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Abstract

Motivated by the minimax concave penalty based variable selection in high-dimensional
linear regression, we introduce a simple scheme to construct structured semiconvex sparsity
promoting functions from convex sparsity promoting functions and their Moreau envelopes.
Properties of these functions are developed by leveraging their structure. In particular, we
provide sparsity guarantees for the general family of functions. We further study the behavior
of the proximity operators of several special functions including indicator functions of closed
convex sets, piecewise quadratic functions, and the linear combinations of them. To demonstrate
these properties, several concrete examples are presented and existing instances are featured as
special cases.

Keywords— Moreau envelope, proximity operator, variable selection, sparsity, thresholding
operator

1 Introduction

Natural signals and data streams are often inherently sparse in certain bases or dictionaries where
they can be approximately represented by only a few significant components carrying the most
relevant information [4, 15, 22]. Regularization methods are a powerful tool for sparse modeling
and have been widely used to analyze these data sets. A particular method depends on the choice
of penalty used to enforce constraints on the objective. The natural penalty function to promote
sparsity is the so-called ℓ0-norm, which counts the nonzero components of a vector. However
minimizing the ℓ0-norm is a combinatorial optimization problem which is known to be NP-hard.

To overcome these computational difficulties, regularization methods with the ℓ1-norm as its
penalty function like LASSO [24] and Dantzig selectors [4] have been proposed. The convexity
of the ℓ1-norm makes the implementation of the corresponding methods numerically tractable.
However, despite its appealing properties, convex regularization methods can suffer from the bias
issue that is inherited from the convexity of the penalty function. To address this, non-convex
penalties including the ℓq-penalty with 0 < q < 1 [11], the smoothly clipped absolute deviation
penalty (SCAD) [10] and the minimax concave penalty (MCP) [25] have been proposed to replace
the ℓ1-norm penalty.

In this paper, we introduce a family of semiconvex sparsity promoting functions of which each is
the difference of a convex sparsity promoting function with its Moreau envelope. Roughly speaking,
a sparsity promoting function is one that admits its global minimum at the origin but is nondif-
ferentiable there; a function is semiconvex if it becomes convex after adding a convex quadratic
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function to it. Semiconvex functions possess useful structure and obey generalizations of many
classical results from convex analysis (see, e.g. [3]).

We show that as long as a convex function is a sparsity promoting function, so is the difference
between it and its Moreau envelope. This result makes the construction of nonconvex sparsity
promoting functions effortless. Some interesting properties of such functions are: (i) they are always
nonnegative and semiconvex and (ii) they are a special type of difference of convex (DC) functions
with one having a Lipschitz continuous gradient. Due to these properties, we will refer to these
functions as structured semiconvex sparsity promoting functions. These properties enable us to
make use of the fruitful results, for example, in DC programming [23], to develop efficient algorithms
for the associated regularized optimization problems. What’s more, these functions provide a bridge
between convex and nonconvex sparsity promoting penalties. As a specific example, we recover the
MCP from the difference of the ℓ1-norm and its envelope. It has been shown (e.g. in [21]) that this
closely approximates the ℓ0-norm while preserving the continuity and subdifferentiability of ℓ1.

The proximity operator, which was first introduced by Moreau in [17] as a generalization of the
notion of projection onto a convex set, has been used extensively in nonlinear optimization (see,
e.g., [1, 2, 7]). The desired features of the aforementioned regularization methods can be explained
in terms of the proximity operators of the corresponding penalties. Therefore to determine the
effectiveness of our proposed functions, we must examine the behavior of their proximity operators.
The proximity operator of the ℓ0-norm is the hard thresholding operator, which annihilates all
entries below a certain threshold and keeps all entries above the threshold. In fact, we see that
hard thresholding rules are characteristic of penalties which are concave near the origin and constant
elsewhere. More generally, we provide sparsity guarantees in terms of thresholding behavior for
the entire family of structured semiconvex sparsity promoting functions, with further details for
certain special functions.

The rest of the paper is organized as follows. Section 2 provides motivation for the suggested
scheme. Section 3 recalls some necessary background in optimization and introduces the concept
of the sparsity promoting function. In Section 4, we construct a family of semiconvex sparsity pro-
moting functions which are the difference of convex sparsity promoting functions and their Moreau
envelopes. Many interesting properties of this family of functions are presented. In Section 5, sev-
eral special sparsity promoting functions are presented and discussed thoroughly. Some examples
of practical interest are provided in Section 6. We conclude by discussing applications and plans
for future work in Section 7.

2 Motivation

Our work on semiconvex sparsity promoting functions was motivated mainly by the minimax con-
cave penalty (MCP) based variable selection in high-dimensional linear regression [25]. Variable se-
lection is fundamental in statistical analysis of high-dimensional data. It is also easily interpretable
in terms of sparse signal recovery. We consider a linear regression model with n-dimensional re-
sponse vector y, n× p model matrix X, p-dimensional regression vector γ, and n-dimensional error
vector ǫ:

y = Xγ + ǫ.

The goal of variable selection is to recover the true underlying sparse model of the pattern {j :
γj 6= 0} and to estimate the non-zero regression coefficients γj , where γj is the j-th component of
γ. For small p, subset selection methods can be used to find a good guess of the pattern (see, e.g.,
[19]). However, subset selection becomes computationally infeasible for large p.
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To overcome the computational difficulties of subset selection method, the method of penalized
least squares is widely used in variable selection to produce meaningful interpretable models:

min
γ∈Rp

1

2n
‖y −Xγ‖2 +

p∑

j=1

ρ(|γj |, λ), (1)

where ρ(·, λ) is a penalty function indexed by λ ≥ 0. The penalty function ρ(t, λ), defined on [0,∞),
is assumed to be nondecreasing in t with ρ(0, λ) = 0 and continuously differentiable for t ∈ (0,∞).
The formulation in (1) includes many popular variable selection methods. For example, the best

subset selection amounts to using the ℓ0 penalty ρ(|t|, λ) = λ2

2 1{|t|6=0} while LASSO [24] and basis
pursuit [5] use the ℓ1 penalty ρ(|t|, λ) = λ|t|. Here 1{u∈E} denotes the characteristic function and
1{u∈E} equals 1 if u ∈ E and 0 otherwise. The estimator (i.e, the hard thresholding operator) with
the ℓ0 penalty suffers from instability in model prediction while the estimator (the soft thresholding
operator) with the ℓ1 penalty suffers from the bias issue, severely interfering with variable selection
for large p [10]. To remedy this issue, the SCAD penalty was introduced in [10]. The estimator
with the SCAD penalty is continuous and leaves large components not excessively penalized. In
[25], the MCP penalty was introduced and is defined as follows

ρ(|t|, λ) = λ

∫ |t|

0
max

{
0, 1 − x

aλ

}
dx, (2)

where the parameter a > 0. This penalty function (see [25]) minimizes the maximum concavity

κ(ρ, λ) := sup
0<t1<t2<∞

−ρ(t2, λ)− ρ(t1, λ)

t2 − t1

subject to the unbiasedness ∂
∂t
ρ(t, λ) = 0 for all t > aλ and selection features ∂

∂t
ρ(0+, λ) = λ. The

number κ(ρ, λ) is related to the computational complexity of regularization method for solving (1).
The simulations in [10, 25] gave a strong statistical evidence that the estimators from the non-
convex penalty functions SCAD and MCP are useful in variable selection. Recently, an application
of MCP to signal processing was reported in [20].

Due to its success in applications, we take a closer look at MCP. The MCP function in (2) can
be rewritten as

ρ(|t|, λ) = λ(|t| − envaλ|·|(t)),

where envaλ|·| is the Moreau envelope of | · | with index aλ (see next section). Clearly, the MCP
penalty can be considered as a variation of the ℓ1 penalty function, that is, the absolution function
| · | is replaced by | · | − envaλ|·|. From this simple observation, we are drawn to consider a family
of penalty functions defined by

f − envαf

with f satisfying some proper properties and α > 0.
The goal of this paper is to have a comprehensive study on mathematical properties of this

family of functions, particularly their proximity operators that are closely related to selection
features when adopted in (1).

3 Sparsity Promoting Functions: Definition

In this section, we provide a formal definition of sparsity promoting and characterize convex spar-
sity promoting functions. We begin by collecting the necessary definitions and facts from convex
analysis.
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All functions in this work are defined on Rn, Euclidean space equipped with the standard inner
product 〈·, ·〉 and the induced Euclidean norm ‖·‖. We use Γ(Rn) (respectively Γ0(R

n)) to represent
the set of proper lower semicontinuous (respectively convex) functions on Rn. The domain of an
operator A (respectively a function g) is denoted dom(A) (respectively dom(g)). The boundary of
a set S denoted by bd(S) is the set of points in the closure S̄ which are not in the interior int(S).
The relative interior of a set S denoted by ri(S) is the interior of S when it is viewed as a subset
of the affine space it spans. For any x ∈ Rn and any δ > 0, we use Bδ(x) to denote the open ball
centered at x with radius δ. In particular, we are interested in B‖x‖(x) = {u : ‖u− x‖ < ‖x‖}. For
a real number a,, the signum function sgn(a) is defined as

sgn(a) =





−1, if a < 0;
0, if a = 0;
1, if a > 0.

For any g ∈ Γ(Rn), the Fréchet subdifferential of g at x ∈ dom(g) is the set

∂g(x) :=

{
d ∈ Rn : lim inf

u→x

g(u)− g(x) − 〈d, u− x〉
‖u− x‖ ≥ 0

}
.

For any x /∈ dom(g), ∂g(x) = ∅. If ∂g(x) is single-valued, ∂g(x) = {∇g(x)}. We leave off the
brackets when there is no risk of confusion. If g ∈ Γ0(R

n), the above subdifferential reduces to the
usual one

∂g(x) = {d ∈ Rn : g(y) ≥ g(x) + 〈d, y − x〉,∀y ∈ Rn}.
If g ∈ Γ0(R

n), then ∂g is a monotone operator; that is, for any x, y ∈ dom(g), d ∈ ∂g(x), and
d̄ ∈ ∂g(y), 〈d̄ − d, y − x〉 ≥ 0.

For a function g in Γ(Rn), the Moreau envelope of f with parameter α, denoted by envαg, is

envαg(x) = inf
u∈Rn

{
g(u) +

1

2α
‖u− x‖2

}
.

The associated proximity operator of g with parameter α at x is the set of all points at which the
above infimum is attained, denoted by proxαg(x):

proxαg(x) = argminu∈Rn

{
g(u) +

1

2α
‖u− x‖2

}
.

When proxαg(x) 6= ∅, envαg(x) = g(p) + 1
2α‖p − x‖2 for all p ∈ proxαg(x).

Recall that for a proper function g on Rn, the Fenchel conjugate g∗ is defined as

g∗(x) = sup
u∈Rn

{〈u, x〉 − g(u)}.

The Fenchel conjugate is closely related to the Moreau envelope. Indeed, it is shown in [2] that for
any x ∈ Rn and α > 0,

(
g +

1

2α
‖ · ‖2

)∗

(α−1x) =

(
− envαg +

1

2α
‖ · ‖2

)
(x). (3)

We now rigorously define what is meant by sparsity promoting and discuss how this captures
the behavior described in the previous section.
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Definition 1. Let f ∈ Γ(Rn). Then f is said to be a sparsity promoting function provided that (i)
f(0) = 0 and f achieves its global minimum at the origin; and (ii) the set ∂f(0) contains at least
one nonzero element.

From the above definition, if f ∈ Γ(Rn) is a sparsity promoting function, then by Fermat’s
rule 0 ∈ ∂f(0) and f must be nondifferentiable at the origin. As pointed out in [10], the non-
differentiability of f at the origin is necessary for f to be a suitable penalty in (1) for variable
selection.

One typical sparsity promoting function is the absolute value function on R. The global min-
imum is |0| = 0, and ∂| · |(0) = [−1, 1]. We will return to this example throughout to illustrate
various properties and connect them to our motivating example MCP. Another example of a sparsity
promoting function is the indicator function ιC that is defined by

ιC(x) :=

{
0, if x ∈ C;

+∞, otherwise,

where C is a closed, convex set such that 0 ∈ bdC and {0} ( C. For further discussion of this
example, we refer to Section 5. Beyond these examples, the following result shows that every norm
|||·||| on Rn is a sparsity promoting function.

Proposition 1. Let |||·||| be a norm on Rn. Then the norm |||·||| is a sparsity promoting function.

Proof. It is obvious that the norm |||·||| is convex and 0 = |||0||| = minx∈Rn |||x|||. We further know
that

∂|||·|||(0) = {s ∈ Rn : max
|||u|||≤1

〈s, u〉 ≤ 1},

which is the unit ball associated with the dual norm of |||·||| (see, e.g. [13]). The result of this
proposition follows.

It is well known that the relationship between the subdifferential and proximity operator of a
function f ∈ Γ0(R

n) is characterized as follows (see, e.g., [2, 16]): for any α > 0

x ∈ α∂f(y) ⇔ y = proxαf (x+ y). (4)

From this relationship, we get the following characterization of convex sparsity promoting functions.

Lemma 1. Let f ∈ Γ0(R
n) be a sparsity promoting function and let α > 0. Then the following

statements hold.

(i) If x ∈ α∂f(0), then proxαf (x) = 0.

(ii) For all x ∈ dom(f), ‖proxαf (x)‖ ≤ ‖x‖.

Proof. (i): This is a direct consequence of equation (4).
(ii): Note that proxαf (0) = 0 due to 0 ∈ α∂f(0) and Item (i). Since proxαf is a nonexpansive

operator, then for all x ∈ dom(f), ‖proxαf (x)‖ = ‖proxαf (x)− proxαf (0)‖ ≤ ‖x− 0‖.

It follows from Lemma 1 that the proximity operator of a convex sparsity promoting function
shrinks all input towards the origin, and all input below a certain threshold are sent to zero. As an
example, the proximity operator of | · | is proxα|·|(x) = sign(x)max{|x| − α, 0}, which is the well-
known soft thresholding operator in wavelet literature [9]. This very behavior for the ℓ1-penalty is
described by Tibshirani in the name LASSO: least absolute shrinkage and selection operator [24].

5



4 Semiconvex Sparsity Promoting Functions

In this section, we introduce the titular family of semiconvex sparsity promoting functions. For
any f ∈ Γ0(R

n) and any positive number α > 0, we define

fα(x) := f(x)− envαf (x). (Fα)

Clearly fα ∈ Γ(Rn) is the difference of two convex functions. Returning to the example f(x) = |x|,
we see that fα(x) = min{|x| − 1

2αx
2, α2 }. As discussed in the previous section, this is the scaled the

minimax concave penalty (MCP) given in [25].
Sparsity promotion depends entirely on the behavior of a function and its subdifferential at the

origin. Since the Moreau envelope of any function f in Γ0(R
n) is differentiable (see, e.g. [2]), the

subdifferentials of fα and f are related as follows (see [6]):

∂fα(x) = ∂f(x)−∇ envαf (x). (5)

Due to this inherent relationship between ∂fα and ∂f , we see immediately that fα must be sparsity
promoting if f is.

Theorem 1. Let f ∈ Γ0(R
n) be a sparsity promoting function. Then the following statements hold:

(i) For any α > 0, the function fα defined by (Fα) is a sparsity promoting function. Moreover,
∂fα(0) = ∂f(0);

(ii) Let g : x 7−→ f(−x). Then both g and gα are sparsity promoting. Moreover, gα = fα(−·) and
∂gα(0) = −∂f(0).

Proof. (i): As a direct consequence of the definition of the Moreau envelope, envαf (x) ≤ f(x) for
all x ∈ Rn, hence fα(x) ≥ 0 for all x ∈ dom(f). Since f is a sparsity promoting function, we have
fα(0) = f(0)− envαf (0) = 0. Therefore, minx∈Rn fα(x) = fα(0) = 0. On the other hand, from (5)
and the relation ∇ envαf (x) =

1
α
(x− proxαf (x)), we have ∂fα(0) = ∂f(0) which contains at least

one nonzero element by assumption. Hence, fα is sparsity promoting.
(ii): Since g(0) = f(0) = minx∈Rn f(x) = minx∈Rn g(x) and ∂g(0) = −∂f(0), so g is sparsity

promoting. Hence, by Item (i), gα is sparsity promoting and ∂gα(0) = −∂f(0). By the definition
of the Moreau envelope, envαg(x) = envαf (−x) which leads to gα = fα(−·).

With Theorem 1, we say fα is a structured sparsity promoting function if f is a convex sparsity
promoting function. We now prove that fα is semiconvex and show how its semiconvexity depends
on the convexity of f . We remind the reader of the definition. A function g ∈ Γ0(R

n) is σ-strongly
convex if and only if there exists a constant σ > 0 such that the function g − σ

2 ‖ · ‖2 is convex. A
function g ∈ Γ(Rn) is ρ-semiconvex if g + ρ

2‖ · ‖2 is convex.

Proposition 2. Let f be a function in Γ0(R
n). Then fα, defined by (Fα), is 1

α
-semiconvex. If, in

addition, f is µ-strongly convex, then fα is (µ− 1
α
)-strongly convex if µ > 1

α
, convex if µ = 1

α
, and

( 1
α
− µ)-semiconvex if µ < 1

α
.

Proof. Write

fα = f − envαf = f +

(
− envαf +

1

2α
‖ · ‖2

)
− 1

2α
‖ · ‖2.

By (3), for all x ∈ Rn we have that

fα(x) = f(x) +

(
f +

1

2α
‖ · ‖2

)∗

(α−1x)− 1

2α
‖x‖2, (6)
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which implies that fα is 1
α
-semiconvex.

In addition, if f is µ-strongly convex, then there exists a convex function g such that f =
g + µ

2‖ · ‖2. Replacing f(x) in (6) by g(x) + µ
2‖x‖2, we have

fα(x) = g(x) +

(
f +

1

2α
‖ · ‖2

)∗

(α−1x) +
1

2
(µ− 1

α
)‖x‖2.

It follows from the above equation that fα is (µ − 1
α
)-strongly convex if µ > 1

α
, convex if µ = 1

α
,

and ( 1
α
− µ)-semiconvex if µ < 1

α
.

The following result is a direct consequence of Proposition 2.

Corollary 1. Let f be a function in Γ0(R
n) and let fα be defined by (Fα). For any given x ∈ Rn

and positive parameters α and β, we define

F (u) = fα(u) +
1

2β
‖u− x‖2, (7)

where u ∈ Rn. Then, F is
(
β−1 − α−1

)
-strongly convex if β < α, convex if β = α, and

(
α−1 − β−1

)
-

semiconvex if β > α. If, in addition, f is µ-strongly convex, then F is
(
µ− α−1 + β−1

)
-strongly

convex if µ > α−1 − β−1, convex if µ = α−1 − β−1, and
(
α−1 − β−1 − µ

)
-semiconvex if µ <

α−1 − β−1.

As for convex sparsity promoting functions, we can further characterize the sparsity promotion
of fα by examining its proximity operator. Roughly speaking, we show that proxβfα(x) = 0 for
all x ∈ min{α, β} · ∂f(0). Towards this end, we present two technical lemmas. The first is a
generalization of Lemma 1.

Lemma 2. Let f ∈ Γ0(R
n) be sparsity promoting and fα as defined in (Fα).

(i) For any x ∈ dom(f), proxβfα(x) ⊆ B‖x‖(x).

(ii) If x ∈ min{α, β} · ∂f(0), then 0 ∈ proxβfα(x).

Proof. For a fixed x ∈ Rn, define F as in (7), so that proxβfα(x) = argminu∈Rn F (u).

(i): Since F (0) = 1
2β‖x‖2 and 0 ∈ B‖x‖(x), to show proxβfα(x) ⊆ B‖x‖(x), we only need to show

that for all u ∈ Rn\B‖x‖(x), F (u) > F (0). Actually, if u ∈ Rn\B‖x‖(x), then ‖u − x‖2 > ‖x‖2.
Since fα is non-negative, it follows from (7) that F (u) > 1

2β‖x‖2 = F (0). Thus the conclusion of
Item (i) holds.

(ii): To prove Item (ii), from Item (i) and F (0) = 1
2β‖x‖2, it suffices to show F (u) ≥ 1

2β ‖x‖2
for all u ∈ B‖x‖(x). From the assumption of x ∈ min{α, β} · ∂f(0), we have that for all u ∈ Rn,

f(u) ≥ 1
min{α,β}〈x, u〉. Since f(0) = 0, we have envαf (u) ≤ 1

2α‖u‖2 for all u ∈ Rn. Hence

fα(u) ≥
1

min{α, β}〈x, u〉 −
1

2α
‖u‖2.

Therefore

F (u) ≥ 1

min{α, β}〈x, u〉 −
1

2α
‖u‖2 + 1

2β
‖u− x‖2

=

{(
1
2β − 1

2α

)
‖u‖2 + 1

2β ‖x‖2, if β ≤ α;(
1
2α − 1

2β

)
(‖x‖2 − ‖u− x‖2) + 1

2β ‖x‖2, if α < β.

So, F (u) ≥ 1
2β‖x‖2 = F (0) holds for all u ∈ B‖x‖(x). This completes the proof of the lemma.

7



Remark 1. From item (i) of Lemma 2 we see for x ∈ R, sgn(x) = sgn(p) if p ∈ proxβfα(x) and both
x and p are simultaneously nonzero. We note that this is also true for proxαf (x).

The following technical lemma will greatly simplify the proof of Theorem 2, our main result.
While the lemma may seem strange at first glance, the conditions therein arise naturally from the
computation of the proximity operator.

Lemma 3. Let f ∈ Γ0(R
n) be a sparsity promoting function and w ∈ dom(∂f). If w ∈ ∂f(0) and

there exists a nonzero ξ ∈ ri(∂f(0)) ∩ ∂f(w), then w = 0.

Proof. Assume that w 6= 0. First, since w ∈ ∂f(0) and f(0) = 0, we have f(w) ≥ ‖w‖2 > 0.
Second, since ξ ∈ ∂f(0)) ∩ ∂f(w), then ξ ∈ ∂f(0) implies f(0) + f∗(ξ) = 〈0, ξ〉 while ξ ∈ ∂f(w)

implies f(w) + f∗(ξ) = 〈ξ, w〉. Hence,

f(w) = 〈ξ, w〉. (8)

By the monotonicity of ∂f , for any η ∈ ∂f(0), 〈ξ − η,w〉 ≥ 0. Together with (8) we get

f(w) ≥ 〈η,w〉. (9)

Finally, since ξ ∈ ri(∂f(0)) and ∂f(0) is convex, there exists λ > 1 such that λξ ∈ ∂f(0). By
(8) and (9), we get

f(w) ≥ 〈λξ,w〉 = λf(w)

which implies f(w) ≤ 0. This is a contradiction, so w = 0.

Now for our main result which characterizes the sparsity promoting structure of fα in terms of
the sparsity threshold of its proximity operator.

Theorem 2. Let f ∈ Γ0(R
n) be a sparsity promoting function. For any x ∈ dom(f), the following

statements hold:

(i) If β < α, then proxβfα(x) = 0 for x ∈ β∂f(0);

(ii) If β = α, then proxβfα(x) = 0 for x ∈ ri(α∂f(0));

(iii) If β > α, then proxβfα(x) = 0 for x ∈ α∂f(0).

Proof. Given x ∈ Rn, define F (u) = fα(u) +
1
2β ‖u− x‖2.

(i) We first consider the situation β < α. From Corollary 1, we know that F is
(

1
β
− 1

α

)
-

strongly convex and therefore has a unique minimizer. By Lemma 2, x ∈ β∂f(0) implies that
0 = argminu∈Rn F (u). Together these imply that proxβfα(x) = 0.

(ii) Next we consider α = β. From Corollary 1, F (u) is convex but not strongly, and the
minimizer may no longer be unique. By Lemma 2, 0 ∈ proxβfα(x) for x ∈ α∂f(0).

Now suppose x ∈ ri(α∂f(0)) and let w∗ be an element of proxβfα(x). To show that w∗ =
0, by identifying αf , x, and w∗, respectively, as f , ξ, and w in Lemma 3, it suffices to show
that x ∈ ∂(αf)(w∗) and w∗ ∈ ∂(αf)(0). By Fermat’s rule, w∗ ∈ proxβfα(x) implies that 0 ∈
∂fα(w

∗)+ 1
β
(w∗−x). As we saw earlier that ∂fα(w

∗) = ∂f(w∗)−∇ envαf (w
∗) and ∇ envαf (w

∗) =
1
α
(w∗ − proxαf (w

∗)), this can be rewritten as

1

β
x+

(
1

α
− 1

β

)
w∗ − 1

α
proxαf (w

∗) ∈ ∂f(w∗). (10)
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From (10), we get x − proxαf (w
∗) ∈ ∂(αf)(w∗). Therefore the conditions x ∈ ∂(αf)(w∗) and

w∗ ∈ ∂(αf)(0) hold if and only if proxαf (w
∗) = 0.

Since x ∈ ∂(αf)(0), by the monotonicity of ∂f we have

〈x− proxαf (w
∗)− x,w∗〉 ≥ 0.

That is, 〈proxαf (w∗), w∗〉 ≤ 0. But due to the nonexpansiveness of proxαf and the fact that
proxαf (0) = 0,

〈proxαf (w∗), w∗〉 ≥ ‖proxαf (w∗)‖2.
This implies that proxαf (w

∗) = 0. Thus by Lemma 3, w∗ = 0.
(iii) Finally, we consider the situation of β > α. In this case, we assume that 0 6= x ∈ α∂f(0).

From Lemma 2, we know that 0 ∈ proxβfα(x). We further show that the point 0 is the only element
in proxβfα(x).

Recall from the proof of Lemma 2 that when β > α,

F (u) ≥
(

1

2α
− 1

2β

)
(‖x‖2 − ‖u− x‖2) + 1

2β
‖x‖2 ≥ 1

2β
‖x‖2.

Actually, if w∗ ∈ proxβfα(x), then w∗ must be on the boundary of B‖x‖(x) and F (w∗) = fα(w
∗) +

1
2β‖w∗ − x‖2 = 1

2β‖x‖2. Thus, fα(w
∗) = 0, that is, f(w∗) = envαf (w

∗). We also know that

f(w∗) ≥ 1
α
〈x,w∗〉 and envαf (w

∗) ≤ 1
2α‖w∗‖2. Therefore, because 2〈x,w∗〉 = ‖w∗‖2, we get

envαf (w
∗) =

1

2α
‖w∗‖2,

which implies that 0 = proxαf (w
∗). On the other hand, the identity f(w∗) = envαf (w

∗) indicates
w∗ = proxαf (w

∗). Therefore, w∗ = 0. This completes the proof.

Remark 2. Item (iii) of the theorem is not tight. In fact in every example, when β > α, proxβfα(x) =
0 for all x in a set strictly larger than α∂f(0). However, the exact form of this set depends entirely
on the function in question.

5 Some Special Functions

The last section dealt primarily with behavior around the origin for general semiconvex sparsity
promoting functions. In this section, we describe the structure of fα on the entire domain for
special classes of sparsity promoting functions, namely indicator functions, piecewise quadratic
functions, and their linear combinations. The study of these particular functions is motivated by
the thresholding behavior of their proximity operators.

5.1 Indicator Functions

Indicator functions are commonly used to include constraints in the objective of an optimization
problem. We show in this section that they are not only fixed by the mapping f 7→ fα but they
are the only functions that are fixed.

Throughout, we assume C is a closed convex set in Rn with boundary bd(C). Recall that the
indicator function of C is

ιC(x) =

{
0, if x ∈ C;

+∞, otherwise.
(I)

We first determine when this is a sparsity promoting function.
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Lemma 4. The indicator function ιC is sparsity promoting if and only if 0 ∈ bd(C) and {0}
subsetneqC.

Proof. As long as 0 ∈ C, ιC(0) = 0, but to be sparsity promoting, there must also be a nonzero
element in ∂ιC(0). Recall that for any x, ∂ιC(x) is the normal cone to C at x. That is,

∂ιC(x) = NC(x) :=

{
{u : sup〈C − x, u〉 ≤ 0}, if x ∈ C

∅, otherwise.

Note that for x ∈ C, the normal cone is nonempty because {0} ⊆ NC(x). We further recall the
following result from [2]:

x ∈ int(C) ⇐⇒ NC(x) = {0}.
If 0 ∈ bd(C), it follows that NC(x) is nonempty and contains a nonzero element. Conversely, if
we assume NC(0) is nonempty, we must have 0 ∈ C. If we further assume that NC(0) contains a
nonzero element, then 0 6∈ int(C). So we see that 0 ∈ bd(C) is equivalent to the sparsity promoting
definition given in Section 3.

It is well known (see, e.g. [2]) that proxαιC (x) = PC(x) and that p = PC(x) if and only if
x − p ∈ NC(p). Here PC(x) is the unique operator such that ‖x − PC(x)‖ is the distance from x
to C. In terms of the proximity operator, this becomes 0 = proxαιC (x) if and only if x ∈ NC(0).
Moreover envαιC (x) =

1
2α‖PC(x)− x‖2 and

(ιC)α(x) := ιC(x)− envαιC (x) = ιC(x). (Iα)

This immediately implies that proxβ(ιC)α(x) = PC(x) as well. The converse of the above is also
true.

Proposition 3. Let f ∈ Γ0(R
n) be sparsity promoting. If f = fα as defined by (Fα), then

f = ιdom(f).

Proof. Notice that dom(envαf ) = Rn so dom(fα) = dom(f). Hence f = fα implies that envαf (x) =
0 for all x ∈ dom(f). Because f is sparsity promoting, f(x) ≥ 0 for all x. Hence, 0 = envαf (x) =
minu∈Rn{f(u) + 1

2α‖u− x‖2} for all x ∈ dom(f) implies that f(x) = 0 for all x ∈ dom(f).

Remark 3. The proposition is true more generally if f ∈ Γ0(R
n) is simply nonnegative.

5.2 Piecewise Quadratic Functions

Piecewise quadratic functions include a variety of important examples: absolute value, ReLU (rec-
tified linear unit), and elastic net. We generalize the proximity-related properties of these functions
and provide a framework for generating customized penalty functions.

The piecewise quadratic functions we consider here have the following form

f(x) =

{
1
2a1x

2 + b1x, if x ≤ 0;
1
2a2x

2 + b2x, if x ≥ 0,
(Q)

where the coefficients a1, a2, b1, and b2 are real numbers. The characterization of sparsity promoting
functions having a form given (Q) is established in the following lemma.

Lemma 5. Let f be a piecewise quadratic function defined by (Q). Then f is sparsity promoting
if and only if

a1 ≥ 0, a2 ≥ 0, b1 ≤ 0 ≤ b2, and b2 − b1 > 0. (11)
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Proof. “⇒”: Since f is sparsity promoting, then the assumption that f attains its minimum at 0
implies that a1 ≥ 0, a2 ≥ 0, b1 ≤ 0, and b2 ≥ 0. One can directly verify that ∂f(0) = [b1, b2]. This
must contain at least one nonzero element, hence, b2 − b1 > 0.

“⇐”: One can see that f is nonincreasing on (−∞, 0] from a1 ≥ 0 and b1 ≤ 0 and that f is
nondecreasing on [0,∞) from a2 ≥ 0 and b2 ≥ 0. So f achieves its global minimum at 0. The
condition b2 − b1 > 0 implies that the set ∂f(0) = [b1, b2] has nonzero elements. Therefore, f is a
sparsity promoting function.

Remark 4. As a by-product of the above lemma, if f given by (Q) is a sparsity promoting function,
then f must be convex, hence f ∈ Γ0(R).

In the rest of this section, we always assume that the coefficients in (Q) satisfy the conditions
listed in (11). The proximity operator and Moreau envelope of f with index α at x ∈ R are

proxαf (x) =

{
min

{
0, 1

αa1+1(x− αb1)
}
, if x ≤ 0;

max
{
0, 1

αa2+1(x− αb2)
}
, if x ≥ 0;

and

envαf (x) =





1
αa1+1(f(x)−

αb2
1

2 ), if x ≤ αb1;
1
2αx

2, if αb1 ≤ x ≤ αb2;
1

αa2+1(f(x)−
αb2

2

2 ), if x ≥ αb2.

respectively. From the above two equations, we get

fα(x) =





αa1
αa1+1f(x) +

αb2
1

2(αa1+1) , if x ≤ αb1;

f(x)− 1
2αx

2, if αb1 ≤ x ≤ αb2;
αa2

αa2+1f(x) +
αb2

2

2(αa2+1) , if x ≥ αb2,

(Qα)

which is a piecewise quadratic polynomial with possible breakpoints at αb1, 0, and αb2. We know
this fα is sparsity promoting by Theorem 1. Some other properties of this function which follow
immediately from (Qα) are collected in the following lemma.

Lemma 6. Let f ∈ Γ0(R) be a sparsity promoting function defined by (Q). Then the following
hold:

(i) fα is nonincreasing on (−∞, 0] and is nondecreasing on [0,∞);

(ii) fα on (−∞, αb1] is convex and is a degree 2 polynomial if a1 > 0 or constant if a1 = 0;

(iii) fα on [αb2,∞) is convex and is a degree 2 polynomial if a2 > 0 or a constant if a2 = 0;

(iv) fα on [αb1, αb2] is convex if min{a1, a2} ≥ 1
α

.

Just as the sparsity promoting property corresponds to certain behavior in the proximity oper-
ator near the origin, this result in Lemma 6 guarantees special properties of the proximity operator
away from the origin. To illustrate, we return to f(x) = |x|. This satisfies (Q) with a1 = a2 = 0,
b1 = −1, and b2 = 1. We saw in Section 4 that fα(x) = min{|x|− 1

2αx
2, α2 }. Because this function is

constant away from the origin, proxβfα(x) must be the identity for large values of x. For example,
if β > α, proxβfα(x) = x when |x|√αβ. Some other detail can be found in Example 1 of Section 6.
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In the rest of this subsection, we will give a general discussion on the proximity operator
proxβfα for f defined by (Qα). We assume that x ≥ 0 for a moment. By Lemma 2, we know that
proxβfα(x) ⊆ [0,∞), therefore by the definition of the proximity operator,

proxβfα(x) = argminu∈[0,∞)E(x, u) := fα(u) +
1

2β
(u− x)2.

In view of (Qα), the objective function E(x, u) with (x, u) ∈ [0,∞)× [0,∞) is

E(x, u) =

{
E1(x, u), if u ∈ [0, αb2];
E2(x, u), if u ∈ [αb2,∞),

(12)

where

E1(x, u) =
1

2

(
a2 −

1

α
+

1

β

)
u2 +

(
b2 −

1

β
x

)
u+

1

2β
x2, (13)

E2(x, u) =
1

2

(
αa22

αa2 + 1
+

1

β

)
u2 +

(
αa2b2
αa2 + 1

− 1

β
x

)
u+

αb22
2(αa2 + 1)

+
1

2β
x2. (14)

These two functions match at the line u = αb2, that is, for all x ≥ 0,

E1(x, αb2) = E2(x, αb2), (15)

which will facilitate the proofs of technical lemmas given later.
Define

s1(x) = argminu∈[0,αb2]E1(x, u) and s2(x) = argminu∈[αb2,∞)E2(x, u).

Obviously,
proxβfα(x) ⊂ s1(x) ∪ s2(x). (16)

Therefore, to figure out the expression of proxβfα(x), there is a need to know the structures of the
sets s1(x) and s2(x).

Since the quadratic polynomial E2(x, ·) is strictly convex, then we have for each x ≥ 0, s2(x) is
a singleton set as follows:

s2(x) = max

{
αb2,

αa2 + 1

αa2(a2β + 1) + 1

(
x− αa2βb2

αa2 + 1

)}

=

{
αb2, if 0 ≤ x ≤ αb2(a2β + 1);

αa2+1
αa2(a2β+1)+1

(
x− αa2βb2

αa2+1

)
, if x ≥ αb2(a2β + 1),

(17)

which clearly is a piecewise linear function of x.

Lemma 7. Let f be a piecewise quadratic sparsity promoting function as defined by (Q). If b2 = 0,
then proxβfα(x) = s2(x) for all x ≥ 0, where s2 is given by (17).

Proof. This follows from (12) and (14) that E(x, u) = E2(x, u) for (x, u) ∈ [0,∞) × [0,∞).

Next, we assume that b2 > 0 by Lemma 5. In view of the form of E1(x, ·) in (13), we consider
three cases: a2 − 1

α
+ 1

β
> 0, a2 − 1

α
+ 1

β
= 0, and a2 − 1

α
+ 1

β
< 0 which are equivalently to (i)

αb2(a2β+1) > βb2, (ii) αb2(a2β+1) = βb2, and (iii) αb2(a2β+1) < βb2, respectively. Accordingly,
E1(x, ·) is strongly convex, convex, or concave on [0, αb2]. The result for case (i) is stated in the
following lemma.
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Lemma 8. Let f be a piecewise quadratic sparsity promoting function as defined by (Q). If b2 > 0
and αb2(a2β + 1) > βb2, then

proxβfα(x) =





0, if 0 ≤ x < βb2;
α

(a2β+1)α−β
(x− βb2), if βb2 ≤ x ≤ αb2(a2β + 1);

αa2+1
αa2(a2β+1)+1

(
x− αa2βb2

αa2+1

)
, if x > αb2(a2β + 1).

(18)

Proof. From (16), we first find the set s1(x) since the set s2(x) is already given in (17). By the
assumption of this lemma, for each x ≥ 0, s1(x) contains only one element and is given as follows:

s1(x) =





0, if 0 ≤ x < βb2;
α

(a2β+1)α−β
(x− βb2), if βb2 ≤ x ≤ αb2(a2β + 1);

αb2, if x > αb2(a2β + 1).

To determine the expression of proxβfα(x) from the sets s1(x) and s2(x), we look at the behaviours
of the functions E1 and E2 in the first quadrant of the (x, u)-plane.

We use Figure 1 to visualize the minimizers of E1 and E2. Three vertical lines x = 0, x = βb2,
and x = αb2(a2β +1), and two horizontal lines u = 0 and u = αb2 partition the first quadrant into
six rectangular regions (I to VI). The solid red line is the graph of s1(x) while the dashed blue line
is the graph of s2(x).

We know E1(x, 0) ≤ E1(x, u) in region I and E2(x, αb2) ≤ E2(x, u) in region II, so E1(x, 0) <
E2(x, αb2) by Equation (15) for 0 ≤ x ≤ βb2. We observe E1(x, s1(x)) ≤ E1(x, u) in region III and
E2(x, αb2) ≤ E2(x, u) in region IV, so E1(x, s1(x)) < E2(x, αb2) by Equation (15) for βb2 ≤ x ≤
αb2(a2β + 1); Finally, we know E1(x, αb2) ≤ E1(x, u) in region V and E2(x, s2(x)) ≤ E2(x, u) in
region VI, so E2(x, s2(x)) < E1(x, αb2) by Equation (15) for x > αb2(a2β + 1). Thus proxβfα is
given by (18).

x

u

b
2

b
2

b
2
(a

2
+1)

I

II

III

IV

V

VI

x

u

b
2

b
2

b
2
(a

2
+1)

(a) (b)

Figure 1: An illustration of case (i): b2 > 0 and αb2(a2β+1) > βb2. The graphs of (a) s1(x) (solid)
and s2(x) (dashed) and (b) the resulting proximity operator proxβfα(x).

Next result is for case (ii).

Lemma 9. Let f be a piecewise quadratic sparsity promoting function as defined by (Q). If b2 > 0
and αb2(a2β + 1) = βb2, then

proxβfα(x) =





0, if 0 ≤ x < βb2;
[0, αb2], if x = βb2;

αa2+1
αa2(a2β+1)+1

(
x− αa2βb2

αa2+1

)
, if x > βb2.

(19)
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Proof. Similar to the proof of Lemma 8, we first give the explicit form of the set s1(x):

s1(x) =





0, if 0 ≤ x < βb2;
[0, αb2], if x = βb2;
αb2, if x > βb2.

We note that proxβfα can be set-valued only at βb2.
In Figure 2, two vertical lines x = 0 and x = βb2, and two horizontal lines u = 0 and u = αb2

partition the first quadrant into four rectangular regions (I to IV). The solid red line is the graph
of s1(x) while the dashed blue line is the graph of s2(x). It is identical to Figure 1 with the middle
regions collapsed to a line. Following the same reasoning as in Lemma 8, we see that (19) holds.

x

u

b
2

b
2
= b

2
(a

2
+1)

I

II

III

IV

x

u

b
2

b
2
= b

2
(a

2
+1)

(a) (b)

Figure 2: An illustration of case (ii): b2 > 0 and αb2(a2β + 1) = βb2. The graphs of (a) s1(x)
(solid) and s2(x) (dashed) and (b) the resulting proximity operator proxβfα(x).

Finally, we consider case (iii). Because βb2 and αb2(a2β + 1) have now switched positions, we
see that we must take care when dealing with the intermediate x values.

Lemma 10. Let f be a piecewise quadratic sparsity promoting function as defined by (Q). Define

τ+ =
αa2βb2
αa2 + 1

+

√
αβ(αa22β + αa2 + 1)b2

αa2 + 1
.

If b2 > 0 and αb2(a2β + 1) < βb2,

proxβfα(x) =





0, if 0 ≤ x < τ+;{
0, αa2+1

αa2(a2β+1)+1

(
τ+ − αa2βb2

αa2+1

)}
, if x = τ+;

αa2+1
αa2(a2β+1)+1

(
x− αa2βb2

αa2+1

)
, if x > τ+.

(20)

Proof. Again, we first give the explicit form of the set s1(x). Note that E1(x, ·) is concave in this
case, so the minimum occurs at the endpoints according to the position of the vertex. Thus,

s1(x) =





0, if 0 ≤ x < 1
2 (αb2(a2β + 1) + βb2);

{0, αb2}, if x = 1
2(αb2(a2β + 1) + βb2);

αb2, if x > 1
2(αb2(a2β + 1) + βb2).

This is set-valued at 1
2 (αb2(a2β + 1) + βb2).
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As before, we plot s1(x) and s2(x) in Figure 3. Three vertical lines x = 0, x = αb2(a2β+1), and
x = 1

2(αb2(a2β+1)+ βb2), and two horizontal lines u = 0 and u = αb2 partition the first quadrant
into six rectangular regions as shown in Figure 3(a).The solid red line is the graph of s1(x) while
the dashed blue line is the graph of s2(x). From this figure and (15), it is easy to see that regions I,
II, V, and VI behave as in the previous cases. That is, proxβfα(x) = s1(x) for 0 ≤ x ≤ αb2(a2β+1)

and proxβfα(x) = s2(x) for x ≥ 1
2(αb2(a2β + 1) + βb2).

To find the expression of proxβfα(x) for αb2(a2β + 1) < x < 1
2(αb2(a2β + 1) + βb2), from the

solid red line and the dashed blue in regions III and IV, we need to compare the value of E1(x, 0)
with E2(x, s2(x)). Using (17), a direct computation gives

E2(x, s2(x))− E1(x, 0) = − αa2 + 1

2β(αa2(a2β + 1) + 1)

(
x− αa2βb2

αa2 + 1

)2

+
αb22

2(αa2 + 1)
.

Notice that E2(x, s2(x)) − E1(x, 0) > 0 at x = αb2(a2β + 1) and E2(x, s2(x)) − E1(x, 0) < 0 at
x = 1

2(αb2(a2β + 1) + βb2). Hence, the quadratic polynomial E2(x, s2(x)) − E1(x, 0) has only one
root at τ+ that is between αb2(a2β + 1) and 1

2(αb2(a2β + 1) + βb2). So, the result of this lemma
holds and is illustrated in Figure 3(c).
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2
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2
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+
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II

III
1

III
2

IV
1

IV
2
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+

s
2
( +)
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Figure 3: An illustration of case (iii): b2 > 0 and αb2(a2β + 1) < βb2. The graphs of (a), (b) s1(x)
(solid) and s2(x) (dashed) and (c) the resulting proximity operator proxβfα(x).

With the above results, we know proxβfα(x) for x ≥ 0. The following lemma extends these
results to x ≤ 0.

Lemma 11. Let f be a piecewise quadratic sparsity promoting function as defined by (Q). Define
g : x 7→ f(−x). Then for x ≤ 0 and any positive numbers α and β, we have proxβfα(x) =
− proxβgα(−x) where proxβgα(−x) can be evaluated using the results in Lemmas 7-10.

Proof. Since f is sparsity promoting, so is g by Theorem 1. Moreover, fα = gα(−·) which leads to
proxβfα(x) = − proxβgα(−x) for all x. Note that

g(x) =

{
1
2a2x

2 − b2x, if x ≤ 0;
1
2a1x

2 − b1x, if x ≥ 0,

which is a piecewise quadratic sparsity promoting function. All results developed in Lemmas 7-10
can be applied for g. Therefore, the results of this lemma follow immediately.

In summary, we have the following result.
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Theorem 3. If f ∈ Γ0(R) is a quadratic sparsity promoting function as defined by (Q), then the
following statements hold.

(i) proxβfα is set-valued at at most one point at each side of the origin. Moreover, proxβfα is
piecewise linear on any interval not containing these possible set-valued points.

(ii) For any p ∈ proxβfα(x), |p| ≤ |x|. Furthermore, sgn(p) = sgn(x) if both p and x are nonzero.

Proof. All results follows directly from the expressions of proxβfα(x) given in Lemma 7-Lemma 11.

Remark 5. Theorem 3 guarantees that proxβfα will be a thresholding operator for any fα given
by (Qα). Furthermore, Lemmas 7-10 provide detailed and easily customizable forms which can be
tailored to applications.

5.3 Piecewise Quadratic on Intervals

Let C be a closed interval containing the origin and f a piecewise quadratic function defined by
(Q). We consider a function f̃ that is the restriction of f on the interval C as follows:

f̃ = f + ιC . (Q̃)

Lemma 12. Let f be a piecewise quadratic sparsity promoting function defined by (Q) and let C
be a closed interval on R such that {0} ( ∂f(0)∩C. Then f̃ defined in (Q̃) is a sparsity promoting
function. Moreover,

f̃α = fα + ιC . (Q̃α)

Proof. Since f is sparsity promoting, minx∈R f(x) = f(0) = 0. Because {0} ( ∂f(0) ∩ C, we
know that f̃(0) = minx∈C f(x) = minx∈R f(x) = 0. That is, f̃ achieves its minimum at the origin.
We further know that ∂f(0) = ∂f̃(0), hence {0} ( ∂f(0)∩C = ∂f̃(0)∩C. Therefore, f̃ is sparsity
promoting.

By Lemma 1 and Lemma 2, proxαf (x) ∈ C if x ∈ C. This indicates that for x ∈ C

envαf (x) = min
u∈R

{
f(u) +

1

2α
(u− x)2

}
= min

u∈C

{
f(u) +

1

2α
(u− x)2

}
= env

αf̃
(x).

The above identities yield f̃α = fα + ιC . This completes the proof of the result.

By the above lemma, for f̃ defined in (Q̃) we always assume that the coefficients in f satisfy
(11) and that C = [λ1, λ2] with λ1 ≤ 0 ≤ λ2 and λ2 − λ1 > 0.

Theorem 4. Let f̃ be defined in (Q̃), let x ∈ R, an let α and β be two positive numbers. Then the
following statements hold.

(i) If the set proxβfα(x) ∩C is not empty, then proxβfα(x) ∩ C ⊆ prox
βf̃α

(x);

(ii) If λ2 ∈ prox
βf̃α

(x), then λ2 ∈ prox
βf̃α

(y) for all y > x;

(iii) If λ1 ∈ prox
βf̃α

(x), then λ1 ∈ prox
βf̃α

(y) for all y < x;
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Proof. (i): Assume p is an element in proxβfα(x) ∩ C. We have

fα(p) +
1

2β
(p− x)2 = min

u∈R

{
fα(u) +

1

2β
(u− x)2

}

= min
u∈C

{
fα(u) +

1

2β
(u− x)2

}

= min
u∈R

{
f̃α(u) +

1

2β
(u− x)2

}
,

where the first equation is due to p ∈ proxβfα(x), the second equation is due to p ∈ C, the last one
is due to Lemma 12, hence, p ∈ prox

βf̃α
(x).

(ii): Since λ2 ≥ 0, the inclusion λ2 ∈ prox
βf̃α

(x) together with Lemma 2 implies that x ≥ 0 and

for all u ∈ [λ1, λ2],

f̃α(u) +
1

2β
(u− x)2 ≥ f̃α(λ2) +

1

2β
(λ2 − x)2.

With the above inequality, when y > x, we have that

f̃α(λ2) +
1

2β
(λ2 − y)2 = f̃α(λ2) +

1

2β
(λ2 − x)2 +

1

2β
(y − x)(y + x− 2λ2)

≤ f̃α(u) +
1

2β
(u− x)2 +

1

2β
(y − x)(y + x− 2u)

= f̃α(u) +
1

2β
(u− y)2

hold for all u ∈ [λ1, λ2]. This yields λ2 ∈ prox
βf̃α

(y).

(iii): The proof is similar to (ii).

Theorem 4 tells us that the for f̃ as in (Q̃), prox
βf̃α

will resemble the proximity operator of fα
around the origin and the proximity operator of ιC elsewhere. Due to the number of parameters,
there are a huge number of possible combinations. Rather than list all of the combinations here,
we provide the details for a specific function in Example 4 of Section 6.

We have shown that sparsity promoting quadratic and indicator functions have thresholding
proximity operators. The results essentially rely on the fact that envαf is quadratic for these
functions. In fact, quadratic and indicator functions are the only ones with this property [18], so
our discussion is a comprehensive method for obtaining thresholding rules.

6 Examples

In this section, we illustrate our theory by presenting several examples that are of practical interest.
For the first example, we collect and expand upon the previous discussion of f(x) = ‖x‖1 =∑n

i=1 |xi| for x ∈ Rn. The ℓ1-norm has been extensively used in myriad applications for promoting
sparsity.

The second example is the ReLU (Rectified Linear Unit) function. It is the most commonly
used activation function in convolutional neural networks or deep learning. The ReLU function on
Rn is defined as follows: f(x) =

∑n
i=1 max{0, xi}, where x ∈ Rn.

The third example is the elastic net penalty function which is widely used in statistics (see [26]).
The general form of the elastic net is the linear combination of the ℓ1 and ℓ2 norms as follows:
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f(x) = λ1

2 ‖x‖2 + λ2‖x‖1, where λ1 and λ2 are two nonnegative parameters. In our discussion, we
will simply choose λ1 = λ2 = 1. This is known as the naive elastic net.

The last example is similar to the first one, but restricted to a cube centered at the origin. The
function f is given as follows: f(x) = ‖x‖1 + ιC(x), where C = [−λ, λ]n. Generally speaking, this
function promotes the sparsity on C.

We notice that the function f in the above four examples can be written as

f(x) =

n∑

i=1

g(xi)

for x ∈ Rn and some specific function g. For example, g is | · |, max{0, ·}, 1
2 | · |2 + | · |, or

| · | + ι[−λ,λ], in examples 1, 2, 3, or 4, an analogue of f when Rn reduces to R. We further
have that proxαf (x) = proxαg(x1) × proxαg(x2) × · · · × proxαg(xn), envαf (x) =

∑n
i=1 envαg(xi),

proxβfα(x) = proxβgα(x1) × proxβgα(x2) × · · · × proxβgα(xn), and envβfα(x) =
∑n

i=1 envβgα(xi).
Therefore, in the following discussion we will restrict ourself on n = 1.

6.1 Example 1: The absolute value function

The first example is the absolute value function f : R → R : x 7−→ |x|, which is a special case of
the piecewise quadratic function in (Q) with a1 = a2 = 0, b1 = −1, and b2 = 1. This function is
nondifferentiable at the origin with argminx∈Rf(x) = {0} and ∂f(0) = ∂| · |(0) = [−1, 1].

-

/2

-

/2

(a) (b)

Figure 4: Example 1. (a) The graphs of f (solid), envαf (dotted), and (b) the graph of fα =
f(x)− envαf(x). Near the origin fα retains the structure of f , which is emphasized in black (solid-
dotted).

The proximity operator and the Moreau envelope of f with parameter α > 0 are

proxα|·|(x) = sgn(x)max{0, |x| − α} and envα|·|(x) =

{
1
2αx

2, if |x| ≤ α;
|x| − 1

2α, otherwise,

respectively. It is well know that proxα|·| is called the soft thresholding in literature of wavelet [8]
and envα|·| is Huber’s function in robust statistics [14]. Figure 5 shows the typical shape of the
proximity operator of f .

As defined in (Fα), for the absolute value function f ,

fα(x) := |x| − evnα|·|(x) =

{
|x| − 1

2αx
2, if |x| ≤ α;

1
2α, otherwise.

This function fα (see Figure 4(b)) is identical to the minimax convex penalty (MCP) function given
in [25], but motivated from statistic perspective.
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-

Figure 5: Example 1. The typical shape of proxαf .

The expression of proxβfα depends on the relative values of α and β. If β < α, Lemma 8 gives

proxβfα(x) =





0, if |x| ≤ β;
α

α−β
(|x| − β)sgn(x), if β < |x| ≤ α;

x, if |x| ≥ α.

(21)

This is the firm thresholding operator [12]. If β = α, Lemma 9 gives

proxβfα(x) =





0, if |x| < α;
[0, α], if |x| = α;
x, if |x| > α,

(22)

Finally, if β > α, Lemma 10 gives

proxβfα(x) =





0, if |x| < √
αβ;

{0, x}, if |x| = √
αβ;

x, if |x| > √
αβ;

(23)

The proximity operator proxβfα for different values of α and β is plotted in Figure 6.

-

- -

-

-
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(a) (b) (c)

Figure 6: Typical shapes of the proximity operator of | · |α for (a) β < α, (b) β = α, (c) β > α.
The sparsity threshold and the thresholding behavior depend on the relationship between α and β.

To end this example, we give several remarks on the proximity operators of proxαf and proxβfα
as follows:
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• Note that ∂f(0) = [−1, 1]. The results given in (21) (for β < α) and (22) (for β = α)
exactly match the first two statements of Theorem 2. For β > α, the proxβfα(x) = 0 for
all x ∈ [−√

αβ,
√
αβ] which includes the interval [−α,α] = α∂f(0) as indicated in the third

statement of Theorem 2.

• The operator proxαf forces its variable to zero when the absolute value is less than a given
threshold, and otherwise reduces the variable, in absolute value, by the amount of the thresh-
old. Like proxαf , proxβfα forces its variable to zero when the absolute value is less than a
given threshold, but it fixes variables whose absolute value exceeds a certain threshold.

• For β ≥ α the proximity operator proxβfα is almost identical to the hard threshold operator.
Let | · |0 be the ℓ0 “norm” on R, that is, |x|0 equals 1 if x is nonzero, 0 otherwise. The
proximity operator of | · |0 with parameter γ at x is

proxγ|·|0(x) =





{0}, if |x| < √
2γ;

{0, x}, if |x| = √
2γ;

{x}, if |x| > √
2γ,

which is called the hard thresholding operator with threshold
√
2γ. We can see that proxγ|·|0 =

proxβfα as long as 2γ = αβ and β > α. It is interesting that although | · |0 is discontinuous
and fα is continuous, they have the same proximity operator. Moreover, by fixing α and
varying the parameter β, the proximity operator proxβfα changes from the firm thresholding
operator to the hard thresholding operator.

6.2 Example 2: ReLU function

The ReLU (Rectified Linear Unit) function on R is

f(x) := max{0, x},

which is a special case of the piecewise quadratic function in (Q) with a1 = b1 = a2 = 0 and b2 = 1.
The proximity operator and the Moreau envelope of f with parameter α > 0 are

proxαf (x) = min{x,max{0, x − α}} and envαf (x) =





0 if x ≤ 0;
1
2αx

2, if 0 ≤ x ≤ α;
x− 1

2α, if x ≥ α,

respectively. By (Fα), fα(x) = f(x)− envαf (x) is

fα(x) =





0, if x < 0

x− 1
2αx

2, if 0 ≤ x ≤ α
α
2 , if x > α

Figure 7(a) depicts the graphs of f and envαf while Figure 7(b) presents the function fα. The
graph of proxαf is given in Figure 8.

As in example 1, the expression of proxβfα depends on the relative values of α and β. If β < α,

proxβfα(x) =





x, if x ≤ 0 or x ≥ α;

0, if 0 ≤ x ≤ β;
α(x−β)
α−β

; if β ≤ x ≤ α.

(24)
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(a) (b)

Figure 7: Example 2. (a) The graphs of f (solid), envαf (dotted), and (b) their difference fα =
f − envαf . The singularity of fα at zero is emphasized in black (solid-dotted).

Figure 8: Example 2. The typical shape of proxαf . The parameter α is the sparsity threshold.

If β = α,

proxβfα(x) =





x, if x ≤ 0 or x > α;

0, if 0 ≤ x < α;

[0, α] if x = α.

(25)

Finally, if β > α,

proxβfα(x) =





x, if x ≤ 0 or x >
√
αβ;

0, if 0 ≤ x <
√
αβ;

{0,√αβ}, if x =
√
αβ.

(26)

Note that ∂f(0) = [0, 1]. The results given in (24) (for β < α) and (25) (for β = α) exactly
match the first two statements of Theorem 2. For β > α, equation (26) shows that proxβfα(x) = 0
for all x ∈ [0,

√
αβ], which includes the interval [0, α] = α∂f(0) as indicated in the third statement

of Theorem 2.

6.3 Example 3: Elastic Net

The elastic net is a regularized regression method in data analysis that linearly combines the ℓ1
and ℓ2 penalties of the LASSO and ridge methods. In this example, we consider a special case of
the elastic net in R:

f(x) =
1

2
x2 + |x|.

This is an instance of the piecewise quadratic function given in (Q) with a1 = a2 = 1, b1 = −1
and b2 = 1. Clearly, f is nondifferentiable at the origin with argminx∈Rf(x) = {0}. Moreover,
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Figure 9: Example 2. Typical shapes of the proximity operator of fα for (a) β < α; (b) β = α; and
(c) β > α.

∂f(0) = ∂| · |(0) = [−1, 1].
The proximity operator and the Moreau envelope of f with parameter α > 0 are

proxαf (x) = max

{
0,

1

α+ 1
(|x| − α)

}
sgn(x) and envαf (x) =

{
1
2αx

2, if |x| ≤ α;
1

α+1 (
1
2x

2 + |x| − α
2 ), if |x| ≥ α,

respectively.
The graphs of f and envαf are plotted in Figure 10 (a). The graph of proxαf is plotted in

Figure 10 (b). As in the case of the absolute value function, proxαf sends all values between α and
−α to zero. Unlike the absolute value, it also contracts elements outside of this interval toward the
origin.

-

/2

-

(a) (b)

Figure 10: Example 3. (a) The graphs of f (solid) and envαf (dotted); and (b) the graph of proxαf .

Now fα, the difference between f and its Moreau envelope envαf , is

fα(x) =

{
α−1
2α x2 + |x|, if |x| ≤ α;
α

2(α+1)x
2 + α

α+1 |x|+ α
2(α+1) , if |x| ≥ α.

We remark that fα is convex when α ≥ 1 and nonconvex when α < 1. The graph of fα for α ≥ 1
and α < 1 are shown in Figure 11(a) and (b), respectively.

According to the discussion given in subsection 5.2, we consider three cases: β(α− 1) + α > 0,
β(α− 1) +α = 0, and β(α− 1) +α < 0. These cases are equivalent to α(β +1) > β, α(β +1) = β,
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(a) (b)

Figure 11: Example 3. The graph of fα when (a) α ≥ 1 and (b) α < 1. The singularity of fα at
zero is emphasized in black (solid-dotted).

and α(β+1) < β respectively. Recall that these cases correspond to the convexity (or lack thereof)
of fα(u) +

1
2β (u− x)2 for u close to zero.

Case 1: α(β + 1) > β. In this case, by Lemma 8 we have

proxβfα(x) =





0 if |x| ≤ β;
α

αβ−β+α
(x− β sgn(x)) if β ≤ |x| ≤ α(β + 1);

α+1
αβ+α+1 (x− αβ

α+1 sgn(x)) if α(β + 1) ≤ |x|.
(27)

Case 2: α(β + 1) = β. By Lemma 9 we have

proxβfα(x) =





0 if |x| ≤ β;

[0, α] sgn(x) if |x| = β;
α+1

αβ+α+1(x− αβ
α+1 sgn(x)) if β ≤ |x|.

(28)

Case 3: α(β + 1) < β. Define

τ =
αβ

α+ 1
+

√
αβ(αβ + α+ 1)

α+ 1
. (29)

as in Lemma 10. Then we have

proxβfα(x) =





0 if |x| ≤ τ ;

{0, ω} if |x| = τ ;
(α+1)x−αβ sgn(x)

αβ+α+1 , if |x| > τ,

(30)

where ω = (α+1)τ−αβ
αβ+α+1 . The graphs of proxβfα in the above three cases are plotted in Figure 6.3.

Below are some comments on this example.

• The function fα in the first two examples is nonconvex for any α > 0, however, by Proposi-
tion 2 it is convex if α ≥ 1 due to our elastic net function f being 1-strongly convex.

• The computation of the proximity operator proxβfα is discussed under three different situa-
tions, namely, α(β + 1) > β, α(β + 1) = β, and α(β + 1) < β. These situations are quite
nature from Proposition 2. Since f is 1-strongly convex, hence, the function fα+

1
2β (·−x)2 is

(1+β−1−α−1)-strongly convex if α(β+1) > β, convex if α(β+1) = β, and (α−1−1−β−1)-
semiconvex if α(β + 1) < β.
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Figure 12: Example 3. Typical shapes of proxβfα when (a) α(β + 1) > β, (b) α(β + 1) = β, and
(c) α(β + 1) < β.

• For the case of β ≤ α, we know that α(1+β) > β, so the proximity operator given (27) covers
both statements 1 and 2 in Theorem 2.

• For the case of β > α, there are three possible related cases. If α < β < α(β + 1) (resp. α <
β = α(β+1)), the proximity operator given (27) (resp. (28)) shows that this operator vanishes
all elements in β∂f(0) = [−β, β] ⊃ α∂f(0), fulfilling the third statement of Theorem 2. If
β > α(β + 1), we know that α < 1, β > α

1−α
, and τ defined in (29) satisfying

τ =
αβ

α+ 1
+

√
αβ(αβ + α+ 1)

α+ 1
>

α2

1− α2
+

α

1− α2
> α.

Hence, the proximity operator given (30) annihilates all elements in τ∂f(0) ⊃ α∂f(0), once
again fulfilling the third statement of Theorem 2.

6.4 Example 4: Absolute value on an interval centered at the origin

Let λ be a positive parameter. The absolute function on the interval [−λ, λ] centered at the origin
is

f(x) := |x|+ ι[−λ,λ](x),

which is a special case given in (Q̃) with a1 = a2 = 0, b1 = −1, b2 = 1, and C = [−λ, λ]. Its
proximity operator and Moreau envelope with parameter α at point x, respectively, are

proxαf (x) =





0, if |x| ≤ α;

sgn(x)(|x| − α), if α < |x| ≤ α+ λ;

λ sgn(x), if α+ λ < |x|;

and

envαf (x) =





|x| − α
2 + 1

2α (|x| − α)2, if |x| ≤ α;

|x| − α
2 , if α < |x| ≤ α+ λ;

|x| − α
2 + 1

2α (|x| − (λ+ α))2, if α+ λ < |x|.
Figure 6.4 depicts the graphs of f , envαf , and proxαf . We observe that on the interval [−λ, λ]

(the domain of fα) the envelope envαf is piecewise quadratic polynomial (Figure 6.4(a)) if α < λ
and is simply quadratic polynomial (Figure 6.4(b)) if α ≥ λ. It turns out that the expression of
proxβfα for α < λ is much more complicated than that for α ≥ λ as we will see below.
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Figure 13: Example 4. The graphs of f (solid, dashed) and envαf (dotted) when (a) α < λ and
(b) α > λ. The graph of proxαf is shown in (c). Between −(α + λ) and α + λ, proxαf is the soft
thresholding operator with sparsity parameter α; otherwise it projects onto this interval.

As both f and envαf depend on α and λ, the explicit expression for fα will depend on the
values of these parameters. To compute the proximity operator proxβfα , we consider separately
two main cases: α < λ and α ≥ λ.

Case 1: α < λ. In this case, we get (see Figure 6.4)

fα(x) = f(x)− envαf (x) =





α
2 − 1

2α(|x| − α)2, if |x| ≤ α;
α
2 , if a ≤ |x| ≤ λ;

+∞, if λ < |x|.
(31)

-

/2

-

Figure 14: Example 4. The graph of fα when α < λ with the singularity of fα at zero emphasized
in black (solid-dotted). Further, we see that fα agrees with Example 1 on [−λ, λ].

Depending on the values of α, β, and λ, we consider four possible cases: β < α < λ, β = α < λ,
α < β ≤ λ, and λ < β.

Case 1.1: β < α < λ. In this case, we have

proxβfα(x) =

{
max{0, α(|x|−β)

α−β
} sgn(x), if |x| ≤ α;

min{|x|, λ} sgn(x), if |x| > α.
(32)

Case 1.2: β = α < λ. In this case, we have

proxβfα(x) =





0, if |x| < α;

sgn(x)[0, α], if |x| = α;

sgn(x)min{|x|, λ}, if α < |x|,
(33)
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Case 1.3: α < β ≤ λ. In this case, we have

proxβfα(x) =





0, if |x| < √
αβ;

{0, sgn(x)√αβ}, if |x| = √
αβ;

min{|x|, λ} sgn(x), if
√
αβ < |x|,

(34)

Case 1.4: α < λ < β. We have

proxβfα(x) =





{0}, if |x| < αβ+λ2

2λ ;

{0, λ sgn(x)}, if |x| = αβ+λ2

2λ ;

{λ sgn(x)}, if αβ+λ2

2λ < |x|,
(35)

We now move on to the second main case.
Case 2: λ ≤ α. In this case, we get (see Figure 6.4)

fα(x) =

{
α
2 − 1

2α (|x| − α)2, if |x| ≤ λ;

+∞, otherwise.

-

- 2/2

Figure 15: Example 4. The graph of fα when λ ≤ α with the singularity of fα at zero emphasized
in black (solid-dotted). As before, fα agrees with Example 1 on [−λ, λ], but is cut off before it
plateaus.

To compute proxβfα , we consider three situations: β < α, β = α, and β > α.
Case 2.1: β < α. In this case, we have that

proxβfα(x) =





0, if |x| ≤ β;
α(|x|−β)

α−β
sgn(x), if β ≤ |x| ≤ β + α−β

α
λ;

λ sgn(x), if β + α−β
α

λ ≤ |x|,
(36)

Case 2.2: β = α. In this case, we have

proxβfα(x) =





0, if |x| < α;

sgn(x)[0, λ], if |x| = α;

λ sgn(x), if α < |x|,
(37)

Case 2.3: β > α. Similar to Case 1.4, we get

proxβfα(x) =





0, if |x| ≤ β − β−α
2α λ;

sgn(x){0, λ}, if |x| = β − β−α
2α λ;

λ sgn(x), if β − β−α
2α λ < |x|,

(38)

To end up this example, we comment on this example in a comparison with Theorem 2.
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Figure 16: Example 4. Typical shapes of proxβfα in (a) Case 1.1: β < α < λ, (b) Case 2.2:
β = α ≥ λ, and (c) Case 1.3: α < β ≤ λ. In each case, we see that the absolute threshold is λ,
while the sparsity threshold and thresholding behavior depend on α and β.

• Note that ∂f(0) = [−1, 1]. For β < α, both equations (32) and (36) show that the opera-
tor proxβfα vanishes all elements in β∂f(0) = [−β, β] as required by the first statement of
Theorem 2.

• For β = α, both equations (33) and (37) show that the operator proxβfα vanishes all elements
in ri(α∂f(0)) = (−α,α) as described in the second statement of Theorem 2.

• For β > α, since
√
αβ > α, αβ+λ2

2λ > α when α < λ < β, and β − β−α
2α λ ≥ α when α ≥ λ,

then equations (34), (34), and (38) shows that the operator proxβfα vanishes all elements in
ri(α∂f(0)) = (−α,α) as described in the third statement of Theorem 2.

To close this section, Table 1 lists the proximity operators proxβfα of all examples.

Table 1: Proximity operators for all examples

Function β < α β = α β > α

f(x) = |x| (21) (22) (23)

f(x) = max{0, x} (24) (25) (26)

β < α(β + 1) β = α(β + 1) β > α(β + 1)

f(x) = 1
2x

2 + |x| (27) (27) (27) (28) (30)

α < λ α ≥ λ α < λ α ≥ λ β ≤ λ β > λ α ≥ λ

f(x) = |x|+ ι[−λ,λ] (32) (36) (33) (37) (34) (35) (38)

‘
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7 Conclusions

We presented a simple scheme to construct a family of semiconvex structured sparsity promoting
functions from any convex sparsity promoting function. Theoretical guarantees of sparsity promo-
tion were proved in Section 4, among other properties related to the structure of these functions.
In Section 5, we expanded upon these results in the case of indicator and piecewise quadratic func-
tions. We demonstrated that the classical MCP can be derived under this framework, while also
providing several other examples motivated by a variety of applications.

Because of the structure of the proposed functions, we can use convex, nonconvex, and difference
of convex algorithms in practice. We plan on testing these examples on problems such as signal
denoising and variable selection. Furthermore, we hope to use the unique properties of these
functions to develop new algorithms. Other future work will also expand upon the theoretical
properties of these functions.
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