) < o0)).

(7.2)
We consider (L%, C°({®; < 0o})) as a linear operator on the space H = L? (de, u).
Define the unitary transformation U, : H — H., f — f o U.. The map U. and the

adjoint U’ leave the set C°({®; < oo}) invariant. Furthermore, we obtain the unitary
equivalence

(U2 LageUs, O ({@1 < 00})) = (L, CZ({1 < o0})). (7.3)

By Lemma 218 an extension of (L}i,s, Cx{P; < oo})) is the generator of the semi-
group (thz)po. Hence, due to [11][Chapter 2, Lemma 3.17] an extension of the operator

(L%, C({®; < 00})) is the generator of the sub-Markovian strongly continuous con-
traction semigroup on H given by (57),5¢ = (U: thQUs)DO. Define further

U. : C([0,00), R*) — C([0,00), R*), (21, v)iz0 = (Ul 1)) -
Observe that U.h. is a probability density w.r.t. pu.. Let P.4.),.. be the martingale
solution to (L}I.E,Q,D (L}I,EQ)) with initial distribution (U.h.)p. from the last section.

~ A -1
One easily checks that the measure P, := P.p. .0 (Ua) has initial distribution given
by hep and is associated with the sub-Markovian semigroup (.57), in the sense of (B3.)).

Hence, due to [6, Lemma 5.1] the measure P, , is a martingale solution to the generator
of (57);>- Furthermore, one can argue as in Remark to obtain weak solutions
(X5, V) i>0 from Py,_,, such that for the law of (X¢),> it holds £ ((Xf)tzo) =P, 0Pg".
Observe that Py,_, 0 Py' = Pw.hyu. © Px'. To apply Corollary 6.9 we have to guarantee
that the assumptions of Theorem [6.] are fulfilled, i.e., we have show that (U.h.)pu.,
e > 0, converges weakly to hug, ® &y as € — 0. Let f : R — R be continuous
and bounded. Observe that the functions g. defined by g¢.(x,v) = f(z,ev) converge
uniformly on compact sets to the function g(z,v) = f(x,0), (x,v) € R*. Hence, by the
transformation formula we obtain

/]R?d f(Uahe)d,ua - /R?d gehadﬂz/[RQd(ge _g)had,u+/RQd ghadﬂ

It suffices to prove that the first term in the last expression converges to zero as ¢ — 0.
By assumption the measures h.u, € > 0 converge weakly, in particular, they are tight.
Hence by the boundedness of f and the considerations above we conclude

/R  F(U-ho)dpe =5 /R  fdhpa, © 0.
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Hence, we can apply Corollary E9and conclude that Py, LoPxt = Pw.hoyu. o Px ! converge
weakly to Py, which finishes the proof. O

Remark 7.2
Recall the objects H, U, (Sf)tzo, e > 0, from the previous proof. Via the maps V.

from (2.7) one directly obtains H RN He,, where I'e : C — H, f — UX o U _(f).

I.),
Furthermore, we obtain that the semigroups (Sf)tzo converge to (T;DI)DO along H ()—>°>

Ha,. This follows directly from the fact that the properties (5.4), (53) are preserved by
the unitary map U;.
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