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1 Introduction

The motion of interacting particles in a surrounding medium can be described by the
Langevin equation, i.e.,

dXt = Vtdt, (1.1a)

dVt = −∇Φ1(Xt)dt − γVtdt +
√

2γβ−1dBt, (1.1b)

where ∇Φ1 prescribes external and interacting forces between the particles, γ > 0 is a
constant describing the magnitude of friction, β > 0 is up to a constant the inverse tem-
perature and (Bt)t≥0 denotes a d−dimensional Brownian motion discribing the influence
of the surrounding medium. Here we are interested in the scaled equation

dXε
t =

1

ε
V ε

t dt, (1.2a)

dV ε
t = −1

ε
∇Φ1(Xε

t )dt − 1

ε2
V ε

t dt +
1

ε

√
2dBt, (1.2b)

cp. e.g. [16, Chapter 2.2.2]. Small ε > 0 represent the overdamped regime. Physically
this corresponds to large friction forces and an appropriate time-scaling (see [16][Chapter
2.2.4] for a physical interpretation). The authors of [19] prove convergence in law of
(Xε

t )t≥0 as ε tends to zero to a solution of the overdamped Langevin equation

dX0
t = −∇Φ1(X0

t )dt +
√

2dBt. (1.3)

Depending on the context a solution to (1.3) is also called a distorted Brownian motion.
This convergence is known as the overdamped limit. More generally, we treat a scaling
limit of generalized stochastic Hamiltonian systems (gsHs), i.e.,

dXε
t =

1

ε
∇Φ2(V ε

t )dt, (1.4a)

dV ε
t = −1

ε
∇Φ1(Xε

t )dt − 1

ε2
∇Φ2(V ε

t )dt +
1

ε

√
2dBt. (1.4b)

Here Φ2 is a potential, generalizing the kinetic energy of the particles, i.e., the Hamil-
tonian is given by HΦ(x, v) = Φ1(x) + Φ2(v). Observe that for Φ2(v) = 1

2
|v|2 we just

recover (1.2a), (1.2b). The main result of this paper is to prove convergence in law of
the positions (Xε

t )t≥0 of (1.4a), (1.4b) to (X0
t )t≥0 from (1.3) as ε → 0. Our assump-

tions on Φ1 and Φ2 are so weak that standard results on existence do not apply, see in
particular Assumption 2.2 and 2.3 below. Furthermore, our assumptions allow singular
pair interactions like the Lennard-Jones potential. For the pair Φ = (Φ1, Φ2) we prove
existence of weak solutions (Xε

t , V ε
t )t≥0 to (1.4a), (1.4b) via martingale solutions Pε

Φ
to

the generator Lε
Φ

of (1.4a), (1.4b) given through Itô’s formula, i.e.,

Lε
Φ

f =
1

ε2
(∆vf − ∇vΦ2 · ∇vf) +

1

ε
(∇vΦ2 · ∇xf − ∇xΦ1 · ∇vf) (1.5)
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for f ∈ C∞
c ({Φ1, Φ2 < ∞}). Observe that the linear operator fails in general to be

sectorial, due to the degeneracy of the Laplacian. Hence, the corresponding operator
semigroups are not analytic, which males the analysis more challenging.

As an intermediate step we consider for the scaled velocity potential Φε
2(·) = Φ2( ·

ε
) +

ln (εd) the pair of potentials Φε = (Φ1, Φε
2). The major challenge is to prove weak

convergence of the position marginals P1,X
Φε of martingale solutions P1

Φε corresponding to
L1

Φε as ε → 0. This we achieve with analytic and probabilistic methods. The analytic
part consists of a semigroup convergence result, the probabilistic one of a tightness result.
At the end we use this convergence and unitary transformations to show convergence of
the positions of (1.4a), (1.4b) to a distorted Brownian motion.

The organization of this paper is as follows. In Section 2 and 3 we closely follow the
approach in [6] where martingale solutions for Φ2 = 1

2
|v|2 were constructed. Section 2

contains essential m-dissipativity results for the generator (L1
Φ

, C∞
c ({Φ1, Φ2 < ∞})) on

L2(µΦ) and L1(µΦ), where µΦ is an invariant measure for L1
Φ

from (1.5). In Section 3
we show existence of a martingale solution to L1

Φ
in terms of a right process. Section 4

gives a brief overview of the functional analytic objects corresponding to the overdamped
Langevin equation (1.3) and existence of martingale solutions for its generator is shown.
The analytic part for convergence is provided in Section 5. We prove strong convergence
of the semigroups generated by the scaled generators L1

Φε . Note that for each ε > 0
the generator L1

Φε is acting on a different Hilbert spaces. Hence, we use the concepts
developed by Kuwae–Shioya in [15] for showing convergence. Section 6 contains the
probabilistic part for convergence. We establish convergence in law of weak solutions
via semigroup convergence and tightness of the family (P1

Φε)ε>0. In Section 7 we explain
how these results apply to the original problem, i. e. to prove convergence in law of
the positions (Xε

t )t≥0 from (1.4a), (1.4b) towards (X0
t )t≥0 from (1.3). The core results

achieved in this paper may be summarized in the following list:

• We prove that the closure of (L1
Φ

, C∞
c ({Φ1, Φ2 < ∞})) in L1(µΦ) is the generator of

a sub-Markovian strongly continuous contraction semigroup
(

T Φ

t,1

)

t≥0
, see Theorem

2.17.

• For the scaled velocity potential Φε
2 we prove convergence of the associated L2(µΦε)

semigroups
(

T Φ
ε

t,2

)

t≥0
in the sense of Kuwae–Shioya, see Theorem 5.4.

• We prove weak convergence of the position marginals P1,X
Φε , ,ε > 0, to a martingale

solution of the generator of the distorted Brownian motion as ε → 0, see Corollary
6.9.

• We give a rigorous proof for the convergence in law of the positions (Xε
t )t≥0 of

weak solutions (Xε
t , V ε

t )t≥0 to (1.4a), (1.4b) to the overdamped Langevin equation
as ε → 0, see Theorem 7.1.
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At this point we would like to point out that all results hold for very large class of
interaction potentials Φ1 which can also be very singular, e.g., potentials of Lennard–
Jones type are admissible.

Our results are complementary to those in [19] in the following sense: First, there the
authors have to assume the interaction term ∇Φ1 to be continuous. Second, there the
state space is assumed to be the d−dimensional torus Td. Due to our weaker assumptions
the weak solutions constructed in our framework require initial distributions which are
absolutely continuous w.r.t. the invariant measure µΦ. This aspect is more restrictive
than in [19]. Additionally, the Φ1 in [19] may also depend on ε > 0.

2 M-Dissipativity of the Operator L1
Φ

The main goal of this section is to establish for a pair Φ = (Φ1, Φ2) of potentials essential
m-dissipativity of the differential operator (L1

Φ
, C∞

c ({Φ1, Φ2 < ∞})) given by

L1
Φ

f = ∆vf − ∇vΦ2 · ∇vf + ∇vΦ2 · ∇xf − ∇xΦ1 · ∇vf, f ∈ C∞
c ({Φ1, Φ2 < ∞}) (2.1)

on L1(R2d, µΦ), where µΦ is absolutely continuous w.r.t. the Lebesque measure on
(

R2d, B(R2d)
)

. In the following we always denote L1
Φ

by LΦ. We follow closely the

argumentation in [6] and generalize the proofs therein for a general velocity potential Φ2

fulfilling the Assumptions 2.3 below. Therefore we only prove the parts which actually
differ and refer to [6] for additional details. First we prove essential m-dissipativity on
L2(R2d, µΦ) for locally Lipschitz continuous Φ1. Afterwards we use this result to show
the m-dissipativity of the closure of (2.1) on L1(R2d, µΦ) for singular Φ1. The potentials
Φ1, Φ2 and their derivatives are considered as functions on R2d and Rd simultaneously
in the following way: Φ1(x, v) = Φ1(x), Φ2(x, v) = Φ2(v), where (x, v) ∈ Rd × Rd. For a
(weakly) differentiable function f on R2d, ∇xf denotes the d−dimensional (weak) gradi-
ent w.r.t. the first d unit vectors. Corresponding definitions hold for ∇v, ∆x, ∆v, ∂xi

, ∂vi
,

i = 1, ..., d. Expression like ∇vΦ2 · ∇vf from (2.1) are understood as ∇vΦ2 · ∇vf(x, v) =
∑d

i=1 ∂vi
Φ2(x, v)∂vi

f(x, v). The gradient, the Laplacian and weak partial derivatives of
Φ1 and Φ2 considered as a function on Rd are denoted by ∇, ∆, ∂i, i = 1, ..., d, respec-
tively.

Notation 2.1

For n ∈ N and a measurable function Ψ : Rn −→ R, where R denotes the extended real
numbers, we define the measure µΨ by its Radon-Nikodym derivative w.r.t. the Lebesgue
measure dx on (Rn, B(Rn)), i.e.,

dµΨ

dx
= e−Ψ.

We state the assumptions we later assume for the position potential Φ1 and the velocity
potential Φ2:
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Assumption 2.2

Let Φ1 : Rd −→ R ∪ {∞} and q ∈ [2, ∞].

(Φ11) Φ1 is locally Lipschitz continuous, i.e., the restriction of Φ1 to an arbitrary
compact subset of Rd is Lipschitz continuous. In particular, Φ1 : Rd −→ R.

(Φ12) Φ1 is bounded from below and {Φ1 < ∞} 6= ∅.

(Φ13) e−Φ1 is continuous on Rd.

(Φ14)q Φ1 is weakly differentiable on {Φ1 < ∞} and ∇Φ1 ∈ L
q
loc(R

d, µΦ1).

Assumption 2.3

Let Φ2 : Rd −→ R ∪ {∞}.

(Φ21) Φ2 is B(Rd) − B(R) measurable and {Φ2 < ∞} 6= ∅ is open.

(Φ22) Φ2 is bounded from below and locally integrable on {Φ2 < ∞}.

(Φ23) For i ∈ {1, .., d} it holds for the distributional derivatives
∂iΦ2 ∈ L2

loc({Φ2 < ∞}) and ∂2
i Φ2 ∈ L1

loc({Φ2 < ∞}).

(Φ24) (∆ − ∇Φ2 · ∇, C∞
c ({Φ2 < ∞})) is essentially self-adjoint on L2(Rd, µΦ2).

(Φ25) There are constants K ∈ (0, ∞) and α ∈ [1, 2) such that it holds
|∆Φ2| ≤ K(1 + |∇Φ2|α).

According to Notation 2.1 denote by µΦ the measure µΦ1+Φ2 on
(

R2d, B(R2d)
)

and by

HΦ the Hilbert space L2(R2d, µΦ).

Remark 2.4

(i) Let Ω be an open subset of Rd. Then it holds f ∈ H
1,∞
loc (Ω) if and only if f has

a representative which is locally Lipschitz continuous in Ω (see [10, Chapter 5.8,
Theorem 4]). Hence, the assumption (Φ11) implies (Φ12) − (Φ14)∞ apart from the
boundedness from below.

(ii) If we assume instead of (Φ22) the following condition:

(̃Φ22) Φ2 is locally bounded on {Φ2 < ∞}.

Then in combination with (Φ25) one can argue similar as in the proof of [4][Lemma
A6.2.] that Φ2 is continuously differentiable on {Φ2 < ∞} and ∇Φ2 is locally
Lipschitz on {Φ2 < ∞}.

(iii) Assuming (Φ12), (Φ14)q, (Φ22) and (Φ23) we can consider (LΦ, C∞
c ({Φ1, Φ2 < ∞}))

as an operator on Lp(R2d, µΦ) for every p ∈ [1, 2].
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(iv) Since the measure µΦ2 on Rd is locally finite it holds by [3, Proposition 7.2.3]
that µΦ2 is regular Borel measure on ({Φ2 < ∞}, B({Φ2 < ∞})) and hence by [3,
Proposition 7.4.2] the set C∞

c ({Φ2 < ∞}) is dense in L2({Φ2 < ∞}, µΦ2)
∼=

L2(Rd, µΦ2).

(v) See Remark 4.2 as a reference for sufficient conditions implying (Φ24).

Proposition 2.5

Let Ω ⊆ Rn, n ∈ N, be open and Ψ : Ω −→ R be measurable and locally bounded or
bounded from below and locally integrable. Assume further that the first order distribu-
tional derivatives ∂iΨ, i ∈ {1, ..., n}, are in L

p
loc(Ω), for some p ∈ [1, ∞]. Then it holds

that e−Ψ ∈ H
1,p
loc (Ω) and ∂i

(

e−Ψ
)

= −∂iΨe−Ψ.

Proof. Let Ω′ ⊂ Ω be open such that Ω′ ⊆ Ω is compact. We need to show that e−Ψ ∈
H1,p(Ω′). Hence, let ϕ ∈ C∞

c (Ω′) be arbitrary. Since K := supp(ϕ) is compact there is
a non-negative χ ∈ C∞

c (Ω′) such that χ = 1 on K. Obviously e−Ψ ∈ L∞(Ω′) ⊆ Lp(Ω′).
By the compact support of χ and a regularization as in [1, Lemma 3.16] one can find a
sequence (uk)k∈N ∈ C∞

c (Ω′) such that uk −→ χΨ, as k → ∞, in H1,1(Ω′). In the case
of locally bounded Ψ it holds ‖uk‖∞ ≤ ‖χΨ‖∞, for all k ∈ N. Otherwise, if C ∈ R is a
lower bound of Ψ then it holds C ≤ uk(x) for all x ∈ Ω′ and all k ∈ N. By switching to a
subsequence which we also denote by (uk)k∈N we can apply the dominated convergence
theorem, integration by parts and Hölders inequality to obtain

∫

Ω′

e−Ψ∂iϕ dx = lim
k→∞

∫

Ω′

e−uk∂iϕ dx = lim
k→∞

∫

Ω′

∂iuke−ukϕ dx =
∫

Ω′

∂iΨe−Ψϕ dx.

Under the assumptions (Φ12) − (Φ14)q, q ∈ [2, ∞] and (Φ21) − (Φ23) we obtain the
following proposition and corollary:

Proposition 2.6

(LΦ, C∞
c ({Φ1, Φ2 < ∞})) admits a decomposition into LΦ = S + A, with symmetric S

and antisymmetric A on C∞
c ({Φ2 < ∞}) w.r.t. the scalar product on HΦ. S and A are

given through

Sf = ∆vf − ∇vΦ2 · ∇vf, Af = ∇vΦ2 · ∇xf − ∇xΦ1 · ∇vf, f ∈ C∞
c ({Φ1, Φ2 < ∞}).

Proof. The proof consists of the product rule for Sobolev functions and Proposition
2.5.

Corollary 2.7

The measure µΦ is invariant for (LΦ, C∞
c ({Φ1, Φ2 < ∞})), i.e., LΦf is integrable w.r.t.
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µΦ for all f ∈ C∞
c ({Φ1, Φ2 < ∞}) and it holds

∫

R2d

LΦf dµΦ = 0. (2.2)

In particular, (LΦ, C∞
c ({Φ1, Φ2 < ∞})) is closable and its closure (LΦ,p, D(LΦ,p)) is dis-

sipative on Lp(R2d, µΦ) for every p ∈ [1, 2].

Proof. For f ∈ C∞
c ({Φ1, Φ2 < ∞}) one chooses a cut off function η ∈ C∞

c ({Φ1, Φ2 <

∞}), s.t. η = 1 on supp(f) and uses the decomposition from Proposition 2.6. But
Sη, Aη vanish on supp(f) which implies (2.2). The dissipativity follows by [8, Lemma
1.8, App. B].

2.1 M-Dissipativity for locally Lipschitz continuous Φ1 on

L2(R2d, µΦ)

Throughout this first part we assume that Φ1 and Φ2 fulfill (Φ11) and (Φ21) − (Φ25),
respectively. In particular, it holds {Φ1 < ∞} = Rd.

Proposition 2.8

Let (L, D) be a densely defined operator on a Hilbert space H. Furthermore L is assumed
to be symmetric and negative definite. If (L, D) is essentially self-adjoint, then (L, D)
is essentially m-dissipative.

Proof. Since (L, D) is negative definite its closure
(

L̄, D(L̄)
)

is dissipative, implying that

1 − L̄ is injective. By assumption it holds R(1 − L̄)⊥ = N (1 − L̄) = {0}.

Theorem 2.9

Assume (Φ11) and (Φ21)− (Φ25). Then the operator (LΦ, C∞
c ({Φ2 < ∞})) is essentially

m-dissipative on HΦ. The strongly continuous contraction semigroup
(

T Φ

t

)

t≥0
generated

by the closure of (LΦ, C∞
c ({Φ2 < ∞})) is sub-Markovian.

Proof. This proof is based on the idea of the proof of [6, Thm. 2.1]. In the first part
Φ1 is considered to be globally Lipschitz continuous with Lipschitz constant CΦ1. The
second part treats the general case. Throughout the first part of the proof all function
spaces consist of complex valued functions. Observe that those spaces are isometric to
the complexification of the real valued function spaces. Furthermore, LΦ leaves the real
valued functions invariant. Hence, we show that the complexified operator is essentially
m-dissipative, this proves the theorem for the real cases.
1st part:

The basic idea is to use the unitary transformation

U : L2(R2d, µΦ) −→ L2({Φ2 < ∞}), f 7→ exp (−Φ1 + Φ2

2
)f. (2.3)
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Formally (LΦ, C∞
c ({Φ2 < ∞})) transforms under U into the operator

L = ULΦU∗ = ∆v +
∆vΦ2

2
− |∇vΦ2|2

4
+ ∇vΦ2 · ∇x − ∇xΦ1 · ∇v. (2.4)

In the following we prove essential m-dissipativity of L on a suitable chosen domain D.
Afterwards we make the transformation in (2.4) rigorous. Assumption (Φ24) gives us the
negative definite and essentially self-adjoint operator (∆ − ∇Φ2 · ∇, C∞

c ({Φ2 < ∞})) on
L2(Rd, µΦ2). Proposition 2.8 implies that (∆ − ∇Φ2 · ∇, C∞

c ({Φ2 < ∞})) is essentially
m-dissipative on L2(Rd, µΦ2). Consider the unitary transformation

UΦ2 : L2(Rd, µΦ2) −→ L2({Φ2 < ∞}), g 7→ exp (−1

2
Φ2)g. (2.5)

Since unitary transformations preserve essential m-dissipativity we have that

L0 = UΦ2(∆ − ∇Φ2 · ∇)U∗
Φ2

(2.6)

defined on UΦ2C∞
c ({Φ2 < ∞}) is an essentially m-dissipative operator on L2({Φ2 < ∞}).

Let g ∈ C∞
c ({Φ2 < ∞}) and f = UΦ2g. In the following the differential operators ∆ and

∇ are understood in the distributional sense. Then it holds

∆f = ∆(UΦ2g) = ∆g exp(−1

2
Φ2) + 2∇

(

exp(−1

2
Φ2)

)

· ∇g + g∆ exp(−1

2
Φ2). (2.7)

Proposition 2.5 and (2.7) lead to

L2({Φ2 < ∞}) ∋ L0f = UΦ2(∆ − ∇Φ2 · ∇)g (2.8)

= ∆g exp(−1

2
Φ2) + 2∇

(

exp(−1

2
Φ2)

)

· ∇g

= ∆f − g∆ exp(−1

2
Φ2) (2.9)

Due to the Assumptions in (Φ23) and an approximation procedure as in the proof of

Proposition 2.5 one has ∆ exp(−1
2
Φ2) = −

(
∆Φ2

2
− |∇Φ2|2

4

)

exp(−1
2
Φ2), which gives in

(2.9)

L0f = ∆f +

(

∆Φ2

2
− |∇Φ2|2

4

)

f, for all f ∈ UΦ2C∞
c ({Φ2 < ∞}). (2.10)

Note: The single summands |∇Φ2|2 f and ∆Φ2f in (2.10) are not necessarily in L2({Φ2 <

∞}). Anyways, L0f is an element of L2({Φ2 < ∞}) which can be seen by (2.8). Never-
theless, (2.10) is a suitable representation of L0f . Furthermore, L0 is still symmetric and
negative definite because we obtained L0 from a unitary transformation of a symmetric
and negative definite operator.
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So far we only worked on the velocity component. To take the position variable x into
into account we define a new domain D0 ⊆ L2({Φ2 < ∞}, )

D0 := L2
c(Rd) ⊗ UΦ2C∞

c ({Φ2 < ∞})

:= span
{

R2d ∋ (x, v) 7→ f(x)g(v) | f ∈ L2
c(R

d), g ∈ UΦ2C∞
c ({Φ2 < ∞})

}

(2.11)

where L2
c(Rd) denotes the subspace of L2(Rd) with elements vanishing almost everywhere

outside a bounded set. For f = h ⊗ g ∈ D0 we set L′
0f := h ⊗ L0g = ∆vf − |∇vΦ2|2

4
f +

∆vΦ2

2
f. We extend L′

0 linearly to D0. In the following we denote the norm and inner
product of L2({Φ2 < ∞}) by ‖·‖ and (·, ·), respectively. Let’s make some observations
on (L′

0, D0):

(i) (L′
0, D0) is symmetric, negative definite and densely defined.

(ii) (L′
0, D0) is essentially m-dissipative.

We perturb L′
0 with the multiplication operator (B0, D0) given by the measurable func-

tion

i∇vΦ2 · x : {Φ2 < ∞} −→ C, (x, v) 7→ i∇vΦ2(x, v) · x := i
d∑

l=1

∂lΦ2(v)xl.

Since ∇vΦ2 · x is real valued it follows that B0 is antisymmetric, in particular, (B0, D0)
is dissipative. We consider the complete orthogonal family of projections (Pk)k∈N given
by

Pk : L2({Φ2 < ∞}) −→ L2({Φ2 < ∞}), f 7→ gkf,

where gk(x, v) = 1[k−1,k](|x|2), k ∈ N. Obviously each Pk maps D0 into itself and L′
0 as

well as B0 commute with each Pk on D0. In order to apply [5, Lemma 3] we need to
show that Bk

0 := PkB0 is Lk := PkL′
0 bounded with Lk-bound less then one. By the

Cauchy-Schwarz inequality and the definition of Pk we have

|∇vΦ2 · x|2 |f |2 ≤ k2 |∇vΦ2|2 |f |2 , for f ∈ PkD0. (2.12)

Hence, it suffices to show that ‖|∇vΦ2| f‖2 ≤ a(L′
0f, f) + b ‖f‖2 holds for some finite

constants a, b independent of f ∈ PkD0. Therefore, let f ∈ D0 and observe that −∆v is
positive definite on D0 and ∆vΦ2f ∈ L2({Φ2 < ∞}) due to assumption (Φ23). Due to
the assumptions on f and Φ2 it holds

‖|∇vΦ2| f‖2 ≤ 4

(

−
(

∆v − |∇vΦ2|2
4

+
∆vΦ2

2

)

f, f

)

+ 2(∆vΦ2f, f) (2.13)

with both summands on the right-hand side being finite. Let K > 0 and 1 ≤ α < 2 be
the constants from assumption (Φ25). Then we have the following estimate for the last



2.1 M-Dissipativity for locally Lipschitz continuous Φ1 on L2(R2d, µΦ) 10

term in (2.13)

(∆vΦ2f, f) ≤ K




‖f‖2 +

∫

{Φ2<∞}

|∇vΦ2|α |f |2 d(x, v)




 (2.14)

Hölder’s and Young’s inequality imply for the last integral on the right hand side of
(2.14) for p = 2

α
, q = 2

2−α

(|∇vΦ2|α f, f) ≤ 1

4K
‖|∇vΦ2| f‖2 +

(2 − α)(2αK)
α

2−α

2
‖f‖2

. (2.15)

Consequently, for f ∈ D0 the inequality (2.13) becomes

‖|∇vΦ2| f‖2 ≤ 8(−L′
0f, f) + C ‖f‖2

, (2.16)

with C = 4K(1 + (2−α)(2αK)
α

2−α

2
). Since (2.16) holds we conclude that |∇vΦ2| Pk is

Lk bounded with Lk-bound zero and so is Bk
0 for each k ∈ N. Now we are able to

apply [5, Lemma 3] implying essential m-dissipativity of

(L′, D0) := (L′
0 + B0, D0) =

(

∆v − |∇vΦ2|2
4

+
∆vΦ2

2
+ i∇vΦ2 · x, D0

)

. (2.17)

Note: The estimates (2.13),(2.14),(2.15) and (2.16) also hold for f in the bigger space
L2(Rd) ⊗ UΦ2C∞

c ({Φ2 < ∞}).
The set D1 = C∞

c (Rd) ⊗ UΦ2C∞
c ({Φ2 < ∞}) (analogue definition as for D0) forms

a core for the closure of (L′, D0), hence, (L′, D1) is essentially m-dissipative, too. The
extension of (L′, D1) to D2 = S(Rd) ⊗ UΦ2C∞

c ({Φ2 < ∞}) is still dissipative, hence the
closure of (L′, D2) is a dissipative extension of the closure of (L′, D1) and therefore their
closures coincide by [11, Chapter 1, Remark 3.8], i.e.,

(

L′, S(Rd) ⊗ UΦ2C∞
c ({Φ2 < ∞})

)

is essentially m-dissipative. (2.18)

Denote by F the Fourier transform on L2(Rd). Recall the well-knonwn property of F :

F−1(xsf) = (−i)|s|∂s(F−1f), for f ∈ S(Rd) and s ∈ Nd
0. (2.19)

Let f = f1 ⊗ f2 ∈ D2. Define Fxf := Ff1 ⊗ f2 and extend Fx linearly to D2 and
afterwards to a unitary transformation on L2 ({Φ2 < ∞}) (similarly as one does for F)
which we also denote by Fx. Fx leaves the set D2 invariant, because S(Rd) is invariant
under F . Using the identity (2.19) one obtains

L̃f = F−1
x L′Fxf =

(

∆v +
∆vΦ2

2
− |∇vΦ2|2

4
+ ∇vΦ2 · ∇x

)

f, f ∈ D2. (2.20)
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We perturb L̃ with the antisymmetric operator (B1, D2) given by B1f =
∑d

i=1 ∂xi
Φ1∂vi

f ,
f ∈ D2. Since Φ1 is Lipschitz continuous (B1, D2) is well-defined. As in the derivation
of (2.16) we obtain finite constants C1 and C2 such that

‖B1f‖ = ‖∇xΦ1 · ∇vf‖2 ≤ C2
Φ1

d∑

i=1

(∂vi
f, ∂vi

f) = C2
Φ1

(−∆vf, f)

≤ C1(−L′
0f, f) + C2 ‖f‖2

. (2.21)

Since (L′
0, D2) is symmetric it holds that (L′

0f, f) ∈ R, for f ∈ D2. Let A be an
arbitrary antisymmetric linear operator on D2. In particular, for f ∈ D2 it holds that
(Af, f) ∈ iR. Hence one obtains

(−L′
0f, f) ≤

∣
∣
∣
∣
∣
∣
∣

(−L′
0f, f)

︸ ︷︷ ︸

∈R

+ (Af, f)
︸ ︷︷ ︸

∈iR

∣
∣
∣
∣
∣
∣
∣

. (2.22)

Applying the inequality (2.22) for the choice A = −∇vΦ2 · ∇x to (2.21) one concludes

‖∇xΦ1 · ∇vf‖2 ≤ C1

∣
∣
∣(−L̃f, f)

∣
∣
∣+ C2 ‖f‖2

. (2.23)

By [7, Chapter 3.1, Lemma 3.9] we deduce that

L = L̃ − ∇xΦ1 · ∇v = ∆v − |∇vΦ2|2
4

+
∆vΦ2

2
+ ∇vΦ2 · ∇x − ∇xΦ1 · ∇v

defined on D2 is essentially m-dissipative on L2({Φ2 < ∞}).
We apply (2.22) with A = −∇vΦ2 · ∇x + ∇xΦ1 · ∇v to extend (2.16) for L instead of

L′
0, i.e.,

‖|∇Φ2| f‖2 ≤ r |(Lf, f)| + M ‖f‖2
, f ∈ D2, (2.24)

for finite constants r, M . We restrict L to D1 and observe that essential m-dissipativity
is preserved, since C∞

c (Rd) is dense in S(Rd) (w.r.t. the Schwartz space topology on
S(Rd)). Now we transform via the adjoint of unitary map from (2.3), i.e.,

U∗ : L2({Φ2 < ∞}) −→ L2(R2d, µΦ), f 7→ e
Φ1+Φ2

2 f̃ , (2.25)

where f̃ = 1{Φ2<∞}f . For f = f1 ⊗ f2 ∈ D1 one has U∗f = e
Φ1
2 f1 ⊗ e

Φ2
2 f2. Denote by

U∗
Φ1

the unitary map U∗
Φ1

: L2(Rd) −→ L2(Rd, µΦ1), f 7→ e
Φ1
2 f. Due to (2.6), (2.10), the

product rule for Sobolev functions and Proposition 2.5, it holds that U∗ transforms L

back into LΦ, i.e., we obtain the essentially m-dissipative operator

(U∗LU, U∗D1) =
(

LΦ, U∗
Φ1

C∞
c (Rd) ⊗ C∞

c ({Φ2 < ∞})
)

. (2.26)
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For f ∈ U∗
Φ1

C∞
c (Rd) ⊗ C∞

c ({Φ2 < ∞}) it holds Uf ∈ D1 and hence through (2.24) we
obtain

‖|∇vΦ2| f‖2
µΦ

= ‖|∇vΦ2| Uf‖2 ≤ r |(−LUf, Uf)| + M ‖Uf‖2

= r |(−LΦf, f)µΦ
| + M ‖f‖2

µΦ
. (2.27)

The lemma of Fatou guarantees that (2.27) also holds for f from the closure of (2.26).
To finish the first part we show that C∞

c (Rd) ⊗ C∞
c ({Φ2 < ∞}) is a domain of essential

m-dissipativity for LΦ. Since (LΦ, C∞
c (Rd)⊗C∞

c ({Φ2 < ∞})) is dissipative by Corollary
2.7 it suffices due to the essential m-dissipativity of (2.26) and [11, Chapter 1, Remark
3.8] to show that the closure of (LΦ, C∞

c (Rd)⊗C∞
c ({Φ2 < ∞})) is an extension of (2.26).

To this end let f = f 1 ⊗ f 2 ∈ U∗
Φ1

C∞
c (Rd) ⊗ C∞

c ({Φ2 < ∞}). Observe that U∗
Φ1

C∞
c (Rd)

is by Proposition 2.5 a subset of H1,2(Rd). Choose a sequence (f 1
n)n∈N from C∞

c (Rd)
such that f 1

n −→ f 1 in H1,2(Rd) and supp(f 1
n) ⊆ K, K ⊆ Rd compact and independent

of n which is possible since f 1 is already compactly supported. For fn := f 1
n ⊗f 2, n ∈ N,

it holds by construction and the fact that the density e−Φ1−Φ2 of µΦ is locally bounded
that fn −→ f , LΦfn −→ LΦf and |∇vΦ2| fn −→ |∇vΦ2| f in HΦ as n → ∞. This shows
that C∞

c (Rd) ⊗ C∞
c ({Φ2 < ∞}) is a core for the closure of (2.26).

2nd part:

Let Φ1 be locally Lipschitz continuous. Dissipativity is due to Corollary 2.7. To prove
m-dissipativity we show that (1 − LΦ)C∞

c ({Φ2 < ∞}) is dense. Since C∞
c ({Φ2 < ∞})

is dense it suffices to approximate 0 6= g ∈ C∞
c ({Φ2 < ∞}). Let f ∈ C∞

c ({Φ2 < ∞})
be arbitrary and ǫ > 0. By the compactness of the support of g we can choose cut off
functions χ, ν ∈ C∞

c (Rd) such that the functions defined by χ(x, v) = χ(x), ν(x, v) =
ν(x) fulfil the properties 0 ≤ χ ≤ ν ≤ 1, χ ≡ 1 on supp(g), ν ≡ 1 on supp(χ). It holds
that LΦ(χf) = χLΦf +f∇vΦ2 ·∇xχ since ∇vχ = 0. By the choice of ν and χ we obtain

‖(1 − LΦ)(χf) − g‖µΦ
≤
∥
∥
∥(1 − L(νΦ1,Φ2))f − g

∥
∥
∥

µ(νΦ1+Φ2)

+ ‖f |∇vΦ2|‖µ(νΦ1+Φ2)

d∑

i=1

‖∂iχ‖∞

(2.28)
Since νΦ1 is globally Lipschitz continuous we can use the first part and therein the
inequality (2.27) to estimate the last term in (2.28) by

‖f |∇Φ2|‖µ(νΦ1,Φ2)
≤ C

(∥
∥
∥(1 − L(νΦ1,Φ2))f

∥
∥
∥

µ(νΦ1+Φ2)

+ ‖f‖µνΦ1+Φ2

)

(2.29a)

for some positive, finite constant C. Since LνΦ1,Φ2 is dissipative it holds

(f, f)µ(νΦ1+Φ2)
≤
∣
∣
∣((1 − L(νΦ1,Φ2))f, f)µ(νΦ1+Φ2)

∣
∣
∣ ≤ ‖f‖µ(νΦ1+Φ2)

∥
∥
∥(1 − L(νΦ1,Φ2))f

∥
∥
∥

µ(νΦ1+Φ2)

.

(2.29b)
Now, (2.29a) and (2.29b) imply

‖f |∇Φ2|‖µ(νΦ1+Φ2)

d∑

i=1

‖∂iχ‖∞ ≤ 2C

(∥
∥
∥(1 − L(νΦ1,Φ2))f

∥
∥
∥

µ(νΦ1+Φ2)

) d∑

i=1

‖∂iχ‖∞ . (2.30)
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The inequality (2.28) becomes

‖(1 − LΦ)(χf) − g‖µΦ
≤
∥
∥
∥(1 − L(νΦ1,Φ2))f − g

∥
∥
∥

µ(νΦ1+Φ2)

+ 2C

(
∥
∥
∥(1 − L(νΦ1,Φ2))f

∥
∥
∥

µ(νΦ+Φ2)

)
d∑

i=1

‖∂iχ‖∞

≤
∥
∥
∥(1 − L(νΦ1,Φ2))f − g

∥
∥
∥

µ(νΦ1+Φ2)

+ 2C(
∥
∥
∥(1 − L(νΦ1,Φ2))f − g

∥
∥
∥

µ(νΦ1+Φ2)

+ ‖g‖µ(νΦ1+Φ2)
)

d∑

i=1

‖∂iχ‖∞

Now we specify our choice of χ. Let χ be chosen in such a way that
∑d

i=1 ‖∂iχ‖∞ ≤
ǫ

8C‖g‖µΦ

. Now χ, ν are fixed. By the first part of the proof we know that LνΦ1+Φ2 is

essentially m-dissipative. Therefore we can choose an element f ∈ C∞
c ({Φ2 < ∞}) such

that ‖(1 − LνΦ1,Φ2)f − g‖
µνΦ1+Φ2

< inf{ ǫ
2
, ‖g‖µνΦ1+Φ2

} and we finally obtain

‖(1 − LΦ)(χf) − g‖µΦ
< ǫ.

So far we showed that the closure (LΦ, D(LΦ)) of (LΦ, C∞
c ({Φ2 < ∞}) is the generator

of a strongly continuous semigroup of contractions
(

T Φ

t

)

t≥0
. The Dirichlet property (see

[17, Definition I.4.1] for the definition) of (LΦ, D(LΦ)) follows by [8, Lemma 1.9, App.

B] and hence by [17, Proposition I.4.3] the semigroup
(

T Φ

t

)

t≥0
is sub-Markovian.

Remark 2.10

From the proof of Theorem 2.9 one sees that the condition (Φ25) can also be extended to
α = 2 and 0 ≤ K < 1

2
.

Recalling the decomposition from Proposition 2.6 we obtain that for the adjoint(

L̂Φ, D(L̂Φ)
)

of (LΦ, D(LΦ)) it holds

C∞
c ({Φ2 < ∞}) ⊆ D(L̂Φ), L̂Φf = Sf − Af, f ∈ C∞

c ({Φ2 < ∞}). (2.31)

For a symmetric velocity potential Φ2, i.e., Φ2(v) = Φ2(−v), ∀v ∈ Rd, we can use the
velocity reversal as in [4, p. 153] , i.e., the unitary transformation on HΦ given by

U : HΦ −→ HΦ, [f ] 7→ [(x, v) 7→ f(x, −v)] (2.32)

to transform (LΦ, C∞
c ({Φ2 < ∞}) into the operator (ULΦU, UC∞

c ({Φ2 < ∞}) =
(

L̂Φ, C∞
c ({Φ2 < ∞})

)

. This implies that the latter is also an essential m-dissipative

operator. Hence, the closure of
(

L̂Φ, C∞
c ({Φ2 < ∞})

)

coincides with the adjoint of the

closure of (LΦ, C∞
c ({Φ2 < ∞}). Therefore, we assume in the following the additional

assumption:
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Assumption 2.11

(Φ26) Φ2 is symmetric, i.e., Φ2(v) = Φ2(−v), for all v ∈ Rd.

The next corollary recaps the previous discussion.

Corollary 2.12

Under the assumptions of Theorem 2.9 and the additional assumption (Φ26) the formal
adjoint (L̂Φ, C∞

c ({Φ2 < ∞})) is also an essentially m-dissipative Dirichlet operator.
Furthermore, its closure coincides with the adjoint of (LΦ, D(LΦ)).

2.2 M-Dissipativity for singular Φ1 on L1(R2d, µΦ)

In this part we merely assume (Φ12) − (Φ14)q, q ∈ [2, ∞], for Φ1 and (Φ21) − (Φ26) for
Φ2. Observe that due to Corollary 2.7 the operator (LΦ, C∞

c ({Φ1, Φ2 < ∞})) is closable
on L1(R2d, µΦ) and its closure (LΦ,1, D(LΦ,1)) is dissipative. The next proposition is
taken from [6, Lemma 3.7]. We only state the parts which are necessary for our needs.

Proposition 2.13

The set C∞
c ({Φ2 < ∞}) is contained in D(LΦ,1) and for f ∈ C∞

c ({Φ2 < ∞}) it holds
LΦ,1f = LΦf .

Corollary 2.14

(LΦ, C∞
c ({Φ1, Φ2 < ∞})) is essentially m-dissipative on L1(R2d, µΦ) iff its extension

(LΦ, C∞
c ({Φ2 < ∞})) is.

The next lemma provides a sequence of smooth potentials (Φ1,n)n∈N approximating Φ1

in a suitable sense. See [6, Lemma 3.10] for the proof.

Lemma 2.15

Let Φ = Φ1 fulfill (Φ12), (Φ13), (Φ14)q. Then there exist smooth Φn = Φ1,n such that
Φn ≤ Φ and ∇Φn

n→∞−→ ∇Φ in L
q
loc(R

d, µΦ). Furthermore, the family (Φn)n∈N is uniformly
bounded from below.

In the following we assume additionally on Φ2:

Assumption 2.16

(Φ27) µΦ2 is a finite measure, i.e., µΦ2(R
d) =

∫

Rd e−Φ2 dv < ∞.

(Φ28) The measurable function |∇Φ2| is square integrable w.r.t. µΦ2, i.e.,
∫

Rd |∇Φ2|2 dµΦ2 =
∫

Rd |∇Φ2|2 e−Φ2 dv < ∞.
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Theorem 2.17

Assume (Φ12)−(Φ14)q and (Φ21)−(Φ28). Additionally one of the following assumptions
are assumed.

1. µΦ is a finite measure.

2. (Φ14)q holds for q > d.

Then the operator (LΦ,1, D(LΦ,1)) generates a strongly continuous contraction semigroup
(

T Φ

t,1

)

t≥0
on L1(R2d, µΦ). Furthermore, this semigroup is sub-Markovian.

Proof. Together with Theorem 2.9, Corollary 2.14 and Lemma 2.15 we provided all
prerequisites to apply the proof of [6, Theorem 3.11]. The sub-Markovian property of
(

T Φ

t,1

)

t≥0
holds due to [8, Appendix B, Lemma 1.9].

Observe that the velocity reversal U from (2.32) is also a bijective isometry on the

space L1(R2d, µΦ). Hence, the closure of the formal adjoint
(

L̂Φ, C∞
c ({Φ1, Φ2 < ∞})

)

in L1(R2d, µΦ) is the generator of a sub-Markovian stongly continuous contraction semi-

group
(

T̂ Φ

t,1

)

t≥0
on L1(R2d, µΦ). The two semigroups

(

T Φ

t,1

)

t≥0
and

(

T̂ Φ

t,1

)

t≥0
give rise to

contraction semigroups
(

T Φ

t,p

)

t≥0
and

(

T̂ Φ

t,p

)

t≥0
on Lp(R2d, µΦ) for every p ∈ [1, ∞] which

are also strongly continuous for p ∈ [1, ∞). These semigroups coincide with
(

T Φ

t,1

)

t≥0
and

(

T̂ Φ

t,1

)

t≥0
on L1(R2d, µΦ) ∩ L∞(R2d, µΦ), respectively (see [4, Lemma 1.3.11] for details).

Lemma 2.18

Let the assumptions of Theorem 2.17 hold true. Furthermore, let p ∈ [1, ∞).

(i) The generator (LΦ,p, D(LΦ,p)) of
(

T Φ

t,p

)

t≥0
is given by the closure of (LΦ,1, D(LΦ)p)

in Lp(R2d, µΦ), where D(LΦ)p =
{

f ∈ D(LΦ,1) | f, LΦ,1f ∈ Lp(R2d, µΦ)
}

. In par-

ticular, for f ∈ D(LΦ)p it holds LΦ,pf = LΦ,1f .

(ii) The contraction semigroups
(

T Φ

t,
p

p−1

)

t≥0
and

(

T̂ Φ

t,
p

p−1

)

t≥0
are the adjoints of

(

T̂ Φ

t,p

)

t≥0

and
(

T Φ

t,p

)

t≥0
, respectively.

(iii) The semigroup
(

T Φ

t,∞

)

t≥0
is conservative and µΦ is invariant for

(

T Φ

t,1

)

t≥0
, i.e.,

T Φ

t,∞1 = 1 for all t ≥ 0 and
∫

R2d T Φ

t,1f dµΦ =
∫

R2d f dµΦ, ∀f ∈ L1(R2d, µΦ), t ≥ 0.

The same statements also hold for
(

T̂ Φ

t,∞

)

t≥0
and

(

T̂ Φ

t,1

)

t≥0
, respectively.

Proof. For part (i) see [4, Lemma 1.3.11], (ii) works analog as in [6, Lemma 3.16].

We prove part (iii): The invariance of µΦ for
(

T Φ

t,1

)

t≥0
holds by Corollary 2.7, i.e.,

∫

R2d LΦ,1f dµΦ = 0, for all f ∈ D(LΦ,1). The same argument proves invariance of
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µΦ for
(

T̂ Φ

t,1

)

t≥0
. The conservativeness follows by (ii) and the invariance of µΦ for

(

T̂ Φ

t,1

)

t≥0
and

(

T Φ

t,1

)

t≥0
.

3 Existence of Martingale solutions for (LΦ,2, D(LΦ,2))

In this section we use the results of [6, Section 3.4] to state the existence martingale
solutions for operator (LΦ,2, D(LΦ,2)), see Theorem 3.1 for the precise statement. The
core is the result [2, Theorem 1.1] which provides a µΦ−standard right process which
is associated in the resolvent sense with (LΦ,1, D(LΦ,1)), see also the last mentioned
reference for the definition of a µΦ−standard right process. Theorem 3.1 isn’t stated in
its full generality as in [6, Theorem 3.1.(iii)]. We restrict ourselves to the cases necessary
for the applications in mind from section 6. The proof is completely analog to the one
in [6] and is therefore omitted.
Throughout this paper the spaces of continuous functions C ([0, T ], E), C ([0, ∞), E),
where (E, m) is a metric space and T ∈ N, are always equipped with the topologies of
uniform convergence on compact sets and the respective Borel σ−algebras.

Theorem 3.1

Assume (Φ12)−(Φ14)2, (Φ15), (Φ16), (Φ21)−(Φ28). Let 0 ≤ h ∈ L1(R2d, µΦ)∩L2(R2d, µΦ)
be a probability density w.r.t. µΦ. Denote by 〈·, ·〉µΦ

the dual pairing between L1(R2d, µΦ)
and L∞(R2d, µΦ). There exists a probability law PhµΦ

with initial distribution hµΦ on

C([0, ∞), {Φ1, Φ2 < ∞}) which is associated with the semigroup
(

T Φ

t,1

)

t≥0
, i.e., for all

f1, ..., fk ∈ L∞(R2d, µΦ) and 0 ≤ t1 < ... < tk, k ∈ N, it holds

E

[
k∏

i=0

fi(Xti
, Vti

)

]

= 〈h, T Φ

t1,∞(f1T
Φ

t2−t1,∞(f2...T
Φ

tk−1−tk−2,∞(fk−1T
Φ

tk−tk−1,∞fk)...))〉µΦ
.

(3.1)
In particular, PhµΦ

solves the martingale problem for the generator (LΦ,2, D(LΦ,2)) of
(

T Φ

t,2

)

t≥0
, i.e., denote by (Xt, Vt)t≥0 the coordinate process on C([0, ∞), {Φ1, Φ2 < ∞}).

Then for f ∈ D(LΦ,2) the process (M
[f ]
t )t≥0 defined by

M
[f ]
t := f(Xt, Vt) − f(X0, V0) −

∫

[0,t]
LΦ,2f(Xs, Vs) ds, t ≥ 0, (3.2)

is a martingale w.r.t. the filtration (Ft)t≥0, Ft = σ ((Xs, Vs) | 0 ≤ s ≤ t), and PhµΦ
.

Additionally, if f 2 ∈ D(LΦ,2) and LΦ,2f ∈ L4(R2d, µΦ) then the process (N
[f ]
t )t≥0 defined

by

N
[f ]
t :=

(

M
[f ]
t

)2 −
∫

[0,t]
LΦ,2(f

2)(Xs, Vs) − 2(fLΦ,2f)(Xs, Vs) ds, t ≥ 0, (3.3)

is also a martingale w.r.t. PhµΦ
and the filtration (Ft)t≥0.
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Remark 3.2

(i) Recall the situation of Theorem 3.1. For f ∈ D(L
(2)
Φ

) and 0 ≤ t ≤ T < ∞ the
random variables in (3.2) are well-defined, i.e., PhµΦ

-a.s. independent of the µΦ

representative of f and LΦ,2f , see [6][Lemma 5.1] for details. In particular it holds

∥
∥
∥
∥
∥

∫

[0,T ]
|LΦ,2f | (Xs, Vs) ds

∥
∥
∥
∥
∥

L2(PhµΦ
)

≤ T ‖h‖L2(E,µ) ‖LΦ,2f‖
L2(E,µ) .

Hence,
∫

[0,T ] |LΦf | (Xs, Vs) ds is finite PhµΦ
-a.s.. On the negligible event

⋃

T ∈N

{
∫

[0,T ]
|LΦ,2f | (Xs, Vs) ds = ∞

}

we modify
∫

[0,t] LΦ,2f(Xs, Vs) ds to be zero for all t ≥ 0 to obtain a continuous

version of the process
(∫

[0,t] LΦ,2f(Xs, Vs) ds
)

t≥0
. Hence, in the following we may

assume that for continuous f the process (M
[f ]
t )t≥0 has continuous paths.

(ii) The results from the previous Theorem also hold for the formal adjoint L̂Φ, i.e.,
for h as in Theorem 3.1 there exists a law P̂hµΦ

on C([0, ∞), {Φ1, Φ2 < ∞}) with

initial distribution hµΦ which is associated with
(

T̂ Φ

t,1

)

t≥0
in the sense of (3.1),

see [6, Remark 3.3.]. We use this fact later in the proof of Theorem 6.8.

4 Limit operator and limit process

This section consists of a brief summary of the functional analytic objects related to the
overdamped Langevin equation (1.3) and the construction of martingale solutions for its
generator. Denote by (Bt)t≥o a Brownian motion and recall the overdamped equation
(1.3)

dX0
t = −∇Φ1(X0

t )dt +
√

2dBt. (4.1)

The generator of (4.1) is given through

LΦ1f = ∆f − ∇Φ1 · ∇f, f ∈ C∞
c ({Φ1 < ∞}). (4.2)

Recall the measure µΦ1 on
(

Rd, B(Rd)
)

according to Notation 2.1. Assuming (Φ12) −
(Φ14)2 one can use Proposition 2.5 to check that the operator (LΦ1 , C∞

c ({Φ1 < ∞}))
is symmetric and negative definite on the Hilbert space HΦ1 = L2(Rd, µΦ1), hence,
closable. In particular, one can prove as in Corollary 2.7

∫

Rd LΦ1fdµΦ1 = 0 for all
f ∈ C∞

c ({Φ1 < ∞}). We make additional assumptions on Φ1.
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Assumption 4.1

(Φ15) The operator (LΦ1 , C∞
c ({Φ1 < ∞})) is closable and its closure is the

generator of a strongly continuous contraction semigroup
(

T Φ1
t,2

)

t≥0
on HΦ1.

(Φ16) µΦ1 is a finite measure, i.e., µΦ1(R
d) =

∫

Rd e−Φ1dx < ∞.

Remark 4.2

The assumption (Φ15) still allows singular potentials Φ1. A very detailed discussion,
including handy sufficient conditions and examples can be found in [6, Section 4.2,4.3].

Theorem 4.3

Assume (Φ12), (Φ14)2, (Φ15), (Φ16). Then the bilinear form (EΦ1 , C∞
c ({Φ1 < ∞})) is

closable and its closure (EΦ1, D(EΦ1)) is a symmetric, quasi-regular Dirichlet form. Hence,
there exists a µΦ1-tight special standard process

MΦ1 =
(

Ω, F , (Ft)t≥0, (Xt)t≥0, (Px)x∈{Φ1<∞}∆

)

which is properly associated with (EΦ1, D(EΦ1)) in the resolvent sense. For each proba-
bility distribution ν on {Φ1 < ∞} being absolutely continuous w.r.t. µΦ1 define the law
Pν(·) =

∫

{Φ1<∞} Px(·)dν(x). Then Pν-a.s. the paths are continuous and have infinite
life-time.

Proof. Under the assumptions (Φ12), (Φ14)2 one obtains

EΦ1(f, g) = −(LΦ1f, g)HΦ1
, f, g ∈ C∞

c ({Φ1 < ∞}). (4.3)

Hence, the form (EΦ1, C∞
c ({Φ1 < ∞})) is closable by [17, Proposition I.3.3.]. The

quasi-regularity of (EΦ1, D(EΦ1)) holds by assumption (Φ15) and [17, IV.4.a)]. The sub-

Markovian property of
(

T Φ1
t,2

)

t≥0
can be proven as in 2.9, i.e., one shows

∫

Rd LΦ1fdµΦ1 = 0

for all f ∈ C∞
c ({Φ1 < ∞}). Hence, [17, Theorem IV.3.5] provides the existence of MΦ1.

Denote by
(

T Φ1
t,1

)

t≥0
,
(

T Φ1
t,∞

)

t≥0
the semigroups on L1(Rd, µΦ1) and L∞(Rd, µΦ1), respec-

tively, induced by the symmetric sub-Markovian semigroups
(

T Φ1
t,2

)

t≥0
, see [4, Lemma

1.3.11.]. Denote by
(

L
(1)
Φ1

, D
(

L
(1)
Φ1

))

the generator of
(

T Φ1
t,1

)

t≥0
. Using [4, Lemma

1.3.11.(iii)] and assumption (Φ16) one easily proves
∫

Rd L
(1)
Φ1

fdµΦ1 = 0 for all f ∈
D
(

L
(1)
Φ1

)

. Hence, µΦ1 is an invariant measure for the semigroup
(

T Φ1
t,1

)

t≥0
. Conse-

quently, the semigroup
(

T Φ1
t,∞

)

t≥0
is conservative, see also the construction of

(

T Φ1
t,∞

)

t≥0

in [4, Lemma 1.3.11.]. The continuity statement follows immediately by [17, Theorem
V.1.11.].
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We obtain the analogous statement as in Theorem 3.1.

Corollary 4.4

Let h ∈ L1(Rd, µΦ1) ∩ L2(Rd, µΦ1) be a probability density w.r.t. µΦ1. Then there exists
a probability law PhµΦ1

on C([0, ∞), {Φ1 < ∞}) with initial distribution hµΦ1 which is

associated with the sub-Markovian strongly continuous contraction semigroup
(

T Φ1
t,2

)

t≥0

in the sense that for all f1, ..., fk ∈ L∞(Rd, µΦ1) and 0 ≤ t1 < ... < tk, k ∈ N, it holds

E

[
k∏

i=0

fi(Xti
)

]

= 〈h, T Φ1
t1,∞(f1T

Φ1
t2−t1,∞(f2...T

Φ1
tk−1−tk−2,∞(fk−1T

Φ1
tk−tk−1,∞fk)...))〉µΦ1

, (4.4)

where E denotes integration w.r.t. PhµΦ1
. In particular, the measure PhµΦ1

solves the
martingale problem for the generator (LΦ1 , D(LΦ1)).

Remark 4.5

1. One can prove stronger statements concerning life-time and continuity of the pro-
cess MΦ1. Since we only work in the following with laws PhµΦ1

as in Corollary 4.4
we restrict ourselves to the weaker statements.

2. In [14] and the references therein strong solutions even for time-dependent and
singular drifts of (1.3) are constructed. Under additional mild regularity assump-
tions on Φ1 we can show similar as below that weak solution can be constructed
from the measure PhµΦ1

by proving e.g. that the functions f(x) = xi, i = 1, ..., d

are contained in the domain D(LΦ1).

5 Velocity scaling and semigroup convergence

This section consists of a semigroup convergence result. For ε > 0 we define a scaled
velocity potential

Φε
2(·) = Φ2

( ·
ε

)

+ ln(εd). (5.1)

The constant ln(εd) doesn’t affect the generator and is only a renormalization constant.
The assumptions (Φ21) − (Φ27) hold true for Φε

2 since they hold true for Φ2. Similar
as before we write Φε = (Φ1, Φε

2). We denote by µε the measure µΦε. Hence, Theo-
rem 2.17 and Theorem 3.1 apply also for the operator (L1

Φε, C∞
c ({Φ1, Φε

2 < ∞})) defined

on L1(R2d, µε) and its closure is denoted by
(

L1
Φε,1, D(L1

Φε,1)
)

. Furthermore, we ob-

tain a strongly continuous contraction semigroups
(

T ε
t,2

)

t≥0
=
(

T Φ
ε

t,2

)

t≥0
on the Hilbert

space Hε = L2(R2d, µε), see Lemma 2.18 and its previous discussion. The generator
(

L1
Φε,2, D(L1

Φε,2)
)

of
(

T ε
t,2

)

t≥0
we abbreviate by (Lε, D(Lε)). Observe that (Lε, D(Lε)) is
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an extension of (L1
Φε , C∞

c ({Φ1, Φε
2 < ∞})) considered as an operator on Hε. Additionally

we denote by (T 0
t )t≥0 the semigroup

(

T Φ1
t

)

t≥0
on H0 := HΦ1 . In the following we show

convergence of the Hilbert spaces Hε towards the Hilbert space H0 from Section 4 in
the sense of Kuwae-Shioya, i.e., there exists a dense subset C of H0 and for every ε > 0
there exists a linear map

Ψε : C −→ Hε, (5.2)

such that
lim
ε→0

‖Ψε(u)‖Hε
= ‖u‖H0

, for all u ∈ C. (5.3)

If (5.3) holds we say that the family of Hilbert spaces (Hε)ε>0 converges to H0 along the

family (Ψε)ε>0 and we use the short hand notation Hε

(Ψε)ε>0−−−−→ H0. In this case we say

that fε ∈ Hε, ε > 0, converges to f ∈ H0 (Notation: fε −→ f along Hε

(Ψε)ε>0−−−−→ H0) if

‖fε‖Hε

ε→0−−→ ‖f‖H0
(5.4)

(fε, Ψε(ϕ))Hε

ε→0−−→ (f, ϕ)H0 for all ϕ ∈ C. (5.5)

Furthermore, we prove convergence of the semigroups
(

T ε
t,2

)

t≥0
, ε > 0, towards the

semigroup (T 0
t )t≥0 along Hε

(Ψε)ε>0−−−−→ H0, i.e., for all t ≥ 0 it holds

fε −→ f along Hε

(Ψε)ε>0−−−−→ H0 implies T ε
t,2fε −→ T 0

t,2f along Hε

(Ψε)ε>0−−−−→ H0. (5.6)

To this end, we assume that Φ1 and Φ2, respectively, fulfill the additional assumptions:

Assumption 5.1

(Φ17) The measurable function |∇Φ1| is square integrable w.r.t. µΦ1, i.e.,
∫

Rd |∇Φ1|2 dµΦ1 =
∫

Rd |∇Φ1|2 e−Φ1 dx < ∞.

Assumption 5.2

(Φ29) Φ2 has no singlarities, i.e., {Φ2 = ∞} = ∅.

Due to (Φ27) we can assume µΦ2(R
d) = 1. Furthermore, we define the following maps

px, pv, σ : R2d −→ Rd, where σ(x, v) = x + v, px(x, v) = x, pv(x, v) = v. Next we define
the maps Ψε from (5.2).

Definition 5.3

Let ε > 0 and choose a symmetric cut off function ηε ∈ C∞
c (Rd), s.t.

(i) ηε(v) = ηε(−v), for all v ∈ Rd, ηε ≡ 1 on Bε−2(0) and supp(ηε) ⊆ B2ε−2(0),
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(ii) |∇ηε| ≤ Cε2 and |∆ηε| ≤ Cε4, for a finite constant C independent of ε.

We choose C = C∞
c ({Φ1 < ∞}) and define the convergence determining function Ψε by

Ψε : C −→ Hε, f 7→ (f ◦ σ)(ηε ◦ pv). (5.7)

Due to Proposition 2.13 and Lemma 2.18(i) it holds Ψε(C) ⊆ C∞
c (R2d) ⊆ D(Lε).

Theorem 5.4

Assume (Φ12)−(Φ14)2, (Φ15), (Φ17), (Φ21)−(Φ29) and one of the additional assumptions
(i), (ii) of Theorem 2.17 to hold true. Then it holds, the family of Hilbert spaces (Hε)ε>0

converges along the family (Ψε)ε>0 defined in (5.7) towards the Hilbert space H0 as ε

tends to zero in the Kuwae-Shioya sense. Furthermore, the semigroups
(

T ε
t,2

)

t≥0
, ε > 0,

converge towards (T 0
t )t≥0 along Hε

(Ψε)ε>0−−−−→ H0, i.e., (5.6) holds.

Proof. We proceed as in [18, Proposition 3.21., Theorem 3.22.], where the special case
Φ2(v) = 1

2
|v|2 is considered. For sake of completeness we give a short proof. For f ∈ C

we have to show ‖Ψεf‖Hε

ε→0−−→ ‖f‖H0
. Using the symmetry of ηε and Φ2 together with

the transformation (x, v) 7→ (x, −v) we rewrite the norm using the convolution ∗, i.e.,

‖Ψεf‖2
ε =

∫

Rd
f 2 ∗ (η2

εe−Φε
2)(x)e−Φ1(x) dx. (5.8)

For αε :=
∫

Rd η2
εe−Φε

2(v) dv one can show αε
ε→0−→ 1, hence

(

α−1
ε η2

εe−Φε
2

)

ε>0
is an approx-

imate identity. Since f 2 ∈ L1(Rd) and e−Φ1 ∈ L∞(Rd) due to assumption (Φ12) the
Hölder inequality implies the desired result.

Next we prove convergence of the semigroups generated by (Lε, D(Lε)) in Hε. Re-
call that the limit semigroup (T 0

t )t≥0 has the closure of (LΦ1 , C∞
c ({Φ1 < ∞})) as its

generator. We use that semigroup convergence is equivalent to convergence of the gen-
erators and in particular it suffices to have convergence of the generators on a core for
the limit generator, i.e., we use [4, Theorem 1.5.13], [4, Corollary 1.5.14]. Hence for

f ∈ C = C∞
c ({Φ1 < ∞}) it suffices to show (LεΨεf)ε>0 −→ L0f along Hε

(Ψε)ε>0−−−−→ H0.
Let f : Rd −→ R be smooth and i ∈ {1, ..., d}. Observe that the function f ◦ σ ful-
fills ∂xi

(f ◦ σ) = ∂if ◦ σ = ∂vi
(f ◦ σ). We start with computing the expression LεΨεf

explicitly. According the previous observation we obtain

LεΨεf =(∆f ◦ σ)(ηε ◦ pv) + (f ◦ σ)(∆ηε ◦ pv) + 2(∇f ◦ σ) · (∇ηε ◦ pv)

− (∇vΦε
2 · (∇ηε ◦ pv)) (f ◦ σ) − (∇xΦ1 · (∇f ◦ σ))ηε ◦ pv

− (∇xΦ1 · (∇ηε ◦ pv)) (f ◦ σ). (5.9)

The aim is to establish that (5.9) converges along Hε

(Ψε)ε>0−−−−→ H0 towards

L0f =∆f − ∇Φ1 · ∇f. (5.10)
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Since convergence along Hε

(Ψε)ε>0−−−−→ H0 is linear (see [15, Lemma 2.1. (3)]) it suffices to
show convergence of the single summands in (5.9), i.e., one shows

1. (f ◦ σ)(∆ηε ◦ pv)






−→ 0

along Hε

(Ψε)ε>0−−−−→ H0.

2. (∇f ◦ σ) · (∇ηε ◦ pv)
3. (∇xΦ1 · (∇ηε ◦ pv)) (f ◦ σ)
4. (∇vΦε

2 · (∇ηε ◦ pv)) (f ◦ σ)
5. (∆f ◦ σ)(ηε ◦ pv) −→ ∆f

6. (∇xΦ1 · (∇f ◦ σ))(ηε ◦ pv) −→ ∇Φ1 · ∇f

To prove convergence in 1.-4. one checks that the respective norms of the elements
converge to zero, see [15, Lemma 2.1. (1)]. But this holds due to the choice of ηε and
a convolution argument as in (5.8). The statements in 5. and 6. are obtained by the
same convolution argument. Taking 1.-6. together we obtain

LεΨεf −→ L0f along Hε

(Ψε)ε>0−−−−→ H0, ∀f ∈ C∞
c ({Φ1 < ∞}) (5.11)

6 Convergence in law of weak solutions

Throughout this section let ε > 0 and hε ∈ Hε and h0 ∈ H0 be probability densities
w.r.t. µε and µ0 := µΦ1, respectively. Furthermore, let Phεµε

by the martingale so-

lution for
(

L1
Φε,2, D

(

L1
Φε,2

))

with initial distribution hεµε given by Theorem 3.1 and
Ph0µ0 be the measure from Corollary 4.4. The measures Phεµε

and Ph0µ0 are defined on

C
(

[0, ∞), {Φ1 < ∞} × Rd
)

and C ([0, ∞), {Φ1 < ∞}), respectively. In the following we

consider them as measures on C
(

[0, ∞),R2d
)

and C
(

[0, ∞),Rd
)

. Indeed, we consider
the continuous embeddings

i2d : C
(

[0, ∞), {Φ1 < ∞} × Rd
)

−→ C
(

[0, ∞),R2d
)

, ω 7→ ω,

id : C ([0, ∞), {Φ1 < ∞}) −→ C
(

[0, ∞),Rd
)

, ω 7→ ω.

We also denote by Phεµε
and Ph0µ0 the pushforwards Phεµε

◦ i−1
2d and Ph0µ0 ◦ i−1

d , respec-
tively, to ease the notation. Observe that these measures are still associated with the
respective semigroup. Additionally, we define the continuous coordinate projection

PX : C
(

[0, ∞),R2d
)

−→ C
(

[0, ∞),Rd
)

, (xt, vt)t≥0 7→ (xt)t≥0. (6.1)

In this section we prove weak convergence of PX
hεµε

:= Phεµε
◦ P −1

X towards Ph0µ0 for

ε → 0 as measures on C
(

[0, ∞),Rd
)

. At first, weak convergence of the finite dimensional

distributions (f.d.d.) is shown via the convergence of the associated semigroups
(

T ε
t,2

)

t≥0
,

i.e., Theorem 5.4. In a second step we prove tightness implying weak convergence.
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Theorem 6.1

Assume (Φ12) − (Φ14)2, (Φ15) − (Φ17) and (Φ21) − (Φ29). If hεµε converges weakly
to h0µ0 ⊗ δ0, where δ0 is the Dirac measure in zero on Rd, as measures on R2d and
supε>0 ‖hε‖L2(µε) < ∞ then the f.d.d. of PX

hεµε
converge weakly to the f.d.d. of Ph0µ0 as

ε → 0.

Proof. Let (Xt)t≥0 and (Xt, Vt)t≥0 be the coordinate processes on C
(

[0, ∞),Rd
)

and

C
(

[0, ∞),R2d
)

, respectively. Then it holds Xt ◦ PX = px ◦ (Xt, Vt) for all t ≥ 0.

Let 0 ≤ t1 < ... < tk, k ∈ N and define P
X,t1,...,tk

hεµε
:= PX

hεµε
◦ (Xt1 , ..., Xtk

)−1 and

P
t1,...,tk

h0µ0
:= Ph0µ0 ◦ (Xt1 , ..., Xtk

)−1. Additionally, let F : Rdk −→ R be of the form

F (x1, ..., xk) =
∏k

i=1 fi(xi), fi ∈ C∞
c (Rd), i = 1, ..., k. By the association of Phεµε

with
(

T Φ
ε

t,1

)

t≥0
and T ε

t,2 = T Φ
ε

t,∞ on L2(R2d, µε) ∩ L∞(R2d, µε) it holds

∫

Rdk
F dP

X,t1,...,tk

hεµε
=
∫

R2d
hε T ε

t1,2(f1 ◦ pxT ε
t2−t1,2(f2 ◦ px...T ε

tk−tk−1,2fk ◦ px))...)
︸ ︷︷ ︸

F
t1,...,tk
ε

dµε. (6.2)

Observe that for g ∈ C∞
c (Rd) the constant sequence g ◦ px ∈ Hε converges to g along

Hε

(Ψε)ε>0−−−−→ H0. Furthermore, for fε −→ f along Hε

(Ψε)ε>0−−−−→ H0 it holds (g◦px)fε −→ gf .
Applying Theorem 5.4 and the previous observations inductively we see that F t1,...,tk

ε con-

verges to F
t1,...,tk

0 := T 0
t1

(f1T 0
t2−t1

(f2...T 0
tk−tk−1

fk)...) along Hε

(Ψε)ε>0−−−−→ H0. Furthermore,

the densities hε converge weakly towards h0 along Hε

(Ψε)ε>0−−−−→ H0 by [20][Lemma 2.13].
We conclude

∫

Rdk
F dP

X,t1,...,tk

hεµε
=
(

hε, F t1,...,tk
ε

)

ε

ε→0−−→
(

h0, F
t1,...,tk

0

)

0
=
∫

Rdk
F dP

t1,...,tk

h0µ0
.

Since the functions F of this kind are strongly separating [9, Chapter 3, Theorem 4.5]
yields the claim.

To prove tightness we choose an appropriate metric m on our state space R2d inducing
the euclidean topology. Let i ∈ {1, .., d} and define the functions fi, gi in the following
way:

fi : R2d −→ R, (x, v) 7→ xi + vi, gi : R2d −→ R, (x, v) 7→ vi. (6.3)

Let the metric m on R2d be given by

m((x, v), (x̃, ṽ)) =
d∑

i=1

|fi((x, v)) − fi((x̃, ṽ))| + |gi((x, v)) − gi((x̃, ṽ))| . (6.4)

We need further assumptions on Φ1 and Φ2, respectively.
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Assumption 6.2

(Φ18)
∫

Rd |x|2k
e−Φ1 dx < ∞, k = 1, 2

(Φ19)
∫

Rd |∇Φ1|4 e−Φ1 dx < ∞.

Assumption 6.3

(Φ210)
∫

Rd |v|2k
e−Φ2 dv < ∞, k = 1, 2

(Φ211)
∫

Rd |∇Φ2|4 e−Φ2 dv < ∞.

Due to (Φ16) and (Φ27) the measure µΦ is finite, hence, w.l.o.g. we assume that µε is a
probability measure for all ε. For hε = 1 the measure µε is invariant for Pµε

for all ε > 0,
i.e., the one dimensional distributions of Pµε

are given by µε. Furthermore, the family

µε, 0 < ε ≤ 1, is tight. Denote by (L̂ε, D(L̂ε)) the generator of the adjoint semigroup
(

T̂ ε
t,2

)

t≥0
.

Lemma 6.4

Assume (Φ12), (Φ13), (Φ15)−(Φ19) and (Φ21)−(Φ27), (Φ29)−(Φ211). For the functions
fi, gi, i ∈ {1, .., d}, defined in (6.3) it holds fi, f 2

i , gi, g2
i ∈ D(Lε) ∩ D(L̂ε) and

Lεfi = −∂xi
Φ1, Lεf

2
i = 2 + 2fiLεfi (6.5)

Lεgi = −∂vi
Φε

2 − ∂xi
Φ1, Lεg

2
i = 2 + 2giLεgi, (6.6)

L̂εgi = −∂vi
Φε

2 + ∂xi
Φ1, L̂εg

2
i = 2 + 2giL̂εgi. (6.7)

Proof. Due to Proposition 2.13 and Lemma 2.18(i) we know that C∞
c (R2d) is contained

in D(Lε) ∩ D(L̂ε). The assertions follow using suitable cut off functions.

Remark 6.5

Observe that the assumptions of the previous lemma imply that the coordinate process
(Xt, Vt)t≥0 on C

(

[0, ∞),R2d
)

is a weak solution to (1.4a), (1.4b) for Φε
2 instead of Φ2

and ε = 1 with initial distributions hεµε under Phεµε
. Indeed, let i ∈ {1, ..., d}. Due

to Lemma 6.4 we know that the function gi is in D(Lε). By (3.3) we know that the

quadratic cross-variations of the continuous d−dimensional martingale
(

M
[gi],ε
t

)i=1,..,d

t≥0
is

given by 〈

M [gi],ε, M [gj ],ε
〉

t
= δijt,

where δij denotes the Kronecker delta. Using Lévy’s characterization of Brownian mo-

tion, we see that
(

M
[gi],ε
t

)i=1,..,d

t≥0
is

√
2 times a d−dimensional Brownian motion. Com-

puting the quadratic variation of
(

M
[fi−gi],ε
t

)i=1,..,d

t≥0
we obtain M

[fi−gi],ε
t = 0 for all t ≥ 0.
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Hence, by comparing (1.4a), (1.4b) with (3.2) for fi − gi and gi we constructed a
d−dimensional Brownian motion (Bt)t≥0 and a stochastic process (Xt, Vt)t≥0 such that
(1.4a), (1.4b) holds.

For T ∈ N and a metric space (E, r) we define the time restriction RT and time reversal
operator rT :

RT :C([0, ∞), E) −→ C([0, T ], E), ω 7→ ω|[0,T ]

rT :C([0, T ], E) −→ C([0, T ], E), ω 7→ ω(T − ·).
For a measure P on C([0, ∞), E) we define PT := P ◦ R−1

T . We need two additional
lemmata. Their proofs are elementary.

Lemma 6.6

Let (E, r) be a metric space, (Pn)n∈N be a family of Probability measures on C ([0, ∞), E)
and δ > 0. If KT ⊆ C ([0, T ], E) is a totally bounded set such that infn∈N P

T
n (KT ) > 1− δ

2T

for all T ∈ N. Then the set K =
⋂

T ∈N R−1
T KT is totally bounded in C ([0, ∞), E) and it

holds infn∈N Pn(K) > 1 − δ.

Lemma 6.7

Assume (E, T ) is a topological vector space, carrying the Borel σ-algebra. Let X i
n,

i = 1, 2 be a E−valued random variables on the probability space (Ωn, Fn,Pn), n ∈ N.
Assume that the families (Pn(X i

n ∈ ·))n∈N, i = 1, 2, are tight. Then also the family
(Pn(X1

n + X2
n ∈ ·))n∈N is tight.

Theorem 6.8

Assume (Φ12), (Φ13), (Φ15) − (Φ19) and (Φ21) − (Φ27), (Φ29) − (Φ211). The family

(Pµε
)

ε>0 is tight as measures on C
(

[0, ∞),R2d
)

.

Proof. In the following we always consider R2d to be equipped with the metric m from
(6.4) and let T ∈ N be arbitrary. By Lemma 6.6 it suffices to show that the family of

time restrictions
(

PT
µε

)

ε>0
is tight for all T ∈ N. For i ∈ {1, ..., d} the functions fi, gi

from (6.3) induce measurable maps f̂i, ĝi defined by

f̂i : C([0, T ],R2d) −→ C([0, T ],R), ω 7→ fi ◦ ω,

analogous definition for ĝi. Due to the Arzelà-Ascoli theorem a set A ⊆ C([0, T ],R2d) is

totally bounded iff f̂i(A), ĝi(A) ⊆ C([0, T ],R) are totally bounded for all i ∈ {1, ..., d}.
Hence, it suffices to prove tightness separately for the following kind of measures on
C([0, T ],R):

1.
(

PT
µε

◦ f̂−1
i

)

ε>0
, i ∈ {1, ..., d}, 2.

(

PT
µε

◦ ĝ−1
i

)

ε>0
, i ∈ {1, ..., d}. (6.8)

In the following let i ∈ {1, ..., d} and denote integration w.r.t. PT
µε

by ET
ε .
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1. Consider the semimartingale decomposition from (3.2):

fi(Xt, Vt) = M
[fi],ε
t −

∫ t

0
Lεfi(Xr, Vr) dr + fi(X0, V0), t ∈ [0, T ]. (6.9)

This implies that f̂i can be written as the sum of the C([0, T ],R)-valued random vari-

ables
(

M
[fi],ε
t

)

t∈[0,T ]
,
(∫ t

0 Lεfi(Xr, Vr) dr
)

t∈[0,T ]
and (fi(X0, V0))t∈[0,T ], see also Remark

3.2(i). Due to Lemma 6.7 it suffices to show separately that the laws of the single

summands are tight. We start with the family PT
µε

◦
((

M
[fi],ε
t

)

t∈[0,T ]

)−1

, ε > 0. Since

the initial distributions of this family of measures are tight, it suffices to show a bound
for the increments, see [13][Chapter 2, Problem 4.11]. Therefore, let 0 ≤ s ≤ t ≤ T .
Since f 2

i ∈ D(Lε) and Lεfi ∈ L4(R2d, µε), (3.3) and (6.5) imply that the quadratic

variation process of
(

M
[fi],ε
t

)

t∈[0,T ]
is given by a constant times t. We obtain tightness

by the following estimate which is due to the Burkholder-Davis-Gundy inequality,

ET
ε

[

(M
[fi],ε
t − M [fi],ε

s )4
]

≤ C(t − s)2. (6.10)

Due to (6.5), the Hölder inequality and the fact that µε is invariant for Pµε
we find for

the variation part PT
µε

◦
((∫ t

0 Lεfi(Xr, Vr) dr
)

t∈[0,T ]

)−1

, ε > 0, the following estimate

implying tightness

ET
ε

[(∫ t

s
Lεfi(Xr, Vr) dr

)2
]

≤ (t − s)2µΦ̃2
(Rd)

∫

Rd

∣
∣
∣∂iΦ̃1

∣
∣
∣

2
dµΦ̃1

. (6.11)

Tightness of the laws of the last summand follows by the weak convergence of the
initial distributions and the continuity of fi. We conclude that for i ∈ {1, ..., d} and

T ∈ N the family (PT
µε

◦ f̂−1
i )ε>0 is tight.

2. It holds gi ∈ D(Lε) ∩ D(L̂ε). Observe that PT
µε

◦ r−1
T is associated with the ad-

joint semigroup
(

T̂ ε
t,2

)

t≥0
, see [12, Lemma 3.9(iii)], hence, PT

µε
◦ r−1

T = P̂T
µε

. Explicit

computation yields the following decomposition

gi(Xt, Vt) − gi(X0, V0) =
1

2

(

M
gi,ε
t + M̂

gi,ε
T −t(rT ) − M̂

gi,ε
T (rT )

)

+
1

2

∫ t

0
(Lεgi − L̂εgi)(Xs, Vs) ds, t ∈ [0, T ]. (6.12)

As above, we consider (6.12) as a decomposition of the random variable ĝi. Tight-

ness of PT
µε

◦
(

(Mgi,ε
t )t∈[0,T ]

)−1
, ε > 0, can be shown as in (6.10). For the sum-

mand
(

M̂
gi,ε
T −t(rT ) − M̂

gi,ε
T (rT )

)

t∈[0,T ]
we use PT

µε
◦ r−1

T = P̂T
µε

. Since
(

M̂
gi,ε
t

)

t∈[0,T ]

is a martingale w.r.t. P̂T
µε

tightness follows as (6.10). Due to Proposition 6.4 we
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have for the last summand 1
2
(Lεgi − L̂εgi) = −∂xi

Φ1, implying tightness of the laws

PT
µε

◦
((∫ t

0(Lεgi − L̂εgi)(Zs) ds
)

t∈[0,T ]

)−1

, ε > 0, as in (6.11), which finishes the proof.

Combining Theorem 6.1 and Theorem 6.8 we obtain

Corollary 6.9

Under the assumptions of Theorem 6.1 and Theorem 6.8 the measures
(

PX
hεµε

)

ε>0
on

C
(

[0, ∞),Rd
)

converge weakly to Ph0µ0 for ε → 0.

Proof. By Theorem 6.1 it suffices to prove tightness of
(

PX
hεµε

)

ε>0
. The map PX from

(6.1) is continuous, hence, tightness of (Phεµε
)

ε>0 implies tightness of
(

PX
hεµε

)

ε>0
. Now

let δ > 0 and choose K ⊆ C
(

[0, ∞),R2d
)

compact s.t. supε>0 Pµε
(Kc) ≤ δ2

supε>0‖hε‖2
L2(µε)

.

Again we denote by Eε integration w.r.t. Pµε
.

Phεµε
(Kc) = Eε [1Kchε(X0, V0)] ≤

√

Pµε
(Kc) ‖hε‖L2(µε) ≤ δ.

7 Overdamped limit of generalized stochastic

Hamiltonian systems

Let us recall the scaled gsHs (1.4a), (1.4b)

dXε
t =

1

ε
∇Φ2(V ε

t )dt,

dV ε
t = −1

ε
∇Φ1(X

ε
t )dt − 1

ε2
∇Φ2(V

ε
t )dt +

1

ε

√
2dBt,

We summarize our final result in the following theorem. To formulate the theorem define
the map Ũε : R2d −→ R2d, (x, v) 7→ (x, v

ε
), ε > 0. In the following we denote by µ the

measure µΦ.

Theorem 7.1

Assume (Φ11) − (Φ19) and (Φ21) − (Φ211). Let ε > 0, hε ∈ L1(R2d, µ) ∩ L2(R2d, µ) and
h ∈ L1(Rd, µΦ1) ∩ L2(Rd, µΦ1) be a probability densities w.r.t. µ and µΦ1, respectively.
Assume further that hεµ converges weakly to hµΦ1 ⊗ δ0 as ε → 0 and supε>0

∫

R2d h2
εdµ <

∞. There exists a weak solution (Xε
t , V ε

t )t≥0 to (1.4a), (1.4b) with initial distribution
hεµ. Furthermore, denote by PhµΦ1

the martingale solution to the generator of (1.3) from

Corollary 4.4. Then the laws L
(

(Xε
t )t≥0

)

, ε > 0, converge weakly to PhµΦ1
as measures

on C
(

[0, ∞),Rd
)

as ε → 0.
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Proof. Let ε > 0 and recall Φε
2, (Lε, D(Lε)),

(

T ε
t,2

)

t≥0
, µε and Hε from the beginning of

Section 5. The generator of (1.4a), (1.4b) is given by

Lε
Φ

f =
1

ε2
(∆vf − ∇vΦ2 · ∇vf) +

1

ε
(∇vΦ2 · ∇xf − ∇xΦ1 · ∇vf) , f ∈ C∞

c ({Φ1 < ∞}).

(7.2)

We consider (Lε
Φ

, C∞
c ({Φ1 < ∞})) as a linear operator on the space H = L2

(

R2d, µ
)

.

Define the unitary transformation Uε : H −→ Hε, f 7→ f ◦ Ũε. The map Uε and the
adjoint U∗

ε leave the set C∞
c ({Φ1 < ∞}) invariant. Furthermore, we obtain the unitary

equivalence (

U∗
ε L1

ΦεUε, C∞
c ({Φ1 < ∞})

)

= (Lε
Φ

, C∞
c ({Φ1 < ∞})) . (7.3)

By Lemma 2.18 an extension of
(

L1
Φε

, C∞
c ({Φ1 < ∞})

)

is the generator of the semi-

group
(

T ε
t,2

)

t≥0
. Hence, due to [11][Chapter 2, Lemma 3.17] an extension of the operator

(Lε
Φ

, C∞
c ({Φ1 < ∞})) is the generator of the sub-Markovian strongly continuous con-

traction semigroup on H given by (Sε
t )t≥0 =

(

U∗
ε T ε

t,2Uε

)

t≥0
. Define further

Ûε : C([0, ∞),R2d) −→ C([0, ∞),R2d), (xt, vt)t≥0 7→
(

Ũε(xt, vt)
)

t≥0
.

Observe that Uεhε is a probability density w.r.t. µε. Let P(Uεhε)µε
be the martingale

solution to
(

L1
Φε,2, D

(

L1
Φε,2

))

with initial distribution (Uεhε)µε from the last section.

One easily checks that the measure P̃hεµ := P(Uεhε)µε
◦
(

Ûε

)−1
has initial distribution given

by hεµ and is associated with the sub-Markovian semigroup (Sε
t )t≥0 in the sense of (3.1).

Hence, due to [6, Lemma 5.1] the measure P̃hεµ is a martingale solution to the generator
of (Sε

t )t≥0. Furthermore, one can argue as in Remark 6.5 to obtain weak solutions

(Xε
t , V ε

t )t≥0 from P̃hεµ such that for the law of (Xε
t )t≥0 it holds L

(

(Xε
t )t≥0

)

= P̃hεµ ◦P −1
X .

Observe that P̃hεµ ◦ P −1
X = P(Uεhε)µε

◦ P −1
X . To apply Corollary 6.9 we have to guarantee

that the assumptions of Theorem 6.1 are fulfilled, i.e., we have show that (Uεhε)µε,
ε > 0, converges weakly to hµΦ1 ⊗ δ0 as ε → 0. Let f : R2d −→ R be continuous
and bounded. Observe that the functions gε defined by gε(x, v) = f(x, εv) converge
uniformly on compact sets to the function g(x, v) = f(x, 0), (x, v) ∈ R2d. Hence, by the
transformation formula we obtain

∫

R2d
f(Uεhε)dµε =

∫

R2d
gεhεdµ =

∫

R2d
(gε − g)hεdµ +

∫

R2d
ghεdµ.

It suffices to prove that the first term in the last expression converges to zero as ε → 0.
By assumption the measures hεµ, ε > 0 converge weakly, in particular, they are tight.
Hence by the boundedness of f and the considerations above we conclude

∫

R2d
f(Uεhε)dµε

ε→0−−→
∫

R2d
fdhµΦ1 ⊗ δ0.
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Hence, we can apply Corollary 6.9 and conclude that P̃hεµ◦P −1
X = P(Uεhε)µε

◦P −1
X converge

weakly to PhµΦ1
which finishes the proof.

Remark 7.2

Recall the objects H, U∗
ε , (Sε

t )t≥0, ε > 0, from the previous proof. Via the maps Ψε

from (5.7) one directly obtains H (Γε)ε>0−−−−→ HΦ1, where Γε : C −→ H, f 7→ U∗
ε ◦ Ψε(f).

Furthermore, we obtain that the semigroups (Sε
t )t≥0 converge to

(

T Φ1
t

)

t≥0
along H (Γε)ε>0−−−−→

HΦ1. This follows directly from the fact that the properties (5.4), (5.5) are preserved by
the unitary map U∗

ε .
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