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Abstract

Motivated by the minimax concave penalty based variable selection in high-dimensional
linear regression, we introduce a simple scheme to construct structured semiconvex sparsity
promoting functions from convex sparsity promoting functions and their Moreau envelopes.
Properties of these functions are developed by leveraging their structure. In particular, we
provide sparsity guarantees for the general family of functions. We further study the behavior
of the proximity operators of several special functions including indicator functions of closed
convex sets, piecewise quadratic functions, and the linear combinations of them. To demonstrate
these properties, several concrete examples are presented and existing instances are featured as
special cases.

Keywords— Moreau envelope, proximity operator, variable selection, sparsity, thresholding
operator

1 Introduction

Natural signals and data streams are often inherently sparse in certain bases or dictionaries where
they can be approximately represented by only a few significant components carrying the most
relevant information [4) 15, 22]. Regularization methods are a powerful tool for sparse modeling
and have been widely used to analyze these data sets. A particular method depends on the choice
of penalty used to enforce constraints on the objective. The natural penalty function to promote
sparsity is the so-called fy-norm, which counts the nonzero components of a vector. However
minimizing the fg-norm is a combinatorial optimization problem which is known to be NP-hard.

To overcome these computational difficulties, regularization methods with the #;-norm as its
penalty function like LASSO [24] and Dantzig selectors [4] have been proposed. The convexity
of the /;-norm makes the implementation of the corresponding methods numerically tractable.
However, despite its appealing properties, convex regularization methods can suffer from the bias
issue that is inherited from the convexity of the penalty function. To address this, non-convex
penalties including the ¢4-penalty with 0 < ¢ < 1 [II], the smoothly clipped absolute deviation
penalty (SCAD) [10] and the minimax concave penalty (MCP) [25] have been proposed to replace
the £1-norm penalty.

In this paper, we introduce a family of semiconvex sparsity promoting functions of which each is
the difference of a convex sparsity promoting function with its Moreau envelope. Roughly speaking,
a sparsity promoting function is one that admits its global minimum at the origin but is nondif-
ferentiable there; a function is semiconvex if it becomes convex after adding a convex quadratic
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function to it. Semiconvex functions possess useful structure and obey generalizations of many
classical results from convex analysis (see, e.g. [3]).

We show that as long as a convex function is a sparsity promoting function, so is the difference
between it and its Moreau envelope. This result makes the construction of nonconvex sparsity
promoting functions effortless. Some interesting properties of such functions are: (i) they are always
nonnegative and semiconvex and (ii) they are a special type of difference of convex (DC) functions
with one having a Lipschitz continuous gradient. Due to these properties, we will refer to these
functions as structured semiconvex sparsity promoting functions. These properties enable us to
make use of the fruitful results, for example, in DC programming [23], to develop efficient algorithms
for the associated regularized optimization problems. What’s more, these functions provide a bridge
between convex and nonconvex sparsity promoting penalties. As a specific example, we recover the
MCP from the difference of the ¢;-norm and its envelope. It has been shown (e.g. in [2I]) that this
closely approximates the £yp-norm while preserving the continuity and subdifferentiability of ¢7.

The proximity operator, which was first introduced by Moreau in [17] as a generalization of the
notion of projection onto a convex set, has been used extensively in nonlinear optimization (see,
e.g., [1,2,[7]). The desired features of the aforementioned regularization methods can be explained
in terms of the proximity operators of the corresponding penalties. Therefore to determine the
effectiveness of our proposed functions, we must examine the behavior of their proximity operators.
The proximity operator of the fyp-norm is the hard thresholding operator, which annihilates all
entries below a certain threshold and keeps all entries above the threshold. In fact, we see that
hard thresholding rules are characteristic of penalties which are concave near the origin and constant
elsewhere. More generally, we provide sparsity guarantees in terms of thresholding behavior for
the entire family of structured semiconvex sparsity promoting functions, with further details for
certain special functions.

The rest of the paper is organized as follows. Section 2] provides motivation for the suggested
scheme. Section [3] recalls some necessary background in optimization and introduces the concept
of the sparsity promoting function. In Section Ml we construct a family of semiconvex sparsity pro-
moting functions which are the difference of convex sparsity promoting functions and their Moreau
envelopes. Many interesting properties of this family of functions are presented. In Section [ sev-
eral special sparsity promoting functions are presented and discussed thoroughly. Some examples
of practical interest are provided in Section Bl We conclude by discussing applications and plans
for future work in Section [}

2 Motivation

Our work on semiconvex sparsity promoting functions was motivated mainly by the minimax con-
cave penalty (MCP) based variable selection in high-dimensional linear regression [25]. Variable se-
lection is fundamental in statistical analysis of high-dimensional data. It is also easily interpretable
in terms of sparse signal recovery. We consider a linear regression model with n-dimensional re-
sponse vector y, n X p model matrix X, p-dimensional regression vector v, and n-dimensional error
vector e:

y=Xvy+e

The goal of variable selection is to recover the true underlying sparse model of the pattern {j :
v; # 0} and to estimate the non-zero regression coefficients v;, where «; is the j-th component of
. For small p, subset selection methods can be used to find a good guess of the pattern (see, e.g.,
[19]). However, subset selection becomes computationally infeasible for large p.



To overcome the computational difficulties of subset selection method, the method of penalized
least squares is widely used in variable selection to produce meaningful interpretable models:

P
i gl = X1+ 2l ). 0
where p(-, A) is a penalty function indexed by A > 0. The penalty function p(t, \), defined on [0, c0),
is assumed to be nondecreasing in ¢ with p(0,\) = 0 and continuously differentiable for ¢ € (0, c0).
The formulation in (1) includes many popular variable selection methods. For example, the best
subset selection amounts to using the ¢y penalty p(|t],\) = A—;]l{‘t#o} while LASSO [24] and basis
pursuit [5] use the /1 penalty p(|t[,\) = A[t|. Here 1;,cp) denotes the characteristic function and
Luepy equals 1 if u € E and 0 otherwise. The estimator (i.e, the hard thresholding operator) with
the £y penalty suffers from instability in model prediction while the estimator (the soft thresholding
operator) with the ¢; penalty suffers from the bias issue, severely interfering with variable selection
for large p [10]. To remedy this issue, the SCAD penalty was introduced in [10]. The estimator
with the SCAD penalty is continuous and leaves large components not excessively penalized. In
[25], the MCP penalty was introduced and is defined as follows

It x
HoA) = A {0,1——}d, P
10 = [ mac{0.1 - 2} do )
where the parameter a > 0. This penalty function (see [25]) minimizes the maximum concavity

K(p\) = sup plt2, A) — p(ts, A)
7 0<t1<tz<oco to —t1

subject to the unbiasedness % p(t,\) =0 for all t > a) and selection features % p(0+,) = A. The
number £(p, A) is related to the computational complexity of regularization method for solving (TI).
The simulations in [I0, 25] gave a strong statistical evidence that the estimators from the non-
convex penalty functions SCAD and MCP are useful in variable selection. Recently, an application
of MCP to signal processing was reported in [20].

Due to its success in applications, we take a closer look at MCP. The MCP function in (2]) can
be rewritten as

p([t], A) = A([t] — envay, (2)),
where env,y.| is the Moreau envelope of | - | with index a\ (see next section). Clearly, the MCP
penalty can be considered as a variation of the #; penalty function, that is, the absolution function
| - | is replaced by |- | —env,y.|. From this simple observation, we are drawn to consider a family
of penalty functions defined by
f—envys

with f satisfying some proper properties and a > 0.

The goal of this paper is to have a comprehensive study on mathematical properties of this
family of functions, particularly their proximity operators that are closely related to selection
features when adopted in ().

3 Sparsity Promoting Functions: Definition

In this section, we provide a formal definition of sparsity promoting and characterize convex spar-
sity promoting functions. We begin by collecting the necessary definitions and facts from convex
analysis.



All functions in this work are defined on R", Euclidean space equipped with the standard inner
product (-, -) and the induced Euclidean norm ||-||. We use I'(R™) (respectively I'g(R™)) to represent
the set of proper lower semicontinuous (respectively convex) functions on R™. The domain of an
operator A (respectively a function g) is denoted dom(A) (respectively dom(g)). The boundary of
a set S denoted by bd(S) is the set of points in the closure S which are not in the interior int(.S).
The relative interior of a set S denoted by ri(.S) is the interior of S when it is viewed as a subset
of the affine space it spans. For any € R™ and any § > 0, we use Bs(z) to denote the open ball
centered at x with radius 6. In particular, we are interested in B, (x) = {u : |lu — | < ||z[[}. For
a real number a,, the signum function sgn(a) is defined as

-1, ifa<0;
sgn(a) =4 0, ifa=0;
1, ifa>0.

For any g € I'(R™), the Fréchet subdifferential of g at x € dom(g) is the set

dg(z) = {d € R" : liminf g(w) = glw) = {dyu = x) > 0} .

U [l — ]

For any z ¢ dom(g), dg(z) = 0. If Og(x) is single-valued, dg(x) = {Vg(x)}. We leave off the
brackets when there is no risk of confusion. If g € I'o(R™), the above subdifferential reduces to the
usual one

dg(x) ={d € R" : g(y) > g(x) + (d,y — z),Vy € R"}.

If g € To(R™), then dg is a monotone operator; that is, for any z,y € dom(g), d € dg(x), and
d € dg(y), (d—d,y—x) >0.
For a function g in I'(R™), the Moreau envelope of f with parameter «, denoted by env,g, is

. 1
enviog() = inf { ) + e lu—al?}.

The associated proximity operator of g with parameter o at x is the set of all points at which the
above infimum is attained, denoted by prox,,(z):

. 1
Prox,,(r) = argmin,cgn {g(u) + %Hu — tz} .

When prox, () # 0, enva,(x) = g(p) + %Hp —z||? for all p € prox,, ().
Recall that for a proper function g on R”, the Fenchel conjugate ¢g* is defined as

g"(z) = sup {(u,z) — g(u)}.
ueR™

The Fenchel conjugate is closely related to the Moreau envelope. Indeed, it is shown in [2] that for
any z € R" and a > 0,

(94 51+ 12) t@7t) = (—emvag 50l ) 0 ®)

We now rigorously define what is meant by sparsity promoting and discuss how this captures
the behavior described in the previous section.



Definition 1. Let f € I'(R™). Then f is said to be a sparsity promoting function provided that (i)
f(0) =0 and f achieves its global minimum at the origin; and (ii) the set Of(0) contains at least
one nonzero element.

From the above definition, if f € T'(R™) is a sparsity promoting function, then by Fermat’s
rule 0 € 9f(0) and f must be nondifferentiable at the origin. As pointed out in [I0], the non-
differentiability of f at the origin is necessary for f to be a suitable penalty in () for variable
selection.

One typical sparsity promoting function is the absolute value function on R. The global min-
imum is |0] = 0, and 9] - [(0) = [—1,1]. We will return to this example throughout to illustrate
various properties and connect them to our motivating example MCP. Another example of a sparsity
promoting function is the indicator function ¢c that is defined by

0, ifr e C;
te(z) = {

400, otherwise,

where C' is a closed, convex set such that 0 € bdC and {0} C C. For further discussion of this
example, we refer to Section Bl Beyond these examples, the following result shows that every norm
Il on R™ is a sparsity promoting function.

Proposition 1. Let |||-|| be a norm on R™. Then the norm |||-||| is a sparsity promoting function.
Proof. It is obvious that the norm |[||-|| is convex and 0 = |||0]]| = mingegrn [|z[|. We further know
that

O(0) = {5 € B s max (s.u) < 1),

which is the unit ball associated with the dual norm of ||-||| (see, e.g. [13]). The result of this

proposition follows. O

It is well known that the relationship between the subdifferential and proximity operator of a
function f € I'o(R™) is characterized as follows (see, e.g., [2, [16]): for any o > 0

r € adf(y) & y = prox, ¢ (v +y). (4)
From this relationship, we get the following characterization of convex sparsity promoting functions.

Lemma 1. Let f € To(R™) be a sparsity promoting function and let o > 0. Then the following
statements hold.

(i) If x € a0f(0), then prox,s(r) = 0.
(ii) For all x € dom(f), | prox,s(z)| < [l=||.

Proof. (i): This is a direct consequence of equation ().
(ii): Note that prox,,(0) = 0 due to 0 € adf(0) and Item (i). Since prox,, is a nonexpansive
operator, then for all z € dom(f), || prox, ()| = || prox,s(x) — prox,¢(0)[ < [lz — 0]|. O

It follows from Lemma [I] that the proximity operator of a convex sparsity promoting function
shrinks all input towards the origin, and all input below a certain threshold are sent to zero. As an
example, the proximity operator of | - | is prox, (z) = sign(z) max{|z| — «,0}, which is the well-
known soft thresholding operator in wavelet literature [9]. This very behavior for the ¢;-penalty is
described by Tibshirani in the name LASSO: least absolute shrinkage and selection operator [24].



4 Semiconvex Sparsity Promoting Functions

In this section, we introduce the titular family of semiconvex sparsity promoting functions. For
any f € I'o(R™) and any positive number o > 0, we define

fa(@) = [(z) — envag(x). (Fa)

Clearly f, € T'(R™) is the difference of two convex functions. Returning to the example f(x) = |z,
we see that f,(z) = min{|z| — 122, 9}. As discussed in the previous section, this is the scaled the
minimax concave penalty (MCP) given in [25].

Sparsity promotion depends entirely on the behavior of a function and its subdifferential at the
origin. Since the Moreau envelope of any function f in I'g(R") is differentiable (see, e.g. [2]), the
subdifferentials of f, and f are related as follows (see [6]):

Ofa(x) = 0f (x) — Venvys(x). (5)

Due to this inherent relationship between 0f, and df, we see immediately that f, must be sparsity
promoting if f is.

Theorem 1. Let f € T'g(R"™) be a sparsity promoting function. Then the following statements hold:

(i) For any a > 0, the function f, defined by (Fg)) is a sparsity promoting function. Moreover,
9fa(0) = 0f(0);

(ii) Let g : x — f(—x). Then both g and g, are sparsity promoting. Moreover, go = fo(—-) and
994(0) = =0f(0).

Proof.  (i): As a direct consequence of the definition of the Moreau envelope, env,s(x) < f(x) for
all x € R™, hence f,(z) > 0 for all z € dom(f). Since f is a sparsity promoting function, we have
fa(0) = f(0) — envy(0) = 0. Therefore, mingegrn fo(x) = fo(0) = 0. On the other hand, from (&)
and the relation Venv,s(z) = (2 — prox,¢()), we have df,(0) = df(0) which contains at least
one nonzero element by assumption. Hence, f, is sparsity promoting.

(ii): Since ¢g(0) = f(0) = mingern f(z) = mingegrn g(x) and dg(0) = —0f(0), so g is sparsity
promoting. Hence, by Item (i), g, is sparsity promoting and dg,(0) = —9df(0). By the definition
of the Moreau envelope, envqy(z) = envyf(—x) which leads to go = fo(—). O

With Theorem [I we say f, is a structured sparsity promoting function if f is a convex sparsity
promoting function. We now prove that f, is semiconvex and show how its semiconvexity depends
on the convexity of f. We remind the reader of the definition. A function g € T'o(R") is o-strongly
convex if and only if there exists a constant o > 0 such that the function g — || - [|* is convex. A

function g € I'(R™) is p-semiconvex if g + 5| - || is convex.

Proposition 2. Let f be a function in To(R™). Then f,, defined by (Fg)), is é-semz’conveax. If, in
addition, f is p-strongly convex, then fq is (u — é)—strongly convex if p > é, convex if u = é, and
(L — p)-semiconver if p < *.

Proof.  Write

o _ 1 2 1 2
fa—f enVaf—f+< enVaf+2a” H > 204” H .
By @), for all z € R™ we have that
fal) = f@) + (£ =1 12) (a7t) = 2 af? (6)
« 200 200 ’
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which implies that f, is é—semiconvex.
In addition, if f is p-strongly convex, then there exists a convex function g such that f =
g+ 5| -1I* Replacing f(z) in @) by g(z) + &||z|*, we have

1 2
— )

fulae) =gte) + £+ 501 12) (@) +

It follows from the above equation that f, is (1 — é)—strongly convex if p > é, convex if p = é,
and (L — p)-semiconvex if p < 1. O

The following result is a direct consequence of Proposition 21

Corollary 1. Let f be a function in To(R™) and let f,, be defined by (Fgl). For any given x € R"
and positive parameters o and 3, we define

F(w) = fulu) + 550 @
whereuw € R™. Then, F is (5_1 — oz_l)—strongly convez if B < «a, convex if 5 = a, and (oz_l — 5‘1)-
semiconvex if B > «. If, in addition, f is p-strongly convex, then F is (,u —a 5_1)—str0ngly
convex if p > a~t — B, convex if p = o~ — 7L, and (a‘l - ,u)—semz'com)ez if p <
a1l — ﬁ_l.

As for convex sparsity promoting functions, we can further characterize the sparsity promotion
of fo by examining its proximity operator. Roughly speaking, we show that proxg;, (x) = 0 for
all x € min{a, 8} - 9f(0). Towards this end, we present two technical lemmas. The first is a
generalization of Lemma, [l

Lemma 2. Let f € T'g(R™) be sparsity promoting and fo as defined in (Fg)).
(i) For any x € dom(f), proxgy, (z) C Bjz ().
(ii) If x € min{a, B} - 3f(0), then 0 € proxgy ().

Proof.  For a fixed x € R", define I as in (), so that proxg; (v) = argmin,cgn F'(u).

(i): Since F'(0) = %wa and 0 € By |(z), to show proxg; (r) C B, (z), we only need to show
that for all u € R™\Byy(z), F(u) > F(0). Actually, if u € R"\Bj,(z), then [u —z|* > |z
Since f, is non-negative, it follows from (7)) that F'(u) > %HmHz = F(0). Thus the conclusion of
Item (i) holds.

(ii): To prove Item (ii), from Item (i) and F(0) = %Htz, it suffices to show F(u) > %Htz

for all u € Bj, (7). From the assumption of x € min{a, 8} - 9f(0), we have that for all u € R",
flu) > m@,u) Since f(0) = 0, we have env,f(u) < o=||ul® for all u € R™. Hence

1 2
(0 = ol

1
fal(u) > W

Therefore

1 1, 1 )
>_ - _ Ny —
> ) — gl + g5l — o]

_ [ G5 = 5 lull® + 51, if B <o
(5a = 23) Ul=l* = — 2]?) + gll= %, if & < .

So, F(u) > %H$H2 = F(0) holds for all u € B, (). This completes the proof of the lemma. [
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Remark 1. From item (i) of Lemma[2 we see for z € R, sgn(z) = sgn(p) if p € proxg; (x) and both
r and p are simultaneously nonzero. We note that this is also true for prox, ;(z).

The following technical lemma will greatly simplify the proof of Theorem 2l our main result.
While the lemma may seem strange at first glance, the conditions therein arise naturally from the
computation of the proximity operator.

Lemma 3. Let f € To(R™) be a sparsity promoting function and w € dom(9f). If w € 9f(0) and
there exists a nonzero § € ri(0f(0)) NOf(w), then w = 0.

Proof. Assume that w # 0. First, since w € 9f(0) and £(0) = 0, we have f(w) > |lw||* > 0.
Second, since £ € 9f(0)) Ndf(w), then & € 9f(0) implies f(0) + f*(§) = (0,&) while £ € df (w)
implies f(w) + f*(&) = (£, w). Hence,

fw) = (& w). (8)
By the monotonicity of df, for any n € 9f(0), (¢ — n,w) > 0. Together with (8]) we get
flw) > (n,w). (9)

Finally, since £ € ri(0f(0)) and 0f(0) is convex, there exists A > 1 such that \{ € 9f(0). By
@) and (@), we get
flw) = (A w) = Af(w)
which implies f(w) < 0. This is a contradiction, so w = 0.
U

Now for our main result which characterizes the sparsity promoting structure of f, in terms of
the sparsity threshold of its proximity operator.

Theorem 2. Let f € T'o(R™) be a sparsity promoting function. For any x € dom(f), the following
statements hold:

(i) If B < «, then proxgy, (z) = 0 for z € BOf(0);
(ii) If B = «a, then proxg (x) =0 for x € ri(adf(0));
(iil) If B > «, then proxgy, (z) = 0 for z € adf(0).

Proof. Given x € R", define F(u) = fo(u) + %Hu —z||?.
(i) We first consider the situation < «. From Corollary Il we know that F' is (% - l)—

o
strongly convex and therefore has a unique minimizer. By Lemma 2l x € 59f(0) implies that
0 = argmin,cgn F'(u). Together these imply that proxg, () = 0.

(ii) Next we consider o = . From Corollary [0, F'(u) is convex but not strongly, and the
minimizer may no longer be unique. By Lemma[2 0 € proxgy, (z) for x € adf(0).

Now suppose = € ri(adf(0)) and let w* be an element of proxgy, (z). To show that w* =
0, by identifying o f, =, and w*, respectively, as f, £, and w in Lemma [B] it suffices to show
that z € 9(af)(w*) and w* € d(af)(0). By Fermat’s rule, w* € proxgy, (z) implies that 0 €
Ofa(w*)+ %(w* — ). As we saw earlier that 0f,(w*) = 0f(w*) — Venvys(w*) and Venvyf(w*) =
1

< (w* — prox, s(w*)), this can be rewritten as

%az + <é — %) w* — éproxaf(w*) € of (w*). (10)

8



From (I0), we get x — prox,s(w*) € d(af)(w*). Therefore the conditions » € d(af)(w*) and
w* € d(af)(0) hold if and only if prox, ;(w*) = 0.
Since = € 9(af)(0), by the monotonicity of df we have

(z — prox, p(w*) — z,w") > 0.

That is, (prox,s(w*),w*) < 0. But due to the nonexpansiveness of prox,; and the fact that
prox, (0) = 0,

(prox, (w*), w*) > || proxg s (w*)|*.
This implies that prox, ;(w*) = 0. Thus by Lemma [3 w* = 0.

(iii) Finally, we consider the situation of 8 > «. In this case, we assume that 0 # z € adf(0).
From Lemma 2] we know that 0 € proxg (). We further show that the point 0 is the only element
in proxgy, (7).

Recall from the proof of Lemma [2] that when 8 > «,

1 1 9 9 1 9 1 9
P 2 (5 — 55 ) ol = hu = alf) + g5l = 5lel?.

Actually, if w* € proxg;, (), then w* must be on the boundary of Bj,(x) and F(w*) = fo(w*) +
%Hw* —z|? = %Htz Thus, fo(w*) = 0, that is, f(w*) = env,f(w*). We also know that
")

f(w*) > 2(z,w*) and env,p(w*) < o= |lw*||%. Therefore, because 2(z, w*) = ||w*||%, we get

* 1 *
emvs(u”) = 5w,
which implies that 0 = prox, ;(w*). On the other hand, the identity f(w*) = env,y(w*) indicates
w* = prox,s (w*). Therefore, w* = 0. This completes the proof. O

Remark 2. Ttem (iii) of the theorem is not tight. In fact in every example, when 3 > «, proxg;, (z) =
0 for all z in a set strictly larger than adf(0). However, the exact form of this set depends entirely
on the function in question.

5 Some Special Functions

The last section dealt primarily with behavior around the origin for general semiconvex sparsity
promoting functions. In this section, we describe the structure of f, on the entire domain for
special classes of sparsity promoting functions, namely indicator functions, piecewise quadratic
functions, and their linear combinations. The study of these particular functions is motivated by
the thresholding behavior of their proximity operators.

5.1 Indicator Functions

Indicator functions are commonly used to include constraints in the objective of an optimization
problem. We show in this section that they are not only fixed by the mapping f — f, but they
are the only functions that are fixed.

Throughout, we assume C is a closed convex set in R with boundary bd(C). Recall that the

indicator function of C' is
0 if z € C;
wo(z) =47 ’ T
c(@) {—l—oo, otherwise. 2

We first determine when this is a sparsity promoting function.



Lemma 4. The indicator function vc is sparsity promoting if and only if 0 € bd(C) and {0}
subsetneqC.

Proof. As long as 0 € C, 1¢(0) = 0, but to be sparsity promoting, there must also be a nonzero
element in 0v(0). Recall that for any =, dvc(x) is the normal cone to C' at x. That is,

{u:sup(C —z,u) <0}, ifzeC

0, otherwise.

duc(x) = Ne(z) = {

Note that for € C, the normal cone is nonempty because {0} C Ng(z). We further recall the
following result from [2]:
z € int(C) <= N¢(z) ={0}.

If 0 € bd(C), it follows that N¢(x) is nonempty and contains a nonzero element. Conversely, if
we assume N¢(0) is nonempty, we must have 0 € C. If we further assume that N¢(0) contains a
nonzero element, then 0 ¢ int(C'). So we see that 0 € bd(C') is equivalent to the sparsity promoting
definition given in Section [3 O

It is well known (see, e.g. [2]) that prox,,,(r) = Pc(z) and that p = Po(x) if and only if
x —p € No(p). Here Po(x) is the unique operator such that ||z — Po(x)]| is the distance from x
to C. In terms of the proximity operator, this becomes 0 = prox,, (=) if and only if x € N¢(0).
Moreover enve,. (z) = 5= | Pc(z) — z|? and

(tc)a(z) = 1o(z) —enva,. (z) = to(z). (Zo)

This immediately implies that proxg,,), () = Po(z) as well. The converse of the above is also
true.

Proposition 3. Let f € To(R"™) be sparsity promoting. If f = fo as defined by (Fgl), then
[= Ldom(f)-
Proof. Notice that dom(env,f) = R" so dom(f,) = dom(f). Hence f = f, implies that env,s(z) =

0 for all z € dom(f). Because f is sparsity promoting, f(x) > 0 for all . Hence, 0 = env,f(z) =
mingern {f(u) + 5=||u — 2[|?} for all x € dom(f) implies that f(z) = 0 for all x € dom(f). O

Remark 3. The proposition is true more generally if f € I'o(R™) is simply nonnegative.

5.2 Piecewise Quadratic Functions

Piecewise quadratic functions include a variety of important examples: absolute value, ReLU (rec-
tified linear unit), and elastic net. We generalize the proximity-related properties of these functions
and provide a framework for generating customized penalty functions.

The piecewise quadratic functions we consider here have the following form

1 (Q)

o) = %a1$2 + b1z, if z <0
5&2:172 + bozx, if x>0,

where the coefficients a1, as, b1, and by are real numbers. The characterization of sparsity promoting
functions having a form given (Q) is established in the following lemma.

Lemma 5. Let f be a piecewise quadratic function defined by (Q). Then f is sparsity promoting
if and only if
ar >0, ag >0, b1 <0< b2, and by — by > 0. (11)
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Proof. “=": Since f is sparsity promoting, then the assumption that f attains its minimum at 0
implies that a; > 0, ag > 0, by <0, and b > 0. One can directly verify that df(0) = [b1,b2]. This
must contain at least one nonzero element, hence, by — b; > 0.

“<”: One can see that f is nonincreasing on (—o00,0] from a; > 0 and b; < 0 and that f is
nondecreasing on [0,00) from ag > 0 and by > 0. So f achieves its global minimum at 0. The
condition by — by > 0 implies that the set f(0) = [b1, bo] has nonzero elements. Therefore, f is a
sparsity promoting function. ]

Remark 4. As a by-product of the above lemma, if f given by () is a sparsity promoting function,
then f must be convex, hence f € I'g(R).

In the rest of this section, we always assume that the coefficients in (Q) satisfy the conditions
listed in ([{I]). The proximity operator and Moreau envelope of f with index v at € R are

prox, ¢(z) = min {O’ aar +1( Oébl)}, if £ <0;
" max {0’ aa2+1( Oébg)}’ ifz > 0;
and
1 ab? . .
m(f(x)—T), if v < aby;
envaf(x) = %gj% if ab; < 2 < abe;
ab? .
a1 (f(@) = a0, if &> aby.

respectively. From the above two equations, we get

aa ab? .
aalilf(x)‘i‘m, if x < aby;
falz) = f(z) — %:172 if aby < x < abs; (Qa)
aa b2 .
aa2-2|-1f( r) + m if x > abg,

which is a piecewise quadratic polynomial with possible breakpoints at aby, 0, and aby. We know
this f, is sparsity promoting by Theorem [II Some other properties of this function which follow
immediately from (@) are collected in the following lemma.

Lemma 6. Let f € Tg(R) be a sparsity promoting function defined by (9). Then the following
hold:

(i) fo is nonincreasing on (—o0,0] and is nondecreasing on [0,00);

(11) fo on (—o0,abi] is conver and is a degree 2 polynomial if a; > 0 or constant if a1 = 0;
(i1i) fo on [abe,00) is conver and is a degree 2 polynomial if as > 0 or a constant if ag = 0;
(iv) fo on [aby,abs] is convex if min{a,as} > 1

Just as the sparsity promoting property corresponds to certain behavior in the proximity oper-
ator near the origin, this result in Lemma [l guarantees special properties of the proximity operator
away from the origin. To illustrate, we return to f(x) = |z|. ThlS satlsﬁes (Q) with a; = a2 =0,
by = —1, and by = 1. We saw in Section @ that f,(2) = min{|z|— 527, $}. Because this function is
constant away from the origin, proxg;, (z) must be the identity for large values of x. For example,
if > a, proxgy, (z) = = when |z]y/af. Some other detail can be found in Example 1 of Section [6l
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In the rest of this subsection, we will give a general discussion on the proximity operator
proxgs, for f defined by (Q,). We assume that = > 0 for a moment. By Lemma 2l we know that
proxgy, (z) C [0,00), therefore by the definition of the proximity operator,

. 1
proxgy, (r) = argmin,c(o o0y £(z,u) == fo(u) + %(u — )2

In view of (Qg)), the objective function E(x,u) with (z,u) € [0,00) x [0,00) is

B ={ B0 e o) (2
where
Ei(x,u) = % (ag—é—l—%) u® + (bg—%:l?)u—l-%lj, (13)
Ey(z,u) = % <a;;a§_ 1 + %) u? + <;;ZQ_I;21 — %az) u+ 2(04%)%—#1) + %x? (14)
These two functions match at the line u = abo, that is, for all x > 0,
Ey(z,abg) = Es(x, aby), (15)
which will facilitate the proofs of technical lemmas given later.
Define
s1(x) = argming (g ap,) E1(z,u) and  so(w) = argming,c(qp, o0) £2(z, u).
Obviously,
proxgy, (z) C s1(x) U sa(x). (16)

Therefore, to figure out the expression of proxg; (), there is a need to know the structures of the
sets s1(z) and sy(z).

Since the quadratic polynomial Fs(x,-) is strictly convex, then we have for each x > 0, sa(x) is
a singleton set as follows:

{ aas + 1 < oasBby > }
so(x) = max<q aby, T

aas(asf +1) + 1 _aa2+1
{abz, 10 <@ < abaoaf + 1) ()
aaQ(?lZ%-l-l)—l—l (.Z' - ?;(11224-%)’ if x = ab2(a25 t 1)7

which clearly is a piecewise linear function of .

Lemma 7. Let f be a piecewise quadratic sparsity promoting function as defined by (Q)). If bo = 0,
then proxgy, () = sa(w) for all x > 0, where sy is given by (I7).

Proof. This follows from (I2]) and (I4) that E(x,u) = Ea(z,u) for (z,u) € [0,00) x [0,00). O

Next, we assume that bs > 0 by Lemma 5l In view of the form of Fy(z,-) in (I3]), we consider
three cases: ao — é +1>0 a9 — é + 1 =0, and ay — é + 1 < 0 which are equivalently to (i)
abs(azB+1) > Bbe, (ii) abs(azB+1) = Bbe, and (iii) aby(azS+1) < Bby, respectively. Accordingly,
E;(x,-) is strongly convex, convex, or concave on [0, abs]. The result for case (i) is stated in the
following lemma.
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Lemma 8. Let f be a piecewise quadratic sparsity promoting function as defined by (). If bo >0
and aby(azfS + 1) > Bby, then

0, if 0 < < fby;
proxgy, (z) = { T@prna—p & = Ab2), ) if Bb2 < = < aby(azf +1); (18)
wataiye (v = §23) . o> abalard + ).

Proof.  From ([I6]), we first find the set s1(x) since the set sy(x) is already given in (I7). By the
assumption of this lemma, for each x > 0, s1(x) contains only one element and is given as follows:

0, if 0 <x < Bbo;
Sl(aj) = m(x — BbQ), if BbQ S X S ab2(a2,8 + 1),
abo, if > aby(agf +1).

To determine the expression of proxg;, () from the sets s1(x) and s2(z), we look at the behaviours
of the functions F; and Fs in the first quadrant of the (z,u)-plane.

We use Figure [ to visualize the minimizers of F1 and E5. Three vertical lines z = 0, x = 8bo,
and x = aby(azf+ 1), and two horizontal lines u = 0 and u = abs partition the first quadrant into
six rectangular regions (I to VI). The solid red line is the graph of s;(x) while the dashed blue line
is the graph of sa(z).

We know Fy(z,0) < Eq(x,u) in region I and Es(x,abs) < Eo(x,u) in region II, so Eq(z,0) <
Es(x, ab2) by Equation (I5]) for 0 < 2 < by. We observe Ei(x,si(x)) < Ei(x,u) in region III and
Es(x,aby) < Es(x,u) in region IV, so Fi(z,s1(x)) < Fa(z,aby) by Equation (I5) for Sby < x <
abs(azf + 1); Finally, we know Ej(z,abs) < Ej(z,u) in region V and Es(x, so(x)) < Eo(z,u) in
region VI, so Ea(7,s2(7)) < Ei1(x,aby) by Equation ([I5) for x > aba(azf + 1). Thus proxg; is
given by (I8]). O

ud ud

ab, s ab,

b, abz(azﬁﬂ) b, abz(azﬁﬂ)
(a) (b)

Figure 1: An illustration of case (i): by > 0 and abg(az8+1) > Bbe. The graphs of (a) s1(z) (solid)
and sz(x) (dashed) and (b) the resulting proximity operator proxg; ().

Next result is for case (ii).

Lemma 9. Let f be a piecewise quadratic sparsity promoting function as defined by (). If ba >0
and aby(azf + 1) = Bby, then

0, if 0 <z < Bby;
proxs, (1) = [0-ab2l; if © = fbo; (19)
aaz+1 aas Bb .
aaz(azzﬁ-:l)—i-l <‘T - aazﬁ_lz) s Zfl' > ,Bbg,
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Proof.  Similar to the proof of Lemma [§] we first give the explicit form of the set s1(z):

0, if 0 < < Bby;
31(33) = [07 Oébg], if z = Bby;
aba, if x > (bs.

We note that proxg; can be set-valued only at [bs.

In Figure @] two vertical lines x = 0 and x = 8by, and two horizontal lines © = 0 and u = abs
partition the first quadrant into four rectangular regions (I to IV). The solid red line is the graph
of s1(x) while the dashed blue line is the graph of so(x). It is identical to Figure [[] with the middle
regions collapsed to a line. Following the same reasoning as in Lemma [§] we see that (I9]) holds.

O

ab ab

x
x

fb,=ab,(a,[+1) fb,=ab,(a,6+1)
(a) (b)

Figure 2: An illustration of case (ii): by > 0 and aba(az2f + 1) = Bba. The graphs of (a) si(x)
(solid) and sg(x) (dashed) and (b) the resulting proximity operator proxg; ().

Finally, we consider case (iii). Because by and aby(azf8 + 1) have now switched positions, we
see that we must take care when dealing with the intermediate x values.

Lemma 10. Let f be a piecewise quadratic sparsity promoting function as defined by (Q). Define

o aas Bby n \/aﬁ(ozagﬁ + aag + 1)be

aas + 1 aaz + 1
If b2 > 0 and OébQ((lgﬁ + 1) < 5()2,

0, if0<z<7T;
+1 + aaz b ; — .
ProXgrs, (l‘) = {O’ aaz((z(;zﬁ—i-l)-‘rl (T - aa22+12)} ’ fo =T (20)
+1 Bb : n
aag((flgzﬁ—i-l)-‘rl (l‘ o (2:11122-1-12) ’ fz>1"

Proof. Again, we first give the explicit form of the set s1(x). Note that Ej(x,-) is concave in this
case, so the minimum occurs at the endpoints according to the position of the vertex. Thus,

0, ifo<z< %(abg(a25+1)+ﬁb2);
si(z) =< {0,abe}, ifz= %(aln(azﬁ + 1) + Bbe);
abs, if © > 3(aba(azB + 1) + Bbs).

This is set-valued at $(abs(azf + 1) + Bba).
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As before, we plot s1(z) and sa(z) in Figure[Bl Three vertical lines = 0, z = aba(agf+1), and
x = %(O&bz(azﬁ + 1) + Bb2), and two horizontal lines v = 0 and u = aby partition the first quadrant
into six rectangular regions as shown in Figure Bl(a).The solid red line is the graph of s;(x) while
the dashed blue line is the graph of so(z). From this figure and (I5)), it is easy to see that regions I,
I, V, and VI behave as in the previous cases. That is, proxgy, (z) = s1(z) for 0 <z < aby(azf+1)
and proxg; () = sa(x) for @ > 3(abz(azB + 1) + Bb).

To find the expression of proxgy, (z) for abz(azf +1) <z < $(aby(asf + 1) + Bba), from the
solid red line and the dashed blue in regions IIT and IV, we need to compare the value of Ej(x,0)
with Fs(z, s2(x)). Using ([I7T), a direct computation gives

By (x, s9(x)) — By(x,0) =

B aas + 1 <m _ aazfBbs )2 N ab?
26(caz(azBf+1) +1) aay + 1 2(aag +1)°

Notice that Ea(z,s2(x)) — Ei(x,0) > 0 at z = aba(azf + 1) and Ea(x,sa(x)) — Ei(x,0) < 0 at
z = 4(aby(azB + 1) + Bbs). Hence, the quadratic polynomial Es(z,s2(z)) — E1(x,0) has only one
root at 7 that is between abs(az8 + 1) and 4 (aba(az3 + 1) + Bbs). So, the result of this lemma

holds and is illustrated in Figure Bfc). O
u‘ . u‘ . u‘
’ ’
’ ’
’ ’
’ /
1 Vg Vi 1 NV, IV, Vi
’ ’ 5,()
’ ’
“bz 4 ab2 4
11 % moomy v
ra + X o
ab,(@,0+1) (ab,(a,f+1)+5b,)I2 ab,(@,0+1) (ab(a,+1)+5b,)i2 i

(a) (b) (c)

Figure 3: An illustration of case (iii): by > 0 and abs(asf + 1) < Bby. The graphs of (a), (b) s1(z)
(solid) and sa(x) (dashed) and (c) the resulting proximity operator proxgy ().

With the above results, we know proxg; (x) for z > 0. The following lemma extends these
results to z < 0.

Lemma 11. Let f be a piecewise quadratic sparsity promoting function as defined by (Q)). Define
g : x> f(=x). Then for x < 0 and any positive numbers a and B, we have proxgs (v) =
—proxg,, (—x) where proxg, (—x) can be evaluated using the results in Lemmas [HI0.

Proof. Since f is sparsity promoting, so is g by Theorem [Il Moreover, f, = go(—-) which leads to
proxgy, (z) = — proxg, (—w) for all x. Note that

1

() %@:172 —box, ifx <0
€Tr) =
g §a1x2 — bz, ifx>0,

which is a piecewise quadratic sparsity promoting function. All results developed in Lemmas [ZHI0]
can be applied for g. Therefore, the results of this lemma follow immediately. O

In summary, we have the following result.
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Theorem 3. If f € T4(R) is a quadratic sparsity promoting function as defined by (Q)), then the
following statements hold.

(i) proxgy, is set-valued at at most one point at each side of the origin. Moreover, proxgy, 1s
piecewise linear on any interval not containing these possible set-valued points.

1) For any p € proxgs (x), |p| < |z|. Furthermore, sgn(p) = sgn(x) if both p and x are nonzero.
Bfa

Proof.  All results follows directly from the expressions of proxsy, () given in Lemma[7} Lemma [Tl
]

Remark 5. Theorem [3] guarantees that proxgs will be a thresholding operator for any f, given
by (Dal). Furthermore, Lemmas [THI0 provide detailed and easily customizable forms which can be
tailored to applications.

5.3 Piecewise Quadratic on Intervals

Let C be a closed interval containing the origin and f a piecewise quadratic function defined by
(D). We consider a function f that is the restriction of f on the interval C as follows:

f=f+uw. (Q)

Lemma 12. Let f be a piecewise quadratic sparsity promoting function_defined by (Q) and let C
be a closed interval on R such that {0} C f(0)NC. Then f defined in (@) is a sparsity promoting
function. Moreover,

fa:fa“‘LC- (éa)

Proof.  Since f is sparsity promoting, minger f(x) = f(0) = 0. Because {0} € 9f(0) N C, we
know that f(0) = mingec f(x) = mingeg f(z) = 0. That is, f achieves its minimum at the origin.

We further know that 0f(0) = 9f(0), hence {0} C 9f(0)NC = df(0) N C. Therefore, f is sparsity
promoting.
By Lemma [[land Lemma [ prox,(z) € C'if x € C. This indicates that for x € C

. 1 o . 1 2| _ -
envy () —Iglelﬁ{f(u)—i- 2a(u x) } —Iglelg{f(u)—k 2a(u x) } = env,, 7).
The above identities yield f; = fo + tc. This completes the proof of the result. O

By the above lemma, for f defined in (@) we always assume that the coefficients in f satisfy
(ED:D and that C = [)\1,)\2] with A1 <0 < Xy and Ay — A1 > 0.

Theorem 4. Let f be defined in (@), let € R, an let a and B be two positive numbers. Then the
following statements hold.

(i) If the set proxgs (x) N C is not empty, then proxg (v)NC C Prox s (x);
(i) If Ay € prox, s (x), then \g € ProX s (y) for all y > x;

(i) If \ € Proxg (x), then A\ € ProX s (y) for ally < x;
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Proof.  (i): Assume p is an element in proxg, (v) N C. We have

o)+ 55— = min{ ol + 50—
= mip{ o) + 550 - 27}
= i {Fut) + 550 - 22},

where the first equation is due to p € proxgy, (x), the second equation is due to p € C, the last one
is due to Lemma [I2] hence, p € prox, (x).

(ii): Since A2 > 0, the inclusion Ay € prox 57, (x) together with Lemma 2l implies that > 0 and
for all u € [A1, Aa],

i(/\2 — :E)2.

fa( )—I——(’LL—:E) 2 fa(A2)+ 25

26
With the above inequality, when y > x, we have that

Faldo) = (o 92 = Falda) oz (o — 2) + o= (y — 2)(y + 2 — 200)

23 26 25
< fa()+%(u—:n) +%( y—x)(y+z—2u)
= hatw)+ 55—
hold for all w € [A1, A2]. This yields A\ € prox, (y).
(iii): The proof is similar to (ii). O

Theorem [4] tells us that the for f as in (@), Prox, . will resemble the proximity operator of f,
around the origin and the proximity operator of tc elsewhere. Due to the number of parameters,
there are a huge number of possible combinations. Rather than list all of the combinations here,
we provide the details for a specific function in Example 4 of Section [l

We have shown that sparsity promoting quadratic and indicator functions have thresholding
proximity operators. The results essentially rely on the fact that env,; is quadratic for these
functions. In fact, quadratic and indicator functions are the only ones with this property [18], so
our discussion is a comprehensive method for obtaining thresholding rules.

6 Examples

In this section, we illustrate our theory by presenting several examples that are of practical interest.

For the first example, we collect and expand upon the previous discussion of f(x) = ||z|; =
>oiq |zi| for z € R™. The ¢1-norm has been extensively used in myriad applications for promoting
sparsity.

The second example is the ReLU (Rectified Linear Unit) function. It is the most commonly
used activation function in convolutional neural networks or deep learning. The ReLLU function on
R"™ is defined as follows: f(z) =" ; max{0,z;}, where xz € R".

The third example is the elastic net penalty function which is widely used in statistics (see [20]).
The general form of the elastic net is the linear combination of the ¢; and ¢5 norms as follows:
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flz) = %Htz + X2||z]]1, where A\; and A9 are two nonnegative parameters. In our discussion, we

will simply choose A\; = Ao = 1. This is known as the naive elastic net.

The last example is similar to the first one, but restricted to a cube centered at the origin. The
function f is given as follows: f(z) = ||z||1 + tc(z), where C' = [-\, A]". Generally speaking, this
function promotes the sparsity on C.

We notice that the function f in the above four examples can be written as

@)=Y gla)
i=1

for z € R™ and some specific function g. For example, ¢ is | - |, max{0,-}, %| P+, or
||+ t[-x, in examples 1, 2, 3, or 4, an analogue of f when R" reduces to R. We further
have that prox, () = prox,,(z1) X prox,,(ra) X -+ X prox,, (), enves(z) = Y0 envag(z;),

proxgys, () = proxg, (x1) X proxg, (w2) X --- X proxg, (), and envgy, (x) = > envgy, (;).
Therefore, in the following discussion we will restrict ourself on n = 1.

6.1 Example 1: The absolute value function

The first example is the absolute value function f : R — R :  — |z|, which is a special case of

the piecewise quadratic function in (Q) with a1 = ag = 0, by = —1, and by = 1. This function is
nondiffere
TN 2 S ez _
(I | | |
L N } } }

Figure 4: Example 1. (a) The graphs of f (solid), env,s (dotted), and (b) the graph of f, =
f(x) —env, f(z)- Near the origin f, retains the structure of f, which is emphasized in black (solid-
dotted).

The proximity operator and the Moreau envelope of f with parameter a > 0 are

1,2 :

_ _ | 5575 if |z] < oy
prox,.|(z) = sgn(z) max{0,[z| —a} and envy(z)= { |£‘| “la, otherwise,
respectively. It is well know that prox,, is called the soft thresholding in literature of wavelet 18]
and env,| is Huber’s function in robust statistics [14]. Figure [ shows the typical shape of the

proximity operator of f.
As defined in (F)), for the absolute value function f,

_ _{ ekt el <
fa(@) = | — evng (z) = { %a, otherwise.

This function f, (see Figuredl(b)) is identical to the minimax convex penalty (MCP) function given
in [25], but motivated from statistic perspective.
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7
7

Figure 5: Example 1. The typical shape of prox,.

The expression of proxg; depends on the relative values of a and 3. If 8 < o, Lemma [§ gives

0, if x| < B;
proxgy (z) = ¢ z%5(lz] — B)sgn(z), if B <|z| < o (21)
x if |2] > a.

)

This is the firm thresholding operator [12]. If 5 = «, Lemma [ gives

0, if |z] < o
proxgy, (x) = ¢ [0,a], if |z| = a; (22)
x, if |z] > «a,

Finally, if 8 > «, Lemma [I0] gives

0, if |z| < vap;
prOXBfa (.Z') = {07'%}7 if "T‘ =V a/B; (23)
x, if |z| > vap;

The proximity operator proxg;, for different values of a and j is plotted in Figure [Gl

Figure 6: Typical shapes of the proximity operator of | - |, for (a) 8 < «, (b) 8 = «, (¢) f > .
The sparsity threshold and the thresholding behavior depend on the relationship between « and 3.

To end this example, we give several remarks on the proximity operators of prox,; and proxg;,
as follows:
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e Note that df(0) = [—1,1]. The results given in ZI)) (for 8 < «) and 22) (for f = «)
exactly match the first two statements of Theorem 2l For 8 > «, the proxg, (z) = 0 for
all z € [—v/af, vapB] which includes the interval [—a, ] = adf(0) as indicated in the third
statement of Theorem 2

e The operator prox, forces its variable to zero when the absolute value is less than a given
threshold, and otherwise reduces the variable, in absolute value, by the amount of the thresh-
old. Like prox,y, proxgy, forces its variable to zero when the absolute value is less than a
given threshold, but it fixes variables whose absolute value exceeds a certain threshold.

e For 8 > « the proximity operator proxg;, is almost identical to the hard threshold operator.
Let | - |p be the ¢y “norm” on R, that is, ||y equals 1 if = is nonzero, 0 otherwise. The
proximity operator of |- |o with parameter v at x is

O}, i 2l < V2

prOX,YHO(‘T) = {07‘%}7 if "T‘ =27

fa}, il > v,
which is called the hard thresholding operator with threshold 1/2y. We can see that Prox,|.|, =
proxgs as long as 2y = aff and 3 > a. It is interesting that although |- |o is discontinuous
and f, is continuous, they have the same proximity operator. Moreover, by fixing o and
varying the parameter 3, the proximity operator proxg; changes from the firm thresholding

operator to the hard thresholding operator.

6.2 Example 2: ReLU function
The ReLU (Rectified Linear Unit) function on R is

f(z) := max{0,z},

which is a special case of the piecewise quadratic function in (&) with a; = by = az =0 and by = 1.
The proximity operator and the Moreau envelope of f with parameter o > 0 are

0 if z <0;
prox, () = min{z, max{0,r — a}} and env,s(r)= a2, if0<z <o
T — %a, ifz > a,

respectively. By (Fal), fo(z) = f(x) — envqp(x) is

0, ifz <O
falz) = :1:—%:172, fo<z<a
5 ifz >«

Figure [a) depicts the graphs of f and env,y while Figure [[(b) presents the function f,. The
graph of prox, is given in Figure &l
As in example 1, the expression of proxg; depends on the relative values of a and g. If 8 < «a,

x, ifz<Oorz>aq
proxgy, (z) = 4 0, if 0 <z <pg; (24)
az=f). ifg<z<a.
a—p@



al2 b ——f—— T’f'. al2 f- — — — —

Figure 7: Example 2. (a) The graphs of f (solid), env,y (dotted), and (b) their difference f, =
f —envyy. The singularity of f, at zero is emphasized in black (solid-dotted).

Figure 8: Example 2. The typical shape of prox, ;. The parameter « is the sparsity threshold.

If 6 =aq,
x, ifx <0orzxz>aq
proxgy, (z) = 0, if0<z<a (25)
0,a] ifz=a.
Finally, if 5 > «,
x, ifx <0oraz>+ab;
proxgy, () = 40, if 0 <z < +ap; (26)
{0,VaB}, if z=+/aB.
Note that df(0) = [0,1]. The results given in 24) (for f < «) and 25) (for § = «) exactly
match the first two statements of Theorem 2l For 3 > a, equation (26]) shows that proxgy, (z) =0

for all z € [0, /af], which includes the interval [0, a] = adf(0) as indicated in the third statement
of Theorem (21

6.3 Example 3: Elastic Net

The elastic net is a regularized regression method in data analysis that linearly combines the ¢;
and fy penalties of the LASSO and ridge methods. In this example, we consider a special case of
the elastic net in R:

1
fla) = 52 + Jal.
This is an instance of the piecewise quadratic function given in (Q) with a1 = ay = 1, by = —1

and by = 1. Clearly, f is nondifferentiable at the origin with argmin g f(x) = {0}. Moreover,
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(a) (b) ()

Figure 9: Example 2. Typical shapes of the proximity operator of f, for (a) < a; (b) 5 = «; and
(c) B> a.

9f(0) = 9| -1(0) = [-1,1].

The proximity operator and the Moreau envelope of f with parameter a > 0 are

1

1 2 if < o
prox,, ;(r) = max {0, a—H(|$| - oz)} sgn(z) and envyy(z) = {2a1x ’ if o] < a5

G2 + |zl - §), if 2] > a,
respectively.

The graphs of f and env,s are plotted in Figure [0 (a). The graph of prox, is plotted in
Figure [Tl (b). As in the case of the absolute value function, prox,; sends all values between o and
—a to zero. Unlike the absolute value, it also contracts elements outside of this interval toward the
origin.

(a) (b)
Figure 10: Example 3. (a) The graphs of f (solid) and env,y (dotted); and (b) the graph of prox,¢.

Now f,, the difference between f and its Moreau envelope env,, is

fa(z) =

e T artlrl iy, el 2 e

{%—:&xmxu if 2] < o5
We remark that f, is convex when o > 1 and nonconvex when o < 1. The graph of f, for a > 1
and a < 1 are shown in Figure [[Ia) and (b), respectively.

According to the discussion given in subsection 0.2, we consider three cases: (o —1) +a > 0,
Bla—1)+a=0,and B(a — 1) + a < 0. These cases are equivalent to a(f+1) > 8, a(B+ 1) = 5,

22



Figure 11: Example 3. The graph of f, when (a) @ > 1 and (b) @ < 1. The singularity of f, at
zero is emphasized in black (solid-dotted).

and oS +1) < 5 respectively. Recall that these cases correspond to the convexity (or lack thereof)
of fo(u)+ %(u — x)? for u close to zero.
Case 1: a8+ 1) > (. In this case, by Lemma [8 we have

0 if |z| < B;
proxgy, (z) = ﬁ(m — Bsgn(x)) if B <|z| <a(f+1); (27)
aﬁ‘{‘:;lﬂ (x — ;‘—fl sgn(x)) ifa(f+1) < |x|.

Case 2: a(f + 1) = 8. By Lemma [0l we have

0 if || < B;
proxgy, (z) = ¢ [0, o] sgn(x) if |z| = B; (28)
(v — 2sen(x) if B < zl.

Case 3: o8+ 1) < . Define

af n \/aﬂ(aﬂ—i-a—i-l)

= 29
a+1 a+1 (29)
as in Lemma Then we have
0 if |z] < 75
proxgy, (z) = ¢ {0,w} if |z| =73 (30)
(a-i-liﬂé;zislgn(x)’ if |$| > 7,
where w = %27;:;5 The graphs of proxgy, in the above three cases are plotted in Figure

Below are some comments on this example.

e The function f, in the first two examples is nonconvex for any « > 0, however, by Proposi-
tion 2lit is convex if a > 1 due to our elastic net function f being 1-strongly convex.

e The computation of the proximity operator proxgy is discussed under three different situa-
tions, namely, a(8+ 1) > 3, a(8+ 1) = 3, and a(f + 1) < . These situations are quite
nature from Proposition 2l Since f is 1-strongly convex, hence, the function f, + %( —x)%is
(14 87! —a=1)-strongly convex if a(8+1) > 3, convex if a(8+1) = 3, and (a~! —1—371)-
semiconvex if a(8 + 1) < 5.
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Figure 12: Example 3. Typical shapes of proxgs, when (a) a(8+1) > 8, (b) a(8 + 1) = 3, and
(c) a(B+1) < 8.

e For the case of 5 < a, we know that a(1+4 ) > f3, so the proximity operator given (27]) covers
both statements 1 and 2 in Theorem 2l

e For the case of 5 > «, there are three possible related cases. If « < < (8 + 1) (resp. a <
B = a(B+1)), the proximity operator given (27)) (resp. (28])) shows that this operator vanishes
all elements in SIf(0) = [—f, 5] D adf(0), fulfilling the third statement of Theorem 2 If
B> a(f +1), we know that a < 1, 8 > 2=, and 7 defined in ([29) satisfying

1 2
o af +\/aﬁ(a6+a+ )> SN
a+1 a+1 1—a?2 1-—a?

Hence, the proximity operator given (B0) annihilates all elements in 70f(0) D adf(0), once
again fulfilling the third statement of Theorem [2

6.4 Example 4: Absolute value on an interval centered at the origin

Let A be a positive parameter. The absolute function on the interval [—\, A] centered at the origin
is

f(@) = |z[ + oz (@),

which is a special case given in (EQj) with a1 = as =0, by = —1, b = 1, and C = [\, A]. Its
proximity operator and Moreau envelope with parameter a at point x, respectively, are

0, if |z] < oy
prox,s(z) = ¢ sgn(z)(lz| —a), fa<|z|<a+A;
Asgn(z), if a4+ A <|z|;
and
2] = § + sn(Jz] = @)?, if 2] < o
envef(z) = 4 [z — g, if o < x| <a+ X

lz| — § + %(|$| — (AN +a)?, ifat+A<|z|

Figure depicts the graphs of f, env,y, and prox, ;. We observe that on the interval [—\, A]
(the domain of f,) the envelope env,; is piecewise quadratic polynomial (Figure [6.4(a)) if o < A
and is simply quadratic polynomial (Figure [64(b)) if & > A. It turns out that the expression of
proXgy, for @ < X is much more complicated than that for a > X\ as we will see below.
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Figure 13: Example 4. The graphs of f (solid, dashed) and env,; (dotted) when (a) a < A and
(b) @ > A. The graph of prox, is shown in (c). Between —(a + A) and a + A, prox,; is the soft
thresholding operator with sparsity parameter «; otherwise it projects onto this interval.

As both f and env,; depend on « and A, the explicit expression for f, will depend on the
values of these parameters. To compute the proximity operator proxgy, , we consider separately
two main cases: o < A and o > .

Case 1: o < \. In this case, we get (see Figure [6.4])

& — (|2 —a)?,  if |z <o
fa(z) = f(z) —envay(z) = ¢ §, if a < x| < A (31)
' A< |zl
al2

) I |

Q'AAA

Figure 14: Example 4. The graph of f, when o < A with the singularity of f, at zero emphasized
in black (solid-dotted). Further, we see that f, agrees with Example 1 on [—A, A].

Depending on the values of «, 8, and A, we consider four possible cases: f < a < A, f=a < A,
a<pf <A and A < B.
Case 1.1: 8 < a < A. In this case, we have

o(|z|-B) : :
max{0, ——>~}sgn(z), if [z] < o
prox, () = 4 WA Tag P, e (32)
min{|x|, \} sgn(x), if |z| > a.
Case 1.2: 8 = a < A. In this case, we have
0, if |z] < oy
proxgy, (z) = 4 sgn(x)[0, o, if |z] = «; (33)

sgn(x) min{|z|, A}, if o < |z,
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Case 1.3: a < 8 < A. In this case, we have

0, if |z] < ap;
proxgy, (z) = ¢ {0,sgn(z)v/aB}, if |z = Vap; (34)
min{|z|, \}sgn(z), if Vo < |z,

Case 1.4: v < A < 8. We have

: aB+X?,
{0}, i fa] < 255
proxgs, (z) = ¢ {0, Asgn(x)}, if |z| = aﬁ;\)‘ ; (35)
e Q 2
{Asgn(x)}, if 4GP <|al,

‘We now move on to the second main case.
Case 2: A\ < a. In this case, we get (see Figure [6.4])

a 1 _ 2 : < )\
o [ mlel =0 el <

Figure 15: Example 4. The graph of f, when A < « with the singularity of f, at zero emphasized
in black (solid-dotted). As before, f, agrees with Example 1 on [—\, \], but is cut off before it
plateaus.

To compute proxgy, , we consider three situations: 8 < a, 8 =, and 8 > a.
Case 2.1: 8 < «. In this case, we have that

0, if || < B;
proxsy, (z) = § “FF sen(a), if B < |af < B+ 9F2X (36)
Asgn(w), if §+ 92PN < Ja],

Case 2.2: 8 = «. In this case, we have

0, if |z| <
proxgs () = ¢ sgn(x)[0,], if 2] = a; (37)
Asgn(z), if a < |z,

Case 2.3: 8 > «. Similar to Case 1.4, we get

0, if 2] < 8- G2
proxgs, (z) = ¢ sgn(x){0,A}, if |z| =8 — %_—aa ; (38)
Asgn(z), if g — 52—_0{04)\ <z,

To end up this example, we comment on this example in a comparison with Theorem 21

26



Figure 16: Example 4. Typical shapes of proxz, in (a) Case 1.1: 8 < a < A, (b) Case 2.2:
B =a> A and (c) Case 1.3: o < 8 < A. In each case, we see that the absolute threshold is A,
while the sparsity threshold and thresholding behavior depend on « and .

e Note that df(0) = [-1,1]. For 8 < «, both equations ([B2]) and (B@) show that the opera-
tor proxg, vanishes all elements in 30f(0) = [0, 3] as required by the first statement of
Theorem 21

e For 8 = a, both equations (33) and (37) show that the operator proxg, vanishes all elements
in ri(adf(0)) = (—«, a) as described in the second statement of Theorem 2

e For 8 > a, since vaf > a, a@;\v > a when a < A\ < 3, and 8 — 62_—(10‘)\ > a when a > )\,
then equations (34), (34), and (38)) shows that the operator proxgy, vanishes all elements in
ri(adf(0)) = (—a, a) as described in the third statement of Theorem 21

To close this section, Table [l lists the proximity operators proxg 7., of all examples.

Table 1: Proximity operators for all examples

(@) = 2]+ ¢-a

@3 6D

(32Y

Function g <« b=« B>«
f(z) = || (A1) @2) 23)
f(z) = max{0,z} @2 25) 26)
B<aB+1) f=aB+1) B>a(f+1)
fl@) = 52° + |a] (i) 27) 27) @8) B0)
a<A azA|a<i a>)A B<A B> A a> A

B3)

(B5Y
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7 Conclusions

We presented a simple scheme to construct a family of semiconvex structured sparsity promoting
functions from any convex sparsity promoting function. Theoretical guarantees of sparsity promo-
tion were proved in Section 4] among other properties related to the structure of these functions.
In Section Bl we expanded upon these results in the case of indicator and piecewise quadratic func-
tions. We demonstrated that the classical MCP can be derived under this framework, while also
providing several other examples motivated by a variety of applications.

Because of the structure of the proposed functions, we can use convex, nonconvex, and difference
of convex algorithms in practice. We plan on testing these examples on problems such as signal
denoising and variable selection. Furthermore, we hope to use the unique properties of these
functions to develop new algorithms. Other future work will also expand upon the theoretical
properties of these functions.
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