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STRONG DIFFUSIVE LIMIT OF THE BOLTZMANN EQUATION WITH MAXWELL
BOUNDARY CONDITION

YAN GUO, JUNHWA JUNG, AND FUJUN ZHOU

ABSTRACT. While weak diffusive limit from the Boltzmann equation to the incompressible Navier-Stokes-
Fourier system was established for the Maxwell boundary condition within renormalized solutions framework
[59, 42], the corresponding strong diffusive limit has remained outstanding except when the accommodation
coefficient o ~ /2 [42]. We establish global in time strong diffusive limit for all accommodation coefficients
a € [0,1] within strong solutions framework. The main novelties of our proof include: (1) a e-stretching
method for reduction to a single-bounce L* estimate; (2) a dissipation estimate for a carefully constructed
rotating Maxwellian in the near-specular regime a < €.
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1. INTRODUCTION
1.1. Problem Formulation.

This paper is devoted to the study of the strong diffusive limit, within the framework of strong solutions,
of the Boltzmann equation to the incompressible Navier-Stokes-Fourier (INSF) system under the renowned
Maxwell boundary condition.
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In the diffusive scaling, the evolution of a rarefied gas is governed by the following rescaled Boltzmann
equation

e0;F +v-V,F = 'Q(F,F) inR" x QxR
Fl, =1 —a)ZF +aPF onR" x 9Q x R3, (1.1)
F(t,z,v)|=0 = Fo(z,v) on Q x R®.

Here, F'(t,x,v) represents the distribution density of particles at time ¢ > 0, position x € Q and velocity
v € R3. The Boltzmann collision operator for hard-sphere interactions is given by

//\v—v* <o|[F(v)H(u") — F(v)H(u)]dodu
=Q+(F, H)(v) = Q- (F, H)(v),

where v/ =v — [(v—u) - o]0 and v’ = u + [(v — u) - ¢]o. Throughout this work, Q = {z : £(z) < 0} denotes
a general bounded (possibly non-convex) domain in R?, with C? boundary 9Q = {z : {(z) = 0}. We assume
V&(z) # 0 on 0. The outward unit normal at the boundary is

Ve
=) = Fe@r

which admits a smooth extension to a neighborhood of 9Q. The boundary phase space v := 9Q x R3
decomposes into the outgoing, incoming, and grazing sets:

vy ={(z,v) € 0Q x R® : n(x) - v > 0},
y_ ={(z,v) € 92 x R? : n(z) -v < 0},
Y0 :={(z,v) € 0Q x R® : n(x) - v = 0}.

(1.2)

The physical boundary condition in (1.1), known as the Mazwell boundary condition, was introduced by
Maxwell [53] in 1879 to model gas-surface interactions. The dimensionless accommodation coefficient o € [0, 1]
characterizes boundary roughness: « = 0 represents specular reflection for perfectly smooth surface,

RAF(x,v) = F(x, Ryv) = F(z,v — 2[n - vln); (1.3)

while o = 1 denotes diffuse reflection for rough surface,

PFE(z,v) = \/%,u/ F(z,u)n - uldu. (1.4)

n-u>0

Here R,v = v — 2[n - v|n is the velocity reflection operator,

2
N I el
Myt 5= (s o0 (-“%) (1.5)
denotes the local Maxwellian with density p, bulk velocity v and temperature T', and
(v) = M —— '”'2) (1.6)
= = = . _ — .
H=pn 1,0,1 (27T)3/2 p 9

is the global Maxwellian. The Maxwell boundary condition in (1.1) ensures zero net mass flux across bound-
ary:

F(z,v)[n-v]dv=0, Ve . (1.7)
R3

Let R(€2) denote the finite-dimensional space of rigid motions on 2 (see [18]):

R(Q) = {2z Az +1x0: AE€s0(3,R), zo eR’},

where
s0(3,R) :={A=(a;): a;; €R, i,j=1,2,3, A+ AT =0}
is the Lie algebra of 3 x 3 real antisymmetric matrices, equipped with the basis
0 0 O 00 -1 0 -1 0
Ai=10 0 1|, Ay=1]|0 0 0|, As3=111 0 O (1.8)
01 0 1 0 O 0 0 0

The infinitesimal rigid displacement fields preserving (2 are defined as

Ra:={R(x) e R(Q): ©o =0, R(z) -n(z) =0 VaecdQ}. (1.9)
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For a bounded domain € C R? with nonempty boundary 9, dim Rq € {0,1,2}. More precisely,
{0} if dimRg =0,
Ra = ¢ span{Az} if dimRq =1, (1.10)
span{Ax, Asx, Azz} if dimRgq = 2,
where in the last case the set {Ayx, Asx, Asx} is linearly dependent, and when dimRq = 1 we take A = A3
without loss of generality. This dimensional classification corresponds to the following geometric types of the
domain:
non-axisymmetric if dimRq =0,
Q is called < axisymmetric if dimRq =1, (1.11)
spherical if dimRq = 2.

For conciseness, we shall denote a generic basis element of R by Az or R(x), for all three geometric types
of Q.
Without loss of generality, we assume that the initial data Fy satisfies the following conservation laws:

// Fydvdx = // pdodz = |Q,
QXR3 QXR3

// Az - vFydvdx = // Az -vpdvdz =0 for all Az € Rq, (1.12)
QxR3 QxR3

// |v\2F0dvda::// lv]? pdvdz = 319 .
QxR3 QxR3

In the hydrodynamic limit € — 0, the relative scaling «/e plays a critical role in the treatment of boundary
conditions. We adopt the following conventions:

eSa<1l: lim Le (0,00] (e is of lower or the same order as €);

e (1.13)
0<axe: liH(l) — =0 («a is of higher order than ¢, or o = 0).

e—0 &

Thus, for € € (0,1), the full parameter range [0,1] for « is partitioned as
0,]]={a:eSa<l}U{a:0<a<xe} (1.14)

1.2. Strong Limit Result for the Case ¢ S a < 1.

In the regime ¢ < o < 1, we define the key limiting parameter

1 . «
A= \/—2?213%; € (0, 00]. (1.15)

We consider fluctuations around the global Maxwellian p via the rescaling
F:,LL—F@\/ﬁf, FO:H+€\/ﬁf01 (116)

where f and fy denote the fluctuation fields. Under this scaling, the Boltzmann equation (1.1) transforms
into
€0if +v-Vuf+e 'Lf=T(f,f) inR" xQxR?
flv. =1 —a)Zf +aZ?,f onR' x 90 x R?, (1.17)
ft,z,0)|i=0 = fo(z,v) on Q x R?,
with the operators I', L and &2, defined by

I'(f.g) :=\/1ﬁ62(\/ﬁf7 Vig),  L(f) = ~T(fi. ) = T(F, V),

Z.8 =3 [ f)twln uldu.

n-u>0

(1.18)

The null space of L is the five-dimensional subspace of L?(R?) given by
ker L = span {1,v, [v]*} /4. (1.19)

An orthonormal basis for ker L is {x;}i,, where

X0 =l Xi = Ui/ (Z =1,2,3), xa:= Vi (1'20)
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The orthogonal projection of f onto ker L is denoted by

3
Pf=axo+ » bixi+cxa, (1.21)
i=1
with coeflicients
a:=xo0,f), b={(if) (=123), c:=(xaf)- (1.22)

Let (I — P)f denote projection onto the orthogonal complement of ker L.

We introduce the instant energy functional

A1) = s {1FG) + 10762, ) (1.23)

0<s<t

and the dissipation functional
t
Al = [ {IPrOIE,, + PosE,  Jas

t 1 ].
+ / {S1a=PUI o)+ 5 1T PRS2 ) Jds

. (1.24)
e 2 2
[ {2I0= 205605 120008, Jas
¢
!
[ {210 - 20000, +12,00 )3 s
0 € T+ T+
The total energy functional is defined as
1 1 1
£l (8) = &2 [f1() + 2 [£1(8) + €2 sup [lwf(s)ll e,
0<s<t ’
. (1.25)
+et sup [wdf(s) e + sup [PF(S)lLe
0<s<t v 0<s<t ~
where the weight function is
1
w=w) =" witho< < it (1.26)
The corresponding norm for the initial data is
1
o 4 a2
Ll = I1£lly ©) + =7 1A= P)olzz oy + (5) 10— 20 ol s L27)

+ lv- vrfOHL%w + v VzatfoHng )

where 9, fy is determined from the perturbation equation (1.17).
We now state the first main result for the regime ¢ < a < 1.

Theorem 1.1 (Case ¢ S a < 1). Let Fy = p+e\/ufo > 0. Then there exists g > 0 such that for all
0 < € < e, if the initial fluctuation satisfies

[fol; < do (1.28)

for some small constant 69 > 0 independent of €, then the Boltzmann equation with Mazwell boundary
condition (1.1) admits a unique global strong solution F' = p+e\/pnf > 0 satisfying the uniform bound

I£1ly (00) < C [fol, (1.29)
for some constant C > 0 independent of €.
Moreover, suppose there exist fluid initial data (09, ug, Vo) € Hy x H,, x Hy (see (1.85)) such that

o] —

fo— fo = (Q0+U0'U+190 3)\/,17 strongly in L*(Q x R?) as e — 0. (1.30)

Then the following convergence results hold as € — 0:

[v]? — 3 strongly in L} (R*; L?(Q x R3)),

loc

)\/ﬁ weakly—x in L™= (RT; L?(Q x R?)),

Ff
Tu%\/ﬁf*:<9+u~v+19 (1.31)

F- 2 _
/ 5 o {1,1}, [v] 5 3}dv — (0,u,9) strongly in L%OC(R’L;LQ(Q)), (1.32)
R3
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t

where (9,u,9) € C(Ry, L*(Q)) N L?(R,, H'(Q)) is the unique weak solution of the INSF system
Outu-Veyu+Veyp=0cAu, V,-u=0 in RT x Q,
O +u-Vyd=rAY, Vi(o0+9)=0 inRT xQ, (1.33)
Um0 = up, V=0 =90  on £,
with viscosity o and heat conductivity k defined in (3.135) and (3.133), respectively.
Furthermore, if Eli_r%g = 00, then (1.33) is supplemented by the Dirichlet boundary condition
u=0, 9=0 on RT x9Q; (1.34)

lim < € (0,00), then (1.33) is supplemented by the Navier slip boundary condition

, 1
and if A = Vo

tan
[U(qu +(Vou)") -+ /\u} =0, u-n=0 onRT x0Q,
A (1.35)
/@3”19+g>\?9:0 on RT x 9Q.

Proof of Theorem 1.1 will be presented in Section 3.4. We remark that the initial requirement (1.28),
which arises primarily from the L? and LS estimates, is natural: only the microscopic part (I — P)fy and
the boundary dissipation (1 — 225) fy depend explicitly on €. Hence a wide class of admissible fluctuations
fo satisfies (1.28); for example, any fy whose macroscopic projection P fy coincides with the fluid initial data
(00, ug, ¥o) of the INSF system (1.33)—(1.35) fulfills this condition.

1.3. Methodology 1: Streaching Method for L*° Estimate.

The inherent low regularity of Boltzmann solutions under physical boundary conditions [37] precludes
the use of high-order energy methods. Consequently, we adopt the L2-L°° framework pioneered by [32]. A
standard L? energy estimate for (1.17) yields

oS / =PI o)+ / (=20l <2 [ I0EDIE:, +o0 (39

which follows from the Maxwell boundary condition in (1.1). To close the energy estimate, it is necessary to
control both fg ||Pf||2Lz and ||Pf]|;s (these bounds are established in Section 3.3):

Proposition 1.2. Let ¢ S a <1, and let f be a solution of (1.17) satisfying mass conservation law
// ft,z,v)dvde =0 for allt € [0,T] (1.37)
QxR3
with 0 < T < oo. Then, for all0 < s <t < T, the following estimates hold:
[ 12112, ar el - o) + [ 10 - 2512, ar

2
. }dr, (1.38)

- /st [Hg_l(l - P)f”Lz,U(u) + H”_%F(f’ f)‘

1 1
IPfllzg, S 210Nz, + IPFllzz, +al(l= 201 sl

,v

e APy oy NPl + im0 (139)

x,v

where |Go(t)] S Hf(t)”iij

To elucidate the core methodology for obtaining L estimates with Maxwell boundary condition in general
domains, we first consider a simplified model problem with a specular reflection boundary condition:

aBtf—i—v-VIf—i—E_luof:s_l/ f@dY  in RT x Q x R3,
v/| <N
flo. =2Zf onRT x 90 x R?,

f|t:0 = fo on ) x Rg

(1.40)
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where vy denotes a uniform lower bound of the collision frequency v(v), and the integral term on the right-
hand side arises from a truncation of K f (see (2.1)). Define the back-time cycles

Xal(s;t,z,v) = thk+1 tk:) X (83th, T, Vi),

VC](S; t? x, U) = Z 1[tk+1,tk) (S)V(S; tk?? Ty Uk})?
k

where [X (s;t, x,v), V(s;t,x,v)] denotes the characteristic trajectories, and (tx, <k, vx) marks the k-th bounce
of the backward trajectory against 9. The solution of (1.40) admits the Duhamel representation

1" .
ft,z,v) = 7/ e e (t=s) / [ (s, Xa(s;t,z,v),v")dv'ds + - - -, (1.41)
€Jo [/ | <N

which incorporates boundary effects through repeated application of the specular reflection boundary condi-
tion in (1.40). Substituting (1.41) into itself yields

f(t,z,v) 2/ / -2 T)// f(r, Xa(r; s, Xals;t,z,v),v"),0")dv"dv'drds + -+ . (1.42)
e [v/|<N,|v""|<N

The central insight of [32] — subsequently employed in [20, 21, 22, 34, 36, 37, 38] — is to gain L? control via
the change of variables
[V = 2= X (738, Xa(s;t, z,v),0")].
A critical requirement for this approach is establishing a uniform lower bound on the associated Jacobian:
0Xal(r; s, Xa(s;t,z,v) H S50 (1.43)
o’
away from a small set of parameters s. When (1.43) holds, the L> norm can be controlled as

1 O)ll, <573 ( / / (20 )|pdv”dz)
v”\<N

However, for the specular reflection boundary condition in (1.40), there is no apparent inductive way to
0Xc1(7;5,Xe1(s5t,2,v),0")
ov’

3] = ‘det {

analyze the back-time cycles
difficult to verify.

For the standard Boltzmann equation (¢ = 1) in convex domains with analytic boundary, Guo [32] estab-
lished an asymptotic Jacobian lower bound

vy,
et | 521

Kim-Lee [48] later removed the analyticity requirement via triple Duhamel expansions while preserving the
core strategy.

For hydrodynamic limit problems (¢ — 0), precise quantification of the Jacobian lower bound dependence
d(e) becomes essential — a stark contrast to standard Boltzmann theory (¢ = 1) [32, 48] where § > 0
suffices. This distinction introduces a fundamental difficulty: after multiple specular reflections, the map
[V — Xa(r;s, Xal(s;t, z,v),v")] develops pathological dependence on ¢ that precludes asymptotic control
and renders the key estimate (1.43) unverifiable. Consequently, the core techniques of [22; 32, 48] fail
catastrophically for hydrodynamic limits involving specular reflection component.

To overcome this fundamental difficulty, we introduce the stretching method: for sufficiently small ¢ < 1,
we transform the spatial and temporal domains via

inductively with finite bounces, making (1.43) extremely

20 >0 for near-tangential back-time cycles.

D= Q. =10, z—y:=ta, (1.44)
[0,00] = [0,00], t+>1:=c 2t .

This stretching method enables us to enforce a single-bounce constraint along characteristic trajectories and
leads to a uniform-in-e L*° estimate. One of our main contributions is the following L* estimate for the
linear Boltzmann equation on the stretched domain [0, Tp] x Q. x R3:

Proposition 1.3. Let Ty > 1 be a sufficiently large constant (to be determined later), and let f satisfy
Of +v-Vyf+Lf=eg in[0,Tp] x Q. x R,
flv. =1 —)Zf +aP,f on0,Ty] x 0Q. x R?, (1.45)
flimo=fo  on Q. xR
where the transformed functions are defined via the stretching (1.44):

fty,v) = f(t,z,v), foly,v):= folz,v), gt y,v):=g(t,z,v). (1.46)
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Then there exists a constant 9 € (0,1) such that for any 0 < & < gq, the following estimates hold for all
E S [0, To]

o F @l @ xxs) S ¢ Folwfoll e, @ xzs) +0(1) sup [ F()]lzz, @ xz

0<s<Tp
+ sup ||w71Pf_‘(8)||Lg U(QEXRS) (147)
0<s<Tp :
+ sup [lw M T =P)f(s)llzz (. xr9)
0<s<Tp :
+e sup  [(v) " wils)llLee, . x5,
0<s<Th '
Jwf(D)] Lo, (0. xR3) S e_gtwao\ Lee, (QoxR3) T o(1) sup |lwf(s)| L2, (22 XR3)
v v 0<s<Tp v,
+ sup [[f(s)llez a.xrs) + sup [le(v) T wi(s) | Lo, (o xr3)- (1.48)
0<s<Tp v 0<s<Tp v

The proof is given in Section 2.1. We note that T, > 0 creates desired decay property. This approach
yields the first uniform L°° estimate for “large stretched” non-convex domains.

Applying the transformation (1.46) to the model equation (1.40) yields the equivalent problem on the

stretched domain:

Of +v-Vyf +uvof = f(t,y,v)dv"  in RT x Q. x R3,
lv/|<N
flv. =2Zf onR" x 00, x R?,
flizo = foly,v) ~ on Q. x R
Crucially, while €. becomes asymptotically large, the outward unit normal remains invariant under this
scaling:

(1.49)

V] | Vet
W)=, [l = Wag() ~ ) e y=cre €00 150

The characteristic trajectories for (1.49) are simply

[Y(s;t,y,v), V(s;t,y,v)] = [y +v(s — 1), v]. (1.51)

Denote the first boundary collision along the backward specular trajectory by
(tl,yl) = (E—tb(y,’l)),Y(tl;ﬂy,U)), (152)
where
tb(y,v) :=inf{t > 0:Y(-£0,y,v) ¢ Q},
yb(yav) = Y(ftb(yav);oayvv)v (153)
’Ub(y7 U) = V(_tb(yv U); 07 Y, ’U).
From (1.51) we obtain the relation

ly =yl = [v(t —t1)]. (1.54)
Now consider (Z,y,v) € [0,To] x Q. x {Jv]| <N, |v- 7@:22% | >n} for sufficiently large constants Ty, N > 0

and a small constant 7 > 0. Due to the stretching (1.44), the left-hand side |y — y1| in (1.54) is of order
O(2), while the right-hand side |v(f — ¢1)| in (1.54) is bounded by Ty N. This implies that, for sufficient
small ¢ < 1, the specular backward trajectory starting from (¢, y,v) undergoes at most a single bounce (see
Lemma 2.2). Consequently, we can establish a uniform-in-e Jacobian lower bound analogous to (1.43) along
this single-bounce trajectory, which ultimately leads to a e-independent L™ estimate.

1.4. Strong Limit Result for the Case 0 < a < e.

In the regime 0 < a < ¢, we have

1 I «
Jon dm
Proposition 1.2 fails to provide an uniform estimate for P f, as the boundary dissipation in (1.36) becomes
nearly negligible. For the pure specular reflection case a = 0, uniform estimate for P f can still be obtained
through conservation laws of mass, angular momentum and energy. However, when a # 0, the latter two
conservation laws no longer hold, precluding the control of P f via this method.

A= =0. (1.55)
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To overcome this essential difficulty, we introduce the following rotating Mazwellian:

i =tz v) = BT (_“’—“W> (1.56)
B G0 = ez &P O '
where the temperature is T'(t) := 1 + 6(t), the rigid velocity field u is defined by

0 if dimRq = 0,

w(t)Ax if dimRg =1 (Az € Rq),

u=u(t,z) = 3( ) =1 2) (1.57)

> wi(t) Az if dimRg = 2 (Az € Rg,i =1,2,3)

(see (1.10) and (1.11)), and the density p is given by
t,x 2
2l exp (1552F)
p=p(tx):= (1.58)

fQ exp (\u(t EC))\ ) da:
Here, 0(t), w(t) and w;(t) (i € {1,2,3}) are scalar functions (to be determined in Lemma 4.8), subject to the
initial conditions
0(0)=0, w(0)=0, w;(0)=0(:=1,2,3). (1.59)
In what follows, a summation of the form Y w;A;z without explicit indices will denotes wAz for an axiym-
metric domain or E?Zl w; A;x for a spherical domain.
We now define the parallel fluctuation field f by

F=jit+eV/if, Fo=p+eVifo (1.60)
Consequently, the original equation (1.1) can be rewritten in terms of f as
0 f +v-Vof+e 'Lf=§ inRY x QxR3,
flo. = (1= Q)Zf +aP,f +ar inRT x 90 x R?, (1.61)
fli=o = fo(z,v) on Q@ x R?,

with the operators

T(f,9): ~Q Vit ig), L(f) = -T(/i, f) = T(f. /i),

O O\l 5
=I(f, f) - N \/ﬁ f, (1.62)
- 1 -
P f=V2 nu>0 Vi(w)n - u)du, 7= E\/ﬁ(:@,u — [1).

For the transport operator v - V, f , we have used the identities (valid for all three geometric types of )
1 1<
vVl = fw(zwAv),u:O, vVl = wai(v'Aiv)u:O. (1.63)

The null space of L is a five-dimensional subspace of L?(R3) given by

ker L = span{l,v —u,jv— u|2 }\/ﬁ = span{l, v, |v|2}\/T, (1.64)
equipped with orthonormal basis {;}1_g:
_ 1 = _ (’Ui —ul-) = . _ |U—u|2 — 3T =
Xo ==V, Xi=-—m=="Vi (i=123), Xa=—F=—V]i (1.65)
VP vpT f V6T f
The orthogonal projection of f onto ker L is
3
Pf=axo+ Y biXi+ X4, (1.66)
i=1
with coefficients o ~ ~
a:=(Xo, f), b= fIi=123), ¢:=Xaf) (1.67)

We denote by (I — 15) f the projection on the orthogonal complement of ker L.
A crucial observation is the relationship between f and f:

L/ (1.68)
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Moreover, the initial conditions in (1.59) imply
fi=p, P=P, 2, =2, att=0. (1.69)
Consequently, the two perturbation equations (1.17) and (1.61) actually satisfy the same initial condition:

folw,v) = fo(x,0). (1.70)

We define the instant energy functional

st = gy ([l ool +[* +[=2) ) -
.0 (s) 2 Bw(s) [P '
A el R }~
The dissipation functional is defined as
- t TS -2
wito= [ 10l s, o
t
[ zla-piol, ,+zla-paiol, e
Praz 2 N a95)2 a |w(s)|? (1.72)
+/0 {g‘f(S) +E 9 f(s) L%++E = P }ds
+/Ot{j 8t95(8) ? % 3:&“;(5) 2}ds.
The total energy functional is defined by
1], ® 1)+ 25 7)) + % sup eof (),
(1.73)
et Jwinf()ps, + s [BA)]
0<s<t <s<t
The corresponding norm for the initial data is
[, =7, 0+ fa=-2af, , + ()" o207,
(1.74)

+ HU : VJCJ?OHL?j ) + HU - Va0: fo

= IIfO]]l )
where the final equality follows from (1.69) and (1.70).

2
x,v

We now state the second main result for the regime 0 < a < €.
Theorem 1.4 (Case 0 < a < ¢). Let Fy = p+e\/ufo > 0. Then there exists eg > 0 such that for every
0 < € < e, if the initial fluctuation fo satisfies
[fol, < do (1.75)

for some small constant o > 0 independent of € (the same initial condition as in (1.28)), then the Boltzmann
equation (1.1) admits a unique global solution F = i+ ev/iuf > 0 satisfying the uniform bound

HMH ) < Clfly (1.76)

for some constant C > 0 independent of ¢.
Moreover, if the strong initial convergence (1.30) holds, then the convergence results (1.31)—(1.32) are also
valid. Here, (0,u,9) € C(Ry,L?(Q))NL3(Ry, HY(Q)) is the unique weak solution of the INSF system (1.33),
now supplemented with the perfect Navier slip boundary condition:
tan
{(qu + (Vou)") n} =0, u-n=0 onR" x9Q,

0,0 =0 on Rt x 99.

(1.77)

Proof of Theorem 1.4 will be presented in Section 4.5.
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1.5. Methodology 2: Dissipative Decomposition Mechanism.

To overcome the difficulties caused by the nearly negligible boundary dissipation in (1.36) and the loss
of conservation laws of angular momentum and energy, we uncover a dissipative decomposition mechanism
via the construction of a rotating Maxwellian. More precisely, we design the rotating Maxwellian i as in
(1.56) and reformulate the Boltzmann solution F around j via (1.60). This decomposition splits the original
equation (1.1) into two dissipative subsystems: one for spatially averaged macroscopic variables (u,6), and
another for the fluctuation f satisfying the following conservation laws of mass, angular momentum and
energy:

/ \/ﬁfdvdx =0,

QxR3

// Az -v\/fifdvdz =0 for all Az € Rq, (1.78)
QxR3

//Q » lv|* /fdvdz = 0,
X

guaranteed by (1.12). These conservation laws allow us to control the macroscopic components fg P72
and Hf’ f H , even with weak boundary dissipation via a test function approach [21, 15].
LS,

The velocity field u(t,z) and the temperature deviation 6(¢t) = T'(¢) — 1 are determined via the implicit
function theorem (with density p depending on u and 6 through (1.58)), from the full conservation laws of

the original solution F":
// F(t)dvdz = |,
QxR3

// Az - vF (t)dvdr = / pAz -udz for all Az € Rq, (1.79)
QxR3 Q

// \v|2F(t)dvdx:/(3pT+p|u|2)dx
QxR3 Q

as shown in Lemma 4.8. Crucially, #? and |u|? satisfy a dissipative ODE system:

§8t/ 02dz + —— 46%dS, + // (Jo]> = 4)\/[uf0d~ = higher-order terms,
2 Q eV 21 Joq o (1.80)

1 ~
=0 / u? dz + ° u>dS, + « // (w-v)y/fifdy = higher-order terms,
2 Ja eVv2m Joa e

derived in Propositions 4.9.
Although fi and P do not commute with 9; and V., a careful analysis shows that

v-Vai =0, [0,P]=~0(a), i~ O(a).

Combining these observations with a standard energy estimate yields

. 12//QXR3fifdxdv+;’at/Q(z) dz +0; Q("g") dz
2o ] Bl Ve SR+ 0= 2] @ (181

f gj’ dzdv + higher-order terms.

,at ’

gf//
€ QOxR3

The boundary dissipation in this estimate covers all directions except those parallel to (Jv|*> — 4)V/fi, v -
Ax+/[i, and 9’77. Applying Ukai’s trace lemma to these rapidly decaying directions ultimately yields complete
boundary dissipation (see Proposition 4.10).

For brevity, we state only the key a priori estimates. Assume that (1.61) admits a solution f(t) on [0, 7]
with 0 < T < oco. To simplify the derivation, we impose the following a priori assumption: there exists a
sufficiently small constant §; > 0 (to be chosen later), independent of ¢, such that

(|9(t)\ . w(t)| . 0y (t)| . |atw(t)l) <4,

9 9 9 9

sup (1.82)

0<t<T

Our main estimate on the macroscopic part P f in the regime 0 < o < ¢ is summarized as follows.
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Proposition 1.5. Let f be a solution of (1.61) satisfying the conservation laws of mass, angular momentum
and energy giwen in (1.78). Then, under the a priori assumption (1.82), the following estimates hold for all
0<s<t<T:

t 2 t 2 t 2
~ o~ < ~ A 2 ~ 2 ~,l~’
/ ‘P]"L2 dr Ze[Go(t) — Go(s)] + a / H‘f‘m +|7‘|L%_]d7'+/ ‘1/ 9|, dr
S x,v S T+ S T,V
22 [*|7] A a et 1- By’ d 1.83
ot /S ! Lz, Hf‘ L2, 7-4—/S eI )f‘ L2 (9) T (1.83)
1 1
Bil,, selo], +alf] ], et +eto et
H f Lg,v NE tf Li,v +a f L%-}— +a|r|L:7 +a fL%-%— W2f L;c:'v +€2h1 €2W2f L;(.)'v
I-P ‘ H “LI-P ‘ H“ﬂ 1.84
+||a-p)f RS S s o¥) IS [ (1.84)

~ - 2
where Go(t) < Hf(t)Hz,

Proposition 1.5 (proved in Section 4.3) supplies the essential dissipative control on the macroscopic com-
ponent P f, thereby completing the uniform energy framework for the regime 0 < a < €.

1.6. Background and Progress.

The derivation of fluid dynamical equations from kinetic theory constitutes a cornerstone of mathematical
physics since the pioneering works of Maxwell and Boltzmann. Maxwell [53] and Boltzmann [9] demonstrated
that microscopic particle interactions could explain macroscopic phenomena (e.g., viscosity and thermal con-
ductivity), providing foundational insights into molecular dynamics. Based on these foundations, Hilbert
formalized the kinetic-continuum connection through his Sixth Problem [40]. His pioneering work [39] estab-
lished mathematical links between the Boltzmann equation and hydrodynamic models, thereby inaugurating
sustained research into hydrodynamic limits.

Building on Hilbert’s foundational vision, rigorous hydrodynamic limits of the Boltzmann equation have
been established across several principal scaling regimes: (1) Compressible Euler limit for classical and
renormalized solutions [12, 33, 34, 36, 43, 55, 61, 63]; (2) Compressible Navier-Stokes approximation via
Chapman-Enskog expansion [20, 44, 46, 51]; (3) Incompressible Euler limit confirmed for renormalized so-
lutions [17, 57, 58] and analytic solutions in half-space [13, 41, 47]. In contrast, the incompressible Navier-
Stokes-Fourier limit — characterized by diffusive scaling and low Mach asymptotic — demands specialized
analysis due to its physical prevalence and mathematical depth. As the most extensively studied hydrody-
namic limit paradigm, the INSF limit exhibits fundamental methodological divergences dictated by domain
topology: whole-space and periodic domains; domains with boundary. We now delineate seminal advances
in these settings.

For the whole space or periodic domains, the INSF limit has attained substantial resolution through two
frameworks:

(a) Renormalized solutions framework. Bardos-Golse-Levermore [3, 4] pioneered the convergence of DiPerna-
Lions renormalized solutions [19] to Leray-Hopf weak solutions of INSF, contingent on specific a priori
assumptions. Subsequent research [5, 6, 26, 50, 57] progressively weakened these constraints. A foundational
breakthrough came with Golse-Saint-Raymond’s complete proof for bounded collision kernels [28], which
catalyzed extensions to more general kernels [29, 50], see also comprehensive surveys in [59, 62].

(b) Classical solutions framework. DeMasi-Esposito-Lebowitz adapted Caflisch’s approach [12] to examine
the INSF limit [17]. Guo [31] later provided rigorously justification, incorporating higher-order correction
for both Boltzmann cutoff potentials and Landau collision kernels. Related developments are documented in
[7, 10, 11].

For domains with boundary, the analysis of INSF limit presents significantly greater complexity than the
whole-space or periodic settings. Boundary interactions inherently degrade the regularity of the Boltzmann
solutions [37], precluding classical solutions in general domains. Consequently, research is confined to two
frameworks:

(1) Renormalized solutions framework. Masmoudi-Saint-Raymond [52] established hydrodynamic limit of
renormalized solution [54] to the linear Stokes-Fourier system for the Maxwell boundary. Then Saint-
Raymond extended to the weak INSF limit for cutoff hard potentials [59]. Later on, by constructing boundary
layer Jiang-Masmoudi proved weak convergence for all a € [0, 1] and strong convergence only for o ~ el/2,

(2) Strong solutions framework. Pioneered by Guo’s L2-L* theory [32], this approach achieved critical
advances under diffuse boundary conditions. For interior domains, Esposito-Guo-Kim-Marra [22] justified the
steady /unsteady limit by using an L?-L®-L° approach, while Esposito-Guo-Marra-Wu [24] and Wu-Ouyang
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[56] conducted detailed boundary-layer analyses. For exterior domains, progress was made by Esposito-Guo-
Marra for steady flows [23] and by Jung [45] for unsteady flows.

However, extant results on diffusive limit with Maxwell boundary — including the significant works [42, 59]
— remain confined to weak convergence within renormalized solutions framework, with strong convergence
established only for a ~ ¢'/2. In this work, we establish strong convergence to the INSF system within strong
solutions framework for the full range « € [0, 1]. This result encompasses both the pure specular reflection
case (o = 0) and the challenging near-specular regime (0 < o < ¢), which had previously resisted analysis.

1.7. Notations.

Throughout this paper we adopt the following asymptotic conventions:

- C' denotes a generic positive constant independent of € and «;
- X <Y indicates X < CY for some constant C' > 0 independent of ¢ and «;
- X ~Y denotes X <Y and Y < X
- X <Y denotes dependence on parameter j3;
- o(1) represents a small constant independent of € and «;
- & 1 signifies a sufficiently small positive bound.
For 1 < p < oo, we define
I ||Lg;m7 | - [lzz or || - || denote LP(€ x R3), LP(Q2) or LP(R3) norms;

| r» for mixed norms;

N lezeg =1 les
N Nzogmy = [m*? - || » with weight m;
(4, )+ LA(R2) inner product;
- (v) = (L + )V

Boundary measure and integrals are denoted by
- dry = |n - v|dvdS, (surface measure);
Nlpee = ([, [F1Pdy) " for 1 < p < 003
+ | floo = esssup(, )y f (@, V)5
- |+ |Le denotes LP(0€2) boundary norm;

For the perfect Navier slip boundary condition A = 0 (arises when 0 < a < ¢), domain symmetry § also
affects the uniqueness of solutions to the INSF system. We define the admissible function spaces for initial
data:

fo<A<oo, orif A=0

and ) is non-axisymmetric;

{ueL¥Q):V, u=0)

H, :=
if A =0 and ( is axisymmetric
€L*(Q):V,-u=0, [qu-Rdx =0
{u () b Jou- Rz =0} or spherical, (1.85)
H L%(Q) if 0 < A < o0;
P W e rAQ) : [, 9de =0} if A=0,

where R = R(x) denotes basis element of R (see (1.9)), which generates non-trivial special solutions to the
INSF system under perfect Navier slip boundary A = 0.

The remainder of this paper is organized as follows. Section 2 presents L estimates for the linear
Boltzmann equation on the stretched domain. Section 3 establishes uniform-in-¢ global estimates and the
strong convergence for the case ¢ < a < 1. Sections 4 addresses the strong convergence for the case
0 < a < e. Technical supporting results are collected in the appendices: Appendix A provides an L?L3
estimate, Appendix B gives the uniqueness of weak solutions to the INSF system, and Appendix C contains
auxiliary facts on Gaussian integration and elliptic estimates.

2. L°° ESTIMATE

This section establishes the L estimate for the linear Boltzmann equation (1.45) on the stretched domain
[0, Tp] x Qe x R3. The main result is Proposition 1.3, whose proof is presented at the end of the section after
several preparatory lemmas.
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For the linearized Boltzmann operator L defined in (1.18), it is standard that Lf = vf — K f, where the
collision frequency v and the compact operator K on L?(R3) are given by

1
v =v(t) = =0 (F ) = L, o=l e,

K5 = 2 Q4 0t V) + QRS ) = Q-G /A= [ Ba(e) = e )] ()

For hard sphere cross sections, there exist positive constants Cy and C such that

vy < Co (v) <v(v) < Cp(v),

(2.1)

with the uniform lower bound vy. The operator L is symmetric with the spectral inequality:
(f,Lf)2 2 (X =P)fl7z, for feDy={feL*R3) v'/2f e L*R3)}.
Multiplying equation (1.45) by the weight function w defined in (1.26) yields the equivalent formulation
Oth+v - Vyh+v(v)h = wK(w 'h) + ewg in [0,Tp] x Qe x R?,
hl, =1 —a)Zh+aw/p hdo  on [0,Ty] x 09, x R3, (2.2)

n(y)-u>0
h|t:() = ho on Qg X RB.

Here and in the following, we use the notations

h(t_,y7’l)) = Wf(t_7y=v)7 hO(:U?v) = wfo(y,v), (23)
do := w™"V2mpz [n(y) - u)du, C, = / do. (2.4)
n(y)-u>0

Given (t,y,v) € [0,Ty] x Q. x R3, recall the characteristic trajectory (1.51). Let (tg41,Yr+1,Vrs1) denote
the (k4 1)-th (k € N) bounce along the backward trajectory (cf. (1.52) and (1.53)):

Ry, ., (vr), specular reflection;

Vg1 diffuse reflection, (2.5)

tht1 =tk — to(tk, Yk Vk)s Ykt1 = Y (Ekt1; bk Yk Vk), Vkt1 = {

where we set (to, Yo, v0) := (¢, y,v). This yields a sequence t11 <t < - - <ty <t <tg=1t<Tp.
Because 92 € C3 is compact and V£ # 0 on 982, there exist positive constants 0 < C¢, < C¢,, independent
of €, such that

[€llcaon) < Ceyn [Va€| 2 Ce, on 0N (2.6)
For given (£,y,v) € [0,Tp] x Q. x R3, define the grazing set

Sy(v) :={v eR?: n(y(y,v)) -v =0}, (2.7)
By Lemma 17 in [32], the set Sy (v) has zero Lebesgue measure.

2.1. L*° Estimate for the Semigroup.

This subsection establishes the L estimate for the semigroup generated by the linear homogeneous
equation of (2.2) without collision K.

We begin with an estimate for the backward bounce time.

Lemma 2.1. Let (tg, yx, vx) be the k-th bounce of the backward trajectory (1.51). Then
Ce, [vr - n(yr)|

to (ths Y, k) > EoE (2.8)
Proof. By Taylor expansion of £(eyx11) about y, we obtain
E(eyrr1) =€(eyn) +eValleyr) - (Yr+1 — k)
+ &2 (Yr1 — yk) - [V2E(OBeye + (1 — 0)eyrr1)] - (Wnr1 — yk), 0 € (0,1).
Since £(eyr+1) = 0 = E(eyx) and V€ # 0, we have
b -
|§Z§E§z:;| “(Yrg1 — yk)‘ - ° |V$§(9€7kngiiy_k)?5yk+l)‘ lYr+1 — Yl (2.9)

Using (2.6) and (2.9), we obtain
n(yx) - (1 — vr)| < eCe, Oy — wil?, (2.10)
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where we have used the fact n(eyi) = n(yx) derived from (1.50). Along the backward trajectory, we have
Yk+1 = Yk + Uk(tr+1 — tx), which implies

[Yrr1 — Ul = [terr — el o], (k1 —yx) - n(yk) = (terr — ) [or - n(ye)]- (2.11)
Substituting (2.11) into (2.10) yields (2.8). O

The following lemma shows that for small ¢, a backward specular trajectory in a non-grazing regime
undergoes at most one bounce.

Lemma 2.2 (Single-bounce for specular trajectory). Let (f,y,v) € [0, Tp] x Q2 x {|v] < N, |v- v y)l | >n}
be given, with sufficient large constants Ty, N > 0 and a small constant 1 > 0. Define
C2n
&
= 0,1). 2.12
°1 2C% N°T;, €©.1) (2.12)

If 0 < € < €4, then the backward specular trajectory (1.51) starting from (t,y,v) has at most one bounce.

Proof. 1If t; <0, there is no bounce before reaching the initial plane {¢ = 0}. If ¢; > 0, it suffices to show
that the backward time ty(t1,y1,v1) exceeds Ty for sufficiently small e.

Since 0 < t; <t < Tp and |v] < N, we have |(t; — )v] < ToN. Because y; € 9., we have ey; € 9.
From the relation

Y1 =y + (t1 — v, (2.13)
we see that ey € Q lies close to the boundary 0f) for sufficiently small e:
ey =cey; —e(ty — v =eys + O(e) ~ IN.

Indeed, for bounded velocity |v| < N, if the backward trajectory hits the boundary 9f)., the distance between
the starting point y and the boundary 0€2. must be bounded; consequently ey = x is near 0f2.

Now observe that n(y) = n(ey), because V £(cy) # 0 near the boundary. Expanding V,£(ey;) about y
gives

oo Veblen) o Vabley) [Valley)l | voeViE B+ 0 =0ep) n=v) 1y
[Va€(eya)| IVal(ey)| V& (eyn)| Va€(eyn)]
where 6 € (0,1). Using (2.14), (2.13) and (2.6), we obtain
. _ :rg 5?/1 051 :Ef Ey _ 052 2
[v-n(y)| = ‘ SAEE 052 V.t (o) |‘ C& ToN=. (2.15)

Substituting (2.15) into (2.8) and using v; = R,v for specular reflection, we have

V.E(ey
Cey|v-n(yd)| o {C§1|U m _TNQ} 1 [C

—ToN?| —
£Ce,|v]? eCZ, w2 = lecz 7"

to(t1,y1,v1) >

2 T07

provided 0 < € < e;. Hence, the backward trajectory reaches the initial plane {f = 0} before any further
bounce after (¢1,y1,v1). The assertion is thus proved. O

The following complementary result holds for a backward diffuse trajectory.

Lemma 2.3 (No further bounce for diffuse trajectory). Let (t1,y1,v7) € [0,To] x 02 x {|vf] < N, |n(y1) -
vf| > n} be given, with sufficiently large constants Ty, N > 0 and a small constant > 0. Define

Cen
Ce, N2Ty
If 0 < e < &g, then the backward trajectory (1.51) starting from (t1,y1,v]) has no further collision.

£y 1= € (0,1). (2.16)

Proof. Following the proof of (2.8) in Lemma 2.1, we obtain

Ce, |vi - n(y1)| C
11Y1 a4 > 51772 > T,
ngz |U1 | EC€2N

provided 0 < € < 9. Thus no further collision occurs after leaving (t1,y1, v7). O

tb(tlvylavr) Z

Finally, we state the semigroup estimate for the linear homogeneous Boltzmann equation without collision
K under the Maxwell boundary condition.
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Lemma 2.4 (Semigroup estimate). Let hg € L*(2. x R3), and let e5 be the constant defined in (2.16).
Then, for every 0 < € < eq, the weighted linear problem

Oh+v-Vyh+v(w)h =0 inRT x Q. x R?,

h’y =(1-a)Zh+ aw\/ﬁ/ hdo  on RT x 09, x R, (2.17)
B n(y)-u>0

hli—o = ho on Q. x R®
admits a unique solution h(t,y,v) = {G(t)ho} (y,v) satisfying
IGDhollee et xe sy < (204 + e~ 2t holl o, . xpsy ~ for all T>0. (2.18)

v

Proof. The proof is divided into two steps. In Step 1, we derive the uniform estimate on a bounded time
interval. In Step 2, we extend the result to the entire R,

Step 1. Uniform estimate on a bounded time interval.
We claim that for any sufficiently large Ty > 0 satisfying (2C, + 1)e~ 270 < 1, the following estimate
holds:

vos < o .
2 [z, ] < 0+ Dol (2.19)

To prove this, we construct an iterative sequence {h"T1}5°  via
Oph" T 4 v - VR L u(0)h" T =0 in RT x Q. x R,
R = (1= a)Lh" + awy/p h"tl'do on Rt x 8. x R?, (2.20)

n(y)-u>0
Al = by on Q. x RS,

with the initial iterate

RO = hO(L,y,v) := e " ho(y, v). (2.21)
To establish (2.19), it suffices to show that
sup [eVUsHh”"’l(S)HL;‘jv] < (20 + DhollLge, forallm=0,1,2,---. (2.22)

0<s<Tp
Indeed, once the uniform estimate (2.22) is verified, there exists a function h € L>®([0,T] x Q. x R™) such
that a subsequence of {h"*1} (still denoted by {h"*'}) satisfies
Rt = b weakly—x in L>([0,T] x Q. x R™) as n — oo,

and the limit h satisfies the uniform estimate (2.19) and the linear problem (2.17) in the weak sense.

We now verify the uniform estimate (2.22) in four sub-steps.
Step 1.1. The first bounce. -

For e € (0,1], « € [0,1], n € N, £ € [0, Tp] and (y,v) € Qe x R3\ vo with v ¢ S, (v), using the characteristic
trajectory (1.51) and the equation (2.20),, we obtain

d

£[e— qu(v)dThn+1(S7Y(8;E7y,U),U):| -0 (2.23)

for t1 < s < ¢. Integrating along the backward trajectory yields
Wy, v) =L, <ope” 0O ho (Y (0, 0), v)

+ 1,505 I V(v)dT(l —a)h™(t1,y1, v1)

7‘['{ v(v)dr (224)
+ ]-{t1>0}e i aw\/ﬁ hn+1(t17y17v1<)d0>1k
n(y1)-vy>0
=Ty + T+ iy
where do} = w™'v2mpz [n(y1) - v}]dv? similarly as in (2.4). Obviously, J¢ (£, y,v) is bounded by
|Jo (.9, 0)] < Lg<ope™ ol (2.25)

For the diffuse boundary term .J c%i’ we partition the integration domain:

{n(y1) - v1 >0}
={v1l > N, n(y1) -or > 0} U o] < N, 0 <nfyr) o7 <n}U{or[ <N, n(y) -vof =0}

=A7(v7) U Ay (vr) U My, (vy), (2.26)
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with positive constants N and 7 to be determined later. On Aj(v}), J2 is bounded as

|J5i1A{(v{) < ao(l)e—uo(f—h)|hn+1(tl)|L§?v(aQEX]R3), (2.27)

provided N > 0 is sufficiently large. For A%(vy) and fixed N, we apply the decomposition vi | =] — ’U;H
with o]\ = [v] - n(y1)]n(y1) for [v] - n(y1)| <7 to obtain

_ n
|Jd1i1A§('UI) < ae—VD(t_tl)CN|h"+1(t1)|L§?U(BQE><R3)/ dUi”/ d’UiJ_
K i, LI<N (2.28)
< ao(l)e"’ot_ sup [e”°S|h”+1(s)|Loo ((mist)],
0<s<To v
provide n > 0 is sufficiently small. For the bulk My (v7), Lemma 2.3 implies that for 0 < & < &3, the backward
trajectory starting from (¢1,y1,v]) undergoes no further collisions. Thus, J(}i (t_,yﬂ))lz\/[;1 (vt traces back to

the initial plane {f = 0} and is bounded as:

vot

‘JéilMgl wn)| < 1y >opae” / da’llhOHLZ‘_’U < 1{t1>0}aC*€_VOEHhO||L5?v- (2.29)
‘ n(y)-u>0 '
Note that the o(1) term depends only on N > 0 and 7 > 0, and is independent of € and a.

Combining estimates (2.24), (2.25) and (2.27)—(2.29), we obtain
| (E g, 0)| < (L, <0p + 1{t1>0}aC*)€_VUE||h0HLgfjv

+ 1y, s0pa0(L)e ™ sup [0 (s)] e (90, )] (2.30)
0<s<Th

+ 1,501 (1 — 04)67U0(t77t1)|hn(7517y1, 'Ul)|~

Step 1.2. The 2nd bounce.

After the first collision at (¢1,y1, v1), the term Jslp may continue to undergo reflection along the specular
backward trajectory. Note that the equation of h™ shares the same specular backward trajectory as that of
h"t1. Consequently, we have

h™(t1,y1,v1) =1{r,<0<i,}€ Jo* v AT b (Y (03 t1, 1, 01), 1)

t
+ 1,0y (1 —a)e” Jez vyt (t2,y2,v2)
. (2.31)

+ 1{t2>0}a67 ft2 V(v)dTw\/ﬁ/( hn(tQay%U;)dU;

Y2)-v3>0
=J§ + Jo, 4+ Jg
Similarly to (2.25), J3 is bounded by L{,<o<t, 1€ 00 HhOHLgﬂy Following the same procedure as that of J},,
we partition the integration domain {n(y2) - v5 > 0} and bound J3; as:

T3 <1ie,s0yaCie™lho]l Lz, + Lismopao(l)e ™" sup [e"°|h"(s)| 1z, (90, x5)) - (2.32)

0<s<Tp

Thus,

h™(t1,y1, vl)‘ satisfies the bound:

|hn(t17yla v1)| < (1{t2§0<t1} + 1{t2>0}aC*)67V0t1||h0||L§?U

—voty

+ 1g,~0p00(1)e (Sup [€"°|h" ()| Lee, (902, xB3) ] (2.33)

<s<Tp
+ 101 (1 — a)e 0BT 2y yo, 05)].

Step 1.3. The k-th bounce.
Proceeding inductively, after the (k — 1)-th collision, the term pr’l may continue to undergo reflections
along the specular backward trajectory, leading to the k-th collision:

R (4 e 1, vp1)
tp—1
=1y, <o<ti_1}€ Jo™ ™ vlvk—1)dr (Y(05tk—1,Yk—1, Vk—1), Vp—1)

— tk_ll/ Vg — Tin+1—
+ 1m0y (1= e T VDAt =k gy gy o) (2.34)

tp—1

+1{tk>0}a67 te V(Uk_l)dT/ hn+17(k71)(tk7ykav;:)do—z
n(yk)-v;>0

=J§ + JE + Ik
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Analogous to the derivation of (2.33), we obtain the bound:

I (g, v

<(Lgtp<o<ty 1y + Loyl )e 0t 1ol g,

+ 1{tk>0}a0(1)e—yotk71 sup [euos|hn+1_(k_l)(3)|L;°v(895><]1§3)]
0<s<T, :

+ 1,50y (1 — a)e ottt | prtl=k g o).

(2.35)

Step 1.4. Bounce back trajectory starting from (tx,y, vk).
After the k-th collision at (t, yk, vk ), the term pr(tk, Yk, Ux) may continue to propagate along the specular
backward trajectory:

R HR (e g, vr)

=111 <0<ty 0 O R (V03 e, vk, vi), vk)

+ 1,50 (1—ae Jedy vR)dT p ke (

- ftk v(vg)dr n+1—k * *
+ 1., >0€ tht1 h (tht1s Yrt1s Uk+1)d0k+1v
n(yk+1)»vz+1>0

bt 1s Ykt 15 k1) 5 (2.36)

=TEH L g

Clearly, k < n, since the term h" ¥ (¢, yx,vx) on the right hand side of the expression for Jsszl in (2.36)
generates the initial iterate h° when k = n, and no further collision occur for given initial iteration h°. Recall
that to = ¢. For any fixed n € N, there are two possible cases: (1) There exists some k € {0,1,2,--- ,n} such
that tx 1 <0 < tg; (2) tger >0 forall k € {0,1,2,--- ,n}. We now estimate h"T1(#,y,v) according to these
two cases.

Case 1: There exists k € {0,1,2,--- ,n} such that t;11 <0 < tg.

In this case, for such a k € {0,1,2,--- ,n}, we have

l{tk+1§0<tk} = 17 l{tk+1>0} = 07 1{t¢§0<t1,71} = 07 l{ti>0} = 17 VZ € {172? T 7k} (237)
This means that the backward trajectory starting from (¢, yx, vr) reaches the initial plane { = 0} with no
further collision. Therefore,

IR gy, o)) = 5T < gy <0<ty 0 lhol Loe,

y,v

and hence

sup [e”"s|h”+1_k(s)

Lo, (00xE3)] < 1ol Lgs, - (2.38)
0<s<Top

Y,v

Substituting (2.38) into the right-hand side of (2.35) and using (2.37), we obtain

[1 — ao(1)] sup [e”“s|h”+1_(k_1)(s)
0<s<Tp

Lee, 0ax 3] < aCullho|lLee, + (1= a)lhol| e, - (2.39)

y,v

Next, substituting (2.39) into the estimate of A?T1=(=2)(¢;_,) and deducing similarly,

[1—ao(1)]* sup [euos|hn+17(k*2)({‘>’)|Loo (09. x R3)]
0<s<Ty o (2.40)
<{aC.[1 - ao(1)] + aC.(1 - ) + (1 — a)?}|hollL,.

Repeating this process for h*t1=(#=3) (¢, _3), we obtain

[1 - 040(1)]3 sup [6V08|hn+1*(k73) (5)|LZ?U(BQE><R3)]
0<s<Tp (2.41)
<Hal,[1 — ao(1)]* + aCy[l — ao(1)](1 — a) + aC.(1 — a)? + (1 — a)*}|ho|| Lo, -

Y,v

By induction and (2.37), we arrive at
[1- ao(l)]k sup [el’os|h"+1(s)|L5§U(QEX33)]
0<s<Tp '
. } , (2.42)
<aC. Y [1—ao(W]* (1= ) " hollz, + (1= )F[[hol| s, -
i=1
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Finally, we obtain the following uniform bound for h"*+1(#):

sup [€V°S||hn+1(5)||1;s;gv(95xR3)]

0<s<Tp
1l—a \* 1 1—a \*
<c.fi-( )] hollgs, + (1= ) lRollz (2.43)
- 1—ao(1) 1—o0(1) 7o Lyt 1—ao(1) 1ol L
where the last inequality follows from the bounds
1 1
o(1) < 2 1—o0(1) > 2 1—a<1-ao(l). (2.44)

Case 2: tp4q >0 for all k€ {0,1,2,--- ,n}.
In this case, after the n-th collision at (t,,yn, v,), the specular trajectory continues to propagate and
produce an (n + 1)-th collision. Taking k = n in (2.36), we obtain

hl (tna Yn, vn) :l{tn_H §0<tn}6_ [Otn y(vn)dThO (Y((), tn7 Yns 'Un), Un)

v(vy)dT

_ [tn
+ 1,500 (1 —a)e T RO (tn41, Ynt1s Uns1)

(2.45)

o y(v,)dr

+ 1{tn+1>0}a6_ fnt / hl(tn+17yn+1a”;+1)d0;§+1
n(Yn41)v} 1 >0
=Jg 4 T 4 Tt
Following a similar procedure as in (2.33), we bound |h' (tn, yn, vs)| as

WY (b Y )| < (Mgt <0<ty + Litngas0p@Ci) €700 | hol| poe,
Y,

—votn . vos|y,1 P
F LnsoaeDe™ sup [e7% IR} ()| L2e, 0% R)) (2.46)

+ L0y (1 —a)e™ [ ho| e,
where the last term has used the initial iterate h° = e‘”ﬂfho and the bound
erotnt |h0 (tn+1ayn+1avn+1) ‘ = ‘hO (yn+17vn+1) | < ||h0HL§j°,v-

Since t, 41 > 0, we have 1y, <o<¢, ,3 = 0 forall i € {1,2,--- ,n,n 4 1}. Then, (2.46) implies

[1 — ao(l)] 0<su<pT [€V05|h1(3)|L5‘?U(6Q><R3)] S O[O*”hO”Lg?v + (1 — O‘)”hO”L;‘jU- (247)
S8>1o0

Substituting (2.47) into the estimate for h?(t,_1), we derive
[1—ao(1)]* sup [€V°S|h2(5)|L§°v(anR3)}
0<s<Tp :
<{aC.[1 - ao()] + aC.(1 - ) + (1 - )2 HlhollLss,
Proceeding iteratively as in case 1, we finally obtain

[1—ao(D)]"™ sup [e%||A" T (s)| Lee, (. x B3]
0<s<To
" - (2.48)
<aC, > [1—ao(D)]" (1 = a)'|holl Lz, + (1 — )™ |[hol| e, -
i=0

Y,v y,v

This, combined with (2.44), yields the uniform bound for A"+ (#):

sup [eVOS||hn+1(8)||LgoU(QEXR3):|
0<s<Tp ’

1—a n+1 1 11—« n+1
ol (o R (2.49)
<ei- (o) Jr=om Mol + (o) Mhollss.

< (20, + Dllhollse, -

Combing (2.43) in Case 1 and (2.49) in Case 2, we verify the claim (2.22). Note that excluding the
zero-measure sets g and Sy (v) does not affect this uniform L> estimate.

Step 2. Proof of the uniform estimate (2.18).
From (2.19), we obtain

IR(To)]| e < (2C. + 1) 0T [|R(0) ]| oo, < €™ % 0| ho| 12, (2.50)

.
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provided Ty is sufficiently large. Then, we apply the estimate (2.50) iteratively on the intervals [Tp, 27p],
270, 3T0), -+, [(7 — V)70, To] (j € Z4), yielding

1A To)lze, < € 2 R(G = DTo)ll2ge, < --- < e T ho| gz, (2.51)

Finally, for an arbitrary ¢ > 0, choose j € Z* such that jT, <t < (j + 1)Ty. Applying (2.19) on the interval
[0, ] and using (2.51), we obtain

1A, < (2Cs + D)e I Tp)|| e, < (20 + L)e 2 lhol|ge, - (2.52)

This completes the proof of Lemma 2.4. O

2.2. L*> Estimate for the Linear Equation.

We establish the L estimate for the linear equation (1.45) and give the proof of Proposition 1.3.

Proof of Proposition 1.3. We first claim that, for any given (£,y,v) € [0,Tp] x Q. x R? with (y,v) ¢ o
or v ¢ Sy(v), the following bounds hold:

|h(t:y7v)| S 6770{Hh0||L§f’,U(QE><]R3) +o(1) sup |h(s )HLfﬁv(QgXR:‘)

0<s<Ty
+ sup [[Pf(s)llze (a.xrs) + sup [(T—=P)f(s)llzz (0. xrs) (2.53)
<s<Tp . <s<Top

+e sup [(v) " wals)lLee, 0. xr3),s
0<s<Tp,

IA(E,y.0)| S € 2 llhollnge, (0. xms) + 0(1) sup [I(s)l| 1z, 0. xm9)

0<s<Tp
+ sup [|f(s)llz2 , (q.xre) +€ sup ”<U>71Wg(s)”L§°v(Qg><lR3)- (2.54)
0<s<Top 0<s<Ty ’

Once (2.53) and (2.54) are verified, the main estimates (1.47) and (1.48) follow by applying (2.3) and taking
the Lg<, norm on both sides. Note that excluding the zero-measure sets 7o and S, (v) in (2.53) and (2.54)

does not affect the validity of the uniform L°° estimate.
We now establish the estimates (2.53) and (2.54). From (2.2), for t; < s < ¢, we have

d |: ftz/(’u dTh(S Y(Sty, ) )]
N (o) i i (2.55)
=e Js kg(v,u)—=h(s,Y(s;t,y,v),u)du + e(wg) (s, Y (s;t,y,v),v)|.
e[ o,0) S (s, Y (5. 0), ) du + e(0g) (Y (s 0),0)]
R3 w(u)
Define the principal set
M(y,v) = {(y, ) e 0. xR?: |v|<Nand‘ ng‘_n} (2.56)

where N > 0 is a large constant and 7 > 0 is a small constant, both to be specified later. Let 1 and g5 be
the small constants defined in (2.12) of Lemma 2.2 and in (2.16) of Lemma 2.3, respectively. Let ¢ satisfy
the restriction
0 < e <egp:=min{eq,ea}. (2.57)
The proofs of (2.53) and (2.54) are divided into two steps.

Step 1. Estimate of h(t,y,v)1r(y,0)-
Applying the Duhamel principle along the backward trajectory, we obtain

h( » Ys )lM(yv)*JO( » Y, U )+Jk({7ya )+J(ﬂy7 )+Jsp({7ya )+sz( y Y, U ) (258)
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where
Jo(t_,y,’l)) = 1{t1§0}€_‘f0t V(v)dT‘h(()?Y(O)ﬂU) 3

w(v)

T )
Jx(t,y,v) ::/ ds e~ J: ”(“)dT/ du kg(v,u) —=h(s,Y(s),u),
max {0,t1 } R3 (u)
t ~
Jg(t,y,v) = / ds e~ J: ”(“)dT’E(wg) (5,Y(s),v)|, (2.59)
max {0,t1 }
Top(,y,0) = L sope” 1 Y7 (1 = a) (b, 11, v1)),
Jai(t,y,v) == 1,50y I V(U)dToz/ ’h(tl,yl,vf)|daf.
(yl) CEl >0
Direct estimates yield
o6y, 0)| S e hollnge,, gy, v) Se sup [[(0) " wd(s)|lrg, (2.60)

0<s<Ty

We now estimate the remaining terms Jg,(¢,y,v), Ji(t,y,v) and Jg;(f,y,v) in Steps 1.1-1.3.
Step 1.1. Estimate of J,,({,y,v).

By Lemma 2.2 and (2.57), the specular backward trajectory starting from (¢,y,v) € [0,T] x M(y,v)
undergoes at most single-bounce against 9. Thus, after the first collision at (¢1,y1, v1), the term Jg, (¢, y, v)
propagates back to the initial plane {t = 0}:

Jsp(t,y,v) =1gi, 5006 Jiy tonar = ;! @47 R(0,Y1(0), v1)

_ t1 .
e O [ s IO ) (5, i), ) (2.61)
0

.3 tl b
+ Ly ope 0 0T / ds e [11 vlondr / v’ ks (v, 0) S (s, i (), )
0 R3

=dJsp,0 + Jsp,g + Jsp,ka
where we have used the abbreviation
Yi(s) := Y (sit1, y1,01). (2.62)
The terms Jsp o and Jsp 4 are bounded similarly to (2.60). To estimate Jsp 5, we invoke Lemma 3 from
[32], which ensures the existence of 3 = 5(8, 8’) > 0 such that

Moreover, for any m > 1, we can choose N = N(m) > 1 further large so that
kN(V, ’Ul) = 1\V—v’|2ﬁ1|U’|SN1|V\SNkB(V7 U/),

1
3 kny(V,v') —kz(V,0")|dv < —.
sup |l (V') = ks (Vi) jde' <

We decompose the kernel as
k;(V. ') = [kg(V,v') —kn(V.0)] + kn(V,0). (2.64)

The first term in (2.64) contributes at most o(1)||k|[Le, for sufficiently large m > 1. For y’ € Q., define the
principal set

M, (') = {v eR?:

7‘%5 |‘ > n} (2.65)

The second term in (2.64) leads to

Cm +Cn, /
[v/|<N, |v’ Va&(eYq(s)) |<n

TVzeEeY1 ()T Y1( )

which is further bounded by

oV), sp 1A(3) ez, + Criee (2.66)

where n > 0 is chosen sufficiently small, and

t1
Sop ko ::1{t1>0}/ ds e_”o(t_s)/ . )dv'}h(s,Yl(s),v’)‘. (2.67)
0 {, (o) (¥ ——

Note that the o(1) coefficient in (2.66) depends on N and n but is independent of ¢.
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We now apply the Duhamel principle and (2.55) to the under braced term in (2.67), considering the
backward trajectory starting from (s, Y;(s),v’):

Tupioe = S p + IE o+ T+ TP TE (2.68)

where

9

tl ny s ’
Jgp,k* = 1{t1>0}1{t’1§0} / ds e vo(t—9) / dv'e= Jo v )ch"h(o7 Y(O; s, le<s>7 ’U/), ’U/)
0 MYI( )(1)/)

tl t s s ’
Jskp,k* = 1{t1>0}/ ds 6_V0(t_s)/ dv’/ dre— [7v(wdr
0 My, (sy(v") max {0,t} }
;@)
x| dukg(v',u)
R3 w(u)

b T s s ’
U 1{t1>0}/ ds eo(t=9) /M » dv’/ © tl}dTe*f% v(v)dr
Yl(“) v max Uty

><’ (wg) (1, Y (735, Y1(s),0"),v)

|h(r,Y (158, Yi1(s),0"),u)],

)

t1 . ’
s —vo(f—s — [ v(")dr
Tophs = 1{t1>0}1{t3>0}/ ds e7 )/ dv'e” |h(th,y1,01) s
0 My, ( ) (')

t1
—vo(t—s _.tsl v(v')dr *
i = 1{t1>o}1{t;>0}/ ds e~ )/ do'e” 1 / |h(t1, y1,uy)
0 My, (5y(v") n(y))-up* >0
and JY

The terms J s sp.k« are bounded similarly to (2.60). The remaining terms J:”
will be estlmated in the following Steps 1.1.1-1.1.3.
Step 1.1.1. Estimate of J7| .

For (s,Y1(s),v") with 0 < ¢} < s < t1 <1 < Tp, Yi(s) € Q. and v € My, (5)(v'), similarly as (2.61),
Lemma 2.2 ensures that the specular backward trajectory starting from (s, Y3 (s),v’) reaches the initial plane
{t = 0} after the first collision at (y{,v}). Thus,

JE

sp,kx? < sp,kx and ka*

TP e = TR0+ T+ T (2.69)

where

t1 B
JS’SIZ’)’k* 1{t1>0}1{t’>0}/ ds e’”o(tfs)/ dv’
My ) (v7)
o Jvhar g DT 1 (0, Y (0; 81, yh, v1),01)

t1 B
T it 1{t1>0}1{t’1>0}/ ds 67”"(“5)/ do’
0 My, (s)(v")

15 (o’ th i , ,
e di v )dT/ dr e I DI e (wg) (Y (73 84,45 0), 04
0

k t1 , ~[5 v(")dr th
o 21{t1>0}1{ta>0}/ ds 7l / dv'e” dr
0 MY1( ) (v") 0

x e~ 7! ”(”i)dT// da ks (v, @)~ (
R3 w

(7’ Y (7;t, 91, 0)), )|

The terms J;" ,S* and J;7, are estimated similarly to (2.60). For ijk*, we proceed as in Step 1.1: bound

the kernel by k(V', @), decompose it as [k;(V', @) — kn(V',@)] + kn(V’, @), and split the time interval
[0, ty] =10, t4 — (5] U [ty — 6, t}]. This yields

JE S o(1) sup k()L + JI00E (2.70)

sp,kx ~ sp.kx
P 0<s<To P
where

t1
Jiﬁ’k* =1 >0l >0}/ ds e_VO(t_S)/ L /)dv’
© (2.71)

th—4
x/l dr e‘”O(S_T)/ da | (7, Y (r3t], 44, 01), ) |.
0 |a|<N
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Now consider the change of variables:

v = V() =Y (Tt vh) = v+ (T = 1)y (2.72)
Since 0 <t} < s <t <t <Tpand |v'| <N, the relation
Ui = Yt 5, Ya(5), ) = Ya(s) + (1 — s/ (2.73)

implies that |(t] — s)v'| < NTp. This further indicates that |yj — Yi(s)| must be bounded by NTy. While
Yy € 00 and ey; € 99, so that €Y1 (s) € Q lies near the boundary 9f, and thus

S EAE)]
where we used the fact that V,£(£Y1(s)) # 0 near the boundary. It follows that
n(y1) = n(ey) = n(eYi(s) +e(t] — s)v') = n(e¥a(s)) + O(e).

Thus, we derive

vp = Ry (v') = 0" = 2[n(y}) - v'] n(y)) = v’ —2[n(eYi(s)) - v']n(eYi(s)) + O(e). (2.74)
It follows from (2.72), (2.73) and (2.74) that

Y(Tv tla ylﬂ vl)

=Y1(s) + (t) — s)v" + [(T = s) = (t] — 8)]{v" = 2[n(eYi(s)) - V'] n(eYi(s)) } + O(e)
(

=Y1(s) + (7 — s)v + 2[(t] — s) — (7 — 5)] [n(eY1(s)) - v'] n(eYi(s)) + O(e) (2.75)
=Yi(s) + (1 — s\ + 2[(t) — 5) — (7 — 5)] [V ET (2)(551}( Sffyl(s) )+ o).

We now compute the Jacobian entries:

QY (1517, y1,v1)i

o — (T _ 8)613 + 2[(t/1 _ S) _ (7_ _ 8)] 8,»{(5)’1(5)) 8j£(€Y1 (3))

; Vo )P
2[V,€(eYa(s)) - V'] ot — s) (2.76)
0; ———F=4+0(e
VR )T + 0
= (T*S)(sijﬁ’aij‘i’O({:‘), i,j = 1,2,3,
where 0;€ = % denotes the spatial derivative, with the notations
aij = b,L'Cj7 bz' = 825(65/1(5)),
) 2(V.£(eY; - r_
cj = 2[(15/1 —s)— (17— 3)] O(EN(s) 2 [ Slehl) ZU] 8(% 7 S)
[Va&(eYi(s))] [Va2€(eYi(s))] v;
Elementary computations yield:
3
Q[fo(sYl (s)) - v’]
are = 2[(t) — ) — (T —8)| + Vot —s) - Va€(eYi(s))],
kZ:l kk [( 1 ) (T )] ‘wa(g}/l(s))lg [ ( 1 ) f( 1( ))]
L (0777 Qi o bici biCj o . .
det B;; := det ( a4y > = det ( bic; bic; ) =0 for i # j,
ai; a2 a13 bici bica bics
det C := det a21 QA22 0423 = det b261 b202 b203 =0.
as; asz ass bsci  bzca  bses
From these relations and (2.76), we obtain
det [VU/Y(T; t/la yiv Ull):l
3 3
=(1 -5+ (1 —3)? Z agr + (17— 8) Z det B;; +det C + O(e), (2.77)
= 1<i<j<3

=—(1—s)+2(1 - 5)2{(t’1 —5)+ [vaiég(j;/(ls(l)))r; ] [V (t) —s) - Vlf(dﬁ(s))]} + O(e).

Recall that y; € 09, ey] € 9Q and €Y (s) is near the boundary 0. Since 1C¢, < |V,&(z)| < 2C¢, for z
near the boundary 92, we have 1C¢, < |V,£(eY1(s))| < 4C¢,. It follows that

[ Vab(ei ()] = IV ()] [ - (¥ (5))]| = [Vab(¥i (o) [ - mvi(s))]| 2 28,
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where we have used the condition |[v" - n(Y1(s))| > n. From the expansion
0=¢(eyt) = &(ea(s) +e(th — 9)v') = &(eYi(s)) +e(t) — 9)[Vat(Yi(s)) - v'] + O(e?),

we take the partial derivative (“)v;,:

X0 (9, 6(evi(s)) -] 4 0() =0, j=1,2.3.

Taking inner product with V,£(eY1(s)) yields
(11 = 8)|Val (€Y1 () + [Va€(eYi(s)) - 0] [V (t) = 5) - Vat(eYa(s))] = O(e).

(1 — $)0;6(eYi(s)) +

It follows that

() —s) + [Tvgéif(?)); | [V () — 5) - Va£(eYa(s))] = O(e). (2.78)

Since 0 <7 <t —d <t) <s<t<Tpy wehave s —7 >t} —7 > . Combining (2.77) and (2.78), we
obtain the lower bound for the Jacobian:

1
|det Vo Y (73,41, 01)| 2 |s = 7° + O(e) > 553’

for sufficiently small € < &;. Note that this lower bound is independent of e.
Integrating over time first and using |h(@)| = w(@)|f(@)] Sy w™|f(@)| for |a] < N, we have

sp,kx Y N A AN ~ 1.,/
Jsp,k* 5 sup / / |h(7-7Y(Tat17ylvvl)au)|dUdU
0<7<s—-6<s<t1 J |v/|<N J|a|<N

5 / / |w IPf(T Y(T t17y1v1}1 )‘ \/ dUdv
o<T<s 5<5<t1 v/ |<N Jal<N

(2.79)
+ sup / / W™ (X =P) f(7, Y (71,91, vh), @) | dad’
0<7<s—0<s<t1 J |v/|<N J|a|<N
T
For P f contribution J;7" el
Jipkel < sup [/ Hw_le(T Y (7;t), 91 v'l))HG 5 dv’} Ve
sp,kx* 0<r<s_b<s<t , i RS R ) LG(R&)
< [ e P r) ey ] (2380)
su w T, .
~N OST£T0 Q. Pl 53 Y
<Ny sup ||w*1Pf(T)||L6(ngR3).
0<T<To
For (I—P)f contribution J;7" 2
1/2
J;g’,f:’z <y sup // lw ™ X =P)f(r,Y (75t} 91, 00), @) dv’du}
0<7<s—6<s<ty
_ 1/2
sup // wt (I— )f(T,y, ~)| 63dydu} (2.81)
0<T<T0 Q. ><R3
Svosup o I = P)F(7) L2 (0. xr) -

0<7<Typ

Collecting (2.70), (2.79)—(2.81), we obtain

JSp <6 tHh0|

ap e S Ly, T S IIW "Pf(s)lLs

Y,v Y,v

Lz, +o(1) sup [h(s)]
0<s<T,

+ sup ||w I=P)f(s)les, +¢ sup_ ||< >_ w3 (s)|| pee, -
0<s<T 0<s

(2.82)

Step 1.1.2. Estimation of J* s ke

We decompose the kernel in J* < 1« Similarly to (2.64), where the first term contributes at most (cf. (2.66))

o(1)supg< <7, [M(s)| s, . For the second term, we split the time integration:

s s—0
/76+~/ = Jap kx +ka*7 (283)

max{0,t] }
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where Jskp’lk* is bounded by dsupg<,<r, [|h(s)| L, due to the small-time truncation. The second term Jffk*

in (2.83) satisfies

ty
k,2
Jsp,k:* S/ dS/
0 M

Consider the change of variables

s—0
dv// dr e—uo(t—‘r)/ du |h(r, Y (755, Yi(s),0'),u) . (2.84)
) 0 lu|<N

;’1(5)(”/

vy =Y (75 8, Yi(s),v) = Yi(s) + (1 — s)v'.

Since 7 > 0, the trajectory Y (7; s,Y1(s),v’) does not collide with the boundary 99Q.. Then, for 0 < 7 <
s — 0 < s, we compute

1
’ det [V Y (755, Y1(s),v")] ‘ =|s— T|3‘ det (05 + 0(53))‘ > 5(53.
Deducing similarly as (2.79)—(2.81) and collecting (2.83) and (2.84), we obtain

Tipre S0(1) sup [|A(s)|lzee, + sup [lw 'Pf(s)|Ls, + sup [w T —-P)f(s)Lz - (2.85)
0<s<Tp 0<s<Tp 0<s<Tp

Step 1.1.3. Estimate of J& , .

Similarly to (2.26), we partition the integration domain {n(y}) - uy* > 0} = A (uf*) U A5 (uf*) U M?Z (u™),
where MZ’Z (u™) == {Juf*| < N, n(y})-uf* > n}. The set A} (uf*) and AL (uf*) yield small contribution, similar
to (2.28). Thus,

I8 e So(1) sup [|A(s)|lLee, + Jopins (2.86)
0<s<Tp

where the bulk Jf;fk* is given by

. tl ’
Tpiee =L{ti>011 (>0} / ds e () / dvfem ol / |yt uy") |doy
0 |[v|<N M;Z(u/l*)

Let (y},uf*) € 0Q x M?Z (u™) be given. Lemma 2.3 ensures that the backward trajectory starting from
(yy,uf*) undergoes no further collisions. Thus, Jg;,*k propagates back to the initial plane {f = 0}:

Jd'i* — Jdi*’o +Jdi*7g +Jdi*vk (287)

sp,k* sp,k* sp,kx* sp,kx?

where

t1
di%,0 o (t— (st
S s = 1{t1>0}1{t’1>0}/ ds e~ol S)/ dv’e=vols f1>/ do?
’ iz )
t/ 1%
X e Jot v(uy )dTh(O,Y(O,tll, y/laull*)aull*)y
t1
dix, — — — —) *
Jsgfki :1{t1>0}]—{t’1>0}/ ds e vo (t S)/ dv'e vo(s tl)/ do_/1
0 v |<m M;il(u’*)
" d 7ftll v(ui")dr’ A Y (r: oo Tk 1%
X Te s s(wg)('r, (r;t), 91, uf ),ul),
0

. t1 ,
Jj;j;’: = 1{t1>0}1{t’1>0}/ ds e—uo(t—s)/ dvle—uo(s—tl)/ dai*
0 [v'|<m My (u)

o w(u)
></ dre= [71 v(wi) T/ ditkg (uf, @) ——~>h(Y (T3, 1, ul), @).
0 R3 w(u)

The terms Jg;*];?ﬂ and Jgpi*k"z are estimated similarly to (2.60). For Jg;*,;]:, we follow the approach used for

pr,k*: bound and decompose the kernel by k5(uf", @), and split the time interval [0,#1] = [0, %] —d]U[t] —d,¢}].

To handle the integration on [0, ¢] — 4], consider the change of variables:
ur” = Y (i, 1,ur) = gy + (7 — #)ud
For 0 < 7 <t} — ¢, we compute

|det [V Y (5 8]y, u))] | = [t — 7 > 6°.
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Following the same argument as (2.79)—(2.85), and combining (2.86) and (2.87), we obtain

i — Yoy -1 _
T S €72 ol pee, +0(1) sup [|h(s)|[zee, +& sup [[(v) " wg(s)| e,
0<s<T, 0<s<T,

_ i (2.88)
+ sup Jw ' Pf(s)llze  + sup wTH (I P)f(s)llzz -
0<s<To v 0<s<To v
Finally, we collect (2.66), (2.68), (2.82), (2.85) and (2.88) in Steps 1.1.1-1.1.3 to get
[op(ty, o) S € oz, +0(1) sup [[A(s)]l1ze, + sup [lw P F(s)]g,
: <s<To : 0<s<Tp ’ (2.89)

+ sup [lw ' @=P)f(s)|r2, +e sup [[(v) " wg(s)] g, -
0<s<Tp ’ 0<s<Tp ’

Step 1.2. Estimate of Ji(¢,y,v).

For Ji(t,y,v) in (2.59), the backward trajectory does not collide with the boundary 9. Following
the same approach as in the estimation of Jg, 1 (¢,y,v) in Step 1.1, we partition the integration domain
R? = Ay (u) U Az(u) U My(s) (u), where A;(u) and Az (u) yield the small term o(1) supg< <, [|h(s)|Lse, and
the bulk set is defined by

MY(S)(U) = {u €R?: |u/ < N and |u Vfg(sY(s))M > 77}.

VLE(eY (s))

For My(s) (u), we apply the Duhamel principle to the integrand h(s,Y (s),u) in Ji(t,y,v), obtaining an
expression similar to (2.68). Following the same estimation procedure as in (2.68) in Step 1.1, we finally
obtain
[ Je(t,y,0)| S e 2 hollnge, +0(1) sup [[A(s)l|nze, + S lw™"Pf(s)llLs
0

<s<T <s<To (2.90)

+ sup [w HI—P)f(s)]

0<s<Tp

1z, e sup [[(0) wg(s)lzg,.
' 0<s<Ty

Step 1.3. Estimate of Jy(t,y,v).

Following the approach used for estimating ngf, s We partition the integration domain {n(y,) - vy > 0} =
Af(vy) U A5 (vi) U My (vi), where My (vi) == {|vi| < N, n(y1) - vi > n}. The contributions from Aj(vy)
and Aj(v}) yield small term. Thus, Jg; (¢, y,v) is bounded by

|Jai(t,y,v)| S o(1) sup [[A(s)]
0<s<Tp

Lo, T Jdi* (57 Y, ’U)7

y,v

where
Jaix (t,y,v) := 1g, 50 e_”O(t_tl)/ ) |h(t17y1av>1k)|dv>1k~
M, (0

For (y1,v]) € 0Q. x My (vi), Lemma 2.3 ensures that the backward trajectory starting from (yi,v]) €
M,, (v}) propagates back to the initial plane {t = 0}. Thus,

Jdi*(ﬂ yv U) = Jr(i)z* + ‘](!1]2* + ‘]Lliﬂ'i*a
where

T = Ly sope 00—t / ( dve= ot DR (0 Y (0581, 51, v7), v}),

PG

t1 ‘ .
Jg, = 1{t1>0}67w’(t7t1)/ ( )dvf/o dse™ Jo V(vl)dTe(wg) (Y(s; t1, 91, V1), vl),
Ch

Y1
I, = 1{t1>0}e_”°(t_t1) /M ( dvie” ot vendr [ gy kﬂ(v’f,v’)%‘h(}/(s;tl,yl,vf),v’)’.
Y1 v

) R3 (v)

The terms JY,, and J9,, are estimated similarly to (2.60). The term JE.. is estimated by the change of

variable v — Y (s;t1,y1,v]), similar to the approach used for Jg:‘,;i in Step 1.1.3. We conclude

[ ai(t, y,0)] S €7 2 Flhollzze, +0(1) sup [|h(s)l|zz, + sup [lw ' PF(s)|Ls

: 0<s<Ty ' 0<s<Ty v

. _ 1 (2.91)
+ sup fw T (I=P)f(s)llrz, +¢ sup [[(v) wg(s)|re, -
0<s<Th : 0<s<Th
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Finally, combining (2.58), (2.60), (2.89), (2.90) and (2.91) in Steps 1.1-1.3, we obtain the following estimate
for h(t,y,v) restricted on M (y,v):

1M 0 anllus, S € F ol +00) sup IA(s)lz, + sup [l I

_S_

_ B (2.92)
+ sup Hw (I- P)f(s)HL2 +e& sup <v> wg(s)
0<s<T y,v 0<s<To L,
Step 2. Estimate of h(t,y,v).
Apply the semigroup representation from Lemma 2.4 and the Duhamel principle to (2.2):
h(E,y,v) = GDho(y, v / G(F — 5) [ewg (5, (s), )] ds
] (2.93)
Jr/t G(t — s) {/ ks(v u)w(v)h(s Y (s) u)du} ds.
0 R3 T w(u) 7 ,
Applying the semigroup estimate (2.18) from Lemma 2.4, we derive:
t
1hDllz, < (2C. +1)e™ 2| lho|ge, + (2C. +1)/ ~ 2 ewg(s)|| g, ds
0
t 2.94
+ (20, —|—1)/ e~ 2 =) qup / k; (v u)|h(s,Y (s )|du‘ (2:94)
0 yo | JR3
:=I(s;t,y,v)
where we have used the kernel bound (2.63).
We decompose the integral I(s;t,y,v) into two parts:
I(s;t,y,v) /3 kB(v,u)h(s Y (s),u) {1 = Lpqey(s)u) ) du
R
+ /R3 k; (v, u)h(s, Y (5), u)Lpq(y (s),uydu
= [1 (87 t_7 Y, U) + 12(8; ﬂ Y, U)'
By the definition of M(Y (s),u) in (2.56), the first term I;(s;t,y, v) is bounded by
Ity oz, S( [ glea)dut [ s (02 0)ldu) [1(5) 5,
( >N |u e [ <n ? ) ’ (2.95)

So(1) sup [|h(s)llzz, -
0<s<To

where we have used the compact support approximation of kB by ky as in (2.64). For the second term
I5(s;t,y,v), we apply the estimate (2.92) to obtain

[L2(s:t,y,0) L, Se” 2SHhollL;ol,+0(1) sup [|A(s)|[Lee, + S ||w "Pf(s)Le,
0<s<T, :

. ° (2.96)
+ sup [l X=P)f(s)llzz, +e sup ||<> wg(s)ll g, -

0<s<Ty ; 0<s<

Substituting (2.95) and (2.96) into (2.94), we thus prove the claim (2.53).
The estimate (2.54) can be proved in a similar way to (2.53). The main difference lies in the change of
variables analogous to (2.79)=(2.81): here we directly use the norm [|f(5)|zz  (o.xrs), without splitting f

into Pf and (I — P)f. We skip the details for brevity. This completes the proof. O

3. STRONG LIMIT FOR THE CASE ¢ Sa <1

This section studies the perturbation equation (1.17) and presents the proof of Theorem 1.1. The proof
relies on Propositions 1.2 and 1.3, which are established first.
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3.1. Energy Estimate.
In this subsection, we derive the basic energy estimates for the fluctuation f and its time derivative 9, f.

Proposition 3.1. Let f € L?([0,T] x Q x R®) be a solution of (1.17) with 0 < T < co. Then the following
energy estimates hold for all t € [0,T):

(6%
o / [T P)f[2, () ds + / (1220 + 210 - 2)f2, )as
Slfolls +e / I AT(f, DI s+ / [PfI2. ds, (3.1)
(6%

1 t t
10 f D)7z, + = /O 1T =P)Af 72y ds + /0 (1220025 + 2100 = 23)0f 175 )ds

t t
<lofol2s +e / [ T@, D3, + v 2T 03 Jds + 1 / IPafIE: ds.  (32)

where 0 < 1 < min{1, 3} is a sufficiently small constant with A defined in (1.15).

Proof. Standard L? energy estimate for (1.17) gives

= (9,5Hf HL2 // %[n - v]dvdS, + - // fodde—// L(f, f)fdvda.
8Q><]R{3 QxR3 QxR3

Using the Maxwell boundary condition and the change of variables R, v +— v, we obtain

I Fneviaus, = ] [ //7 [a-)- 21+ 2,0
- [ // == 2+ 12y
—a(2-a) // RURESYE

where we have used the orthogonal decomposition

f=Q=2)f+ 2 fon L, |fli =12 fl +10- 21 (3:3)
By Holder’s inequality and the coercivity of L, we derive
IO, + % [ I0-PIIE yas+ & [ 0= 201,
(3.4)

_1
<ol + / I 3T(F, D22 ds.

Define the non-grazing set

1
V= {(x,v)E’Yi:\n(m)-v\>5, 5gmg5}. (3.5)
Note that ff’Y+\’Y5 udy < o(8), which implies
¥

/ 12, 12 dy < (6 // EN
Y+ \7L T+

Applying the trace lemma (cf. Lemma 3.2 in [22]) to the non-grazing part, we obtain

///ﬁle%fl dyds < 5/ /L+ (1—2.)f d7d3+/ // |£1? dryds
/ // |(1—2,)f] d’yds—l—a//QXR3 | fol? dvdx+/ //Q><R3 8)|? dvdads
+/ //QXRS [(D(f, f) — e 'Lf) f| dvdads (3.6)

<[ 102ty dssellly, + [ U as+ L [ I0-PIE, a5
+5/ Hzx_%f‘(f,f)‘ ds.
0 L%,v
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Multiplying (3.6) by a sufficiently small constant 0 < 7 < min{1, 4} and adding to (3.4), we obtain (3.1).
The estimate (3.2) follows by applying the same procedure to the equation for 9;f. We omit the details
for brevity. O

3.2. Macroscopic L? and L® Estimates.

This subsection establishes macroscopic L? and L% estimates and proves Proposition 1.2.
By virtue of (1.37), the coefficient a(t,z) of P f satisfies the zero-mean condition

/a(t,q:)dx —0, Vte0,T). (3.7)
Q

Note that b and ¢ do not satisfy the zero-mean condition due to the lack of conservation laws of angular
momentum and energy for f. Define the Burnett functions:

s

Ayi(v) = (W;j — % |v|2)\/ﬁ, B;(v) :==v; 75

For each 4,5 = 1,2,3, A;;(v) and B;(v) are orthogonal to every basis element x;, of ker L:

/ Xk (v)A;;(v)dv = 0, / Xk(v)B;(v)dv =0, k=0,---,4. (3.9)
R3 R3

Vi, 0§ =1,2,3. (3.8)

Proof of Proposition 1.2. The proof relies on the test function method [21, 22] and elliptic theory.
Multiplying (1.17) by a test function 1), 4, we obtain

5 //Q><R3 Yp g0 fdudz + /’y+ Yp g fdy — //7 Yp g fdy — //Q><R3 (v - Vgihp ) fdvde

1
P,q

| - ’ (3.10)
://QXR3 [5*11/);07qu+1/1p7qF(f,f)}dde_

Here the temporary index p € {a,b,c} marks estimates of a,b and ¢, and ¢ € {2,6} indicates the norms
[Nz, and || [|Ls

x,v T,v

To estimate P f, by the representation (1.21), it suffices to estimate a,b and c.

Step 1. Estimates for a.
Step 1.1. Estimates for fst |al[z2d7 and |l Ls -
In (3.10), we consider the test function

3
Yaq(t,x,v) = Z(“)igpa’q(t, z)[V10B;(v) — 5x;(v)], ¢ € {2,6},
i=1
where @, 2(2) and ¢, 6(x) are solutions to the elliptic equations

—Agpa2=a inQ, Ohps,2=0 ondQ, / g, 2dx =0, (3.11)
Q

1
~Apa=a° — —/ a’dz, in Q, Onpae=0 on I, / ©Yq6dx =0, (3.12)
€9 Jo Q
respectively. By (3.7), Lemma C.5 guarantees unique solutions ¢, 2 and ¢, ¢ satisfying
IV2@azll 2 + IV@acllz + 0acllzs < llalg: (3.13)
5
— Jlall3 - (3.14)

IV%0asll s +IVgasls + leaslze S la° s
xr x

We now estimate each term in (3.10). For 511172’ integration by parts yields

/St Zp0d7 = €[Ga(t) — Gq(s)] — s/: //QXR3 01 (a2) f.

By Hélder’s inequality and (3.11), G,(t) is bounded by ||f()||3. . Moreover,

I o) £109 sl (Bl + 1A= Pz ). (3.15)
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since contribution from a and ¢ vanish due to the fact

[, WI0B,0) =50 0o = [ (ol = 10) i (0)dw = =5,
fori=1,2,3 and j =0,---,4. Thus, we obtain

t t
[ ELal <2 (6u®) - Guto)) + [ 10T upuallz (I¥lz + 1T =PIz, )

For B} ¢, using (3.14), we have

[ —5‘ Z// Bi0a6vi(|0]2 — 10) /0, f

5
< ellonflp lals -

29

(3.16)

(3.17)

For 22 , (¢ € {2,6}), the condition 9, ¢4 qo0 = 0 implies Z(1ha,q) = Ya,q- Thus, by the Maxwell boundary

condition and the change of variables R,v — v, we obtain

//wa,qfdv // () 1—a)f+a9fdv—a/l+¢aq 2.)fdv,

where we used (3.3). For E2 ,, applying the trace theorem and (3.13) gives
Z2al Sl = P)flya [Paslaony S0l — 21 lelzs.

For Z2 , using (3.14) and interpolation, we derive

1 1
= 3 3 5
[Ea6l Sl =), |wae|m(am al(t =215 Iwfliz, lalys -
where we used the Soboelv embedding ||¢||L3 o) S < ||¢H (cf [49]).
For 23, (g € {2 6}), direct computation gives
Ei,q = / 0;0j¢a, q/R ”ZUJ(M - 10)\/ﬁ[Pf + (- P)f] = /Q5Az§0a,qa + Eaq,
2,7=1

where the remainder E, , arises from the (I — P)f contribution, and we have used
[ vt =100 i) =0, [ voy(ol? = 10)Fixo(o) = =55,
fori,j=1,2,3 and k = 1,2,3,4. Using (3.11) and (3.12), we have

Hi 2= / 5A;pa2adr + Ey2 = —5 ||a\|22 + E, 2,
Q x

’_‘Z 6 — / 5Am90a,6adfr + Ea76 =-5 ||aHi2 + Ea,G-
Q

The remainders E, o and E, ¢ are controlled via (3.13) and (3.14):
|Ba2l Sllallz 1T =P)fllze . [Basl S llallzs (L= P)flpe -
by Holder’s inequality and (3.13) and (3.14), we obtain

2ol S(E APz )+ |00 D)| L, ) Nl

—_ _ _1 5
el S IA=P) Sz )+ |30 D), ) Nl -

Integrating (3.10) and combining (3.16), (3.19), (3.23), (3.25) and (3.26), we derive

t
/ lall2; < e[Galt) = Gals)] +a / =2l + [t a-Pys,

N 2
+ Hv-mf, f)Hm +e / 100V el (1elze + IET=P)fl e, ).

x,v

For =2 @

Combining (3.10), (3.17), (3.20), (3.24), (3.25) and (3.26), we obtain
1 1
lallzs, S sz, +al( - 21k ol

e =PIl gy + IA=P) e, + v 300 0]

5 .
Lz,v

Step 1.2. Estimate for ||0;V.¢a2l|;.-

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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In (3.10) we choose the test function g2 = 0ypa,24/f and estimate each term. Clearly, 53,2 = 0. By
(3.11), we have

=iy =c [ Onadia—c | 0upust(Orpnz) = (3.20)
Q Q
Noting Z(1q,2) = 14,2, by the change of variables as in (3.18), we have
}53,2} Sal(l - )f|L2 |0t ©a, 2|L2(asz) Sal(l— 7)f|L3+ ||Vx8t‘Pa,2‘|L§ ) (3.30)
where we used the trace theorem and Poincaré’s inequality. By Holder’s inequality,
Ea.2| :’ [/ R Vmaﬁ@a,z\/ﬁf‘ = ‘/ Va0ipa,2 - bdz| S [|bll 2 ([VaOepaell e - (3.31)
QxR3 Q ’ N
Combining (3.10) with (3.29)—(3.31) gives
Vadipaalys S 10l +al( = 2) s (3:32)
Finally, substituting (3.32) into (3.27), we obtain
/ a2y <Cu{eGu(t) ~ <Guls) + / 0= 27y
(3.33)

# [ (1o + 1@ PI1 g+ i)

)b

Step 2. Estimate for b.
Because the estimates for fst [bllz2d7 and [|b]| s require different test functions, we treat them separately.

Step 2.1. Estimate for [ 10| 2dT.
In (3.10), we choose the test function

> V6
Yy a(t, x,v) Z 02,1 A:j )+Zai‘pb,2,ix4(v)?

1,5=1 i=1

e (3.34)
— ;1 0jPb,2,iViVj /1L — Z&wbgz 5 N
Here the vector-valued function ¢y o satisfies the elliptic system
—Agpp2=>b1in, @p2=0 on ON. (3.35)
Standard elliptic theory [25] ensures that (3.35) admits a unique solution satisfying
192 0all,2 + [ Vanell s + lonallye < 10l 2 (3.36)

We now estimate each term in (3.10). For = :,)727 integration by parts yields

/S "ELydr = <[Go(t) — Gols)] — / t //Q Ol

where Gyp(t) is bounded by Hf(t)H; . The contributions from a and b varnish due to (3.9) and the identity
Jgs xafdv = c. Thus, by (3.36), we obtain

t
=1
—=b,2
s

For Eaz, noting Z(¢p.2) # ¥u2, we apply the change of variables R,v +— v to obtain

<[Gu(®) - Gu(o)] +< [ 1:Vanall s (lelz + 1T P)SI ). (3.37)

E§2=/ pafdy / By — a)f + 0P fldn

// [Vhp.2 = R (p,2)] P de—i—// [p2 — (1 — ) Z(1y)](1 — 2.) fdy (3.38)

=1 + I,

where we used (3.3). For I, using the change of variables R,v — v and (3.9), we have

I = /A naVBsdy - //7 sy - //8 vzl 1ldudS, = 0 (3.39)
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where we used the notation z = z(t,x) == v2r [, f[n-v]dv and 2, f = \/uz. For Iy, we apply the trace
theorem and (3.36). Thus, we obtain

Ehal SIA = Z) 11z Vetreliaon) S0 =2 15 bl - (3.40)
To estimate 5272, we use the expression in the second line of (3.34) and split
: [of? ~1
—v - Vo =— | zk: 1 0jOkp,2,iP (vivjur /1) + ;1 00k Pb,2,iVk 5 Vi
i,5,k= i
g (3.41)
Z 0jOkpp,2,i(I = P) (vivjupy/p) = K1 + Ko + K3.
i,4,k=1
Direct calculation yields
Z 0; 6k§0b,2,z Z Ulf / Uivjvkvl,udv)
A (3.42)
- _Zvl\f( Z Z + Z )ajak%a,i/ v vjvEv pdv,
i=pk=l igimhg=l it ilh=] e

where in the first equality we have used the identities

2 2 _ 3a le:ja
/RsvivjudU—{ i (3.43)

For each fixed | € {1, 2,3}, the inner sums in (3.42) are computed as:

T (Z+Z)aaﬁob21/vvludv—SzaanﬁZaalqbw

i=7,k=l i=l i#£l i#£l

> = ot [ oviudo =3 0dna (3.44)
i#£7,i=k,j=l 171 i#£l

> =S otk [ vhiudo =Y 00012
i#£j,i=l,k=j i7#1 17l

where we have used (3.43) again. Substituting these into (3.42) yields

wa( Zaaﬂpbh—FQZ@al(Pbm-i-Z@8Jgabgl) (3.45)

i#£l J#l
This further leads to

// K\Pf=— Z/ bl 30101pp,2,1 +Z<931<,0b21+2331%21+28 33%,2,1)- (3.46)
QxR3

17l 171 J#l

Moreover, direct calculation implies

//Q . KPf = / Z b10;01pp,2,1 + 2 Z Z bk%@%,z,z), (3.47)
<R3

i=1 k#1

where we have used

2
—1

/ v?|v| pdv=2, 1=1,23.

R3 2

Combining (3.41), (3.46) and (3.47), we obtain

‘—‘b2 —// K1+K2)Pfd’l)d$+Eb2
QxR3

Z—Z/ bi(001pp20 + Y 0i0iop2,)dx + By (3.48)
i#£l

-y [ danzade + Bua = 101 + B
_ Q
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where we used (3.35) and the orthogonality of Pf and Kg. By (3.36),
|Eyal =| // (1 + Ko + Kp) (L= P)fdvde| S |(T=P)f| 2 bl (3.49)
QxR ’ )

The term Zj , is estimated as (3.26).
Integrating (3.10) and combining (3.37), (3.40), (3.48) and (3.49), we obtain

/ b2, < <[t / 0= 2ifs + [ Il )

2
+/ v 2F(f,f)HL2 +5/ 10:Vapnallz (llell s + X =P)fll. )

Step 2.2. Estimate for [|[0;Vipp2|,2-

(3.50)

n (3.10), we choose the test function vy 2 = 0ypp.2 - v/t and estimate each term. Clearly, E%ﬁz =0. By
(3.35), we obtain

Eaz = 6/ 8,5(,0(,72 . 8tbdx = —€ (351)
Q Q
Similarly to (3.38)—(3.40), using the trace theorem and Poincaré’s inequality, we obtain
H%z} S - 7>f|1;3+ |at@b,2|L2(aQ) SIa- yv)ﬂL;H ||V$at30b,2||Lg : (3.52)
Elementary computation and Poincaré’s inequality yield
52| SIVaionzllre (lallpz +llelps + 1T=P)fllL. ). (3.53)
Collecting (3.10) and (3.51)—(3.53) yields
IVatunal s Shollz + el s + 1= P) Sl +100= 2)7155 (3.54)
Finally, substituting (3.54) into (3.50), we obtain
[, < afelonn - e + [ 10 - 21, +o [ al,
(3.55)

)

x,v

f (|\c||Lg+|| =Py, o+ i)

where the small constant §, > 0 arises from Holder’s inequality.
Step 2.3. Estimate for [|b]|s.
Note that the estimate for ||b|| ;¢ cannot be established simultaneously with f; I6]| ;2 , since ez |(1— PN 12
& R E
(as in (3.20)) exceeds the boundary dissipation aze~2 |(1 — P) ;2 in Proposition 3.1 when ¢ < a < 1.
aa

To overcome this, we estimate |Pf||,s separately by choosing a new test function.

In (3.10), we choose the test function

° V6
Upe(t,z,v) == 21 0,6, Ai;(v) + ;31‘%,6@)(4(?1)?
“ (3.56)
— Z aj‘ﬁb6zvzvjf Zaﬂpbﬁzf
4,J=1
Here oy 6(t, ) = (@b,6,1(t, @), 0b,6.2(t, ), vb.6,3(t, x)) satisfies the elliptic system
Az - bPdx
—div(V® = - Jo Aiz-bPde Az in Q,
(Vien6) Z I x| A
(3.57)

b6 -n =0 on 090,
(Vigne)n = (Vippe : n@n)n on 09,

where A;x € Rq defined in (1.11), and b°> = (b3,3,b3). For a vector field M = (m;)i—123 : @ — R3, we
define the gradient VM, the symmetric gradient V3 M and the antisymmetric gradient V&M by

om; 1 <8mi om;

oM)ij = ) 2 M)ij =5
(v )] 8,’Ej (v )j 2 61[1]‘ + aJ}Z‘

). (VM) = (Vo) — (VM) (358)

The inner product of two matrixes P = (p;;)i j=1,2,3 and Q = (¢;j)i j=1,2,3 is defined by P : Q = Zij:l DijGij-
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For each 7 = 1,2, 3, direct computation gives
Az - bPdx

Ajx - B — fQ Ax dJC:/A'Iﬁ'bsdz—/A'm'bSdl‘:(), 3.59

/ ( Z o lAi z|* dz ' ) Q o’ (3:59)

which verifies the compatibility condition (C.21) for the elliptic system (3.57) in all non-axisymmetric, ax-
isymmetric, and spherical domains. Thus, by Lemma C.6 and (3.59), the elliptic system (3.57) admits a
unique strong solution satisfying

INE ool g +IVanellz + lovsll e < (|07

5
5 = bl (3.60)
For Zj 5 and Zj 4, applying Holder s inequality and (3.60) directly ylelds

—_ 5 - — -1
Shol S el0ufllng, Ible  [Ehol SENT=P) g ) + v 2T £

5
L ) IBlizg - (3.61)
For Eaﬁ, the boundary condition (V¢ 6)n = (Vigse : n @ n)n on 9N implies
%(wbﬁ(ta z, U)) - wb,ﬁ(ta €, U)

3 3
V6
= Z 9;00,6,i [ Aij(Ryv) — Ay (v)] + 3 Zai%,s,i [x4(Ryv) — xa(v)]
ij=1 i=1
3
—2(v-n) > ipue.ilving + niv; — 2(v - n)nin;) (3.62)
ij=1
3 3
= — 2(’0 . n) |:ZU (Zaj(pb(;knj =+ Z@kapbﬁjnj -2 Z ajaprm njnk)}
k=1 7j=1 3,j=1
=—4(v-n) {v . ((Vchbﬁ)n —(Viope:n® n)n)} =0.
Thus, similar to (3.18) and (3.20), we derive
1 1
=6 Sal(l- 32’w)f|23+ lwfllZee, 11176 - (3.63)

For E%)G, using the expression in the second line of (3.56), we have

3 3
—v - Vathpe = — Z 0;0kpp,6,: P (vivjup/1) + Z 0i010b,6,iV1\/ I

i,5,k=1 i,l=1
3 3.64
> 9i0kpni (I~ P) (vivjop/j) o
i,j k=1
Z:Kl + KQ + KR.
For K, calculations similarly to (3.42)-(3.45) yield
3
K = Zol\f(z),ZaalgoM,HZaaWW+Za @g@bal) (3.65)
=1 il J#l
Substituting (3.65) into (3.64) gives
—v- Vb = K1 + Ko + K3
3 3
= Z Ul\/ﬁ{z 0i010p,6,i — (3 Z 0i010p,6,i + 2 Z 0i01¥p,6,i + Z 8i8l90b,6,l)} + Kg
= i=1 i=l i#l 1£l
—Zvl\f[— 22331%61 > 0i0in6.i — Zaal%m} +Kg
il i#£l
(3.66)
:Zvl\/ﬁ{_ (2331%61 +Z(931<Pb6z) (2551%61 +2351<Pb61)} +Kp
= i#l i#l

—sz\f — O(divepn,6) — Aupne,) + Kgr

=— \/ﬁv . dlv( z<pb76) + Kg.
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Thus, using (3.57), we have
Eg)ﬁ = // [ — Vv - div(Vigne) + R’R] [Pf+ (I-P)f]dvdz

Az - b°d
/b div(Vigne)dz + By = _/ (b5 Z Jo |Aa:x‘ dei.i?)dZE‘FEbﬁ (3.67)

i=1
= ||bHLg + Ey6 + Foe-

The terms Ejp ¢ and Fj, ¢ are bounded via (3.60):

Bl S NT=P)fllLe 1Bl (3.68)
Combining (3.10), (3.61), (3.63), (3.67) and (3.68), we obtain
1 1
16l s , SellOefllze , +1bllrz + |1 = P5)flzz lwfllZe,
) " . (3.69)
= P)flle, + [ A=P) |y + |30 0|
Step 3. Estimate for c.
Step 3.1. Estimate for fst ellz2dr and |[¢] zs-
In (3.10), we choose the test function
Ve q(t, z,v) Zaz%q (t,2)V10B;(v), ¢ € {2,6}, (3.70)
i=1
where . 2(z) and ¢, ¢(z) satisfy the elliptic equations
—Appea=c inQ, @.2=0 on 90, (3.71)
1
— Aypes = & — —/ Adz in Q, Onpes =0 on 09, / @eedr =0, (3.72)
€ Jo o

respectively. ¢, 2 and ¢, ¢ satisfy elliptic estimates like analogous to those in (3.13) and (3.14).
We now estimate each term in (3.10). For E};’% integration by parts shows that the contribution from P f
vanishes due to (3.9). Thus, similarly to (3.16), we obtain

t t
| [ Etadr| sefGu - Guts] < [ o T=P)fl2 - (3.73)
For B!, the elliptic estimate for ¢ ¢ yields
3
Eol =] [ S tpeaV B @S] S 100flLz el (3.74)
xRS =1 ’ '

For 5572, noting that 1. o is not specular reflection invariant, we use the change of variables to obtain

== [ Tea— (1= @@= 2) 10 - | Fwea) 2, g0, (3.75)

where we used (3.3). The term involving &2, f vanishes due to the identities

= Z VUM, / (Jv|* = 5)vipdv =0, k=1,2,3.
ij=1 nv>0

Thus, by the trace theorem and the elliptic estimate of ¢, 2, we obtain
[222] S 1= P11y Vawealiaon S 10— 2)f15s lels (3.76)

For EE,G, the condition 0,¢c6lon = 0 implies that Z(¢Yc6 = .. Consequently, = 66 can be treated
similarly to (3.18) and (3.20):

1 1
3 3 5
22| Salt = 21, sl lellfg (3.77)

For 23 | (q € {2,6}), direct computation gives

E’iq = / 8 anOC ’I\/r ’Ul’U](|"U|2 )ff = 77 CAzSDc,q + Ec,q, (378)

7,7=1
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where E,. , arises from the contribution (I — P)f, and for the P f contribution we have used

10
[ ool = 5)VRxa(edo =0, [ viny(of = 5)Vixa(o)do = 25, (3.79)
R3 R3 V6
fori,j=1,2,3and k=0,1 2,3. Using (3.71) and (3.72), we have
=3 10 2
Ze2 = \f cAyppep+ Eeo = \/6 HC”L§ + Ee,2,
10 1
=3 5 5
E;, — | cArpqedx + E. :—/cc——/cdxdx—&—EC 3.80
6 \/6/9 o6 0 \/69( 12[ Jo ) o (3.80)
10 6
=—le + F.6+ E. 6.
T el + Fuo + By

The remainders E, o, E.¢ and F, ¢ are controlled via elliptic estimates as in (3.13) and (3.14):

5
[Ea2l S llellzz IX=P) Iz [Basl S llellze IT=P)fllLe  |Fa,

x,v x x,v

5
Sllellzz lellze - (3.81)

The terms 22, and Z7 ¢ are estimated similarly to (3.26).

Integrating (3 10) and combining (3.73), (3.76), (3.80) and (3.81), we have

[ etz selou - G+ [ 10- 2052, + [l a-pirl,

t (3.82)
+ / \u (. f)\ ve [ 10 peally T~ RISl
Combining (3.10), (3.74), (3.77), (3.80) and (3.81)7 we obtain
lelze . S el0fllya + ez +al( = 2)f1fs Iwfllis,
i (3.83)

e =PIl gy + 1A= Pl + 300 5]

R .
Lw,'u

Step 3.2. Estimate for [|0;V,p.2| ;-

In (3.10), we choose the test function as 1.2 = 0ypc2xa(v) and estimate each term. Clearly, 22, = 0.
Using (3.71), we obtain

Ee2 :5// 8t90c72/ X0t fdv = 5/ —Orpc,2Dy0rpc2 =€ va&s%zﬂig . (3.84)
QxR3 R3 Q 3
Noting Z(¢¢,2) = .2, we deduce similarly to (3.30) that
|Ei2| Sa(1— ‘@’7)f|LZY+ ||3t</7c,2||L% Sal(l- gz’y)ﬂLgr+ ”vxat‘PC,Z”Lg . (3.85)

By oddness of the integrand involving a and ¢ contributions, we have

3
SHEDY /Q dhpes /R ooa@)f] S 19a0eallyy (Bloz + 1T-P)flz ). (336)
=1

Combining (3.10) with (3.84)—(3.86) gives

=Py +IA=P)flz - (3.87)

Finally, substituting (3.87) into (3.82) yields

/Hc||L2<C{gG( ) — <Gl /|1— s 6 / 1513

+/j(||51<I_P>f||w+uumm )b

where the small constant §. > 0 arises from Young’s inequality.
Step 4. Combination of the estimates for a, b and c.
Choose &, = (284C,C?)~! and §, = (4C.)~1. A direct computation of
(28C,CH) 71 x (3.33) + (21/2C,C2) 71 x (3.55) + (3.88)

yields (1.38). Furthermore, combining (3.28), (3.69) and (3.83), we obtain (1.39). This completes the proof
of Proposition 1.2. |

(3.88)
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The equation for d; f shares the same linear structure as equation (1.17) for f, differing only in the source
term. Moreover, 9, f also satisfies the mass conservation law || fQXW V/10; fdvdx = 0. Therefore, Proposition
1.2 applies to 0;f and yields the following result:

Corollary 3.2. Under the same assumption as in Proposition 1.2, there holds

/ [PaLfI2, < eCr(t) — <Cals / - 2)af1%,
(3.89)

2
L2 J:

x,v

t
+ [ e a=Pasli, o, + [ tresn +r¢.a)

where |G1(8)] S £ (DI + 10O -

3.3. Nonlinear Estimates.
This subsection establishes an L™ estimate for the linear equation and provides nonlinear estimates for
the collision operator T'(f, f).

Proposition 3.3. Let 0 < ¢ < &g, where gg is the constant determined in Proposition 1.5. Assume
g,0:9 € L*([0,T] x 2 x R®) and fo, s fo € L=(Q x R3) with 0 < T < co. Let f be the solution to the linear
Boltzmann equation on [0,T):

e0if+v-Vof+e 'Lf=g in[0,T] x QxR3,
flv. =1 —)Zf +aP,f on[0,T]x0Q x R, (3.90)
ft,z,0) =0 = fo(z,v) on QxR

Then the following estimates hold for all t € [0,T):
lwf@)llzse, S lwfollpg, +¢7 S IPf(s)lze, +272 sup [[(T—P)f(s)llzz
’ 0<s<t ’
+e sup |(v)” wy(S)HL;?U, (3.91)
0<s<t

_3 _
lwf®llrz, < lwfollzg, +e7% sup [If(s)llzz, +¢ sup [[{v) " wg(s)llzs, - (3.92)
0<s<t ’ 0<s<t

Proof. The proof relies on Proposition 1.3. Recall the scaling transformations (1.44) and (1.46) for the
domain Q C R3. For 0 < t < €Ty, we have

sup  [[Pf(t)llze  (axrs) = sup €2|\Pf(ﬂ||m (Qu XR3) 5
0<t<e2Tp 0<t<T,

sup [T —P)f(t)lr2  (axmey = sup e[|~ P)f(®llzz , . xr3),
0<t<e2T, ’ 0<E< Ty

(3.93)

where t = e 7%t € [0, Tp] from (1.44). Applying Proposition 1.3 and these relations, we obtain for 0 < ¢ < £2Ty:

lwf@)llre, S e 2 Jwholls, +0(1) sup [wf(s)llre, +272  sup [P f(s)llrg

x,v

0<s<e2Ty 0<s<e2Ty
_3 _
+e7 2 sup [@T=P)f(s)llzz, +e sup [[(v) wg(s)] Lz, (3.94)
0<s5<e?Ty ’ 0<s<e?Ty ’
vo 3
lwf)re, S e 2= wfollre, +0(1) sup |wf(s)re, +e72  sup |[f(s)llzz,
0<s5<e2Ty 0<5<e2Ty ’
+e sup  [{v) wg(s)ll e, - (3.95)
0<s<e2T,

Define
_1 _3 -
D(s) i= o(lwf (), +e PSSz .+ HIA—P) ()2, +ell ) ewg(s) | s,
Then (3.94) becomes

[wf(®)llre, Se T3k Nwiollee, + sup  D(s),  0<t<eTp. (3.96)
0<s<e2T,
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Applying (3.96) iteratively yields

lw (ne®To) 1z, < e 2™ flwf((n = 1)eTo) |1z, + sup D(s)
' (n—1)e2Tp<s<ne2T,
1 .
< ef%T()”wf((n— 2)€2T0)||Loc +ZeijTUTO sup D(S)
v = (n—2)e2Tp<s<ne2T,

(3.97)

n—1 )
<e T wholle, + > e sup  D(s)
=0 0<s<ne2Ty

<Cifwfollze, +C1 sup  D(s)
0<s<ne?Ty
for some constant Cy > 0, provided Ty > 0 is sufficiently large.
For arbitrary ¢ > 0, choose n € N such that ¢ € [ne?Ty, (n + 1)e2Tp]. Combining the estimate (3.97) with
(3.96), we obtain

2
2

[wft)lzee, <e 2 (t—ne To)wa(nSQTO)HLg?U +  sup  D(s) < Clwfollre, + C’Os<ug D(s)
_8_

ne2Ty<s<t t

for some constant C' > 0. Absorbing the small term Co(1)supy<s<; [[wf(s)|[ze,, we proves (3.91). The
estimate (3.92) follows similarly using (3.95). O

We now derive estimates for the nonlinear collision operator I'(f, f).

Lemma 3.4. Recall the definition of T in (1.18). For w = PI*I* with 0 < B < 1. we have

_1
v L S gl 11z ) (3.98)
_1
v S Wfllg, l9liz, o) (3.99)
190 (f )l pse, S N0flee, 0l pee, (3.100)
vID(PLPg)| S IPIPg, - (3.101)

T,V

Proof. We first note that

|t

—1 —1
 Slglg, [virge™)|

x,v x,v

Following Lemma 2.13 in [22], we obtain

/. gl (A @i £ [ vl do,

which proves (3.98). The estimate (3.99) follows similarly.
Next, (3.100) follows from the bound |wI'(w™",w™)||,. <1, due to the exponential decay of p.

Finally, for 0 < § < 1, we have
|~ [P A1 e SISl for any 1<p< oo

vTED(f,w ) (v)

It follows that
|vir@s.Py)

< HV’%F(ué,u‘s)‘

IPfPglls < IPSPal,,

L3 L3

which complete the proof of (3.101). O

Corollary 3.5. Let f,g € L*([0,T] x Q x R3) with 0 < T < oo, and let Sjf,Sjg >0 (j = 1,2) be defined as
in Proposition A.1. Suppose that for t € [0,T],

3
la(R)| + > [bi(h)] + le(h)| < Sih(t,x) + Soh(t,z)  for h € {f, g},
=1
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where a(h),bi(h) and c(h) are coefficients of Ph with respect to the basis {x;}. Then for w = eI*" with
<8k i, the following estimate holds:

[irwa, + i)

1 _ _ 1
Se e =P flly o)+ HsgfnL«;J [t gl e ] (3.102)

L2

2 1
1 3[ _ 3
181 zns (2 gl ] (e A= Pl s oy | + 181 Fliers PGl e
Proof. To estimate I'(f, g), we decompose
T(f, 9 <IDPf,Pg)|+ [P f, (I -P)g)|+|I(I-P)f,g).

By Lemma 3.4, we obtain

|virerpg)

_1
lir-pyrg)| |

ta,v

N ||SlfHL2L3 HP9||L°°L6 + HS2f||L2 ||W9||L°°

x,v t,x,v

1 —
e AP fllps oy ] [e gl ,,}»

_1
|vtr@ra-Pyg)| |, SUSU s 10 = Plgllere + 182z gl | (3.103)

L2

t,x,v

1 ir 3
SIS szss [ gl , | [ 1@ Phglgers )]

1 1 1
+ et [2 1SS, ][ Iwgllsge ]

where the last inequality uses interpolation. This establishes (3.102) for I'(f, g).
For the term I'(g, f), we decompose it similarly:

(g, /)l <[T(Pg,Pf)|+ (g, X=P)f)[+ T (g,Pf)].

The first two terms can be bounded in the same way as (3.103). For the last term, we first use

1
|virgpn)|,

t,a,v

SIS fllpzrs 9l gere , + 115212, lwgll e

T,v t,x,v

and then handle it analogously to (3.103). O

Corollary 3.6. Let f be the solution to (1.17) on [0,T] with 0 < T < co. Then, for any t € [0,T],
IPfl7e ST+ &AL + Alf)(E) + 3 w17,
+ Lol + &A1) + 2R + € w7
where § > 0 is a sufficiently small constant and w = AP with 0 < 8K 4

Proof. We start from the estimate (1.39). Both € [|0;f[|;> and [[Pf]||,. are bounded by &1[f](t). For the
boundary term in (1.39), Young’s inequality yields , 7

(3.104)

1 1 3 [ % 1
al(1 =212 Nofliy, S0t (2)7 10 =2 1 +0ed fwfls,

SUoly + 2¢ A1) + be? |wfl -

where § > 0 is sufficiently small, and we used the estimate

Sla-2orl, = // (1= 2)fol? + / // ]2(8)snfonf+%<t>. (3.105)

1

Meanwhile, the term ||6’ f||L2 ) satisfies

AP ) S // @Y+ 2i0f10) S Lfl} + A1) (3.106)

For [|[(I—P)fl|l,s ,interpolation combined with Young’s inequality and (3.106) gives

2

“”fH 3_1”(I_P)f‘|Li,v]%S&%||Wf||L;<;v+[[fo]]1+@1%[f](t)- (3.107)

1

|@ =Pl e <[<?
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Moreover, by Lemma 3.4, interpolation (L* C L? N L%) and (3.106), we obtain

i), SElots], )6 NP )+ 1P,
(3.108)

3
Sel lwfllze, + Lfoli + 20f1E) + &2 [F1(8) + S [P Sl s -
where § > 0 is a sufficiently small constant.
Combining all the estimates with (1.39) and absorbing the small term ¢ ||Pf||;s from (3.108), we arrive
at (3.104). ’ O

3.4. Proof of Main Result for the Case ¢ S a < 1.

This subsection presents the proof of Theorem 1.1.

Proof of Theorem 1.1. We work with the perturbation formulation (1.17) around the global Maxwellian
. The proof proceeds in three main steps.

Step 1. Global existence and uniform e-independent estimates.

We first establish the global a priori estimate (1.29) under the initial condition (1.27). Assume that a
solution f to (1.17) exists on [0, 7] for some 0 < T < 0.

First, applying Corollary 3.5 and Proposition A.1 in Appendix A with source terms g = —e ' Lf +T'(f, f)
(for S1f) and g = —e L. f + T(f,0:f) + T(0:f, f) (for S10,f), we obtain

i, +|oircan] C o SIREIAE O+ AL - (3.109)

i i NG
2
L%,m,v L%,m,u + ‘V ( tf’ f)‘ Lt,z,'u
Second, multiplying the estimate (1.38) from Proposition 1.2 and (3.89) from Corollary 3.2 by a small
coefficient n; satisfying 0 < 7 < 7 < min{1, 3} (cf. the definition of A; in (1.15)), and adding the result to
the estimates (3.1) and (3.2) in Proposition 3.1, we obtain

E1F1) + 211 S Lol + Lol AU @) + WA &) + I ) (3.110)
Third, combining Proposition 3.3 and Lemma 3.4 gives
lwfl2n, .+ Wl SLAHIE+ GO + DA + IFON + IPF2e s - (3.111)
Applying Corollary 3.6 yields
IPF 12 e, ST+ Lfolt + &L + A0 + AL O +NAL (0) + e lloflie . (3.112)

where § > 0 is a sufficiently small constant. Combining (3.111) and (3.112) and absorbing de waHifo on
the right-hand side of (3.112) and ||Pf||2L$oL§ on the right-hand side of (3.111), we obtain

2 2 2
€ waHLgfm +é° ||W8tf||LgfI)v + HPfHLgOng

<ol + [l + ALA®) + A A0 + £ @) + IS @)
Finally, multiplying (3.113) by a small constant, adding it to (3.110) and absorbing small terms, we obtain

2 2 3 4 6
WA @) < Tfoly + A @) + A1 @) + (LA (&) (3.114)
for any 0 < t < T, provided | fo]ﬁ < §p is sufficiently small. This establishes the global a priori estimate
(1.29).
The existence of a global solution f on [0, cc] then follows from a standard continuity argument (see, e.g.
[30]); the routine local existence theory is omitted for brevity.

(3.113)

Step 2. Derivation of strong convergence (1.31)—(1.32) and INSF system (1.33).
The uniform bound on || f||; (c0) given by (1.29) implies:

sup (17 Nzs, + 19, + Pl | ) < Coo, (3.115)
_DO_ 2 K 2

[ (B, + [ 105, )as < co, (3.116)
0 : 0 ’

/0 (IE=P)f)IF2 o)+ IA=P)OS ()32 () )ds =0 as e 0. (3.117)

Hence, there exists f* € L (R*; L2(Q x R3)) such that, up to a subsequence,
f = f* weakly—x in L® (R*; L*(Q2 x R%)) as e — 0. (3.118)
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On the other hand, (3.117) gives
Lf — 0 strongly in L? (R+ x % R3) as € = 0.

By the uniqueness of distribution limits, we conclude Lf* = 0. Hence, there exist functions g¢«,up«, V¢« €
L> (RT; L*()) such that

2
. v|” =3
M= (Qf* + uyps "U+?9f*| | 5 )\/ﬂ (3.119)

Furthermore, the uniform boundedness of ||| f||; (co) together with (3.109) implies

Of, e\ ALf, vTIT(f, f) € LA (RY x Q x R3). (3.120)

Consequently, equation (1.17) indicates that vEv - Vuf € L2 (R*; L2(Q x Rd)) and hence admits a weak
limit. On the other hand, (3.115) implies

vy Vof — vy V.f* in the sense of distributions as & — 0.
By the uniqueness of distribution limits, we obtain
V30V, f = v 2u-V,f* weakly in L2 (RT; L2(Q x R?)) as € — 0. (3.121)
Using the linear independence of v~ 2v{1,v,v ® v, [v[?,v|v|*} /i and (3.121), we conclude that
o+ up, 9+ € L* (RT; H'(Q)) .
We now prove the strong convergence stated in (1.31)—(1.32). First, we claim that
f— f* strongly in L, (R"'; L*(Q x R?’)) as € — 0. (3.122)

To prove this claim, by virtue of (3.120), we truncate f as in (A.5) to obtain f5. Then we apply the extension
Lemma 3.6 from [22] to define fs on R x R? x R3, and invoke the L? averaging lemma (cf. Proposition 3.3.1

in [59]) to obtain
‘ / V7%E¢dv
R3

where 1) € L>°(R3) represents any compactly supported test function, and the constant C' is independent of
€. By compact embedding, up to a subsequence, we have

<C, (3.123)

12 (m 2 (=%))

/ V73 fstdo  converges strongly in Li, (RT;L2(Q)) as € — 0. (3.124)
R3

Using (3.124) and a decomposition similar to (A.10), for each ¢ = 0,1,--- 4, we deduce

/]R3 foxi(v)dv =1t20{ai +0(9) g:o |aj|}

+ 1130 /W [1 - x(n(x) .v)x(@)] [1 - X(|v|)}x(5|v|)(1 _P) friv)do (3.125)

%
1 [ [ xE D) [ x(Gh ]t foxi(w)ae

Here and in what follows, we use the temporary notations

ap=a, a; =b; (1 =1,2,3), as =¢; ay =05, af =uyp- (1=1,2,3), aj = Iy-.

From (1.30) and (3.117), we obtain for each ¢ =0,1,--- ,4,
4
a; + O(9) Z la;| converges strongly in Lj, (R"; L*(Q)) as € — 0. (3.126)
§=0
Combining this with the weak convergence (3.118), we obtain for each ¢ = 0,1, -+ ,4:

4 4
a; + O(9) Z laj| = ai +O(0) Z laj| strongly in L (RT;L*()) as e — 0.
=0 j=0
Consequently,
4

(1-50( ZHal aill,s gZ’

=0

5 -
t‘z

4
—a; +0(6 Z |a;| — ‘
7=0
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Since § > 0 is sufficiently small, we conclude that for each i =0,1,--- .4,
a; — aj strongly in L (RT;L*(Q)) as ¢ — 0. (3.127)
This indicates
Pf — Pf* strongly in L%, (R*; L*(Q x R3)) as € — 0. (3.128)
Together with (3.117), this yields the claim (3.122). Moreover, (3.128) gives

/Rafﬁ[l’ | 2

The strong convergence properties (1.31)—(1.32) now follow readily.
Using (3.122), we take the weak limit of equation (1.17) in L? (RT; L*(Q2 x R?)) to obtain

— S}dv — (of=,ugp-,¥4-) strongly in L (RT;L?*(©2)) as e — 0. (3.129)

lir% eTlWTILf = 1/_%I‘(f*7 ) - V_%(U -V f*) in the weak sense. (3.130)
e—
Multiplying (1.17) by /i and v,/ft, and integrating over R?, we have

Vm-uf* =0, Vz(pf* +19f*) =0. (3.131)
Multiplying (1.17) by 5_1WT_5\//77 integrating over R? and following the procedure in [3], we obtain

2 2
| |

, -5 1 [ wP=5
“00p =~y | T VRO dv =l 2 Vi Ve f)de
1 —1 MQ —9
= lim -V, - L ( v\/ﬁ)Lfdv
so0e = (3.132)
— v =5 * X *
Vo [ e m ) - 0 D)

5 5

where we have used (3.130) and the decay property of L_I(WT%U\/,E). Here the thermal conductivity is
defined as
2 v]* —5 |v |
K= g/ (TU\/,E) H(— vf)dv (3.133)
R3

1

Similarly, multiplying (1.17) by e 'v,/i and integrating over R3 we obtain

—Ouyp = — lim vf&tfdv—hm / v\f v-Vy f)

e—0

- ggnggvx~/, L pwoo- Lo+ jao
R3 ) (3.134)

=V, / L (vev- %H)\/ﬁ) (T(f*, f*) — v Vo f*)dv + Vapy-

]RIS

2
Here the viscosity is defined as
2 2

o= % [(v@v-— %H)\/ﬁ] L (vev— %H)\/ﬁ]dv, (3.135)

RS

and we have used the notation

ppe = hm}/ [v | —Vifdv.

e—0¢
Hence, (pg-,us+,0y+) satisfies the INSF system (1.33) in the weak sense.

Step 3. Derivation of the boundary conditions (1.34) and (1.35).
Consider the identity

//8§ZXR3 Vﬁ%¢f|aﬂ[n'v]dvd51://QXR3u 3(v- Va6 f+//Q><]R3 v (v Vaof),

where ¢(z,v) is test function satisfying ¢(-,v) € C*(Q) and ¢(z,-) € C°(R?). Using the weak convergence
of f and v -V, f, we obtain

V7%f|agz — V*%f*bgz in the sense of distributions as & — 0. (3.136)
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The uniform bound on ||| f||; (c0) in (1.29) implies
1
(g) - PNV lr2r2e +1Pyfli2p2  is uniformly bounded. (3.137)
€ Laees tU4

On the other hand, by (1.15), the quantity \f‘s\Lng is uniformly bounded, and hence, up to a subsequence,
T+

has a weak limit in L2(R; x dv). From (3.136) and the uniqueness of distribution limits, we conclude that
voEfr a0 € L?(Ry x dv) and

y_%f’aQ — V_%f*|8ﬂ weakly in L*(R* x dv) as e — 0. (3.138)

‘We now define

@on = V27 | lygln- e

From (3.138) and the fact that (f)sq is independent of v, we have

(foa — (f*eq weakly in L*(RT x dy) as e — 0. (3.139)
Combining this with (3.138) gives
v7E (flan — VE(f)aa) = v 2 (f*|oa — Vi([*)eq) weakly in L2(RY x dv) as e — 0. (3.140)

We now derive the boundary conditions (1.34) and (1.35) according to the limit value A defined in (1.15).

Step 3.1. Dirichlet boundary condition (1.34) for A = occ.
In this case, we can take the limit in the Maxwell boundary condition directly and show strong convergence.
The uniform boundedness (3.137) implies

floa — Vilf)oa = (1 — P,)f — 0 strongly in L*(RT x dy) ase — 0. (3.141)
Combining (3.140) and (3.141), we obtain
o3 (f*loe — VB{f")aa) =0,
which, together with (3.119), yields the Dirichlet boundary condition (1.34):
up<loq =0, Op<|aq = 0. (3.142)

Step 3.2. Navier boundary condition (1.35) for X € (0,400).
By (3.137), we take the weak limit in the Maxwell boundary condition in (1.17) to obtain

f*"y* = %(fﬂ'y*)'
This, together with (3.119), implies the zero mass flux condition
o =0.

To verify the Navier boundary condition, we pass to the limit in the weak formulation of (1.17) and show
that the moments uy- and 0 satisfy the weak form of the INSF system. To this end, we take a test function
¢ € C’°°(7) and a divergence-free test vector field & € C*(Q) with n - &|lpg = 0. Multiplying (1.17) by

g1kl =5 | f(b and e (v - )/, respectively, integrating over [t1,ta] x € x R3 and passing to the weak limit
in L? (Q x R3), we obtain

gig%/tl //Qxﬂ@at |v|2 \F(ﬁiga(w/ / |U|2 \f £y Vst

+Eh£% - //anR3 ‘”'2 > Jidln - v] = 0, (3.143)
N VY
—|—611£I(1) . ’ //anRS v-&)y/pfln-v]=0. (3.144)

It follows from (3.132) and (3 134) that

lim *<’U|U‘ f f> fwmef* — guf*ﬁf*,
=0e (3.145)

2
lim — < VRV — %H)\/ﬁ, f)=2up @ugp — §|uf*|211 —v[Vaup + (Vyup-)T]

e—=0 ¢

in the weak sense.
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For the boundary term in (3.143), using (1.17) , (3.119) and (3.140) and the change of variables v — R,v
on y_, we obtain

2 (6% 2
lim - // M P22 g vjdvdS, = lim = W25 o flon — Vi on]dy
89><]R3

e—=0 ¢ —0 € 2

:Wﬂ/ . W{ ® o o~ VRS el (3140

N

For the boundary term in (3.144), using n - J|sq = 0 and a similar computation, we obtain

lim — // (v-&)/pfn - v]ldedS, —1lim < ( @)l floa — VR(foa]dy
OOXR3

e—0 & e—0 ¢
=Aver | (v- @)oo — vu(f*)oa]dy (3.147)
v
=\ [ &-uyp-dS;.
o0
Thus, (3.143) and (3.144) become
5 r2
f/ [0 5= (t2) — Op«(t1)] pdx + 2)\/ O+ pdads
2 Ja t Joq
ta
- / / (up+Op — KV 05+) - Vyipdads = 0, (3.148)
t1 Q
ta
/ [uf*(tg)fuf*(tl)ydﬁder)\/ / ug~ - ddxds
Q t1 JoQ
to
- / / [ups @ups — o (Vaup + (quf*)T)} : Vyddads = 0. (3.149)
Q

The equations (3.148) and (3.149) constitute the weak formulation of the INSF system with Navier boundary
condition (1.35), satisfied by py+,us+ and 6y-.

Finally, Lemma B.1 in Appendix B guarantees the uniqueness of weak solutions to the INSF system (1.33)
with either Dirichlet boundary condition (1.34) or the Navier boundary condition (1.35) in the setting of
Theorem 1.1. Consequently, all weak limits points coincide with the unique solution to the INSF system.

This completes the proof of Theorem 1.1. O

4. STRONG LIMIT FOR THE CASE 0 < a < €
This section investigates the perturbation equation (1.61) and gives the proof of Theorem 1.4. The proof
relies on Proposition 1.5, which is established first.

For clarity and to maintain correspondence with the respective unknown functions f and f , we keep the
distinct notations fy and fp throughout, although they are equal at the initial time (see (1.70)).

4.1. Construction of the Rotating Maxwellian.

In this subsection, we construct the rotating Maxwellian fi introduced in (1.56) by deriving the ordinary
differential equations that govern its component functions u and 6.

We begin with the following Taylor expansion with remainder.

Lemma 4.1. Let h(v,0,u) : R? x [§,0] x [-§,0]> — R be a C* function. Define the nth-order Taylor
expansion of h with respect to 6 and u by

1 oo+l18l
R (v,0,u) = o°u” h(v,0,0).
wow =3 5™ Geyew 00
a+|B|<n
Then, the following estimate holds:
9 n+1
(o, 0,0) = (0,0, S e (U By Jopin g w)|.
€ € (&w)€E[-0,0)*

Proof. This follows directly from Taylor’s theorem with remainder. O
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For each n € N, we define the sets of higher-order terms as

B ={bas) € B ()] £ [ 4 O™y

e

3
B = {a(0) € R (o) 5 [P [0, 100 ot | o)

3 3 S S

(4.1)

where 0(s) = T(s) — 1 and w(s) will be determined in Lemma 4.8. Under the a priori assumption (1.82), we
have

Nm € Hy and Hy, ¢y € Hpy  for n <m and m,n € N. (4.2)
By Lemma 4.1, if sup(¢ ,ye—s.4]4 |Vg,t1h(v,£,w)‘ is uniformly bounded and decays sufficiently fast as
v — 00, then the LP norm of the difference is bounded by " *1h,, ..

The next lemma quantifies the error between the Maxwellians p and fi.

Lemma 4.2. Let |§| < 1 and p > 0 be given. For z,y € R® with |y| = 1, there exists a constant ¢, > 0 such
that

2 2
exp (~ 1) — (14 e (- L) <11

kil |z + oy|® ‘<
Sy e (- R ol
exp ( p) exp ( . )| < el

LR | ‘
exp ( — —exp( — < c,ld].
Proof. This follows directly from Lemma 4.1. O

The following lemma estimates the error between f and f in weighted LP norms.

Lemma 4.3. Let w® = ef"” be q weight function with 0 < f < B’ < L. Under the a priori assumption

1
(1.82), for any 1 < p < oo,
S
Ly Ly € €
~ ’ ’ 0 u 00 Owu
[wfoif| s aus| |, +]|w”s] UL LY
LY L? Ly € € € €

Proof. From the definition of f,

z I A
—f= Lagis — 1),
o=+ (G
and similarly for the time derivative,
7 P et ! VH VI
af-af=a +at(\/ﬁ 1)f+(ﬁ 1>8tf.

Using the structure of fi and Lemma 4.2, we obtain for any 3" > 0:

— 7 9
u ) Hwﬁ (@*1) SH+M7

eVt LP Vit %4 €

- v (Vi 0l 100] 0w
o, (L) ,Hwaa(ﬂ) < 1, b, 1061 10
‘t evViv /|l pe "\Vi € € 5 €

The desired estimates follow by the triangle inequality, absorbing the weight shift from S to 3’ where necessary.
O

We introduce an alternative, non-orthogonal basis {X;}% for ker L:

2
- - . = . - v|" =3 =
Xo =i, Xi=vivi (i=1,2,3), Xa:= ||\/6\/; (4.3)

The relation between the two bases {¥;}1_, and {¥;}?_, is described in the following lemma.

Lemma 4.4. The sets {X;}iy defined in (1.65) and {X;}i, defined in (4.3) are both bases of ker L, with
{X:i}i o being orthonormal. Moreover, for every p € [1, 00|,

o
-l Se(D+ ), im0
v 3 3
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Proof. By (1.64), both {X;}L, and {x;}L, are bases of ker L. The orthogonality of {¥;}~, follows from

a direct computation. Furthermore for each 1 = 0,...,4, we have
ol
|XZ | :u )
€ €
which implies the desired estimate in L2(IR?). O

Recall the expansion (1.66) of Pf with coefficients (1.67). Analogously, we define the coefficients of P f
with respect to the basis {¥;}i_o:

d(t,.%‘) = <)207f>a Bl(t,.’ﬂ) = <>Zza.f> (Z = 1a2a3)> é(tax) = <>247f> (44)
The relationship between these two sets of coefficients is characterized by the following lemma.

Lemma 4.5. Assume that the a priori assumption (1.82) holds. Then for any 1 < p,q < oo, the following
norm equivalence holds:

3
[B7],,,, =l + 3ol oy + lell oz ~
=1

b, + Nl

Proof. From the definition of Pf and the expansion (1.66), we have

For the coefficients @, b; and ¢ associated with the basis {¥;} defined in (4.4),

3
lallg + 30|, + 1l fZH T F
=1

Finally, comparing the two sets of coefficients, we obtain

3 4
lall e+ b m+\|é||LgSZH<>%mf°f HL *ZH — % F
=1 =0

o, + e+ (4 '“')H

ey -

fesc

<[]

L L3

LPLe

Under the smallness assumption on @ + ‘EL‘ from (1.82), the last term can be absorbed. Combining the
estimates above yields the desired norm equivalence. O

The next lemma provides a commutator estimate between 9; and P.

Lemma 4.6. The following commutator estimate holds:

[EHE

< (201 + 0w | 7

ere

Proof. Using the definition of P and the basis {¥;}, we compute

HZ Oixi» | xﬁz Xi» )X

0 S 010 + |0pu| from the structure of X;. O

Jo®f) -

< (2:6] + o) | ]

LYLY

9

LELY

where we used the estimate ||0px;

The following lemma quantifies the approximation error when expressing the projection Pg in the non-
orthogonal basis {X;}.

Lemma 4.7. Under the a priori assumption (1.82), for any p € [1,00] and g € LE(R?),

4
Py o x| sate(F+ ) [

9
=0

Ly
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Proof. Since {Xi}, is an orthonormal basis of ker P, we write
4 4 4
9= Z (9, X)X = ) (9, Xi) Xi — Z (9, xi) (o — Xa) — Z (9, Xi — Xi) Xi-
i=0 i=0 i=0 i=0
Observe that (I — P)g is orthogonal to both ¥; and ¥; — ¥;. Applying Holder’s inequality and Lemma 4.4,
we bound the two error terms in above equality as

4
N~ 1 /6 u
DOURSIEEES il =l 5 e (D4 ) g
—1 0] Jul
\Z 9.% %) % £ |[Pa] , 16— xullog [l S e (2 + ) [Po
where % + % = 1. This completes the proof. O

Next, we construct the functions p, u, and 7" in the definition of the rotating Maxwellian /.

Lemma 4.8. Suppose the following conditions hold for 0 < § < 1:

// F(t)dvdz = [0, ‘// Az P ()dvda] < 5 ‘// W F(t)dvde — 319 | < 5. (45)
QxR3 QxR3 QxR3

Then there exist functions p = p(t), u = u(t,x) = Y w;(t)A;x and T = T(t) satisfying the following
conservation laws:

// F(t)dvdz = // fdvdz = |9,
QxR3 QxR3

// Az - vF(t)dvdz = // Az - vdvdz = / pAzx -udx  for all Az € Rq, (4.6)
QxR3 QxR3 Q

// |v|2F(t)dvdx:// |v\2ﬂdvdm:/(3pT—i—p|u|2)dx
QOxR3 QxR3 Q

Moreover, the perturbation f satisfies:
/ Vifdvdz =0, // Az -v/ffdvdz =0 for all Az € Rq, // |v|2 Viifdvdz = 0. (4.7
QxR3 QxR3 QxR3

Proof. Conditions in (4.5) can guarantee the existence of a triple (p,u,T’) near (1,0, 1). Using Lemma C.2
and the definition of p in (1.58) and that of i in (1.56), we have

// pdzdv = |Q],
QXR3

// Az - vidvdx = / pAzx -udzx for all Ax € Rq,
QxR3 Q

// [v|? idvdz = / (3pT + p [ul*)dz
QxR3 Q

This establishes the second equality in each line of (4.6).
We now treat the three geometric types of () separately.

Case 1. Non-axisymmetric domains.
In this case, Rq = {0}. We define

p=1 u=0 and T(t // v F(t)dvda. (4.8)
QxR3

Then the first equality in each line of (4.6) follows directly.

Case 2. Axisymmetric domains.
In this case, u = wAz. We seek functions (p,w,T) satisfying

| exp(LEa)

Joexp ‘uﬁw(xt)‘ )dx

w/ plAz|? da:f// Az - vF(t)dvdz = 0, (4.9)
Q QxR3

T/ pdz +w // Az - vF(t)dvdx — // lv|* F(t)dvdz = 0.
Q QxR3 QxR3




STRONG DIFFUSIVE LIMIT OF BOLTZMANN EQUATION WITH MAXWELL BOUNDARY 47

The Jacobian matrix of the system of (p,w,T) at (1,0,1) is

1 0 0
0 / |Az|? da 0
Q
319 // Az -vF(t)dzdv 3|Q|
QxR3

which is invertible. By the implicit function theorem, a solution (p,w,T) exists near (1,0, 1).

Case 3. Spherical domains.
For a spherical domain Q, u = Z?=1 w; A;x. We have the orthogonality relations

/ Az - Ajedr = / pAix - Ajedz =0 for i # 7,
Q Q

(4.10)
/ Ajz - AjzdS, = / pAix - AjadS, =0 for i # j,
a0 a0
where we used the elementary identities
Ajx - Asx = 122, Aoz - Agl' = X223, A3£C A= —I3%7. (411)
We seek functions (p, wq, we,ws, T') satisfying
|u(t,a)|?
. |Q| exp( uQTth) ) .
T 2 - b
Ja eXp(luz(;(t))l )dz
wi/ p |Aiav|2 dz — // Ajxz-vF(t)dvde =0 for i=1,2,3, (4.12)
Q QxRS
3
3T/ pdx + // Z w;A;x - vF(t)dvde — // lv|* F(t)dvdz = 0.
Q QxR3 OxR3
The Jacobian of this system at (1,0,0,0,1) is
1 0 0 0 0
0 |Ayz|? d 0 0 0
Q
0 0 / |Agz|? da 0 0
Q )
0 0 0 / |Arz|? dz 0
Q
319 / Arx - vF(t)dvdx / Asx - vF (t)dvdx / Aszx - vF(t)dvdz 3|9
which is invertible. Hence a solution (p, w1, w2, w3, T) exists near (1,0,0,0,1).
Finally, (4.7) follows from the relation v/fif = 1(F — f1) and the conservation laws (4.6). O

Next, we derive the ordinary differential equations governing the evolution of p, u and T'. The main result
is summarized in the following proposition.

Proposition 4.9. Let F' be a solution of the Boltzmann equation (1.1), and let fi be the rotating Mazwellian

defined in (1.56) with parameters p, w and T = 1+ 0. Let f = ﬁ(F — 1) be the fluctuation defined in
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(1.60). Then, under the a priori assumption (1.82), the following estimates hold:

3 « - -
=0, 6%dx + / 40%dS, + a// v? — 4)\/afod ‘ < ae?hs + ae? ’ , 4.13
30 | =/ (WP =) VRfon| <oty bacthalf] L 19
1 2 « 2 s 3
78/u dx+7/ ul”ds +a// u-v d‘SOzaQ + ag? ‘ , 4.14
50t Q| | Nor asz' |”dS, 7+( )V ifdy b3 b2 fLiJr (4.14)
3 « 2 = x
78/802dx+ / 4802d5m+a// of? — 4)\/d aed‘
QtQ(t) \/ﬂsag(t) v+(|| )V 10, fO,0dy
<ae?hz s + ac?hyy onf 2 (4.15)
Y+
1 2 ¢ 2 = 7
w/au dx+—/ du dS+a// du- v ﬁd‘
50 ] ol do+ = || 1ol dS, o | (Ow-v)vE0 Sy
<aehs ¢ + ac’hay nf 2 (4.16)
aat
where b, € Hy, and by € Ny are defined in (4.1).
Additionally, the following bounds hold:
|0| S Ebla |u| S Ebl? |p - 1| S 52h27
10:0] + [Oru| < ab1 + « ‘f‘L%+ . |0ep| < aehz + achy ‘f 1, (4.17)
|0:0:0| + [0:0iu] < ab1t + o latf L2 |0:0cp| < aehay + achyy ’@f L
T+ T
Proof. Clearly, the Boltzmann collision operator Q(F, F') satisfies the orthogonal condition
/] (1, Az - v, |U|2}Q(F, F)dvdz =0 for all Az € Rq. (4.18)
QxR3

Therefore, using (1.1) and (4.18), a direct computation shows

O // Fdvdz = 1 // F[n - v]dvdS, + 1// Q(F, F)dvdz = 0.
QxR? € JJoaxr3 € JJaxrs

Combined with (1.12), this implies

// F(t)dvde = // Fodvde = || for all t > 0.
QxR3 QxR3

Lemma 4.8 then guarantees the existence of [i satisfying (4.6).
We proceed by a case analysis based on the geometry of €.

Case 1. Non-axisymmetric domains.
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In this case, p =1 and u = 0 by (4.8). Multiplying (1.1) by |v|2 and integrating over ) x R? yields

e/ﬂ 30,Tdx :aat//QXRB [v]* Fdvdz = _//89xR3 [v]* Fn - v]dvdS,
—//W |v|2Fd7+//Y [v]? (1 — ) ZF + aPF)dy
—//7+ (o2 Fdy + (1 — a) /L+ va|2Fd7+o¢/[H | 2 Fdy
=—al [ wrra o [ pru( [ padan)a]
= —a[//w+ jof? fidey — V%// P u( [ e uiu)ao] (4.19)
~ac // bl Vifa v // o ([ Vafn - sdu)s)

4 Tz
N [/mr — Ve agmm 5]
~ac /A o Vafey v [ o [ i

——a m/m4(T—1)T2dSz+5/A+(|v2—4)ﬁde]»

where we have used (4.8), (4.18) and Lemma C.2. Writing § =T — 1, we have

« 2 =~ 7
30, [ 6de + —2 [ 4645, — ) Vifd| < aehs, 4.20
o [ o [ avaswa | (f - a)ifn| < ach (120)
‘§8t/92d:c+ c / 492dSm+a// (|v|2—4)\/ﬁf9d7‘ < ae?hy, (4.21)
2 Ja 2me Joo vt

where h,, € £,,. Consequently,
|0:0] < aby + « ‘f

2
L’Y

Furthermore, differentiating (4.19) with respect to ¢ yields the equation for 9,6:

/8t9dx+ / 49,0(1 + 0)%dS, +a// lu]* — 4 )V ii0: fdy
2me Joo

b /29(1+9)7%8t9d5w+a// (|U| —4)8tﬁfd’y=0.
o0 Y+

2me

This leads to the estimates

\3@ / 0,0dx +

0,048, + // 2 b, fdvy| < ,
\/—6 0 t «Q 7+(|”| )\/ﬁ i f ’7’ acha
%Y

2 2 2 ~ r3 2
2 _y <
‘2@/9(@9) ot e /m(ate) dSw+a/[Y+ (o] )\/ﬁatfatady‘ < ae?hs,,

where b, ; € 9. Hence,

|8t8t9| 5 Olhl,t +«

o f
L2

T+

Case 2. Axisymmetric domains.
In this case, it follows from (1.58) that p(t,z) = 14 O(|u|*). Elementary calculation shows

u-Osu ul? t,x
u- |u| Mo fsz( - %31: )eXP(lug(T( ) )dl‘]

t
T 217 Joyexp(EE ) d

8tp = = P[@tw, 3t0]t, (422)

where every entry of the matrix P is of order O(w, ). Similarly, 8;0;p = P[0:0;w, 0:0;w]* + Q, where Q is
bounded by |8,w|* + 0,60/
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Multiplying (1.1) by |v|2 and integrating over ) x R3, we obtain

5/ 0, (3pT + pw? |Az|?)dx

= \/%/39 T—1)+w? \Aa:| ]pT2dS +€// \v| —4 \ffd’Y)

where we have used (4.9), (4.18) and Lemma C.2. Similarly, multiplying (1.1) by Az - v and integrating over
Q x R? yield

5/ |Az|® 8, (pw)da =<0, // Az -vFdvdr = — // (Az - v)F[n - v]dvdS,
Q QxR3 OO XR3

/£+(Ax~v)de+/L(Ax~v)((1Oé)RFJFO‘f@F)d"Y

- / (Az - v)Fdy + (1 —a) / (Az - Ru)Fdy + « / (Az -v) P Fdy

T+

:_QWL(Ax-U)(l — P)Fdy
=_ a{/[H(Ax-v)de— \/ﬂ//w(Ax-v)ﬂ( wwoF[n-u]du)dv}
:—a[//w(Ax-v)gdy—m//w(Ax-u)u(/nwomn-u]du)dﬂ

—as[//w(A:rm)\/ﬁfd'y—\/ﬂ//w(Axm),u( o \/ﬁf[n-v]du)dfy}

The equations for w and 6 are
L .
[(fg Azf?de 0 ) +P1} (%Zj) + o[V Jon Al ASe L (A 0)VESaR)
0 [, 3dx ) = Jo 46dS, +ff,Y+ (|v]® = 4)VAafdy

where P is of order O(|w]|,6). Multiplying this by

(fQ|A:c2dx 0 )[(fQ|Ax|2dx 0 )+P1]‘1

0 Jo 3dx 0 Jo 3dx
yields

8t/ w|Az|® dz + c / w\Az|2dSI+a// (Az - v)\/fufdy = hy,
Q V2me Joq vy

@ 2 = =
8/39dx+7/ 49de+a// o2 — )i fdy = ha,
. =/ W+(| " —4)Vi 2

where h; and ho are bounded by

a(fw] + 16]) (lwl +16] + | F

T+

Thus, we have

(3at/0dx+i/ 46dSz+a// (\v|2—4)\/ﬁfd7’ < achy + ach, (4.23)
Q V2me Joaq vy
31&/ w|Az|? dz + a / w|Am\2dSm+a// (A:Ew)\/ﬁfd'y‘ < aghy + achy |f , (4.24)
Q 2me Joaq vt Lz,

where b,, € 9,,. Moveover,

3 o 5 5

20, | 6%dx + / 40%dS, + // 2 4)/afody| < ag?hs + as? , 4.25

5o [ oraes 2 [ o f| (W = 4)Vajoa| < oy + o, (4:25)

1 ~ -
’ﬁt/ w? |Az|? dz + a / w? |Az|* dS, + a// (wAz - v)\/ﬁfd'y‘ < ag?hs + ag?hy ‘f} . (4.26)
2" Ja V2me Joa o L3,
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It follows that

06] Saby+alf] | 10wl by +alf
RES

,
L7+

Proceeding as in Case 1, we also obtain estimates for 0;0 and O;w:

‘38,5/ 8t(9d1‘ + L/ 48,59ng; + a// (|’U|2 - 4) \/ﬁatfd’}/‘ S Oéz’:‘f)gjt + Oé€h17t ‘875]?
Q \/ﬂ&‘ o0 Y+

)
2

Lﬂl

(0%

V2me Joq

8t/8tw|A:c|2dx+ 8tw|Ax|2dSm+a// (Axm)\/ﬁatfd'y’
Q Y+

<oaebhas + achi |0 f

)
2
L2

3 o -
20, [ (8,0)2d /4892dSI // 2 _ 4)\/70, 0,04
30 [(oorars 2 [ a@orasiva | (P-4 viafao)

<ae?hs s + ac’ha, ‘@JF

)

2
L2,

1 2 2 «
‘ia’f/ﬂ@m [Aaf? da + 2

2 2 ¢
<aehsy + ey ‘@f‘m ;
T+

/ (Byw)?|Az|* dS, + a // (atwA:c-v)\/ﬁatfdv\
o0 Y+

where b, € $p,. Therefore,

Ocf
L2

Ocf
L2

T+

|6t(9t9| 5 Olhl,t +

. 00w Sabiy + o

Case 3. Spherical domains.
Similar to Case 2, multiplying (1.1) by \v|2 and integrating over © x R? gives

3
6/ 0 (3pT + prf |Agz|® )dz
Q

i=1

:_a(\/%/anTé[4(T—1)+w2|Ax2]dSw+6/[Y (|U|2—4)\/ﬁf~d’y).

Multiplying (1.1) by Az - v and integrating over Q x R? yield
1 -
e / Az Ou(pui)de + o = [ pThw;|Aial* dS, + // (A v)/fdy) =0
Q V2T Joaq o

for each i = 1,2,3. Here we have used (4.10)—(4.12), (4.18) and Lemma C.2. The formulas are identical to
those for axisymmetric domains in Case 2. Therefore, the same conclusions follow directly. This completes
the proof. O

4.2. Energy Estimate.

In this subsection, we establish energy estimates for the fluctuation f and its time derivative 0y f .

Differentiating equation (1.61) gives the equation for 0, f:

O (O f) + v Va0 f) +e L0, f) =§ inRT x Q xR,
Ofly. =1 —a)R(Of) +aP, (0 f) + adr +as  in RY x 9Q x R, (4.27)
Oifli=o = 0fo  on QxR?,
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where 8, fo is determined through (1.61), the boundary term r is defined in (1.62), and

=) VL

gt ==D(0:f, f) + T(f.0:f) +8t( )fr H+TF ) -

‘U?f @(@5)—5?(3g)f—e(;ﬁ)@ﬁ
F%ﬁg%=f(%%?ﬁ )+T ﬁaygw), (4.28)
Ltf ::f(%,f) +f<f, ?}g) +F<\/ﬁ, ai\mff) +F<a:}ff, f)
s:zx/ﬂc?&%) /n-v>0 fVian - vlde + V2r—— H /nwofat\[[n v]dv.

The main result of this subsection is the following energy estimate.

Proposition 4.10. Let f € L2(R* x Q x R®) be a solution of the perturbation equation (1.61) with given
source g, and let 0;f € L*(RT x Q x R3) be a solution of (4.27) with given source §t. Suppose the a priori
assumption (1.82) holds. Then the followz’ng estimates hold:

dr

2 92
+Z 52 /H L2 (@)

/ﬂﬁ“w+/W%/Z (4.20)

§Hf(0)’ F 2d7+/0 gfd7+a/0 (h3+h1 ~;+>d7,
dr

+ Z 8th 52 / H I P 2 .
« 8,5101-
; o Z TdT (4.30)
12
i, )dT,

+
0

2
Lm,q;

and

of dd+

//A

SHatf(O)‘ L, +04/0 f 2d7'+/0t§tatfd7'+a/(;t (h3,t+bl,t

where b, € 9, and hp 1 € Hy e for n € N.

The estimate for the source terms g and §' on the right-hand side of (4.29) and (4.30) will be given in
Subsection 4.4. Before giving the proof of Proposition 4.10, we need some preparatory lemmas.

Recall the linearized Boltzmann operator L defined in (1.62) and its null space ker L defined in (1.64). It
is standard that Lf =vf — K f (see e.g. [14, 30]), where the collision frequency 7 and the compact operator
K on L?(R3) are

7= 5(0) = —=Q-(Viuf) = /./|vfu -l f(u)dwdu,
Kf=ﬁ[cz+(ﬁ,¢ﬁf>+@+(¢ﬁf,ﬂ) (Vi) = [ o) = Rafo 0] Fydu

For hard sphere cross sections, there exist positive constants Cy and C; such that
pVTCy (v) < 5(v) < pVTCy (v) .
If p, u and T are bounded above and below, then
Co (v) <w(v) < C1(v),

so that v(v) = 7(v). Moreover, the operator Lis symmetric with spectral inequality

(4.31)

oLz |a-P fH | for feDp={f e IR #f € 12(®))} (4.32)

Using the relation
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the implicit constant in “2>” in (4.32) is uniform, provided p, ¢, and T are bounded above and below.

Lemma 4.11. Let r be defined as in (1.62) and s as in (4.28). Under the a priori assumption (1.82), the
following estimates hold:

Vit o]
e (e S L R (4.33)
\T|L37 S b1 +ebo, |7"|Lg°7 S b1 +ebo, (4.34)
‘aﬂ" - g ((2 |'U| )@9 —U- aﬂ.l) ’L?‘{7 5 EhQ,ta (435)
\8t7°|L37 <ab +a ‘f’m +ebay, (4.36)
T+

‘8‘L3/7 S a<bl + < ehay, (4.37)

)

where b, € H, and hay € Hay.

Proof. By direct calculation,

T =

@(pT%H—l) =

- =

oS

2 2
v 04 20 - u+ |uf )_1]

[(1+9) eXp(_ 2(1 + 0) 2(1+0)

~ (4.38)
VR[5 '”2' )0 =+ O, [2)p(v)]

€
where p(v) is a polynomial in v and O(62, |u|*) denotes terms bounded by 62 + [u|>. Using the exponential
decay of \/Ji, we obtain
o
€

)p(v)

S ebo,

which yields (4.33) and (4.34).
For the time derivative of r, we have

_ Vi o 2 12 oV
By = T[(2 - 7)@9 — v B+ 9,062, |l )} + L0, u)),
where
—u> 379 —u)- 9 )
a\/> u2;2\/ﬁ+ v u tu\/>+ tpf (439)

Using the bounds from (4.17) and the exponential decay of \/,E7 we obtain (4.35) and (4.36).
Now consider s as defined in (4.28). From (4.39) and (4.17), we obtain

o.( %) - \/ﬁf‘[m]dv\%_ <afbi+ L2+) im

‘f L al )f[n-v]du]%ga(hﬁ L2+)

Combining these estimates yields (4.37). O

The following near-orthogonality properties hold for ﬁvf, (1- gé,y)f, (|v\2 —4)y/i and (v - Az)+\/[i.

Lemma 4.12. Let f € L2(v) with P~ defined as in (1.62). Under the a priori assumption (1.82), the
following estimates hold:

\//7 (2,711~ 2,)flaa]| S ey (f‘i+ (w10)
/n_v>0 [ ] [(|U| — 4)\/>] [n - v]dv =0, (4.41)
/n_v>0 (2, f] (v Az) /] [n - v]dv = 0, (4.42)

[~ VA0 ) VA ] S o, (43

where Ar € Rq and by € H1.
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Proof. From the definition of &2, and a direct computation,

J[ Al 20
:m// Vif| nwoff(——l - v]do] dy

—W// VEiVar [ i vdU/

% [n - v]dv]

n-v>0 v>0

Since £ =1+ O(|0], [u]), we have

N|=

Set ([ B =)o) S e
n-v>

with b1 € $;. This proves (4.40).
Next, using Lemma C.4 and the fact that Az - nlgg = 0,

/, >0[ AP = )i n - v)do = vor Vifln - vdv/ (Jvf? = 4)pfn - v]dv = 0,

n-v>0 n-v>0
/' » [ﬁvﬂ [(v- Am)\[] [n-v]ldv = V2r » Vifn - vdv/' >0(U~Ax)u[n-v]dv =0,
6(Az-w)pT?  (Az-u)ul’ pT2
/TWO [(10]? = 4)v/f] [(v - Az)\/fi] [ - v]dv _‘ =t N < ehy.

These identities give (4.41), (4.42) and (4.43).

We now prove Proposition 4.10.

Proof of Proposition 4.10. The proof is divided into three steps. Steps 1 and 2 establish the energy
estimates for f and 8,f, respectively. Step 3 completes the energy estimates by incorporating the trace

lemma.

Step 1. Energy estimate for f. B
We first derive the following estimate for f:

2

112
// FLfavaz + Jo, / P dto, / Wl g,
Lz, 52 QxR3 o €2

[ Gt R - S e

1 ~
2| Fododo| + aha -+ any
€ QxR3

where b, € 9,, for n € N.
Standard L? energy estimate for (1.61) yields

2 1 . . _
+ = // fz[n -v]dvdS, + gt // fLfdvdr = // fgdvdz.
Lz, 2J/, QxR3 QxR3

Using the boundary condition and the change of variables Ryv — v,

//fzdv // [(1—a)(1 = P)f+ P, f+ar]’d

:// (1—a)*[(1- ﬁy)ﬂg + [Eivf]z +a?r? 4 20r 2., f

1
,a‘
5t

IN

1
-0
€2t

j

(4.44)
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%28
ot

Applying Lemma 4.11 and Lemma 4.12, we obtain the intermediate estimate

n 3 ~//Q><]R3 FLfdvdz + 22— //7+ ) dy
// (1l ~ VA2 (1~ )] +2% 0 /R - %)f} dy

,375

(4.45)
2.
// (Jo]* — 4)? (27 v) u}dv
v+
<g‘// f§dvdx‘+ab3+2ahl F
QxR3
From Lemma C.4 we compute
62dS, = - // 62 (Jv|* — 4)*fudy + £3b3,
—/ [ o - :
— 9,0)%dS, = = 9,0 —4)2ad 3034,
57 @075 =5 [ @0 4%+ s,
) (4.46)
2 2~ 3
— u dSm:// u-v)“ady + €°bs,
=/ W ww ;
4 / 2 / 2- 3
— owu|”dS, = Opu - v)“fidy 4+ €°h3 .
\/ﬂ BQ‘ t | ’Y+( t ) 3t
Applying (4.46) to (4.13) and (4.14) in Proposition 4.9 gives
3 - -
‘5@/ 92dx+23/ 92(|v\2—4)2/}d7+a// (ol — 9)V/f0dr] < ach; +ach, (447
Q € Iy Y+ e
1 - .
’Qat/ |u|2dx+9// (u-v)zﬂd'y—ka// (u-v)\/ﬁfdﬂy‘ §a€2bg+a€2b2‘f’ . (4.48)
Q € Moy T+ Ly

Now consider the combination (4.45) + & (4.47) + %(4.48):

Left-hand side of ((4.45) + i(4.47) + z(4.48))

2% //Qst Fifdvdz + 22— /L+ )f] dy
C oo ‘% + (22 0%y
//7+ (Jo]? — 4)] f +27 v 1—9)f}\/ﬁ}dv
+4// [22 (e —4>gn—2§-v<\v|2—4>gn]dv
1 f‘ i +5i2//gms FI fdvda

) t
+a(26_a>//w[;(lv2 YViz+ 2oV (- 2]

a(2—a)// u 2 N
_ARemy ok —4)24d
" 2 v(|v| )Euv

The last term is bounded by abs thanks to Lemma 4.12. This establishes (4.44).

:lat

Step 2. Energy estimate for 9, f. .
In an analogous way we obtain the corresponding estimate for 0, f:

2 . 2 2
T // & FL(01 fdadu + §at/ OO 4 at/ 1oy
Lz, € JJaxrs 2 " Jg € Q €

+ 222 (O — )i+ 2o (- 2)00) (.49

1 _
<| | odgasde] + abs, +aby
el M/ axrs

1 -
50 |onf

)

~12
of
L2

T+
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where b, ; € 95+ for n € N.
The derivation of (4.49) follows exactly the same pattern as Step 1, using (4.27), Lemma 4.11 and Lemma
4.12 applied to O, f, together with estimates (4.15) and (4.16). We omit the repetitive details.

Step 3. Completion of the energy estimates.

Up to now the boundary dissipation has been controlled except for the directions of by (|v|?> — 4)v/Ii,
Az - vy/[i, and 357. The remaining directions are handled via the trace lemma.

For this purpose, we decompose f |7+ according to the domain geometry:

7f + f@‘ e 4f + 2. f for non-axisymmetric domains,

- P+ P o f + @U Zf + P f for axisymmetric domains,
il = 7 ol A + (4.50)

P f—i— @Mz_élf + Z @UA f+2.f for spherical domains.

i=1

Here, @v f is defined in (1.62) and the other projections are

Ppop-af =Crop_a(vl* = )/ . F(lo* = 4)V/Aln - v]dv,
n-v>
Pyu f=Cy,, (v-Ax) /i1 fo- Azv/i[n - v]dv
n-v>0
,@Mizf 1=Ch,,, (v Aix) Vit fo- A/ -vldv, i=1,2,3,
n-v>0

with suitable normalization constants C|,2_4,Cy,, and Cy, ,.
By Lemma 4.12, the terms in (4.50) are nearly orthogonal:

- -~ - ~12
@ngzyfdv’ < ey ‘f‘m for X £, (4.51)
4+

T+

2 .
where X, Y € {7,|v]" — 4,040, V4,2, VAs2, VAzz, L }. Using

// (\1}|2 —4)%pdy + // - Az)? fidy + // " d7 < o(0) for Az € Rq,
Y+ \ v Y+ \ v Y+ \ v

the near-grazing part is controlled by
. . L2 - . 2
/ BVED SE W) // 2.5+ Pupaf+ Y Pond]
Y+ \7L v+
where 2, 1. (A=A or A;) denotes the sum over the relevant axial directions. Consequently,
- - 2
| RS S S
Y+
- . - 2
:{// +// M7+ Ppaf + 3 Puscd|
v Y\
- . 2
S SRR SO
T+
2 . - . N - - -
g//é f‘ dw+2//é <3%f+32‘,42_4]”+Z@vAzf)@¢fdv+2//é ‘%f) dy
s pas g

< [ a2 [ (i o eenli],

where we used (4.51) in the last inequality.
Applying the trace lemma (Lemma 3.2 in [22]) to the non-grazing part, we obtain

/ //7+ 7 er@‘”IZ_‘lfNJFZ@vAmJF’zdfyds
56//QXR3 f(O)’2dvdx+/0t//QXR3
+/Ot//ms (g—e—lif)f‘ clz;(195(15+/0t//7+ ’@J‘zdw&

f(s

2 t
)| dvdads + 6/ b1
0

2
L ds (4.52)
4
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Note that by (4.50),

//Y 2o Vi S oi (- P f]}
:/y+ Bi (ol = Vi + P o f “\[JFZ‘%M“‘%JC] dr.

Combining (4.44) with 6 x (4.52) for a sufficiently small § > 0, we derive the desired estimate (4.29).
The energy estimate (4.30) for 8, f follows in the same way from (4.49). O

4.3. Macroscopic L? and L% Estimates.

In this subsection, we derive the macroscopic L? and LS estimates for the perturbation equation (1.61)
and give the proof of Proposition 1.5.

Recall the non-orthogonal basis {¥;}7_, of ker L defined in (4.3) and the coefficients a a, b, ¢ defined in (4.4).
By (4.7), the following compatibility condltlons hold:

/ a(t,x)dx =0, / Az - b(t,z)dz = 0, / é(t,x)de =0 Vvt >0. (4.53)
Q Q Q

Define the Burnett functions

1 1 ~ _5 ..
Aij(v) = (Uivj ] Els )\[ Bi( |U|\/E Vi, i.j=1,2,3. (4.54)

By Lemma C.2, for every i,j = 1,2 73, the following almost orthogonality hold:

/ 2 (0) Ay (v)do = O(16] + Ju]). / (@) Bi(v)dv = O(l6] + ul), k=0, 4 (4.55)
R3 R3

We now give the proof of Proposition 1.5.

Proof of Proposition 1.5. The proof follows a strategy similar to that of Proposition 1.2, but here we work

with the rotating Maxwellian ji and use the conservation laws of angular momentum and energy provided by

(4.7). Moveover, the non-orthogonality of the basis {{;}%_, introduces additional computational complexity.
We first multiply the equation (1.61) by a test function z/;p’q:

| dnatnfavaa+ // nal - // dpafdr= [ (0 V) fauda

//M@ ‘Wp,q (f. )+ ﬁp,qg} dvdz,

[I]z

—E3
P,

7 S (4.56)

TP
=3
P
Vpq(t, 2,0) = h(v)bp.q(t, ©)V/Ji, where h(v) is a polynomial in v and ¢, , satisfies a suitable elliptic boundary
value problem.
Note that 2(v/i) = /i by (1.56) and (1.57). If v, , also satisfies (1, ) = Wp.4, then the boundary
term =2 _ in (4.56) can be treated similarly to (3.18) via the Maxwell boundary condition in (1.61) and the

P q
change of variables v — R,v:

E;q :a/ @p)qfdfy — a/ @nq@yfdfy — a/ @p,qrd% p € {a,b,c},q € {2,6}. (4.57)
Y+ T+ v-

where we have used (1.63) to obtain The test function 1, , will be constructed in the form of

For = E2 o (p € {a,b,c}), the trace theorem gives
2o sa|7] , +1rlie ) I6pelaen S a(|f
T+

i, s V2l - (4.58)

For = E:6 (p € {a,b,c}), using (4.57) and deducing as in (3.20), we obtain

1
1 ~l|2
et L, s ) ol (4.59)
,i.4 . [ . . .
For =, , (p € {a,b,c}, ¢ € {2,6}), Holder’s inequality directly yields

s(e|a-») 22 ) Wonalzs (4.60)

=4

1
= T2
p.q

+Hf/ g
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To estimate f’f, by Lemma 4.5, it suffices to control a,b and ¢

Step 1. Estimate for a
Step 1.1. Estimate for f: |al|L2d7 and ||| Ls

In the weak formulation (4.56), we choose the test function

Z&waq (t,2)[VIOB:(v) — 5%:(v)], g€ {2,6}

1/)(1 q(tz,v)
Here, by Lemma C.5 and the compatlblhty condition (4.53), @q.2(z) and @, () are the unique solutions to
(ﬁa,gdx = 0, (461)

the elliptic equations
_Aa:gba 2 = a in Q, 87135@72 =0 on 6Q, /

Q
(4.62)

APy e =a Q) / a’dz, in Q, OnPa,6 =0, on 02 / Paedz =0
(4.63)

with the elliptic estimates
HVQSZ’a QHL?; + ”V@a,Q”Li + H‘Pa 2||L2 S HdHL2 )
- ~ - ~ (5
HVQQDa,GHL% + ”V‘Paﬁ”Lg + H‘Paﬁ”LG Ha5H HCLHLg .
We now estimate each term in (4.56). For é}ﬂ, integration by parts ylelds
t ~ t 3
/ Elo =e[Galt) — Gals)] — s/ // > (010 @2 + 0r\/ii]vi(Jv]* — 10)
s s QxR3 ;3
= [éa(t) — éa(S)] — jg[a,l — .ﬁa’27
For H, 1, we decompose P f as

(4.65)

By (4.63) and Lemma 4.5, G,(t) is bounded by Hf H
4 4
k=0 k=0
4

and obtain
/ vi([v]? — 10)\/ AP fdv = § (f, ;m/ vi(|v)? = 10)/Aixrdo + Ko (467
R3 .

k=0
= —5b; + O(Ju| + 10])(a + |b] + &) + Ka 1,

where we used (C.5) for the velocity integral. The remainder f(a,l is bounded via Lemma 4.7
e (4.68)

= | [ o - 10)/A(PF - S 0w )de] < e [P
k=0
R li

t
10t [,
) ‘ al (4.70)

(4.69)

a,l
L%,U }

Then, using Lemma, 4.5
7.,

The term H, 5 is controlled using (4.39), (4.17) and (4.63)
p 2 S /t (fh +|f

<g/ (10:0] + |9pw]) HfH ||V
.

and (4.70) ylelds
t g ~ o~
+8/ ||8tVa;¢a,2”L% (HbHL? + by HPfHLg + H(I —

<

~

lall.
(4.71)

L2 )

‘Ha2

Combining (4.65), (4.69)
<c[Gult) — Gu(s)] +eoz/ (o0 +

4.72)

—~

o f

2
L:l;,u

~ ~ub5
f 55”@“23

For ! , the elliptic estimate (4.64) directly yields

3
= ‘ Z// 8¢¢a’6vi(|v|2 — 10)\/}?8,5
i—1 7/ QxR3

=
—a,6
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For 22 (q € {2,6}), the homogeneous Neumann boundary condition 8,3, al oo = 0 implies R (aq) =

~ aq
Yq,q. Thus, using (4.58), (4.59), (4.63) and (4.64), we obtain
2| a((7],, +|r|L37)||aHLg, (4.73)
= e 172 ~
2 s, w277 + il )N, (4.74)
+ z,v

For =3 4 (@ € {2,6}), we compute

Z/aajapa,q/ viv;(Jv]* = 10)/A[Pf + (I—P)f]. (4.75)

1,7=1
Using the decomposition (4.66),
4

/]R3 vivj(|v|2—10)\/ﬁf’fdv:Z(f,)Zk>/ v;v;(Jv* = 10 W ixe(w)dv + K, ,

k=0 3 (4.76)
=—50;;a + O(|u] + 10])(a + |b| +0)+ Kayq,

where we used (3.22) for the above velocity integral. Similarly to (4.68), the remainder K, , is bounded by
ehy Hf’fHLq Substituting (4.76) into (4.75) gives

’—Z sq / 5A$¢a7qa‘ + Ea,m qc {27 6}7 (477)

where

Eoy = /aaj%,q[ (1] + 10D+ 15+ )+ Ko + [ ooy (of? = 10) /(T =B ]

i,5=1

Applying (4.77) with the elliptic equations (4.61) and (4.62) yields

Hi 9 = /Q 50, Pq 2adr + Ea,Q = -5 HaHZL’;’ + Ea,Q; (4.78)
256 _/25Ax¢a,6ddl‘ + Ea5=—5 H&Hig + Eq6, (4.79)
where E, » and E, ¢ are bounded via (4.63), (4.64) and Lemma 4.5:
[Bo] Sl [oo0 [BF],, +a-Bf], ] (4:30)
[Bug| SNl [F0 bt f] _ +|la-2f|, |. (451)

The bounds for éi,g and éﬁ’G follow directly from (4.60) and elliptic estimates (4.63) and (4.64).
Integrating (4.56) and combining (4.71), (4.73), (4.78) and (4.80) yields

t - - Ery 2 12 12
[t sl -Gt [ 10, o (e, T,
s s Tt + z,v
t
+a/s 1009 acll s (|B], +e00 |[BF]| |, +|a-2)7]| , ) (4.82)
Yo e Al -1 5y 7| 1
+ [ Enledl, +lea-wiy, o+l )
Similarly, combining (4.56), (4.72), (4.74), (4.79) and (4.81) gives
lille << olf| , ol +alf|, [ d]|] +en|eret ]|
| T+ - o (4.83)
e, +fea-nl,, ¢l
Fla-pi], + Mz o 717 9s,

Step 1.2. Estimate for |\3tvxcpa72||L2.

n (4.56), we now choose the test function 1;@,2 = 0¢Pq,2v/ [t and estimate each term.
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=1 i
For =, 5, we write

Ba2 = //QXR3 Ot Pa,2 [0 Viif) = 0:(\/iv) f] (4.84)

The first term in (4.84) is treated using the elliptic equation (4.61):

e // 01 Bazde (Vi) = ¢ / OrBandiis = € / 0asDeiPas = £ |[VadiBaslle . (4.85)
OxR3 Q x

The second term in (4.84) is bounded similar to (4.70):

oaz0i V| szaln+17], ) [7],, | (4.56)
QxR3 L2+ Li v
Since Z(tha,2) = a2, the estimate (4.58) applies to ézg
a( Lo tIrlee ) (4.87)
T+
By (4.4), direct computation implies
=2, = Va0 @aaVif| = | | Vabi@az b S|bl| VL8 4.88
—a,2 v z0tPa,2V 1 20tPa,2 ~ | x t(Pa,2||L2 . ( . )
QxR3 Q L3 e
Since the contribution of if vanishes, é3,2 is bounded by Hﬁ*%‘(}HLZ
Combining (4.56) with these estimates and using Poincaré’s inequality, we have
- = 5 = 1.
19:0ioaley S B, + o[, bl ) +ea(mn|dl, )7, <[], - @
Finally, substituting (4.89) into (4.82), we arrive at
t 9 N 5 t 2 5 2
[z, <= st [ [, 41 (o5 1, I,
3 * T + (4.90)
o2 ) - 12 . -2 a2
wf (Bl eoelBrl, +lma-ol, o, )
Step 2. Estimate for b.
Step 2.1. Estimates for f: 16| 2d7 and |[b][ s -
In (4.56), we choose the test function
Vgt x,0) = Zﬁjgab% +—23190b,q1><4( )
= (4.91)
= Z 6]@1)1;1“”&[ Zaﬂpqu i, q€{2 6}
7,7=1

where the vector-valued functions @, 2 (¢, z) and @y 6(t, x) are solutions to the elliptic systems
—div(VS@p2) = b in
@p2-n =0 on 99, (4.92)
(Vidp2)n = (Vidp2 :n@n)n on 09,

and

4.93
Ppe-n =0 on 09, (4.93)

(Vadbe)n = (Vigoe : n®@n)n on 09,

respectively. Note that (4.93) has the same structure as (3.57), differing in the source term and angular
momentum conservation law here satisfied by b.

By the angular momentum conservation law in (4.53), the system (4.92) satisfies the compatible condition
(C.21) for all non-axisymmetric, axisymmetric and spherical domains. Moreover, for each j = 1,2,3, a
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computation analogous to (3.59) shows that the system (4.93) also satisfies (C.21). Therefore, by Lemma
C.6, the elliptic systems (4.92) and (4.93) admit unique solutions satisfying

V202l 2 + [ Vao2ll e + I@b2ll e < |[b (4.94)
19200l 5 + 1Va@nsllz2 + N2nollze <[5 g (4.95)
and
PQ(/ Vi(ﬁb’qu) =0, qe{2,6} (4.96)
Q
where Po denotes the orthogonal projection onto the set Ag := {A € s0(3,R) : Az € Rq}. Moreover, by
[18] and (4.96), the following Korn-type inequality holds:
(4.97)

IBnaly SIVEGngl + Po( [ Vidngde) = IV3enalEs. o< {2.6)

We now estimate each term in (4.56). For é%727 integration by parts gives

[Gb( Gb _5/ ﬂ Z 61& j@b21Az] + — Zat l‘PszX4:|
QxR3
(4.98)

t ~
/ Epo =¢
s i,7=1
- 5/ // Z 8j ©b,2 ZatA’L] + — Z 319017 2 zatX4i|
QxR3

3,j=1
=[eGy(t) — eGo(s)] — Hy1 — Hy 2,
For Hy.1, we use the decomposition (4.66)

Clearly, éb(t) is bounded by Hf(t ‘ Lo

4
[, PR =3 [ Atudv+ oy = O(ul + 100 + i) + R,
k=0

4
/ >z4f>fdv:Z<f,>zk>/3>z4>zkdv+f<b,z:é+0<lul+|9\)(a+|bl+ ) + Koz,
.

R k=0
where we have used (4.55) and (C.1) for the velocity integrals. The remainders K} 1 and Kjp 2 can be bounded
Hy 1 can be estimated analogously to (4.69). The term

similarly to (4.68). Applying (4.94) and Lemma 4
Hy » is bounded similarly to (4.70). Combining (4.98) with these estimates and using Lemma 4.5, we obtain

t
=1 r
| & ) 1L,
T+ (4.99)
Lz, + H(I -P) 2, )

<e[Gu(t) — Go(s)] +ea /: (hl |7 L

t
+e [ 109aaualzy (1l + et
S

(4.100)

For ;b ¢, the elliptic estimate (4.95) yields directly
o f

o f

=
Selb
L7, L

2
Lm,u

26| e Vbl

For =7 . (¢ € {2,6}), similarly to (3.62), the boundary condition (V3 &y, q)n = (V5@p,q : n®n)n on 90
implies Z(4,4) = ¥p.q. Therefore, the estimates (4.58) and (4.59) apply to = =}, and éiG, which combining
with the elliptic estimates (4.63) and (4.64) yields
(4.101)

=2o| S|, + 1l ) Iblle
(4.102)

1
=2 ~ 5 1 ~ll2
:b’G‘ Sa( ‘f HwaHLoo Il )
+ z,v
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To compute é‘;q (¢ € {2,6}), we employ the treatment as in (3.64):

3 3
—0 -V g = — Z 8j3k¢b,q,if’(vivjvk\/ﬁ) + Z i Pb.q. 01N i

i,5,k=1 i,l=1
3 ~ (4.103)
> 050kB0.q,i (T P) (vivjve/ i)
i,j,k=1
=K, + Ky + K3.

Noting the basis {X }1_, is non-orthogonal, similarly to (4.66), we decompose K, as:

Z 0;0kPp,q,i le/ v v/ ixedo — Z 0;0kPb,q,i Z Xl/ vivjuy/ ixide

7]7k 1 i,5,k=1 1=0,4
4

Z 0; ak%’qu( (%Uﬂ)k\[ Z@i%%\/ﬁﬁ?ﬁfél)

i,5,k=1 1=0

=K1 + K1z + f(13~

The computation of the bulk K1y is similar to (3.65), yielding

ZXZ< ZaalgoquJr?Zaal@quJrza éwbq,)

£l VE

\ ; (4.104)
+O |u|+|0| Z Z ak@qu“”KlBa
=0 7,k=1

where the O(|u| + |0]) term arises from the computation of K;; and K5 via (C.4), analogous to (4.67) and
(4.76). Substituting (4.104) into (4.103) and proceeding as in (3.66), we obtain

— v Vot = K1 + Ko + K3 = —/jiw - div(Vignq) + Kr g, (4.105)

where
4 3
KR(I 70 ‘u‘+|9| Z Z ak@qu+K13+K3
1=1 g k=1
Inserting (4.105) into the expression of ég” , and using the decomposition (4.66) gives
= [ = Vi av(9i0) + K] [F + (- P)S]
QxR3
4
—— [ Vo dn(T30n) STl + P (1.106)
QXR3 b—0
- [ b av(Vipna) + B q€ (20,
Q
where in the last identity we used the almost orthogonality of {)Zk}%_o, and
4
5 = e . L .
Prgi== [[| AV av(@) [(BF - 47 005e) + (- 2)7] - KT},

o ;:PR,q+/ Oul + 6])(@ + 3] + &)div(ViGng), g < {2,6).
Q

Combining (4.106) with the elliptic systems (4.92) and (4.93) gives

S // V-Vt fdudz = / b-div(Vigh,) + Eyo = H H + By, (4.107)
QxR3
- // v - Vx@bﬁfdvdx = —/ B-div(V;gbZﬁ) + E@G = HBH . T Ebﬁ. (4.108)
QxR3 Q Lg

Note that Ebﬂ consists of two types of terms: the first type involves Pf with small coefficient O(Ju] +
|0]), arising from the almost orthogonality of the basis {Xx}#_,; the second type includes the microscopic
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component (I —P)f in Pg,. Both types can be estimated similarly to (4.80) and (4.81) by using (4.94) and

(4.95):
Bua| <ot [P, +a=B7], )], (4109
- . _— 1|5
Eys| S(ebhn edet 7] la=»7| e, 4.110
[Buo| 5(Hon et f]_ + [a-2o], )], (4.110)
The estimate of égg and éﬁﬁ follow from (4.60) and the elliptic estimates (4.94) and (4.95).
Integrating (4.56) and combining (4.99), (4.101), (4.107) and (4.109) gives
LTI e - ) o2 5 ) 12 112
S Bl et - Gu v [C1A, s+ |1, )7, ]
¢
v [ 109 apualyy (el +enn [BF], +[a-B)f], ) (4.111)
"o 5 7|2 -1 5y 7|2 | - |
+ [ Enled,, +fa-ni, e, )
Combining (4.56) with (4.100), (4.102), (4.108) and (4.110) yields
1 ! B
. 5elodl,, <ol sori solf, WL s,
R P el e
Hla-pil,, +lta=»i,, o+,

Step 2.2. Estimate for [|0;V, @2 2+
In (4.56), we now choose the test function 1;1,72 = 0ypp2 - v/[1 and estimate each term.
For = ,, we decompose v/i0; f = 0i(v/iuf ) =0+ (/) f . Noticing 9y @y 2 € H(0), the variational formulation

of (4.92) (cf. (C.19) and (C.20)) yields, for the first part

5// OB - v (VLf) = 5/ Oy P2 - O4b
QOxR3 Q

(4.113)
e /Q (V20502) : (V30iP3) = € V3 0inall?
The second part is bounded analogously to (4.86):
6// O¢ P2 'Uat(\/ﬁ)f‘ 55@({)1 + ‘f , ) HfH 10:Pv.2| 12 - (4.114)
O xR3 L'y+ Li,'u ®

For égz, the boundary condition @y 2 - n = 0 on 92 implies f%’(t;b,g) = 1/?1,72. Therefore, the estimate (4.58)

applies to E% 9

—_9 3
:b,Q‘ fﬂ( ‘f

+1rlie ) 10B2lly - (4.115)

L3+
For éiz, we use the decomposition (4.66):

4
/ v /iAPfdv = (f, %K) / iy V/ixdv + Ky
R P R
2 S
:aéij + 0%52-]- + O(|U| + |9|)(a + |b| + C) + Kb,l;
where we used (C.2) for the velocity integral. The remainder K1 can be bounded as in (4.68). Following
the argument similar to (4.69), we derive

=ha| S(Nallz + el + b [PF| | +[@=P)F] |, ) Iv.0802ll,s - (4.116)
By the property of L, ég 5 is bounded directly by Hﬂ*%VE/ ’ , 10:Pa2ll 12 -
’ LT,U x
Combining (4.56) with above estimates and using Korn’s inequality (4.97), we obtain
S IV30@oallys Slals +1ell2 + b [BF]| | +||@a-B)F]| | +alf]
Ll o (4.117)
walry +ea(vi+|f], )7, + [,
T+ z,v x,
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Finally, substituting (4.117) into (4.111) and again using Korn’s inequality (4.97), we obtain

2 ~112
o 7, ]
+ z,v

t ~ 12
+ [ (Ol + bl + <0 ] ) (4118)

o[ (Jea-mily, i)

where the small constant ¢, > 0 arises from Young s inequality.

T2 - . try 2
B, gsGb(t)—ng(s)+a2/ (7], +1is +<*(
x S Y4 -

1
Y

S+ Hu

TU

Step 3. Estimate for c.
Step 3.1. Estimates for fst [é][L2d7 and |[&] s
In the weak formulation (4.56), define the test function

7/fcq (t,z,v) Zazapc q\ﬁB( ), q€{2,6}, (4.119)

where @.2(z) and @ (z) are solutions to the elliptic equations

~Ay@eo=¢1inQ, OpPea =0 on 99, / Peodz =0, (4.120)
Q
1
—ApPe = — A Adr in Q, 0pPes =0 on I, / Gepdr =0, (4.121)
Q

respectively. Under the compatible conditions in (4.53), Lemma C.5 guarantees that the equations (4.120)
and (4.121) admit unique solutions satisfying

HV ‘Pc 2HL2 + ||v$‘Pc,2||L2 + H‘Pc 2||L2 N HC||L2 ’ (4'122)
||sz066|| +IVadeslpz + 1esllpe < ||c5y| = (|17 - (4.123)

We now estimate each term in (4.56). For é:; 5, integration by parts yields

t
2L, =[Gu(t) — Go(s /// (8:0;@e.2Bi + 0;pe20:B;) f
/S 2 5[ (t) QstZ t0iPc,2 Pe,20t )f (4.124)

i=¢[Ge(t) — Ge(s)] — Hen — Hepo

~ ~ 2 ~
Clearly, G.(t) is bounded by Hf(t)HL2 . For H, 1, using the decomposition (4.66) gives

4
/Rs BPfav=Y"(F, 5@/ Bi(0)¥a (0)dv + Koz = O(u| + 10) @ + 5] + &) + Koy,

k=0 R

where we used (4.55) and the remainder ffgq is bounded as in (4.68). Then ﬁgl and E[C,Q can be estimated
analogously to (4.69) and (4.70). We conclude

t t
| | <6 -] +=a [ (7], ) Jéll
° , ° * (4.125)
te [ 1Vapealsy (0 [BF], +[a-B7], ).
For é}:’e, the elliptic estimate (4.123) yields directly
Zho| SeIVageslss |07, S elel (4.126)

For =2 ¢ (@ € {2,6}), the Neumann condition 0, ¢, q|89 = 0 implies «%(1/% q) e.q- Thus, the estimates
(4.58) and (4.59) and the elliptic estimates (4.122) and (4.123) apply to =2, and 3376

2| sa(|7],, +Irl ) lells (4.127)
" ;

=2 r 1z ~

=2l 2o(|7],, et 7], +ires ) Ny (4.128)
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For é‘z,q (g € {2,6}), applying the decomposition (4.66) yields

4

/]R3 viv(Jo]? = B)\/IP fdv = (f, Xn) /Rs viv([0]* = 5)v/ixk(v)dv + K q
k=0
10 o
== C%fsij + O(lu[ +10])(a + [b] + ¢) + Keq

(4.129)

where we used (C.7) and K., is bounded as in (4.68). Substituting (4.129) into the expression of ég’q yields

. 10 .
=3 5 G
Seqg T T % /5; Aac‘;pc,qc + Ec,qa qc {2,6},
where
~ 3 ~ ~ ~ ~
Feq=3 /Q 0i0;Be.q | O(Iul +1601)(@ + [b] + &) + Ko = vivy (ol = 5) VAT~ P)f].
ij=1
Combining (4.130) with the elliptic equations (4.120) and (4.121) yields
10

= 10 / .~ 12 E
3
2o=——= [ ArPeot+ E.o = ¢ + E. -,
2 \/6 o Pe,2 2 \/6 || HL% )2
- 10 / L. = 10 |, _,6 =
=3
Ele=——7= | DgPesC+ Eco=—7=ld|;6 + Ece-
6 \/6 0 Pec,6 ,6 \/6 ” HLg ,6
The remainders E. 5 and E. ¢ are estimated similarly to (4.80) and (4.81):

|Bea| S 112l 2 [ob1 [B4]

+||a-p)f]

2
Lm,v

‘Ec,6

~15 1
S leéllzs (52[)1 ‘

L2, }’
where (4.122), (4.123) and Lemma 4.5 have been used.

], +Ja-#i]

).
Lg,v

The estimates for 27, and é‘cl’G follow directly from (4.60), (4.122) and (4.123).

Integrating (4.56) and combining (4.125), (4.127), (4.131) and (4.133), we obtain
t 2 N
5 I

[ sl -] +a [ [|7

+irfs e (o2 |f

)

2 2 }
Lz, L2,

+ s/: 109 ezl (b1 |[B]

o Enle

Combining (4.56), (4.126), (4.128), (4.132) and (4.134), we derive

+ |a-Byf]

L2
2 1
2g

2
L2 )

x,v

u, AP

n H”

Lz, (@)

1

of

1
rs 2 1 %2 1 1 17
+alf| | walrly +alf] Wb et bt ]
. L2, V- L2 L L

Y4 T,v T,v

c <
lellzg, < f]

+||a-B)7] 4

K Hgl(pﬁ)ﬂ

n Hﬁ

LY, L%, (@) L%,
Step 3.2. Estimate for [|0;V.@c22-

In (4.56), we now choose the test function 1[)6,2 = OpPe,2X4(v) and estimate each term.

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

For 2} ,, we write X40i f = 0u(Xaf) — OiXaf. Using definition of & in (4.4) and the elliptic equation (4.120),

the first term becomes
5// at@c,Zat (;(4f~) = 5/ at@c,Qaté = _5/ at@c,QAa:atSZc,Q = ||ant¢c,2||i2 .
QxR3 Q Q z

The second part is bounded analogously to (4.86):

‘E// 3@@28024]?‘ S Ea(hl + ‘JE
QxR3

For égw since Z(te2) = 1.2, the estimate (4.58) applies:

L%+ ) HfHL%,U ||8t§0C72||L3 .

=2

—c,2

Sa([f],, e ) 10pealln,
+

(4.137)

(4.138)

(4.139)
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For ég”% we use the decomposition (4.66). For each i € {1,2,3},
4

L=z c - . - 2 ST -
/ viXaP fdv = (f, %) / viXaXkdv + Ke1 = bi——=8y + O(|u| + 10]) (@ + || + &) + K.,
R3 =0 R3 V6

where we used (C.3) and K. is bounded as in (4.68). Similarly to (4.116), we derive

<(7

+ by HPJ;’
L2

}+H(I—15)f’

Zen L L ) IVaOe@eollys - (4.140)

Finally, 22, is bounded by H” ey

e 1oBeals.

Combining (4.56) with (4.137)7(4:1140) and using Poincaré’s inequality, we conclude

~ < 7 = 7 _ -t s rs
IVadipeally S|, +evi [, +[a-2of],, +ald], +ai
) o o * (4.141)
realbn+|f], )], I
L2 L2 L2
N 3w 3o
Finally, substituting (4.141) into (4.135) yields
b - - ) T2 5 ) 12 12
J Vel <elCeny = Guo) +at [[|7], +irita +<(0a+ ]|, )AL, |
] s N & (4.142)
t <112 ) -2 . -2 a2
A PR S e oY Y L g

where the small constant §, > 0 arises from Young’s inequality.

Step 4. Combination of the estimates for a, b and ¢.
Following the same pattern as in Step 4 of the proof of Proposition 1.2, we combine (4.90), (4.118) and
(4.142) and use Lemma 4.5 to obtain
2 12
e ) ]

t
L x,v
2
L2 ]

z,v

t
s

Bf|, 5=[Go(t) - Go(s)] +a® [ |7

tIrfs +e(bat |

2
Lz,

1
2

g

o [ [enlprl, +[ea-ps

2
L3, (@)

Using the smallness of € and b (see definition in (4.1)) and writing f = P.f + (I — P)f, we absorb the terms
-2 -2
fst £2hs HPfHL2 and a?e? fst ho HPfHL2 into the left-hand side of (4.143). This proves (1.83).

Combining the estimates (4.83), (4.112) and (4.136), we obtain (1.84). This completes the proof of
Proposition 1.5. O

For the derivative 9, f, we obtain the following consequence of Proposition 1.5.

Corollary 4.13. Under the same assumptions as in Proposition 1.5, we have

/St ‘f’(atf)‘ . SelGi(t) - él(S)] + /: (Hgfl(l - P)o,f ;,v(’)) + Hﬂfégt QT 1))

Lz
t 2
+a2/ ( ‘
s 2,

2
L2 )’
_ 2
&gf(t)Hz and § > 0 is a sufficiently small constant.

(4.144)

of

of of

2
2
+ |0sr + 8|72 + €2
L’2Y+ Y-

T,v

i o2
where |G1(t)] < Hf(t)H2 i ‘

Proof. The equation (4.27) for 0; f has exactly the same linear structure as the equation (1.61) for f, differing
only in the source term and boundary remainder. Moreover, 8, f also satisfies the same conservation laws of
mass, angular momentum and energy as (1.78). Therefore, Proposition 1.5 applied to (4.27) directly yields
(4.144). The details are omitted for brevity. O
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4.4. Nonlinear Estimates.

This subsection establishes the nonlinear estimates for the source terms ¢ and g, which are used in the
energy estimate of Proposition 4.10. The main result is the following.

Proposition 4.14. Let § and gt be defined as in (1.62) and (4.28), respectively. Under the a priori assump-
tion (1.82), the following estimates hold:
~ o~ ~ |2 ~ 2 -
D—%F(f, |, st 7|, (1+< 7] )- (4.145)

[ A=
[0l = \f o, G+ llrell, + llzoll,+ [#],) (1146)

+a/0 ([72r@f.5)

Furthermore, for w = Bl with 0 < b < 4, there hold:

[t 5 [ o35l ass((lrall + ), e
[ 8 s el (@ + ol + [A])) o

o [ (|t g 2

2 ~ ~

+ |7 0|

2 2
Lz,v Lz,v

The proof of Proposition 4.14 will given at the end of this subsection, after several auxiliary lemmas.
Recall the relation (1.68). We have the following L*° estimate.

Proposition 4.15. Let g,0;g € L®°(RT x Q x R3) and fo,0:fo € L=®(Q x R?). Let f be a solution of the
linear Boltzmann equation (3.90) on [0,T] with 0 < T < co. For 0 < € < €g, if the a priori assumption
(1.82) holds, then for allt € [0,T), we have

lof ) lzs, Sllwfollrs, +e72 S IPF(s)llce, +e2 sup [((T=P)f(s)]zz,,

0<s<t
0(s
+ o (M+M)+a sup, 1e) (o), (4.149)
0<s<t 3 £ s
0Oz, ol + 0l +=7F s oo >||Lz,v+oi“2t”f ()l
0<s<t € € 0<s<t € €

+e sup |[(v) " twdig(s) [
0<s<t '

where w = 811 with 0 < PR %.

Proof. Step 1. Proof of (4.149).

The argument follows the same strategy as that of Proposition 3.3.

First, in the proof of Proposition 1.3, when performing the change of variables as in (2.79)—(2.81), we
adopt a new decomposition of f:

F=Pf+@-P)f+(f- .
Correspondingly, define

Aif(ty,0) = Pf(t,e,0), Asf(ty,v) =1 -P)f(t,z,0), Asf(t,y,0):=(f = )t z,0).
Proceeding as before, we obtain an estimate analogous to 7):

(1.4
||wf(f)||L;ou(anR3) Se” £ waOHLOO (2. xR3) +o(1) sup wa( )||L (e xR3)
' 0<s<To

+ sup. ||A1f( s)ize . xrsy + sup [ A2f ()2 (. xk9) (4.151)
’ 0<s<Ty !

787

+ sup ||W YAsf(s MLz, (@.xrs) + sup |le(v)” 'w G($)l|Lze, (0. xR3)-
0<s<Tp 0<s<Ty
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Second, returning to the original time scale 0 < ¢ < 2T, via (3.93), we have

1]
lwf )z, Se” = lwfollze, +0(1) sup |lwf(s)llzz,

x,v MY T,V
0<s<e2Ty

_3 N 1 5 5
+e 2 sup [(T=P)f(s)llrz, +e72 sup [[Pf(s)lLe, (4.152)

0<s<e2Ty 0<s<e?Ty

+ sup Jw N = F)@)lpe, oxrs) +e sup [[(v) " wg(s)|l Lo, -
0<t<e2T, ’ 0<s<e2T, ’

Define
D(s) = o(1)wf(s)| 1z, +&72 IPF(s)llLs, + e X —P)f ()2,

+ (PN RON iy ag(o) s,

e x,v

Applying the previous inequality iteratively and using Lemma 4.3 yields (4.149).

Step 2. Proof of (4.150). ) )
The proof is similar. We start with 0,f = 9;f + (0, f — 0¢f), and set

AQ.f({,yav) = at.f(t’xav)a A3.f(fayav) = at(f - f)(ta SU,'U).
Following the same pattern as in Step 1, we derive

lwde f()lle, S €2 lwdefollze, +0(1) sup [wdef(s)lleg, +e7F  sup [0 f(s)llzz,,

0<s<e2Ty 0<5<e2Ty
+ sup  JlwTrO(f — f)(t)”LgOU(QxR?’) +¢& sup H<v>7lwat9($)||L;°v-
0<t<e2Ty ’ 0<s<e2Ty ’
Combining this with Lemma 4.3 yields (4.150). O

The following lemma controls derivatives of auxiliary functions with algebraic growth in v.

Lemma 4.16. Let X € {6,u,p}, g € L*(2 x R3), and p > 0 be an integer. Then for wy = ALV with
0< B i, there holds
L2, )

a alz
[0:X |U‘p9||L‘2M S 5(;51 T2 ‘f

1 ~ 3 ~
la=Pif,, ety + [Pl
o )G NP, 4 lengliy, +[[Po

9
Lz, )

W[ g =] Pg+ Ljypec v’ (T—=P)g+ 1jypse v (I—P)g.

Proof. From (4.17), we have
o Q|
10:.X| < 5(*51 + - ‘f
€ €

Decompose |v|” g as

The first two terms satisfy
Hlv\p Pg‘

i

otz P @=Pyg| 5 |ra-Pg)

2 2 2
La:,u La:,u me

1
For the last term, note that |v|4p S wi for any p. Hence,

_1
1

3
2 wl

L ol (1= B)g|

wi(I— ls)g‘

< < o3
L S S et fnglyz, -

L2

oo
Lm,v x,v

Combining these estimates completes the proof. O

The next two results provide estimates for the nonlinear collision operator.

Lemma 4.17. Recall the definition of T in (1.62). Forwy = Al with 0 < b1 < i, the following bounds
hold:

), el 7], (4.153)
7, Sl |7, (4.154)
al (19|, < lnflus, loroles, (4.155)
7 A0(P, Py)| L S |Brpy . (4.156)

z,v
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Proof. The estimates follow by the same arguments as in the proof of Lemma 3.4, using the properties of
the collision frequency (4.31). We omit the details for brevity. O

Corollary 4.18. Let f,g € L*([0,T] x Q x R3), and let Sjf,S;g >0 (j = 1,2) be defined as in Proposition
A.1. Assume that fort € |0, T]

bi(h)| + [é(h)| < Sih(t. ) + Sah(t.x)  for he {f,g),

where a(h),b;(h) and &(h) are the coefficients of Ph. Then

~_ 1l ~_ 1~
o, v,
-1 -1 1
Set[e H(I—P)f P 152112z ] [e? lwrgll e, | (4.157)
1 ir N 3
I8 llzas [ lenloge ][ @Ol T+ 080 [P,

where w, = eBlv1 ith 0 < b1 < i.
Proof. Write |f| = |Pf| +|(I—P)f| and |g| = |Pg| + |(I — P)g|. The proof then proceeds exactly as that
of Corollary 3.5. O

Corollary 4.19. Let f be the solution of (1.61) on [0,T] with 0 < T < oco. Under the a priori assumption
(1.82), the following estimates hold for all t € [0,T]:

o7l <[]+ &lA® + 2o + o= lwflis, + [4]] + &A@
L 2 2

+ &A1) + Z3(F1(E) + 6% |l e

where § > 0 is a sufficiently small constant.

(4.158)

Proof. We start from the estimate (1.84). Both ¢ HatfH and HPfH are bounded by &[f](t). For

the boundary term in (1.84), we argue similarly to (3.105) to obtain

\f =2 [ Bl [ [ foadems < [[7]]+ 200 (4159)

In view of (1.69), (1.70) and the orthogonal decomposition (3.3), the term |f0|L3+ can be controlled via trace
lemma similar to (3.6) and (A.13):

folia, =10 = P23 folzy +123folzs S A+0)I(1= ) folzy + Ifolg 2 B

S(T+0)[(1— 97)f0|ig+ +lfollzz , + v VafolZs - (100

Consequently, only the contribution |(1 — &) f0|2L£+ is required in the definition (1.74).

1 -
The term o |r|;s can be bounded by ad&y? [f](t) via (4.34). Moreover, as in (3.106), we have

= a-mio|, < [H],+ 20 (1.161)

Lz @ "~

To estimate H(I — f’)fHLG , we apply interpolation, (4.161) and Lemma 4.3:

(4.162)

1 , 11 o~ ~ 1~
<0t wfl ., +0e2 &5 (A1) + [[10]), + 22 A1),
where § > 0 is a sufficiently small constant. Using the smallness of € and bh; (see (4.1)), we absorb the term
1 . 1
ez ) from (1.84) into de? |wf|| o -
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For HD 2§ ’LQ , recall the definition of § in (1.62). By (4.39), Lemma 4.16, Lemma 4.3 and the assumption
(1.82)
A, =G gl )G a-? Hlet ..)
€ f Se {_:f)l-i-EfL3+ 5 ( ) € wa:“v -

<[[A]], + &0 + 200 + 8= el + 610 (4.163)

A direct computation shows

 Jo—uff=3ToT . (v—u)-Ou_ Oip. A
_ oT ap 164
O 5 Ta it 7Rt h (4.164)
From (4.17) and the exponential decay of fi, we obtain
__ 101 < ‘ 7 < 1 11 3 1
A, Sl sesoraldd ([[%], + 2 ®). (4.165)
Moreover, by (4.156) and (4.161),
|tr D, slprivd.a-pp||, +|priv@n e
L3 N . o 3
Slet] la-»7, o, + 77
Le2, L2 (@) Liw
- ;. (4.166)
so ot v oA, | 2
Le2, L2 ,(7) LS.,

<02 2, + 100 + [R] + 2070 + & 170

hold for a sufficiently small constant § > 0 from Young’s inequality.

Combining all the estimates above with (1.84) from (4.166), we

arrive at (4.158). O

Recall the definitions of L, T* and L in (1.62) and (4.28). We have the following estimates.

Corollary 4.20. Let f be a solution of (1.61) on [0,T] with 0 < T < oo. Under the a priori assumption
(1.82), the following estimates hold for all t € [0,T]:

Hf’f LzUSH(I_P) , (4.167)
[, seGnezlf,, )
< |Gl o Ml (468)
+(Cla-»,, o )l |
|=2ies]],, se(To+ 27 L2+>(i - Pil,, ) @)

where w; = Bl ith 0 < b1 < i.
Proof. By the property of L and Lemma 4.17,
VNS SRR (S SV RV

2
Lm,v

sla-pi, vl s J-p

TU

For T'*(f, g), Lemma 4.17 yields

f

f i’

1
< 55 ]/2

~

lergll e, +

~_ 1=
|ttt

x,v

O/ fi
Vi L2,

Combining this with Lemma 4.16 establishes (4.168).

, orfls,
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For L' f, Lemma 4.17 gives

i), vl <]

Together with (4.17), (4.39) and Lemma 4.16, this proves (4.169).

~1
< V2

~

s

f

+ 730 \/ﬁ‘

. il s, -

T,v

2 Li,’l}
L3

We now prove Proposition 4.14.

Proof of Proposition 4.14. The argument proceeds in three steps.

Step 1. Estimate for (4.145).
Recall the definition of § in (1.62). We decompose

[ si=[ [ ranaeis [ [[ 22

=1 + I + Is.

For I, since the collision operator is orthogonal to P f , Lemma 4.17 yields

N\

~_1 s
v

t 2 1 t
[ 11] 55/ + */
0 L2, €Jo

(7))

(1-P)f]

Lz,
To estimate I, note (4.164) and using Proposition 4.9 that

0 . -
\;g [0:pX0 + Ot - (X1, X25 X3) + 010X

S ebi(|0p| + 10,0 + |0w)).
L3,

Using the conservation laws (4.7) and the estimate (4.17), we obtain

t t
| I] 5’/ // [athO‘f'atu‘()21;)22;)23)+at9>~(4]f‘+5/ f)1(ah1+a‘f
o Jaxrs 0

Dl

set oy 176, 2 [ o (om+ald],, )52l

For I3, using (4.39), (4.17), Lemma 4.16 (with w; = w?) and Lemma 4.3, we have

iz [ [ ol + ow+ |ate|)f2\
QxR3
< <z‘m+i\f*%><iua—ﬁ>

<[]l

Combining the estimates for Iy, Ir and I3 establishes (4.145).

)

Step 2. Estimate for (4. 146)
Recall the definition of g* in (4.28). We decompose

[ 08 = [ [ To00 00000 o (o) Vit Plod
R

L CR) - -Cada

:Ill +I[2 —|—IIg

For Iy, since the collision operator is orthogonal to P, the first two terms are bounded by

[ (| r@d ) i) el

2

S A XERN]

LZ

x,v

J A

71
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By Lemma 4.16 (with w; = w?), the third term in I1; is bounded by

s‘l/ot ( )fatf +a/ |00
s [ (2], )G H<I* P)orf

/
0

< sup (5
0<s<t

to\»—-

wlatf

3
2

+e€
L, ()

2
)

x,v

n HPatf
L?v

e~ 12
v,
’ (4.170)

A
/HI— o] ~+E/H WG|
e B

sellrll; (el 701, )+= [ -tre 2,
where we used (4.159), Lemma 4.3 and the definition of H’f(t)HL Combining these estimates yields
) se/ (@i pl,, +|iedan], «[-¢h|

weflfoll, (1 rell, + [A],):

Next, we estimate II. Similar to (4.170), by Corollary 4.20, the first term in Il5 is bounded by
t 1 -
5_1/ 29, (—= 1, +e” / H ‘
o t(\/ﬁ)\/ﬁ tf %7
< 7ol (1+ 7ol o
se[|foll, @+ [l7of, + @l )

Since L' is orthogonal to P, by (4.169) (with w; = w?) and Lemma 4.3, the second term in 115 is bounded

by
=
o (o, m\ cue, o,

+g/0 Hg—l(l—ﬁ)atf ’

«@ =
+ o (%h 27
0<s<t \ € e L2

Tl

L2 ()

—1

a-pd

L3, (7)

)2
L?;,v

L3 ()
Foll, (+lroll,+7of;, )

By (4.168) (with w; = w?) and Lemma 4.3, the third term in IT; is controlled as

[ e .

<g2

~

( [)1-5-%)];
_|_

X(Hflﬂ— >f el B )
slill, Cllzofl, + \f@ )7 el <o, )
+t |7l 7o),
st ol (lroll,+[7ol;, )

Collecting the above estimates yields

11| <e?

Foll, (+l7oll,+ 141, )
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Finally, we estimate II3. For the first term, note that
i\ lv—u>=3T\ 860 ~ (v—u)-Ou ~ _
at(\/ﬁ>_at[( > )(1+9)2\/ﬁ+ g Vit oV,
-1 _ _
0.f = 7= |0V - /i),

and 9, (\/fif) also satisfies the conservation laws (4.7). Consequently, all linear terms in 0y (%) (e.g.,

0:0,0 |v]> Vi, 9,04u - vy/fi and 8,0, p+/Ji) are orthogonal to 8, (v/7if). Therefore, only the remaining nonlinear
terms contribute, giving

[ a(®)ai| = /Otbl(amwyatf\%)(Hatﬂ

Next, similar to the proof of Lemma 4.16, the second (cubic) term in II3 is bounded by

)z [l7ol],

Li,v L?x,’u

t
[ 1ol (100 + 0w + 100 + Didisl + |00 + 121 )
0 QxR3

Sé/
0

|70

where we used Proposition 4.9 and Lemma 4.3. Finally, the last term in 173 is controlled as

E‘/O ,//QX]R3 ‘8tf|2<’u>2 (|atp| —+ |5tu| + |at9|)

[ lol,, o2, ) -, +

3
2

+e€

,U

], (eonerafad], ) a-Pi f] ., + [P

i)

L2

3
)
2

3
2

L2

o], + [eas

i)
s [l

8
Collecting these estimates gives [I13] < &2 H‘f(t)m2
Combining the bounds for 11y, 1, and II3 establishes (4.146).

Step 3. Estimate for (4.147) and (4.148).
For ||§w’1H2L2 and ||§tw’1H2L2 , the algebraic growth in v is absorbed by the exponential decay of w™?.
Therefore, using Lemma 4.11 and arguing as in Steps 1 and 2, we obtain (4.147) and (4.148). The details are

omitted for brevity.
This completes the proof of Proposition 4.14. O

4.5. Proof of Main Result for the Case 0 < o < ¢.

In this subsection, we give the proof of Theorem 1.4.

Proof of Theorem 1.4. In the regime 0 < o < &, we work with the perturbation equation (1.61) around
the rotating Maxwellian fi. The argument follows the same pattern as that of Theorem 1.1. For conciseness,
we only point out the main differences and omit most of the repetitive details.

Step 1. Global existence and uniform e-independent estimates.

To obtain the global a priori estimate (1.76), we follow the argument from Step 1 in the proof of Theorem
1.1.

First, applying Corollary 4.18 and Proposition A.1 with source terms ¢ = —e 'Lf + § (for Slf) and
g=—e Lo f + G (for S10,f), and then using Proposition 4.14, we obtain

-t BRI ko wn

Second, multiplying the estimate (1.83) in Proposition 1.5 and the estimate (4.144) in Corollary 4.13 by a
small constant, and adding the result to the estimates (4.29) and (4.30) in Proposition 4.10, we deduce

2 2 2

+ s

+[r i@ )|

2
t,a,v

L2

toa,v

L?

t,x,v

st 2o s [l L o+ o+l
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Third, applying Proposition 4.15 and Lemma 4.17 gives
12
clofll,, + Woarf i, 2 [A]], + &t + @A + o], + [B7

(4.173)

L¥LS ,

Using Proposition 1.5, Corollary 4.19 and Proposition 4.15, we derive the bound
A,y <[+ [[R)], + st + 2t « A0 + A0+ o tontze - e

where § > 0 is a Sufﬁciently small constant arising from Corollary 4.19. Combining (4.173) and (4.174) and

absorbing the terms d¢ ||wf ||2L?o on the right-hand side, we obtain

lof I3 +e3uwatf||m

LELLw (4.175)

A+ [ et i+ o+ o

Finally, multiplying (4.175) by a small constant, adding the result to (4.172) and absorbing small contri-
butions on the right, we find that

il o= L0, Al -+ A -+ Al o (4170

.12
holds for any 0 < t < T, provided H foﬂ < Jy is sufficiently small. Consequently, the a priori assumption
2

(1.82) is verified if dy is chosen further small such that dp < 1. The global a priori estimate (1.76) on [0, c0)
is then establish via standard continuity argument.

Step 2. Derivation of strong convergence (1.31)—(1.32) and INSF system (1.33).

The uniform bound on H f ’H ) given by (1.76) implies:
F o f H Hff H < O, 4177
2w ([fe,, +lasel], +[pie], )=co (4.177)
sup ( @ I ‘u}z(s) 0:0(s) + Orw;(s) ) < C6,, (4.178)

0<s<0 € 9 S
/ (Hf)f( / \ aPf(s )ds < ¢4, (4.179)

2
/ (H I-P)f(s )HLI 4 H I-P)d,f(s )HLi,v(ﬁ))ds%o as € — 0. (4.180)
Hence, there exist f* € L> (RT; L*( x Rg)) and 0%, w} € L=(R") such that, up to a subsequence,

f— f* weakly—x in L™ (RT; L*(Q x R?)), (4.181)
g — 07, % — w} weakly—x in L (R"), (4.182)
96 _, oo, Qi dyw}  weakly—x in L®(R"), (4.183)
g —u’, % — Qu*  weakly—x in L™ (RT; L>(12)) (4.184)

as ¢ — 0, where u* = > w}A;x. For notational simplicity, w;(t) denotes either w;(t) or w(¢), and similarly
for w}(t). Owing to the initial conditions (1.59), we have
6*(0) =0, w;(0)=0, u*(0,z) =0 Yz e Q. (4.185)
Using a Taylor expansion of i together with (4.178) and (4.184) yields

wipt =) — w( G*HTi>u strongly in L™ (Ry; L' N L=(Q x RS)) ) (4.186)
€

Wil — wp, wyv/Ji = wy/ji strongly in L (Rys LT N L>®(Q x R?)) (4.187)
as € — 0, where w is the weight function defined in (1.26). The convergence (4.180) and (4.167) in Lemma
4.20 imply Lf — 0 strongly in L?(RT x Q x R?). Moreover, (4.181) and (4.187) indicate Lf — Lf* in the
sense of distributions. By uniqueness of distribution limits, we obtain Lf* = 0. Hence, there exist functions
of,ups, 0 € L(RT; L?(2)) such that

2
* v|" =3
7= (o5 +uy- o] ‘2 )VE- (4.188)
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Proceeding as in the proof of Theorem 1.1, we also have gf-,up, 0« € L? (R+; Hl(Q)) and
D730V, f - v 30V, ff weakly in L? (R*; L2(Q x R?)) as e — 0. (4.189)
We now claim that

0™ (t)

0, wi(t)=0(i=123), u(tz)=0. (4.190)

To this end, observe the identity

/[99ng 72 ¢ flaady = //szS 777 (v Vao) f+//ﬂ><R3 772 (v Vo f)o,

where ¢(z,v) is test function satisfying ¢(-,v) € C°°(2) and ¢(z,-) € C§°(R?). Combining this with (4.181)
and (4.189) implies

U %fN|aQ — V*%f*|,9gz in the sense of distributions as ¢ — 0. (4.191)

The uniform bound of ‘H f ‘H oo) implies that 4/ — ’ f is uniformly bounded and hence, up to a

27,2
Ltw+

subsequence, has a weak limit in L2(R, x dv). By ( 1 55), (4.191) and the uniqueness of distribution limits,
we conclude

23 f|,, — 0 weakly in L2(Ry x dv) as & — 0. (4.192)
13

Recall the ODEs for 6° and w§ in Proposition 4.9. Passing to the limit in (4.23) and (4.24) and using (4.182),

we derive
d
3—/ G*dm—i—)\/ 40*dS, =0,
dt Jq a9

d
4 wr | A da + A / wr | A2 dS, =0, i=1,2.3
dt 90

Owing to the initial conditions in (4.185) and the fact A = 0 in (1.55), the ODEs in (4.193) admit trivial
solutions 6*(¢t) = 0 and w}(t) =0 for all 4 = 1,2,3. This proves the claim (4.190).

We now prove the strong convergence stated in (1.31)—(1.32). The uniform bound on H' f H‘ ) from Step
1, combined with (4.171), (4.17) from Proposition 4.9 and Lemma 4.16, implies

3tu E)t\f
Vi SV

Arguing as in the proof of (3.122) and using velocity averaging lemma, we obtain
f— f* strongly in LIOC(R"‘; L*(Q x RB)) as e — 0.
Combined this with (4.187) implies

(4.193)

oif, e o3 Lf, 72 0(F, f), Pfel’®Y x QxRY).

~ 2 —
/ f\/ﬁ[l,v, id 5 S}dv — (of=,up-,¥p-) strongly in L (RT;L?*(©2)) as e — 0.
R3

In view of (4.181) and (4.187), the strong convergence (1.31)—(1.32) follow readily.
Finally, the convergence of (1.61) to the fluid system (1.33) can be treated analogously to the case e <
a < 1. We omit the details for brevity.

Step 3. Derivation of the perfect Navier slip boundary (1.77).
Define the weighted boundary average

Do =VET [ gloq il vido
v-n>0

Combining this with (4.192) and (4.187), we obtain

Q__1 F 2
\ 2V 2<f|3Q ﬁ f>89> — 0 weakly in L*(RT x dv) as e — 0. (4.194)
By (4.38), (4.182), (4.184), (4.187) and (4.190), we have
P — i _ [u]*\ 6 u 0> ju2
_ _ G or qm 4195
" Vi \/ﬁ{( 2)5 ! 5+€O(5 75‘ )p(v)}—>0 ( )

strongly in L (RT, L' N L>=(Q x R?)) as ¢ — 0.
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Following the same pattern as in Section 3.4, we now derive the weak formulations (3.148) and (3.149)
with A = 0 for the INSF system subject to the perfect Navier slip boundary (1.77). The details are omitted
here for brevity.

This completes the proof of Theorem 1.4. O

APPENDIX A. L?L3 ESTIMATE

The main goal of this section is to establish the following L7L3 estimate.

Proposition A.1. Let g € L>(RT x Q x R3) and r € L2 (Rt x ~_), and let f, f € L®(RT x Q x R?) N
L2(R* x Q x R3) be distributional solutions of the transport equation with Mazwell boundary condition

O f+v-Vof =g inRY x QxR (A1)
floo = (1= Q)Zf +aP,f +ar  onRT x 90 x R®. (A.2)

Denote by a,b;, ¢ the coefficients of Pf with respect to the basis {x:}, and by a,b;, c the coefficients of P f
with respect to the basis {x;}, ) )
(1) For 0 < a < e, under the a priori assumption (1.82), there exist S1f(t,x) and Sof(t,x) such that

jat, )| + [b(t, )| + |e(t, z)| < S1f(t,x) + S2f (¢, @),
.7 <[a-Py]

5|

Lz, Z (A.3)
A, reld
(2) Fore S a <1, there exist Sy f(t,x) and Saf(t,x) such that
la(t, 2)| + [b(t, )| + [e(t, 2)] < Sy1f(t ) +S2f(t, @),
82512 SNA=P)flls . "

_1 1
810 < v 2], Ao, +olfliz +alrlim +lfol + v Vafolls

&7

. . _
< Hﬁ_ﬁg‘ + a|r| +Hf H +HU~V S
~ L2L2 0 zJ0

L7L3 L3 o L3 o - L3, %

z,v

L3L2,

‘ 2
L o,

Proof. The argument follows that of Proposition 3.4 in [22]. We provide details only for case (1), as case
(2) is analogous.

To isolate the interior and non-grazing part of f near the boundary, we introduce a truncation fg. For
(t,z,v) € R x Q x R? and a small parameter 0 < § < 1, define

it e.0) =1 x () CD) [ ()8 o) Lo 1 2,0) + Lol )] (A5)

Here the cutoff function x € C°(R) satisfies

1 if |z < 3
0<y<1, ") > —-4x11 and y(z) = ¥
<x<1, X(x)> L<fzl<1 x(@) {o if [a] > 1.

Consequently, fg(t, x,v) vanishes on the near-grazing set:
fs(t,z,v) =0 for (x,v) € y\"3, (A.6)
with the non-grazing sets 9. defined in (3.5). Moreover, the following estimates hold:
||f5||L2(RxQxR3) S ||f||L2(]R+><Q><]R3) + ||f0||L2(Q><R3)7
150l 2@y S 1P L2 @y sy + 1 folag 2y
Under the a priori assumption (1.82), there exists a constant Th; > 0 such that
Ty <T(t)=14+0(t) < 2Ty forall t>0.
Then, for some constants Cy,Cs > 0 and p € (%, 1), the global Maxwellian

1 |v]
HM= on Ty )32 P ( - 2TM)

satisfies
Cipnr < o S Copdly, (A.8)
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as shown in [35]. Consequently,

K| S W)y and S| [ ki) (A9
For each i € {0,1,--- ,4}, the truncation ﬁ; satisfies
foxi(v)dv
RS
n(z)- v, £(z) |v| = 2\ -
~tiso [ 1= E] 1= x(55) Ixale) {Zam (1-P)f b
n(z)- v, &(z) v -
+1li<o | [1—x( ()] [1 = X (5] x(Blol)x(t) foxa(v)d
/Rg 5 5 2 (A 10

~120{a +00) 24: a1}
=0

10 [ - x (M - ('%')]x<6|v|><1—f’>f>zi<v>dv

1 [ 1= xS 1= ()l oo

where temporary notations ag = @, a; = b; (i = 1,2,3) and a4 = ¢ are used (see (1.67)). Therefore,

4 4 4
th20|&i| SZ‘/ fsXi(v)dv +1t§OX(t)/ |f0|Z|>_<z‘(U)|dU
i=0 i—0 VR3 R3 i=

4

120 {500) Y Jas| + 051 /|1 P)f i o)jdv}.
=0

7=0

Hence, for sufficiently small §, we obtain for each i = 0,1,2, 3, 4:
(e ) <10 [l o+ 10100 [ Vl@Pddo+10 [ 1@ P)fiwufan. (2
We now focus on the term involving fs in (A.11). By Lemma 3.6 and Lemma 3.7 in [22], there exists an
extension f5 € L2(R x Q x R3) of f5 such that
o Tl 2 s, A+ Wollee, + o Vadolloz, + 1Pl lzee + olyg e (A2)

2, Slo™ gl
Note that the boundary term \fl |L2L2 arises from the definition of f5, (A.6) and (A.7).

t,x,v

To bound |fo1 i 2 |12, we apply Ukal s trace Lemma in [60] or Lemma 2.3 in [22] on 72, yielding

[folys bz So 15y, + o - Vel , Ss IfollZe , +lv-Vafoliz - (A.13)

x,v

To estimate |f1 i |L2L2 we apply Lemma 3.2 in [22] on the out-going non-grazing set 'y+:

/ [ 1FLsPar S el R, / 172, + / 10+ - Va) (FP)lles
0 Y+ 0 '
£ 2 7112 ! 7112 ! L2

Sselfolls + / 1A, + [ 1713 o+ [ 15 b0l

For |f175_ \LgL%, where trace lemma does not apply on v, we use boundary condition (A.2) and the change

(A.14)

of variable v — R,v on 7 :

// flaldv</A APy + // 2, [Py + o2 // Py
// K dwa//wm dwa// Py (A.15)

~ ~ ~_1 ry
<ellfollZs, + / 17122 ) + / 17 4gl  +o? / 12, + 135 1.

where we used (A.14) in the last inequality.
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Finally, we define

S1f(t.0) = [ [BlwPufido, Saftta) =4 [ 10 =PIl ufiao (A.16)
R
Combining (A.11)—(A.16), we obtain (A.3). This completes the proof of Proposition A.1. O

APPENDIX B. UNIQUENESS OF WEAK SOLUTIONS TO INSF

In the following, we establish the uniqueness of weak solutions to the INSF system in the setting of
Theorem 1.1 and Theorem 1.4.

Lemma B.1 (Uniqueness of weak solutions to the INSF system). Under the assumptions of Theorem 1.1 and
Theorem 1.4, the weak solution (u,?) to the INSF system (1.33) — subject to either the Dirichlet boundary
condition (1.34) or the Navier boundary condition (1.35) (which reduces (1.77) when A = 0) with initial data
(up,¥p) € H,, x Hy (defined in (1.85)) — is unique.

Proof. We prove uniqueness of weak solution (u, ) to the INSF system (1.33) only for the Navier boundary
condition (1.35), as the proof for the Dirichlet case (1.34) follows analogously and is simpler.
As a limit point of solutions to the Boltzmann equation when hm — = V2w € [0,00), the pair (u,?)

E—
inherits the smallness of || f||, or ‘f‘H . More precisely, from the unlform bound (1.29) or (1.76) and the
2

uniqueness of distribution limit, up to a subsequence,

Pf,Pf— Pf* weakly—* in L> (R*; L5(Q x R?)) .

By the lower semi-continuity of the norm under weak—x* convergence, the limit (u, ) inherits the smallness
in L LS:
lll e g < IPS pere . S IPFllepe . < IIFll, < 1 when using norm |||, .

[ull poe s < ||Pf*||L?°L3,v ~ LLS,

For uniqueness, let (uy, ;) and (usz,92) be two solutions of (1.33) and (1.35) (which reduces (1.77) when
A = 0) with the same initial data (ug,Jp) € H, x Hy. Then it follows from (B.1) that

||U1||L§°Lg‘, <1, ||u2||Lchg <L (B.2)

(B.1)

< H]fHL < 1 when using norm |-,

Write w = uq — ug, x = 91 — ¥2. Then (w, x) satisfies
0w +uy - Vow +w - Vaus + Vi(pr — p2) = 0A,w, Ve -w=0 inR" xQ,
Ox+ur-Vex+w-Vyde =rAx inRT xQ,
wli=0 =0, X|t=0=0 onQ,

(B.3)
tan
[U(wa +(Vow)") - n+ )\w} =0, w-n=0 onR" x99,
4
n@nerg)\x:O on RT x 99Q.
Standard L? energy estimate on (B.3) leads to the energy equality
1 t . t
SO +20 [ V50l +A [ lurfiaon)
(B.4)

// - Vgw) wdxds—/ / (w - Vyug) - wdzds,

where w, denotes the tangential component of w on 9 (in fact, w, = w because w - n|sq = 0). Here we
used V, -w = 0, Ayw = 2div(Viw) — grad(V, - w) and the Navier boundary condition in (B.3). The first
integral on the right-hand side vanishes because V, -u; =0 and n-u;|sq = 0. Using V,-w =0, n-w|spq =0

and integrating by parts, we have
t t
’/ /(w - Vyug) - wdads :‘ 7/ /(w - Vpw) - ugdads
0 JQ 0 JQ
Slluellzgeps [wllpz s IVaewl pz 22

3o
AT

Slluzllee e oI Vewllizrz
t

Slluallzgezs (Iwll7z 2 + 1VawllZz2),
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where we used the Gagliardo-Nirenberg inequality. Substituting (B.5) into (B.4) yields

1 t . t t
Sl +20 [ 1920l A [ forlaon S lualirss [ ol (B6)
0 0 0

Similarly,

1 t 4 [t t
5”)(@)”%2(9) Jr"5/0 IVxlZ20) + 3/\/0 IXI7200) S H%HL;”L,@/O (lwlZr @) + 1VXIZ2(0))- (B.7)

Because the coefficient A influences the boundary dissipation, we treat the cases A > 0 and A = 0 separately.
The geometry of  also affects the solution when A = 0 (perfect Navier slip boundary).

Step 1. Case A > 0.
Step 1.1. Estimate for u.

To close (B.6), we use the following Korn-type inequality (see Proposition 3.13 in [1]): for any g € H'(Q2)
with g - njaq =0,

lgll e e ~ V5920, if Q is non-axisymmetric; (B.8)
glla@) = IVSgll2o) + l9-12200),  if € is axisymmetric or spherical. '
From (B.2) and (B.8), we obtain

1 2 "o 2 A

§||w(t)||L2(Q) +o ; IViwllz2) + 2/, lwelL290) <0 forall ¢ > 0. (B.9)

regardless of whether  is axisymmetric, spherical or non-axisymmetric. Together with (B.8), this gives
w = 0; hence u is unique.

Step 1.2. Estimate for .
Recall the Friedrich inequality

Xl S IVaxllzz@) + 1X]2200)- (B.10)
Using (B.2), (B.8)—(B.10), we can close the energy equality (B.7) and deduce uniqueness of ¥.

Step 2. Case A\ = 0.

For A = 0, if (2 is axisymmetric or spherical, the incompressible Navier-Stokes equation with perfect Navier
slip boundary admits nontrivial kernels u = R(x) (see [2]), where R(z) = Ax is a basis element of Rq defined
in (1.9). The heat equation with homogeneous Neumann boundary also has constants as kernels. Therefore,
to ensure uniqueness of (u,?¥) when A = 0, we must require (ug, %) € H,, x Hy (cf. (1.85)).

Step 2.1. Estimate for u.
Step 2.1.1.  axisymmetric or spherical.

First note that the Navier-Stokes equation with perfect Navier slip boundary A = 0 satisfies conservation
law of angular momentum:

&,/ u(t,z) - R(x)de =0 for all R(z) € Rq and all ¢ > 0. (B.11)
Q
Indeed, for any R € Rq,
J/ Azu - Rdx :20/ div(Viu) - Rdz  (by Ayu = 2div(Viu) — grad(V, - u))
Q Q

:O'/ 82(8Zuk +8kui)dex
Q

Q Q

(B.12)
=0 ./ag n; (O;ur, + Opuy) RipdSy — 20/9Viu :ViRdz (by VER =0)
zo/ [(Oiuj + Ojui)ning]ng RepdSy  (by n- Rlag = 0)
o o0
where for the under braced term we used
0= [U(qu +(Vou)T) - n} o
=0 (Vou+ (Vou) ') -n - U[n A(Veu+ (Vou) ') - n}n (B.13)

:a(Vzu + (Vzu)T) n—oc [(Vzu + (Vzu)T) : (n ® n)} n.
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Moreover, for the nonlinear term and pressure term
/ (u-Vy)u- Rdz :/ u;0;(u; R;)dx — / u;u;0; Rdx
Q Q Q
:/ 0;(usujR;)dx — / Oiu;u; Rjde — / u®u: Vi Rdr
Q Q Q

(B.14)
:/ nzulu]R]dSz = 07
o0

/ V.p - Rdx :/ 0i(pR;)dx — / pVy - Rdx = / pn - RdS, = 0.
Q Q Q a9

Here we used the facts VSR =0, V.- R =0 and n- R|pg = 0 = n-ulspq. Combining (B.12)-(B.14), we prove
the claim (B.11).
Therefore, if ug € H,,, then v € H,, for all ¢ > 0. Thus, w = u; — us satisfies

/Qw -Rdz =0 forall R€ Rq and all t > 0. (B.15)
For axisymmetric or spherical domains, Proposition 3.15 in [1] gives the Poincaré type inequality:
lgllz2) SIVagllzz ) + ‘ /Qg . Rdx‘ for all R € Rq (B.16)
for g € H'(Q) with g - n|sq = 0. Combined with (B.15), this implies
|w]z20) S IVawlr2(q) for all £ > 0. (B.17)
Combining (B.17) with the standard Korn-type inequality (Theorem 2.1 in [16])
lgllz ) SIV3allzz@) + l9llc2@), Yo € HY (), (B.18)
we obtain
lwll ) S IVawllL2e)- (B.19)

Inserting (B.2) and (B.19) into (B.6) gives

1 K 1 E
§||w(t)‘|%2(ﬂ) +0/0 [wll o) < gllw(t)\\iz(m +U/0 V5wl 2y <0, (B.20)
provided ug € H,,. Hence w = 0 and uniqueness follows.

Step 2.1.2. 2 non-axisymmetric.
Here Rq = {0}. Using (B.2) and the first case of (B.8) directly closes (B.6).

Step 2.2. Estimate for .
From (B.2), (B.7) and (B.20), we have

t t
w720 +/0 [wllF @y + IX(ON|72 (0 +/o VX720 <O. (B.21)

Moreover, the heat equation with homogeneous Neumann condition 9,9|g9q = 0 satisfies conservation law:
8t/19dx:0 for all t > 0,
Q

where we have used V, -« = 0 and n - u|spg = 0. Thus, if ¢y € H,, then fQ xdx = 0 for all ¢ > 0. The
Poincaré inequality therefore gives

||XHH1(Q) < ||VmX||L2(Q)-

Combined with (B.21), this yields uniqueness of . This completes the proof. O
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APPENDIX C. GAUSSIAN INTEGRATION AND ELLIPTIC ESTIMATES

Lemma C.1 (Gaussian integrals on the half-line). The following integrals hold:
2 2
vy T,o1/2 vy
exp dv, = \/7T , / viexp| — — |dvy =T,
/R+ ( 2T) 2 R, ( QT)
2
v
/]R+ v%exp(- ﬁ)dvl \/7T3/2 / U1 eXP(— ﬁ)dm =272
/ vie ( dv =3 T5/2 / vle —U—%>dv =873
- 1 €XP 1= 1 Xp 5T 1= .

Proof. These follow directly from standard Gaussian integral formulas. O

Lemma C.2. Let u be the global Mazwellian defined in (1.6) and fi the rotating Mazwellian defined in (1.56).
Then the following integrals hold:

/ idv = p, / (v —u)dv = 0, / vidv = pu,

R3 R3

/R3 lv —u)? adv = 3pT, / lv]? idv = 3pT + p |ul?,

/ (v —u) v —u* idv = 0, / v v idv = 3pTu + 2pu + pu ful’,

R3 R3

/Rg v —uf* fdv = 15T, / Jof* fidv = 1557 + 1097 |uf” + p u[*.

Proof. These follow from direct computation using the definition of i and Gaussian integration. O

Lemma C.3. Let i be the rotating Maxwellian defined in (1.56). Assume that |u| + |0| < 1. Then the
following almost orthogonality relations hold:

/ Catedv = O(lu| + 10]), & = 0,1,2,3,
3

Xaxadv =1+ O(Ju| + |0]);

(C.1)

[ v oo =1+ O(ul + 1), ij = 1,23
[ oo = ot o). k=12 (©2)
Uﬂ)j\/ﬁf@ldﬂ = %5” +O(lul+16]), 4,5=1,2,3;

vixaxjdv = O(lu| +10]), i=1,2,3,7=0,4,

. 2 o (C.3)
\ viXaX;dv = %5@' +O(lul +10]), 1,5 =1,2,3;
vivjupfidv = O([ul +10]), 4,5,k =1,2,3,
U{Uj’l)k(|’l)|2 - 3),&(31’0 = O(|u| + |9|)7 ivja k = ]-7 27 33 (04)
oBo2jidu = 3+ O(|ul +10]), ZfZ:]
L+ O(u] +10]), ifi#j;
vi([v]* = 10)y/fax;dv = O([u| + 10]), i=1,2,3,5 =0,4,
(C.5)
vi(|vf* = 10)/fix;dv = —58;; + O(lu| + |60]), 4,5 =1,2,3;
3
vl = 10)v/ixe = O(ju| +16]), i,j,k=1,2,3,
(C.6)

viv;([o]? = 10)v/Eixk = —56i; + O(|u| +16]), 4,5 =1,2,3,k =0, 4;

—_— N —— —— ——
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/ vv;([vf* = 5)\/ixedo = O |u|+\9|) 4, =1,2,3,k=0,1,2,3,
vivj(Jv]* = 5)v/ixadv = 5ij +O(jul +16)) i,5=1,2,3.
RS \@
Proof. All relations follow from Lemma C.2 together with the definition of fi.

Lemma C.4 (Boundary integrals). Let i be the rotating Mazwellian defined in (1.56). Then

o pT'/? / i onT
’I’l-’l}d’()zi7 v—u n'Ud’U:77
~/n~v>0 M[ ] (27‘()1/2 n~v>0( )M[ ] B)
4T 5onT?
/n-v>0 Jo = ul Al oldo = (;TW’ /’n,~v>0(v —u) v —u? fifn - v]dv = pz ;
4 - 24pT5/?
/n‘v>0 |v —u|” fi[n - v]dv = W’
~ _ puTY2  pnT
gl = G4 B
2 4pT3/2 p|u|2T1/2
oldy =
~/n~v>0 |U| M[n U] ! (27T)1/2 + (27’(’)1/2 >
T3/2 2p1/2 T2 T lul?
[ ol oo = ST AT 5o T
n-v>0 (27(')1/2 (271')1/2 9 5
/ | |4 ~[ ]d _ 24pT5/2 12p |u|2 T3/2 p|u|4T1/2
n-v>0 oA (2m)1/2 (2m)1/2 (2m)1/2

(C.8)

(C.9)
(C.10)
(C.11)
(C.12)
(C.13)

(C.14)

Proof. Decompose v = vy + vjn with v € R, v. € R?, where vyn||n and v; L n. By the definition of u

n (1.57), we have u L n.
Direct computation using Lemma C.2 gives

=+ |’Ul — u|2 / 1/2
wldv = s (* 7)d dv, = ——~,
/n-v>0 filn - vldv (27T1)3/2 /R+><R><Rv| P 21 e (27 )1/2

vi4lv —u
/ (v =il - v]dv = LM/ (UJ- —u-‘r’l)Hn)’UH exp(- M)dvﬂdm_ =
n-v>0 (2rT)3/ Ry xRxR 2T
This establishes (C.8). Proceeding similarly, we obtain
/ lv—ul? fi[n - v]dv
n-v>0
2
p 5 v + (v —u) 4pT3/?
AT 10 e 0 o0 (= g Yo =
+
[ @b oo
n-v>0
2
! 2 2 v+ Jve —ul
:(27TT)3/2/R XRXR(UL —u+vn)vy(vj + lvr —u|") exp ( — T)dvl\de
+
2 2
1 20,2 2 v+ Jvr —ul 5onT?
2T /R+xRme| (v + v —ul")exp ( - T)dedUL -2,
/ o —ul" fn - vld
n-v>
2 2
p 5 v + oL —u
:(27TT)3/2/R R RUH(Uﬁ +lvr —u )2 exp ( - ”T)d’l}”dvldvg
+xXRx
2,24 .2
P 4, .4, 4 2 2 2 2 2 2 v vl v
:W /R . )| (’U” + 1 + vy + 2vjv7 + 20705 + Q’UQUH) exp ( — T>dv|\dv1dv2
+
24pT5/?
=

This proves (C.9)—(C.10).

onT
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The relation (C.11) follows from (C.8). For (C.12), using |v|*> = [v — u|> + 2(v — u) - u + |[u? and noting
u-n =0, we have

/ |v\2,1[n-v}dv=/ (10— +200 ) -ut Juf? ) aln - o]
n-v>0 n-v>0

74PT3/2 p|u|2T1/2

(2m)1/2 (2m)1/2

For (C.13), we decompose
v =@w—-wlv—u+ulv—u® + 2w —wu-(v—u)+2uu-(v—u)+ (v—u)u®+uu.

Splitting v, into components parallel v, and perpendicular v, to u, direct computation yields:

2 - 5pnT? / - ApuT/2
v—u)lv—u n-ovldv = ——, ulv—u n-vldv = ——,
| el e = 2 Pl =
T T |ul?
/ Ouu'(v—u)/j[n.v}dy:uu-%:0’ / O(U—u) ul? fi[n - v]dv = %,
n-v> n-v>
2m1/2 3/2
T T
/ wluf® fifn - v]dv = %, / (v—wu-(v—u)g[n-vldv = le
n-v>0 (271—) / n-v>0 (27T) /

Combining these results proves (C.13).
For (C.14), we use the decomposition

lo[* = v —u* + |u* + 4((v — 1) - 10)% + 2o — u* [u]* + (odd order of (v —u) - u).
Then, the above calculations indicate

/ o] il - v]dv :/ (o = uf* + [l + 4((0 — 1) - 1) + 2 [v — uf? [u2)i[n - v]dv
n-v>0 n-v>0

L 24pT52  plu[' T2 ApuP T2 8pluf’ T3/
B (27r)1/2 (277)1/2 (2ﬂ)1/2 (27r)1/2 ’
which further leads to (C.14). This complete the proof. O

The next result is standard in elliptic theory (see, e.g., [25]).

Lemma C.5. Let p € {2,%}, and let £ € LP(Q) and satisfy the compatible condition [, &dx = 0. Then the
elliptic equation

—Ap=¢ inQ, 0,0=0 on I, /Qqﬁdx =0. (C.15)

admits a unique solution ¢ € W2P(Q) satisfying
Vel e +1Vadllz +10ls Sl if € € L2(9), (C.16)
V26l g +1Vabllss +l6lloe SN g i€ € LE@). (C17)

The following lemma is adapted from Theorem 2.11 in [8] and Lemma 3 in [15].
Lemma C.6. Let £ : Q — R3, and let ¢ satisfy the elliptic system
—div(Vy0) =& in Q,
¢p-n=0 ondQ, (C.18)
(Vidom = (Vio:n®@n)n on 0.
(1) If € € L*(Q), then the variational formulation
Vig:Viode = [ £€-odx forallo € J(Q) (C.19)
Q Q
admits a unique weak solution ¢ € (). Here
H(Q) = {o— QR o€ HYQ), 0-nl,, =0, PQ(/ v;adx) - o} (C.20)
Q

and Pq denotes the orthogonal projection onto the set Ag := {A €s50(3,R): Ax € RQ}
(2) Let p € {2, 8} and assume & € LP(Q) satisfies the compatible condition

/ Az - &(x)dx =0  for any Az € Rq. (C.21)
Q
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Then (C.18) admits a unique strong solution ¢ € Wff(Q) NI (Q) with
V2ol 2 + 1Vadllz + 102 SNEN2, i€ € L*(Q), (C.22)
IV26ll & +11Vadlls +l0lle SIEN o, i€ € LE(Q). (C.23)
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