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Abstract. While weak diffusive limit from the Boltzmann equation to the incompressible Navier-Stokes-
Fourier system was established for the Maxwell boundary condition within renormalized solutions framework

[59, 42], the corresponding strong diffusive limit has remained outstanding except when the accommodation

coefficient α ∼ ε1/2 [42]. We establish global in time strong diffusive limit for all accommodation coefficients
α ∈ [0, 1] within strong solutions framework. The main novelties of our proof include: (1) a ε-stretching

method for reduction to a single-bounce L∞ estimate; (2) a dissipation estimate for a carefully constructed

rotating Maxwellian in the near-specular regime α ≪ ε.
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1. Introduction

1.1. Problem Formulation.

This paper is devoted to the study of the strong diffusive limit, within the framework of strong solutions,
of the Boltzmann equation to the incompressible Navier-Stokes-Fourier (INSF) system under the renowned
Maxwell boundary condition.
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In the diffusive scaling, the evolution of a rarefied gas is governed by the following rescaled Boltzmann
equation

ε∂tF + v · ∇xF = ε−1Q(F, F ) in R+ × Ω× R3,

F |γ− = (1− α)RF + αPF on R+ × ∂Ω× R3,

F (t, x, v)|t=0 = F0(x, v) on Ω× R3.

(1.1)

Here, F (t, x, v) represents the distribution density of particles at time t ≥ 0, position x ∈ Ω and velocity
v ∈ R3. The Boltzmann collision operator for hard-sphere interactions is given by

Q(F,H)(v) :=

ˆ
R3

ˆ
S2

|(v − v∗) · σ|[F (v′)H(u′)− F (v)H(u)]dσdu

:=Q+(F,H)(v)−Q−(F,H)(v),

where v′ = v − [(v − u) · σ]σ and u′ = u+ [(v − u) · σ]σ. Throughout this work, Ω = {x : ξ(x) < 0} denotes
a general bounded (possibly non-convex) domain in R3, with C3 boundary ∂Ω = {x : ξ(x) = 0}. We assume
∇ξ(x) ̸= 0 on ∂Ω. The outward unit normal at the boundary is

n = n(x) =
∇ξ(x)
|∇ξ(x)|

, (1.2)

which admits a smooth extension to a neighborhood of ∂Ω. The boundary phase space γ := ∂Ω × R3

decomposes into the outgoing, incoming, and grazing sets:

γ+ :={(x, v) ∈ ∂Ω× R3 : n(x) · v > 0},
γ− :={(x, v) ∈ ∂Ω× R3 : n(x) · v < 0},
γ0 :={(x, v) ∈ ∂Ω× R3 : n(x) · v = 0}.

The physical boundary condition in (1.1), known as the Maxwell boundary condition, was introduced by
Maxwell [53] in 1879 to model gas-surface interactions. The dimensionless accommodation coefficient α ∈ [0, 1]
characterizes boundary roughness: α = 0 represents specular reflection for perfectly smooth surface,

RF (x, v) := F (x,Rxv) = F (x, v − 2[n · v]n); (1.3)

while α = 1 denotes diffuse reflection for rough surface,

PF (x, v) :=
√
2πµ

ˆ
n·u>0

F (x, u)[n · u]du. (1.4)

Here Rxv = v − 2[n · v]n is the velocity reflection operator,

Mρ,u,T :=
ρ

(2πT )3/2
exp

(
− |v − u|2

2T

)
(1.5)

denotes the local Maxwellian with density ρ, bulk velocity u and temperature T , and

µ = µ(v) :=M1,0,1 =
1

(2π)3/2
exp

(
− |v|2

2

)
(1.6)

is the global Maxwellian. The Maxwell boundary condition in (1.1) ensures zero net mass flux across bound-
ary: ˆ

R3

F (x, v)[n · v]dv = 0, ∀x ∈ ∂Ω. (1.7)

Let R(Ω) denote the finite-dimensional space of rigid motions on Ω (see [18]):

R(Ω) :=
{
x 7→ Ax+ x0 : A ∈ so(3,R), x0 ∈ R3

}
,

where

so(3,R) :=
{
A = (aij) : aij ∈ R, i, j = 1, 2, 3, A+AT = 0

}
is the Lie algebra of 3× 3 real antisymmetric matrices, equipped with the basis

A1 =

0 0 0
0 0 −1
0 1 0

 , A2 =

0 0 −1
0 0 0
1 0 0

 , A3 =

0 −1 0
1 0 0
0 0 0

 . (1.8)

The infinitesimal rigid displacement fields preserving Ω are defined as

RΩ := {R(x) ∈ R(Ω) : x0 = 0, R(x) · n(x) = 0 ∀x ∈ ∂Ω} . (1.9)
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For a bounded domain Ω ⊂ R3 with nonempty boundary ∂Ω, dimRΩ ∈ {0, 1, 2}. More precisely,

RΩ =


{0} if dimRΩ = 0,

span{Ax} if dimRΩ = 1,

span{A1x,A2x,A3x} if dimRΩ = 2,

(1.10)

where in the last case the set {A1x,A2x,A3x} is linearly dependent, and when dimRΩ = 1 we take A = A3

without loss of generality. This dimensional classification corresponds to the following geometric types of the
domain:

Ω is called


non-axisymmetric if dimRΩ = 0,

axisymmetric if dimRΩ = 1,

spherical if dimRΩ = 2.

(1.11)

For conciseness, we shall denote a generic basis element of RΩ by Ax or R(x), for all three geometric types
of Ω.

Without loss of generality, we assume that the initial data F0 satisfies the following conservation laws:¨
Ω×R3

F0dvdx =

¨
Ω×R3

µdvdx = |Ω| ,
¨

Ω×R3

Ax · vF0dvdx =

¨
Ω×R3

Ax · vµdvdx = 0 for all Ax ∈ RΩ,

¨
Ω×R3

|v|2 F0dvdx =

¨
Ω×R3

|v|2 µdvdx = 3 |Ω| .

(1.12)

In the hydrodynamic limit ε→ 0, the relative scaling α/ε plays a critical role in the treatment of boundary
conditions. We adopt the following conventions:

ε ≲ α ≤ 1 : lim
ε→0

α

ε
∈ (0,∞] (α is of lower or the same order as ε);

0 ≤ α≪ ε : lim
ε→0

α

ε
= 0 (α is of higher order than ε, or α = 0).

(1.13)

Thus, for ε ∈ (0, 1), the full parameter range [0, 1] for α is partitioned as

[0, 1] = {α : ε ≲ α ≤ 1} ∪ {α : 0 ≤ α≪ ε}. (1.14)

1.2. Strong Limit Result for the Case ε ≲ α ≤ 1.

In the regime ε ≲ α ≤ 1, we define the key limiting parameter

λ :=
1√
2π

lim
ε→0

α

ε
∈ (0,∞]. (1.15)

We consider fluctuations around the global Maxwellian µ via the rescaling

F = µ+ ε
√
µf, F0 = µ+ ε

√
µf0, (1.16)

where f and f0 denote the fluctuation fields. Under this scaling, the Boltzmann equation (1.1) transforms
into

ε∂tf + v · ∇xf + ε−1Lf = Γ(f, f) in R+ × Ω× R3,

f |γ− = (1− α)Rf + αPγf on R+ × ∂Ω× R3,

f(t, x, v)|t=0 = f0(x, v) on Ω× R3,

(1.17)

with the operators Γ, L and Pγ defined by

Γ(f, g) :=
1
√
µ
Q(

√
µf,

√
µg), L(f) := −Γ(

√
µ, f)− Γ(f,

√
µ),

Pγf :=
√
2πµ

ˆ
n·u>0

f(u)
√
µ(u)[n · u]du.

(1.18)

The null space of L is the five-dimensional subspace of L2(R3) given by

kerL = span
{
1, v, |v|2

}√
µ. (1.19)

An orthonormal basis for kerL is {χi}4i=0, where

χ0 :=
√
µ, χi := vi

√
µ (i = 1, 2, 3), χ4 :=

|v|2 − 3√
6

√
µ. (1.20)
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The orthogonal projection of f onto kerL is denoted by

Pf = aχ0 +

3∑
i=1

biχi + cχ4, (1.21)

with coefficients

a := ⟨χ0, f⟩ , b := ⟨χi, f⟩ (i = 1, 2, 3), c := ⟨χ4, f⟩ . (1.22)

Let (I−P)f denote projection onto the orthogonal complement of kerL.

We introduce the instant energy functional

E1[f ](t) := sup
0≤s≤t

{
∥f(s)∥2L2

x,v
+ ∥∂tf(s)∥2L2

x,v

}
(1.23)

and the dissipation functional

D1[f ](t) :=

ˆ t

0

{
∥Pf(s)∥2L2

x,v
+ ∥P∂tf(s)∥2L2

x,v

}
ds

+

ˆ t

0

{ 1

ε2
∥(I−P)f(s)∥2L2

x,v(ν)
+

1

ε2
∥(I−P)∂tf(s)∥2L2

x,v(ν)

}
ds

+

ˆ t

0

{α
ε
|(1− Pγ)f(s)|2L2

γ+

+ |Pγf(s)|2L2
γ+

}
ds

+

ˆ t

0

{α
ε
|(1− Pγ)∂tf(s)|2L2

γ+

+ |Pγ∂tf(s)|2L2
γ+

}
ds.

(1.24)

The total energy functional is defined as

|||f |||1 (t) :=E
1
2
1 [f ](t) + D

1
2
1 [f ](t) + ε

1
2 sup
0≤s≤t

∥ωf(s)∥L∞
x,v

+ ε
3
2 sup
0≤s≤t

∥ω∂tf(s)∥L∞
x,v

+ sup
0≤s≤t

∥Pf(s)∥L6
x,v
,

(1.25)

where the weight function is

ω = ω(v) := eβ|v|
2

with 0 < β ≪ 1

4
. (1.26)

The corresponding norm for the initial data is

[[f0]]1 := |||f |||1 (0) + ε−1 ∥(I−P)f0∥L2
x,v(ν)

+
(α
ε

) 1
2 |(1− Pγ)f0|L2

γ+

+ ∥v · ∇xf0∥L2
x,v

+ ∥v · ∇x∂tf0∥L2
x,v
,

(1.27)

where ∂tf0 is determined from the perturbation equation (1.17).
We now state the first main result for the regime ε ≲ α ≤ 1.

Theorem 1.1 (Case ε ≲ α ≤ 1). Let F0 = µ + ε
√
µf0 ≥ 0. Then there exists ε0 > 0 such that for all

0 < ε < ε0, if the initial fluctuation satisfies

[[f0]]1 ≤ δ0 (1.28)

for some small constant δ0 > 0 independent of ε, then the Boltzmann equation with Maxwell boundary
condition (1.1) admits a unique global strong solution F = µ+ ε

√
µf ≥ 0 satisfying the uniform bound

|||f |||1 (∞) ≤ C [[f0]]1 (1.29)

for some constant C > 0 independent of ε.
Moreover, suppose there exist fluid initial data (ϱ0, u0, ϑ0) ∈ Hϑ ×Hu ×Hϑ (see (1.85)) such that

f0 → f∗0 =
(
ϱ0 + u0 · v + ϑ0

|v|2 − 3

2

)√
µ strongly in L2(Ω× R3) as ε→ 0. (1.30)

Then the following convergence results hold as ε→ 0:

F − µ

ε
→ √

µf∗ =
(
ϱ+ u · v + ϑ

|v|2 − 3

2

)√
µ

strongly in L2
loc

(
R+;L2(Ω× R3)

)
,

weakly−∗ in L∞(R+;L2(Ω× R3)
)
,

(1.31)

ˆ
R3

F − µ

ε

[
1, v,

|v|2 − 3

2

]
dv → (ϱ, u, ϑ) strongly in L2

loc

(
R+;L2(Ω)

)
, (1.32)
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where (ϱ, u, ϑ) ∈ C(R+, L
2(Ω)) ∩ L2(R+, H

1(Ω)) is the unique weak solution of the INSF system

∂tu+ u · ∇xu+∇xp = σ∆u, ∇x · u = 0 in R+ × Ω,

∂tϑ+ u · ∇xϑ = κ∆ϑ, ∇x(ϱ+ ϑ) = 0 in R+ × Ω,

u|t=0 = u0, ϑ|t=0 = ϑ0 on Ω,

(1.33)

with viscosity σ and heat conductivity κ defined in (3.135) and (3.133), respectively.

Furthermore, if lim
ε→0

α

ε
= ∞, then (1.33) is supplemented by the Dirichlet boundary condition

u = 0, ϑ = 0 on R+ × ∂Ω; (1.34)

and if λ =
1√
2π

lim
ε→0

α

ε
∈ (0,∞), then (1.33) is supplemented by the Navier slip boundary condition

[
σ
(
∇xu+ (∇xu)

T) · n+ λu
]tan

= 0, u · n = 0 on R+ × ∂Ω,

κ∂nϑ+
4

5
λϑ = 0 on R+ × ∂Ω.

(1.35)

Proof of Theorem 1.1 will be presented in Section 3.4. We remark that the initial requirement (1.28),
which arises primarily from the L2 and L6 estimates, is natural: only the microscopic part (I − P)f0 and
the boundary dissipation (1 − Pγ)f0 depend explicitly on ε. Hence a wide class of admissible fluctuations
f0 satisfies (1.28); for example, any f0 whose macroscopic projection Pf0 coincides with the fluid initial data
(ϱ0, u0, ϑ0) of the INSF system (1.33)–(1.35) fulfills this condition.

1.3. Methodology 1: Streaching Method for L∞ Estimate.

The inherent low regularity of Boltzmann solutions under physical boundary conditions [37] precludes
the use of high-order energy methods. Consequently, we adopt the L2-L∞ framework pioneered by [32]. A
standard L2 energy estimate for (1.17) yields

∥f(t)∥2L2
x,v

+
1

ε2

ˆ t

0

∥(I−P)f∥2L2
x,v(ν)

+
α

ε

ˆ t

0

|(1− Pγ)f |2L2
γ+

≲
1

ε

ˆ t

0

∥Γ(f, f)∥2L2
x,v

+ · · · , (1.36)

which follows from the Maxwell boundary condition in (1.1). To close the energy estimate, it is necessary to

control both
´ t
0
∥Pf∥2L2

x,v
and ∥Pf∥L6

x,v
(these bounds are established in Section 3.3):

Proposition 1.2. Let ε ≲ α ≤ 1, and let f be a solution of (1.17) satisfying mass conservation law¨
Ω×R3

f(t, x, v)dvdx =0 for all t ∈ [0, T ] (1.37)

with 0 < T ≤ ∞. Then, for all 0 ≤ s ≤ t ≤ T , the following estimates hold:
ˆ t

s

∥Pf∥2L2
x,v

dτ ≲ ε
[
G0(t)−G0(s)

]
+

ˆ t

s

|(1− Pγ)f |2L2
γ+

dτ

+

ˆ t

s

[ ∥∥ε−1(I−P)f
∥∥2
L2

x,v(ν)
+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥2
L2

x,v

]
dτ, (1.38)

∥Pf∥L6
x,v

≲ ε ∥∂tf∥L2
x,v

+ ∥Pf∥L2
x,v

+ α |(1− Pγ)f |
1
2

L2
γ+

∥ωf∥
1
2

L∞
x,v

+
∥∥ε−1(I−P)f

∥∥
L2

x,v(ν)
+ ∥(I−P)f∥L6

x,v
+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥
L2

x,v

, (1.39)

where |G0(t)| ≲ ∥f(t)∥2L2
x,v

.

To elucidate the core methodology for obtaining L∞ estimates with Maxwell boundary condition in general
domains, we first consider a simplified model problem with a specular reflection boundary condition:

ε∂tf + v · ∇xf + ε−1ν0f = ε−1

ˆ
|v′|≤N

f(v′)dv′ in R+ × Ω× R3,

f |γ− = Rf on R+ × ∂Ω× R3,

f |t=0 = f0 on Ω× R3

(1.40)
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where ν0 denotes a uniform lower bound of the collision frequency ν(v), and the integral term on the right-
hand side arises from a truncation of Kf (see (2.1)). Define the back-time cycles

Xcl(s; t, x, v) :=
∑
k

1[tk+1,tk)(s)X(s; tk, xk, vk),

Vcl(s; t, x, v) :=
∑
k

1[tk+1,tk)(s)V (s; tk, xk, vk),

where [X(s; t, x, v), V (s; t, x, v)] denotes the characteristic trajectories, and (tk, xk, vk) marks the k-th bounce
of the backward trajectory against ∂Ω. The solution of (1.40) admits the Duhamel representation

f(t, x, v) =
1

ε

ˆ t

0

e−
ν0
ε (t−s)

ˆ
|v′|≤N

f (s,Xcl(s; t, x, v), v
′) dv′ds+ · · · , (1.41)

which incorporates boundary effects through repeated application of the specular reflection boundary condi-
tion in (1.40). Substituting (1.41) into itself yields

f(t, x, v) =
1

ε2

ˆ t

0

ˆ s

0

e−
ν0
ε (t−τ)

¨
|v′|≤N,|v′′|≤N

f (τ,Xcl(τ ; s,Xcl(s; t, x, v), v
′), v′′) dv′′dv′dτds+ · · · . (1.42)

The central insight of [32] — subsequently employed in [20, 21, 22, 34, 36, 37, 38] — is to gain Lp control via
the change of variables

[v′ 7→ z := Xcl(τ ; s,Xcl(s; t, x, v), v
′)] .

A critical requirement for this approach is establishing a uniform lower bound on the associated Jacobian:

|J| :=
∣∣∣det [∂Xcl(τ ; s,Xcl(s; t, x, v), v

′)

∂v′

]∣∣∣ ≳ δ > 0 (1.43)

away from a small set of parameters s. When (1.43) holds, the L∞ norm can be controlled as

∥f(t)∥L∞
x,v

≲ δ−
1
p

(ˆ
Ω

ˆ
|v′′|≤N

|f(t, z, v′′)|pdv′′dz
) 1

p

+ · · · .

However, for the specular reflection boundary condition in (1.40), there is no apparent inductive way to

analyze the back-time cycles ∂Xcl(τ ;s,Xcl(s;t,x,v),v
′)

∂v′ inductively with finite bounces, making (1.43) extremely
difficult to verify.

For the standard Boltzmann equation (ε = 1) in convex domains with analytic boundary, Guo [32] estab-
lished an asymptotic Jacobian lower bound∣∣∣∣det [∂vk∂v1

]∣∣∣∣ ≳ δ > 0 for near-tangential back-time cycles.

Kim-Lee [48] later removed the analyticity requirement via triple Duhamel expansions while preserving the
core strategy.

For hydrodynamic limit problems (ε→ 0), precise quantification of the Jacobian lower bound dependence
δ(ε) becomes essential — a stark contrast to standard Boltzmann theory (ε = 1) [32, 48] where δ > 0
suffices. This distinction introduces a fundamental difficulty: after multiple specular reflections, the map
[v′ 7→ Xcl(τ ; s,Xcl(s; t, x, v), v

′)] develops pathological dependence on ε that precludes asymptotic control
and renders the key estimate (1.43) unverifiable. Consequently, the core techniques of [22, 32, 48] fail
catastrophically for hydrodynamic limits involving specular reflection component.

To overcome this fundamental difficulty, we introduce the stretching method : for sufficiently small ε≪ 1,
we transform the spatial and temporal domains via

Ω → Ωε := ε−1Ω, x 7→ y :=ε−1x,

[0,∞] → [0,∞], t 7→ t̄ :=ε−2t.
(1.44)

This stretching method enables us to enforce a single-bounce constraint along characteristic trajectories and
leads to a uniform-in-ε L∞ estimate. One of our main contributions is the following L∞ estimate for the
linear Boltzmann equation on the stretched domain [0, T0]× Ωε × R3:

Proposition 1.3. Let T0 ≥ 1 be a sufficiently large constant (to be determined later), and let f̄ satisfy

∂t̄f̄ + v · ∇y f̄ + Lf̄ = εḡ in [0, T0]× Ωε × R3,

f̄ |γ− = (1− α)Rf̄ + αPγ f̄ on [0, T0]× ∂Ωε × R3,

f̄ |t=0 = f̄0 on Ωε × R3,

(1.45)

where the transformed functions are defined via the stretching (1.44):

f̄(t̄, y, v) := f(t, x, v), f̄0(y, v) := f0(x, v), ḡ(t̄, y, v) := g(t, x, v). (1.46)
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Then there exists a constant ε0 ∈ (0, 1) such that for any 0 < ε ≤ ε0, the following estimates hold for all
t̄ ∈ [0, T0]:

∥ωf̄(t̄)∥L∞
y,v(Ωε×R3) ≲ e−

ν0
2 t̄∥ωf̄0∥L∞

y,v(Ωε×R3) + o(1) sup
0≤s≤T0

∥ωf̄(s)∥L∞
y,v(Ωε×R3)

+ sup
0≤s≤T0

∥ω−1Pf̄(s)∥L6
y,v(Ωε×R3) (1.47)

+ sup
0≤s≤T0

∥ω−1(I−P)f̄(s)∥L2
y,v(Ωε×R3)

+ ε sup
0≤s≤T0

∥⟨v⟩−1ωḡ(s)∥L∞
y,v(Ωε×R3),

∥ωf̄(t̄)∥L∞
y,v(Ωε×R3) ≲ e−

ν0
2 t̄∥ωf̄0∥L∞

y,v(Ωε×R3) + o(1) sup
0≤s≤T0

∥ωf̄(s)∥L∞
y,v(Ωε×R3)

+ sup
0≤s≤T0

∥f̄(s)∥L2
y,v(Ωε×R3) + sup

0≤s≤T0

∥ε⟨v⟩−1ωḡ(s)∥L∞
y,v(Ωε×R3). (1.48)

The proof is given in Section 2.1. We note that T0 > 0 creates desired decay property. This approach
yields the first uniform L∞ estimate for “large stretched” non-convex domains.

Applying the transformation (1.46) to the model equation (1.40) yields the equivalent problem on the
stretched domain:

∂t̄f̄ + v · ∇y f̄ + ν0f̄ =

ˆ
|v′|≤N

f̄(t, y, v′)dv′ in R+ × Ωε × R3,

f̄ |γ− = Rf̄ on R+ × ∂Ωε × R3,

f̄ |t=0 = f̄0(y, v) on Ωε × R3.

(1.49)

Crucially, while Ωϵ becomes asymptotically large, the outward unit normal remains invariant under this
scaling:

n(y) =
∇y[ξ(εy)]

|∇y[ξ(εy)])|
=

∇xξ(x)

|∇xξ(x)|
= n(x) for x ∈ ∂Ω, y = ε−1x ∈ ∂Ωε. (1.50)

The characteristic trajectories for (1.49) are simply

[Y (s; t̄, y, v), V (s; t̄, y, v)] = [y + v(s− t̄), v]. (1.51)

Denote the first boundary collision along the backward specular trajectory by

(t1, y1) := (t̄− tb(y, v), Y (t1; t̄, y, v)), (1.52)

where

tb(y, v) := inf{t̄ ≥ 0 : Y (−t̄; 0, y, v) /∈ Ω},
yb(y, v) := Y (−tb(y, v); 0, y, v),
vb(y, v) := V (−tb(y, v); 0, y, v).

(1.53)

From (1.51) we obtain the relation

|y − y1| = |v(t̄− t1)|. (1.54)

Now consider (t̄, y, v) ∈ [0, T0]× Ωε ×
{
|v| ≤ N,

∣∣v · ∇xξ(εy)
|∇xξ(εy)|

∣∣ > η
}
for sufficiently large constants T0, N > 0

and a small constant η > 0. Due to the stretching (1.44), the left-hand side |y − y1| in (1.54) is of order
O( 1ε ), while the right-hand side |v(t̄ − t1)| in (1.54) is bounded by T0N . This implies that, for sufficient
small ε≪ 1, the specular backward trajectory starting from (t̄, y, v) undergoes at most a single bounce (see
Lemma 2.2). Consequently, we can establish a uniform-in-ε Jacobian lower bound analogous to (1.43) along
this single-bounce trajectory, which ultimately leads to a ε-independent L∞ estimate.

1.4. Strong Limit Result for the Case 0 ≤ α≪ ε.

In the regime 0 ≤ α≪ ε, we have

λ :=
1√
2π

lim
ε→0

α

ε
= 0. (1.55)

Proposition 1.2 fails to provide an uniform estimate for Pf , as the boundary dissipation in (1.36) becomes
nearly negligible. For the pure specular reflection case α = 0, uniform estimate for Pf can still be obtained
through conservation laws of mass, angular momentum and energy. However, when α ̸= 0, the latter two
conservation laws no longer hold, precluding the control of Pf via this method.
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To overcome this essential difficulty, we introduce the following rotating Maxwellian:

µ̃ = µ̃(t, x, v) :=
ρ(t, x)

[2πT (t)]3/2
exp

(
− |v − u(t, x)|2

2T (t)

)
, (1.56)

where the temperature is T (t) := 1 + θ(t), the rigid velocity field u is defined by

u = u(t, x) :=


0 if dimRΩ = 0,

w(t)Ax if dimRΩ = 1 (Ax ∈ RΩ),
3∑

i=1

wi(t)Aix if dimRΩ = 2 (Aix ∈ RΩ, i = 1, 2, 3)

(1.57)

(see (1.10) and (1.11)), and the density ρ is given by

ρ = ρ(t, x) :=
|Ω| exp

(
|u(t,x)|2
2T (x)

)
´
Ω
exp

(
|u(t,x)|2
2T (t)

)
dx
. (1.58)

Here, θ(t), w(t) and wi(t) (i ∈ {1, 2, 3}) are scalar functions (to be determined in Lemma 4.8), subject to the
initial conditions

θ(0) = 0, w(0) = 0, wi(0) = 0 (i = 1, 2, 3). (1.59)

In what follows, a summation of the form
∑
wiAix without explicit indices will denotes wAx for an axiym-

metric domain or
∑3

i=1 wiAix for a spherical domain.

We now define the parallel fluctuation field f̃ by

F = µ̃+ ε
√
µ̃f̃ , F0 = µ̃+ ε

√
µ̃f̃0. (1.60)

Consequently, the original equation (1.1) can be rewritten in terms of f̃ as

ε∂tf̃ + v · ∇xf̃ + ε−1L̃f̃ = g̃ in R+ × Ω× R3,

f̃ |γ− = (1− α)Rf̃ + αP̃γ f̃ + αr in R+ × ∂Ω× R3,

f̃ |t=0 = f̃0(x, v) on Ω× R3,

(1.61)

with the operators

Γ̃(f, g) :=
1√
µ̃
Q(
√
µ̃f,

√
µ̃g), L̃(f) := −Γ̃(

√
µ̃, f)− Γ̃(f,

√
µ̃),

g̃ :=Γ̃(f̃ , f̃)− ∂tµ̃√
µ̃
− ε

∂t
√
µ̃√
µ̃
f̃ ,

P̃γf :=
√
2π

µ√
µ̃

ˆ
n·u>0

f
√
µ̃(u)[n · u]du, r :=

1

ε
√
µ̃
(Pµ̃− µ̃).

(1.62)

For the transport operator v · ∇xf̃ , we have used the identities (valid for all three geometric types of Ω)

v · ∇xµ̃ =
1

T
w(v ·Av)µ̃ = 0, v · ∇xµ̃ =

1

T

3∑
i=1

wi(v ·Aiv)µ̃ = 0. (1.63)

The null space of L̃ is a five-dimensional subspace of L2(R3) given by

ker L̃ = span
{
1, v − u, |v − u|2

}√
µ̃ = span

{
1, v, |v|2

}√
µ̃, (1.64)

equipped with orthonormal basis {χ̄i}4i=0:

χ̄0 :=
1
√
ρ

√
µ̃, χ̄i :=

(vi − ui)√
ρT

√
µ̃ (i = 1, 2, 3), χ̄4 :=

|v − u|2 − 3T√
6ρT

√
µ̃. (1.65)

The orthogonal projection of f̃ onto ker L̃ is

P̃f̃ = āχ̄0 +

3∑
i=1

b̄iχ̄i + c̄χ̄4, (1.66)

with coefficients
ā := ⟨χ̄0, f̃⟩, b̄ := ⟨χ̄i, f̃⟩(i = 1, 2, 3), c̄ := ⟨χ̄4, f̃⟩. (1.67)

We denote by (I− P̃)f̃ the projection on the orthogonal complement of ker L̃.

A crucial observation is the relationship between f and f̃ :

f̃ =
µ− µ̃

ε
√
µ̃

+

√
µ

√
µ̃
f. (1.68)
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Moreover, the initial conditions in (1.59) imply

µ̃ = µ, P̃ = P, P̃γ = Pγ at t = 0. (1.69)

Consequently, the two perturbation equations (1.17) and (1.61) actually satisfy the same initial condition:

f̃0(x, v) = f0(x, v). (1.70)

We define the instant energy functional

E2[f̃ ](t) := sup
0≤s≤t

{∥∥∥f̃(s)∥∥∥2
L2

x,v

+
∥∥∥∂tf̃(s)∥∥∥2

L2
x,v

+

∣∣∣∣θ(s)ε
∣∣∣∣2 + ∣∣∣∣w(s)ε

∣∣∣∣2 }
+ sup

0≤s≤t

{ ∣∣∣∣∂tθ(s)ε

∣∣∣∣2 + ∣∣∣∣∂tw(s)ε

∣∣∣∣2 }.
(1.71)

The dissipation functional is defined as

D2[f̃ ](t) :=

ˆ t

0

{∥∥∥P̃f̃(s)∥∥∥2
L2

x,v(ν̃)
+
∥∥∥P̃∂tf̃(s)∥∥∥2

L2
x,v(ν̃)

}
ds

+

ˆ t

0

{ 1

ε2

∥∥∥(I− P̃)f̃(s)
∥∥∥2
L2

x,v(ν̃)
+

1

ε2

∥∥∥(I− P̃)∂tf̃(s)
∥∥∥2
L2

x,v(ν̃)

}
ds

+

ˆ t

0

{α
ε

∣∣∣f̃(s)∣∣∣2
L2

γ+

+
α

ε

∣∣∣∂tf̃(s)∣∣∣2
L2

γ+

+
α

ε

∣∣∣∣θ(s)ε
∣∣∣∣2 + α

ε

∣∣∣∣w(s)ε
∣∣∣∣2 }ds

+

ˆ t

0

{α
ε

∣∣∣∣∂tθ(s)ε

∣∣∣∣2 + α

ε

∣∣∣∣∂tw(s)ε

∣∣∣∣2 }ds.
(1.72)

The total energy functional is defined by∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣
2
(t) :=E

1
2
2 [f̃ ](t) + D

1
2
2 [f̃ ](t) + ε

1
2 sup
0≤s≤t

∥ωf(s)∥L∞
x,v

+ ε
3
2 sup
0≤s≤t

∥ω∂tf(s)∥L∞
x,v

+ sup
0≤s≤t

∥∥∥P̃f̃(s)∥∥∥
L6

x,v

.
(1.73)

The corresponding norm for the initial data is[[
f̃0

]]
2
:=
∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣

2
(0) + ε−1

∥∥∥(I− P̃)f̃0

∥∥∥
L2

x,v(ν̃)
+
(α
ε

) 1
2
∣∣∣(1− P̃γ)f̃0

∣∣∣
L2

γ+

+
∥∥∥v · ∇xf̃0

∥∥∥
L2

x,v

+
∥∥∥v · ∇x∂tf̃0

∥∥∥
L2

x,v

= [[f0]]1 ,

(1.74)

where the final equality follows from (1.69) and (1.70).

We now state the second main result for the regime 0 ≤ α≪ ε.

Theorem 1.4 (Case 0 ≤ α ≪ ε). Let F0 = µ + ε
√
µf0 ≥ 0. Then there exists ε0 > 0 such that for every

0 < ε < ε0, if the initial fluctuation f0 satisfies

[[f0]]1 ≤ δ0 (1.75)

for some small constant δ0 > 0 independent of ε (the same initial condition as in (1.28)), then the Boltzmann

equation (1.1) admits a unique global solution F = µ̃+ ε
√
µ̃f̃ ≥ 0 satisfying the uniform bound∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣

2
(∞) ≤ C [[f0]]1 (1.76)

for some constant C > 0 independent of ε.
Moreover, if the strong initial convergence (1.30) holds, then the convergence results (1.31)–(1.32) are also

valid. Here, (ϱ, u, ϑ) ∈ C(R+, L
2(Ω))∩L2(R+, H

1(Ω)) is the unique weak solution of the INSF system (1.33),
now supplemented with the perfect Navier slip boundary condition:[(

∇xu+ (∇xu)
T) · n]tan = 0, u · n = 0 on R+ × ∂Ω,

∂nϑ = 0 on R+ × ∂Ω.
(1.77)

Proof of Theorem 1.4 will be presented in Section 4.5.
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1.5. Methodology 2: Dissipative Decomposition Mechanism.

To overcome the difficulties caused by the nearly negligible boundary dissipation in (1.36) and the loss
of conservation laws of angular momentum and energy, we uncover a dissipative decomposition mechanism
via the construction of a rotating Maxwellian. More precisely, we design the rotating Maxwellian µ̃ as in
(1.56) and reformulate the Boltzmann solution F around µ̃ via (1.60). This decomposition splits the original
equation (1.1) into two dissipative subsystems: one for spatially averaged macroscopic variables (u, θ), and

another for the fluctuation f̃ satisfying the following conservation laws of mass, angular momentum and
energy: ¨

Ω×R3

√
µ̃f̃dvdx = 0,

¨
Ω×R3

Ax · v
√
µ̃f̃dvdx = 0 for all Ax ∈ RΩ,

¨
Ω×R3

|v|2
√
µ̃f̃dvdx = 0,

(1.78)

guaranteed by (1.12). These conservation laws allow us to control the macroscopic components
´ t
0
∥Pf∥2L2

x,v

and
∥∥∥P̃f̃∥∥∥

L6
x,v

even with weak boundary dissipation via a test function approach [21, 15].

The velocity field u(t, x) and the temperature deviation θ(t) = T (t) − 1 are determined via the implicit
function theorem (with density ρ depending on u and θ through (1.58)), from the full conservation laws of
the original solution F : ¨

Ω×R3

F (t)dvdx = |Ω|,
¨

Ω×R3

Ax · vF (t)dvdx =

ˆ
Ω

ρAx · udx for all Ax ∈ RΩ,

¨
Ω×R3

|v|2 F (t)dvdx =

ˆ
Ω

(3ρT + ρ |u|2)dx,

(1.79)

as shown in Lemma 4.8. Crucially, θ2 and |u|2 satisfy a dissipative ODE system:

3

2
∂t

ˆ
Ω

θ2dx+
α

ε
√
2π

ˆ
∂Ω

4θ2dSx + α

¨
γ+

(|v|2 − 4)
√
µ̃f̃θdγ = higher-order terms,

1

2
∂t

ˆ
Ω

|u|2 dx+
α

ε
√
2π

ˆ
∂Ω

|u|2 dSx + α

¨
γ+

(u · v)
√
µ̃f̃dγ = higher-order terms,

(1.80)

derived in Propositions 4.9.
Although µ̃ and P̃ do not commute with ∂t and ∇x, a careful analysis shows that

v · ∇xµ̃ = 0, [∂t, P̃] ≈ O(α), ∂tµ̃ ≈ O(α).

Combining these observations with a standard energy estimate yields

1

2
∂t

∥∥∥f̃∥∥∥2
L2

x,v

+
1

ε2

¨
Ω×R3

f̃ L̃f̃dxdv +
3

2
∂t

ˆ
Ω

( |θ|
ε

)2
dx+ ∂t

ˆ
Ω

( |u|
ε

)2
dx

+
α(2− α)

ε

¨
γ+

[1
2

θ

ε
(|v|2 − 4)

√
µ̃+ v · u

ε

√
µ̃+ [(1− P̃γ)f̃ ]

]2
dγ

≤1

ε

¨
Ω×R3

∣∣∣f̃ g̃∣∣∣dxdv + higher-order terms.

(1.81)

The boundary dissipation in this estimate covers all directions except those parallel to (|v|2 − 4)
√
µ̃, v ·

Ax
√
µ̃, and P̃γ . Applying Ukai’s trace lemma to these rapidly decaying directions ultimately yields complete

boundary dissipation (see Proposition 4.10).

For brevity, we state only the key a priori estimates. Assume that (1.61) admits a solution f̃(t) on [0, T ]
with 0 < T ≤ ∞. To simplify the derivation, we impose the following a priori assumption: there exists a
sufficiently small constant δ1 > 0 (to be chosen later), independent of ε, such that

sup
0≤t≤T

( |θ(t)|
ε

+
|w(t)|
ε

+
|∂tw(t)|

ε
+

|∂tw(t)|
ε

)
≤ δ1. (1.82)

Our main estimate on the macroscopic part P̃f̃ in the regime 0 ≤ α≪ ε is summarized as follows.
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Proposition 1.5. Let f̃ be a solution of (1.61) satisfying the conservation laws of mass, angular momentum
and energy given in (1.78). Then, under the a priori assumption (1.82), the following estimates hold for all
0 ≤ s ≤ t ≤ T :ˆ t

s

∥∥∥P̃f̃∥∥∥2
L2

x,v

dτ ≲ε
[
G̃0(t)− G̃0(s)

]
+ α2

ˆ t

s

[ ∣∣∣f̃ ∣∣∣2
L2

γ+

+ |r|2L2
γ−

]
dτ +

ˆ t

s

∥∥∥ν̃− 1
2 g̃
∥∥∥2
L2

x,v

dτ

+ α2ε2
ˆ t

s

∣∣∣f̃ ∣∣∣2
L2

γ+

∥∥∥f̃∥∥∥2
L2

x,v

dτ +

ˆ t

s

∥∥∥ε−1(I− P̃)f̃
∥∥∥2
L2

x,v(ν̃)
dτ, (1.83)

∥∥∥P̃f̃∥∥∥
L6

x,v

≲ε
∥∥∥∂tf̃∥∥∥

L2
x,v

+ α
∣∣∣f̃ ∣∣∣

L2
γ+

+ α |r|L4
γ−

+ α
∣∣∣f̃ ∣∣∣ 12

L2
γ+

∥∥∥ω 1
2 f̃
∥∥∥ 1

2

L∞
x,v

+ ε
1
2 h1

∥∥∥ε 1
2ω

1
2 f̃
∥∥∥
L∞

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L6

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥
L2

x,v

. (1.84)

where G̃0(t) ≲
∥∥∥f̃(t)∥∥∥2

2
.

Proposition 1.5 (proved in Section 4.3) supplies the essential dissipative control on the macroscopic com-

ponent P̃f̃ , thereby completing the uniform energy framework for the regime 0 ≤ α≪ ε.

1.6. Background and Progress.

The derivation of fluid dynamical equations from kinetic theory constitutes a cornerstone of mathematical
physics since the pioneering works of Maxwell and Boltzmann. Maxwell [53] and Boltzmann [9] demonstrated
that microscopic particle interactions could explain macroscopic phenomena (e.g., viscosity and thermal con-
ductivity), providing foundational insights into molecular dynamics. Based on these foundations, Hilbert
formalized the kinetic-continuum connection through his Sixth Problem [40]. His pioneering work [39] estab-
lished mathematical links between the Boltzmann equation and hydrodynamic models, thereby inaugurating
sustained research into hydrodynamic limits.

Building on Hilbert’s foundational vision, rigorous hydrodynamic limits of the Boltzmann equation have
been established across several principal scaling regimes: (1) Compressible Euler limit for classical and
renormalized solutions [12, 33, 34, 36, 43, 55, 61, 63]; (2) Compressible Navier-Stokes approximation via
Chapman-Enskog expansion [20, 44, 46, 51]; (3) Incompressible Euler limit confirmed for renormalized so-
lutions [17, 57, 58] and analytic solutions in half-space [13, 41, 47]. In contrast, the incompressible Navier-
Stokes-Fourier limit — characterized by diffusive scaling and low Mach asymptotic — demands specialized
analysis due to its physical prevalence and mathematical depth. As the most extensively studied hydrody-
namic limit paradigm, the INSF limit exhibits fundamental methodological divergences dictated by domain
topology: whole-space and periodic domains; domains with boundary. We now delineate seminal advances
in these settings.

For the whole space or periodic domains, the INSF limit has attained substantial resolution through two
frameworks:
(a) Renormalized solutions framework. Bardos-Golse-Levermore [3, 4] pioneered the convergence of DiPerna-
Lions renormalized solutions [19] to Leray-Hopf weak solutions of INSF, contingent on specific a priori
assumptions. Subsequent research [5, 6, 26, 50, 57] progressively weakened these constraints. A foundational
breakthrough came with Golse-Saint-Raymond’s complete proof for bounded collision kernels [28], which
catalyzed extensions to more general kernels [29, 50], see also comprehensive surveys in [59, 62].
(b) Classical solutions framework. DeMasi-Esposito-Lebowitz adapted Caflisch’s approach [12] to examine
the INSF limit [17]. Guo [31] later provided rigorously justification, incorporating higher-order correction
for both Boltzmann cutoff potentials and Landau collision kernels. Related developments are documented in
[7, 10, 11].

For domains with boundary, the analysis of INSF limit presents significantly greater complexity than the
whole-space or periodic settings. Boundary interactions inherently degrade the regularity of the Boltzmann
solutions [37], precluding classical solutions in general domains. Consequently, research is confined to two
frameworks:
(1) Renormalized solutions framework. Masmoudi-Saint-Raymond [52] established hydrodynamic limit of
renormalized solution [54] to the linear Stokes-Fourier system for the Maxwell boundary. Then Saint-
Raymond extended to the weak INSF limit for cutoff hard potentials [59]. Later on, by constructing boundary
layer Jiang-Masmoudi proved weak convergence for all α ∈ [0, 1] and strong convergence only for α ∼ ε1/2.
(2) Strong solutions framework. Pioneered by Guo’s L2-L∞ theory [32], this approach achieved critical
advances under diffuse boundary conditions. For interior domains, Esposito-Guo-Kim-Marra [22] justified the
steady/unsteady limit by using an L2-L6-L∞ approach, while Esposito-Guo-Marra-Wu [24] and Wu-Ouyang
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[56] conducted detailed boundary-layer analyses. For exterior domains, progress was made by Esposito-Guo-
Marra for steady flows [23] and by Jung [45] for unsteady flows.

However, extant results on diffusive limit with Maxwell boundary — including the significant works [42, 59]
— remain confined to weak convergence within renormalized solutions framework, with strong convergence
established only for α ∼ ε1/2. In this work, we establish strong convergence to the INSF system within strong
solutions framework for the full range α ∈ [0, 1]. This result encompasses both the pure specular reflection
case (α = 0) and the challenging near-specular regime (0 < α≪ ε), which had previously resisted analysis.

1.7. Notations.

Throughout this paper we adopt the following asymptotic conventions:

· C denotes a generic positive constant independent of ε and α;
· X ≲ Y indicates X ≤ CY for some constant C > 0 independent of ε and α;
· X ≈ Y denotes X ≲ Y and Y ≲ X;
· X ≲β Y denotes dependence on parameter β;
· o(1) represents a small constant independent of ε and α;
· ≪ 1 signifies a sufficiently small positive bound.

For 1 ≤ p ≤ ∞, we define

· ∥ · ∥Lp
x,v

, ∥ · ∥Lp
x
or ∥ · ∥Lp

v
denote Lp(Ω× R3), Lp(Ω) or Lp(R3) norms;

· ∥ · ∥Lp
xL

q
v
:=
∥∥∥ · ∥Lq

x

∥∥
Lp

v
for mixed norms;

· ∥ · ∥Lp(m) := ∥m1/2 · ∥Lp with weight m;

· ⟨·, ·⟩ : L2(R3
v) inner product;

· ⟨v⟩ := (1 + |v|2)1/2.
Boundary measure and integrals are denoted by

· dγ := |n · v|dvdSx (surface measure);

· |f |p,γ± :=
( ´

γ±
|f |pdγ

)1/p
for 1 ≤ p <∞;

· |f |∞ := esssup(x,v)∈γ |f(x, v)|;
· | · |Lp

x
denotes Lp(∂Ω) boundary norm;

For the perfect Navier slip boundary condition λ = 0 (arises when 0 ≤ α ≪ ε), domain symmetry Ω also
affects the uniqueness of solutions to the INSF system. We define the admissible function spaces for initial
data:

Hu :=


{
u ∈ L2(Ω) : ∇x · u = 0

} if 0 < λ ≤ ∞, or if λ = 0

and Ω is non-axisymmetric;{
u ∈ L2(Ω) : ∇x · u = 0,

´
Ω
u ·Rdx = 0

} if λ = 0 and Ω is axisymmetric

or spherical,

Hϑ :=

{
L2(Ω) if 0 < λ ≤ ∞;{
ϑ ∈ L2(Ω) :

´
Ω
ϑdx = 0

}
if λ = 0,

(1.85)

where R = R(x) denotes basis element of RΩ (see (1.9)), which generates non-trivial special solutions to the
INSF system under perfect Navier slip boundary λ = 0.

The remainder of this paper is organized as follows. Section 2 presents L∞ estimates for the linear
Boltzmann equation on the stretched domain. Section 3 establishes uniform-in-ε global estimates and the
strong convergence for the case ε ≲ α ≤ 1. Sections 4 addresses the strong convergence for the case
0 ≤ α ≪ ε. Technical supporting results are collected in the appendices: Appendix A provides an L2L3

estimate, Appendix B gives the uniqueness of weak solutions to the INSF system, and Appendix C contains
auxiliary facts on Gaussian integration and elliptic estimates.

2. L∞ Estimate

This section establishes the L∞ estimate for the linear Boltzmann equation (1.45) on the stretched domain
[0, T0]×Ωε ×R3. The main result is Proposition 1.3, whose proof is presented at the end of the section after
several preparatory lemmas.
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For the linearized Boltzmann operator L defined in (1.18), it is standard that Lf = νf −Kf , where the
collision frequency ν and the compact operator K on L2(R3

v) are given by

ν = ν(v) :=
1
√
µ
Q−(

√
µ, µ) =

ˆ
R3

ˆ
S2
|(v − u) · ω|µ(u)dωdu,

Kf :=
1
√
µ
[Q+(µ,

√
µf) +Q+(

√
µf, µ)−Q−(µ,

√
µf)] =

ˆ
R3

[k1(v, u)− k2(v, u)]f(u)du.

(2.1)

For hard sphere cross sections, there exist positive constants C0 and C1 such that

ν0 ≤ C0 ⟨v⟩ ≤ ν(v) ≤ C1 ⟨v⟩ ,

with the uniform lower bound ν0. The operator L is symmetric with the spectral inequality:

⟨f, Lf⟩2 ≳ ∥(I−P)f∥2L2
v(ν)

for f ∈ DL =
{
f ∈ L2(R3

v)| ν1/2f ∈ L2(R3
v)
}
.

Multiplying equation (1.45) by the weight function ω defined in (1.26) yields the equivalent formulation

∂t̄h+ v · ∇yh+ ν(v)h = ωK(ω−1h) + εωḡ in [0, T0]× Ωε × R3,

h
∣∣
γ−

= (1− α)Rh+ αω
√
µ

ˆ
n(y)·u>0

hdσ on [0, T0]× ∂Ωε × R3,

h|t=0 = h0 on Ωε × R3.

(2.2)

Here and in the following, we use the notations

h(t̄, y, v) := ωf̄(t̄, y, v), h0(y, v) := ωf̄0(y, v), (2.3)

dσ := ω−1
√
2πµ

1
2 [n(y) · u]du, C∗ :=

ˆ
n(y)·u>0

dσ. (2.4)

Given (t̄, y, v) ∈ [0, T0]× Ω̄ε ×R3, recall the characteristic trajectory (1.51). Let (tk+1, yk+1, vk+1) denote
the (k + 1)-th (k ∈ N) bounce along the backward trajectory (cf. (1.52) and (1.53)):

tk+1 = tk − tb(tk, yk, vk), yk+1 = Y (tk+1; tk, yk, vk), vk+1 =

{
Ryk+1

(vk), specular reflection;
v∗k+1, diffuse reflection,

(2.5)

where we set (t0, y0, v0) := (t̄, y, v). This yields a sequence tk+1 < tk < · · · < t2 < t1 < t0 = t̄ ≤ T0.
Because ∂Ω ∈ C3 is compact and∇xξ ̸= 0 on ∂Ω, there exist positive constants 0 < Cξ1 < Cξ2 , independent

of ε, such that

∥ξ∥C3(∂Ω) ≤ Cξ2 , |∇xξ| ≥ Cξ1 on ∂Ω. (2.6)

For given (t̄, y, v) ∈ [0, T0]× Ωε × R3, define the grazing set

Sy(v) :=
{
v ∈ R3 : n

(
yb(y, v)

)
· v = 0

}
, (2.7)

By Lemma 17 in [32], the set Sy(v) has zero Lebesgue measure.

2.1. L∞ Estimate for the Semigroup.

This subsection establishes the L∞ estimate for the semigroup generated by the linear homogeneous
equation of (2.2) without collision K.

We begin with an estimate for the backward bounce time.

Lemma 2.1. Let (tk, yk, vk) be the k-th bounce of the backward trajectory (1.51). Then

tb(tk, yk, vk) ≥
Cξ1 |vk · n(yk)|
εCξ2 |vk|2

. (2.8)

Proof. By Taylor expansion of ξ(εyk+1) about yk, we obtain

ξ(εyk+1) =ξ(εyk) + ε∇xξ(εyk) · (yk+1 − yk)

+ ε2(yk+1 − yk) ·
[
∇2

xξ(θ̃εyk + (1− θ̃)εyk+1)
]
· (yk+1 − yk), θ̃ ∈ (0, 1).

Since ξ(εyk+1) = 0 = ξ(εyk) and ∇xξ ̸= 0, we have∣∣∣ ∇xξ(εyk)

|∇xξ(εyk)|
· (yk+1 − yk)

∣∣∣ = ε

∣∣∇2
xξ(θ̃εyk + (1− θ̃)εyk+1)

∣∣
|∇xξ(εyk)|

|yk+1 − yk|2. (2.9)

Using (2.6) and (2.9), we obtain

|n(yk) · (yk+1 − yk)| ≤ εCξ2C
−1
ξ1

|yk+1 − yk|2, (2.10)
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where we have used the fact n(εyk) = n(yk) derived from (1.50). Along the backward trajectory, we have
yk+1 = yk + vk(tk+1 − tk), which implies

|yk+1 − yk| = |tk+1 − tk| |vk|, (yk+1 − yk) · n(yk) = (tk+1 − tk)[vk · n(yk)]. (2.11)

Substituting (2.11) into (2.10) yields (2.8). □

The following lemma shows that for small ε, a backward specular trajectory in a non-grazing regime
undergoes at most one bounce.

Lemma 2.2 (Single-bounce for specular trajectory). Let (t̄, y, v) ∈ [0, T0]×Ωε×
{
|v| ≤ N,

∣∣v · ∇xξ(εy)
|∇xξ(εy)|

∣∣ > η
}

be given, with sufficient large constants T0, N > 0 and a small constant η > 0. Define

ε1 :=
C2

ξ1
η

2C2
ξ2
N2T0

∈ (0, 1). (2.12)

If 0 < ε ≤ ε1, then the backward specular trajectory (1.51) starting from (t̄, y, v) has at most one bounce.

Proof. If t1 ≤ 0, there is no bounce before reaching the initial plane {t̄ = 0}. If t1 > 0, it suffices to show
that the backward time tb(t1, y1, v1) exceeds T0 for sufficiently small ε.

Since 0 < t1 < t̄ ≤ T0 and |v| ≤ N , we have |(t1 − t̄)v| ≤ T0N . Because y1 ∈ ∂Ωε, we have εy1 ∈ ∂Ω.
From the relation

y1 = y + (t1 − t̄)v, (2.13)

we see that εy ∈ Ω lies close to the boundary ∂Ω for sufficiently small ε:

εy = εy1 − ε(t1 − t̄)v = εy1 +O(ε) ∼ ∂Ω.

Indeed, for bounded velocity |v| ≤ N , if the backward trajectory hits the boundary ∂Ωε, the distance between
the starting point y and the boundary ∂Ωε must be bounded; consequently εy = x is near ∂Ω.

Now observe that n(y) = n(εy), because ∇xξ(εy) ̸= 0 near the boundary. Expanding ∇xξ(εy1) about y
gives

v · ∇xξ(εy1)

|∇xξ(εy1)|
= v · ∇xξ(εy)

|∇xξ(εy)|
|∇xξ(εy)|
|∇xξ(εy1)|

+
v · ε∇2

xξ
(
θ̄εy1 + (1− θ̄)εy2

)
· (y1 − y)

|∇xξ(εy1)|
, (2.14)

where θ̄ ∈ (0, 1). Using (2.14), (2.13) and (2.6), we obtain∣∣v · n(y1)∣∣ = ∣∣∣v · ∇xξ(εy1)

|∇xξ(εy1)|

∣∣∣ ≥ Cξ1

Cξ2

∣∣∣v · ∇xξ(εy)

|∇xξ(εy)|

∣∣∣− ε
Cξ2

Cξ1

T0N
2. (2.15)

Substituting (2.15) into (2.8) and using v1 = Rxv for specular reflection, we have

tb(t1, y1, v1) ≥
Cξ1 |v · n(y1)|
εCξ2 |v|2

≥
[C2

ξ1

∣∣v · ∇xξ(εy)
|∇xξ(εy)|

∣∣
εC2

ξ2

− T0N
2
] 1

|v|2
≥
[C2

ξ1
η

εC2
ξ2

− T0N
2
] 1

N2
≥ T0,

provided 0 < ε ≤ ε1. Hence, the backward trajectory reaches the initial plane {t̄ = 0} before any further
bounce after (t1, y1, v1). The assertion is thus proved. □

The following complementary result holds for a backward diffuse trajectory.

Lemma 2.3 (No further bounce for diffuse trajectory). Let (t1, y1, v
∗
1) ∈ [0, T0]× ∂Ωε × {|v∗1 | ≤ N, |n(y1) ·

v∗1 | > η} be given, with sufficiently large constants T0, N > 0 and a small constant η > 0. Define

ε2 :=
Cξ1η

Cξ2N
2T0

∈ (0, 1). (2.16)

If 0 < ε ≤ ε2, then the backward trajectory (1.51) starting from (t1, y1, v
∗
1) has no further collision.

Proof. Following the proof of (2.8) in Lemma 2.1, we obtain

tb(t1, y1, v
∗
1) ≥

Cξ1 |v∗1 · n(y1)|
εCξ2 |v∗1 |2

≥ Cξ1η

εCξ2N
2
≥ T0,

provided 0 < ε ≤ ε2. Thus no further collision occurs after leaving (t1, y1, v
∗
1). □

Finally, we state the semigroup estimate for the linear homogeneous Boltzmann equation without collision
K under the Maxwell boundary condition.
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Lemma 2.4 (Semigroup estimate). Let h0 ∈ L∞(Ωε × R3), and let ε2 be the constant defined in (2.16).
Then, for every 0 < ε ≤ ε2, the weighted linear problem

∂t̄h+ v · ∇yh+ ν(v)h = 0 in R+ × Ωε × R3,

h
∣∣
γ−

= (1− α)Rh+ αω
√
µ

ˆ
n(y)·u>0

hdσ on R+ × ∂Ωε × R3,

h|t=0 = h0 on Ωε × R3

(2.17)

admits a unique solution h(t̄, y, v) = {G(t̄)h0} (y, v) satisfying

∥G(t̄)h0∥L∞
t̄,y,v

(R+×Ωε×R3) ≤ (2C∗ + 1)e−
ν0
2 t̄ ∥h0∥L∞

y,v(Ωε×R3) for all t̄ > 0. (2.18)

Proof. The proof is divided into two steps. In Step 1, we derive the uniform estimate on a bounded time
interval. In Step 2, we extend the result to the entire R+.

Step 1. Uniform estimate on a bounded time interval.
We claim that for any sufficiently large T0 > 0 satisfying (2C∗ + 1)e−

ν0
2 T0 ≤ 1, the following estimate

holds:

sup
0≤s≤T0

[
eν0s∥h(s)∥

L∞
y,v

]
≤ (2C∗ + 1)∥h0∥L∞

y,v
. (2.19)

To prove this, we construct an iterative sequence {hn+1}∞n=0 via

∂t̄h
n+1 + v · ∇yh

n+1 + ν(v)hn+1 = 0 in R+ × Ωε × R3,

hn+1
∣∣
γ−

= (1− α)Lhn + αω
√
µ

ˆ
n(y)·u>0

hn+1dσ on R+ × ∂Ωε × R3,

hn+1 = h0 on Ωε × R3,

(2.20)

with the initial iterate
h0 = h0(t̄, y, v) := e−ν0 t̄h0(y, v). (2.21)

To establish (2.19), it suffices to show that

sup
0≤s≤T0

[
eν0s∥hn+1(s)∥L∞

y,v

]
≤ (2C∗ + 1)∥h0∥L∞

y,v
for all n = 0, 1, 2, · · · . (2.22)

Indeed, once the uniform estimate (2.22) is verified, there exists a function h ∈ L∞([0, T ] × Ωε × Rn) such
that a subsequence of {hn+1} (still denoted by {hn+1}) satisfies

hn+1 → h weakly−∗ in L∞([0, T ]× Ωε × Rn) as n→ ∞,

and the limit h satisfies the uniform estimate (2.19) and the linear problem (2.17) in the weak sense.
We now verify the uniform estimate (2.22) in four sub-steps.

Step 1.1. The first bounce.
For ε ∈ (0, 1], α ∈ [0, 1], n ∈ N, t̄ ∈ [0, T0] and (y, v) ∈ Ωε×R3 \γ0 with v /∈ Sy(v), using the characteristic

trajectory (1.51) and the equation (2.20)1, we obtain

d

ds

[
e−
´ t̄
s
ν(v)dτhn+1

(
s, Y (s; t̄, y, v), v

)]
= 0 (2.23)

for t1 < s ≤ t̄. Integrating along the backward trajectory yields

hn+1(t̄, y, v) =1{t1≤0}e
−
´ t̄
0
ν(v)dτh0

(
Y (0; t̄, y, v), v

)
+ 1{t1>0}e

−
´ t̄
t1

ν(v)dτ
(1− α)hn(t1, y1, v1)

+ 1{t1>0}e
−
´ t̄
t1

ν(v)dτ
αω

√
µ

ˆ
n(y1)·v∗

1>0

hn+1(t1, y1, v
∗
1)dσ

∗
1

:=J1
0 + J1

sp + J1
di,

(2.24)

where dσ∗
1 = ω−1

√
2πµ

1
2 [n(y1) · v∗1 ]dv∗1 similarly as in (2.4). Obviously, J1

0 (t̄, y, v) is bounded by∣∣J1
0 (t̄, y, v)

∣∣ ≤ 1{t1≤0}e
−ν0 t̄∥h0∥L∞

y,v
. (2.25)

For the diffuse boundary term J1
di, we partition the integration domain:

{n(y1) · v∗1 > 0}
={|v∗1 | > N, n(y1) · v∗1 > 0} ∪ {|v∗1 | ≤ N, 0 < n(y1) · v∗1 < η} ∪ {|v∗1 | ≤ N, n(y1) · v∗1 ≥ η}
:=A∗

1(v
∗
1) ∪A∗

2(v
∗
1) ∪M∗

y1
(v∗1), (2.26)
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with positive constants N and η to be determined later. On A∗
1(v

∗
1), J

1
di is bounded as∣∣J1

di1A∗
1(v

∗
1 )

∣∣ ≤ αo(1)e−ν0(t̄−t1)|hn+1(t1)|L∞
y,v(∂Ωε×R3), (2.27)

provided N > 0 is sufficiently large. For A∗
2(v

∗
1) and fixed N , we apply the decomposition v∗1,⊥ = v∗1 − v∗1,∥

with v∗1,∥ = [v∗1 · n(y1)]n(y1) for |v∗1 · n(y1)| < η to obtain∣∣J1
di1A∗

2(v
∗
1 )

∣∣ ≤ αe−ν0(t̄−t1)CN |hn+1(t1)|L∞
y,v(∂Ωε×R3)

ˆ η

−η

dv∗1,∥

ˆ
|v∗

1,⊥|≤N

dv∗1,⊥

≤ αo(1)e−ν0 t̄ sup
0≤s≤T0

[
eν0s|hn+1(s)|L∞

y,v(∂Ωε×R3)

]
,

(2.28)

provide η > 0 is sufficiently small. For the bulkM∗
y1
(v∗1), Lemma 2.3 implies that for 0 < ε ≤ ε2, the backward

trajectory starting from (t1, y1, v
∗
1) undergoes no further collisions. Thus, J1

di(t̄, y, v)1M∗
y1

(v∗
1 )

traces back to

the initial plane {t̄ = 0} and is bounded as:∣∣J1
di1M∗

y1
(v∗

1 )

∣∣ ≤ 1{t1>0}αe
−ν0 t̄

∣∣∣ˆ
n(y)·u>0

dσ
∣∣∣∥h0∥L∞

y,v
≤ 1{t1>0}αC∗e

−ν0 t̄∥h0∥L∞
y,v
. (2.29)

Note that the o(1) term depends only on N > 0 and η > 0, and is independent of ε and α.
Combining estimates (2.24), (2.25) and (2.27)–(2.29), we obtain

|hn+1(t̄, y, v)| ≤
(
1{t1≤0} + 1{t1>0}αC∗

)
e−ν0 t̄∥h0∥L∞

y,v

+ 1{t1>0}αo(1)e
−ν0 t̄ sup

0≤s≤T0

[
eν0s|hn+1(s)|L∞

y,v(∂Ωε×R3)

]
+ 1{t1>0}(1− α)e−ν0(t̄−t1)

∣∣hn(t1, y1, v1)∣∣.
(2.30)

Step 1.2. The 2nd bounce.
After the first collision at (t1, y1, v1), the term J1

sp may continue to undergo reflection along the specular
backward trajectory. Note that the equation of hn shares the same specular backward trajectory as that of
hn+1. Consequently, we have

hn(t1, y1, v1) =1{t2≤0<t1}e
−
´ t1
0 ν(v)dτh0 (Y (0; t1, y1, v1), v1)

+ 1{t2>0}(1− α)e−
´ t1
t2

ν(v)dτhn−1 (t2, y2, v2)

+ 1{t2>0}αe
−
´ t1
t2

ν(v)dτω
√
µ

ˆ
n(y2)·v∗

2>0

hn(t2, y2, v
∗
2)dσ

∗
2

:=J2
0 + J2

sp + J2
di.

(2.31)

Similarly to (2.25), J2
0 is bounded by 1{t2≤0<t1}e

−ν0t1∥h0∥L∞
y,v

. Following the same procedure as that of J1
di,

we partition the integration domain {n(y2) · v∗2 > 0} and bound J2
di as:

|J2
di| ≤1{t2>0}αC∗e

−ν0 t̄∥h0∥L∞
y,v

+ 1{t2>0}αo(1)e
−ν0t1 sup

0≤s≤T0

[
eν0s|hn(s)|L∞

y,v(∂Ωε×R3)

]
. (2.32)

Thus,
∣∣hn(t1, y1, v1)∣∣ satisfies the bound:∣∣hn(t1, y1, v1)∣∣ ≤ (1{t2≤0<t1} + 1{t2>0}αC∗

)
e−ν0t1∥h0∥L∞

y,v

+ 1{t2>0}αo(1)e
−ν0t1 sup

0≤s≤T0

[
eν0s|hn(s)|L∞

y,v(∂Ωε×R3)

]
+ 1{t2>0}(1− α)e−ν0(t1−t2)|hn−1(t2, y2, v2)|.

(2.33)

Step 1.3. The k-th bounce.
Proceeding inductively, after the (k − 1)-th collision, the term Jk−1

sp may continue to undergo reflections
along the specular backward trajectory, leading to the k-th collision:

hn+1−(k−1) (tk−1, yk−1, vk−1)

=1{tk≤0<tk−1}e
−
´ tk−1
0 ν(vk−1)dτh0 (Y (0; tk−1, yk−1, vk−1), vk−1)

+ 1{tk>0}(1− α)e−
´ tk−1
tk

ν(vk−1)dτhn+1−k (tk, yk, vk)

+ 1{tk>0}αe
−
´ tk−1
tk

ν(vk−1)dτ

ˆ
n(yk)·v∗

k>0

hn+1−(k−1)(tk, yk, v
∗
k)dσ

∗
k

:=Jk
0 + Jk

sp + Jk
di.

(2.34)
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Analogous to the derivation of (2.33), we obtain the bound:

|hn+1−(k−1)(tk−1, yk−1, vk−1)|
≤
(
1{tk≤0<tk−1} + 1{tk>0}αC∗

)
e−ν0tk−1∥h0∥L∞

y,v

+ 1{tk>0}αo(1)e
−ν0tk−1 sup

0≤s≤T0

[
eν0s|hn+1−(k−1)(s)|L∞

y,v(∂Ωε×R3)

]
+ 1{tk>0}(1− α)e−ν0(tk−1−tk)|hn+1−k(tk, yk, vk)|.

(2.35)

Step 1.4. Bounce back trajectory starting from (tk, yk, vk).
After the k-th collision at (tk, yk, vk), the term Jk

sp(tk, yk, vk) may continue to propagate along the specular
backward trajectory:

hn+1−k (tk, yk, vk)

=1{tk+1≤0<tk}e
−
´ tk
0 ν(vk)dτh0 (Y (0; tk, yk, vk), vk) ,

+ 1{tk+1>0}(1− α)e
−
´ tk
tk+1

ν(vk)dτhn−k (tk+1, yk+1, vk+1) ,

+ 1{tk+1>0}αe
−
´ tk
tk+1

ν(vk)dτ
ˆ
n(yk+1)·v∗

k+1>0

hn+1−k(tk+1, yk+1, v
∗
k+1)dσ

∗
k+1,

:=Jk+1
0 + Jk+1

sp + Jk+1
di .

(2.36)

Clearly, k ≤ n, since the term hn−k(tk, yk, vk) on the right hand side of the expression for Jk+1
sp in (2.36)

generates the initial iterate h0 when k = n, and no further collision occur for given initial iteration h0. Recall
that t0 = t̄. For any fixed n ∈ N, there are two possible cases: (1) There exists some k ∈ {0, 1, 2, · · · , n} such
that tk+1 ≤ 0 < tk; (2) tk+1 > 0 for all k ∈ {0, 1, 2, · · · , n}. We now estimate hn+1(t̄, y, v) according to these
two cases.
Case 1: There exists k ∈ {0, 1, 2, · · · , n} such that tk+1 ≤ 0 < tk.

In this case, for such a k ∈ {0, 1, 2, · · · , n}, we have

1{tk+1≤0<tk} = 1, 1{tk+1>0} = 0; 1{ti≤0<ti−1} = 0, 1{ti>0} = 1, ∀i ∈ {1, 2, · · · , k}. (2.37)

This means that the backward trajectory starting from (tk, yk, vk) reaches the initial plane {t̄ = 0} with no
further collision. Therefore,

|hn+1−k(tk, yk, vk)| = |Jk+1
0 | ≤ 1{tk+1≤0<tk}e

−ν0tk∥h0∥L∞
y,v
,

and hence

sup
0≤s≤T0

[
eν0s|hn+1−k(s)|L∞

y,v(∂Ω×R3)

]
≤ ∥h0∥L∞

y,v
. (2.38)

Substituting (2.38) into the right-hand side of (2.35) and using (2.37), we obtain

[1− αo(1)] sup
0≤s≤T0

[
eν0s|hn+1−(k−1)(s)|L∞

y,v(∂Ω×R3)

]
≤ αC∗∥h0∥L∞

y,v
+ (1− α)∥h0∥L∞

y,v
. (2.39)

Next, substituting (2.39) into the estimate of hn+1−(k−2)(tk−2) and deducing similarly,

[1− αo(1)]2 sup
0≤s≤T0

[
eν0s|hn+1−(k−2)(s)|L∞

y,v(∂Ωε×R3)

]
≤{αC∗[1− αo(1)] + αC∗(1− α) + (1− α)2}∥h0∥L∞

y,v
.

(2.40)

Repeating this process for hn+1−(k−3)(tk−3), we obtain

[1− αo(1)]3 sup
0≤s≤T0

[
eν0s|hn+1−(k−3)(s)|L∞

y,v(∂Ωε×R3)

]
≤{αC∗[1− αo(1)]2 + αC∗[1− αo(1)](1− α) + αC∗(1− α)2 + (1− α)3}∥h0∥L∞

y,v
.

(2.41)

By induction and (2.37), we arrive at

[1− αo(1)]k sup
0≤s≤T0

[
eν0s|hn+1(s)|L∞

y,v(Ωε×R3)

]
≤αC∗

k∑
i=1

[1− αo(1)]
k−i

(1− α)i−1∥h0∥L∞
y,v

+ (1− α)k∥h0∥L∞
y,v
.

(2.42)
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Finally, we obtain the following uniform bound for hn+1(t̄):

sup
0≤s≤T0

[
eν0s∥hn+1(s)∥L∞

y,v(Ωε×R3)

]
≤C∗

[
1−

( 1− α

1− αo(1)

)k] 1

1− o(1)
∥h0∥L∞

y,v
+
( 1− α

1− αo(1)

)k
∥h0∥L∞

y,v

≤ (2C∗ + 1)∥h0∥L∞
y,v
,

(2.43)

where the last inequality follows from the bounds

o(1) ≤ 1

2
, 1− o(1) ≥ 1

2
, 1− α ≤ 1− αo(1). (2.44)

Case 2: tk+1 > 0 for all k ∈ {0, 1, 2, · · · , n}.
In this case, after the n-th collision at (tn, yn, vn), the specular trajectory continues to propagate and

produce an (n+ 1)-th collision. Taking k = n in (2.36), we obtain

h1(tn, yn, vn) =1{tn+1≤0<tn}e
−
´ tn
0

ν(vn)dτh0 (Y (0; tn, yn, vn), vn)

+ 1{tn+1>0}(1− α)e
−
´ tn
tn+1

ν(vn)dτ
h0(tn+1, yn+1, vn+1)

+ 1{tn+1>0}αe
−
´ tn
tn+1

ν(vn)dτ
ˆ
n(yn+1)·v∗

n+1>0

h1(tn+1, yn+1, v
∗
n+1)dσ

∗
n+1

:=Jn+1
0 + Jn+1

sp + Jn+1
di .

(2.45)

Following a similar procedure as in (2.33), we bound
∣∣h1 (tn, yn, vn)∣∣ as

|h1(tn, yn, vn)| ≤
(
1{tn+1≤0<tn} + 1{tn+1>0}αC∗

)
e−ν0tn∥h0∥L∞

y,v

+ 1{tn+1>0}αo(1)e
−ν0tn sup

0≤s≤T0

[
eν0s|h1(s)|L∞

y,v(∂Ω×R3)

]
+ 1{tn+1>0}(1− α)e−ν0tn∥h0∥L∞

y,v
,

(2.46)

where the last term has used the initial iterate h0 ≡ e−ν0 t̄h0 and the bound

eν0tn+1 |h0 (tn+1, yn+1, vn+1) | = |h0 (yn+1, vn+1) | ≤ ∥h0∥L∞
y,v
.

Since tn+1 > 0, we have 1{ti≤0<ti−1} = 0 for all i ∈ {1, 2, · · · , n, n+ 1}. Then, (2.46) implies

[1− αo(1)] sup
0≤s≤T0

[
eν0s|h1(s)|L∞

y,v(∂Ω×R3)

]
≤ αC∗∥h0∥L∞

y,v
+ (1− α)∥h0∥L∞

y,v
. (2.47)

Substituting (2.47) into the estimate for h2(tn−1), we derive

[1− αo(1)]2 sup
0≤s≤T0

[
eν0s|h2(s)|L∞

y,v(∂Ω×R3)

]
≤{αC∗[1− αo(1)] + αC∗(1− α) + (1− α)2}∥h0∥L∞

y,v
.

Proceeding iteratively as in case 1, we finally obtain

[1− αo(1)]n+1 sup
0≤s≤T0

[
eν0s∥hn+1(s)∥L∞

y,v(Ωε×R3)

]
≤αC∗

n∑
i=0

[1− αo(1)]n−i(1− α)i∥h0∥L∞
y,v

+ (1− α)n+1∥h0∥L∞
y,v
.

(2.48)

This, combined with (2.44), yields the uniform bound for hn+1(t̄):

sup
0≤s≤T0

[
eν0s∥hn+1(s)∥L∞

y,v(Ωε×R3)

]
≤C∗

[
1−

( 1− α

1− αo(1)

)n+1] 1

1− o(1)
∥h0∥L∞

y,v
+
( 1− α

1− αo(1)

)n+1

∥h0∥L∞
y,v

≤ (2C∗ + 1)∥h0∥L∞
y,v
.

(2.49)

Combing (2.43) in Case 1 and (2.49) in Case 2, we verify the claim (2.22). Note that excluding the
zero-measure sets γ0 and Sy(v) does not affect this uniform L∞ estimate.

Step 2. Proof of the uniform estimate (2.18).
From (2.19), we obtain

∥h(T0)∥L∞
y,v

≤ (2C∗ + 1)e−ν0T0∥h(0)∥L∞
y,v

≤ e−
ν0
2 T0∥h0∥L∞

y,v
, (2.50)
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provided T0 is sufficiently large. Then, we apply the estimate (2.50) iteratively on the intervals [T0, 2T0],
[2T0, 3T0], · · · , [(j − 1)T0, jT0] (j ∈ Z+), yielding

∥h(jT0)∥L∞
y,v

≤ e−
ν0
2 T0∥h

(
(j − 1)T0

)
∥L∞

y,v
≤ · · · ≤ e−j

ν0
2 T0∥h0∥L∞

y,v
. (2.51)

Finally, for an arbitrary t̄ > 0, choose j ∈ Z+ such that jT0 ≤ t̄ < (j + 1)T0. Applying (2.19) on the interval
[jT0, t̄] and using (2.51), we obtain

∥h(t̄)∥
L∞
y,v

≤ (2C∗ + 1)e−ν0(t̄−jT0)∥h(jT0)∥L∞
y,v

≤ (2C∗ + 1)e−
ν0
2 t̄∥h0∥L∞

y,v
. (2.52)

This completes the proof of Lemma 2.4. □

2.2. L∞ Estimate for the Linear Equation.

We establish the L∞ estimate for the linear equation (1.45) and give the proof of Proposition 1.3.

Proof of Proposition 1.3. We first claim that, for any given (t̄, y, v) ∈ [0, T0]× Ω̄ε × R3 with (y, v) /∈ γ0
or v /∈ Sy(v), the following bounds hold:

|h(t̄, y, v)| ≲ e−
ν0
2 t̄∥h0∥L∞

y,v(Ωε×R3) + o(1) sup
0≤s≤T0

∥h(s)∥L∞
y,v(Ωε×R3)

+ sup
0≤s≤T0

∥Pf̄(s)∥L6
y,v(Ωε×R3) + sup

0≤s≤T0

∥(I−P)f̄(s)∥L2
y,v(Ωε×R3) (2.53)

+ ε sup
0≤s≤T0

∥⟨v⟩−1ωḡ(s)∥L∞
y,v(Ωε×R3),

|h(t̄, y, v)| ≲ e−
ν0
2 t̄∥h0∥L∞

y,v(Ωε×R3) + o(1) sup
0≤s≤T0

∥h(s)∥L∞
y,v(Ωε×R3)

+ sup
0≤s≤T0

∥f̄(s)∥L2
y,v(Ωε×R3) + ε sup

0≤s≤T0

∥⟨v⟩−1ωḡ(s)∥L∞
y,v(Ωε×R3). (2.54)

Once (2.53) and (2.54) are verified, the main estimates (1.47) and (1.48) follow by applying (2.3) and taking
the L∞

y,v norm on both sides. Note that excluding the zero-measure sets γ0 and Sy(v) in (2.53) and (2.54)
does not affect the validity of the uniform L∞ estimate.

We now establish the estimates (2.53) and (2.54). From (2.2), for t1 < s ≤ t̄, we have

d

ds

[
e−
´ t̄
s
ν(v)dτh

(
s, Y (s; t̄, y, v), v

)]
= e−

´ t̄
s
ν(v)dτ

[ ˆ
R3

kβ(v, u)
ω(v)

ω(u)
h
(
s, Y (s; t̄, y, v), u

)
du+ ε

(
ωḡ
)(
s, Y (s; t̄, y, v), v

)]
.

(2.55)

Define the principal set

M(y, v) :=
{
(y, v) ∈ Ωε × R3 : |v| ≤ N and

∣∣∣v · ∇xξ(εy)

|∇xξ(εy)|

∣∣∣ ≥ η
}
, (2.56)

where N > 0 is a large constant and η > 0 is a small constant, both to be specified later. Let ε1 and ε2 be
the small constants defined in (2.12) of Lemma 2.2 and in (2.16) of Lemma 2.3, respectively. Let ε satisfy
the restriction

0 < ε ≤ ε0 := min{ε1, ε2}. (2.57)

The proofs of (2.53) and (2.54) are divided into two steps.

Step 1. Estimate of h(t̄, y, v)1M(y,v).
Applying the Duhamel principle along the backward trajectory, we obtain

h(t̄, y, v)1M(y,v) = J0(t̄, y, v) + Jk(t̄, y, v) + Jg(t̄, y, v) + Jsp(t̄, y, v) + Jdi(t̄, y, v), (2.58)



20 Y. GUO, J. JUNG, AND F. ZHOU

where

J0(t̄, y, v) := 1{t1≤0}e
−
´ t̄
0
ν(v)dτ

∣∣h(0, Y (0), v
)∣∣,

Jk(t̄, y, v) :=

ˆ t̄

max {0,t1}
ds e−

´ t̄
s
ν(v)dτ

ˆ
R3

du kβ(v, u)
ω(v)

ω(u)
h
(
s, Y (s), u

)
,

Jg(t̄, y, v) :=

ˆ t̄

max {0,t1}
ds e−

´ t̄
s
ν(v)dτ

∣∣ε(ωḡ)(s, Y (s), v
)∣∣,

Jsp(t̄, y, v) := 1{t1>0}e
−
´ t̄
t1

ν(v)dτ
(1− α)

∣∣h(t1, y1, v1)∣∣,
Jdi(t̄, y, v) := 1{t1>0}e

−
´ t̄
t1

ν(v)dτ
α

ˆ
n(y1)·v∗

1>0

∣∣h(t1, y1, v∗1)∣∣dσ∗
1 .

(2.59)

Direct estimates yield

|J0(t̄, y, v)| ≲ e−ν0 t̄∥h0∥L∞
y,v
, |Jg(t̄, y, v)| ≲ ε sup

0≤s≤T0

∥⟨v⟩−1
wḡ(s)∥L∞

y,v
. (2.60)

We now estimate the remaining terms Jsp(t̄, y, v), Jk(t̄, y, v) and Jdi(t̄, y, v) in Steps 1.1–1.3.
Step 1.1. Estimate of Jsp(t̄, y, v).

By Lemma 2.2 and (2.57), the specular backward trajectory starting from (t̄, y, v) ∈ [0, T ] × M(y, v)
undergoes at most single-bounce against ∂Ωε. Thus, after the first collision at (t1, y1, v1), the term Jsp(t̄, y, v)
propagates back to the initial plane {t̄ = 0}:

Jsp(t̄, y, v) =1{t1>0}e
−
´ t̄
t1

ν(v1)dτe−
´ t1
0 ν(v1)dτh

(
0, Y1(0), v1

)
+ 1{t1>0}e

−
´ t̄
t1

ν(v1)dτ
ˆ t1

0

ds e−
´ t1
s

ν(v1)dτε
(
ωḡ
)(
s, Y1(s), v1

)
(2.61)

+ 1{t1>0}e
−
´ t̄
t1

ν(v1)dτ
ˆ t1

0

ds e−
´ t1
s

ν(v1)dτ

ˆ
R3

dv′ kβ(v, u)
ω(v)

ω(u)
h
(
s, Y1(s), v

′)
:=Jsp,0 + Jsp,g + Jsp,k,

where we have used the abbreviation
Y1(s) := Y (s; t1, y1, v1). (2.62)

The terms Jsp,0 and Jsp,g are bounded similarly to (2.60). To estimate Jsp,k, we invoke Lemma 3 from

[32], which ensures the existence of β̃ = β̃(β, β′) > 0 such that

kβ(v, u)
ω(v)

ω(u)
≲ kβ̃(v, u). (2.63)

Moreover, for any m ≥ 1, we can choose N = N(m) ≫ 1 further large so that

kN (V, v′) := 1|V−v′|≥ 1
N
1|v′|≤N1|V |≤Nkβ̃(V, v

′),

sup
V

ˆ
R3

|kN (V, v′)− kβ̃(V, v
′)|dv′ ≤ 1

m
.

We decompose the kernel as

kβ̃(V, v
′) = [kβ̃(V, v

′)− kN (V, v′)] + kN (V, v′). (2.64)

The first term in (2.64) contributes at most o(1)∥h∥L∞
y,v

for sufficiently large m≫ 1. For y′ ∈ Ωε, define the
principal set

My′(v′) :=
{
v′ ∈ R3 : |v′| ≤ N and

∣∣∣v′ · ∇xξ(εy
′)

|∇xξ(εy′)|

∣∣∣ ≥ η
}
. (2.65)

The second term in (2.64) leads to

Cm

ˆ
|v′|≤N, |v′· ∇xξ(εY1(s))

|∇xξ(εY1(s))| |<η

+Cm

ˆ
M ′

Y1(s)
(v′)

,

which is further bounded by

o(1) sup
0≤s≤T0

∥h(s)∥L∞
y,v

+ CmJsp,k∗, (2.66)

where η > 0 is chosen sufficiently small, and

Jsp,k∗ :=1{t1>0}

ˆ t1

0

ds e−ν0(t−s)

ˆ
M ′

Y1(s)
(v′)

dv′
∣∣h(s, Y1(s), v′)︸ ︷︷ ︸∣∣. (2.67)

Note that the o(1) coefficient in (2.66) depends on N and η but is independent of ε.
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We now apply the Duhamel principle and (2.55) to the under braced term in (2.67), considering the
backward trajectory starting from (s, Y1(s), v

′):

Jsp,k∗ = J0
sp,k∗ + Jk

sp,k∗ + Jg
sp,k∗ + Jsp

sp,k∗ + Jdi
sp,k∗, (2.68)

where

J0
sp,k∗ = 1{t1>0}1{t′1≤0}

ˆ t1

0

ds e−ν0(t̄−s)

ˆ
MY1(s)(v′)

dv′e−
´ s
0
ν(v′)dτ

∣∣h(0, Y (0; s, Y1(s), v
′), v′

)∣∣,
Jk
sp,k∗ = 1{t1>0}

ˆ t1

0

ds e−ν0(t̄−s)

ˆ
MY1(s)(v′)

dv′
ˆ s

max {0,t′1}
dτe−

´ s
τ
ν(v′)dτ

×
ˆ
R3

du kβ(v
′, u)

ω(v′)

ω(u)

∣∣h(τ, Y (τ ; s, Y1(s), v
′), u

)∣∣,
Jg
sp,k∗ = 1{t1>0}

ˆ t1

0

ds e−ν0(t̄−s)

ˆ
MY1(s)(v′)

dv′
ˆ s

max {0,t′1}
dτe−

´ s
τ
ν(v′)dτ

×
∣∣ε(ωḡ)(τ, Y (τ ; s, Y1(s), v

′), v′
)∣∣,

Jsp
sp,k∗ = 1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t̄−s)

ˆ
MY1(s)(v′)

dv′e
−
´ s
t′1

ν(v′)dτ ∣∣h(t′1, y′1, v′1)∣∣,
Jdi
sp,k∗ = 1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t̄−s)

ˆ
MY1(s)(v′)

dv′e
−
´ s
t′1

ν(v′)dτ
ˆ
n(y′

1)·u′∗
1 >0

∣∣h(t′1, y′1, u′∗1 )∣∣dσ′∗
1 .

The terms J0
sp,k∗ and Jg

sp,k∗ are bounded similarly to (2.60). The remaining terms Jsp
sp,k∗, J

k
sp,k∗ and Jdi

sp,k∗
will be estimated in the following Steps 1.1.1–1.1.3.
Step 1.1.1. Estimate of Jsp

sp,k∗.

For (s, Y1(s), v
′) with 0 ≤ t′1 ≤ s < t1 < t̄ ≤ T0, Y1(s) ∈ Ω̄ε and v′ ∈ MY1(s)(v

′), similarly as (2.61),
Lemma 2.2 ensures that the specular backward trajectory starting from (s, Y1(s), v

′) reaches the initial plane
{t̄ = 0} after the first collision at (y′1, v

′
1). Thus,

Jsp
sp,k∗ = Jsp,0

sp,k∗ + Jsp,g
sp,k∗ + Jsp,k

sp,k∗, (2.69)

where

Jsp,0
sp,k∗ =1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t̄−s)

ˆ
MY1(s)(v′)

dv′

× e
−
´ s
t′1

ν(v′)dτ
e−
´ t′1
0 ν(v′

1)dτ
∣∣h(0, Y (0; t′1, y

′
1, v

′
1), v

′
1

)∣∣,
Jsp,g
sp,k∗ =1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t̄−s)

ˆ
MY1(s)(v′)

dv′

× e
−
´ s
t′1

ν(v′)dτ
ˆ t′1

0

dτ e−
´ t′1
τ

ν(v′
1)dτ

′ ∣∣ε(ωḡ)(τ, Y (τ ; t′1, y
′
1, v

′
1), v

′
1

)∣∣,
Jsp,k
sp,k∗ =1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t̄−s)

ˆ
MY1(s)(v′)

dv′e
−
´ s
t′1

ν(v′)dτ
ˆ t′1

0

dτ

× e−
´ t′1
τ

ν(v′
1)dτ

′
ˆ
R3

dũ kβ(v
′
1, ũ)

ω(v′1)

ω(ũ)

∣∣h(τ, Y (τ ; t′1, y
′
1, v

′
1), ũ

)∣∣.
The terms Jsp,0

sp,k∗ and Jsp,g
sp,k∗ are estimated similarly to (2.60). For Jsp,k

sp,k∗, we proceed as in Step 1.1: bound

the kernel by kβ̃(V
′, ũ), decompose it as [kβ̃(V

′, ũ) − kN (V ′, ũ)] + kN (V ′, ũ), and split the time interval

[0, t′1] = [0, t′1 − δ] ∪ [t′1 − δ, t′1]. This yields

Jsp,k
sp,k∗ ≲ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ Jsp,k∗
sp,k∗ , (2.70)

where

Jsp,k∗
sp,k∗ := 1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t−s)

ˆ
M ′

Y1(s)
(v′)

dv′

×
ˆ t′1−δ

0

dτ e−ν0(s−τ)

ˆ
|ũ|≤N

dũ
∣∣h(τ, Y (τ ; t′1, y

′
1, v

′
1), ũ

)︸ ︷︷ ︸ ∣∣.
(2.71)
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Now consider the change of variables:

v′ 7→ Y ′
1(τ) := Y (τ ; t′1, y

′
1, v

′
1) = y′1 + (τ − t′1)v

′
1. (2.72)

Since 0 < t′1 < s < t1 < t ≤ T0 and |v′| ≤ N , the relation

y′1 = Y (t′1; s, Y1(s), v
′) = Y1(s) + (t′1 − s)v′ (2.73)

implies that |(t′1 − s)v′| ≤ NT0. This further indicates that |y′1 − Y1(s)| must be bounded by NT0. While
y′1 ∈ ∂Ωε and εy′1 ∈ ∂Ω, so that εY1(s) ∈ Ω lies near the boundary ∂Ω, and thus

n(εY1(s)) =
∇xξ(εY1(s))

|∇xξ(εY1(s))|
,

where we used the fact that ∇xξ(εY1(s)) ̸= 0 near the boundary. It follows that

n(y′1) = n(εy′1) = n
(
εY1(s) + ε(t′1 − s)v′

)
= n(εY1(s)) +O(ε).

Thus, we derive

v′1 = Ry′
1
(v′
)
= v′ − 2[n(y′1) · v′] n(y′1) = v′ − 2

[
n(εY1(s)) · v′

]
n(εY1(s)) +O(ε). (2.74)

It follows from (2.72), (2.73) and (2.74) that

Y (τ ; t′1, y
′
1, v

′
1)

=Y1(s) + (t′1 − s)v′ +
[
(τ − s)− (t′1 − s)

]{
v′ − 2

[
n(εY1(s)) · v′

]
n(εY1(s))

}
+O(ε)

=Y1(s) + (τ − s)v′ + 2
[
(t′1 − s)− (τ − s)

][
n(εY1(s)) · v′

]
n(εY1(s)) +O(ε)

=Y1(s) + (τ − s)v′ + 2
[
(t′1 − s)− (τ − s)

][∇xξ(εY1(s)) · v′
]
∇xξ(εY1(s))

|∇xξ(εY1(s))|2
+O(ε).

(2.75)

We now compute the Jacobian entries:

∂Y (τ ; t′1, y
′
1, v

′
1)i

∂v′j
= (τ − s)δij + 2

[
(t′1 − s)− (τ − s)

]∂iξ(εY1(s)) ∂jξ(εY1(s))
|∇xξ(εY1(s))|2

+
2
[
∇xξ(εY1(s)) · v′

]
|∇xξ(εY1(s))|2

∂iξ(εY1(s))
∂(t′1 − s)

∂v′j
+O(ε)

:= (τ − s)δij + aij +O(ε), i, j = 1, 2, 3,

(2.76)

where ∂iξ =
∂ξ
∂xi

denotes the spatial derivative, with the notations

aij := bicj , bi := ∂iξ(εY1(s)),

cj := 2
[
(t′1 − s)− (τ − s)

] ∂jξ(εY1(s))

|∇xξ(εY1(s))|2
+

2
[
∇xξ(εY1(s)) · v′

]
|∇xξ(εY1(s))|2

∂(t′1 − s)

∂v′j
.

Elementary computations yield:

3∑
k=1

akk = 2
[
(t′1 − s)− (τ − s)

]
+

2
[
∇xξ(εY1(s)) · v′

]
|∇xξ(εY1(s))|2

[
∇v(t

′
1 − s) · ∇xξ(εY1(s))

]
,

detBij := det

(
aii aij
aji ajj

)
= det

(
bici bicj
bjci bjcj

)
= 0 for i ̸= j,

detC := det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 = det

 b1c1 b1c2 b1c3
b2c1 b2c2 b2c3
b3c1 b3c2 b3c3

 = 0.

From these relations and (2.76), we obtain

det
[
∇v′Y (τ ; t′1, y

′
1, v

′
1)
]

=(τ − s)3 + (τ − s)2
3∑

k=1

akk + (τ − s)

3∑
1≤i<j≤3

detBij + detC +O(ε), (2.77)

=− (τ − s)3 + 2(τ − s)2
{
(t′1 − s) +

[
∇xξ(εY1(s)) · v′

]
|∇xξ(εY1(s))|2

[
∇v′(t′1 − s) · ∇xξ(εY1(s))

]}
+O(ε).

Recall that y′1 ∈ ∂Ωε, εy
′
1 ∈ ∂Ω and εY1(s) is near the boundary ∂Ω. Since 1

2Cξ1 ≤ |∇xξ(x)| ≤ 2Cξ2 for x

near the boundary ∂Ω, we have 1
4Cξ1 ≤ |∇xξ(εY1(s))| ≤ 4Cξ2 . It follows that∣∣[v′ · ∇xξ(εY1(s))

]∣∣ = |∇xξ(εY1(s))|
∣∣[v′ · n(εY1(s))]∣∣ = |∇xξ(εY1(s))|

∣∣[v′ · n(Y1(s))]∣∣ ≥ ηCξ1

4
,
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where we have used the condition |v′ · n(Y1(s))| ≥ η. From the expansion

0 = ξ
(
εy′1
)
= ξ
(
εY1(s) + ε(t′1 − s)v′

)
= ξ(εY1(s)) + ε(t′1 − s)

[
∇xξ(εY1(s)) · v′

]
+O(ε2),

we take the partial derivative ∂v′
j
:

(t′1 − s)∂jξ(εY1(s)) +
∂(t′1 − s)

∂v′j

[
∇xξ(εY1(s)) · v′

]
+O(ε) = 0, j = 1, 2, 3.

Taking inner product with ∇xξ(εY1(s)) yields

(t′1 − s)|∇xξ(εY1(s))|2 +
[
∇xξ(εY1(s)) · v′

][
∇v′(t′1 − s) · ∇xξ(εY1(s))

]
= O(ε).

It follows that

(t′1 − s) +

[
∇xξ(εY1(s)) · v′

]
|∇xξ(εY1(s))|2

[
∇v′(t′1 − s) · ∇xξ(εY1(s))

]
= O(ε). (2.78)

Since 0 < τ ≤ t′1 − δ < t′1 < s < t < T0, we have s − τ > t′1 − τ ≥ δ. Combining (2.77) and (2.78), we
obtain the lower bound for the Jacobian:∣∣det∇v′Y (τ ; t′1, y

′
1, v

′
1)
∣∣ ≳ |s− τ |3 +O(ε) ≥ 1

2
δ3,

for sufficiently small ε ≤ ε1. Note that this lower bound is independent of ε.
Integrating over time first and using |h(ũ)| = ω(ũ)|f̄(ũ)| ≲N ω−1|f̄(ũ)| for |ũ| ≤ N , we have

Jsp,k∗
sp,k∗ ≲ sup

0≤τ≤s−δ<s≤t1

ˆ
|v′|≤N

ˆ
|ũ|≤N

∣∣h(τ, Y (τ ; t′1, y
′
1, v

′
1), ũ

)∣∣dũdv′
≲ sup

0≤τ≤s−δ<s≤t1

ˆ
|v′|≤N

ˆ
|ũ|≤N

∣∣ω−1Pf̄
(
τ, Y (τ ; t′1, y

′
1, v

′
1), ũ

)∣∣⟨ũ⟩2√µ(ũ)dũdv′
+ sup

0≤τ≤s−δ<s≤t1

ˆ
|v′|≤N

ˆ
|ũ|≤N

∣∣ω−1(I−P)f̄
(
τ, Y (τ ; t′1, y

′
1, v

′
1), ũ

)∣∣dũdv′
:= Jsp,k∗,1

sp,k∗ + Jsp,k∗,2
sp,k∗ .

(2.79)

For Pf̄ contribution Jsp,k∗,1
sp,k∗ ,

Jsp,k∗,1
sp,k∗ ≲N sup

0≤τ≤s−δ<s≤t1

[ ˆ
v′

∥∥ω−1Pf̄
(
τ, Y (τ ; t′1, y

′
1, v

′
1)
)∥∥6

L6(R3
ũ)
dv′
]1/6

≲N sup
0≤τ≤T0

[ ˆ
Ωε

∥∥ω−1Pf̄
(
τ, y
)∥∥6

L6(R3
ũ)

2

δ3
dy
]1/6

≲N sup
0≤τ≤T0

∥ω−1Pf̄(τ)∥L6(Ωε×R3).

(2.80)

For (I−P)f̄ contribution Jsp,k∗,2
sp,k∗ ,

Jsp,k∗,2
sp,k∗ ≲N sup

0≤τ<s−δ<s≤t1

[¨ ∣∣ω−1(I−P)f̄
(
τ, Y (τ ; t′1, y

′
1, v

′
1), ũ

)∣∣2dv′dũ]1/2
≲N sup

0≤τ≤T0

[¨
Ωε×R3

∣∣ω−1(I−P)f̄
(
τ, y, ũ

)∣∣2 2

δ3
dydũ

]1/2
≲N sup

0≤τ≤T0

∥ω−1(I−P)f̄(τ)∥L2(Ωε×R3).

(2.81)

Collecting (2.70), (2.79)–(2.81), we obtain

Jsp
sp,k∗ ≲ e−

ν0
2 t̄∥h0∥L∞

y,v
+ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ sup
0≤s≤T0

∥ω−1Pf̄(s)∥L6
y,v

+ sup
0≤s≤T0

∥ω−1(I−P)f̄(s)∥L2
y,v

+ ε sup
0≤s≤T0

∥⟨v⟩−1
ωḡ(s)∥L∞

y,v
.

(2.82)

Step 1.1.2. Estimation of Jk
sp,k∗.

We decompose the kernel in Jk
sp,k∗ similarly to (2.64), where the first term contributes at most (cf. (2.66))

o(1) sup0≤s≤T0
∥h(s)∥L∞

y,v
. For the second term, we split the time integration:

ˆ s

s−δ

+

ˆ s−δ

max{0,t′1}
:= Jk,1

sp,k∗ + Jk,2
sp,k∗, (2.83)
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where Jk,1
sp,k∗ is bounded by δ sup0≤s≤T0

∥h(s)∥L∞
y,v

due to the small-time truncation. The second term Jk,2
sp,k∗

in (2.83) satisfies

Jk,2
sp,k∗ ≲

ˆ t1

0

ds

ˆ
M ′

Y1(s)
(v′)

dv′
ˆ s−δ

0

dτ e−ν0(t−τ)

ˆ
|u|≤N

du
∣∣h(τ, Y (τ ; s, Y1(s), v

′), u
)∣∣. (2.84)

Consider the change of variables

v′ 7→ y := Y (τ ; s, Y1(s), v
′) = Y1(s) + (τ − s)v′.

Since τ ≥ 0, the trajectory Y (τ ; s, Y1(s), v
′) does not collide with the boundary ∂Ωε. Then, for 0 ≤ τ ≤

s− δ < s, we compute∣∣det [∇v′Y (τ ; s, Y1(s), v
′)
]∣∣ = |s− τ |3

∣∣det (δij +O(ε3)
)∣∣ ≥ 1

2
δ3.

Deducing similarly as (2.79)–(2.81) and collecting (2.83) and (2.84), we obtain

Jk
sp,k∗ ≲ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ sup
0≤s≤T0

∥ω−1Pf̄(s)∥L6
y,v

+ sup
0≤s≤T0

∥ω−1(I−P)f̄(s)∥L2
y,v
. (2.85)

Step 1.1.3. Estimate of Jdi
sp,k∗.

Similarly to (2.26), we partition the integration domain {n(y′1) · u′∗1 > 0} = A′∗
1 (u

′∗
1 )∪A′∗

2 (u
′∗
1 )∪M ′∗

y′
1
(u′∗),

whereM ′∗
y′
1
(u′∗) := {|u′∗1 | ≤ N, n(y′1) ·u′∗1 ≥ η}. The set A′∗

1 (u
′∗
1 ) and A

′∗
2 (u

′∗
1 ) yield small contribution, similar

to (2.28). Thus,

Jdi
sp,k∗ ≲ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ Jdi∗
sp,k∗, (2.86)

where the bulk Jdi∗
sp,k∗ is given by

Jdi∗
sp,k∗ =1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t−s)

ˆ
|v′|≤N

dv′e−ν0(s−t′1)

ˆ
M ′∗

y′
1
(u′∗

1 )

∣∣h(y′1, u′∗1 )∣∣dσ′∗
1 .

Let (y′1, u
′∗
1 ) ∈ ∂Ωε ×M ′∗

y′
1
(u′∗) be given. Lemma 2.3 ensures that the backward trajectory starting from

(y′1, u
′∗
1 ) undergoes no further collisions. Thus, Jdi∗

sp,k propagates back to the initial plane {t̄ = 0}:

Jdi∗
sp,k∗ = Jdi∗,0

sp,k∗ + Jdi∗,g
sp,k∗ + Jdi∗,k

sp,k∗, (2.87)

where

Jdi∗,0
sp,k∗ = 1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t−s)

ˆ
|v′|≤m

dv′e−ν0(s−t′1)

ˆ
M ′∗

y′
1
(u′∗

1 )

dσ′∗
1

× e−
´ t′1
0 ν(u′∗

1 )dτh
(
0, Y (0; t′1, y

′
1, u

′∗
1 ), u

′∗
1

)
,

Jdi∗,g
sp,k∗ = 1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t−s)

ˆ
|v′|≤m

dv′e−ν0(s−t′1)

ˆ
M ′∗

y′
1
(u′∗)

dσ′∗
1

×
ˆ t′1

0

dτe−
´ t′1
τ

ν(u′∗
1 )dτ ′

ε
(
ωḡ
)(
τ, Y (τ ; t′1, y

′
1, u

′∗
1 ), u

′∗
1

)
,

Jdi∗,k
sp,k∗ = 1{t1>0}1{t′1>0}

ˆ t1

0

ds e−ν0(t−s)

ˆ
|v′|≤m

dv′e−ν0(s−t′1)

ˆ
M ′∗

y′
1
(u′∗)

dσ′∗
1

×
ˆ t′1

0

dτe−
´ t′1
τ

ν(u′∗
1 )dτ ′

ˆ
R3

dũkβ(u
′∗
1 , ũ)

ω(u′∗1 )

ω(ũ)
h
(
Y (τ ; t′1, y

′
1, u

′∗
1 ), ũ

)
.

The terms Jdi∗,0
sp,k∗ and Jdi∗,g

sp,k∗ are estimated similarly to (2.60). For Jdi∗,k
sp,k∗, we follow the approach used for

Jk
sp,k∗: bound and decompose the kernel by kβ̃(u

′∗
1 , ũ), and split the time interval [0, t′1] = [0, t′1−δ]∪[t′1−δ, t′1].

To handle the integration on [0, t′1 − δ], consider the change of variables:

u′∗1 7→ Y (τ ; t′1, y
′
1, u

′∗
1 ) = y′1 + (τ − t′1)u

′∗
1 .

For 0 ≤ τ ≤ t′1 − δ, we compute∣∣ det [∇u′∗
1
Y (τ ; t′1, y

′
1, u

′∗
1 )
]∣∣ = |t′1 − τ |3 ≥ δ3.
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Following the same argument as (2.79)–(2.85), and combining (2.86) and (2.87), we obtain

Jdi
sp,k∗ ≲ e−

ν0
2 t̄∥h0∥L∞

y,v
+ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ ε sup
0≤s≤T0

∥⟨v⟩−1
ωḡ(s)∥L∞

y,v

+ sup
0≤s≤T0

∥ω−1Pf̄(s)∥L6
y,v

+ sup
0≤s≤T0

∥ω−1(I−P)f̄(s)∥L2
y,v
.

(2.88)

Finally, we collect (2.66), (2.68), (2.82), (2.85) and (2.88) in Steps 1.1.1–1.1.3 to get

|Jsp(t̄, y, v)| ≲ e−
ν0
2 t̄∥h0∥L∞

y,v
+ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ sup
0≤s≤T0

∥ω−1Pf̄(s)∥L6
y,v

+ sup
0≤s≤T0

∥ω−1(I−P)f̄(s)∥L2
y,v

+ ε sup
0≤s≤T0

∥⟨v⟩−1
ωḡ(s)∥L∞

y,v
.

(2.89)

Step 1.2. Estimate of Jk(t̄, y, v).
For Jk(t̄, y, v) in (2.59), the backward trajectory does not collide with the boundary ∂Ωε. Following

the same approach as in the estimation of Jsp,k(t̄, y, v) in Step 1.1, we partition the integration domain

R3 = A1(u) ∪A2(u) ∪ M̂Y (s)(u), where A1(u) and A2(u) yield the small term o(1) sup0≤s≤T0
∥h(s)∥L∞

y,v
and

the bulk set is defined by

M̂Y (s)(u) :=
{
u ∈ R3 : |u| ≤ N and

∣∣∣u · ∇xξ(εY (s))

|∇xξ(εY (s))|

∣∣∣ ≥ η
}
.

For M̂Y (s)(u), we apply the Duhamel principle to the integrand h(s, Y (s), u) in Jk(t, y, v), obtaining an
expression similar to (2.68). Following the same estimation procedure as in (2.68) in Step 1.1, we finally
obtain

|Jk(t, y, v)| ≲ e−
ν0
2 t̄∥h0∥L∞

y,v
+ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ sup
0≤s≤T0

∥ω−1Pf̄(s)∥L6
y,v

+ sup
0≤s≤T0

∥ω−1(I−P)f̄(s)∥L2
y,v

+ ε sup
0≤s≤T0

∥⟨v⟩−1
ωḡ(s)∥L∞

y,v
.

(2.90)

Step 1.3. Estimate of Jdi(t, y, v).
Following the approach used for estimating Jdi

sp,k∗, we partition the integration domain {n(y1) · v∗1 > 0} =

A∗
1(v

∗
1) ∪ A∗

2(v
∗
1) ∪M∗

y1
(v∗1), where M

∗
y1
(v∗1) := {|v∗1 | ≤ N, n(y1) · v∗1 ≥ η}. The contributions from A∗

1(v
∗
1)

and A∗
2(v

∗
1) yield small term. Thus, Jdi(t, y, v) is bounded by

|Jdi(t̄, y, v)| ≲ o(1) sup
0≤s≤T0

∥h(s)∥L∞
y,v

+ Jdi∗(t̄, y, v),

where

Jdi∗(t̄, y, v) := 1{t1>0} e
−ν0(t−t1)

ˆ
M∗

y1
(v∗

1 )

∣∣h(t1, y1, v∗1)∣∣dv∗1 .
For (y1, v

∗
1) ∈ ∂Ωε × M∗

y1
(v∗1), Lemma 2.3 ensures that the backward trajectory starting from (y1, v

∗
1) ∈

My1
(v∗1) propagates back to the initial plane {t̄ = 0}. Thus,

Jdi∗(t̄, y, v) = J0
di∗ + Jg

di∗ + Jk
di∗,

where

J0
di∗ = 1{t1>0}e

−ν0(t−t1)

ˆ
M∗

y1
(v∗

1 )

dv∗1e
−
´ t1
0 ν(v∗

1 )dτh
(
0, Y (0; t1, y1, v

∗
1), v

∗
1

)
,

Jg
di∗ = 1{t1>0}e

−ν0(t−t1)

ˆ
M∗

y1
(v∗

1 )

dv∗1

ˆ t1

0

dse−
´ t1
0 ν(v∗

1 )dτε
(
ωḡ
)(
Y (s; t1, y1, v1), v1

)
,

Jk
di∗ = 1{t1>0}e

−ν0(t−t1)

ˆ
M∗

y1
(v∗

1 )

dv∗1e
−
´ t1
0 ν(v∗

1 )dτ

ˆ
R3

dv′ kβ(v
∗
1 , v

′)
ω(v∗1)

ω(v′)

∣∣h(Y (s; t1, y1, v
∗
1), v

′)
∣∣.

The terms J0
di∗ and Jg

di∗ are estimated similarly to (2.60). The term Jk
di∗ is estimated by the change of

variable v∗1 7→ Y (s; t1, y1, v
∗
1), similar to the approach used for Jdi∗,k

sp,k∗ in Step 1.1.3. We conclude

|Jdi(t, y, v)| ≲ e−
ν0
2 t̄∥h0∥L∞

y,v
+ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ sup
0≤s≤T0

∥ω−1Pf̄(s)∥L6
y,v

+ sup
0≤s≤T0

∥ω−1(I−P)f̄(s)∥L2
y,v

+ ε sup
0≤s≤T0

∥⟨v⟩−1
ωḡ(s)∥L∞

y,v
.

(2.91)
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Finally, combining (2.58), (2.60), (2.89), (2.90) and (2.91) in Steps 1.1–1.3, we obtain the following estimate
for h(t̄, y, v) restricted on M(y, v):∥∥h(t̄, y, v)1M(y,v)

∥∥
L∞

y,v
≲ e−

ν0
2 t̄ ∥h0∥L∞

y,v
+ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ sup
0≤s≤T0

∥∥ω−1Pf̄(s)
∥∥
L6

y,v

+ sup
0≤s≤T0

∥∥ω−1(I−P)f̄(s)
∥∥
L2

y,v
+ ε sup

0≤s≤T0

∥∥∥⟨v⟩−1
wḡ(s)

∥∥∥
L∞

y,v

.
(2.92)

Step 2. Estimate of h(t̄, y, v).
Apply the semigroup representation from Lemma 2.4 and the Duhamel principle to (2.2):

h(t̄, y, v) = G(t̄)h0(y, v) +

ˆ t̄

0

G(t̄− s) [εωḡ (s, Y (s), v)] ds

+

ˆ t̄

0

G(t̄− s)
[ ˆ

R3

kβ(v, u)
ω(v)

ω(u)
h
(
s, Y (s), u

)
du
]
ds.

(2.93)

Applying the semigroup estimate (2.18) from Lemma 2.4, we derive:

∥h(t̄)∥L∞
y,v

≤ (2C∗ + 1)e−
ν0
2 t̄∥h0∥L∞

y,v
+ (2C∗ + 1)

ˆ t̄

0

e−
ν0
2 (t̄−s)∥εwḡ(s)∥L∞

y,v
ds

+ (2C∗ + 1)

ˆ t̄

0

e−
ν0
2 (t̄−s) sup

y,v

∣∣∣ˆ
R3

kβ̃

(
v, u
)∣∣h(s, Y (s), u

)∣∣du︸ ︷︷ ︸
:=I(s;t̄,y,v)

∣∣∣ds, (2.94)

where we have used the kernel bound (2.63).
We decompose the integral I(s; t̄, y, v) into two parts:

I(s; t̄, y, v) =

ˆ
R3

kβ̃

(
v, u
)
h
(
s, Y (s), u

) {
1− 1M(Y (s),u)

}
du

+

ˆ
R3

kβ̃

(
v, u
)
h
(
s, Y (s), u

)
1M(Y (s),u)du

:= I1(s; t̄, y, v) + I2(s; t̄, y, v).

By the definition of M(Y (s), u) in (2.56), the first term I1(s; t̄, y, v) is bounded by

∥I1(s; t̄, y, v)∥L∞
y,v

≲
(ˆ

|u|>N

|kβ̃

(
v, u
)
|du+

ˆ
|u· ∇xξ(εY (s))

|∇xξ(εY (s))| |<η

|kβ̃

(
v, u
)
|du
)
∥h(s)∥L∞

y,v

≲o(1) sup
0≤s≤T0

∥h(s)∥L∞
y,v
,

(2.95)

where we have used the compact support approximation of kβ̃ by kN as in (2.64). For the second term

I2(s; t̄, y, v), we apply the estimate (2.92) to obtain

∥I2(s; t̄, y, v)∥L∞
y,v

≲ e−
ν0
2 s∥h0∥L∞

y,v
+ o(1) sup

0≤s≤T0

∥h(s)∥L∞
y,v

+ sup
0≤s≤T0

∥ω−1Pf̄(s)∥L6
y,v

+ sup
0≤s≤T0

∥ω−1(I−P)f̄(s)∥L2
y,v

+ ε sup
0≤s≤T0

∥⟨v⟩−1
ωḡ(s)∥L∞

y,v
.

(2.96)

Substituting (2.95) and (2.96) into (2.94), we thus prove the claim (2.53).
The estimate (2.54) can be proved in a similar way to (2.53). The main difference lies in the change of

variables analogous to (2.79)–(2.81): here we directly use the norm ∥f̄(s̄)∥L2
y,v(Ωε×R3), without splitting f̄

into Pf̄ and (I−P)f̄ . We skip the details for brevity. This completes the proof. □

3. Strong Limit for the Case ε ≲ α ≤ 1

This section studies the perturbation equation (1.17) and presents the proof of Theorem 1.1. The proof
relies on Propositions 1.2 and 1.3, which are established first.
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3.1. Energy Estimate.

In this subsection, we derive the basic energy estimates for the fluctuation f and its time derivative ∂tf .

Proposition 3.1. Let f ∈ L2([0, T ]× Ω× R3) be a solution of (1.17) with 0 < T ≤ ∞. Then the following
energy estimates hold for all t ∈ [0, T ]:

∥f(t)∥2L2
x,v

+
1

ε2

ˆ t

0

∥(I−P)f∥2L2
x,v(ν)

ds+

ˆ t

0

(
|Pγf |2L2

γ+

+
α

ε
|(1− Pγ)f |2L2

γ+

)
ds

≲ ∥f0∥2L2
x,v

+ ε

ˆ t

0

∥ν− 1
2Γ(f, f)∥2L2

x,v
ds+ η

ˆ t

0

∥Pf∥2L2
x,v

ds, (3.1)

∥∂tf(t)∥2L2
x,v

+
1

ε2

ˆ t

0

∥(I−P)∂tf∥2L2
x,v(ν)

ds+

ˆ t

0

(
|Pγ∂tf |2L2

γ+

+
α

ε
|(1− Pγ)∂tf |2L2

γ+

)
ds

≲ ∥∂tf0∥2L2
x,v

+ ε

ˆ t

0

[
∥ν− 1

2Γ(∂tf, f)∥2L2
x,v

+ ∥ν− 1
2Γ(f, ∂tf)∥2L2

x,v

]
ds+ η

ˆ t

0

∥P∂tf∥2L2
x,v

ds, (3.2)

where 0 < η ≪ min{1, λ4 } is a sufficiently small constant with λ defined in (1.15).

Proof. Standard L2 energy estimate for (1.17) gives

ε
1

2
∂t ∥f(t)∥2L2

x,v
+

1

2

¨
∂Ω×R3

f2[n · v]dvdSx +
1

ε

¨
Ω×R3

fLfdvdx =

¨
Ω×R3

Γ(f, f)fdvdx.

Using the Maxwell boundary condition and the change of variables Rxv 7→ v, we obtain¨
∂Ω×R3

f2[n · v]dvdSx =

¨
γ+

f2dγ −
¨

γ+

[
(1− α)(1− Pγ)f + Pγf

]2
dγ

=

¨
γ+

f2dγ −
¨

γ+

[
(1− α)2|(1− Pγ)f |2 + |Pγf |2

]
dγ

= α(2− α)

¨
γ+

|(1− Pγ)f |2dγ,

where we have used the orthogonal decomposition

f = (1− Pγ)f + Pγf on L2
γ+
, |f |2L2

γ+

= |Pγf |2L2
γ+

+ |(1− Pγ)f |2L2
γ+

. (3.3)

By Hölder’s inequality and the coercivity of L, we derive

∥f(t)∥2L2
x,v

+
1

ε2

ˆ t

0

∥(I−P)f∥2L2
x,v(ν)

ds+
α

ε

ˆ t

0

|(1− Pγ)f |2L2
γ+

ds

≲ ∥f0∥2L2
x,v

+

ˆ t

0

∥ν− 1
2Γ(f, f)∥2L2

x,v
ds.

(3.4)

Define the non-grazing set

γδ± :=
{
(x, v) ∈ γ± : |n(x) · v| > δ, δ ≤ |v| ≤ 1

δ

}
. (3.5)

Note that
˜

γ+\γδ
+
µdγ ≲ o(δ), which implies

ˆ
γ+\γδ

+

|Pγf |2 dγ ≲ o(δ)

¨
γ+

|Pγf |2 dγ.

Applying the trace lemma (cf. Lemma 3.2 in [22]) to the non-grazing part, we obtainˆ t

0

¨
γ+

|Pγf |2 dγds ≲ δ

ˆ t

0

¨
γ+

|(1− Pγ)f |2 dγds+
ˆ t

0

¨
γδ
+

|f |2 dγds

≲
ˆ t

0

¨
γ+

|(1− Pγ)f |2 dγds+ ε

¨
Ω×R3

|f0|2 dvdx+

ˆ t

0

¨
Ω×R3

|f(s)|2 dvdxds

+

ˆ t

0

¨
Ω×R3

∣∣(Γ(f, f)− ε−1Lf)f
∣∣dvdxds

≲
ˆ t

0

|(1− Pγ)f |2L2
γ+

ds+ ε ∥f0∥2L2
x,v

+

ˆ t

0

∥f∥2L2
x,v

ds+
1

ε

ˆ t

0

∥(I−P)f∥2L2
x,v(ν)

ds

+ ε

ˆ t

0

∥∥∥ν− 1
2Γ(f, f)

∥∥∥2
L2

x,v

ds.

(3.6)
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Multiplying (3.6) by a sufficiently small constant 0 < η ≪ min{1, λ4 } and adding to (3.4), we obtain (3.1).
The estimate (3.2) follows by applying the same procedure to the equation for ∂tf . We omit the details

for brevity. □

3.2. Macroscopic L2 and L6 Estimates.

This subsection establishes macroscopic L2 and L6 estimates and proves Proposition 1.2.
By virtue of (1.37), the coefficient a(t, x) of Pf satisfies the zero-mean conditionˆ

Ω

a(t, x)dx = 0, ∀t ∈ [0, T ]. (3.7)

Note that b and c do not satisfy the zero-mean condition due to the lack of conservation laws of angular
momentum and energy for f . Define the Burnett functions:

Aij(v) :=
(
vivj −

δij
3

|v|2
)√

µ, Bi(v) := vi
|v|2 − 5√

10

√
µ, i, j = 1, 2, 3. (3.8)

For each i, j = 1, 2, 3, Aij(v) and Bi(v) are orthogonal to every basis element χk of kerL:ˆ
R3

χk(v)Aij(v)dv = 0,

ˆ
R3

χk(v)Bi(v)dv = 0, k = 0, · · · , 4. (3.9)

Proof of Proposition 1.2. The proof relies on the test function method [21, 22] and elliptic theory.
Multiplying (1.17) by a test function ψp,q, we obtain

ε

¨
Ω×R3

ψp,q∂tfdvdx︸ ︷︷ ︸
:=Ξ1

p,q

+

¨
γ+

ψp,qfdγ −
¨

γ−

ψp,qfdγ︸ ︷︷ ︸
:=Ξ2

p,q

−
¨

Ω×R3

(v · ∇xψp,q)fdvdx︸ ︷︷ ︸
:=Ξ3

p,q

=

¨
Ω×R3

[
ε−1ψp,qLf + ψp,qΓ(f, f)

]
dvdx︸ ︷︷ ︸

:=Ξ4
p,q

.

(3.10)

Here the temporary index p ∈ {a, b, c} marks estimates of a, b and c, and q ∈ {2, 6} indicates the norms
∥ · ∥L2

x,v
and ∥ · ∥L6

x,v
.

To estimate Pf , by the representation (1.21), it suffices to estimate a, b and c.

Step 1. Estimates for a.

Step 1.1. Estimates for
´ t
s
∥a∥L2

x
dτ and ∥a∥L6

x
.

In (3.10), we consider the test function

ψa,q(t, x, v) :=

3∑
i=1

∂iφa,q(t, x)
[√

10Bi(v)− 5χi(v)
]
, q ∈ {2, 6},

where φa,2(x) and φa,6(x) are solutions to the elliptic equations

−∆xφa,2 = a in Ω, ∂nφa,2 = 0 on ∂Ω,

ˆ
Ω

φa,2dx = 0, (3.11)

−∆φa,6 = a5 − 1

|Ω|

ˆ
Ω

a5dx, in Ω, ∂nφa,6 = 0 on ∂Ω,

ˆ
Ω

φa,6dx = 0, (3.12)

respectively. By (3.7), Lemma C.5 guarantees unique solutions φa,2 and φa,6 satisfying∥∥∇2φa,2

∥∥
L2

x
+ ∥∇φa,2∥L2

x
+ ∥φa,2∥L2

x
≲ ∥a∥L2

x
, (3.13)∥∥∇2φa,6

∥∥
L

6
5
x

+ ∥∇φa,6∥L2
x
+ ∥φa,6∥L6

x
≲
∥∥a5∥∥

L
6
5
x

= ∥a∥5L6
x
. (3.14)

We now estimate each term in (3.10). For Ξ1
a,2, integration by parts yields

ˆ t

s

Ξ1
a,2dτ = ε

[
Ga(t)−Ga(s)

]
− ε

ˆ t

s

¨
Ω×R3

∂t
(
ψa,2

)
f.

By Hölder’s inequality and (3.11), Ga(t) is bounded by ∥f(t)∥2L2
x,v

. Moreover,
¨

Ω×R3

∂t
(
ψa,2

)
f ≲ ∥∂t∇xφa,2∥L2

x

(
∥b∥L2

x
+ ∥(I−P)f∥L2

x,v

)
, (3.15)
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since contribution from a and c vanish due to the factˆ
R3

[√
10Bi(v)− 5χi(v)

]
χj(v)dv =

ˆ
R3

vi(|v|2 − 10)
√
µχj(v)dv = −5δij

for i = 1, 2, 3 and j = 0, · · · , 4. Thus, we obtainˆ t

s

∣∣Ξ1
a,2

∣∣ ≤ε [Ga(t)−Ga(s)] + ε

ˆ t

s

∥∂t∇xφa,2∥L2
x

(
∥b∥L2

x
+ ∥(I−P)f∥L2

x,v

)
. (3.16)

For Ξ1
a,6, using (3.14), we have

∣∣Ξ1
a,6

∣∣ =ε∣∣∣ 3∑
i=1

¨
Ω×R3

∂iφa,6vi(|v|2 − 10)
√
µ∂tf

∣∣∣ ≲ ε ∥∂tf∥L2
x,v

∥a∥5L6
x
. (3.17)

For Ξ2
a,q (q ∈ {2, 6}), the condition ∂nφa,q|∂Ω = 0 implies R(ψa,q) = ψa,q. Thus, by the Maxwell boundary

condition and the change of variables Rxv 7→ v, we obtain

Ξ2
a,q =

¨
γ+

ψa,qfdγ −
¨

γ+

R
(
ψa,q

)(
(1− α)f + αPγf

)
dγ = α

¨
γ+

ψa,q(1− Pγ)fdγ, (3.18)

where we used (3.3). For Ξ2
a,2, applying the trace theorem and (3.13) gives∣∣Ξ2

a,2

∣∣ ≲ α |(1− Pγ)f |L2
γ+

|φa,2|L2(∂Ω) ≲α |(1− Pγ)f |L2
γ+

∥a∥L2
x
. (3.19)

For Ξ2
a,6, using (3.14) and interpolation, we derive∣∣Ξ2

a,6

∣∣ ≲α |(1− Pγ)f |L4
γ+

|∇xφa,6|
L

4
3 (∂Ω)

≲ α |(1− Pγ)f |
1
2

L2
γ+

∥ωf∥
1
2

L∞
x,v

∥a∥5L6
x
. (3.20)

where we used the Soboelv embedding ∥ϕ∥
L

4
3 (∂Ω)

≲ ∥ϕ∥
W 1, 6

5 (Ω)
(cf. [49]).

For Ξ3
a,q (q ∈ {2, 6}), direct computation gives

Ξ3
a,q =−

3∑
i,j=1

ˆ
Ω

∂i∂jφa,q

ˆ
R3

vivj(|v|2 − 10)
√
µ
[
Pf + (I−P)f

]
=

ˆ
Ω

5∆xφa,qa+ Ea,q, (3.21)

where the remainder Ea,q arises from the (I−P)f contribution, and we have usedˆ
R3

vivj(|v|2 − 10)
√
µχk(v) = 0,

ˆ
R3

vivj(|v|2 − 10)
√
µχ0(v) = −5δij (3.22)

for i, j = 1, 2, 3 and k = 1, 2, 3, 4. Using (3.11) and (3.12), we have

Ξ3
a,2 =

ˆ
Ω

5∆xφa,2adx+ Ea,2 = −5 ∥a∥2L2
x
+ Ea,2, (3.23)

Ξ3
a,6 =

ˆ
Ω

5∆xφa,6adx+ Ea,6 = −5 ∥a∥6L6
x
+ Ea,6. (3.24)

The remainders Ea,2 and Ea,6 are controlled via (3.13) and (3.14):

|Ea,2| ≲ ∥a∥L2
x
∥(I−P)f∥L2

x,v
, |Ea,6| ≲ ∥a∥5L6

x
∥(I−P)f∥L6

x,v
. (3.25)

For Ξ4
a,q, by Hölder’s inequality and (3.13) and (3.14), we obtain∣∣Ξ4

a,2

∣∣ ≲(ε−1 ∥(I−P)f∥L2
x,v(ν)

+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥
L2

x,v

)
∥a∥L2

x
,∣∣Ξ4

a,6

∣∣ ≲(ε−1 ∥(I−P)f∥L2
x,v(ν)

+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥
L2

x,v

)
∥a∥5L6

x
.

(3.26)

Integrating (3.10) and combining (3.16), (3.19), (3.23), (3.25) and (3.26), we deriveˆ t

s

∥a∥2L2
x
≤ ε
[
Ga(t)−Ga(s)

]
+ α2

ˆ t

s

|(1− Pγ)f |2L2
γ+

+

ˆ t

s

∥∥ε−1(I−P)f
∥∥2
L2

x,v(ν)

+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥2
L2

x,v

+ ε

ˆ t

s

∥∂t∇φa,2∥L2
x

(
∥b∥L2

x
+ ∥(I−P)f∥L2

x,v

)
.

(3.27)

Combining (3.10), (3.17), (3.20), (3.24), (3.25) and (3.26), we obtain

∥a∥L6
x,v

≲ ε ∥∂tf∥L2
x,v

+ α |(1− Pγ)f |
1
2

L2
γ+

∥ωf∥
1
2

L∞
x,v

+
∥∥ε−1(I−P)f

∥∥
L2

x,v(ν)
+ ∥(I−P)f∥L6

x,v
+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥
L2

x,v

.
(3.28)

Step 1.2. Estimate for ∥∂t∇xφa,2∥L2
x
.
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In (3.10) we choose the test function ψa,2 = ∂tφa,2
√
µ and estimate each term. Clearly, Ξ4

a,2 = 0. By
(3.11), we have

Ξ1
a,2 = ε

ˆ
Ω

∂tφa,2∂ta = ε

ˆ
Ω

−∂tφa,2∆x(∂tφa,2) = ε ∥∇x∂tφa,2∥2L2
x
. (3.29)

Noting R(ψa,2) = ψa,2, by the change of variables as in (3.18), we have∣∣Ξ2
a,2

∣∣ ≲α |(1− Pγ)f |L2
γ+

|∂tφa,2|L2(∂Ω) ≲ α |(1− Pγ)f |L2
γ+

∥∇x∂tφa,2∥L2
x
, (3.30)

where we used the trace theorem and Poincaré’s inequality. By Hölder’s inequality,∣∣Ξ3
a,2

∣∣ =∣∣∣¨
Ω×R3

v · ∇x∂tφa,2
√
µf
∣∣∣ = ∣∣∣ˆ

Ω

∇x∂tφa,2 · bdx
∣∣∣ ≲ ∥b∥L2

x
∥∇x∂tφa,2∥L2

x
. (3.31)

Combining (3.10) with (3.29)–(3.31) gives

ε ∥∇x∂tφa,2∥L2
x
≲ ∥b∥L2

x
+ α |(1− Pγ)f |L2

γ+

. (3.32)

Finally, substituting (3.32) into (3.27), we obtainˆ t

s

∥a∥2L2
x
≤Ca

{
εGa(t)− εGa(s) + α2

ˆ t

s

|(1− Pγ)f |2L2
γ+

+

ˆ t

s

(
∥b∥L2

x
+
∥∥ε−1(I−P)f

∥∥2
L2

x,v(ν)
+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥2
L2

x,v

)}
.

(3.33)

Step 2. Estimate for b.

Because the estimates for
´ t
s
∥b∥L2

x
dτ and ∥b∥L6

x
require different test functions, we treat them separately.

Step 2.1. Estimate for
´ t
s
∥b∥L2

x
dτ .

In (3.10), we choose the test function

ψb,2(t, x, v) :=

3∑
i,j=1

∂jφb,2,iAij(v) +

3∑
i=1

∂iφb,2,iχ4(v)

√
6

6

=

3∑
i,j=1

∂jφb,2,ivivj
√
µ−

3∑
i=1

∂iφb,2,i
|v|2 − 1

2

√
µ.

(3.34)

Here the vector-valued function φb,2 satisfies the elliptic system

−∆xφb,2 = b in Ω, φb,2 = 0 on ∂Ω. (3.35)

Standard elliptic theory [25] ensures that (3.35) admits a unique solution satisfying∥∥∇2
xφb,2

∥∥
L2

x
+ ∥∇xφb,2∥L2

x
+ ∥φb,2∥L2

x
≲ ∥b∥L2

x
. (3.36)

We now estimate each term in (3.10). For Ξ1
b,2, integration by parts yields

ˆ t

s

Ξ1
b,2dτ = ε

[
Gb(t)−Gb(s)

]
− ε

ˆ t

s

¨
Ω×R3

∂tψb,2f,

where Gb(t) is bounded by ∥f(t)∥2L2
x,v

. The contributions from a and b varnish due to (3.9) and the identity´
R3 χ4fdv = c. Thus, by (3.36), we obtain∣∣∣∣ˆ t

s

Ξ1
b,2

∣∣∣∣ ≤ε[Gb(t)−Gb(s)
]
+ ε

ˆ t

s

∥∂t∇xφb,2∥L2
x

(
∥c∥L2

x
+ ∥(I−P)f∥L2

x,v

)
. (3.37)

For Ξ2
b,2, noting R(ψp,2) ̸= ψb,2, we apply the change of variables Rxv 7→ v to obtain

Ξ2
b,2 =

¨
γ+

ψp,2fdγ −
¨

γ+

R(ψp,2)[(1− α)f + αPγf ]dγ

=

¨
γ+

[ψp,2 − R(ψp,2)]Pγfdγ +

¨
γ+

[ψp,2 − (1− α)R(ψp,2)](1− Pγ)fdγ

:=I1 + I2,

(3.38)

where we used (3.3). For I1, using the change of variables Rxv 7→ v and (3.9), we have

I1 =

¨
γ+

ψp,2
√
µzdγ −

¨
γ−

ψp,2
√
µzdγ =

¨
∂Ω×R3

ψp,2
√
µz[n · v]dvdSx = 0, (3.39)
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where we used the notation z = z(t, x) :=
√
2π
´
n·v>0

f [n · v]dv and Pγf =
√
µz. For I2, we apply the trace

theorem and (3.36). Thus, we obtain∣∣Ξ2
b,2

∣∣ ≲ |(1− Pγ)f |L2
γ+

|∇xφb,2|L2(∂Ω) ≲ |(1− Pγ)f |L2
γ+

∥b∥L2
x
. (3.40)

To estimate Ξ3
b,2, we use the expression in the second line of (3.34) and split

−v · ∇xψb,2 =−
3∑

i,j,k=1

∂j∂kφb,2,iP (vivjvk
√
µ) +

3∑
i,k=1

∂i∂kφb,2,ivk
|v|2 − 1

2

√
µ

−
3∑

i,j,k=1

∂j∂kφb,2,i(I−P) (vivjvk
√
µ) := K1 +K2 +K3.

(3.41)

Direct calculation yields

K1 =−
3∑

i,j,k=1

∂j∂kφb,2,i

3∑
l=1

vl
√
µ
( ˆ

R3

vivjvkvlµdv
)

=−
3∑

l=1

vl
√
µ
( ∑

i=j,k=l

+
∑

i̸=j,i=k,j=l

+
∑

i̸=j,i=l,k=j

)
∂j∂kφb,2,i

ˆ
R3

vivjvkvlµdv,

(3.42)

where in the first equality we have used the identitiesˆ
R3

v2i v
2
jµdv =

{
3, if i = j,
1, if i ̸= j.

(3.43)

For each fixed l ∈ {1, 2, 3}, the inner sums in (3.42) are computed as:∑
i=j,k=l

=
(∑

i=l

+
∑
i̸=l

)
∂i∂lφb,2,i

ˆ
R3

v2i v
2
l µdv = 3

∑
i=l

∂i∂lφb,2,i +
∑
i̸=l

∂i∂lϕ
b
i ,

∑
i̸=j,i=k,j=l

=
∑
i̸=l

∂i∂lφb,2,i

ˆ
R3

v2i v
2
l µdv =

∑
i̸=l

∂i∂lφb,2,i,

∑
i̸=j,i=l,k=j

=
∑
i̸=l

∂i∂iφb,2,l

ˆ
R3

v2i v
2
l µdv =

∑
i̸=l

∂i∂iφb,2,l,

(3.44)

where we have used (3.43) again. Substituting these into (3.42) yields

K1 =−
3∑

l=1

vl
√
µ
(
3
∑
i=l

∂i∂lφb,2,i + 2
∑
i̸=l

∂i∂lφb,2,i +
∑
j ̸=l

∂j∂jφb,2,l

)
. (3.45)

This further leads to
¨

Ω×R3

K1Pf = −
3∑

l=1

ˆ
Ω

bl

(
3∂l∂lφb,2,l +

∑
i̸=l

∂i∂lφb,2,i +
∑
i̸=l

∂i∂lφb,2,i +
∑
j ̸=l

∂j∂jφb,2,l

)
. (3.46)

Moreover, direct calculation implies

¨
Ω×R3

K2Pf =

ˆ
Ω

(
2

3∑
l=1

bl∂l∂lφb,2,l + 2

3∑
i=1

∑
k ̸=i

bk∂k∂iφb,2,i

)
, (3.47)

where we have used ˆ
R3

v2i
|v|2 − 1

2
µdv = 2, i = 1, 2, 3.

Combining (3.41), (3.46) and (3.47), we obtain

Ξ3
b,2 =

¨
Ω×R3

(K1 +K2)Pfdvdx+ Eb,2

=−
3∑

l=1

ˆ
Ω

bl
(
∂l∂lφb,2,l +

∑
i̸=l

∂i∂iφb,2,l

)
dx+ Eb,2

=−
3∑

l=1

ˆ
Ω

bl∆xφb,2,ldx+ Eb,2 = ∥b∥2L2
x
+ Eb,2,

(3.48)
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where we used (3.35) and the orthogonality of Pf and KR. By (3.36),

|Eb,2| =
∣∣∣¨

Ω×R3

(K1 +K2 +KR)(I−P)fdvdx
∣∣∣ ≲ ∥(I−P)f∥L2

x,v
∥b∥L2

x
. (3.49)

The term Ξ4
b,2 is estimated as (3.26).

Integrating (3.10) and combining (3.37), (3.40), (3.48) and (3.49), we obtainˆ t

s

∥b∥2L2
x
≲ ε
[
Gb(t)−Gb(s)

]
+

ˆ t

s

|(1− Pγ)f |2L2
γ+

+

ˆ t

s

∥∥ε−1(I−P)f
∥∥2
L2

x,v(ν)

+

ˆ t

s

∥∥∥ν− 1
2Γ(f, f)

∥∥∥2
L2

x,v

+ ε

ˆ t

s

∥∂t∇xφb,2∥L2
x

(
∥c∥L2

x
+ ∥(I−P)f∥L2

x,v

)
.

(3.50)

Step 2.2. Estimate for ∥∂t∇xφb,2∥L2
x
.

In (3.10), we choose the test function ψb,2 = ∂tφb,2 · v
√
µ and estimate each term. Clearly, Ξ4

b,2 = 0. By

(3.35), we obtain

Ξ1
b,2 = ε

ˆ
Ω

∂tφb,2 · ∂tbdx = −ε
ˆ
Ω

∂tφb,2 ·∆x∂tφb,2dx = ε ∥∇x∂tφb,2∥2L2
x
. (3.51)

Similarly to (3.38)–(3.40), using the trace theorem and Poincaré’s inequality, we obtain∣∣Ξ2
b,2

∣∣ ≲ |(1− Pγ)f |L2
γ+

|∂tφb,2|L2(∂Ω) ≲ |(1− Pγ)f |L2
γ+

∥∇x∂tφb,2∥L2
x
. (3.52)

Elementary computation and Poincaré’s inequality yield∣∣Ξ3
b,2

∣∣ ≲ ∥∇x∂tφb,2∥L2
x

(
∥a∥L2

x
+ ∥c∥L2

x
+ ∥(I−P)f∥L2

x,v

)
. (3.53)

Collecting (3.10) and (3.51)–(3.53) yields

ε ∥∇x∂tφb,2∥L2
x
≲ ∥a∥L2

x
+ ∥c∥L2

x
+ ∥(I−P)f∥L2

x,v
+ |(1− Pγ)f |L2

γ+

. (3.54)

Finally, substituting (3.54) into (3.50), we obtainˆ t

s

∥b∥2L2
x
≤ Cb

{
ε
[
Gb(t)−Gb(s)

]
+

ˆ t

s

|(1− Pγ)f |2L2
γ+

+ δb

ˆ t

s

∥a∥2L2
x

+

ˆ t

s

(
∥c∥2L2

x
+
∥∥ε−1(I−P)f

∥∥2
L2

x,v(ν)
+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥2
L2

x,v

)}
,

(3.55)

where the small constant δb > 0 arises from Hölder’s inequality.

Step 2.3. Estimate for ∥b∥L6
x
.

Note that the estimate for ∥b∥L6
x,v

cannot be established simultaneously with
´ t
s
∥b∥L2

x,v
, since ε−

1
2 |(1− Pγ)f |L2

γ+

(as in (3.20)) exceeds the boundary dissipation α
1
2 ε−

1
2 |(1− Pγ)f |L2

γ+

in Proposition 3.1 when ε ≤ α < 1.

To overcome this, we estimate ∥Pf∥L6
x,v

separately by choosing a new test function.

In (3.10), we choose the test function

ψb,6(t, x, v) :=

3∑
i,j=1

∂jφb,6,iAij(v) +

3∑
i=1

∂iφb,6,iχ4(v)

√
6

3

=

3∑
i,j=1

∂jφb,6,ivivj
√
µ−

3∑
i=1

∂iφb,6,i
√
µ.

(3.56)

Here φb,6(t, x) = (φb,6,1(t, x), φb,6,2(t, x), φb,6,3(t, x)) satisfies the elliptic system

−div(∇s
xφb,6) = b5 −

∑ ´
Ω
Aix · b5dx´

Ω
|Aix|2 dx

Aix in Ω,

φb,6 · n = 0 on ∂Ω,

(∇s
xφb,6)n = (∇s

xφb,6 : n⊗ n)n on ∂Ω,

(3.57)

where Aix ∈ RΩ defined in (1.11), and b5 = (b51, b
5
2, b

5
3). For a vector field M = (mi)i=1,2,3 : Ω → R3, we

define the gradient ∇xM , the symmetric gradient ∇s
xM and the antisymmetric gradient ∇a

xM by

(∇xM)ij :=
∂mi

∂xj
, (∇s

xM)ij :=
1

2

(∂mi

∂xj
+
∂mj

∂xi

)
, (∇a

xM)ij := (∇xM)ij − (∇s
xM)ij . (3.58)

The inner product of two matrixes P = (pij)i,j=1,2,3 and Q = (qij)i,j=1,2,3 is defined by P : Q =
∑3

i,j=1 pijqij .
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For each j = 1, 2, 3, direct computation givesˆ
Ω

Ajx ·
(
b5 −

∑ ´
Ω
Aix · b5dx´

Ω
|Aix|2 dx

Aix
)
dx =

ˆ
Ω

Ajx · b5dx−
ˆ
Ω

Ajx · b5dx = 0, (3.59)

which verifies the compatibility condition (C.21) for the elliptic system (3.57) in all non-axisymmetric, ax-
isymmetric, and spherical domains. Thus, by Lemma C.6 and (3.59), the elliptic system (3.57) admits a
unique strong solution satisfying∥∥∇2

xφb,6

∥∥
L

6
5
x

+ ∥∇xφb,6∥L2
x
+ ∥φb,6∥L6

x
≲
∥∥b5∥∥

L
6
5
x

= ∥b∥5L6
x
. (3.60)

For Ξ1
b,6 and Ξ4

b,6, applying Hölder’s inequality and (3.60) directly yields∣∣Ξ1
b,6

∣∣ ≲ ε ∥∂tf∥L2
x,v

∥b∥5L6
x
,
∣∣Ξ4

b,6

∣∣ ≲(ε−1 ∥(I−P)f∥L2
x,v(ν)

+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥
L2

x,v

)
∥b∥5L6

x
. (3.61)

For Ξ2
b,6, the boundary condition (∇s

xφb,6)n = (∇s
xφb,6 : n⊗ n)n on ∂Ω implies

R
(
ψb,6(t, x, v)

)
− ψb,6(t, x, v)

=

3∑
i,j=1

∂jφb,6,i

[
Aij(Rxv)−Aij(v)

]
+

√
6

3

3∑
i=1

∂iφb,6,i

[
χ4(Rxv)− χ4(v)

]
=− 2(v · n)

3∑
i,j=1

∂jφb,6,i

[
vinj + nivj − 2(v · n)ninj

]
=− 2(v · n)

[ 3∑
k=1

vk

( 3∑
j=1

∂jφb,6,knj +

3∑
j=1

∂kφb,6,jnj − 2

3∑
i,j=1

∂jφb,6,ininjnk

)]
=− 4(v · n)

[
v ·
(
(∇s

xφb,6)n− (∇s
xφb,6 : n⊗ n)n

)]
= 0.

(3.62)

Thus, similar to (3.18) and (3.20), we derive∣∣Ξ2
b,6

∣∣ ≲ α |(1− Pγ)f |
1
2

L2
γ+

∥ωf∥
1
2

L∞
x,v

∥b∥5L6
x
. (3.63)

For Ξ3
b,6, using the expression in the second line of (3.56), we have

−v · ∇xψb,6 =−
3∑

i,j,k=1

∂j∂kφb,6,iP (vivjvk
√
µ) +

3∑
i,l=1

∂i∂lφb,6,ivl
√
µ

−
3∑

i,j,k=1

∂j∂kφb,6,i(I−P) (vivjvk
√
µ)

:=K̂1 + K̂2 + K̂R.

(3.64)

For K̂1, calculations similarly to (3.42)–(3.45) yield

K̂1 =−
3∑

l=1

vl
√
µ
(
3
∑
i=l

∂i∂lφb,6,i + 2
∑
i̸=l

∂i∂lφb,6,i +
∑
j ̸=l

∂j∂jφb,6,l

)
. (3.65)

Substituting (3.65) into (3.64) gives

− v · ∇xψb,6 = K̂1 + K̂2 + K̂3

=

3∑
l=1

vl
√
µ
[ 3∑

i=1

∂i∂lφb,6,i −
(
3
∑
i=l

∂i∂lφb,6,i + 2
∑
i̸=l

∂i∂lφb,6,i +
∑
i̸=l

∂i∂lφb,6,l

)]
+ K̂R

=

3∑
l=1

vl
√
µ
[
− 2

∑
i=l

∂i∂lφb,6,i −
∑
i̸=l

∂i∂lφb,6,i −
∑
i̸=l

∂i∂lφb,6,l

]
+ K̂R

=

3∑
l=1

vl
√
µ
[
−
(∑

i=l

∂i∂lφb,6,i +
∑
i̸=l

∂i∂lφb,6,i

)
−
(∑

i=l

∂i∂lφb,6,i +
∑
i̸=l

∂i∂iφb,6,l

)]
+ K̂R

=

3∑
l=1

vl
√
µ
[
− ∂l(divφb,6)−∆xφb,6,l

]
+ K̂R

=−√
µv · div

(
∇s

xφb,6

)
+ K̂R.

(3.66)
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Thus, using (3.57), we have

Ξ3
b,6 =

¨
Ω×R3

[
−√

µv · div
(
∇s

xφb,6

)
+ K̂R

][
Pf + (I−P)f

]
dvdx

=−
ˆ
Ω

b · div
(
∇s

xφb,6

)
dx+ Eb,6 = −

ˆ
Ω

b ·
(
b5 −

3∑
i=1

´
Ω
Aix · b5dx´

Ω
|Aix|2 dx

Aix
)
dx+ Eb,6

= ∥b∥6L6
x
+ Eb,6 + Fb,6.

(3.67)

The terms Eb,6 and Fb,6 are bounded via (3.60):

|Eb,6| ≲ ∥(I−P)f∥L6
x,v

∥b∥5L6
x
, |Fb,6| ≲ ∥b∥L2

x
∥b∥5L6

x
. (3.68)

Combining (3.10), (3.61), (3.63), (3.67) and (3.68), we obtain

∥b∥L6
x,v

≲ε ∥∂tf∥L2
x,v

+ ∥b∥L2
x
+ α |(1− Pγ)f |

1
2

L2
γ+

∥ωf∥
1
2

L∞
x,v

+ ∥(I−P)f∥L6
x,v

+
∥∥ε−1(I−P)f

∥∥
L2

x,v(ν)
+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥
L2

x,v

.
(3.69)

Step 3. Estimate for c.

Step 3.1. Estimate for
´ t
s
∥c∥L2

x
dτ and ∥c∥L6

x
.

In (3.10), we choose the test function

ψc,q(t, x, v) :=

3∑
i=1

∂iφc,q(t, x)
√
10Bi(v), q ∈ {2, 6}, (3.70)

where φc,2(x) and φc,6(x) satisfy the elliptic equations

−∆xφc,2 = c in Ω, φc,2 = 0 on ∂Ω, (3.71)

−∆xφc,6 = c5 − 1

|Ω|

ˆ
Ω

c5dx in Ω, ∂nφc,6 = 0 on ∂Ω,

ˆ
Ω

φc,6dx = 0, (3.72)

respectively. φc,2 and φc,6 satisfy elliptic estimates like analogous to those in (3.13) and (3.14).
We now estimate each term in (3.10). For Ξ1

c,2, integration by parts shows that the contribution from Pf
vanishes due to (3.9). Thus, similarly to (3.16), we obtain∣∣∣ˆ t

s

Ξ1
c,2dτ

∣∣∣ ≲ ε
[
Gc(t)−Gc(s)

]
+ ε

ˆ t

s

∥∂t∇xφc,2∥L2
x
∥(I−P)f∥L2

x,v
. (3.73)

For Ξ1
c,6, the elliptic estimate for φc,6 yields

∣∣Ξ1
c,6

∣∣ =ε∣∣∣¨
Ω×R3

3∑
i=1

∂iφc,6

√
10Bi(v)∂tf

∣∣∣ ≲ ε ∥∂tf∥L2
x,v

∥c∥5L6
x
. (3.74)

For Ξ2
c,2, noting that ψc,2 is not specular reflection invariant, we use the change of variables to obtain

Ξ2
c,2 =

¨
γ+

[
ψc,2 − (1− α)R(ψc,2)

]
(1− Pγ)fdγ −

¨
γ+

R(ψc,2)Pγfdγ, (3.75)

where we used (3.3). The term involving Pγf vanishes due to the identities

(n · v)2 =

3∑
i,j=1

vivjninj ,

ˆ
n·v>0

(|v|2 − 5)v2kµdv = 0, k = 1, 2, 3.

Thus, by the trace theorem and the elliptic estimate of φc,2, we obtain∣∣Ξ2
c,2

∣∣ ≲ |(1− Pγ)f |L2
γ+

|∇xφc,2|L2(∂Ω) ≲ |(1− Pγ)f |L2
γ+

∥c∥L2
x
. (3.76)

For Ξ2
c,6, the condition ∂nφc,6|∂Ω = 0 implies that R(ψc,6 = ψc,6. Consequently, Ξ2

c,6 can be treated
similarly to (3.18) and (3.20): ∣∣Ξ2

c,6

∣∣ ≲α |(1− Pγ)f |
1
2

L2
γ+

∥ωf∥
1
2

L∞
x,v

∥c∥5L6
x
. (3.77)

For Ξ3
c,q (q ∈ {2, 6}), direct computation gives

Ξ3
c,q =−

3∑
i,j=1

ˆ
Ω

∂i∂jφc,q

ˆ
R3

vivj(|v|2 − 5)
√
µf = − 10√

6

ˆ
Ω

c∆xφc,q + Ec,q, (3.78)
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where Ec,q arises from the contribution (I−P)f , and for the Pf contribution we have usedˆ
R3

vivj(|v|2 − 5)
√
µχk(v)dv = 0,

ˆ
R3

vivj(|v|2 − 5)
√
µχ4(v)dv =

10√
6
δij (3.79)

for i, j = 1, 2, 3 and k = 0, 1, 2, 3. Using (3.71) and (3.72), we have

Ξ3
c,2 =− 10√

6

ˆ
Ω

c∆xφc,2 + Ec,2 =
10√
6
∥c∥2L2

x
+ Ec,2,

Ξ3
c,6 =− 10√

6

ˆ
Ω

c∆xφa,6dx+ Ec,6 =
10√
6

ˆ
Ω

c
(
c5 − 1

|Ω|

ˆ
Ω

c5dx
)
dx+ Ec,6

=
10√
6
∥c∥6L6

x
+ Fc,6 + Ec,6.

(3.80)

The remainders Ec,2, Ec,6 and Fc,6 are controlled via elliptic estimates as in (3.13) and (3.14):

|Ea,2| ≲ ∥c∥L2
x
∥(I−P)f∥L2

x,v
, |Ea,6| ≲ ∥c∥5L6

x
∥(I−P)f∥L6

x,v
|Fa,6| ≲ ∥c∥L2

x
∥c∥5L6

x
. (3.81)

The terms Ξ4
c,2 and Ξ4

c,6 are estimated similarly to (3.26).
Integrating (3.10) and combining (3.73), (3.76), (3.80) and (3.81), we have

ˆ t

s

∥c∥2L2
x
≲ ε
[
Gc(t)−Gc(s)

]
+

ˆ t

s

|(1− Pγ)f |2L2
γ+

+

ˆ t

s

∥∥ε−1(I−P)f
∥∥2
L2

x,v(ν)

+

ˆ t

s

∥∥∥ν− 1
2Γ(f, f)

∥∥∥2
L2

x,v

+ ε

ˆ t

s

∥∂t∇φc,2∥L2
x
∥(I−P)f∥L2

x,v
.

(3.82)

Combining (3.10), (3.74), (3.77), (3.80) and (3.81), we obtain

∥c∥L6
x,v

≲ ε ∥∂tf∥L2
x,v

+ ∥c∥L2
x
+ α |(1− Pγ)f |

1
2

L2
γ+

∥ωf∥
1
2

L∞
x,v

+
∥∥ε−1(I−P)f

∥∥
L2

x,v(ν)
+ ∥(I−P)f∥L6

x,v
+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥
L2

x,v

.
(3.83)

Step 3.2. Estimate for ∥∂t∇xφc,2∥L2
x
.

In (3.10), we choose the test function as ψc,2 = ∂tφc,2χ4(v) and estimate each term. Clearly, Ξ4
c,2 = 0.

Using (3.71), we obtain

Ξ1
c,2 =ε

¨
Ω×R3

∂tφc,2

ˆ
R3

χ4∂tfdv = ε

ˆ
Ω

−∂tφc,2∆x∂tφc,2 = ε ∥∇x∂tφc,2∥2L2
x
. (3.84)

Noting R(ψc,2) = ψc,2, we deduce similarly to (3.30) that∣∣Ξ2
c,2

∣∣ ≲α |(1− Pγ)f |L2
γ+

∥∂tφc,2∥L2
x
≲ α |(1− Pγ)f |L2

γ+

∥∇x∂tφc,2∥L2
x
. (3.85)

By oddness of the integrand involving a and c contributions, we have∣∣Ξ3
c,2

∣∣ =∣∣∣ 3∑
i=1

ˆ
Ω

∂i∂tφc,2

ˆ
R3

viχ4(v)f
∣∣∣ ≲ ∥∇x∂tφc,2∥L2

x

(
∥b∥L2

x
+ ∥(I−P)f∥L2

x,v

)
. (3.86)

Combining (3.10) with (3.84)–(3.86) gives

ε ∥∇x∂tφc,2∥L2
x
≲ ∥b∥L2

x
+ α |(1− Pγ)f |L2

γ−
+ ∥(I−P)f∥L2

x,v
. (3.87)

Finally, substituting (3.87) into (3.82) yields
ˆ t

s

∥c∥2L2
x
≤ Cc

{
εGc(t)− εGc(s) +

ˆ t

s

|(1− Pγ)f |L2
γ−

+ δc

ˆ t

s

∥b∥2L2
x

+

ˆ t

s

(∥∥ε−1(I−P)f
∥∥2
L2

x,v(ν)
+
∥∥∥ν− 1

2Γ(f, f)
∥∥∥2
L2

x,v

)}
,

(3.88)

where the small constant δc > 0 arises from Young’s inequality.
Step 4. Combination of the estimates for a, b and c.

Choose δb = (284CbC
2
c )

−1 and δc = (4Cc)
−1. A direct computation of

(28CbC
2
c )

−1 × (3.33) + (211/2CbC
2
c )

−1 × (3.55) + (3.88)

yields (1.38). Furthermore, combining (3.28), (3.69) and (3.83), we obtain (1.39). This completes the proof
of Proposition 1.2. □
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The equation for ∂tf shares the same linear structure as equation (1.17) for f , differing only in the source
term. Moreover, ∂tf also satisfies the mass conservation law

˜
Ω×R3

√
µ∂tfdvdx = 0. Therefore, Proposition

1.2 applies to ∂tf and yields the following result:

Corollary 3.2. Under the same assumption as in Proposition 1.2, there holds

ˆ t

s

∥P∂tf∥2L2
x,v

≲ εG1(t)− εG1(s) +

ˆ t

s

|(1− Pγ)∂tf |2L2
γ+

+

ˆ t

s

[ ∥∥ε−1(I−P)∂tf
∥∥2
L2

x,v(ν)
+
∥∥∥ν− 1

2 [Γ(∂tf, f) + Γ(f, ∂tf)]
∥∥∥2
L2

x,v

]
,

(3.89)

where |G1(t)| ≲ ∥f(t)∥2L2
x,v

+ ∥∂tf(t)∥2L2
x,v

.

3.3. Nonlinear Estimates.
This subsection establishes an L∞ estimate for the linear equation and provides nonlinear estimates for

the collision operator Γ(f, f).

Proposition 3.3. Let 0 < ε ≤ ε0, where ε0 is the constant determined in Proposition 1.3. Assume
g, ∂tg ∈ L∞([0, T ]×Ω×R3) and f0, ∂tf0 ∈ L∞(Ω×R3) with 0 < T ≤ ∞. Let f be the solution to the linear
Boltzmann equation on [0, T ]:

ε∂tf + v · ∇xf + ε−1Lf = g in [0, T ]× Ω× R3,

f |γ− = (1− α)Rf + αPγf on [0, T ]× ∂Ω× R3,

f(t, x, v)|t=0 = f0(x, v) on Ω× R3.

(3.90)

Then the following estimates hold for all t ∈ [0, T ]:

∥ωf(t)∥L∞
x,v

≲ ∥ωf0∥L∞
x,v

+ ε−
1
2 sup
0≤s≤t

∥Pf(s)∥L6
x,v

+ ε−
3
2 sup
0≤s≤t

∥(I−P)f(s)∥L2
x,v

+ ε sup
0≤s≤t

∥⟨v⟩−1ωg(s)∥L∞
x,v
, (3.91)

∥ωf(t)∥L∞
x,v

≲ ∥ωf0∥L∞
x,v

+ ε−
3
2 sup
0≤s≤t

∥f(s)∥L2
x,v

+ ε sup
0≤s≤t

∥⟨v⟩−1ωg(s)∥L∞
x,v
. (3.92)

Proof. The proof relies on Proposition 1.3. Recall the scaling transformations (1.44) and (1.46) for the
domain Ω ⊂ R3. For 0 ≤ t ≤ ε2T0, we have

sup
0≤t≤ε2T0

∥Pf(t)∥L6
x,v(Ω×R3) = sup

0≤t̄≤T0

ε
1
2 ∥Pf̄(t̄)∥L6

y,v(Ωε×R3),

sup
0≤t≤ε2T0

∥(I−P)f(t)∥L2
x,v(Ω×R3) = sup

0≤t̄≤T0

ε
3
2 ∥(I−P)f̄(t̄)∥L2

y,v(Ωε×R3),
(3.93)

where t̄ = ε−2t ∈ [0, T0] from (1.44). Applying Proposition 1.3 and these relations, we obtain for 0 ≤ t ≤ ε2T0:

∥ωf(t)∥L∞
x,v

≲ e−
ν0
2ε2

t∥ωf0∥L∞
x,v

+ o(1) sup
0≤s≤ε2T0

∥ωf(s)∥L∞
x,v

+ ε−
1
2 sup
0≤s≤ε2T0

∥Pf(s)∥L6
x,v

+ ε−
3
2 sup
0≤s≤ε2T0

∥(I−P)f(s)∥L2
x,v

+ ε sup
0≤s≤ε2T0

∥⟨v⟩−1ωg(s)∥L∞
x,v
, (3.94)

∥ωf(t)∥L∞
x,v

≲ e−
ν0
2ε2

t∥ωf0∥L∞
x,v

+ o(1) sup
0≤s≤ε2T0

∥ωf(s)∥L∞
x,v

+ ε−
3
2 sup
0≤s≤ε2T0

∥f(s)∥L2
x,v

+ ε sup
0≤s≤ε2T0

∥⟨v⟩−1ωg(s)∥L∞
x,v
. (3.95)

Define

D(s) := o(1)∥wf(s)∥L∞
x,v

+ ε−
1
2 ∥Pf(s)∥L6

x,v
+ ε−

3
2 ∥(I−P)f(s)∥L2

x,v
+ ε∥⟨v⟩−1ωg(s)∥L∞

x,v
.

Then (3.94) becomes

∥wf(t)∥L∞
x,v

≲ e−
ν0
2ε2

t∥wf0∥L∞
x,v

+ sup
0≤s≤ε2T0

D(s), 0 ≤ t ≤ ε2T0. (3.96)
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Applying (3.96) iteratively yields

∥ωf(nε2T0)∥L∞
x,v

≤ e−
ν0
2 T0∥ωf((n− 1)ε2T0)∥L∞

x,v
+ sup

(n−1)ε2T0≤s≤nε2T0

D(s)

≤ e−
2ν0
2 T0∥ωf((n− 2)ε2T0)∥L∞

x,v
+

1∑
j=0

e−
jν0
2 T0 sup

(n−2)ε2T0≤s≤nε2T0

D(s)

...

≤ e−
nν0
2 T0∥ωf0∥L∞

x,v
+

n−1∑
j=0

e−
jν0
2 T0 sup

0≤s≤nε2T0

D(s)

≤ C1∥ωf0∥L∞
x,v

+ C1 sup
0≤s≤nε2T0

D(s)

(3.97)

for some constant C1 > 0, provided T0 > 0 is sufficiently large.
For arbitrary t > 0, choose n ∈ N such that t ∈ [nε2T0, (n+ 1)ε2T0]. Combining the estimate (3.97) with

(3.96), we obtain

∥ωf(t)∥L∞
x,v

≤ e−
ν0
2ε2

(t−nε2T0)∥ωf(nε2T0)∥L∞
x,v

+ sup
nε2T0≤s≤t

D(s) ≤ C∥ωf0∥L∞
x,v

+ C sup
0≤s≤t

D(s)

for some constant C > 0. Absorbing the small term Co(1) sup0≤s≤t ∥ωf(s)∥L∞
x,v

, we proves (3.91). The

estimate (3.92) follows similarly using (3.95). □

We now derive estimates for the nonlinear collision operator Γ(f, f).

Lemma 3.4. Recall the definition of Γ in (1.18). For ω = eβ|v|
2

with 0 < β ≪ 1
4 , we have∥∥∥ν− 1

2Γ(f, g)
∥∥∥
L2

x,v

≲ ∥ωg∥L∞
x,v

∥f∥L2
x,v(ν)

, (3.98)∥∥∥ν− 1
2Γ(f, g)

∥∥∥
L2

x,v

≲ ∥ωf∥L∞
x,v

∥g∥L2
x,v(ν)

, (3.99)

∥ωΓ(f, g)∥L∞
x,v

≲ ∥ωf∥L∞
x,v

∥ωg∥L∞
x,v
, (3.100)∥∥∥ν− 1

2Γ(Pf,Pg)
∥∥∥
L2

x,v

≲ ∥PfPg∥L2
x,v
. (3.101)

Proof. We first note that ∥∥∥ν− 1
2Γ(f, g)

∥∥∥
L2

x,v

≲ ∥ωg∥L∞
x,v

∥∥∥ν− 1
2Γ(f, ω−1)

∥∥∥
L2

x,v

.

Following Lemma 2.13 in [22], we obtainˆ
R3

∣∣∣ν− 1
2Γ(f, ω−1)(v)

∣∣∣2 dv ≲
¨

R3×R3

(1 + |v|+ |u|)f2(v)ω−2(u)dudv ≲
ˆ
R3

ν |f(v)|2 dv,

which proves (3.98). The estimate (3.99) follows similarly.
Next, (3.100) follows from the bound

∥∥ωΓ(ω−1, ω−1)
∥∥
L∞

x,v
≲ 1, due to the exponential decay of µ.

Finally, for 0 < δ ≪ 1, we have∥∥µ−δ |Pf |
∥∥
L∞

v
≲ ∥Pf∥Lp

v
for any 1 ≤ p ≤ ∞.

It follows that ∥∥∥ν− 1
2Γ(Pf,Pg)

∥∥∥
L2

x,v

≲
∥∥∥ν− 1

2Γ(µδ, µδ)
∥∥∥
L2

v

∥PfPg∥L2
x,v

≲ ∥PfPg∥L2
x,v
,

which complete the proof of (3.101). □

Corollary 3.5. Let f, g ∈ L2([0, T ]×Ω×R3) with 0 < T ≤ ∞, and let Sjf, Sjg ≥ 0 (j = 1, 2) be defined as
in Proposition A.1. Suppose that for t ∈ [0, T ],

|a(h)|+
3∑

i=1

|bi(h)|+ |c(h)| ≤ S1h(t, x) + S2h(t, x) for h ∈ {f, g},
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where a(h), bi(h) and c(h) are coefficients of Ph with respect to the basis {χi}. Then for ω = eβ|v|
2

with
0 < β ≪ 1

4 , the following estimate holds:∥∥∥ν− 1
2Γ(f, g)

∥∥∥
L2

t,x,v

+
∥∥∥ν− 1

2Γ(g, f)
∥∥∥
L2

t,x,v

≲ ε
1
2

[
ε−1 ∥(I−P)f∥L2

t,x,v(ν)
+ ε−1 ∥S2f∥L2

t,x

][
ε

1
2 ∥ωg∥L∞

t,x,v

]
+ ∥S1f∥L2

tL
3
x

[
ε

1
2 ∥ωg∥L∞

t,x,v

] 2
3
[
ε−1 ∥(I−P)g∥L∞

t L2
x,v(ν)

] 1
3

+ ∥S1f∥L2
tL

3
x
∥Pg∥L∞

t L6
x,v
.

(3.102)

Proof. To estimate Γ(f, g), we decompose

|Γ(f, g)| ≤ |Γ(Pf,Pg)|+ |Γ(Pf, (I−P)g)|+ |Γ((I−P)f, g)| .

By Lemma 3.4, we obtain∥∥∥ν− 1
2Γ(Pf,Pg)

∥∥∥
L2

t,x,v

≲ ∥S1f∥L2
tL

3
x
∥Pg∥L∞

t L6
x,v

+ ∥S2f∥L2
t,x

∥ωg∥L∞
t,x,v

,∥∥∥ν− 1
2Γ((I−P)f, g)

∥∥∥
L2

t,x,v

≲ε
1
2

[
ε−1 ∥(I−P)f∥L2

t,x,v(ν)

][
ε

1
2 ∥ωg∥L∞

t,x,v

]
,∥∥∥ν− 1

2Γ(Pf, (I−P)g)
∥∥∥
L2

t,x,v

≲ ∥S1f∥L2
tL

3
x
∥(I−P)g∥L∞

t L6
x,v

+ ∥S2f∥L2
t,x

∥ωg∥L∞
t,x,v

≲ ∥S1f∥L2
tL

3
x

[
ε

1
2 ∥ωg∥L∞

t,x,v

] 2
3
[1
ε
∥(I−P)g∥L∞

t L2
x,v(ν)

] 1
3

+ ε
1
2

[1
ε
∥S2f∥L2

t,x

][
ε

1
2 ∥ωg∥L∞

t,x,v

]
,

(3.103)

where the last inequality uses interpolation. This establishes (3.102) for Γ(f, g).
For the term Γ(g, f), we decompose it similarly:

|Γ(g, f)| ≤ |Γ(Pg,Pf)|+ |Γ(g, (I−P)f)|+ |Γ(g,Pf)| .

The first two terms can be bounded in the same way as (3.103). For the last term, we first use∥∥∥ν− 1
2Γ(g,Pf)

∥∥∥
L2

t,x,v

≲ ∥S1f∥L2
tL

3
x
∥g∥L∞

t L6
x,v

+ ∥S2f∥L2
t,x

∥wg∥L∞
t,x,v

,

and then handle it analogously to (3.103). □

Corollary 3.6. Let f be the solution to (1.17) on [0, T ] with 0 < T ≤ ∞. Then, for any t ∈ [0, T ],

∥Pf∥2L6
x,v

≲ [[f0]]
2
1 + E1[f ](t) + D1[f ](t) + δε ∥ωf∥2L∞

x,v

+ [[f0]]
4
1 + E 3

1 [f ](t) + D2
1 [f ](t) + ε2 ∥ωf∥4L∞

x,v
,

(3.104)

where δ > 0 is a sufficiently small constant and ω = eβ|v|
2

with 0 < β ≪ 1
4 .

Proof. We start from the estimate (1.39). Both ε ∥∂tf∥L2
x,v

and ∥Pf∥L2
x,v

are bounded by E1[f ](t). For the

boundary term in (1.39), Young’s inequality yields

α |(1− Pγ)f |
1
2

L2
γ+

∥ωf∥
1
2

L∞
x,v

≲α
3
2

(α
ε

) 1
2 |(1− Pγ)f |L2

γ+

+ δε
1
2 ∥ωf∥L∞

x,v

≲ [[f0]]1 + D
1
2
1 [f ](t) + δε

1
2 ∥ωf∥L∞

x,v
,

where δ > 0 is sufficiently small, and we used the estimate

α

ε
|(1− Pγ)f(t)|2L2

γ+

=
α

ε

¨
γ+

|(1− Pγ)f0|2 +
α

ε

ˆ t

0

¨
γ+

d
[
(1− Pγ)f

]2
(s)

ds
≲ [[f0]]

2
1 + D1(t). (3.105)

Meanwhile, the term
∥∥ε−1(I−P)f

∥∥
L2

x,v(ν)
satisfies

ε−2 ∥(I−P)f(t)∥2L2
x,v(ν)

≲ ε−2

¨
Ω×R3

[(I−P)f0]
2ν + D1[f ](t) ≲ [[f0]]

2
1 + D1[f ](t). (3.106)

For ∥(I−P)f∥L6
x,v

, interpolation combined with Young’s inequality and (3.106) gives

∥(I−P)f∥L6
x,v

≤
[
ε

1
2

∥∥∥ω 1
2 f
∥∥∥
L∞

x,v

] 2
3
[
ε−1 ∥(I−P)f∥L2

x,v

] 1
3 ≤ δε

1
2 ∥ωf∥L∞

x,v
+ [[f0]]1 + D

1
2
1 [f ](t). (3.107)
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Moreover, by Lemma 3.4, interpolation (L4 ⊆ L2 ∩ L6) and (3.106), we obtain∥∥∥ν− 1
2Γ(f, f)

∥∥∥
L2

x,v

≲
(
ε
∥∥∥ω 1

2 f
∥∥∥
L∞

x,v

)(
ε−1 ∥(I−P)f∥L2

x,v(ν)

)
+ ∥Pf∥2L4

x,v

≲ε2 ∥ωf∥2L∞
x,v

+ [[f0]]
2
1 + D1[f ](t) + E

3
2
1 [f ](t) + δ ∥Pf∥L6

x,v
,

(3.108)

where δ > 0 is a sufficiently small constant.
Combining all the estimates with (1.39) and absorbing the small term δ ∥Pf∥L6

x,v
from (3.108), we arrive

at (3.104). □

3.4. Proof of Main Result for the Case ε ≲ α ≤ 1.

This subsection presents the proof of Theorem 1.1.

Proof of Theorem 1.1. We work with the perturbation formulation (1.17) around the global Maxwellian
µ. The proof proceeds in three main steps.

Step 1. Global existence and uniform ε-independent estimates.
We first establish the global a priori estimate (1.29) under the initial condition (1.27). Assume that a

solution f to (1.17) exists on [0, T ] for some 0 < T ≤ ∞.
First, applying Corollary 3.5 and Proposition A.1 in Appendix A with source terms g = −ε−1Lf +Γ(f, f)

(for S1f) and g = −ε−1L∂tf + Γ(f, ∂tf) + Γ(∂tf, f) (for S1∂tf), we obtain∥∥∥ν− 1
2Γ(f, f)

∥∥∥2
L2

t,x,v

+
∥∥∥ν− 1

2Γ(f, ∂tf)
∥∥∥2
L2

t,x,v

+
∥∥∥ν− 1

2Γ(∂tf, f)
∥∥∥2
L2

t,x,v

≲ [[f0]]
2
1 |||f |||

2
1 (t) + |||f |||41 (t). (3.109)

Second, multiplying the estimate (1.38) from Proposition 1.2 and (3.89) from Corollary 3.2 by a small
coefficient η1 satisfying 0 < η ≪ η1 ≪ min{1, λ4 } (cf. the definition of λ1 in (1.15)), and adding the result to
the estimates (3.1) and (3.2) in Proposition 3.1, we obtain

E1[f ](t) + D1[f ](t) ≲ [[f0]]
2
1 + [[f0]]

2
1 |||f |||

2
1 (t) + |||f |||31 (t) + |||f |||41 (t). (3.110)

Third, combining Proposition 3.3 and Lemma 3.4 gives

ε ∥ωf∥2L∞
t,x,v

+ ε3 ∥ω∂tf∥2L∞
t,x,v

≲ [[f0]]
2
1 + E1[f ](t) + D1[f ](t) + |||f(t)|||41 + ∥Pf∥2L∞

t L6
x,v
. (3.111)

Applying Corollary 3.6 yields

∥Pf∥2L∞
t L6

x,v
≲ [[f0]]

2
1 + [[f0]]

4
1 + E1[f ](t) + D1[f ](t) + |||f |||41 (t) + |||f |||61 (t) + δε ∥ωf∥2L∞

t,x,v
, (3.112)

where δ > 0 is a sufficiently small constant. Combining (3.111) and (3.112) and absorbing δε ∥ωf∥2L∞
t,x,v

on

the right-hand side of (3.112) and ∥Pf∥2L∞
t L6

x,v
on the right-hand side of (3.111), we obtain

ε ∥ωf∥2L∞
t,x,v

+ ε3 ∥ω∂tf∥2L∞
t,x,v

+ ∥Pf∥2L∞
t L6

x,v

≤ [[f0]]
2
1 + [[f0]]

4
1 + E1[f ](t) + D1[f ](t) + |||f |||41 (t) + |||f |||61 (t).

(3.113)

Finally, multiplying (3.113) by a small constant, adding it to (3.110) and absorbing small terms, we obtain

|||f |||21 (t) ≲ [[f0]]
2
1 + |||f |||31 (t) + |||f |||41 (t) + |||f |||61 (t) (3.114)

for any 0 ≤ t ≤ T , provided [[f0]]
2
1 ≤ δ0 is sufficiently small. This establishes the global a priori estimate

(1.29).
The existence of a global solution f on [0,∞] then follows from a standard continuity argument (see, e.g.

[30]); the routine local existence theory is omitted for brevity.

Step 2. Derivation of strong convergence (1.31)–(1.32) and INSF system (1.33).
The uniform bound on |||f |||1 (∞) given by (1.29) implies:

sup
0≤s≤∞

(
∥f(s)∥L2

x,v
+ ∥∂tf(s)∥L2

x,v
+ ∥Pf(s)∥L6

x,v

)
≤ Cδ0, (3.115)

ˆ ∞

0

(
∥Pf(s)∥2L2

x,v
+

ˆ t

0

∥∂tPf(s)∥2L2
x,v

)
ds ≤ Cδ0, (3.116)

ˆ ∞

0

(
∥(I−P)f(s)∥2L2

x,v(ν)
+ ∥(I−P)∂tf(s)∥2L2

x,v(ν)

)
ds→ 0 as ε→ 0. (3.117)

Hence, there exists f∗ ∈ L∞ (R+;L2(Ω× R3)
)
such that, up to a subsequence,

f → f∗ weakly−∗ in L∞ (R+;L2(Ω× R3)
)

as ε→ 0. (3.118)
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On the other hand, (3.117) gives

Lf → 0 strongly in L2
(
R+ × Ω× R3

)
as ε→ 0.

By the uniqueness of distribution limits, we conclude Lf∗ = 0. Hence, there exist functions ϱf∗ , uf∗ , ϑf∗ ∈
L∞ (R+;L2(Ω)

)
such that

f∗ =
(
ϱf∗ + uf∗ · v + ϑf∗

|v|2 − 3

2

)√
µ. (3.119)

Furthermore, the uniform boundedness of |||f |||1 (∞) together with (3.109) implies

∂tf, ε
−1ν−

1
2Lf, ν−

1
2Γ(f, f) ∈ L2(R+ × Ω× R3). (3.120)

Consequently, equation (1.17) indicates that ν−
1
2 v · ∇xf ∈ L2

(
R+;L2(Ω× R3)

)
and hence admits a weak

limit. On the other hand, (3.115) implies

ν−
1
2 v · ∇xf → ν−

1
2 v · ∇xf

∗ in the sense of distributions as ε→ 0.

By the uniqueness of distribution limits, we obtain

ν−
1
2 v · ∇xf → ν−

1
2 v · ∇xf

∗ weakly in L2
(
R+;L2(Ω× R3)

)
as ε→ 0. (3.121)

Using the linear independence of ν−
1
2 v
{
1, v, v ⊗ v, |v|2, v|v|2

}√
µ and (3.121), we conclude that

ϱf∗ , uf∗ , ϑf∗ ∈ L2
(
R+;H1(Ω)

)
.

We now prove the strong convergence stated in (1.31)–(1.32). First, we claim that

f → f∗ strongly in L2
loc

(
R+;L2(Ω× R3)

)
as ε→ 0. (3.122)

To prove this claim, by virtue of (3.120), we truncate f as in (A.5) to obtain fδ. Then we apply the extension
Lemma 3.6 from [22] to define fδ on R×R3 ×R3, and invoke the L2 averaging lemma (cf. Proposition 3.3.1
in [59]) to obtain ∥∥∥∥ˆ

R3

ν−
1
2 fδψdv

∥∥∥∥
L2

t

(
R;H

1
2
x (R3)

) ≤ C, (3.123)

where ψ ∈ L∞(R3) represents any compactly supported test function, and the constant C is independent of
ε. By compact embedding, up to a subsequence, we haveˆ

R3

ν−
1
2 fδψdv converges strongly in L2

loc

(
R+;L2

x(Ω)
)

as ε→ 0. (3.124)

Using (3.124) and a decomposition similar to (A.10), for each i = 0, 1, · · · , 4, we deduce

ˆ
R3

fδχi(v)dv =1t≥0

{
ai +O(δ)

4∑
j=0

|aj |
}

+ 1t≥0

ˆ
R3

[
1− χ(

n(x) · v
δ

)χ(
ξ(x)

δ
)
][
1− χ

( |v|
2δ

)]
χ(δ|v|)(I−P)fχi(v)dv

+ 1t≤0χ(t)

ˆ
R3

[
1− χ(

n(x) · v
δ

)χ(
ξ(x)

δ
)
][
1− χ

( |v|
2δ

)]
χ(δ|v|)f0χi(v)dv.

(3.125)

Here and in what follows, we use the temporary notations

a0 = a, ai = bi (i = 1, 2, 3), a4 = c; a∗0 = ϱf∗ , a∗i = uf∗ (i = 1, 2, 3), a∗4 = ϑf∗ .

From (1.30) and (3.117), we obtain for each i = 0, 1, · · · , 4,

ai +O(δ)

4∑
j=0

|aj | converges strongly in L2
loc

(
R+;L2(Ω)

)
as ε→ 0. (3.126)

Combining this with the weak convergence (3.118), we obtain for each i = 0, 1, · · · , 4:

ai +O(δ)

4∑
j=0

|aj | → a∗i +O(δ)

4∑
j=0

|a∗j | strongly in L2
loc

(
R+;L2(Ω)

)
as ε→ 0.

Consequently, (
1− 5O(δ)

) 4∑
i=0

∥∥ai − a∗i
∥∥
L2

t,x
≤

4∑
i=0

∥∥∥ai − a∗i +O(δ)

4∑
j=0

(
|aj | − |a∗j |

)∥∥∥
L2

t,x

.
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Since δ > 0 is sufficiently small, we conclude that for each i = 0, 1, · · · , 4,

ai → a∗i strongly in L2
loc

(
R+;L2(Ω)

)
as ε→ 0. (3.127)

This indicates

Pf → Pf∗ strongly in L2
loc

(
R+;L2(Ω× R3)

)
as ε→ 0. (3.128)

Together with (3.117), this yields the claim (3.122). Moreover, (3.128) givesˆ
R3

f
√
µ
[
1, v,

|v|2 − 3

2

]
dv →

(
ϱf∗ , uf∗ , ϑf∗

)
strongly in L2

loc

(
R+;L2(Ω)

)
as ε→ 0. (3.129)

The strong convergence properties (1.31)–(1.32) now follow readily.
Using (3.122), we take the weak limit of equation (1.17) in L2

(
R+;L2(Ω× R3)

)
to obtain

lim
ε→0

ε−1ν−
1
2Lf = ν−

1
2Γ(f∗, f∗)− ν−

1
2 (v · ∇xf

∗) in the weak sense. (3.130)

Multiplying (1.17) by
√
µ and v

√
µ, and integrating over R3, we have

∇x · uf∗ = 0, ∇x(ρf∗ + ϑf∗) = 0. (3.131)

Multiplying (1.17) by ε−1 |v|2−5
2

√
µ, integrating over R3 and following the procedure in [3], we obtain

−∂tθf∗ = − lim
ε→0

ˆ
R3

|v|2 − 5

2

√
µ∂tfdv = lim

ε→0

1

ε

ˆ
R3

|v|2 − 5

2

√
µ(v · ∇xf)dv

= lim
ε→0

1

ε
∇x ·

ˆ
R3

L−1
( |v|2 − 5

2
v
√
µ
)
Lfdv

= ∇x ·
ˆ
R3

L−1
( |v|2 − 5

2
v
√
µ
)(
Γ(f∗, f∗)− (v · ∇xf

∗)
)
dv

= ∇x ·
(5
2
κ∇xϑf∗ − 5

2
uf∗ϑf∗

)
,

(3.132)

where we have used (3.130) and the decay property of L−1
( |v|2−5

2 v
√
µ
)
. Here the thermal conductivity is

defined as

κ :=
2

5

ˆ
R3

( |v|2 − 5

2
v
√
µ
)
L−1

( |v|2 − 5

2
v
√
µ
)
dv. (3.133)

Similarly, multiplying (1.17) by ε−1v
√
µ and integrating over R3, we obtain

−∂tuf∗ = − lim
ε→0

ˆ
R3

v
√
µ∂tfdv = lim

ε→0

1

ε

ˆ
R3

v
√
µ
(
v · ∇xf

)
dv

= lim
ε→0

1

ε
∇x ·

ˆ
R3

[
L−1

(
v
(
v ⊗ v − |v|2

3
I
)√
µ
)
Lf +

|v|2

3

√
µf
]
dv

= ∇x ·
ˆ
R3

L−1
((
v ⊗ v − |v|2

3
I
)√
µ
)(
Γ(f∗, f∗)− v · ∇xf

∗)dv +∇xpf∗

= ∇x ·
[
2uf∗ ⊗ uf∗ − 2

3
|uf∗ |2 I− σ

(
∇xuf∗ + (∇xuf∗)

T)]
+∇xpf∗ .

(3.134)

Here the viscosity is defined as

σ :=
1

10

ˆ
R3

[(
v ⊗ v − |v|2

3
I
)√
µ
]
: L−1

[(
v ⊗ v − |v|2

3
I
)√
µ
]
dv, (3.135)

and we have used the notation

pf∗ := lim
ε→0

1

ε

ˆ
R3

|v|2

3

√
µfdv.

Hence, (ρf∗ , uf∗ , θf∗) satisfies the INSF system (1.33) in the weak sense.

Step 3. Derivation of the boundary conditions (1.34) and (1.35).
Consider the identity¨

∂Ω×R3

ν−
1
2ϕf |∂Ω[n · v]dvdSx =

¨
Ω×R3

ν−
1
2 (v · ∇xϕ)f +

¨
Ω×R3

ν−
1
2 (v · ∇xf)ϕ,

where ϕ(x, v) is test function satisfying ϕ(·, v) ∈ C∞(Ω̄) and ϕ(x, ·) ∈ C∞
0 (R3). Using the weak convergence

of f and v · ∇xf , we obtain

ν−
1
2 f |∂Ω → ν−

1
2 f∗|∂Ω in the sense of distributions as ε→ 0. (3.136)
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The uniform bound on |||f |||1 (∞) in (1.29) implies(α
ε

) 1
2 |(1− Pγ)f |L2

tL
2
γ+

+ |Pγf |L2
tL

2
γ+

is uniformly bounded. (3.137)

On the other hand, by (1.15), the quantity |fε|L2
tL

2
γ+

is uniformly bounded, and hence, up to a subsequence,

has a weak limit in L2(R+ × dγ). From (3.136) and the uniqueness of distribution limits, we conclude that

ν−
1
2 f∗
∣∣
∂Ω

∈ L2(R+ × dγ) and

ν−
1
2 f
∣∣
∂Ω

→ ν−
1
2 f∗
∣∣
∂Ω

weakly in L2(R+ × dγ) as ε→ 0. (3.138)

We now define

⟨g⟩∂Ω :=
√
2π

ˆ
v·n>0

g
∣∣
∂Ω

√
µ[n · v]dv.

From (3.138) and the fact that ⟨f⟩∂Ω is independent of v, we have

⟨f⟩∂Ω → ⟨f∗⟩∂Ω weakly in L2(R+ × dγ) as ε→ 0. (3.139)

Combining this with (3.138) gives

ν−
1
2

(
f |∂Ω −√

µ⟨f⟩∂Ω
)
→ ν−

1
2

(
f∗|∂Ω −√

µ⟨f∗⟩∂Ω
)

weakly in L2(R+ × dγ) as ε→ 0. (3.140)

We now derive the boundary conditions (1.34) and (1.35) according to the limit value λ defined in (1.15).

Step 3.1. Dirichlet boundary condition (1.34) for λ = ∞.
In this case, we can take the limit in the Maxwell boundary condition directly and show strong convergence.

The uniform boundedness (3.137) implies

f |∂Ω −√
µ⟨f⟩∂Ω = (1− Pγ)f → 0 strongly in L2(R+ × dγ) as ε→ 0. (3.141)

Combining (3.140) and (3.141), we obtain

ν−
1
2

(
f∗|∂Ω −√

µ⟨f∗⟩∂Ω
)
= 0,

which, together with (3.119), yields the Dirichlet boundary condition (1.34):

uf∗ |∂Ω = 0, θf∗ |∂Ω = 0. (3.142)

Step 3.2. Navier boundary condition (1.35) for λ ∈ (0,+∞).
By (3.137), we take the weak limit in the Maxwell boundary condition in (1.17) to obtain

f∗|γ− = R(f∗|γ+).

This, together with (3.119), implies the zero mass flux condition

n · uf∗
∣∣
∂Ω

= 0.

To verify the Navier boundary condition, we pass to the limit in the weak formulation of (1.17) and show
that the moments uf∗ and θf∗ satisfy the weak form of the INSF system. To this end, we take a test function
ϕ ∈ C∞(Ω̄) and a divergence-free test vector field ω⃗ ∈ C∞(Ω̄) with n · ω⃗|∂Ω = 0. Multiplying (1.17) by

ε−1 |v|2−5
2

√
µϕ and ε−1(v · ω⃗)√µ, respectively, integrating over [t1, t2]×Ω×R3 and passing to the weak limit

in L2(Ω× R3), we obtain

lim
ε→0

ˆ t2

t1

¨
Ω×R3

∂tf
|v|2 − 5

2

√
µϕ− lim

ε→0

1

ε

ˆ t2

t1

ˆ
Ω

〈
v
|v|2 − 5

2

√
µ, f

〉
· ∇xϕ

+ lim
ε→0

1

ε

ˆ t2

t1

¨
∂Ω×R3

f
|v|2 − 5

2

√
µϕ[n · v] = 0, (3.143)

lim
ε→0

ˆ t2

t1

¨
Ω×R3

∂tf(v · ω⃗)
√
µ− lim

ε→0

1

ε

ˆ t2

t1

ˆ
Ω

〈
(v ⊗ v − |v|2

3
I)
√
µ, f

〉
: ∇xω⃗

+ lim
ε→0

1

ε

ˆ t2

t1

¨
∂Ω×R3

(v · ω⃗)√µf [n · v] = 0. (3.144)

It follows from (3.132) and (3.134) that

lim
ε→0

1

ε

〈
v
|v|2 − 5

2

√
µ, f

〉
=

5

2
κ∇xθf∗ − 5

2
uf∗θf∗ ,

lim
ε→0

1

ε

〈
(v ⊗ v − |v|2

3
I)
√
µ, f

〉
= 2uf∗ ⊗ uf∗ − 2

3
|uf∗ |2I− ν

[
∇xuf∗ + (∇xuf∗)T

] (3.145)

in the weak sense.
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For the boundary term in (3.143), using (1.17) , (3.119) and (3.140) and the change of variables v 7→ Rxv
on γ−, we obtain

lim
ε→0

1

ε

¨
∂Ω×R3

f
|v|2 − 5

2

√
µϕ[n · v]dvdSx = lim

ε→0

α

ε

ˆ
γ+

|v|2 − 5

2

√
µϕ
[
f |∂Ω −√

µ⟨f⟩∂Ω
]
dγ

=λ
√
2π

ˆ
γ+

|v|2 − 5

2

√
µϕ
[
f∗|∂Ω −√

µ⟨f∗⟩∂Ω
]
dγ

=2λ

ˆ
∂Ω

θf∗ϕdSx.

(3.146)

For the boundary term in (3.144), using n · ω⃗|∂Ω = 0 and a similar computation, we obtain

lim
ε→0

1

ε

¨
∂Ω×R3

(v · ω⃗)√µf [n · v]dvdSx = lim
ε→0

α

ε

ˆ
γ+

(v · ω⃗)√µ
[
f |∂Ω −√

µ⟨f⟩∂Ω
]
dγ

=λ
√
2π

ˆ
γ+

(v · ω⃗)√µ
[
f∗|∂Ω −√

µ⟨f∗⟩∂Ω
]
dγ

=λ

ˆ
∂Ω

ω⃗ · uf∗dSx.

(3.147)

Thus, (3.143) and (3.144) become

5

2

ˆ
Ω

[θf∗(t2)− θf∗(t1)]ϕdx+ 2λ

ˆ t2

t1

ˆ
∂Ω

θf∗ϕdxds

−
ˆ t2

t1

ˆ
Ω

(uf∗θf∗ − κ∇xθf∗) · ∇xϕdxds = 0, (3.148)

ˆ
Ω

[uf∗(t2)− uf∗(t1)] · ω⃗dx+ λ

ˆ t2

t1

ˆ
∂Ω

uf∗ · ω⃗dxds

−
ˆ t2

t1

ˆ
Ω

[
uf∗ ⊗ uf∗ − σ

(
∇xuf∗ + (∇xuf∗)

T)]
: ∇xω⃗dxds = 0. (3.149)

The equations (3.148) and (3.149) constitute the weak formulation of the INSF system with Navier boundary
condition (1.35), satisfied by ρf∗ , uf∗ and θf∗ .

Finally, Lemma B.1 in Appendix B guarantees the uniqueness of weak solutions to the INSF system (1.33)
with either Dirichlet boundary condition (1.34) or the Navier boundary condition (1.35) in the setting of
Theorem 1.1. Consequently, all weak limits points coincide with the unique solution to the INSF system.

This completes the proof of Theorem 1.1. □

4. Strong Limit for the Case 0 ≤ α≪ ε

This section investigates the perturbation equation (1.61) and gives the proof of Theorem 1.4. The proof
relies on Proposition 1.5, which is established first.

For clarity and to maintain correspondence with the respective unknown functions f and f̃ , we keep the
distinct notations f0 and f̃0 throughout, although they are equal at the initial time (see (1.70)).

4.1. Construction of the Rotating Maxwellian.

In this subsection, we construct the rotating Maxwellian µ̃ introduced in (1.56) by deriving the ordinary
differential equations that govern its component functions u and θ.

We begin with the following Taylor expansion with remainder.

Lemma 4.1. Let h(v, θ, u) : R3 × [−δ, δ] × [−δ, δ]3 → R be a C∞ function. Define the nth-order Taylor
expansion of h with respect to θ and u by

hn(v, θ, u) :=
∑

α+|β|≤n

1

α!β!
θαuβ

∂α+|β|

(∂θ)α(∂u)β
h(v, 0, 0).

Then, the following estimate holds:

|h(v, θ, u)− hn(v, θ, u)| ≲ εn+1
( |θ|
ε

+
|u|
ε

)n+1

sup
(ξ,ω)∈[−δ,δ]4

∣∣∣∇n+1
θ,u h(v, ξ, ω)

∣∣∣ .
Proof. This follows directly from Taylor’s theorem with remainder. □
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For each n ∈ N, we define the sets of higher-order terms as

Hn :=
{
hn(s) ∈ R : |hn(s)| ≲

[ |θ(s)|
ε

+
|w(s)|
ε

]n}
,

Hn,t :=
{
hn(s) ∈ R : |hn(s)| ≲

[ |θ(s)|
ε

+
|w(s)|
ε

+
|∂tθ(s)|

ε
+

|∂tw(s)|
ε

+
(α
ε

) 1
2
∣∣∣f̃(s)∣∣∣

L2
γ+

]n}
,

(4.1)

where θ(s) = T (s)− 1 and w(s) will be determined in Lemma 4.8. Under the a priori assumption (1.82), we
have

Hm ⊆ Hn and Hm,t ⊆ Hn,t for n ≤ m and m,n ∈ N. (4.2)

By Lemma 4.1, if sup(ξ,ω)∈[−δ,δ]4

∣∣∇n+1
θ,u h(v, ξ, ω)

∣∣ is uniformly bounded and decays sufficiently fast as

v → ∞, then the Lp
v norm of the difference is bounded by εn+1hn+1.

The next lemma quantifies the error between the Maxwellians µ and µ̃.

Lemma 4.2. Let |δ| < 1 and p > 0 be given. For x, y ∈ R3 with |y| = 1, there exists a constant cp > 0 such
that ∣∣∣ exp (− |x|2

p

)
− (1 + δ) exp

(
− |x|2

p

)∣∣∣ ≤ cp |δ| ,∣∣∣ exp (− |x|2

p

)
− exp

(
− |x+ δy|2

p

)∣∣∣ ≤ cp |δ| ,∣∣∣ exp (− |x|2

p

)
− exp

(
− |x|2

p(1 + δ)

)∣∣∣ ≤ cp |δ| .

Proof. This follows directly from Lemma 4.1. □

The following lemma estimates the error between f and f̃ in weighted Lp norms.

Lemma 4.3. Let wβ = eβ|v|
2

be a weight function with 0 ≤ β < β′ < 1
4 . Under the a priori assumption

(1.82), for any 1 ≤ p ≤ ∞,∥∥∥wβ f̃
∥∥∥
Lp

v

≲
∥∥∥wβ′

f
∥∥∥
Lp

v

+
|θ|
ε

+
|u|
ε
,∥∥∥wβ∂tf̃

∥∥∥
Lp

v

≲
∥∥∥wβ′

∂tf
∥∥∥
Lp

v

+
∥∥∥wβ′

f
∥∥∥
Lp

v

+
|θ|
ε

+
|u|
ε

+
|∂tθ|
ε

+
|∂tu|
ε

.

Proof. From the definition of f̃ ,

f̃ − f =
µ− µ̃

ε
√
µ̃

+
(√µ
√
µ̃
− 1
)
f,

and similarly for the time derivative,

∂tf̃ − ∂tf = ∂t
µ− µ̃

ε
√
µ̃

+ ∂t

(√µ
√
µ̃
− 1
)
f +

(√µ
√
µ̃
− 1
)
∂tf.

Using the structure of µ̃ and Lemma 4.2, we obtain for any β′′ > 0:∥∥∥∥µ− µ̃

ε
√
µ̃

∥∥∥∥
Lp

v

,

∥∥∥∥wβ′′
(√µ
√
µ̃
− 1
)∥∥∥∥

Lp
v

≲
|θ|
ε

+
|u|
ε
,∥∥∥∥∂t(µ− µ̃

ε
√
µ̃

)∥∥∥∥
Lp

v

,

∥∥∥∥wβ′′
∂t

(√µ
√
µ̃
− 1
)∥∥∥∥

Lp
v

≲
|θ|
ε

+
|u|
ε

+
|∂tθ|
ε

+
|∂tu|
ε

.

The desired estimates follow by the triangle inequality, absorbing the weight shift from β to β′ where necessary.
□

We introduce an alternative, non-orthogonal basis {χ̃i}4i=0 for ker L̃:

χ̃0 :=
√
µ̃, χ̃i := vi

√
µ̃ (i = 1, 2, 3), χ̃4 :=

|v|2 − 3√
6

√
µ̃. (4.3)

The relation between the two bases {χ̄i}4i=0 and {χ̃i}4i=0 is described in the following lemma.

Lemma 4.4. The sets {χ̄i}4i=0 defined in (1.65) and {χ̃i}4i=0 defined in (4.3) are both bases of ker L̃, with
{χ̄i}4i=0 being orthonormal. Moreover, for every p ∈ [1,∞],

∥χ̃i − χ̄i∥Lp
v
≲ ε
( |θ|
ε

+
|u|
ε

)
, i = 0, . . . , 4.
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Proof. By (1.64), both {χ̃i}4i=0 and {χ̄i}4i=0 are bases of ker L̃. The orthogonality of {χ̄i}4i=0 follows from
a direct computation. Furthermore, for each i = 0, . . . , 4, we have

|χ̃i − χ̄i| ≲ µ̃
1
4 ε
( |θ|
ε

+
|u|
ε

)
,

which implies the desired estimate in Lp
v(R3). □

Recall the expansion (1.66) of P̃f̃ with coefficients (1.67). Analogously, we define the coefficients of P̃f̃
with respect to the basis {χ̃i}4i=0:

ã(t, x) := ⟨χ̃0, f̃⟩, b̃i(t, x) := ⟨χ̃i, f̃⟩ (i = 1, 2, 3), c̃(t, x) := ⟨χ̃4, f̃⟩. (4.4)

The relationship between these two sets of coefficients is characterized by the following lemma.

Lemma 4.5. Assume that the a priori assumption (1.82) holds. Then for any 1 ≤ p, q ≤ ∞, the following
norm equivalence holds:∥∥∥P̃f̃∥∥∥

Lp
xL

q
v

≈ ∥ā∥Lp
x
+

3∑
i=1

∥∥b̄i∥∥Lp
x
+ ∥c̄∥Lp

x
≈ ∥ã∥Lp

x
+

3∑
i=1

∥∥∥b̃i∥∥∥
Lp

x

+ ∥c̃∥Lp
x
.

Proof. From the definition of P̃f̃ and the expansion (1.66), we have∥∥∥P̃f̃(t)∥∥∥
Lp

xL
q
v

≈ ∥ā(t)∥Lp
x
+

3∑
i=1

∥∥b̄i(t)∥∥Lp
x
+ ∥c̄(t)∥Lp

x
.

For the coefficients ã, b̃i and c̃ associated with the basis {χ̃i} defined in (4.4),

∥ã∥Lp
x
+

3∑
i=1

∥∥∥b̃i∥∥∥
Lp

x

+ ∥c̃∥Lp
x
=

4∑
i=0

∥∥∥⟨χ̃i, P̃f̃⟩
∥∥∥
Lp

x

≲
∥∥∥P̃f̃∥∥∥

Lp
xL

q
v

.

Finally, comparing the two sets of coefficients, we obtain

∥ā∥Lp
x
+

3∑
i=1

∥∥b̄i∥∥Lp
x
+ ∥c̄∥Lp

x
≤

4∑
i=0

∥∥∥⟨χ̃i, P̃f̃⟩
∥∥∥
Lp

x

+

4∑
i=0

∥∥∥⟨χ̄i − χ̃i, P̃f̃⟩
∥∥∥
Lp

x

≲ ∥ã∥Lp
x
+

3∑
i=1

∥∥∥b̃i∥∥∥
Lp

x

+ ∥c̃∥Lp
x
+ ε
( |θ|
ε

+
|u|
ε

)∥∥∥P̃f̃∥∥∥
Lp

xL
q
v

.

Under the smallness assumption on |θ|
ε + |u|

ε from (1.82), the last term can be absorbed. Combining the
estimates above yields the desired norm equivalence. □

The next lemma provides a commutator estimate between ∂t and P̃.

Lemma 4.6. The following commutator estimate holds:∥∥∥∂t(P̃f̃)− P̃∂tf̃
∥∥∥
Lp

xL
q
v

≲ (|∂tθ|+ |∂tu|)
∥∥∥f̃∥∥∥

Lp
xL

q
v

.

Proof. Using the definition of P̃ and the basis {χ̄i}, we compute∥∥∥∂t(P̃f̃)− P̃∂tf̃
∥∥∥
Lp

xL
q
v

=

∥∥∥∥∥
4∑

i=0

⟨∂tχ̄i, f̃⟩χ̄i +

4∑
i=0

⟨χ̄i, f̃⟩∂tχ̄i

∥∥∥∥∥
Lp

xL
q
v

≲ (|∂tθ|+ |∂tu|)
∥∥∥f̃∥∥∥

Lp
xL

q
v

,

where we used the estimate ∥∂tχ̄i∥Lq
v
≲ |∂tθ|+ |∂tu| from the structure of χ̄i. □

The following lemma quantifies the approximation error when expressing the projection P̃g in the non-
orthogonal basis {χ̃i}.

Lemma 4.7. Under the a priori assumption (1.82), for any p ∈ [1,∞] and g ∈ Lp
v(R3),∣∣∣P̃g − 4∑

i=0

⟨g, χ̃i⟩ χ̃i

∣∣∣ ≲ µ̃
1
4 ε
( |θ|
ε

+
|u|
ε

)∥∥∥P̃g∥∥∥
Lp

v

.
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Proof. Since {χ̄i}4i=0 is an orthonormal basis of ker P̃, we write

g =

4∑
i=0

⟨g, χ̄i⟩ χ̄i =

4∑
i=0

⟨g, χ̃i⟩ χ̃i −
4∑

i=0

⟨g, χ̃i⟩ (χ̃i − χ̄i)−
4∑

i=0

⟨g, χ̃i − χ̄i⟩ χ̄i.

Observe that (I − P̃)g is orthogonal to both χ̃i and χ̃i − χ̄i. Applying Hölder’s inequality and Lemma 4.4,
we bound the two error terms in above equality as∣∣∣ 4∑

i=0

⟨g, χ̃i⟩ (χ̃i − χ̄i)
∣∣∣ ≲ ∥∥∥P̃g∥∥∥

Lp
v

∥χ̃i∥Lq
v
|χ̃i − χ̄i| ≲ µ̃

1
4 ε
( |θ|
ε

+
|u|
ε

)∥∥∥P̃g∥∥∥
Lp

v

,

∣∣∣ 4∑
i=0

⟨g, χ̃i − χ̄i⟩ χ̄i

∣∣∣ ≲ ∥∥∥P̃g∥∥∥
Lp

v

∥χ̃i − χ̄i∥Lq
v
|χ̄i| ≲ µ̃

1
4 ε
( |θ|
ε

+
|u|
ε

)∥∥∥P̃g∥∥∥
Lp

v

,

where 1
p + 1

q = 1. This completes the proof. □

Next, we construct the functions ρ, u, and T in the definition of the rotating Maxwellian µ̃.

Lemma 4.8. Suppose the following conditions hold for 0 < δ ≪ 1:¨
Ω×R3

F (t)dvdx = |Ω| ,
∣∣∣¨

Ω×R3

Ax · vF (t)dvdx
∣∣∣ < δ,

∣∣∣¨
Ω×R3

|v|2 F (t)dvdx− 3 |Ω|
∣∣∣ < δ. (4.5)

Then there exist functions ρ = ρ(t), u = u(t, x) =
∑
wi(t)Aix and T = T (t) satisfying the following

conservation laws:¨
Ω×R3

F (t)dvdx =

¨
Ω×R3

µ̃dvdx = |Ω|,
¨

Ω×R3

Ax · vF (t)dvdx =

¨
Ω×R3

Ax · vµ̃dvdx =

ˆ
Ω

ρAx · udx for all Ax ∈ RΩ,

¨
Ω×R3

|v|2 F (t)dvdx =

¨
Ω×R3

|v|2 µ̃dvdx =

ˆ
Ω

(3ρT + ρ |u|2)dx.

(4.6)

Moreover, the perturbation f̃ satisfies:¨
Ω×R3

√
µ̃f̃dvdx = 0,

¨
Ω×R3

Ax · v
√
µ̃f̃dvdx = 0 for all Ax ∈ RΩ,

¨
Ω×R3

|v|2
√
µ̃f̃dvdx = 0. (4.7)

Proof. Conditions in (4.5) can guarantee the existence of a triple (ρ, u, T ) near (1, 0, 1). Using Lemma C.2
and the definition of ρ in (1.58) and that of µ̃ in (1.56), we have¨

Ω×R3

µ̃dxdv = |Ω| ,
¨

Ω×R3

Ax · vµ̃dvdx =

ˆ
Ω

ρAx · udx for all Ax ∈ RΩ,

¨
Ω×R3

|v|2 µ̃dvdx =

ˆ
Ω

(3ρT + ρ |u|2)dx.

This establishes the second equality in each line of (4.6).
We now treat the three geometric types of Ω separately.

Case 1. Non-axisymmetric domains.
In this case, RΩ = {0}. We define

ρ = 1, u = 0 and T (t) =
1

3

¨
Ω×R3

|v|2 F (t)dvdx. (4.8)

Then the first equality in each line of (4.6) follows directly.

Case 2. Axisymmetric domains.
In this case, u = wAx. We seek functions (ρ,w, T ) satisfying

ρ−
|Ω| exp( |u(t,x)|

2

2T (t) )´
Ω
exp( |u(t,x)|

2

2T (t) )dx
= 0,

w

ˆ
Ω

ρ |Ax|2 dx−
¨

Ω×R3

Ax · vF (t)dvdx = 0,

3T

ˆ
Ω

ρdx+ w

¨
Ω×R3

Ax · vF (t)dvdx−
¨

Ω×R3

|v|2 F (t)dvdx = 0.

(4.9)
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The Jacobian matrix of the system of (ρ, w, T ) at (1, 0, 1) is


1 0 0

0

ˆ
Ω

|Ax|2 dx 0

3 |Ω|
¨

Ω×R3

Ax · vF (t)dxdv 3 |Ω|

 ,

which is invertible. By the implicit function theorem, a solution (ρ,w, T ) exists near (1, 0, 1).

Case 3. Spherical domains.
For a spherical domain Ω, u =

∑3
i=1 wiAix. We have the orthogonality relations

ˆ
Ω

Aix ·Ajxdx =

ˆ
Ω

ρAix ·Ajxdx = 0 for i ̸= j,

ˆ
∂Ω

Aix ·AjxdSx =

ˆ
∂Ω

ρAix ·AjxdSx = 0 for i ̸= j,

(4.10)

where we used the elementary identities

A1x ·A2x = x1x2, A2x ·A3x = x2x3, A3x ·A1x = −x3x1. (4.11)

We seek functions (ρ,w1, w2, w3, T ) satisfying

ρ−
|Ω| exp( |u(t,x)|

2

2T (t) )´
Ω
exp( |u(t,x)|

2

2T (t) )dx
= 0,

wi

ˆ
Ω

ρ |Aix|2 dx−
¨

Ω×R3

Aix · vF (t)dvdx = 0 for i = 1, 2, 3,

3T

ˆ
Ω

ρdx+

¨
Ω×R3

3∑
i=1

wiAix · vF (t)dvdx−
¨

Ω×R3

|v|2 F (t)dvdx = 0.

(4.12)

The Jacobian of this system at (1, 0, 0, 0, 1) is



1 0 0 0 0

0

ˆ
Ω

|A1x|2 dx 0 0 0

0 0

ˆ
Ω

|A2x|2 dx 0 0

0 0 0

ˆ
Ω

|A1x|2 dx 0

3 |Ω|
¨

A1x · vF (t)dvdx
¨

A2x · vF (t)dvdx
¨

A3x · vF (t)dvdx 3 |Ω|


,

which is invertible. Hence a solution (ρ,w1, w2, w3, T ) exists near (1, 0, 0, 0, 1).

Finally, (4.7) follows from the relation
√
µ̃f̃ = 1

ε (F − µ̃) and the conservation laws (4.6). □

Next, we derive the ordinary differential equations governing the evolution of ρ, u and T . The main result
is summarized in the following proposition.

Proposition 4.9. Let F be a solution of the Boltzmann equation (1.1), and let µ̃ be the rotating Maxwellian

defined in (1.56) with parameters ρ, u and T = 1 + θ. Let f̃ = 1
ε
√
µ̃
(F − µ̃) be the fluctuation defined in
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(1.60). Then, under the a priori assumption (1.82), the following estimates hold:

∣∣∣3
2
∂t

ˆ
Ω

θ2dx+
α√
2πε

ˆ
∂Ω

4θ2dSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃f̃θdγ

∣∣∣ ≤ αε2h3 + αε2h2

∣∣∣f̃ ∣∣∣
L2

γ+

, (4.13)∣∣∣1
2
∂t

ˆ
Ω

|u|2 dx+
α√
2πε

ˆ
∂Ω

|u|2 dSx + α

¨
γ+

(u · v)
√
µ̃f̃dγ

∣∣∣ ≤ αε2h3 + αε2h2

∣∣∣f̃ ∣∣∣
L2

γ+

, (4.14)∣∣∣3
2
∂t

ˆ
Ω

(∂tθ)
2dx+

α√
2πε

ˆ
∂Ω

4(∂tθ)
2dSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃∂tf̃∂tθdγ

∣∣∣
≤αε2h3,t + αε2h2,t

∣∣∣∂tf̃ ∣∣∣
L2

γ+

, (4.15)∣∣∣1
2
∂t

ˆ
Ω

|∂tu|2 dx+
α√
2πε

ˆ
∂Ω

|∂tu|2 dSx + α

¨
γ+

(∂tu · v)
√
µ̃∂tf̃dγ

∣∣∣
≤αε2h3,t + αε2h2,t

∣∣∣∂tf̃ ∣∣∣
L2

γ+

, (4.16)

where hn ∈ Hn and hn,t ∈ Hn,t are defined in (4.1).
Additionally, the following bounds hold:

|θ| ≤ εh1, |u| ≤ εh1, |ρ− 1| ≤ ε2h2,

|∂tθ|+ |∂tu| ≤ αh1 + α
∣∣∣f̃ ∣∣∣

L2
γ+

, |∂tρ| ≤ αεh2 + αεh1

∣∣∣f̃ ∣∣∣
L2

γ+

,

|∂t∂tθ|+ |∂t∂tu| ≤ αh1,t + α
∣∣∣∂tf̃ ∣∣∣

L2
γ+

, |∂t∂tρ| ≤ αεh2,t + αεh1,t

∣∣∣∂tf̃ ∣∣∣
L2

γ+

.

(4.17)

Proof. Clearly, the Boltzmann collision operator Q(F, F ) satisfies the orthogonal condition

¨
Ω×R3

[
1, Ax · v, |v|2

]
Q(F, F )dvdx = 0 for all Ax ∈ RΩ. (4.18)

Therefore, using (1.1) and (4.18), a direct computation shows

∂t

¨
Ω×R3

Fdvdx = −1

ε

¨
∂Ω×R3

F [n · v]dvdSx +
1

ε

¨
Ω×R3

Q(F, F )dvdx = 0.

Combined with (1.12), this implies

¨
Ω×R3

F (t)dvdx =

¨
Ω×R3

F0dvdx = |Ω| for all t ≥ 0.

Lemma 4.8 then guarantees the existence of µ̃ satisfying (4.6).
We proceed by a case analysis based on the geometry of Ω.

Case 1. Non-axisymmetric domains.



STRONG DIFFUSIVE LIMIT OF BOLTZMANN EQUATION WITH MAXWELL BOUNDARY 49

In this case, ρ = 1 and u = 0 by (4.8). Multiplying (1.1) by |v|2 and integrating over Ω× R3 yields

ε

ˆ
Ω

3∂tTdx =ε∂t

¨
Ω×R3

|v|2 Fdvdx = −
¨

∂Ω×R3

|v|2 F [n · v]dvdSx

=−
¨

γ+

|v|2 Fdγ +

¨
γ−

|v|2 ((1− α)RF + αPF )dγ

=−
¨

γ+

|v|2 Fdγ + (1− α)

¨
γ+

|Rxv|2 Fdγ + α

¨
γ+

|v|2 PFdγ

=− α
[¨

γ+

|v|2 Fdγ −
√
2π

¨
γ+

|v|2 µ
(ˆ

n·u>0

F [n · u]du
)
dγ
]

=− α
[¨

γ+

|v|2 µ̃dγ −
√
2π

¨
γ+

|v|2 µ
(ˆ

n·u>0

µ̃[n · u]du
)
dγ
]

− αε
[¨

γ+

|v|2
√
µ̃f̃dγ −

√
2π

¨
γ+

|v|2
(ˆ

n·u>0

√
µ̃f̃ [n · u]du

)
dγ
]

=− α
[ ˆ

∂Ω

4T
3
2

√
2π

dSx −
√
2π

ˆ
∂Ω

4√
2π

T
1
2

√
2π

dSx

]
− αε

[¨
γ+

|v|2
√
µ̃f̃dγ −

√
2π

ˆ
∂Ω

4√
2π

ˆ
n·v>0

√
µ̃f̃dγ

]
=− α

[ 1√
2π

ˆ
∂Ω

4(T − 1)T
1
2 dSx + ε

¨
γ+

(|v|2 − 4)
√
µ̃f̃dγ

]
,

(4.19)

where we have used (4.8), (4.18) and Lemma C.2. Writing θ = T − 1, we have∣∣∣3∂t ˆ
Ω

θdx+
α√
2πε

ˆ
∂Ω

4θdSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃f̃dγ

∣∣∣ ≤ αεh2, (4.20)∣∣∣3
2
∂t

ˆ
Ω

θ2dx+
α√
2πε

ˆ
∂Ω

4θ2dSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃f̃θdγ

∣∣∣ ≤ αε2h3, (4.21)

where hn ∈ Hn. Consequently,

|∂tθ| ≲ αh1 + α
∣∣∣f̃ ∣∣∣

L2
γ+

.

Furthermore, differentiating (4.19) with respect to t yields the equation for ∂tθ:

3∂t

ˆ
Ω

∂tθdx+
α√
2πε

ˆ
∂Ω

4∂tθ(1 + θ)
1
2 dSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃∂tf̃dγ

+
α√
2πε

ˆ
∂Ω

2θ(1 + θ)−
1
2 ∂tθdSx + α

¨
γ+

(
|v|2 − 4

)
∂t
√
µ̃f̃dγ = 0.

This leads to the estimates∣∣∣3∂t ˆ
Ω

∂tθdx+
4α√
2πε

ˆ
∂Ω

∂tθdSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃∂tf̃dγ

∣∣∣ ≤ αεh2,t,∣∣∣3
2
∂t

ˆ
Ω

(∂tθ)
2dx+

4α√
2πε

ˆ
∂Ω

(∂tθ)
2dSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃∂tf̃∂tθdγ

∣∣∣ ≤ αε2h3,t,

where hn,t ∈ Hn,t. Hence,

|∂t∂tθ| ≲ αh1,t + α
∣∣∣∂tf̃ ∣∣∣

L2
γ+

.

Case 2. Axisymmetric domains.
In this case, it follows from (1.58) that ρ(t, x) = 1 +O(|u|2). Elementary calculation shows

∂tρ =

[
u · ∂tu
T

− |u|2

2T 2
∂tT −

´
Ω

(
u·∂tu
T − |u|2

2T 2 ∂tT
)
exp( |u(t,x)|

2

2T (x) )dx´
Ω
exp( |u(t,x)|

2

2T (x) )dx

]
ρ := P [∂tw, ∂tθ]

t, (4.22)

where every entry of the matrix P is of order O(w, θ). Similarly, ∂t∂tρ = P [∂t∂tw, ∂t∂tw]
t + Q, where Q is

bounded by |∂tw|2 + |∂tθ|2.
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Multiplying (1.1) by |v|2 and integrating over Ω× R3, we obtain

ε

ˆ
Ω

∂t(3ρT + ρw2 |Ax|2)dx

=− α
( 1√

2π

ˆ
∂Ω

[4(T − 1) + w2 |Ax|2]ρT 1
2 dSx + ε

¨
γ+

(
|v|2 − 4

)√
µ̃f̃dγ

)
,

where we have used (4.9), (4.18) and Lemma C.2. Similarly, multiplying (1.1) by Ax · v and integrating over
Ω× R3 yield

ε

ˆ
Ω

|Ax|2 ∂t(ρw)dx =ε∂t

¨
Ω×R3

Ax · vFdvdx = −
¨

∂Ω×R3

(Ax · v)F [n · v]dvdSx

=−
¨

γ+

(Ax · v)Fdγ +

¨
γ−

(Ax · v)((1− α)RF + αPF )dγ

=−
¨

γ+

(Ax · v)Fdγ + (1− α)

¨
γ+

(Ax ·Rv)Fdγ + α

¨
γ+

(Ax · v)PFdγ

=− α

¨
γ+

(Ax · v)(1− P)Fdγ

=− α
[¨

γ+

(Ax · v)Fdγ −
√
2π

¨
γ+

(Ax · v)µ̃
( ˆ

n·u>0

F [n · u]du
)
dγ
]

=− α
[¨

γ+

(Ax · v)µ̃dγ −
√
2π

¨
γ+

(Ax · v)µ
(ˆ

n·u>0

µ̃[n · u]du
)
dγ
]

− αε
[¨

γ+

(Ax · v)
√
µ̃f̃dγ −

√
2π

¨
γ+

(Ax · v)µ
( ˆ

n·u>0

√
µ̃f̃ [n · v]du

)
dγ
]

=− α
[ ˆ

∂Ω

ρT
1
2w |Ax|2√

2π
dSx + ε

¨
γ+

(Ax · v)
√
µ̃f̃dγ

]
.

The equations for w and θ are[(´
Ω
|Ax|2 dx 0
0

´
Ω
3dx

)
+ P1

](
∂tw
∂tθ

)
+ α

(
1√
2πε

´
∂Ω
w |Ax|dSx +

˜
γ+

(Ax · v)
√
µ̃f̃dγ

1√
2πε

´
∂Ω

4θdSx +
˜

γ+

(
|v|2 − 4

)√
µ̃f̃dγ

)
= 0,

where P1 is of order O(|w| , θ). Multiplying this by(´
Ω
|Ax|2 dx 0
0

´
Ω
3dx

)[(´
Ω
|Ax|2 dx 0
0

´
Ω
3dx

)
+ P1

]−1

yields

∂t

ˆ
Ω

w |Ax|2 dx+
α√
2πε

ˆ
∂Ω

w |Ax|2 dSx + α

¨
γ+

(Ax · v)
√
µ̃f̃dγ = h1,

∂t

ˆ
Ω

3θdx+
α√
2πε

ˆ
∂Ω

4θdSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃f̃dγ = h2,

where h1 and h2 are bounded by

α(|w|+ |θ|)
(
|w|+ |θ|+

∣∣∣f̃ ∣∣∣
L2

γ+

)
.

Thus, we have∣∣∣3∂t ˆ
Ω

θdx+
α√
2πε

ˆ
∂Ω

4θdSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃f̃dγ

∣∣∣ ≤ αεh2 + αεh1

∣∣∣f̃ ∣∣∣
L2

γ+

(4.23)∣∣∣∂t ˆ
Ω

w |Ax|2 dx+
α√
2πε

ˆ
∂Ω

w |Ax|2 dSx + α

¨
γ+

(Ax · v)
√
µ̃f̃dγ

∣∣∣ ≤ αεh2 + αεh1

∣∣∣f̃ ∣∣∣
L2

γ+

, (4.24)

where hn ∈ Hn. Moveover,∣∣∣3
2
∂t

ˆ
Ω

θ2dx+
α√
2πε

ˆ
∂Ω

4θ2dSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃f̃θdγ

∣∣∣ ≤ αε2h3 + αε2h2

∣∣∣f̃ ∣∣∣
L2

γ+

, (4.25)∣∣∣1
2
∂t

ˆ
Ω

w2 |Ax|2 dx+
α√
2πε

ˆ
∂Ω

w2 |Ax|2 dSx + α

¨
γ+

(wAx · v)
√
µ̃f̃dγ

∣∣∣ ≤ αε2h3 + αε2h2

∣∣∣f̃ ∣∣∣
L2

γ+

. (4.26)
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It follows that

|∂tθ| ≲ αh1 + α
∣∣∣f̃ ∣∣∣

L2
γ+

, |∂tw| ≲ αh1 + α
∣∣∣f̃ ∣∣∣

L2
γ+

.

Proceeding as in Case 1, we also obtain estimates for ∂tθ and ∂tw:∣∣∣3∂t ˆ
Ω

∂tθdx+
α√
2πε

ˆ
∂Ω

4∂tθdSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃∂tf̃dγ

∣∣∣ ≤ αεh2,t + αεh1,t

∣∣∣∂tf̃ ∣∣∣
L2

γ+

,∣∣∣∂t ˆ
Ω

∂tw |Ax|2 dx+
α√
2πε

ˆ
∂Ω

∂tw |Ax|2 dSx + α

¨
γ+

(Ax · v)
√
µ̃∂tf̃dγ

∣∣∣
≤αεh2,t + αεh1,t

∣∣∣∂tf̃ ∣∣∣
L2

γ+

,∣∣∣3
2
∂t

ˆ
Ω

(∂tθ)
2dx+

α√
2πε

ˆ
∂Ω

4(∂tθ)
2dSx + α

¨
γ+

(
|v|2 − 4

)√
µ̃∂tf̃∂tθdγ

∣∣∣
≤αε2h3,t + αε2h2,t

∣∣∣∂tf̃ ∣∣∣
L2

γ+

,∣∣∣1
2
∂t

ˆ
Ω

(∂tw)
2 |Ax|2 dx+

α√
2πε

ˆ
∂Ω

(∂tw)
2 |Ax|2 dSx + α

¨
γ+

(∂twAx · v)
√
µ̃∂tf̃dγ

∣∣∣
≤αε2h3,t + αε2h2,t

∣∣∣∂tf̃ ∣∣∣
L2

γ+

,

where hn,t ∈ Hn,t. Therefore,

|∂t∂tθ| ≲ αh1,t + α
∣∣∣∂tf̃ ∣∣∣

L2
γ+

, |∂t∂tw| ≲ αh1,t + α
∣∣∣∂tf̃ ∣∣∣

L2
γ+

.

Case 3. Spherical domains.
Similar to Case 2, multiplying (1.1) by |v|2 and integrating over Ω× R3 gives

ε

ˆ
Ω

∂t
(
3ρT +

3∑
i=1

ρw2
i |Aix|2

)
dx

=− α
( 1√

2π

ˆ
∂Ω

ρT
1
2

[
4(T − 1) + w2 |Ax|2

]
dSx + ε

¨
γ+

(
|v|2 − 4

)√
µ̃f̃dγ

)
.

Multiplying (1.1) by Ax · v and integrating over Ω× R3 yield

ε

ˆ
Ω

|Aix|2 ∂t(ρwi)dx+ α
( 1√

2π

ˆ
∂Ω

ρT
1
2wi |Aix|2 dSx + ε

¨
γ+

(Aix · v)
√
µ̃f̃dγ

)
= 0

for each i = 1, 2, 3. Here we have used (4.10)–(4.12), (4.18) and Lemma C.2. The formulas are identical to
those for axisymmetric domains in Case 2. Therefore, the same conclusions follow directly. This completes
the proof. □

4.2. Energy Estimate.

In this subsection, we establish energy estimates for the fluctuation f̃ and its time derivative ∂tf̃ .
Differentiating equation (1.61) gives the equation for ∂tf̃ :

ε∂t(∂tf̃) + v · ∇x(∂tf̃) + ε−1L̃(∂tf̃) = g̃t in R+ × Ω× R3,

∂tf̃ |γ− = (1− α)R(∂tf̃) + αP̃γ(∂tf̃) + α∂tr + αs in R+ × ∂Ω× R3,

∂tf̃ |t=0 = ∂tf̃0 on Ω× R3,

(4.27)
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where ∂tf̃0 is determined through (1.61), the boundary term r is defined in (1.62), and

g̃t :=Γ̃(∂tf̃ , f̃) + Γ̃(f̃ , ∂tf̃) + ∂t

( 1√
µ̃

)√
µ̃Γ̃(f̃ , f̃) + Γ̃t(f̃ , f̃)− ε−1∂t

( 1√
µ̃

)√
µ̃L̃f̃

− ε−1L̃tf̃ − ∂t

(∂tµ̃√
µ̃

)
− ε∂t

(∂t√µ̃√
µ̃

)
f̃ − ε

(∂t√µ̃√
µ̃

)
∂tf̃ ,

Γ̃t(f, g) :=Γ̃
(∂t√µ̃√

µ̃
f, g
)
+ Γ̃

(
f,
∂t
√
µ̃√
µ̃
g
)
,

L̃tf :=Γ̃
(∂tµ̃√

µ̃
, f
)
+ Γ̃

(
f,
∂tµ̃√
µ̃

)
+ Γ̃

(√
µ̃,
∂t
√
µ̃√
µ̃
f
)
+ Γ̃

(∂t√µ̃√
µ̃
f,
√
µ̃
)
,

s :=
√
2π∂t

( µ√
µ̃

) ˆ
n·v>0

f̃
√
µ̃[n · v]dv +

√
2π

µ√
µ̃

ˆ
n·v>0

f̃∂t
√
µ̃[n · v]dv.

(4.28)

The main result of this subsection is the following energy estimate.

Proposition 4.10. Let f̃ ∈ L2(R+ × Ω × R3) be a solution of the perturbation equation (1.61) with given

source g̃, and let ∂tf̃ ∈ L2(R+ × Ω × R3) be a solution of (4.27) with given source g̃t. Suppose the a priori
assumption (1.82) holds. Then the following estimates hold:∥∥∥f̃(t)∥∥∥2

L2
x,v

+
θ2(t)

ε2
+
∑ w2

i (t)

ε2
+

1

ε2

ˆ t

0

∥∥∥(I− P̃)f̃
∥∥∥2
L2

x,v(ν̃)
dτ

+
α

ε

ˆ t

0

¨
γ+

∣∣∣f̃ ∣∣∣2 dγdτ + α

ε

ˆ t

0

θ2

ε2
dτ +

α

ε

ˆ t

0

∑ w2
i

ε2
dτ

≲
∥∥∥f̃(0)∥∥∥2

L2
x,v

+ α

ˆ t

0

∥∥∥f̃∥∥∥2
2
dτ +

ˆ t

0

g̃f̃dτ + α

ˆ t

0

(
h3 + h1

∣∣∣f̃ ∣∣∣2
L2

γ+

)
dτ,

(4.29)

and ∥∥∥∂tf̃(t)∥∥∥2
L2

x,v

+
[∂tθ(t)]

2

ε2
+
∑ [∂twi(t)]

2

ε2
+

1

ε2

ˆ t

0

∥∥∥(I− P̃)∂tf̃
∥∥∥2
L2

x,v(ν̃)
dτ

+
α

ε

ˆ t

0

¨
γ+

∣∣∣∂tf̃ ∣∣∣2 dγdτ + α

ε

ˆ t

0

(∂tθ)
2

ε2
dτ +

α

ε

ˆ t

0

∑ (∂twi)
2

ε2
dτ

≲
∥∥∥∂tf̃(0)∥∥∥2

L2
x,v

+ α

ˆ t

0

∥∥∥∂tf̃∥∥∥2
2
dτ +

ˆ t

0

g̃t∂tf̃dτ + α

ˆ t

0

(
h3,t + h1,t

∣∣∣∂tf̃ ∣∣∣2
L2

γ+

)
dτ,

(4.30)

where hn ∈ Hn and hn,t ∈ Hn,t for n ∈ N.

The estimate for the source terms g̃ and g̃t on the right-hand side of (4.29) and (4.30) will be given in
Subsection 4.4. Before giving the proof of Proposition 4.10, we need some preparatory lemmas.

Recall the linearized Boltzmann operator L̃ defined in (1.62) and its null space ker L̃ defined in (1.64). It

is standard that L̃f̃ = ν̃f̃ − K̃f̃ (see e.g. [14, 30]), where the collision frequency ν̃ and the compact operator

K̃ on L2(R3
v) are

ν̃ = ν̃(v) :=
1√
µ̃
Q−(

√
µ̃, µ̃) =

ˆ
R3

ˆ
S2
|(v − u) · ω| µ̃(u)dωdu,

K̃f̃ =
1√
µ̃

[
Q+(µ̃,

√
µ̃f̃) +Q+(

√
µ̃f̃ , µ̃)−Q−(µ̃,

√
µ̃f̃)

]
=

ˆ
R3

[k̃1(v, u)− k̃2(v, u)]f̃(u)du.

(4.31)

For hard sphere cross sections, there exist positive constants C0 and C1 such that

ρ
√
TC0 ⟨v⟩ ≤ ν̃(v) ≤ ρ

√
TC1 ⟨v⟩ .

If ρ, u and T are bounded above and below, then

C0 ⟨v⟩ ≤ ν̃(v) ≤ C1 ⟨v⟩ ,

so that ν(v) ≈ ν̃(v). Moreover, the operator L̃ is symmetric with spectral inequality

⟨f̃ , L̃f̃⟩2 ≳
∥∥∥(I− P̃)f̃

∥∥∥2
L2

v(ν̃)
for f̃ ∈ DL̃ =

{
f̃ ∈ L2(R3

v)| ν̃1/2f̃ ∈ L2(R3
v)
}
. (4.32)

Using the relation

µ̃(v) = T− 3
2 ρµ

(v − u√
T

)
,
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the implicit constant in “≳” in (4.32) is uniform, provided ρ, c, and T are bounded above and below.

Lemma 4.11. Let r be defined as in (1.62) and s as in (4.28). Under the a priori assumption (1.82), the
following estimates hold: ∣∣∣r − √

µ̃

ε

((
2− |v|2

2

)
θ − v · u

)∣∣∣
L2

γ−

≲ εh2, (4.33)

|r|L2
γ−

≲ h1 + εh2, |r|L∞
γ−

≲ h1 + εh2, (4.34)∣∣∣∂tr − √
µ̃

ε

((
2− |v|2

2

)
∂tθ − v · ∂tu

)∣∣∣
L2

γ−

≲ εh2,t, (4.35)

|∂tr|L2
γ−

≲ αh1 + α
∣∣∣f̃ ∣∣∣

L2
γ+

+ εh2,t, (4.36)

|s|L2
γ−

≲ α
(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

) ∣∣∣f̃ ∣∣∣
L2

γ+

≲ εh2,t, (4.37)

where hn ∈ Hn and h2,t ∈ H2,t.

Proof. By direct calculation,

r =

√
µ̃

ε

(
ρT

1
2
µ

µ̃
− 1
)
=

√
µ̃

ε

[
(1 + θ)2 exp

(
− |v|2

2(1 + θ)
θ +

−2v · u+ |u|2

2(1 + θ)

)
− 1
]

=

√
µ̃

ε

[(
2− |v|2

2

)
θ − v · u+O(θ2, |u|2)p(v)

]
,

(4.38)

where p(v) is a polynomial in v and O(θ2, |u|2) denotes terms bounded by θ2 + |u|2. Using the exponential
decay of

√
µ̃, we obtain ∣∣∣∣√µ̃ε O(θ2, |u|2)p(v)

∣∣∣∣ ≲ εh2,

which yields (4.33) and (4.34).
For the time derivative of r, we have

∂tr =

√
µ̃

ε

[(
2− |v|2

2

)
∂tθ − v · ∂tu+ ∂tO(θ2, |u|2)

]
+
∂t
√
µ̃

ε
O(θ, |u|),

where

∂t
√
µ̃ =

|v − u|2 − 3T

2

∂tT

2T 2

√
µ̃+

(v − u) · ∂tu
2T

√
µ̃+

∂tρ

2ρ

√
µ̃. (4.39)

Using the bounds from (4.17) and the exponential decay of
√
µ̃, we obtain (4.35) and (4.36).

Now consider s as defined in (4.28). From (4.39) and (4.17), we obtain∣∣∣∂t( µ√
µ̃

)ˆ
n·v>0

√
µ̃f̃ [n · v]dv

∣∣∣
L2

γ−

≲ α
(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

) ∣∣∣f̃ ∣∣∣
L2

γ+

,∣∣∣ µ√
µ̃

ˆ
n·v>0

∂t(
√
µ̃)f̃ [n · v]dv

∣∣∣
L2

γ−

≲ α
(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

) ∣∣∣f̃ ∣∣∣
L2

γ+

.

Combining these estimates yields (4.37). □

The following near-orthogonality properties hold for P̃γ f̃ , (1− P̃γ

)
f̃ , (|v|2 − 4)

√
µ̃ and (v ·Ax)

√
µ̃.

Lemma 4.12. Let f̃ ∈ L2(γ) with P̃γ defined as in (1.62). Under the a priori assumption (1.82), the
following estimates hold: ∣∣∣¨

γ+

[
P̃γ f̃

][
(1− P̃γ)f̃

]
dγ
∣∣∣ ≲ εh1

∣∣∣f̃ ∣∣∣2
L2

γ+

, (4.40)

ˆ
n·v>0

[
P̃γ f̃

][
(|v|2 − 4)

√
µ̃
]
[n · v]dv = 0, (4.41)

ˆ
n·v>0

[
P̃γ f̃

][
(v ·Ax)

√
µ̃
]
[n · v]dv = 0, (4.42)∣∣∣ˆ

n·v>0

[
(|v|2 − 4)

√
µ̃
][
(v ·Ax)

√
µ̃
]
[n · v]dv

∣∣∣ ≲ εh1, (4.43)

where Ax ∈ RΩ and h1 ∈ H1.
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Proof. From the definition of Pγ and a direct computation,

¨
γ+

[
P̃γ f̃

][
(1− P̃γ)f̃

]
dγ

=
√
2π

¨
γ+

√
µ̃f̃
[ ˆ

n·v>0

√
µ̃f̃
(µ
µ̃
− 1
)
[n · v]dv

]
dγ

−
√
2π

¨
γ+

√
µ̃f̃
[√

2π

ˆ
n·v>0

√
µ̃f̃ [n · v]dv

ˆ
n·v>0

µ
(µ
µ̃
− 1
)
[n · v]dv

]
dγ.

Since µ
µ̃ = 1 +O(|θ|, |u|), we have

∣∣∣ˆ
n·v>0

µ
(µ
µ̃
− 1
)
[n · v]dv

∣∣∣ ≲ εh1,
(ˆ

n·v>0

µ̃
(µ
µ̃
− 1
)2
[n · v]dv

) 1
2

≲ εh1,

with h1 ∈ H1. This proves (4.40).
Next, using Lemma C.4 and the fact that Ax · n|∂Ω = 0,

ˆ
n·v>0

[
P̃γ f̃

][
(|v|2 − 4)

√
µ̃
]
[n · v]dv =

√
2π

ˆ
n·v>0

√
µ̃f̃ [n · v]dv

ˆ
n·v>0

(|v|2 − 4)µ[n · v]dv = 0,

ˆ
n·v>0

[
P̃γ f̃

][
(v ·Ax)

√
µ̃
]
[n · v]dv =

√
2π

ˆ
n·v>0

√
µ̃f̃ [n · v]dv

ˆ
n·v>0

(v ·Ax)µ[n · v]dv = 0,∣∣∣ˆ
n·v>0

[
(|v|2 − 4)

√
µ̃
][
(v ·Ax)

√
µ̃
]
[n · v]dv

∣∣∣ = ∣∣∣6(Ax · u)ρT 3
2

√
2π

+
(Ax · u) |u|2 ρT 1

2

√
2π

∣∣∣ ≤ εh1.

These identities give (4.41), (4.42) and (4.43). □

We now prove Proposition 4.10.

Proof of Proposition 4.10. The proof is divided into three steps. Steps 1 and 2 establish the energy
estimates for f̃ and ∂tf̃ , respectively. Step 3 completes the energy estimates by incorporating the trace
lemma.

Step 1. Energy estimate for f̃ .
We first derive the following estimate for f̃ :

1

2
∂t

∥∥∥f̃∥∥∥2
L2

x,v

+
1

ε2

¨
Ω×R3

f̃ L̃f̃dvdx+
3

2
∂t

ˆ
Ω

θ2

ε2
dx+ ∂t

ˆ
Ω

|u|2

ε2
dx

+
α(2− α)

ε

¨
γ+

(1
2

θ

ε
(|v|2 − 4)

√
µ̃+

u

ε
· v
√
µ̃+ [(1− P̃γ)f̃ ]

)2
dγ (4.44)

≤1

ε

∣∣∣¨
Ω×R3

f̃ g̃dxdv
∣∣∣+ αh3 + αh1

∣∣∣f̃ ∣∣∣2
L2

γ+

,

where hn ∈ Hn for n ∈ N.
Standard L2 energy estimate for (1.61) yields

ε
1

2
∂t

∥∥∥f̃∥∥∥2
L2

x,v

+
1

2

¨
γ

f̃2[n · v]dvdSx + ε−1

¨
Ω×R3

f̃ L̃f̃dvdx =

¨
Ω×R3

f̃ g̃dvdx.

Using the boundary condition and the change of variables Rxv 7→ v,

¨
γ−

f̃2dγ =

¨
γ+

[
(1− α)(1− P̃γ)f̃ + P̃γ f̃ + αr

]2
dγ

=

¨
γ+

{
(1− α)2

[
(1− P̃γ)f̃

]2
+
[
P̃γ f̃

]2
+ α2r2 + 2αrP̃γ f̃

+ 2(1− α)
[
(1− P̃γ)f̃

][
P̃γ f̃

]
+ 2α(1− α)r

[
(1− P̃γ)f̃

]}
dγ.
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Applying Lemma 4.11 and Lemma 4.12, we obtain the intermediate estimate

1

2
∂t

∥∥∥f̃∥∥∥2
L2

x,v

+
1

ε2

¨
Ω×R3

f̃ L̃f̃dvdx+
α(2− α)

ε

¨
γ+

[
(1− P̃γ)f̃

]2
dγ

+
α(1− α)

ε

¨
γ+

[
(|v|2 − 4)

√
µ̃
θ

ε
(1− P̃γ)f̃ + 2

u

ε
· v
√
µ̃(1− P̃γ)f̃

]
dγ

− α2

4ε

¨
γ+

[
(|v|2 − 4)2µ̃

θ2

ε2
+
(
2
u

ε
· v
)2
µ̃
]
dγ

≤1

ε

∣∣∣¨
Ω×R3

f̃ g̃dvdx
∣∣∣+ αh3 + 2αh1

∣∣∣f̃ ∣∣∣2
L2

γ+

.

(4.45)

From Lemma C.4 we compute

4√
2π

ˆ
∂Ω

θ2dSx =
1

2

¨
γ+

θ2(|v|2 − 4)2µ̃dγ + ε3h3,

4√
2π

ˆ
∂Ω

(∂tθ)
2dSx =

1

2

¨
γ+

(∂tθ)
2(|v|2 − 4)2µ̃dγ + ε3h3,t,

4√
2π

ˆ
∂Ω

|u|2 dSx =

¨
γ+

(u · v)2µ̃dγ + ε3h3,

4√
2π

ˆ
∂Ω

|∂tu|2 dSx =

¨
γ+

(∂tu · v)2µ̃dγ + ε3h3,t.

(4.46)

Applying (4.46) to (4.13) and (4.14) in Proposition 4.9 gives∣∣∣3
2
∂t

ˆ
Ω

θ2dx+
α

2ε

¨
γ+

θ2(|v|2 − 4)2µ̃dγ + α

¨
γ+

(|v|2 − 4)
√
µ̃f̃θdγ

∣∣∣ ≤ αε2h3 + αε2h2

∣∣∣f̃ ∣∣∣
L2

γ+

, (4.47)∣∣∣∣12∂t
ˆ
Ω

|u|2 dx+
α

ε

¨
γ+

(u · v)2µ̃dγ + α

¨
γ+

(u · v)
√
µ̃f̃dγ

∣∣∣∣ ≤ αε2h3 + αε2h2

∣∣∣f̃ ∣∣∣
L2

γ+

. (4.48)

Now consider the combination (4.45) + 1
ε2 (4.47) + 2

ε2 (4.48):

Left-hand side of
(
(4.45) +

1

ε2
(4.47) +

2

ε2
(4.48)

)
=
1

2
∂t

∥∥∥f̃∥∥∥2
L2

x,v

+
1

ε2

¨
Ω×R3

f̃ L̃f̃dvdx+
α(2− α)

ε

¨
γ+

[
(1− P̃γ)f̃

]2
dγ

+
α(2− α)

4ε

¨
γ+

[
(|v|2 − 4)2µ̃

θ2

ε2
+
(
2
u

ε
· v
)2
µ̃
]
dγ

+
α(2− α)

ε

¨
γ+

[
(|v|2 − 4)[(1− P̃γ)f̃ ]

√
µ̃
θ

ε
+ 2

u

ε
· v[(1− P̃γ)f̃ ]

√
µ̃
]
dγ

+
α(2− α)

4ε

¨
γ+

[
2
u

ε
· v(|v|2 − 4)

θ

ε
µ̃− 2

u

ε
· v(|v|2 − 4)

θ

ε
µ̃
]
dγ

=
1

2
∂t

∥∥∥f̃∥∥∥2
L2

x,v

+
1

ε2

¨
Ω×R3

f̃ L̃f̃dvdx

+
α(2− α)

ε

¨
γ+

[1
2
(|v|2 − 4)

√
µ̃
θ

ε
+

u

ε
· v
√
µ̃+ [(1− P̃γ)f̃ ]

]2
dγ

− α(2− α)

4ε

¨
γ+

2
u

ε
· v(|v|2 − 4)

θ

ε
µ̃dγ.

The last term is bounded by αh3 thanks to Lemma 4.12. This establishes (4.44).

Step 2. Energy estimate for ∂tf̃ .
In an analogous way we obtain the corresponding estimate for ∂tf̃ :

1

2
∂t

∥∥∥∂tf̃∥∥∥2
L2

x,v

+
1

ε2

¨
Ω×R3

∂tf̃ L̃(∂tf̃)dxdv +
3

2
∂t

ˆ
Ω

(∂tθ)
2

ε2
dx+ ∂t

ˆ
Ω

|∂tu|2

ε2
dx

+
α(2− α)

ε

¨
γ+

(1
2

∂tθ

ε
(|v|2 − 4)

√
µ̃+

∂tu

ε
· v
√
µ̃+ [(1− P̃γ)∂tf̃ ]

)2
dγ (4.49)

≤1

ε

∣∣∣¨
Ω×R3

∂tf̃ g̃
tdxdv

∣∣∣+ αh3,t + αh1,t

∣∣∣∂tf̃ ∣∣∣2
L2

γ+

,
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where hn,t ∈ Hn,t for n ∈ N.
The derivation of (4.49) follows exactly the same pattern as Step 1, using (4.27), Lemma 4.11 and Lemma

4.12 applied to ∂tf̃ , together with estimates (4.15) and (4.16). We omit the repetitive details.

Step 3. Completion of the energy estimates.
Up to now the boundary dissipation has been controlled except for the directions of by (|v|2 − 4)

√
µ̃,

Ax · v
√
µ̃, and P̃γ . The remaining directions are handled via the trace lemma.

For this purpose, we decompose f̃ |γ+ according to the domain geometry:

f̃
∣∣
γ+

=


P̃γ f̃ + P̃|v|2−4f̃ + P̃⊥f̃ for non-axisymmetric domains,

P̃γ f̃ + P̃|v|2−4f̃ + P̃vAx
f̃ + P̃⊥f̃ for axisymmetric domains,

P̃γ f̃ + P̃|v|2−4f̃ +

3∑
i=1

P̃vAix
f̃ + P̃⊥f̃ for spherical domains.

(4.50)

Here, P̃γ f̃ is defined in (1.62) and the other projections are

P̃|v|2−4f̃ :=C|v|2−4(|v|
2 − 4)

√
µ̃

ˆ
n·v>0

f̃(|v|2 − 4)
√
µ̃[n · v]dv,

P̃vAx
f̃ :=CvAx

(v ·Ax)
√
µ̃

ˆ
n·v>0

f̃v ·Ax
√
µ̃[n · v]dv,

P̃vAix
f̃ :=CvAix

(v ·Aix)
√
µ̃

ˆ
n·v>0

f̃v ·Aix
√
µ̃[n · v]dv, i = 1, 2, 3,

with suitable normalization constants C|v|2−4, CvAx
and CvAix

.

By Lemma 4.12, the terms in (4.50) are nearly orthogonal:∣∣∣∣ˆ
γ+

P̃X f̃P̃Y f̃dγ

∣∣∣∣ ≲ εh1

∣∣∣f̃ ∣∣∣2
L2

γ+

for X ̸= Y, (4.51)

where X,Y ∈
{
γ, |v|2 − 4, vAx, vA1x, vA2x, vA3x,⊥

}
. Using

¨
γ+\γδ

+

(|v|2 − 4)2µ̃dγ +

¨
γ+\γδ

+

(v ·Ax)2 µ̃dγ +

¨
γ+\γδ

+

µ2

µ̃
dγ ≲ o(δ) for Ax ∈ RΩ,

the near-grazing part is controlled byˆ
γ+\γδ

+

∣∣∣P̃γ f̃ + P̃|v|2−4f̃ +
∑

P̃vAx
f̃
∣∣∣2 dγ ≲ o(δ)

¨
γ+

∣∣∣P̃γ f̃ + P̃|v|2−4f̃ +
∑

P̃vAx
f̃
∣∣∣2 dγ.

where
∑

P̃vAx
(A = A or Ai) denotes the sum over the relevant axial directions. Consequently,¨
γ+

∣∣∣P̃γ f̃ + P̃|v|2−4f̃ +
∑

P̃vAx
f̃
∣∣∣2 dγ

=
{¨

γδ
+

+

¨
γ+\γδ

+

} ∣∣∣P̃γ f̃ + P̃|v|2−4f̃ +
∑

P̃vAx
f̃
∣∣∣2 dγ

≲
¨

γδ
+

∣∣∣P̃γ f̃ + P̃|v|2−4f̃ +
∑

P̃vAx
f̃
∣∣∣2 dγ

≤
¨

γδ
+

∣∣∣f̃ ∣∣∣2 dγ + 2

¨
γδ
+

(
P̃γ f̃ + P̃|v|2−4f̃ +

∑
P̃vAx

f̃
)
P̃⊥f̃dγ + 2

¨
γδ
+

∣∣∣P̃⊥f̃
∣∣∣2 dγ

≤
¨

γδ
+

∣∣∣f̃ ∣∣∣2 dγ + 2

¨
γ+

∣∣∣P̃⊥f̃
∣∣∣2 dγ + εh1

∣∣∣f̃ ∣∣∣2
L2

γ+

,

where we used (4.51) in the last inequality.
Applying the trace lemma (Lemma 3.2 in [22]) to the non-grazing part, we obtain

ˆ t

0

¨
γ+

∣∣∣P̃γ f̃ + P̃|v|2−4f̃ +
∑

P̃vAx
f̃
∣∣∣2 dγds

≲ε
¨

Ω×R3

∣∣∣f̃(0)∣∣∣2 dvdx+

ˆ t

0

¨
Ω×R3

∣∣∣f̃(s)∣∣∣2 dvdxds+ ε

ˆ t

0

h1

∣∣∣f̃ ∣∣∣2
L2

γ+

ds

+

ˆ t

0

¨
Ω×R3

∣∣∣(g̃ − ε−1L̃f̃)f̃
∣∣∣dvdxds+ ˆ t

0

¨
γ+

∣∣∣P̃⊥f̃
∣∣∣2 dγds.

(4.52)
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Note that by (4.50),¨
γ+

[1
2

θ

ε
(|v|2 − 4)

√
µ̃+

u

ε
· v
√
µ̃+ [(1− P̃γ)f̃ ]

]2
dγ

=

ˆ
γ+

[1
2

θ

ε
(|v|2 − 4)

√
µ̃+ P̃(|v|2−4)f̃ +

u

ε
· v
√
µ̃+

∑
P̃vAx

f̃ + P̃⊥f̃
]2
dγ.

Combining (4.44) with δ α
ε × (4.52) for a sufficiently small δ > 0, we derive the desired estimate (4.29).

The energy estimate (4.30) for ∂tf̃ follows in the same way from (4.49). □

4.3. Macroscopic L2 and L6 Estimates.

In this subsection, we derive the macroscopic L2 and L6 estimates for the perturbation equation (1.61)
and give the proof of Proposition 1.5.

Recall the non-orthogonal basis {χ̃i}4i=0 of ker L̃ defined in (4.3) and the coefficients ã, b̃, c̃ defined in (4.4).
By (4.7), the following compatibility conditions hold:ˆ

Ω

ã(t, x)dx = 0,

ˆ
Ω

Ax · b̃(t, x)dx = 0,

ˆ
Ω

c̃(t, x)dx = 0 ∀t ≥ 0. (4.53)

Define the Burnett functions

Ãij(v) :=
(
vivj −

δij
3

|v|2
)√

µ̃, B̃i(v) := vi
|v|2 − 5√

10

√
µ̃, i, j = 1, 2, 3. (4.54)

By Lemma C.2, for every i, j = 1, 2, 3, the following almost orthogonality hold:ˆ
R3

χ̃k(v)Ãij(v)dv = O(|θ|+ |u|),
ˆ
R3

χ̃k(v)B̃i(v)dv = O(|θ|+ |u|), k = 0, · · · , 4. (4.55)

We now give the proof of Proposition 1.5.

Proof of Proposition 1.5. The proof follows a strategy similar to that of Proposition 1.2, but here we work
with the rotating Maxwellian µ̃ and use the conservation laws of angular momentum and energy provided by
(4.7). Moveover, the non-orthogonality of the basis {χ̃i}4i=0 introduces additional computational complexity.

We first multiply the equation (1.61) by a test function ψ̃p,q:

ε

¨
Ω×R3

ψ̃p,q∂tf̃dvdx︸ ︷︷ ︸
:=Ξ̃1

p,q

+

¨
γ+

ψ̃p,q f̃dγ −
¨

γ−

ψ̃p,q f̃dγ︸ ︷︷ ︸
:=Ξ̃2

p,q

−
¨

Ω×R3

(
v · ∇xψ̃p,q

)
f̃dvdx︸ ︷︷ ︸

:=Ξ̃3
p,q

=

¨
Ω×R3

[
ε−1ψ̃p,qL̃(f̃ , f̃) + ψ̃p,q g̃

]
dvdx︸ ︷︷ ︸

:=Ξ̃4
p,q

,

(4.56)

where we have used (1.63) to obtain Ξ̃3
p,q. The test function ψ̃p,q will be constructed in the form of

ψ̃p,q(t, x, v) = h(v)ϕp,q(t, x)
√
µ̃, where h(v) is a polynomial in v and ϕp,q satisfies a suitable elliptic boundary

value problem.
Note that R(

√
µ̃) =

√
µ̃ by (1.56) and (1.57). If ψ̃p,q also satisfies R(ψ̃p,q) = ψ̃p,q, then the boundary

term Ξ2
p,q in (4.56) can be treated similarly to (3.18) via the Maxwell boundary condition in (1.61) and the

change of variables v 7→ Rxv:

Ξ̃2
p,q =α

¨
γ+

ψ̃p,q f̃dγ − α

¨
γ+

ψ̃p,qP̃γ f̃dγ − α

¨
γ−

ψ̃p,qrdγ, p ∈ {a, b, c}, q ∈ {2, 6}. (4.57)

For Ξ̃2
p,2 (p ∈ {a, b, c}), the trace theorem gives∣∣∣Ξ̃2

p,2

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣
L2

γ+

+ |r|L2
γ−

)
|ϕp,2|L2(∂Ω) ≲ α

( ∣∣∣f̃ ∣∣∣
L2

γ+

+ |r|L2
γ−

)
∥ϕp,2∥H1(Ω) . (4.58)

For Ξ̃2
p,6 (p ∈ {a, b, c}), using (4.57) and deducing as in (3.20), we obtain∣∣∣Ξ̃2

p,6

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣ 12
L2

γ+

∥∥∥ω 1
2 f̃
∥∥∥ 1

2

L∞
x,v

+ |r|L4
γ−

)
∥ϕp,6∥

W 1, 6
5 (Ω)

. (4.59)

For Ξ̃4
p,q (p ∈ {a, b, c}, q ∈ {2, 6}), Hölder’s inequality directly yields∣∣∣Ξ̃4

p,q

∣∣∣ ≲(ε−1
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥
L2

x,v

)
∥ϕp,q∥L2

x
. (4.60)
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To estimate P̃f̃ , by Lemma 4.5, it suffices to control ã, b̃ and c̃.

Step 1. Estimate for ã.

Step 1.1. Estimate for
´ t
s
∥ã∥L2

x
dτ and ∥ã∥L6

x
.

In the weak formulation (4.56), we choose the test function

ψ̃a,q(t, x, v) :=

3∑
i=1

∂iφ̃a,q(t, x)
[√

10B̃i(v)− 5χ̃i(v)
]
, q ∈ {2, 6}.

Here, by Lemma C.5 and the compatibility condition (4.53), φ̃a,2(x) and φ̃a,6(x) are the unique solutions to
the elliptic equations

−∆xφ̃a,2 = ã in Ω, ∂nφ̃a,2 = 0 on ∂Ω,

ˆ
Ω

φ̃a,2dx = 0, (4.61)

−∆φ̃a,6 = ã5 − 1

|Ω|

ˆ
Ω

ã5dx, in Ω, ∂nφ̃a,6 = 0, on ∂Ω,

ˆ
Ω

φ̃a,6dx = 0, (4.62)

with the elliptic estimates∥∥∇2φ̃a,2

∥∥
L2

x
+ ∥∇φ̃a,2∥L2

x
+ ∥φ̃a,2∥L2

x
≲ ∥ã∥L2

x
, (4.63)∥∥∇2φ̃a,6

∥∥
L

6
5
x

+ ∥∇φ̃a,6∥L2
x
+ ∥φ̃a,6∥L6

x
≲
∥∥ã5∥∥

L
6
5
x

= ∥ã∥5L6
x
. (4.64)

We now estimate each term in (4.56). For Ξ̃1
a,2, integration by parts yields

ˆ t

s

Ξ̃1
a,2 =ε

[
G̃a(t)− G̃a(s)

]
− ε

ˆ t

s

¨
Ω×R3

3∑
i=1

[
∂t∂iφ̃a,2 + ∂t

√
µ̃
]
vi(|v|2 − 10)f̃

:=ε
[
G̃a(t)− G̃a(s)

]
− H̃a,1 − H̃a,2,

(4.65)

By (4.63) and Lemma 4.5, G̃a(t) is bounded by
∥∥∥f̃(t)∥∥∥2

L2
x,v

. For H̃a,1, we decompose P̃f̃ as

P̃f̃ =

4∑
k=0

⟨f̃ , χ̃k⟩χ̃k +
(
P̃f̃ −

4∑
k=0

⟨f̃ , χ̃k⟩χ̃k

)
, (4.66)

and obtain ˆ
R3

vi(|v|2 − 10)
√
µ̃P̃f̃dv =

4∑
k=0

⟨f̃ , χ̃k⟩
ˆ
R3

vi(|v|2 − 10)
√
µ̃χ̃kdv + K̃a,1

=− 5b̃i +O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̃a,1,

(4.67)

where we used (C.5) for the velocity integral. The remainder K̃a,1 is bounded via Lemma 4.7:∣∣∣K̃a,1

∣∣∣ = ∣∣∣ˆ
R3

vi(|v|2 − 10)
√
µ̃
(
P̃f̃ −

4∑
k=0

⟨f̃ , χ̃k⟩χ̃k

)
dv
∣∣∣ ≲ εh1

∥∥∥P̃f̃∥∥∥
L2

v

. (4.68)

Then, using Lemma 4.5,∣∣∣H̃a,1

∣∣∣ ≲ ε

ˆ t

s

∥∂t∇xφ̃a,2∥L2
x

[ ∥∥∥b̃∥∥∥
L2

x

+ εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

]
. (4.69)

The term H̃a,2 is controlled using (4.39), (4.17) and (4.63):∣∣∣H̃a,2

∣∣∣ ≲εˆ t

s

(|∂tθ|+ |∂tw|)
∥∥∥f̃∥∥∥

L2
x,v

∥∇xφ̃a,2∥L2
x
≲ εα

ˆ t

s

(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

∥ã∥L2
x
. (4.70)

Combining (4.65), (4.69) and (4.70) yields∣∣∣∣ˆ t

s

Ξ̃1
a,2

∣∣∣∣ ≤ ε
[
G̃a(t)− G̃a(s)

]
+ εα

ˆ t

s

(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

∥ã∥L2
x

+ ε

ˆ t

s

∥∂t∇xφ̃a,2∥L2
x

(∥∥∥b̃∥∥∥
L2

x

+ εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

)
.

(4.71)

For Ξ̃1
a,6, the elliptic estimate (4.64) directly yields∣∣∣Ξ̃1

a,6

∣∣∣ =ε∣∣∣ 3∑
i=1

¨
Ω×R3

∂iφ̃a,6vi(|v|2 − 10)
√
µ̃∂tf̃

∣∣∣ ≲ ε ∥ã∥5L6
x

∥∥∥∂tf̃∥∥∥
L2

x,v

. (4.72)
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For Ξ̃2
a,q (q ∈ {2, 6}), the homogeneous Neumann boundary condition ∂nφ̃a,q

∣∣
∂Ω

= 0 implies R(ψ̃a,q) =

ψ̃a,q. Thus, using (4.58), (4.59), (4.63) and (4.64), we obtain∣∣∣Ξ̃2
a,2

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣
L2

γ+

+ |r|L2
γ−

)
∥a∥L2

x
, (4.73)

∣∣∣Ξ̃2
a,6

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣ 12
L2

γ+

∥∥∥ω 1
2 f̃
∥∥∥ 1

2

L∞
x,v

+ |r|L4
γ−

)
∥ã∥5L6

x
. (4.74)

For Ξ̃3
a,q (q ∈ {2, 6}), we compute

Ξ̃3
a,q =−

3∑
i,j=1

ˆ
Ω

∂i∂jφ̃a,q

ˆ
R3

vivj(|v|2 − 10)
√
µ̃
[
P̃f̃ + (I− P̃)f̃

]
. (4.75)

Using the decomposition (4.66),

ˆ
R3

vivj(|v|2 − 10)
√
µ̃P̃f̃dv =

4∑
k=0

⟨f̃ , χ̃k⟩
ˆ
R3

vivj(|v|2 − 10)
√
µ̃χ̃k(v)dv + K̃a,q

=− 5δija+O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̃a,q,

(4.76)

where we used (3.22) for the above velocity integral. Similarly to (4.68), the remainder K̃a,q is bounded by

εh1

∥∥∥P̃f̃∥∥∥
Lq

v

. Substituting (4.76) into (4.75) gives

Ξ̃3
a,q =

ˆ
Ω

5∆xφ̃a,qã+ Ẽa,q, q ∈ {2, 6}, (4.77)

where

Ẽa,q =

3∑
i,j=1

ˆ
Ω

∂i∂jφ̃a,q

[
O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̃a,q +

ˆ
R3

vivj(|v|2 − 10)
√
µ̃(I− P̃)f̃

]
.

Applying (4.77) with the elliptic equations (4.61) and (4.62) yields

Ξ̃3
a,2 =

ˆ
Ω

5∆xφ̃a,2ãdx+ Ẽa,2 = −5 ∥ã∥2L2
x
+ Ẽa,2, (4.78)

Ξ̃3
a,6 =

ˆ
Ω

5∆xφ̃a,6ãdx+ Ẽa,6 = −5 ∥ã∥6L6
x
+ Ẽa,6, (4.79)

where Ẽa,2 and Ẽa,6 are bounded via (4.63), (4.64) and Lemma 4.5:∣∣∣Ẽa,q

∣∣∣ ≲ ∥ã∥L2
x

[
εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

]
, (4.80)∣∣∣Ẽa,6

∣∣∣ ≲ ∥ã∥5L6
x

[
ε

1
2 h1

∥∥∥ε 1
2ω

1
2 f̃
∥∥∥
L∞

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L6

x,v

]
. (4.81)

The bounds for Ξ̃4
a,2 and Ξ̃4

a,6 follow directly from (4.60) and elliptic estimates (4.63) and (4.64).
Integrating (4.56) and combining (4.71), (4.73), (4.78) and (4.80) yields

ˆ t

s

∥ã∥2L2
x
≲ ε
[
G̃a(t)− G̃a(s)

]
+ α2

ˆ t

s

[ ∣∣∣f̃ ∣∣∣2
L2

γ+

+ |r|2L2
γ−

+ ε2
(
h2 +

∣∣∣f̃ ∣∣∣2
L2

γ+

)∥∥∥f̃∥∥∥2
L2

x,v

]
+ ε

ˆ t

s

∥∂t∇φ̃a,2∥L2
x

(∥∥∥b̃∥∥∥
L2

x

+ εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

)
+

ˆ t

s

(
ε2h2

∥∥∥P̃f̃∥∥∥2
L2

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥2
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥2
L2

x,v

)
.

(4.82)

Similarly, combining (4.56), (4.72), (4.74), (4.79) and (4.81) gives

∥ã∥L6
x,v

≲ ε
∥∥∥∂tf̃∥∥∥

L2
x,v

+ α
∣∣∣f̃ ∣∣∣

L2
γ+

+ α |r|L4
γ−

+ α
∣∣∣f̃ ∣∣∣ 12

L2
γ+

∥∥∥ω 1
2 f̃
∥∥∥ 1

2

L∞
x,v

+ ε
1
2 h1

∥∥∥ε 1
2ω

1
2 f̃
∥∥∥
L∞

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L6

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥
L2

x,v

.

(4.83)

Step 1.2. Estimate for ∥∂t∇xφ̃a,2∥L2
x
.

In (4.56), we now choose the test function ψ̃a,2 = ∂tφ̃a,2

√
µ̃ and estimate each term.
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For Ξ̃1
a,2, we write

Ξ̃1
a,2 = ε

¨
Ω×R3

∂tφ̃a,2

[
∂t(
√
µ̃f̃)− ∂t(

√
µ̃)f̃

]
. (4.84)

The first term in (4.84) is treated using the elliptic equation (4.61):

ε

¨
Ω×R3

∂tφ̃a,2∂t(
√
µ̃f̃) = ε

ˆ
Ω

∂tφ̃a,2∂tã = ε

ˆ
Ω

−∂tφ̃a,2∆x∂tφ̃a,2 = ε ∥∇x∂tφ̃a,2∥2L2
x
. (4.85)

The second term in (4.84) is bounded similar to (4.70):∣∣∣∣ε¨
Ω×R3

∂tφ̃a,2∂t(
√
µ̃)f̃

∣∣∣∣ ≲εα(h1 + ∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

∥∂tφ̃a,2∥L2
x
. (4.86)

Since R(ψ̃a,2) = ψ̃a,2, the estimate (4.58) applies to Ξ̃2
a,2:∣∣∣Ξ̃2

a,2

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣
L2

γ+

+ |r|L2
γ−

)
∥∂tφ̃a,2∥H1(Ω) . (4.87)

By (4.4), direct computation implies∣∣∣Ξ̃3
a,2

∣∣∣ = ∣∣∣∣¨
Ω×R3

v · ∇x∂tφ̃a,2

√
µ̃f̃

∣∣∣∣ = ∣∣∣∣ˆ
Ω

∇x∂tφ̃a,2 · b̃
∣∣∣∣ ≲ ∥∥∥b̃∥∥∥

L2
x

∥∇x∂tφ̃a,2∥L2
x
. (4.88)

Since the contribution of L̃f̃ vanishes, Ξ̃4
a,2 is bounded by

∥∥∥ν̃− 1
2 g̃
∥∥∥
L2

x,v

∥∂tφ̃a,2∥L2
x
.

Combining (4.56) with these estimates and using Poincaré’s inequality, we have

ε ∥∇x∂tφ̃a,2∥L2
x
≲
∥∥∥b̃∥∥∥

L2
x

+ α
( ∣∣∣f̃ ∣∣∣

L2
γ+

+ |r|L2
γ−

)
+ εα

(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

+
∥∥∥ν̃− 1

2 g̃
∥∥∥
L2

x,v

. (4.89)

Finally, substituting (4.89) into (4.82), we arrive at
ˆ t

s

∥ã∥2L2
x
≤ε
[
G̃a(t)− G̃a(s)

]
+ α2

ˆ t

s

[ ∣∣∣f̃ ∣∣∣2
L2

γ+

+ |r|2L2
γ−

+ ε2
(
h2 +

∣∣∣f̃ ∣∣∣2
L2

γ+

)∥∥∥f̃∥∥∥2
L2

x,v

]
+

ˆ t

s

(∥∥∥b̃∥∥∥2
L2

x

+ ε2h2

∥∥∥P̃f̃∥∥∥2
L2

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥2
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥2
L2

x,v

)
.

(4.90)

Step 2. Estimate for b̃.

Step 2.1. Estimates for
´ t
s
∥b̃∥L2

x
dτ and ∥b̃∥L6

x
.

In (4.56), we choose the test function

ψ̃b,q(t, x, v) :=

3∑
i,j=1

∂jφ̃b,q,iÃij(v) +

√
6

3

3∑
i=1

∂iφ̃b,q,iχ̃4(v)

=

3∑
i,j=1

∂jφ̃b,q,ivivj
√
µ̃−

3∑
i=1

∂iφ̃b,q,i

√
µ̃, q ∈ {2, 6},

(4.91)

where the vector-valued functions φ̃b,2(t, x) and φ̃b,6(t, x) are solutions to the elliptic systems

−div(∇s
xφ̃b,2) = b̃ in Ω,

φ̃b,2 · n = 0 on ∂Ω,

(∇s
xφ̃b,2)n = (∇s

xφ̃b,2 : n⊗ n)n on ∂Ω,

(4.92)

and

−div(∇s
xφ̃b,6) = b̃5 −

∑ ´
Ω
Aix · b̃5dx´

Ω
|Aix|2 dx

Aix in Ω,

φ̃b,6 · n = 0 on ∂Ω,

(∇s
xφ̃b,6)n = (∇s

xφ̃b,6 : n⊗ n)n on ∂Ω,

(4.93)

respectively. Note that (4.93) has the same structure as (3.57), differing in the source term and angular

momentum conservation law here satisfied by b̃.
By the angular momentum conservation law in (4.53), the system (4.92) satisfies the compatible condition

(C.21) for all non-axisymmetric, axisymmetric and spherical domains. Moreover, for each j = 1, 2, 3, a
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computation analogous to (3.59) shows that the system (4.93) also satisfies (C.21). Therefore, by Lemma
C.6, the elliptic systems (4.92) and (4.93) admit unique solutions satisfying∥∥∇2

xφ̃b,2

∥∥
L2

x
+ ∥∇xφ̃b,2∥L2

x
+ ∥φ̃b,2∥L2

x
≲
∥∥∥b̃∥∥∥

L2
x

, (4.94)∥∥∇2
xφ̃b,6

∥∥
L

6
5
x

+ ∥∇xφ̃b,6∥L2
x
+ ∥φ̃b,6∥L6

x
≲
∥∥∥b̃5∥∥∥

L
6
5
x

=
∥∥∥b̃∥∥∥5

L6
x

(4.95)

and

PΩ

(ˆ
Ω

∇a
xφ̃b,qdx

)
= 0, q ∈ {2, 6}, (4.96)

where PΩ denotes the orthogonal projection onto the set AΩ :=
{
A ∈ so(3,R) : Ax ∈ RΩ

}
. Moreover, by

[18] and (4.96), the following Korn-type inequality holds:

∥φ̃b,q∥2H1
x
≲∥∇s

xφ̃b,q∥2L2
x
+ PΩ

(ˆ
Ω

∇a
xφ̃b,qdx

)
= ∥∇s

xφ̃b,q∥2L2
x
, q ∈ {2, 6}. (4.97)

We now estimate each term in (4.56). For Ξ̃1
b,2, integration by parts gives

ˆ t

s

Ξ̃1
b,2 =ε

[
G̃b(t)− G̃b(s)

]
− ε

ˆ t

s

¨
Ω×R3

[ 3∑
i,j=1

∂t∂jφ̃b,2,iÃij +

√
6

3

3∑
i=1

∂t∂iφ̃b,2,iχ̃4

]
f̃

− ε

ˆ t

s

¨
Ω×R3

[ 3∑
i,j=1

∂jφ̃b,2,i∂tÃij +

√
6

3

3∑
i=1

∂iφ̃b,2,i∂tχ̃4

]
f̃ .

:=
[
εG̃b(t)− εG̃b(s)

]
− H̃b,1 − H̃b,2,

(4.98)

Clearly, G̃b(t) is bounded by
∥∥∥f̃(t)∥∥∥2

L2
x,v

. For H̃b,1, we use the decomposition (4.66):

ˆ
R3

ÃijP̃f̃dv =

4∑
k=0

⟨f̃ , χ̃k⟩
ˆ
R3

Ãijχ̃kdv + K̃b,1 = O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̃b,1,

ˆ
R3

χ̃4P̃f̃dv =

4∑
k=0

⟨f̃ , χ̃k⟩
ˆ
R3

χ̃4χ̃kdv + K̃b,2 = c̃+O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̃b,2,

where we have used (4.55) and (C.1) for the velocity integrals. The remainders K̃b,1 and K̃b,2 can be bounded

similarly to (4.68). Applying (4.94) and Lemma 4.5, H̃b,1 can be estimated analogously to (4.69). The term

H̃b,2 is bounded similarly to (4.70). Combining (4.98) with these estimates and using Lemma 4.5, we obtain∣∣∣∣ˆ t

s

Ξ̃1
b,2

∣∣∣∣ ≤ ε
[
G̃b(t)− G̃b(s)

]
+ εα

ˆ t

s

(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

∥∥∥b̃∥∥∥
L2

x

+ ε

ˆ t

s

∥∂t∇xφ̃b,2∥L2
x

(
∥c̃∥L2

x
+ εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

)
.

(4.99)

For Ξ̃1
b,6, the elliptic estimate (4.95) yields directly∣∣∣Ξ̃1

b,6

∣∣∣ ≲ε ∥∇xφ̃b,6∥L2
x

∥∥∥∂tf̃∥∥∥
L2

x,v

≲ ε
∥∥∥b̃∥∥∥5

L6
x

∥∥∥∂tf̃∥∥∥
L2

x,v

. (4.100)

For Ξ̃2
b,q (q ∈ {2, 6}), similarly to (3.62), the boundary condition (∇s

xφ̃b,q)n = (∇s
xφ̃b,q : n ⊗ n)n on ∂Ω

implies R(ψ̃b,q) = ψ̃b,q. Therefore, the estimates (4.58) and (4.59) apply to Ξ̃2
b,2 and Ξ̃2

b,6, which combining

with the elliptic estimates (4.63) and (4.64) yields∣∣∣Ξ̃2
b,2

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣
L2

γ+

+ |r|L2
γ−

)
∥b∥L2

x
, (4.101)

∣∣∣Ξ̃2
b,6

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣ 12
L2

γ+

∥∥∥ω 1
2 f̃
∥∥∥ 1

2

L∞
x,v

+ |r|L4
γ−

)∥∥∥b̃∥∥∥5
L6

x

. (4.102)



62 Y. GUO, J. JUNG, AND F. ZHOU

To compute Ξ̃3
b,q (q ∈ {2, 6}), we employ the treatment as in (3.64):

−v · ∇x ψ̃b,q =−
3∑

i,j,k=1

∂j∂kφ̃b,q,iP̃
(
vivjvk

√
µ̃
)
+

3∑
i,l=1

∂i∂lφ̃b,q,ivl
√
µ̃

−
3∑

i,j,k=1

∂j∂kφ̃b,q,i(I− P̃)
(
vivjvk

√
µ̃
)

:=K̃1 + K̃2 + K̃3.

(4.103)

Noting the basis {χ̃k}4k=0 is non-orthogonal, similarly to (4.66), we decompose K̃1 as:

K̃1 =−
3∑

i,j,k=1

∂j∂kφ̃b,q,i

3∑
l=1

χ̃l

ˆ
R3

vivjvk
√
µ̃χ̃ldv −

3∑
i,j,k=1

∂j∂kφ̃b,q,i

∑
l=0,4

χ̃l

ˆ
R3

vivjvk
√
µ̃χ̃ldv

−
3∑

i,j,k=1

∂j∂kφ̃b,q,i

(
P̃
(
vivjvk

√
µ̃
)
−

4∑
l=0

⟨vivjvk
√
µ̃, χ̃l⟩χ̃l

)
:=K̃11 + K̃12 + K̃13.

The computation of the bulk K̃11 is similar to (3.65), yielding

K̃1 =−
3∑

l=1

χ̃l

(
3
∑
i=l

∂i∂lφ̃b,q,i + 2
∑
i̸=l

∂i∂lφ̃b,q,i +
∑
j ̸=l

∂j∂jφ̃b,q,l

)

+O(|u|+ |θ|)
4∑

l=0

χ̃l

3∑
i,j,k=1

∂j∂kφ̃b,q,i + K̃13,

(4.104)

where the O(|u|+ |θ|) term arises from the computation of K̃11 and K̃12 via (C.4), analogous to (4.67) and
(4.76). Substituting (4.104) into (4.103) and proceeding as in (3.66), we obtain

− v · ∇xψ̃b,q = K̃1 + K̃2 + K̃3 = −
√
µ̃v · div

(
∇s

xφ̃b,q

)
+ K̃R,q, (4.105)

where

K̃R,q :=O(|u|+ |θ|)
4∑

l=1

χ̃l

3∑
i,j,k=1

∂j∂kφ̃b,q,i + K̃13 + K̃3.

Inserting (4.105) into the expression of Ξ̃3
b,q and using the decomposition (4.66) gives

Ξ̃3
b,q =

¨
Ω×R3

[
−
√
µ̃v · div

(
∇s

xφ̃b,q

)
+ K̃R,q

][
P̃f̃ + (I− P̃)f̃

]
=−

¨
Ω×R3

√
µ̃v · div

(
∇s

xφ̃b,q

) 4∑
k=0

⟨f̃ , χ̃k⟩χ̃k + P̃R,q

=−
ˆ
Ω

b̃ · div
(
∇s

xφ̃b,q

)
+ Ẽb,q, q ∈ {2, 6},

(4.106)

where in the last identity we used the almost orthogonality of {χ̃k}4k=0, and

P̃R,q :=−
¨

Ω×R3

{√
µ̃v · div

(
∇s

xφ̃b,q

)[(
P̃f̃ −

4∑
k=0

⟨f̃ , χ̃k⟩χ̃k

)
+ (I− P̃)f̃

]
− K̃R,q f̃

}
,

Ẽb,q :=P̃R,q +

ˆ
Ω

O(|u|+ |θ|)(ã+ |b̃|+ c̃)div
(
∇s

xφ̃b,q

)
, q ∈ {2, 6}.

Combining (4.106) with the elliptic systems (4.92) and (4.93) gives

Ξ̃3
b,2 =−

¨
Ω×R3

v · ∇xψ̃b,2f̃dvdx = −
ˆ
Ω

b̃ · div
(
∇s

xφ̃
b
b,2

)
+ Ẽb,2 =

∥∥∥b̃∥∥∥2
L2

x

+ Ẽb,2, (4.107)

Ξ̃3
b,6 =−

¨
Ω×R3

v · ∇xψ̃b,6f̃dvdx = −
ˆ
Ω

b̃ · div
(
∇s

xφ̃
b
b,6

)
+ Ẽb,6 =

∥∥∥b̃∥∥∥6
L6

x

+ Ẽb,6. (4.108)

Note that Ẽb,q consists of two types of terms: the first type involves P̃f̃ with small coefficient O(|u| +
|θ|), arising from the almost orthogonality of the basis {χ̃k}4k=0; the second type includes the microscopic
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component (I− P̃)f̃ in P̃R,q. Both types can be estimated similarly to (4.80) and (4.81) by using (4.94) and
(4.95): ∣∣∣Ẽb,2

∣∣∣ ≲(εh1 ∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

)∥∥∥b̃∥∥∥
L2

x

, (4.109)∣∣∣Ẽb,6

∣∣∣ ≲(ε 1
2 h1

∥∥∥ε 1
2ω

1
2 f̃
∥∥∥
L∞

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L6

x,v

)∥∥∥b̃∥∥∥5
L6

x

. (4.110)

The estimate of Ξ̃4
b,2 and Ξ̃4

b,6 follow from (4.60) and the elliptic estimates (4.94) and (4.95).

Integrating (4.56) and combining (4.99), (4.101), (4.107) and (4.109) givesˆ t

s

∥∥∥b̃∥∥∥2
L2

x

≲ε
[
G̃b(t)− G̃b(s)

]
+ α2

ˆ t

s

[ ∣∣∣f̃ ∣∣∣2
L2

γ+

+ |r|2L2
γ−

+ ε2
(
h2 +

∣∣∣f̃ ∣∣∣2
L2

γ+

)∥∥∥f̃∥∥∥2
L2

x,v

]
+ ε

ˆ t

s

∥∂t∇xφ̃b,2∥L2
x

(
∥c̃∥L2

x
+ εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

)
+

ˆ t

s

(
ε2h2

∥∥∥P̃f̃∥∥∥2
L2

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥2
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥2
L2

x,v

)
.

(4.111)

Combining (4.56) with (4.100), (4.102), (4.108) and (4.110) yields∥∥∥b̃∥∥∥
L6

x,v

≲ ε
∥∥∥∂tf̃∥∥∥

L2
x,v

+ α
∣∣∣f̃ ∣∣∣

L2
γ+

+ α |r|L4
γ−

+ α
∣∣∣f̃ ∣∣∣ 12

L2
γ+

∥∥∥ω 1
2 f̃
∥∥∥ 1

2

L∞
x,v

+ ε
1
2 h1

∥∥∥ε 1
2ω

1
2 f̃
∥∥∥
L∞

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L6

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥
L2

x,v

.

(4.112)

Step 2.2. Estimate for ∥∂t∇xφ̃b,2∥L2
x
.

In (4.56), we now choose the test function ψ̃b,2 = ∂tφ̃b,2 · v
√
µ̃ and estimate each term.

For Ξ̃1
b,2, we decompose

√
µ̃∂tf̃ = ∂t(

√
µ̃f̃)−∂t(

√
µ̃)f̃ . Noticing ∂tφ̃b,2 ∈ H (O), the variational formulation

of (4.92) (cf. (C.19) and (C.20)) yields, for the first part

ε

¨
Ω×R3

∂tφ̃b,2 · v∂t(
√
µ̃f̃) = ε

ˆ
Ω

∂tφ̃b,2 · ∂tb̃

=ε

ˆ
Ω

(
∇s

x∂tφ̃b,2

)
:
(
∇s

x∂tφ̃b,2

)
= ε ∥∇s

x∂tφ̃b,2∥2L2
x
.

(4.113)

The second part is bounded analogously to (4.86):∣∣∣∣ε¨
Ω×R3

∂tφ̃b,2 · v∂t(
√
µ̃)f̃

∣∣∣∣ ≲εα(h1 + ∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

∥∂tφ̃b,2∥L2
x
. (4.114)

For Ξ̃2
b,2, the boundary condition φ̃b,2 · n = 0 on ∂Ω implies R(ψ̃b,2) = ψ̃b,2. Therefore, the estimate (4.58)

applies to Ξ̃2
b,2: ∣∣∣Ξ̃2

b,2

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣
L2

γ+

+ |r|L2
γ−

)
∥∂tφ̃b,2∥H1

x
. (4.115)

For Ξ̃3
b,2, we use the decomposition (4.66):

ˆ
R3

vivj
√
µ̃P̃f̃dv =

4∑
k=0

⟨f̃ , χ̃k⟩
ˆ
R3

vivj
√
µ̃χ̃kdv + K̄b,1

=aδij + c
2√
6
δij +O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̄b,1,

where we used (C.2) for the velocity integral. The remainder K̄b,1 can be bounded as in (4.68). Following
the argument similar to (4.69), we derive∣∣∣Ξ̃3

b,2

∣∣∣ ≲( ∥ã∥L2
x
+ ∥c̃∥L2

x
+ εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

)
∥∇x∂tφ̃b,2∥L2

x
. (4.116)

By the property of L̃, Ξ̃4
b,2 is bounded directly by

∥∥∥ν̃− 1
2 g̃
∥∥∥
L2

x,v

∥∂tφ̃a,2∥L2
x
.

Combining (4.56) with above estimates and using Korn’s inequality (4.97), we obtain

ε ∥∇s
x∂tφ̃b,2∥L2

x
≲ ∥ã∥L2

x
+ ∥c̃∥L2

x
+ εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

+ α
∣∣∣f̃ ∣∣∣

L2
γ+

+ α |r|L2
γ−

+ εα
(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

+
∥∥∥ν̃− 1

2 g̃
∥∥∥
L2

x,v

(4.117)



64 Y. GUO, J. JUNG, AND F. ZHOU

Finally, substituting (4.117) into (4.111) and again using Korn’s inequality (4.97), we obtainˆ t

s

∥∥∥b̃∥∥∥2
L2

x

≲εG̃b(t)− εG̃b(s) + α2

ˆ t

s

[ ∣∣∣f̃ ∣∣∣2
L2

γ+

+ |r|2L2
γ−

+ ε2
(
h2 +

∣∣∣f̃ ∣∣∣2
L2

γ+

)∥∥∥f̃∥∥∥2
L2

x,v

]
+

ˆ t

s

(
Cδb ∥c̃∥

2
L2

x
+ δb ∥ã∥2L2

x
+ ε2h2

∥∥∥P̃f̃∥∥∥2
L2

x,v

)
+

ˆ t

s

(∥∥∥ε−1(I− P̃)f̃
∥∥∥2
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥2
L2

x,v

)
,

(4.118)

where the small constant δb > 0 arises from Young’s inequality.

Step 3. Estimate for c̃.

Step 3.1. Estimates for
´ t
s
∥c̃∥L2

x
dτ and ∥c̃∥L6

x
.

In the weak formulation (4.56), define the test function

ψ̃c,q(t, x, v) :=

3∑
i=1

∂iφ̃c,q

√
10B̃i(v), q ∈ {2, 6}, (4.119)

where φ̃c,2(x) and φ̃c,6(x) are solutions to the elliptic equations

−∆xφ̃c,2 = c̃ in Ω, ∂nφ̃c,2 = 0 on ∂Ω,

ˆ
Ω

φ̃c,2dx = 0, (4.120)

−∆xφ̃c,6 = c̃5 − 1

|Ω|

ˆ
Ω

c̃5dx in Ω, ∂nφ̃c,6 = 0 on ∂Ω,

ˆ
Ω

φ̃c,6dx = 0, (4.121)

respectively. Under the compatible conditions in (4.53), Lemma C.5 guarantees that the equations (4.120)
and (4.121) admit unique solutions satisfying∥∥∇2

xφ̃c,2

∥∥
L2

x
+ ∥∇xφ̃c,2∥L2

x
+ ∥φ̃c,2∥L2

x
≲ ∥c̃∥L2

x
, (4.122)∥∥∇2

xφ̃c,6

∥∥
L

6
5
x

+ ∥∇xφ̃c,6∥L2
x
+ ∥φ̃c,6∥L6

x
≲
∥∥c̃5∥∥

L
6
5
x

= ∥c̃∥5L6
x
. (4.123)

We now estimate each term in (4.56). For Ξ̃1
c,2, integration by parts yields

ˆ t

s

Ξ̃1
c,2 =ε

[
G̃c(t)− G̃c(s)

]
−
ˆ t

s

¨
Ω×R3

3∑
i=1

(
∂t∂iφ̃c,2B̃i + ∂iφ̃c,2∂tB̃i

)
f̃

:=ε
[
G̃c(t)− G̃c(s)

]
− H̃c,1 − H̃c,2.

(4.124)

Clearly, G̃c(t) is bounded by
∥∥∥f̃(t)∥∥∥2

L2
x,v

. For H̃c,1, using the decomposition (4.66) gives

ˆ
R3

B̃iP̃f̃dv =

4∑
k=0

⟨f̃ , χ̃k⟩
ˆ
R3

B̃i(v)χ̃k(v)dv + K̃c,1 = O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̃c,1,

where we used (4.55) and the remainder K̃c,q is bounded as in (4.68). Then H̃c,1 and H̃c,2 can be estimated
analogously to (4.69) and (4.70). We concludeˆ t

s

∣∣∣Ξ̃1
c,2

∣∣∣ ≤ ε
[
G̃c(t)− G̃c(s)

]
+ εα

ˆ t

s

(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

∥c̃∥L2
x

+ ε

ˆ t

s

∥∂t∇xφ̃c,2∥L2
x

(
εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

)
.

(4.125)

For Ξ̃1
c,6, the elliptic estimate (4.123) yields directly∣∣∣Ξ̃1

c,6

∣∣∣ ≲ε ∥∇xφ̃c,6∥L2
x

∥∥∥∂tf̃∥∥∥
L2

x,v

≲ ε ∥c̃∥5L6
x

∥∥∥∂tf̃∥∥∥
L2

x,v

. (4.126)

For Ξ̃2
c,q (q ∈ {2, 6}), the Neumann condition ∂nφ̃c,q

∣∣
∂Ω

= 0 implies R(ψ̃c,q) = ψ̃c,q. Thus, the estimates

(4.58) and (4.59) and the elliptic estimates (4.122) and (4.123) apply to Ξ̃2
c,2 and Ξ̃2

c,6:∣∣∣Ξ̃2
c,2

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣
L2

γ+

+ |r|L2
γ−

)
∥c̃∥L2

x
, (4.127)

∣∣∣Ξ̃2
c,6

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣ 12
L2

γ+

∥∥∥ω 1
2 f̃
∥∥∥ 1

2

L∞
x,v

+ |r|L4
γ−

)
∥c̃∥5L6

x
. (4.128)
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For Ξ̃3
c,q (q ∈ {2, 6}), applying the decomposition (4.66) yields

ˆ
R3

vivj(|v|2 − 5)
√
µ̃P̃f̃dv =

4∑
k=0

⟨f̃ , χ̃k⟩
ˆ
R3

vivj(|v|2 − 5)
√
µ̃χ̃k(v)dv + K̃c,q

=− c
10√
6
δij +O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̃c,q,

(4.129)

where we used (C.7) and K̃c,q is bounded as in (4.68). Substituting (4.129) into the expression of Ξ̃3
c,q yields

Ξ̃3
c,q =− 10√

6

ˆ
Ω

∆xφ̃c,q c̃+ Ẽc,q, q ∈ {2, 6}, (4.130)

where

Ẽc,q =

3∑
i,j=1

ˆ
Ω

∂i∂jφ̃c,q

[
O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̃c,q − vivj(|v|2 − 5)

√
µ̃(I− P̃)f̃

]
.

Combining (4.130) with the elliptic equations (4.120) and (4.121) yields

Ξ̃3
c,2 =− 10√

6

ˆ
Ω

∆xφ̃c,2c̃+ Ẽc,2 =
10√
6
∥c̃∥2L2

x
+ Ẽc,2, (4.131)

Ξ̃3
c,6 =− 10√

6

ˆ
Ω

∆xφ̃c,6c̃+ Ẽc,6 =
10√
6
∥ã∥6L6

x
+ Ẽc,6. (4.132)

The remainders Ẽc,2 and Ẽc,6 are estimated similarly to (4.80) and (4.81):∣∣∣Ẽc,2

∣∣∣ ≲ ∥c̃∥L2
x

[
εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

]
, (4.133)∣∣∣Ẽc,6

∣∣∣ ≲ ∥c̃∥5L6
x

(
ε

1
2 h1

∥∥∥ε 1
2ω

1
2 f̃
∥∥∥
L∞

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L6

x,v

)
, (4.134)

where (4.122), (4.123) and Lemma 4.5 have been used.

The estimates for Ξ̃4
c,2 and Ξ̃4

c,6 follow directly from (4.60), (4.122) and (4.123).
Integrating (4.56) and combining (4.125), (4.127), (4.131) and (4.133), we obtainˆ t

s

∥c̃∥2L2
x
≲ ε
[
G̃c(t)− G̃c(s)

]
+ α2

ˆ t

s

[ ∣∣∣f̃ ∣∣∣2
L2

γ+

+ |r|2L2
γ−

+ ε2
(
h2 +

∣∣∣f̃ ∣∣∣2
L2

γ+

)∥∥∥f̃∥∥∥2
L2

x,v

]
+ ε

ˆ t

s

∥∂t∇φ̃c,2∥L2
x

(
εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

)
+

ˆ t

s

(
ε2h2

∥∥∥P̃f̃∥∥∥2
L2

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥2
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥2
L2

x,v

)
.

(4.135)

Combining (4.56), (4.126), (4.128), (4.132) and (4.134), we derive

∥c̃∥L6
x,v

≲ ε
∥∥∥∂tf̃∥∥∥

L2
x,v

+ α
∣∣∣f̃ ∣∣∣

L2
γ+

+ α |r|L4
γ−

+ α
∣∣∣f̃ ∣∣∣ 12

L2
γ+

∥∥∥ω 1
2 f̃
∥∥∥ 1

2

L∞
x,v

+ ε
1
2 h1

∥∥∥ε 1
2ω

1
2 f̃
∥∥∥
L∞

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L6

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥
L2

x,v

.

(4.136)

Step 3.2. Estimate for ∥∂t∇xφ̃c,2∥L2
x
.

In (4.56), we now choose the test function ψ̃c,2 = ∂tφ̃c,2χ̃4(v) and estimate each term.

For Ξ̃1
c,2, we write χ̃4∂tf̃ = ∂t(χ̃4f̃)−∂tχ̃4f̃ . Using definition of c̃ in (4.4) and the elliptic equation (4.120),

the first term becomes

ε

¨
Ω×R3

∂tφ̃c,2∂t
(
χ̃4f̃

)
= ε

ˆ
Ω

∂tφ̃c,2∂tc̃ = −ε
ˆ
Ω

∂tφ̃c,2∆x∂tφ̃c,2 = ε ∥∇x∂tφ̃c,2∥2L2
x
. (4.137)

The second part is bounded analogously to (4.86):∣∣∣ε¨
Ω×R3

∂tφ̃c,2∂tχ̃4f̃
∣∣∣ ≲ εα

(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

∥∂tφ̃c,2∥L2
x
. (4.138)

For Ξ̃2
c,2, since R(ψ̃c,2) = ψ̃c,2, the estimate (4.58) applies:∣∣∣Ξ̃2

c,2

∣∣∣ ≲α( ∣∣∣f̃ ∣∣∣
L2

γ+

+ |r|L2
γ−

)
∥∂tφ̃c,2∥H1

x
. (4.139)
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For Ξ̃3
c,2, we use the decomposition (4.66). For each i ∈ {1, 2, 3},

ˆ
R3

viχ̃4P̃f̃dv =

4∑
k=0

⟨f̃ , χ̃k⟩
ˆ
R3

viχ̃4χ̃kdv + K̄c,1 = bi
2√
6
δik +O(|u|+ |θ|)(ã+ |b̃|+ c̃) + K̄c,1,

where we used (C.3) and K̄c,1 is bounded as in (4.68). Similarly to (4.116), we derive∣∣∣Ξ̃3
c,2

∣∣∣ ≲(∥∥∥b̃∥∥∥
L2

x

+ εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

)
∥∇x∂tφ̃c,2∥L2

x
. (4.140)

Finally, Ξ̃4
c,2 is bounded by

∥∥∥ν̃− 1
2 g̃
∥∥∥
L2

x,v

∥∂tφ̃c,2∥L2
x
.

Combining (4.56) with (4.137)–(4.140) and using Poincaré’s inequality, we conclude

ε ∥∇x∂tφ̃c,2∥L2
x
≲
∥∥∥b̃∥∥∥

L2
x

+ εh1

∥∥∥P̃f̃∥∥∥
L2

x,v

+
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

+ α
∣∣∣f̃ ∣∣∣

L2
γ+

+ α |r|L2
γ−

+ εα
(
h1 +

∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

+
∥∥∥ν̃− 1

2 g̃
∥∥∥
L2

x,v

.
(4.141)

Finally, substituting (4.141) into (4.135) yields

ˆ t

s

∥c̃∥2L2
x
≤ ε
[
G̃c(t)− G̃c(s)

]
+ α2

ˆ t

s

[ ∣∣∣f̃ ∣∣∣2
L2

γ+

+ |r|2L2
γ−

+ ε2
(
h2 +

∣∣∣f̃ ∣∣∣2
L2

γ+

)∥∥∥f̃∥∥∥2
L2

x,v

]
+

ˆ t

s

[
δc

∥∥∥b̃∥∥∥2
L2

x

+ ε2h2

∥∥∥P̃f̃∥∥∥2
L2

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥2
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥2
L2

x,v

]
,

(4.142)

where the small constant δc > 0 arises from Young’s inequality.

Step 4. Combination of the estimates for ã, b̃ and c̃.
Following the same pattern as in Step 4 of the proof of Proposition 1.2, we combine (4.90), (4.118) and

(4.142) and use Lemma 4.5 to obtain

ˆ t

s

∥∥∥P̃f̃∥∥∥2
2
≲ ε
[
G̃0(t)− G̃0(s)

]
+ α2

ˆ t

s

[ ∣∣∣f̃ ∣∣∣2
L2

γ+

+ |r|2L2
γ−

+ ε2
(
h2 +

∣∣∣f̃ ∣∣∣2
L2

γ+

)∥∥∥f̃∥∥∥2
L2

x,v

]
+

ˆ t

s

[
ε2h2

∥∥∥P̃f̃∥∥∥2
L2

x,v

+
∥∥∥ε−1(I− P̃)f̃

∥∥∥2
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃
∥∥∥2
L2

x,v

]
.

(4.143)

Using the smallness of ε and h1 (see definition in (4.1)) and writing f̃ = P̃f̃ + (I− P̃)f̃ , we absorb the terms´ t
s
ε2h2

∥∥∥P̃f̃∥∥∥2
L2

x,v

and α2ε2
´ t
s
h2

∥∥∥P̃f̃∥∥∥2
L2

x,v

into the left-hand side of (4.143). This proves (1.83).

Combining the estimates (4.83), (4.112) and (4.136), we obtain (1.84). This completes the proof of
Proposition 1.5. □

For the derivative ∂tf̃ , we obtain the following consequence of Proposition 1.5.

Corollary 4.13. Under the same assumptions as in Proposition 1.5, we have

ˆ t

s

∥∥∥P̃(∂tf̃)∥∥∥2
L2

x,v

≲ ε
[
G̃1(t)− G̃1(s)

]
+

ˆ t

s

(∥∥∥ε−1(I− P̃)∂tf̃
∥∥∥2
L2

x,v(ν̃)
+
∥∥∥ν̃− 1

2 g̃t
∥∥∥2
L2

x,v

)
+ α2

ˆ t

s

( ∣∣∣∂tf̃ ∣∣∣2
L2

γ+

+ |∂tr + s|2L2
γ−

+ ε2
∣∣∣∂tf̃ ∣∣∣2

L2
γ+

∥∥∥∂tf̃∥∥∥2
L2

x,v

)
,

(4.144)

where
∣∣G̃1(t)

∣∣ ≲ ∥∥∥f̃(t)∥∥∥2
2
+
∥∥∥∂tf̃(t)∥∥∥2

2
and δ > 0 is a sufficiently small constant.

Proof. The equation (4.27) for ∂tf̃ has exactly the same linear structure as the equation (1.61) for f̃ , differing

only in the source term and boundary remainder. Moreover, ∂tf̃ also satisfies the same conservation laws of
mass, angular momentum and energy as (1.78). Therefore, Proposition 1.5 applied to (4.27) directly yields
(4.144). The details are omitted for brevity. □
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4.4. Nonlinear Estimates.

This subsection establishes the nonlinear estimates for the source terms g̃ and g̃t, which are used in the
energy estimate of Proposition 4.10. The main result is the following.

Proposition 4.14. Let g̃ and g̃t be defined as in (1.62) and (4.28), respectively. Under the a priori assump-
tion (1.82), the following estimates hold:∣∣∣ˆ t

0

¨
Ω×R3

g̃f̃
∣∣∣ ≲εˆ t

0

∥∥∥ν̃− 1
2 Γ̃(f̃ , f̃)

∥∥∥2
L2

x,v

ds+ ε
∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣2

2

(
1 + ε

∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣
2

)
, (4.145)∣∣∣ˆ t

0

¨
Ω×R3

g̃t∂tf̃
∣∣∣ ≲ε 1

2

∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣2
2

(
1 +

∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣
2
+
∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣2

2
+
[[
f̃0

]]2
2

)
(4.146)

+ ε

ˆ t

0

(∥∥∥ν̃− 1
2 Γ̃(∂tf̃ , f̃)

∥∥∥2
L2

x,v

+
∥∥∥ν̃− 1

2 Γ̃(f̃ , ∂tf̃)
∥∥∥2
L2

x,v

+
∥∥∥ν̃− 1

2 Γ̃(f̃ , f̃)
∥∥∥2
L2

x,v

)
ds.

Furthermore, for ω = eβ|v|
2

with 0 < β ≪ 1
4 , there hold:

ˆ t

0

∥∥g̃ω−1
∥∥2
L2

x,v
≲
ˆ t

0

∥∥∥ν̃− 1
2 Γ̃(f̃ , f̃)

∥∥∥2
L2

x,v

ds+ ε2
( ∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣2

2
+
∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣4

2

)
, (4.147)

ˆ t

0

∥∥g̃tω−1
∥∥2
L2

x,v
≲
∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣2

2

(
ε2 +

∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣2
2
+
[[
f̃0

]]2
2

)
(4.148)

+

ˆ t

0

(∥∥∥ν̃− 1
2 Γ̃(∂tf̃ , f̃)

∥∥∥2
L2

x,v

+
∥∥∥ν̃− 1

2 Γ̃(f̃ , ∂tf̃)
∥∥∥2
L2

x,v

+
∥∥∥ν̃− 1

2 Γ̃(f̃ , f̃)
∥∥∥2
L2

x,v

)
ds.

The proof of Proposition 4.14 will given at the end of this subsection, after several auxiliary lemmas.

Recall the relation (1.68). We have the following L∞ estimate.

Proposition 4.15. Let g, ∂tg ∈ L∞(R+ × Ω × R3) and f0, ∂tf0 ∈ L∞(Ω × R3). Let f be a solution of the
linear Boltzmann equation (3.90) on [0, T ] with 0 < T ≤ ∞. For 0 < ε ≤ ε0, if the a priori assumption
(1.82) holds, then for all t ∈ [0, T ], we have

∥ωf(t)∥L∞
x,v

≲∥ωf0∥L∞
x,v

+ ε−
1
2 sup
0≤s≤t

∥P̃f̃(s)∥L6
x,v

+ ε−
3
2 sup
0≤s≤t

∥((I− P̃)f̃(s)∥L2
x,v

+ sup
0≤s≤t

( |θ(s)|
ε

+
|u(s)|
ε

)
+ ε sup

0≤s≤t
∥⟨v⟩−1ωg(s)∥L∞

x,v
, (4.149)

∥ω∂tf(t)∥L∞
x,v

≲∥ωf0∥L∞
x,v

+ ∥ω∂tf0∥L∞
x,v

+ ε−
3
2 sup
0≤s≤t

∥∂tf̃(s)∥L2
x,v

+ sup
0≤s≤t

∥f̃(s)∥L∞
x,v

+ sup
0≤s≤t

( |θ(s)|
ε

+
|u(s)|
ε

)
+ sup

0≤s≤t

( |∂tθ(s)|
ε

+
|∂tu(s)|

ε

)
(4.150)

+ ε sup
0≤s≤t

∥⟨v⟩−1ω∂tg(s)∥L∞
x,v
,

where ω = eβ|v|
2

with 0 < β ≪ 1
4 .

Proof. Step 1. Proof of (4.149).
The argument follows the same strategy as that of Proposition 3.3.
First, in the proof of Proposition 1.3, when performing the change of variables as in (2.79)–(2.81), we

adopt a new decomposition of f :

f = P̃f̃ + (I− P̃)f̃ + (f − f̃).

Correspondingly, define

A1f̄(t̄, y, v) := P̃f̃(t, x, v), A2f̄(t̄, y, v) := (I− P̃)f̃(t, x, v), A3f̄(t̄, y, v) := (f − f̃)(t, x, v).

Proceeding as before, we obtain an estimate analogous to (1.47):

∥ωf̄(t̄)∥L∞
y,v(Ωε×R3) ≲e

− ν0
2 t̄∥ωf̄0∥L∞

y,v(Ωε×R3) + o(1) sup
0≤s≤T0

∥ωf̄(s)∥L∞
y,v(Ωε×R3)

+ sup
0≤s≤T0

∥A1f̄(s)∥L6
y,v(Ωε×R3) + sup

0≤s≤T0

∥A2f̄(s)∥L2
y,v(Ωε×R3) (4.151)

+ sup
0≤s≤T0

∥ω−1A3f̄(s)∥L∞
y,v(Ωε×R3) + sup

0≤s≤T0

∥ε⟨v⟩−1ωḡ(s)∥L∞
y,v(Ωε×R3).
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Second, returning to the original time scale 0 ≤ t ≤ ε2T0 via (3.93), we have

∥ωf(t)∥L∞
x,v

≲e−
ν0
2ε2

t∥ωf0∥L∞
x,v

+ o(1) sup
0≤s≤ε2T0

∥ωf(s)∥L∞
x,v

+ ε−
3
2 sup
0≤s≤ε2T0

∥(I− P̃)f̃(s)∥L2
x,v

+ ε−
1
2 sup
0≤s≤ε2T0

∥P̃f̃(s)∥L6
x,v

+ sup
0≤t≤ε2T0

∥ω−1(f − f̃)(t)∥L∞
x,v(Ω×R3) + ε sup

0≤s≤ε2T0

∥⟨v⟩−1ωg(s)∥L∞
x,v
.

(4.152)

Define

D(s) := o(1)∥ωf(s)∥L∞
x,v

+ ε−
1
2 ∥P̃f̃(s)∥L6

x,v
+ ε−

3
2 ∥(I− P̃)f̃(s)∥L2

x,v

+
( |θ(s)|

ε
+

|u(s)|
ε

)
+ ε∥⟨v⟩−1ωg(s)∥L∞

x,v
.

Applying the previous inequality iteratively and using Lemma 4.3 yields (4.149).

Step 2. Proof of (4.150).

The proof is similar. We start with ∂tf = ∂tf̃ + (∂tf − ∂tf̃), and set

A2f̄(t̄, y, v) := ∂tf̃(t, x, v), A3f̄(t̄, y, v) := ∂t(f − f̃)(t, x, v).

Following the same pattern as in Step 1, we derive

∥ω∂tf(t)∥L∞
x,v

≲ e−
ν0
2ε2

t∥ω∂tf0∥L∞
x,v

+ o(1) sup
0≤s≤ε2T0

∥ω∂tf(s)∥L∞
x,v

+ ε−
3
2 sup
0≤s≤ε2T0

∥∂tf̃(s)∥L2
x,v

+ sup
0≤t≤ε2T0

∥ω−1∂t(f − f̃)(t)∥L∞
x,v(Ω×R3) + ε sup

0≤s≤ε2T0

∥⟨v⟩−1ω∂tg(s)∥L∞
x,v
.

Combining this with Lemma 4.3 yields (4.150). □

The following lemma controls derivatives of auxiliary functions with algebraic growth in v.

Lemma 4.16. Let X ∈ {θ, u, ρ}, g ∈ L2(Ω × R3), and p ≥ 0 be an integer. Then for ω1 = eβ1|v|2 with
0 < β1 ≪ 1

4 , there holds

∥∂tX |v|p g∥L2
x,v

≲ ε
(α
ε
h1 +

α

ε

∣∣∣f̃ ∣∣∣
L2

γ+

)(1
ε

∥∥∥(I− P̃)g
∥∥∥
L2

x,v

+ ε
3
2 ∥ω1g∥L∞

x,v
+
∥∥∥P̃g∥∥∥

L2
x,v

)
.

Proof. From (4.17), we have

|∂tX| ≲ ε
(α
ε
h1 +

α

ε

∣∣∣f̃ ∣∣∣
L2

γ+

)
.

Decompose |v|p g as

|v|p g = |v|p P̃g + 1|v|p≤ε−1 |v|p (I− P̃)g + 1|v|p>ε−1 |v|p (I− P̃)g.

The first two terms satisfy∥∥∥|v|p P̃g∥∥∥
L2

x,v

≲
∥∥∥P̃g∥∥∥

L2
x,v

,
∥∥∥1|v|p≤ε−1 |v|p (I− P̃)g

∥∥∥
L2

x,v

≲
∥∥∥ε−1(I− P̃)g

∥∥∥
L2

x,v

.

For the last term, note that |v|4p ≲ ω
1
4
1 for any p. Hence,∥∥∥1|v|p>ε−1 |v|p (I− P̃)g
∥∥∥
L2

x,v

≲ε
3
2

∥∥∥ω1(I− P̃)g
∥∥∥
L∞

x,v

∥∥∥ω− 1
4

1

∥∥∥
L2

x,v

≲ ε
3
2 ∥ω1g∥L∞

x,v
.

Combining these estimates completes the proof. □

The next two results provide estimates for the nonlinear collision operator.

Lemma 4.17. Recall the definition of Γ̃ in (1.62). For ω1 = eβ1|v|2 with 0 < β1 ≪ 1
4 , the following bounds

hold: ∥∥∥ν̃− 1
2 Γ̃(f, g)

∥∥∥
L2

x,v

≲ ∥ω1g∥L∞
x,v

∥∥∥ν̃ 1
2 f
∥∥∥
L2

x,v

, (4.153)∥∥∥ν̃− 1
2 Γ̃(f, g)

∥∥∥
L2

x,v

≲ ∥ω1f∥L∞
x,v

∥∥∥ν̃ 1
2 g
∥∥∥
L2

x,v

, (4.154)∥∥∥ω1Γ̃(f, g)
∥∥∥
L∞

x,v

≲ ∥ω1f∥L∞
x,v

∥ω1g∥L∞
x,v
, (4.155)∥∥∥ν̃− 1

2 Γ̃(P̃f, P̃g)
∥∥∥
L2

x,v

≲
∥∥∥P̃fP̃g∥∥∥

L2
x,v

. (4.156)
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Proof. The estimates follow by the same arguments as in the proof of Lemma 3.4, using the properties of
the collision frequency (4.31). We omit the details for brevity. □

Corollary 4.18. Let f, g ∈ L2([0, T ]× Ω× R3), and let Sjf, Sjg ≥ 0 (j = 1, 2) be defined as in Proposition
A.1. Assume that for t ∈ [0, T ],

|ã(h)|+
3∑

i=1

∣∣∣b̃i(h)∣∣∣+ |c̃(h)| ≤ S1h(t, x) + S2h(t, x) for h ∈ {f, g},

where ã(h), b̃i(h) and c̃(h) are the coefficients of Ph. Then∥∥∥ν̃− 1
2 Γ̃(f, g)

∥∥∥
L2

t,x,v

+
∥∥∥ν̃− 1

2 Γ̃(g, f)
∥∥∥
L2

t,x,v

≲ε
1
2

[
ε−1

∥∥∥(I− P̃)f
∥∥∥
L2

t,x,v(ν̃)
+ ε−1 ∥S2f∥L2

t,x

][
ε

1
2 ∥ω1g∥L∞

t,x,v

]
+ ∥S1f∥L2

tL
3
x

[
ε

1
2 ∥ω1g∥L∞

t,x,v

] 2
3
[
ε−1

∥∥∥(I− P̃)g
∥∥∥
L∞

t L2
x,v(ν̃)

] 1
3

+ ∥S1f∥L2
tL

3
x

∥∥∥P̃g∥∥∥
L∞

t L6
x,v

,

(4.157)

where ω1 = eβ1|v|2 with 0 < β1 ≪ 1
4 .

Proof. Write |f | = |P̃f |+ |(I− P̃)f | and |g| = |P̃g|+ |(I− P̃)g|. The proof then proceeds exactly as that
of Corollary 3.5. □

Corollary 4.19. Let f̃ be the solution of (1.61) on [0, T ] with 0 < T ≤ ∞. Under the a priori assumption
(1.82), the following estimates hold for all t ∈ [0, T ]:∥∥∥P̃f̃∥∥∥2

L6
x,v

≲
[[
f̃0

]]2
2
+ E2[f̃ ](t) + D2[f̃ ](t) + δε ∥ωf∥2L∞

x,v
+
[[
f̃0

]]4
2
+ E 2

2 [f̃ ](t)

+ E 3
2 [f̃ ](t) + D2

2 [f̃ ](t) + δε2 ∥ωf∥4L∞
x,v
,

(4.158)

where δ > 0 is a sufficiently small constant.

Proof. We start from the estimate (1.84). Both ε
∥∥∥∂tf̃∥∥∥

L2
x,v

and
∥∥∥Pf̃∥∥∥

L2
x,v

are bounded by E2[f̃ ](t). For

the boundary term in (1.84), we argue similarly to (3.105) to obtain

α

ε

∣∣∣f̃ ∣∣∣2
L2

γ+

=
α

ε

ˆ
γ+

f̃20dγ + 2
α

ε

ˆ t

0

ˆ
γ+

f̃(s)∂tf̃(s)dγds ≲
[[
f̃0

]]2
2
+ D2[f̃ ](t). (4.159)

In view of (1.69), (1.70) and the orthogonal decomposition (3.3), the term |f0|2L2
γ+

can be controlled via trace

lemma similar to (3.6) and (A.13):

|f0|2L2
γ+

= |(1− Pγ)f0|2L2
γ+

+ |Pγf0|2L2
γ+

≲ (1 + δ) |(1− Pγ)f0|2L2
γ+

+ |f01γδ
±
|2L2

γ

≲(1 + δ) |(1− Pγ)f0|2L2
γ+

+ ∥f0∥2L2
x,v

+ ∥v · ∇xf0∥2L2
x,v
.

(4.160)

Consequently, only the contribution |(1− Pγ)f0|2L2
γ+

is required in the definition (1.74).

The term α |r|L4
γ−

can be bounded by αE
1
2
2 [f̃ ](t) via (4.34). Moreover, as in (3.106), we have

ε−2
∥∥∥(I− P̃)f̃(t)

∥∥∥2
L2

x,v(ν̃)
≲
[[
f̃0

]]2
2
+ D2[f̃ ](t). (4.161)

To estimate
∥∥∥(I− P̃)f̃

∥∥∥
L6

x,v

, we apply interpolation, (4.161) and Lemma 4.3:

∥∥∥(I− P̃)f̃
∥∥∥
L6

x,v

≤
(
ε

1
2

∥∥∥ω 1
2 f̃
∥∥∥
L∞

x,v

) 2
3
(
ε−1

∥∥∥(I− P̃)f̃
∥∥∥
L2

x,v

) 1
3

≤δε 1
2

∥∥∥ω 1
2 f̃
∥∥∥
L∞

x,v

+ Cδε
−1
∥∥∥(I− P̃)f̃

∥∥∥
L2

x,v

≤δε 1
2 ∥ωf∥L∞

x,v
+ δε

1
2 E

1
2
2 [f̃ ](t) +

[[
f̃0

]]
2
+ D

1
2
2 [f̃ ](t),

(4.162)

where δ > 0 is a sufficiently small constant. Using the smallness of ε and h1 (see (4.1)), we absorb the term

ε
1
2 h1

∥∥∥ε 1
2ω

1
2 f̃
∥∥∥
L∞

x,v

from (1.84) into δε
1
2 ∥ωf∥L∞

x,v
.
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For
∥∥∥ν̃− 1

2 g̃
∥∥∥
L2

x,v

, recall the definition of g̃ in (1.62). By (4.39), Lemma 4.16, Lemma 4.3 and the assumption

(1.82),

ε

∥∥∥∥ν̃− 1
2
∂t
√
µ̃

√
µ
f̃

∥∥∥∥
L2

x,v

≲ε
(α
ε
h1 +

α

ε

∣∣∣f̃ ∣∣∣
L2

γ+

)(1
ε

∥∥∥(I− P̃)f̃
∥∥∥
L2

x,v

+ ε
3
2

∥∥∥ω 1
2 f̃
∥∥∥
L∞

x,v

+
∥∥∥P̃f̃∥∥∥

L2
x,v

)
≲
[[
f̃0

]]
2
+ E2[f̃ ](t) + D2[f̃ ](t) + δε ∥ωf∥2L∞

x,v
+ εE

1
2
2 [f̃ ](t). (4.163)

A direct computation shows

∂tµ̃ =
|v − u|2 − 3T

2

∂tT

T 2
µ̃+

(v − u) · ∂tu
T

µ̃+
∂tρ

ρ
µ̃. (4.164)

From (4.17) and the exponential decay of µ̃, we obtain∥∥∥∥ν̃− 1
2
∂tµ̃√
µ̃

∥∥∥∥
L2

x,v

≲αh1 + α
∣∣∣f̃ ∣∣∣

L2
γ+

≲ αE
1
2
2 (t) + α

1
2 ε

1
2

( [[
f̃0

]]
2
+ D

1
2
2 (t)

)
. (4.165)

Moreover, by (4.156) and (4.161),∥∥∥ν̃− 1
2Γ(f̃ , f̃)

∥∥∥
L2

x,v

≲
∥∥∥ν̃− 1

2Γ(f̃ , (I− P̃)f̃)
∥∥∥
L2

x,v

+
∥∥∥ν̃− 1

2Γ(P̃f̃ , P̃f̃)
∥∥∥
L2

x,v

≲
∥∥∥ω 1

2 f̃
∥∥∥
L∞

x,v

∥∥∥(I− P̃)f̃
∥∥∥
L2

x,v(ν̃)
+
∥∥∥P̃f̃∥∥∥2

L4
x,v

≲δε2
∥∥∥ω 1

2 f̃
∥∥∥2
L∞

x,v

+ ε−2
∥∥∥(I− P̃)f̃

∥∥∥2
L2

x,v(ν̃)
+
∥∥∥P̃f̃∥∥∥ 3

2

L2
x,v

∥∥∥P̃f̃∥∥∥ 1
2

L6
x,v

≲δε2 ∥ωf∥2L∞
x,v

+ ε2E2[f̃ ](t) +
[[
f̃0

]]2
2
+ D2[f̃ ](t) + E

3
2
2 [f̃ ](t) + δ

∥∥∥P̃f̃∥∥∥
L6

x,v

(4.166)

hold for a sufficiently small constant δ > 0 from Young’s inequality.

Combining all the estimates above with (1.84) and absorbing the small term δ
∥∥∥P̃f̃∥∥∥

L6
x,v

from (4.166), we

arrive at (4.158). □

Recall the definitions of L̃, Γ̃t and L̃t in (1.62) and (4.28). We have the following estimates.

Corollary 4.20. Let f be a solution of (1.61) on [0, T ] with 0 < T ≤ ∞. Under the a priori assumption
(1.82), the following estimates hold for all t ∈ [0, T ]:∥∥∥L̃f∥∥∥

L2
x,v

≲
∥∥∥(I− P̃)f

∥∥∥
L2

x,v(ν̃)
, (4.167)∥∥∥ν̃− 1

2 Γ̃t(f, g)
∥∥∥
L2

x,v

≲ ε
(α
ε
h1 +

α

ε

∣∣∣f̃ ∣∣∣
L2

γ+

)
×
[(1
ε

∥∥∥(I− P̃)g
∥∥∥
L2

x,v

+ ε
3
2 ∥ω1g∥L∞

x,v
+
∥∥∥P̃g∥∥∥

L2
x,v

)
∥ω1f∥L∞

x,v
(4.168)

+
(1
ε

∥∥∥(I− P̃)f
∥∥∥
L2

x,v

+ ε
3
2 ∥ω1f∥L∞

x,v
+
∥∥∥P̃f∥∥∥

L2
x,v

)
∥ω1g∥L∞

x,v

]
,∥∥∥ν̃− 1

2 L̃tf
∥∥∥
L2

x,v

≲ ε
(α
ε
h1 +

α

ε

∣∣∣f̃ ∣∣∣
L2

γ+

)(1
ε

∥∥∥(I− P̃)f
∥∥∥
L2

x,v

+ ∥ω1f∥L∞
x,v

+
∥∥∥P̃f∥∥∥

L2
x,v

)
, (4.169)

where ω1 = eβ1|v|2 with 0 < β1 ≪ 1
4 .

Proof. By the property of L̃ and Lemma 4.17,∥∥∥L̃f∥∥∥
L2

x,v

=
∥∥∥Γ̃(√µ̃, (I− P̃)f) + Γ̃((I− P̃)f,

√
µ̃)
∥∥∥
L2

x,v

≲
∥∥∥(I− P̃)f

∥∥∥
L2

x,v(ν̃)

∥∥∥ω1

√
µ̃
∥∥∥
L∞

x,v

≲
∥∥∥(I− P̃)f

∥∥∥
L2

x,v(ν̃)
.

For Γ̃t(f, g), Lemma 4.17 yields∥∥∥ν̃− 1
2 Γ̃t(f, g)

∥∥∥
L2

x,v

≲

∥∥∥∥ν̃ 1
2
∂t
√
µ̃√
µ̃
f

∥∥∥∥
L2

x,v

∥ω1g∥L∞
x,v

+

∥∥∥∥ν̃ 1
2
∂t
√
µ̃√
µ̃
g

∥∥∥∥
L2

x,v

∥ω1f∥L∞
x,v
.

Combining this with Lemma 4.16 establishes (4.168).
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For L̃tf , Lemma 4.17 gives∥∥∥ν̃− 1
2 L̃tf

∥∥∥
L2

x,v

≲

∥∥∥∥ν̃ 1
2
∂t
√
µ̃√
µ̃
f

∥∥∥∥
L2

x,v

∥∥∥ω1

√
µ̃
∥∥∥
L∞

x,v

+
∥∥∥ν̃ 1

2 ∂t
√
µ̃
∥∥∥
L2

x,v

∥ω1f∥L∞
x,v
.

Together with (4.17), (4.39) and Lemma 4.16, this proves (4.169). □

We now prove Proposition 4.14.

Proof of Proposition 4.14. The argument proceeds in three steps.

Step 1. Estimate for (4.145).
Recall the definition of g̃ in (1.62). We decompose

ˆ t

0

¨
Ω×R3

g̃f̃ =

ˆ t

0

¨
Ω×R3

Γ̃(f̃ , f̃)(I− P̃)f̃ +

ˆ t

0

¨
Ω×R3

∂tµ̃√
µ̃
f̃ + ε

ˆ t

0

¨
Ω×R3

∂t
√
µ̃√
µ̃
f̃2

:=I1 + I2 + I3.

For I1, since the collision operator is orthogonal to P̃f̃ , Lemma 4.17 yields

|I1| ≲ε
ˆ t

0

∥∥∥ν̃− 1
2 Γ̃(f̃ , f̃)

∥∥∥2
L2

x,v

+
1

ε

ˆ t

0

∥∥∥(I− P̃)f̃
∥∥∥2
L2

x,v(ν̃)
.

To estimate I2, note (4.164) and using Proposition 4.9 that∥∥∥∥∂tµ̃√
µ̃
−
[
∂tρχ̃0 + ∂tu · (χ̃1, χ̃2, χ̃3) + ∂tθχ̃4

]∥∥∥∥
L2

x,v

≲ εh1(|∂tρ|+ |∂tθ|+ |∂tw|).

Using the conservation laws (4.7) and the estimate (4.17), we obtain

|I2| ≲
∣∣∣ˆ t

0

¨
Ω×R3

[
∂tρχ̃0 + ∂tu · (χ̃1, χ̃2, χ̃3) + ∂tθχ̃4

]
f̃
∣∣∣+ ε

ˆ t

0

h1

(
αh1 + α

∣∣∣f̃ ∣∣∣
L2

γ+

)∥∥∥f̃∥∥∥
L2

x,v

≲ε2 sup
0≤s≤t

∥∥∥f̃(s)∥∥∥
L2

x,v

α

ε

ˆ t

0

h1

(
αh1 + α

∣∣∣f̃ ∣∣∣
L2

γ+

)
≲ ε2

∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣3
2
.

For I3, using (4.39), (4.17), Lemma 4.16 (with ω1 = ω
1
2 ) and Lemma 4.3, we have

|I3| ≲ε
∣∣∣ ˆ t

0

¨
Ω×R3

⟨v⟩2
(
|∂tρ|+ |∂tu|+ |∂tθ|

)
f̃2
∣∣∣

≲ε2
ˆ t

0

(α
ε
h1 +

α

ε

∣∣∣f̃ ∣∣∣
L2

γ+

)(1
ε

∥∥∥(I− P̃)f̃
∥∥∥
L2

x,v

+ ε
3
2

∥∥∥ω1f̃
∥∥∥
L∞

x,v

+
∥∥∥P̃f̃∥∥∥

L2
x,v

)∥∥∥f̃∥∥∥
L2

x,v

≲ε2
∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣3

2
.

Combining the estimates for I1, I2 and I3 establishes (4.145).

Step 2. Estimate for (4.146).
Recall the definition of g̃t in (4.28). We decompose

ˆ t

0

¨
Ω×R3

g̃t∂tf̃ =

ˆ t

0

¨
Ω×R3

[
Γ̃(∂tf̃ , f̃) + Γ̃(f̃ , ∂tf̃) + ∂t

( 1√
µ̃

)√
µ̃Γ̃(f̃ , f̃)

]
∂tf̃

+

ˆ t

0

¨
Ω×R3

[
ε−1∂t

( 1√
µ̃

)√
µ̃L̃f̃ + ε−1L̃tf̃ + Γ̃t(f̃ , f̃)

]
∂tf̃

+

ˆ t

0

¨
Ω×R3

[
∂t

(∂tµ̃√
µ̃

)
− ε∂t

(∂t√µ̃√
µ̃

)
f̃ − ε

(∂t√µ̃√
µ̃

)
∂tf̃
]
∂tf̃

:=II1 + II2 + II3.

For II1, since the collision operator is orthogonal to P̃, the first two terms are bounded by

ε

ˆ t

0

(∥∥∥ν̃− 1
2 Γ̃(∂tf̃ , f̃)

∥∥∥2
L2

x,v

+
∥∥∥ν̃− 1

2 Γ̃(f̃ , ∂tf̃)
∥∥∥2
L2

x,v

)
+ ε

∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣2
2
.
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By Lemma 4.16 (with ω1 = ω
1
2 ), the third term in II1 is bounded by

ε−1

ˆ t

0

∥∥∥∥ν̃ 1
2 ∂t

( 1√
µ̃

)√
µ̃∂tf̃

∥∥∥∥2
L2

x,v

+ ε

ˆ t

0

∥∥∥ν̃− 1
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∥∥∥2
L2

x,v

≲ε
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0

(α
ε
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α

ε
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L2

γ+

)2(1
ε

∥∥∥(I− P̃)∂tf̃
∥∥∥
L2

x,v(ν̃)
+ ε

3
2

∥∥∥ω1∂tf̃
∥∥∥
L∞

x,v

+
∥∥∥P̃∂tf̃∥∥∥

L2
x,v

)2
+ ε

ˆ t

0

∥∥∥ν− 1
2 Γ̃(f̃ , f̃)

∥∥∥2
L2

x,v

≲ sup
0≤s≤t

(
ε

3
2

∥∥∥ω1∂tf̃
∥∥∥
L∞

x,v

+
∥∥∥∂tf̃∥∥∥

L2
x,v

)2 ˆ t

0

(α
ε
h1 +

α

ε
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L2
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)2
+ sup

0≤s≤t

(α
ε
h1 +

α

ε

∣∣∣f̃ ∣∣∣
L2

γ+

)2 1

ε2

ˆ t

0

∥∥∥(I− P̃)∂tf̃
∥∥∥2
L2

x,v(ν̃)
+ ε

ˆ t

0

∥∥∥ν− 1
2 Γ̃(f̃ , f̃)

∥∥∥2
L2
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≲ε
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2
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+
∣∣∣f̃(0)∣∣∣2
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+ ε

ˆ t

0
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∥∥∥2
L2

x,v

.

(4.170)

where we used (4.159), Lemma 4.3 and the definition of
∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣

2
. Combining these estimates yields

|II1| ≲ε
ˆ t

0

(∥∥∥ν̃− 1
2 Γ̃(∂tf̃ , f̃)

∥∥∥2
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x,v

+
∥∥∥ν̃− 1

2 Γ̃(f̃ , ∂tf̃)
∥∥∥2
L2

x,v

+
∥∥∥ν̃− 1

2 Γ̃(f̃ , f̃)
∥∥∥2
L2

x,v

)
+ ε
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2
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1 +
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2
+
[[
f̃0

]]2
2

)
.

Next, we estimate II2. Similar to (4.170), by Corollary 4.20, the first term in II2 is bounded by

ε−1

ˆ t

0

∥∥∥∥ν̃ 1
2 ∂t

( 1√
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)√
µ̃∂tf̃
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0
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∥∥∥2
L2
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≲ε
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2
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L2
γ+

)
.

Since L̃t is orthogonal to P̃, by (4.169) (with ω1 = ω
1
2 ) and Lemma 4.3, the second term in II2 is bounded

by

ε−1

ˆ t

0
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2
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)
.

By (4.168) (with ω1 = ω
1
2 ) and Lemma 4.3, the third term in II2 is controlled as

ε
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∥∥∥
L2
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(α
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ε
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2
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≲
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2
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2
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( ∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣2
2
+
∣∣∣f̃(0)∣∣∣2

L2
γ+

)
.

Collecting the above estimates yields

|II2| ≲ε
1
2
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2

(
1 +
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)
.
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Finally, we estimate II3. For the first term, note that

∂t

(
∂tµ̃√
µ̃

)
= ∂t

[( |v − u|2 − 3T

2

) ∂tθ

(1 + θ)2

√
µ̃+

(v − u) · ∂tu
1 + θ

√
µ̃+ ∂tρ

√
µ̃
]
,

∂tf̃ =
1√
µ̃

[
∂t(
√
µ̃f̃)− ∂t(

√
µ̃)f̃

]
,

and ∂t(
√
µ̃f̃) also satisfies the conservation laws (4.7). Consequently, all linear terms in ∂t

(
∂tµ̃√

µ̃

)
(e.g.,

∂t∂tθ |v|2
√
µ̃, ∂t∂tu · v

√
µ̃ and ∂t∂tρ

√
µ̃) are orthogonal to ∂t(

√
µ̃f̃). Therefore, only the remaining nonlinear

terms contribute, giving∣∣∣ˆ t

0

¨
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)(∥∥∥∂tf̃∥∥∥
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2
.

Next, similar to the proof of Lemma 4.16, the second (cubic) term in II3 is bounded by

ε

ˆ t

0

¨
Ω×R3
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2
,

where we used Proposition 4.9 and Lemma 4.3. Finally, the last term in II3 is controlled as

ε
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3
2
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∥∥∥
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.

Collecting these estimates gives |II3| ≲ ε2
∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣3

2
.

Combining the bounds for II1, II2 and II3 establishes (4.146).

Step 3. Estimate for (4.147) and (4.148).

For
∥∥g̃ω−1

∥∥2
L2

x,v
and

∥∥g̃tω−1
∥∥2
L2

x,v
, the algebraic growth in v is absorbed by the exponential decay of ω−1.

Therefore, using Lemma 4.11 and arguing as in Steps 1 and 2, we obtain (4.147) and (4.148). The details are
omitted for brevity.

This completes the proof of Proposition 4.14. □

4.5. Proof of Main Result for the Case 0 ≤ α≪ ε.

In this subsection, we give the proof of Theorem 1.4.

Proof of Theorem 1.4. In the regime 0 ≤ α ≪ ε, we work with the perturbation equation (1.61) around
the rotating Maxwellian µ̃. The argument follows the same pattern as that of Theorem 1.1. For conciseness,
we only point out the main differences and omit most of the repetitive details.

Step 1. Global existence and uniform ε-independent estimates.
To obtain the global a priori estimate (1.76), we follow the argument from Step 1 in the proof of Theorem

1.1.
First, applying Corollary 4.18 and Proposition A.1 with source terms g = −ε−1L̃f̃ + g̃ (for S1f̃) and

g = −ε−1L̃∂tf̃ + g̃t (for S1∂tf̃), and then using Proposition 4.14, we obtain∥∥∥ν̃− 1
2 Γ̃(f̃ , f̃)

∥∥∥2
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∥∥∥2
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+
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∥∥∥2
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t,x,v

≲
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f̃0

]]2
2

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣2
2
(t) +

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣4
2
(t). (4.171)

Second, multiplying the estimate (1.83) in Proposition 1.5 and the estimate (4.144) in Corollary 4.13 by a
small constant, and adding the result to the estimates (4.29) and (4.30) in Proposition 4.10, we deduce

E2[f̃ ](t) + D2[f̃ ](t) ≲
[[
f̃0

]]2
2
+
[[
f̃0

]]2
2

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣2
2
(t) +

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣3
2
(t) +

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣4
2
(t). (4.172)
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Third, applying Proposition 4.15 and Lemma 4.17 gives

ε ∥ωf∥2L∞
t,x,v

+ ε3 ∥ω∂tf∥2L∞
t,x,v

≲
[[
f̃0

]]2
2
+ E2[f̃ ](t) + D2[f̃ ](t) +

∣∣∣∣∣∣∣∣∣f̃(t)∣∣∣∣∣∣∣∣∣4
2
+
∥∥∥P̃f̃∥∥∥2

L∞
t L6

x,v

. (4.173)

Using Proposition 1.5, Corollary 4.19 and Proposition 4.15, we derive the bound∥∥∥P̃f̃∥∥∥2
L∞

t L6
x,v

≲
[[
f̃0

]]2
2
+
[[
f̃0

]]4
2
+ E2[f̃ ](t) + D2[f̃ ](t) +

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣4
2
(t) +

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣6
2
(t) + δε ∥ωf∥2L∞

t,x,v
, (4.174)

where δ > 0 is a sufficiently small constant arising from Corollary 4.19. Combining (4.173) and (4.174) and

absorbing the terms δε ∥ωf∥2L∞
t,x,v

and
∥∥∥P̃f̃∥∥∥2

L∞
t L6

x,v

on the right-hand side, we obtain

ε ∥ωf∥2L∞
t,x,v

+ ε3 ∥ω∂tf∥2L∞
t,x,v

+
∥∥∥P̃f̃∥∥∥2

L∞
t L6

x,v

≲
[[
f̃0

]]2
2
+
[[
f̃0

]]4
2
+ E2[f̃ ](t) + D2[f̃ ](t) +

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣4
2
(t) +

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣6
2
(t).

(4.175)

Finally, multiplying (4.175) by a small constant, adding the result to (4.172) and absorbing small contri-
butions on the right, we find that∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣2

2
(t) ≲

[[
f̃0

]]2
2
+
∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣3

2
(t) +

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣4
2
(t) +

∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣6
2
(t) (4.176)

holds for any 0 ≤ t ≤ T , provided
[[
f̃0

]]2
2
≤ δ0 is sufficiently small. Consequently, the a priori assumption

(1.82) is verified if δ0 is chosen further small such that δ0 ≪ δ1. The global a priori estimate (1.76) on [0,∞)
is then establish via standard continuity argument.

Step 2. Derivation of strong convergence (1.31)–(1.32) and INSF system (1.33).

The uniform bound on
∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣

2
(∞) given by (1.76) implies:

sup
0≤s≤∞

(∥∥∥f̃(s)∥∥∥
L2

x,v

+
∥∥∥∂tf̃(s)∥∥∥

L2
x,v

+
∥∥∥P̃f̃(s)∥∥∥

L6
x,v

)
≤ Cδ0, (4.177)

sup
0≤s≤∞

( ∣∣∣∣θ(s)ε
∣∣∣∣+ ∣∣∣∣wi(s)

ε

∣∣∣∣+ ∣∣∣∣∂tθ(s)ε

∣∣∣∣+ ∣∣∣∣∂twi(s)

ε

∣∣∣∣ ) ≤ Cδ0, (4.178)

ˆ ∞

0

(∥∥∥P̃f̃(s)∥∥∥2
L2

x,v

+

ˆ t

0

∥∥∥∂tP̃f̃(s)∥∥∥2
L2

x,v

)
ds ≤ Cδ0, (4.179)

ˆ ∞

0

(∥∥∥(I− P̃)f̃(s)
∥∥∥2
L2

x,v(ν̃)
+
∥∥∥(I− P̃)∂tf̃(s)

∥∥∥2
L2

x,v(ν̃)

)
ds→ 0 as ε→ 0. (4.180)

Hence, there exist f∗ ∈ L∞ (R+;L2(Ω× R3)
)
and θ∗, w∗

i ∈ L∞(R+) such that, up to a subsequence,

f̃ → f∗ weakly−∗ in L∞ (R+;L2(Ω× R3)
)
, (4.181)

θ

ε
→ θ∗,

wi

ε
→ w∗

i weakly−∗ in L∞(R+), (4.182)

∂tθ

ε
→ ∂tθ

∗,
∂twi

ε
→ ∂tw

∗
i weakly−∗ in L∞(R+), (4.183)

u

ε
→ u∗,

∂tu

ε
→ ∂tu

∗ weakly−∗ in L∞ (R+;L∞(Ω)
)

(4.184)

as ε → 0, where u∗ =
∑
w∗

iAix. For notational simplicity, wi(t) denotes either wi(t) or w(t), and similarly
for w∗

i (t). Owing to the initial conditions (1.59), we have

θ∗(0) = 0, w∗
i (0) = 0, u∗(0, x) = 0 ∀x ∈ Ω. (4.185)

Using a Taylor expansion of µ̃ together with (4.178) and (4.184) yields

ω(µ̃− µ)

ε
→ ω

(
u∗ · v + θ∗

|v|2 − 3

2

)
µ strongly in L∞ (R+;L

1 ∩ L∞(Ω× R3)
)
, (4.186)

ωµ̃→ ωµ, ω
√
µ̃→ ω

√
µ strongly in L∞ (R+;L

1 ∩ L∞(Ω× R3)
)

(4.187)

as ε → 0, where ω is the weight function defined in (1.26). The convergence (4.180) and (4.167) in Lemma

4.20 imply L̃f̃ → 0 strongly in L2(R+ × Ω × R3). Moreover, (4.181) and (4.187) indicate L̃f̃ → Lf∗ in the
sense of distributions. By uniqueness of distribution limits, we obtain Lf∗ = 0. Hence, there exist functions
ϱf∗ , uf∗ , ϑf∗ ∈ L∞(R+;L2(Ω)) such that

f∗ =
(
ϱf∗ + uf∗ · v + ϑf∗

|v|2 − 3

2

)√
µ. (4.188)
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Proceeding as in the proof of Theorem 1.1, we also have ϱf∗ , uf∗ , ϑf∗ ∈ L2
(
R+;H1(Ω)

)
and

ν̃−
1
2 v · ∇xf̃ → ν−

1
2 v · ∇xf

∗ weakly in L2
(
R+;L2(Ω× R3)

)
as ε→ 0. (4.189)

We now claim that

ϑ∗(t) ≡ 0, w∗
i (t) ≡ 0 (i = 1, 2, 3), u∗(t, x) ≡ 0. (4.190)

To this end, observe the identity¨
∂Ω×R3

ν̃−
1
2ϕf̃ |∂Ωdγ =

¨
Ω×R3

ν̃−
1
2 (v · ∇xϕ)f̃ +

¨
Ω×R3

ν̃−
1
2 (v · ∇xf̃)ϕ,

where ϕ(x, v) is test function satisfying ϕ(·, v) ∈ C∞(Ω̄) and ϕ(x, ·) ∈ C∞
0 (R3). Combining this with (4.181)

and (4.189) implies

ν̃−
1
2 f̃ |∂Ω → ν−

1
2 f∗|∂Ω in the sense of distributions as ε→ 0. (4.191)

The uniform bound of
∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣

2
(∞) implies that

√
α

ε

∣∣∣f̃ ∣∣∣
L2

tL
2
γ,+

is uniformly bounded and hence, up to a

subsequence, has a weak limit in L2(R+ × dγ). By (1.55), (4.191) and the uniqueness of distribution limits,
we conclude √

α

ε
ν̃−

1
2 f̃
∣∣
∂Ω

→ 0 weakly in L2(R+ × dγ) as ε→ 0. (4.192)

Recall the ODEs for θε and wε
i in Proposition 4.9. Passing to the limit in (4.23) and (4.24) and using (4.182),

we derive

3
d

dt

ˆ
Ω

θ∗dx+ λ

ˆ
∂Ω

4θ∗dSx = 0,

d

dt

ˆ
Ω

w∗
i |Aix|2 dx+ λ

ˆ
∂Ω

w∗
i |Aix|2 dSx = 0, i = 1, 2, 3.

(4.193)

Owing to the initial conditions in (4.185) and the fact λ = 0 in (1.55), the ODEs in (4.193) admit trivial
solutions θ∗(t) ≡ 0 and w∗

i (t) ≡ 0 for all i = 1, 2, 3. This proves the claim (4.190).

We now prove the strong convergence stated in (1.31)–(1.32). The uniform bound on
∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣

2
(t) from Step

1, combined with (4.171), (4.17) from Proposition 4.9 and Lemma 4.16, implies

∂tf̃ , ε
−1ν̃−

1
2 L̃f̃ , ν̃−

1
2 Γ̃(f̃ , f̃),

∂tµ̃√
µ̃
, ε

∂t
√
µ̃√
µ̃
f̃ ∈ L2(R+ × Ω× R3).

Arguing as in the proof of (3.122) and using velocity averaging lemma, we obtain

f̃ → f∗ strongly in L2
loc

(
R+;L2(Ω× R3)

)
as ε→ 0.

Combined this with (4.187) impliesˆ
R3

f̃
√
µ̃
[
1, v,

|v|2 − 3

2

]
dv →

(
ϱf∗ , uf∗ , ϑf∗

)
strongly in L2

loc

(
R+;L2(Ω)

)
as ε→ 0.

In view of (4.181) and (4.187), the strong convergence (1.31)–(1.32) follow readily.
Finally, the convergence of (1.61) to the fluid system (1.33) can be treated analogously to the case ε ≲

α ≤ 1. We omit the details for brevity.

Step 3. Derivation of the perfect Navier slip boundary (1.77).
Define the weighted boundary average

⟨g⟩µ̃∂Ω :=
√
2π

ˆ
v·n>0

g
∣∣
∂Ω

√
µ̃[n · v]dv.

Combining this with (4.192) and (4.187), we obtain√
α

ε
ν̃−

1
2

(
f̃
∣∣
∂Ω

− µ√
µ̃
⟨f̃⟩µ̃∂Ω

)
→ 0 weakly in L2(R+ × dγ) as ε→ 0. (4.194)

By (4.38), (4.182), (4.184), (4.187) and (4.190), we have

r =
Pµ̃− µ̃

ε
√
µ̃

=
√
µ̃
[(

2− |v|2

2

)θ
ε
− v · u

ε
+ εO

( ∣∣∣∣θε
∣∣∣∣2 , ∣∣∣uε ∣∣∣2 )p(v)]→ 0 (4.195)

strongly in L∞(R+, L1 ∩ L∞(Ω× R3)
)
as ε→ 0.
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Following the same pattern as in Section 3.4, we now derive the weak formulations (3.148) and (3.149)
with λ = 0 for the INSF system subject to the perfect Navier slip boundary (1.77). The details are omitted
here for brevity.

This completes the proof of Theorem 1.4. □

Appendix A. L2
tL

3
x Estimate

The main goal of this section is to establish the following L2
tL

3
x estimate.

Proposition A.1. Let g ∈ L2(R+ × Ω × R3) and r ∈ L2(R+ × γ−), and let f̃ , f ∈ L∞(R+ × Ω × R3) ∩
L2(R+ × Ω× R3) be distributional solutions of the transport equation with Maxwell boundary condition

ε∂tf̃ + v · ∇xf̃ = g in R+ × Ω× R3, (A.1)

f̃ |γ− = (1− α)Rf̃ + αPγ f̃ + αr on R+ × ∂Ω× R3. (A.2)

Denote by ā, b̄i, c̄ the coefficients of P̃f̃ with respect to the basis {χ̄i}, and by a, bi, c the coefficients of Pf
with respect to the basis {χi},
(1) For 0 ≤ α≪ ε, under the a priori assumption (1.82), there exist S1f̃(t, x) and S2f̃(t, x) such that

|ā(t, x)|+
∣∣b̄(t, x)∣∣+ |c̄(t, x)| ≤ S1f̃(t, x) + S2f̃(t, x),∥∥∥S2f̃

∥∥∥
L2

t,x

≲
∥∥∥(I− P̃)f

∥∥∥
L2

t,x,v

,∥∥∥S1f̃
∥∥∥
L2

tL
3
x

≲
∥∥∥ν̃− 1

2 g
∥∥∥
L2

t,x,v

+
∥∥∥ν̃ 1

2 f̃
∥∥∥
L2

t,x,v

+ α
∣∣∣f̃ ∣∣∣

L2
tL

2
γ+

+ α |r|L2
tL

2
γ−

+
∥∥∥f̃0∥∥∥

L2
x,v

+
∥∥∥v · ∇xf̃0

∥∥∥
L2

x,v

.

(A.3)

(2) For ε ≲ α ≤ 1, there exist S1f(t, x) and S2f(t, x) such that

|a(t, x)|+ |b(t, x)|+ |c(t, x)| ≤ S1f(t, x) + S2f(t, x),

∥S2f∥L2
t,x

≲ ∥(I−P)f∥L2
t,x,v

,

∥S1f∥L2
tL

3
x
≲
∥∥∥ν− 1

2 g
∥∥∥
L2

t,x,v

+
∥∥∥ν 1

2 f
∥∥∥
L2

t,x,v

+ α |f |L2
tL

2
γ+

+ α |r|L2
tL

2
γ−

+ ∥f0∥L2
x,v

+ ∥v · ∇xf0∥L2
x,v
.

(A.4)

Proof. The argument follows that of Proposition 3.4 in [22]. We provide details only for case (1), as case
(2) is analogous.

To isolate the interior and non-grazing part of f̃ near the boundary, we introduce a truncation f̃δ. For
(t, x, v) ∈ R× Ω̄× R3 and a small parameter 0 < δ ≪ 1, define

f̃δ(t, x, v) :=
[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)
δ

)][
1− χ

( |v|
2δ

)]
χ(δ |v|)

[
1t∈[0,∞)f̃(t, x, v) + 1t∈(−∞,0]f̃0(x, v)

]
. (A.5)

Here the cutoff function χ ∈ C∞
c (R) satisfies

0 ≤ χ ≤ 1, χ′(x) ≥ −4× 1 1
2≤|x|≤1 and χ(x) =

{
1 if |x| ≤ 1

2 ,

0 if |x| ≥ 1.

Consequently, f̃δ(t, x, v) vanishes on the near-grazing set:

f̃δ(t, x, v) = 0 for (x, v) ∈ γ\γδ±, (A.6)

with the non-grazing sets γδ± defined in (3.5). Moreover, the following estimates hold:

∥f̃δ∥L2(R×Ω×R3) ≲ ∥f̃∥L2(R+×Ω×R3) + ∥f̃0∥L2(Ω×R3),

∥f̃δ∥L2(R×γ) ≲ ∥f̃1γδ
±
∥L2(R+×γ) + ∥f̃01γδ

±
∥L2(γ).

(A.7)

Under the a priori assumption (1.82), there exists a constant TM > 0 such that

TM < T (t) = 1 + θ(t) < 2TM for all t ≥ 0.

Then, for some constants C1, C2 > 0 and p ∈ ( 12 , 1), the global Maxwellian

µM :=
1

(2πTM )3/2
exp

(
− |v|2

2TM

)
satisfies

C1µM ≤ µ̃ ≲ C2µ
p
M , (A.8)
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as shown in [35]. Consequently,

|χ̄i(v)| ≲ ⟨v⟩2 µ
p
2

M and |ā| ,
∣∣b̄∣∣ , |c̄| ≲ ∣∣∣∣ˆ

R3

⟨v⟩2 µ
p
2

Mfdv

∣∣∣∣ . (A.9)

For each i ∈ {0, 1, · · · , 4}, the truncation f̃δ satisfiesˆ
R3

f̃δχ̄i(v)dv

=1t≥0

ˆ
R3

[
1− χ(

n(x) · v
δ

)χ(
ξ(x)

δ
)
][
1− χ

( |v|
2δ

)]
χ(δ|v|)

{ 4∑
j=0

ājχ̄j(v) + (I− P̃)f̃
}
χ̄i(v)dv

+ 1t≤0

ˆ
R3

[
1− χ(

n(x) · v
δ

)χ(
ξ(x)

δ
)
][
1− χ

( |v|
2δ

)]
χ(δ|v|)χ(t)f0χ̄i(v)dv

=1t≥0

{
āi +O(δ)

4∑
j=0

|āj |
}

+ 1t≥0

ˆ
R3

[
1− χ(

n(x) · v
δ

)χ(
ξ(x)

δ
)
][
1− χ

( |v|
2δ

)]
χ(δ|v|)(I− P̃)f̃ χ̄i(v)dv

+ 1t≤0χ(t)

ˆ
R3

[
1− χ(

n(x) · v
δ

)χ(
ξ(x)

δ
)
][
1− χ

( |v|
2δ

)]
χ(δ|v|)f̃0χ̄i(v)dv,

(A.10)

where temporary notations ā0 = ā, āi = b̄i (i = 1, 2, 3) and ā4 = c̄ are used (see (1.67)). Therefore,

4∑
i=0

1t≥0|āi| ≤
4∑

i=0

∣∣∣ˆ
R3

f̃δχ̄i(v)dv
∣∣∣+ 1t≤0χ(t)

ˆ
R3

|f̃0|
4∑

i=0

|χ̄i(v)|dv

+ 1t≥0

{
5O(δ)

4∑
j=0

|āj |+Oδ(1)

ˆ
R3

|(I− P̃)f̃ |
4∑

i=0

|χ̄i(v)|dv
}
.

Hence, for sufficiently small δ, we obtain for each i = 0, 1, 2, 3, 4:

|āi(t, x)| ≤ 10

ˆ
R3

|f̃δ|⟨v⟩2µ
p
2

Mdv + 10χ(t)1t≤0

ˆ
R3

|f̃0|⟨v⟩2µ
p
2

Mdv + 10

ˆ
R3

|(I− P̃)f̃ |⟨v⟩2µ
p
2

Mdv. (A.11)

We now focus on the term involving f̃δ in (A.11). By Lemma 3.6 and Lemma 3.7 in [22], there exists an

extension f̃δ ∈ L2(R× Ω× R3) of f̃δ such that

∥ω−1f̃δ∥L2
t,x,v

≲∥ω−1g∥L2
t,x,v

+ ∥f̃∥L2
t,x,v

+ ∥f̃0∥L2
x,v

+ ∥v · ∇xf̃0∥L2
x,v

+ |f̃1γδ
±
|L2

tL
2
γ
+ |f̃01γδ

±
|L2

γ
. (A.12)

Note that the boundary term |f̃1γδ
±
|L2

tL
2
γ
arises from the definition of f̃δ, (A.6) and (A.7).

To bound |f̃01γδ
±
|L2

γ
, we apply Ukai’s trace Lemma in [60] or Lemma 2.3 in [22] on γδ±, yielding

|f̃01γδ
±
|L2

γ
≲δ ∥f̃20 ∥L1

x,v
+ ∥v · ∇x(f̃

2
0 )∥L1

x,v
≲δ ∥f̃0∥2L2

x,v
+ ∥v · ∇xf̃0∥2L2

x,v
. (A.13)

To estimate |f̃1γδ
+
|L2

tL
2
γ
, we apply Lemma 3.2 in [22] on the out-going non-grazing set γδ+:

ˆ t

0

ˆ
γ+

|f̃1γδ
+
|2dγ ≲δ ε∥f̃20 ∥L1

x,v
+

ˆ t

0

∥f̃2∥L1
x,v

+

ˆ t

0

∥
(
ε∂t + v · ∇x

)
(f̃2)∥L1

x,v

≲δ ε∥f̃0∥2L2
x,v

+

ˆ t

0

∥f̃∥2L2
x,v

+

ˆ t

0

∥f̃∥2L2
x,v(ν̃)

+

ˆ t

0

∥ν̃− 1
2 g∥2L2

x,v
.

(A.14)

For |f̃1γδ
−
|L2

tL
2
γ
, where trace lemma does not apply on γδ−, we use boundary condition (A.2) and the change

of variable v 7→ Rxv on γδ−:ˆ t

0

ˆ
γ−

|f̃1γδ
−
|2dγ ≲

ˆ t

0

ˆ
γδ
−

|R(f̃)|2dγ + α2

ˆ t

0

ˆ
γδ
+

|Pγ f̃ |2dγ + α2

ˆ t

0

ˆ
γδ
−

|r|2dγ

≲
ˆ t

0

ˆ
γδ
+

|f̃ |2dγ + α2

ˆ t

0

ˆ
γ+

|f̃ |2dγ + α2

ˆ t

0

ˆ
γδ
−

|r|2dγ

≲ε∥f̃0∥2L2
x,v

+

ˆ t

0

∥f̃∥2L2
x,v(ν̃)

+

ˆ t

0

∥ν̃− 1
2 g∥2L2

x,v
+ α2

ˆ t

0

[
|f̃ |2L2

γ+

+ |r|2L2
γ−

]
,

(A.15)

where we used (A.14) in the last inequality.
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Finally, we define

S1f̃(t, x) :=

ˆ
R3

|f̃δ|⟨v⟩2µ
p
2

Mdv, S2f̃(t, x) := 4

ˆ
R3

|(I− P̃)f̃ |⟨v⟩2µ
p
2

Mdv. (A.16)

Combining (A.11)–(A.16), we obtain (A.3). This completes the proof of Proposition A.1. □

Appendix B. Uniqueness of Weak Solutions to INSF

In the following, we establish the uniqueness of weak solutions to the INSF system in the setting of
Theorem 1.1 and Theorem 1.4.

Lemma B.1 (Uniqueness of weak solutions to the INSF system). Under the assumptions of Theorem 1.1 and
Theorem 1.4, the weak solution (u, ϑ) to the INSF system (1.33) — subject to either the Dirichlet boundary
condition (1.34) or the Navier boundary condition (1.35) (which reduces (1.77) when λ = 0) with initial data
(u0, ϑ0) ∈ Hu ×Hϑ (defined in (1.85)) — is unique.

Proof. We prove uniqueness of weak solution (u, ϑ) to the INSF system (1.33) only for the Navier boundary
condition (1.35), as the proof for the Dirichlet case (1.34) follows analogously and is simpler.

As a limit point of solutions to the Boltzmann equation when lim
ε→0

α

ε
=

√
2πλ ∈ [0,∞), the pair (u, ϑ)

inherits the smallness of |||f |||1 or
∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣

2
. More precisely, from the uniform bound (1.29) or (1.76) and the

uniqueness of distribution limit, up to a subsequence,

P̃f̃ ,Pf → Pf∗ weakly−∗ in L∞ (R+;L6(Ω× R3)
)
.

By the lower semi-continuity of the norm under weak−∗ convergence, the limit (u, ϑ) inherits the smallness
in L∞

t L
6
x:

∥u∥L∞
t L6

x
≲ ∥Pf∗∥L∞

t L6
x,v

≲ ∥Pf∥L∞
t L6

x,v
≲ |||f |||1 ≪ 1 when using norm |||·|||1 ,

∥u∥L∞
t L6

x
≲ ∥Pf∗∥L∞

t L6
x,v

≲
∥∥∥P̃f̃∥∥∥

L∞
t L6

x,v

≲
∣∣∣∣∣∣∣∣∣f̃ ∣∣∣∣∣∣∣∣∣

2
≪ 1 when using norm |||·|||2 .

(B.1)

For uniqueness, let (u1, ϑ1) and (u2, ϑ2) be two solutions of (1.33) and (1.35) (which reduces (1.77) when
λ = 0) with the same initial data (u0, ϑ0) ∈ Hu ×Hϑ. Then it follows from (B.1) that

∥u1∥L∞
t L6

x
≪ 1, ∥u2∥L∞

t L6
x
≪ 1. (B.2)

Write w = u1 − u2, χ = ϑ1 − ϑ2. Then (w,χ) satisfies

∂tw + u1 · ∇xw + w · ∇xu2 +∇x(p1 − p2) = σ∆xw, ∇x · w = 0 in R+ × Ω,

∂tχ+ u1 · ∇xχ+ w · ∇xϑ2 = κ∆χ in R+ × Ω,

w|t=0 = 0, χ|t=0 = 0 on Ω,[
σ
(
∇xw + (∇xw)

T) · n+ λw
]tan

= 0, w · n = 0 on R+ × ∂Ω,

κ∂nχ+
4

5
λχ = 0 on R+ × ∂Ω.

(B.3)

Standard L2 energy estimate on (B.3) leads to the energy equality

1

2
∥w(t)∥2L2(Ω) + 2σ

ˆ t

0

∥∇s
xw∥2L2(Ω) + λ

ˆ t

0

|wτ |2L2(∂Ω)

=−
ˆ t

0

ˆ
Ω

(u1 · ∇xw) · wdxds−
ˆ t

0

ˆ
Ω

(w · ∇xu2) · wdxds,
(B.4)

where wτ denotes the tangential component of w on ∂Ω (in fact, wτ = w because w · n|∂Ω = 0). Here we
used ∇x · w = 0, ∆xw = 2div(∇s

xw) − grad(∇x · w) and the Navier boundary condition in (B.3). The first
integral on the right-hand side vanishes because ∇x ·u1 = 0 and n ·u1|∂Ω = 0. Using ∇x ·w = 0, n ·w|∂Ω = 0
and integrating by parts, we have∣∣∣ ˆ t

0

ˆ
Ω

(w · ∇xu2) · wdxds
∣∣∣ =∣∣∣− ˆ t

0

ˆ
Ω

(w · ∇xw) · u2dxds
∣∣∣

≲∥u2∥L∞
t L6

x
∥w∥L2

tL
3
x
∥∇xw∥L2

tL
2
x

≲∥u2∥L∞
t L6

x

∥∥∥∥w∥ 1
2

L2
x
∥w∥

1
2

H1
x

∥∥∥
L2

t

∥∇xw∥L2
tL

2
x

≲∥u2∥L∞
t L6

x

(
∥w∥2L2

tL
2
x
+ ∥∇xw∥2L2

tL
2
x

)
,

(B.5)
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where we used the Gagliardo-Nirenberg inequality. Substituting (B.5) into (B.4) yields

1

2
∥w(t)∥2L2(Ω) + 2σ

ˆ t

0

∥∇s
xw∥2L2(Ω) + λ

ˆ t

0

|wτ |2L2(∂Ω) ≲ ∥u2∥L∞
t L6

x

ˆ t

0

∥w∥2H1(Ω). (B.6)

Similarly,

1

2
∥χ(t)∥2L2(Ω) + κ

ˆ t

0

∥∇χ∥2L2(Ω) +
4

5
λ

ˆ t

0

|χ|2L2(∂Ω) ≲ ∥ϑ2∥L∞
t L6

x

ˆ t

0

(
∥w∥2H1(Ω) + ∥∇χ∥2L2(Ω)

)
. (B.7)

Because the coefficient λ influences the boundary dissipation, we treat the cases λ > 0 and λ = 0 separately.
The geometry of Ω also affects the solution when λ = 0 (perfect Navier slip boundary).

Step 1. Case λ > 0.
Step 1.1. Estimate for u.

To close (B.6), we use the following Korn-type inequality (see Proposition 3.13 in [1]): for any g ∈ H1(Ω)
with g · n|∂Ω = 0,

∥g∥H1(Ω) ≃
{

∥∇s
xg∥L2(Ω), if Ω is non-axisymmetric;

∥∇s
xg∥L2(Ω) + |gτ |L2(∂Ω), if Ω is axisymmetric or spherical.

(B.8)

From (B.2) and (B.8), we obtain

1

2
∥w(t)∥2L2(Ω) + σ

ˆ t

0

∥∇s
xw∥2L2(Ω) +

λ

2

ˆ t

0

|wτ |2L2(∂Ω) ≤ 0 for all t ≥ 0. (B.9)

regardless of whether Ω is axisymmetric, spherical or non-axisymmetric. Together with (B.8), this gives
w ≡ 0; hence u is unique.

Step 1.2. Estimate for ϑ.
Recall the Friedrich inequality

∥χ∥H1(Ω) ≲ ∥∇xχ∥L2(Ω) + |χ|L2(∂Ω). (B.10)

Using (B.2), (B.8)–(B.10), we can close the energy equality (B.7) and deduce uniqueness of ϑ.

Step 2. Case λ = 0.
For λ = 0, if Ω is axisymmetric or spherical, the incompressible Navier-Stokes equation with perfect Navier

slip boundary admits nontrivial kernels u = R(x) (see [2]), where R(x) = Ax is a basis element of RΩ defined
in (1.9). The heat equation with homogeneous Neumann boundary also has constants as kernels. Therefore,
to ensure uniqueness of (u, ϑ) when λ = 0, we must require (u0, ϑ0) ∈ Hu ×Hϑ (cf. (1.85)).

Step 2.1. Estimate for u.
Step 2.1.1. Ω axisymmetric or spherical.

First note that the Navier-Stokes equation with perfect Navier slip boundary λ = 0 satisfies conservation
law of angular momentum:

∂t

ˆ
Ω

u(t, x) ·R(x)dx = 0 for all R(x) ∈ RΩ and all t > 0. (B.11)

Indeed, for any R ∈ RΩ,

σ

ˆ
Ω

∆xu ·Rdx =2σ

ˆ
Ω

div(∇s
xu) ·Rdx (by ∆xu = 2div(∇s

xu)− grad(∇x · u))

=σ

ˆ
Ω

∂i(∂iuk + ∂kui)Rkdx

=σ

ˆ
Ω

∂i[(∂iuk + ∂kui)Rk]dx− σ

ˆ
Ω

(∂iuk + ∂kui)∂iRkdx

=σ

ˆ
∂Ω

ni(∂iuk + ∂kui)︸ ︷︷ ︸RkdSx − 2σ

ˆ
Ω

∇s
xu : ∇s

xRdx (by ∇s
xR = 0)

=σ

ˆ
∂Ω

[(∂iuj + ∂jui)ninj ]nk︸ ︷︷ ︸RkdSx (by n ·R|∂Ω = 0)

=0,

(B.12)

where for the under braced term we used

0 =
[
σ
(
∇xu+ (∇xu)

T) · n]tan
=σ
(
∇xu+ (∇xu)

T) · n− σ
[
n ·
(
∇xu+ (∇xu)

T) · n]n
=σ
(
∇xu+ (∇xu)

T) · n− σ
[(
∇xu+ (∇xu)

T)
:
(
n⊗ n

)]
n.

(B.13)
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Moreover, for the nonlinear term and pressure term
ˆ
Ω

(u · ∇x)u ·Rdx =

ˆ
Ω

ui∂i(ujRj)dx−
ˆ
Ω

uiuj∂iRjdx

=

ˆ
Ω

∂i(uiujRj)dx−
ˆ
Ω

∂iuiujRjdx−
ˆ
Ω

u⊗ u : ∇s
xRdx

=

ˆ
∂Ω

niuiujRjdSx = 0,

ˆ
Ω

∇xp ·Rdx =

ˆ
Ω

∂i(pRi)dx−
ˆ
Ω

p∇x ·Rdx =

ˆ
∂Ω

pn ·RdSx = 0.

(B.14)

Here we used the facts ∇s
xR = 0, ∇x ·R = 0 and n ·R|∂Ω = 0 = n ·u|∂Ω. Combining (B.12)–(B.14), we prove

the claim (B.11).
Therefore, if u0 ∈ Hu, then u ∈ Hu for all t > 0. Thus, w = u1 − u2 satisfies

ˆ
Ω

w ·Rdx = 0 for all R ∈ RΩ and all t > 0. (B.15)

For axisymmetric or spherical domains, Proposition 3.15 in [1] gives the Poincaré type inequality:

∥g∥L2(Ω) ≲∥∇s
xg∥L2(Ω) +

∣∣∣ˆ
Ω

g ·Rdx
∣∣∣ for all R ∈ RΩ (B.16)

for g ∈ H1(Ω) with g · n|∂Ω = 0. Combined with (B.15), this implies

∥w∥L2(Ω) ≲ ∥∇s
xw∥L2(Ω) for all t ≥ 0. (B.17)

Combining (B.17) with the standard Korn-type inequality (Theorem 2.1 in [16])

∥g∥H1(Ω) ≲∥∇s
xg∥L2(Ω) + ∥g∥L2(Ω), ∀g ∈ H1(Ω), (B.18)

we obtain

∥w∥H1(Ω) ≲ ∥∇s
xw∥L2(Ω). (B.19)

Inserting (B.2) and (B.19) into (B.6) gives

1

2
∥w(t)∥2L2(Ω) + σ

ˆ t

0

∥w∥2H1(Ω) ≲
1

2
∥w(t)∥2L2(Ω) + σ

ˆ t

0

∥∇s
xw∥2L2(Ω) ≤ 0, (B.20)

provided u0 ∈ Hu. Hence w ≡ 0 and uniqueness follows.

Step 2.1.2. Ω non-axisymmetric.
Here RΩ = {0}. Using (B.2) and the first case of (B.8) directly closes (B.6).

Step 2.2. Estimate for ϑ.
From (B.2), (B.7) and (B.20), we have

∥w(t)∥2L2(Ω) +

ˆ t

0

∥w∥2H1(Ω) + ∥χ(t)∥2L2(Ω) +

ˆ t

0

∥∇χ∥2L2(Ω) ≤ 0. (B.21)

Moreover, the heat equation with homogeneous Neumann condition ∂nϑ|∂Ω = 0 satisfies conservation law:

∂t

ˆ
Ω

ϑdx = 0 for all t > 0,

where we have used ∇x · u = 0 and n · u|∂Ω = 0. Thus, if ϑ0 ∈ Hu, then
´
Ω
χdx = 0 for all t ≥ 0. The

Poincaré inequality therefore gives

∥χ∥H1(Ω) ≲ ∥∇xχ∥L2(Ω).

Combined with (B.21), this yields uniqueness of ϑ. This completes the proof. □
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Appendix C. Gaussian Integration and Elliptic Estimates

Lemma C.1 (Gaussian integrals on the half-line). The following integrals hold:
ˆ
R+

exp
(
− v1

2

2T

)
dv1 =

√
π

2
T 1/2,

ˆ
R+

v1 exp
(
− v21

2T

)
dv1 = T,

ˆ
R+

v21 exp
(
− v21

2T

)
dv1 =

√
π

2
T 3/2,

ˆ
R+

v31 exp
(
− v21

2T

)
dv1 = 2T 2,

ˆ
R+

v41 exp
(
− v21

2T

)
dv1 = 3

√
π

2
T 5/2,

ˆ
R+

v51 exp
(
− v21

2T

)
dv1 = 8T 3.

Proof. These follow directly from standard Gaussian integral formulas. □

Lemma C.2. Let µ be the global Maxwellian defined in (1.6) and µ̃ the rotating Maxwellian defined in (1.56).
Then the following integrals hold:ˆ

R3

µ̃dv = ρ,

ˆ
R3

(v − u)µ̃dv = 0,

ˆ
R3

vµ̃dv = ρu,

ˆ
R3

|v − u|2 µ̃dv = 3ρT,

ˆ
R3

|v|2 µ̃dv = 3ρT + ρ |u|2 ,
ˆ
R3

(v − u) |v − u|2 µ̃dv = 0,

ˆ
R3

v |v|2 µ̃dv = 3ρTu+ 2ρu+ ρu |u|2 ,
ˆ
R3

|v − u|4 µ̃dv = 15ρT 2,

ˆ
R3

|v|4 µ̃dv = 15ρT 2 + 10ρT |u|2 + ρ |u|4 .

Proof. These follow from direct computation using the definition of µ̃ and Gaussian integration. □

Lemma C.3. Let µ̃ be the rotating Maxwellian defined in (1.56). Assume that |u| + |θ| ≪ 1. Then the
following almost orthogonality relations hold:

ˆ
R3

χ̃4χ̃kdv = O(|u|+ |θ|), k = 0, 1, 2, 3,ˆ
R3

χ̃4χ̃4dv = 1 +O(|u|+ |θ|);
(C.1)



ˆ
R3

vivj
√
µ̃χ̃0dv = 1 +O(|u|+ |θ|), i, j = 1, 2, 3,ˆ

R3

vivj
√
µ̃χ̃kdv = O(|u|+ |θ|), i, j, k = 1, 2, 3,ˆ

R3

vivj
√
µ̃χ̃4dv =

2√
6
δij +O(|u|+ |θ|), i, j = 1, 2, 3;

(C.2)


ˆ
R3

viχ̃4χ̃jdv = O(|u|+ |θ|), i = 1, 2, 3, j = 0, 4,ˆ
R3

viχ̃4χ̃jdv =
2√
6
δij +O(|u|+ |θ|), i, j = 1, 2, 3;

(C.3)



ˆ
R3

vivjvkµ̃dv = O(|u|+ |θ|), i, j, k = 1, 2, 3,ˆ
R3

vivjvk(|v|2 − 3)µ̃dv = O(|u|+ |θ|), i, j, k = 1, 2, 3,

ˆ
R3

v2i v
2
j µ̃dv =

{
3 +O(|u|+ |θ|), if i = j,

1 +O(|u|+ |θ|), if i ̸= j;

(C.4)


ˆ
R3

vi(|v|2 − 10)
√
µ̃χ̃jdv = O(|u|+ |θ|), i = 1, 2, 3, j = 0, 4,ˆ

R3

vi(|v|2 − 10)
√
µ̃χ̃jdv = −5δij +O(|u|+ |θ|), i, j = 1, 2, 3;

(C.5)


ˆ
R3

vivj(|v|2 − 10)
√
µ̃χ̃k = O(|u|+ |θ|), i, j, k = 1, 2, 3,ˆ

R3

vivj(|v|2 − 10)
√
µ̃χ̃k = −5δij +O(|u|+ |θ|), i, j = 1, 2, 3, k = 0, 4;

(C.6)
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ˆ
R3

vivj(|v|2 − 5)
√
µ̃χ̃kdv = O(|u|+ |θ|), i, j = 1, 2, 3, k = 0, 1, 2, 3,ˆ

R3

vivj(|v|2 − 5)
√
µ̃χ̃4dv =

10√
6
δij +O(|u|+ |θ|) i, j = 1, 2, 3.

(C.7)

Proof. All relations follow from Lemma C.2 together with the definition of µ̃. □

Lemma C.4 (Boundary integrals). Let µ̃ be the rotating Maxwellian defined in (1.56). Thenˆ
n·v>0

µ̃[n · v]dv =
ρT 1/2

(2π)1/2
,

ˆ
n·v>0

(v − u)µ̃[n · v]dv =
ρnT

2
, (C.8)

ˆ
n·v>0

|v − u|2 µ̃[n · v]dv =
4ρT 3/2

(2π)1/2
,

ˆ
n·v>0

(v − u) |v − u|2 µ̃[n · v]dv =
5ρnT 2

2
, (C.9)

ˆ
n·v>0

|v − u|4 µ̃[n · v]dv =
24ρT 5/2

(2π)1/2
, (C.10)

ˆ
n·v>0

vµ̃[n · v]dv =
ρuT 1/2

(2π)1/2
+
ρnT

2
, (C.11)

ˆ
n·v>0

|v|2 µ̃[n · v]dv =
4ρT 3/2

(2π)1/2
+
ρ |u|2 T 1/2

(2π)1/2
, (C.12)

ˆ
n·v>0

v |v|2 µ̃[n · v]dv =
6ρuT 3/2

(2π)1/2
+
ρu |u|2 T 1/2

(2π)1/2
+
5ρnT 2

2
+
ρnT |u|2

2
, (C.13)

ˆ
n·v>0

|v|4 µ̃[n · v]dv =
24ρT 5/2

(2π)1/2
+

12ρ |u|2 T 3/2

(2π)1/2
+
ρ |u|4 T 1/2

(2π)1/2
. (C.14)

Proof. Decompose v = v⊥ + v∥n with v∥ ∈ R, v⊥ ∈ R2, where v∥n ∥n and v⊥ ⊥ n. By the definition of u
in (1.57), we have u ⊥ n.

Direct computation using Lemma C.2 gives

ˆ
n·v>0

µ̃[n · v]dv =
ρ

(2πT )3/2

ˆ
R+×R×R

v∥ exp
(
−
v2∥ + |v⊥ − u|2

2T

)
dv∥dv⊥ =

ρT 1/2

(2π)1/2
,

ˆ
n·v>0

(v − u)µ̃[n · v]dv =
ρ

(2πT )3/2

ˆ
R+×R×R

(
v⊥ − u+ v∥n

)
v∥ exp

(
−
v2∥ + |v⊥ − u|2

2T

)
dv∥dv⊥ =

ρnT

2
.

This establishes (C.8). Proceeding similarly, we obtainˆ
n·v>0

|v − u|2 µ̃[n · v]dv

=
ρ

(2πT )3/2

ˆ
R+×R×R

v∥(v
2
∥ + |v⊥ − u|2) exp

(
−
v2∥ + (v⊥ − u)2

2T

)
dv∥dv⊥ =

4ρT 3/2

(2π)1/2
,

ˆ
n·v>0

(v − u) |v − u|2 µ̃[n · v]dv

=
1

(2πT )3/2

ˆ
R+×R×R

(v⊥ − u+ v∥n)v∥(v
2
∥ + |v⊥ − u|2) exp

(
−
v2∥ + |v⊥ − u|2

2T

)
dv∥dv⊥

=
1

(2πT )3/2

ˆ
R+×R×R

nv∥
2(v2∥ + |v⊥ − u|2) exp

(
−
v2∥ + |v⊥ − u|2

2T

)
dv∥dv⊥ =

5ρnT 2

2
,

ˆ
n·v>0

|v − u|4 µ̃[n · v]dv

=
ρ

(2πT )3/2

ˆ
R+×R×R

v∥(v
2
∥ + |v⊥ − u|2)2 exp

(
−
v2∥ + |v⊥ − u|2

2T

)
dv∥dv1dv2

=
ρ

(2πT )3/2

ˆ
R+×R×R

v∥

(
v4∥ + v41 + v42 + 2v2∥v

2
1 + 2v21v

2
2 + 2v22v

2
∥

)
exp

(
−
v2∥ + v21 + v22

2T

)
dv∥dv1dv2

=
24ρT 5/2

(2π)1/2
.

This proves (C.9)–(C.10).
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The relation (C.11) follows from (C.8). For (C.12), using |v|2 = |v − u|2 + 2(v − u) · u + |u|2 and noting
u · n = 0, we have ˆ

n·v>0

|v|2 µ̃[n · v]dv =

ˆ
n·v>0

(
|v − u|2 + 2(v − u) · u+ |u|2

)
µ̃[n · v]dv

=
4ρT 3/2

(2π)1/2
+
ρ |u|2 T 1/2

(2π)1/2
.

For (C.13), we decompose

v |v|2 = (v − u) |v − u|2 + u |v − u|2 + 2(v − u)u · (v − u) + 2uu · (v − u) + (v − u) |u|2 + u |u|2 .
Splitting v⊥ into components parallel vu and perpendicular vu⊥ to u, direct computation yields:ˆ

n·v>0

(v − u) |v − u|2 µ̃[n · v]dv =
5ρnT 2

2
,

ˆ
n·v>0

u |v − u|2 µ̃[n · v]dv =
4ρuT 3/2

(2π)1/2
,

ˆ
n·v>0

uu · (v − u)µ̃[n · v]dv = uu · ρnT
2

= 0,

ˆ
n·v>0

(v − u) |u|2 µ̃[n · v]dv =
ρnT |u|2

2
,

ˆ
n·v>0

u |u|2 µ̃[n · v]dv =
ρu |u|2 T 1/2

(2π)1/2
,

ˆ
n·v>0

(v − u)u · (v − u)µ̃[n · v]dv =
ρuT 3/2

(2π)1/2
.

Combining these results proves (C.13).
For (C.14), we use the decomposition

|v|4 = |v − u|4 + |u|4 + 4((v − u) · u)2 + 2 |v − u|2 |u|2 +
(
odd order of (v − u) · u

)
.

Then, the above calculations indicateˆ
n·v>0

|v|4 µ̃[n · v]dv =

ˆ
n·v>0

(|v − u|4 + |u|4 + 4((v − u) · u)2 + 2 |v − u|2 |u|2)µ̃[n · v]dv

=
24ρT 5/2

(2π)1/2
+
ρ |u|4 T 1/2

(2π)1/2
+

4ρ |u|2 T 3/2

(2π)1/2
+

8ρ |u|2 T 3/2

(2π)1/2
,

which further leads to (C.14). This complete the proof. □

The next result is standard in elliptic theory (see, e.g., [25]).

Lemma C.5. Let p ∈ {2, 65}, and let ξ ∈ Lp(Ω) and satisfy the compatible condition
´
Ω
ξdx = 0. Then the

elliptic equation

−∆xϕ = ξ in Ω, ∂nϕ = 0 on ∂Ω,

ˆ
Ω

ϕdx = 0. (C.15)

admits a unique solution ϕ ∈W 2,p(Ω) satisfying∥∥∇2
xϕ
∥∥
L2

x
+ ∥∇xϕ∥L2

x
+ ∥ϕ∥L2

x
≲ ∥ξ∥L2

x
, if ξ ∈ L2(Ω), (C.16)∥∥∇2

xϕ
∥∥
L

6
5
x

+ ∥∇xϕ∥L2
x
+ ∥ϕ∥L6

x
≲ ∥ξ∥

L
6
5
x

, if ξ ∈ L
6
5 (Ω). (C.17)

The following lemma is adapted from Theorem 2.11 in [8] and Lemma 3 in [15].

Lemma C.6. Let ξ : Ω → R3, and let ϕ satisfy the elliptic system

−div(∇s
xϕ) = ξ in Ω,

ϕ · n = 0 on ∂Ω,

(∇s
xϕ)n = (∇s

xϕ : n⊗ n)n on ∂Ω.

(C.18)

(1) If ξ ∈ L2(Ω), then the variational formulationˆ
Ω

∇s
xϕ : ∇s

xσdx =

ˆ
Ω

ξ · σdx for all σ ∈ H (Ω) (C.19)

admits a unique weak solution ϕ ∈ H (Ω). Here

H (Ω) :=
{
σ : Ω → R3 : σ ∈ H1

x(Ω), σ · n
∣∣
∂Ω

= 0, PΩ

( ˆ
Ω

∇a
xσdx

)
= 0
}

(C.20)

and PΩ denotes the orthogonal projection onto the set AΩ :=
{
A ∈ so(3,R) : Ax ∈ RΩ

}
.

(2) Let p ∈ {2, 65} and assume ξ ∈ Lp(Ω) satisfies the compatible conditionˆ
Ω

Ax · ξ(x)dx = 0 for any Ax ∈ RΩ. (C.21)
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Then (C.18) admits a unique strong solution ϕ ∈W
2, 65
x (Ω) ∩ H (Ω) with∥∥∇2

xϕ
∥∥
L2

x
+ ∥∇xϕ∥L2

x
+ ∥ϕ∥L2

x
≲ ∥ξ∥L2

x
, if ξ ∈ L2(Ω), (C.22)∥∥∇2

xϕ
∥∥
L

6
5
x

+ ∥∇xϕ∥L2
x
+ ∥ϕ∥L6

x
≲ ∥ξ∥

L
6
5
x

, if ξ ∈ L
6
5 (Ω). (C.23)
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[9] Boltzmann, L. Über die Prinzipien der Mechanik: Zwei Akademische Antrittsreden. Leipzig, S. Hirzel, 1903.

[10] Briant, M. From the Boltzmann equation to the incompressible Navier-Stokes equations on the torus: a quantitative error

estimate. J. Differential Equations 259 (2015), no. 11, 6072–6141.
[11] Briant, M.; Merino-Aceituno. S,; Mouhot, C. From Boltzmann to incompressible Navier-Stokes in Sobolev spaces with

polynomial weight. Anal. Appl. (Singap.) 17 (2019), no. 1, 85–116.
[12] Caflisch, R. E. The fluid dynamic limit of the nonlinear Boltzmann equation. Comm. Pure Appl. Math. 33 (1980), no. 5,

651–666.

[13] Cao, Y.; Jang, J.; Kim, C. Passage from the Boltzmann equation with diffuse boundary to the incompressible Euler equation
with heat convection, J. Differential Equations 366 (2023), 565–644.

[14] Cercignani, C.; Illner, R.; Pulvirenti, M. The Mathematical Theory of Dilute Gases. Springer Science, New York NY, 1994.

[15] Chen, H.; Kim, C. Macroscopic estimate of the linear Boltzmann and Landau equations with specular reflection boundary.
Kinet. Relat. Models 17 (2024), no. 5, 774–806.

[16] Ciarlet, P. G.; Ciarlet, P. Another approach to linearized elasticity and a new proof of Korn’s inequality. Math. Models

Methods Appl. Sci., 15 (2005), no. 2, 259–271.
[17] De Masi, A.; Esposito, R.; Lebowitz, J. Incompressible Navier-Stokes and Euler limits of the Boltzmann equation. Comm.

Pure Appl. Math. 42 (1990), no. 8, 1189–1214.

[18] Desvillettes L.; Villani, C. On a variant of Korn’s inequality arising in statistical mechanics. A tribute to J. L. Lions.,
ESAIM Control Optim. Calc. Var., 8 (2002), 603–619.

[19] DiPerna, R. J.; Lions, P.-L. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of
Math. (2) 130 (1989), no. 2, 321–366.

[20] Duan, R.; Liu, S. Compressible Navier-Stokes approximation for the Boltzmann equation in bounded domains. Trans. Amer.

Math. Soc. 374 (2021), no. 11, 7867–7924.
[21] Esposito, R.; Guo, Y.; Kim, C.; Marra, R. Non-isothermal boundary in the Boltzmann theory and Fourier law. Comm.

Math. Phys. 323 (2013), no. 1, 177–239.

[22] Esposito, R.; Guo, Y.; Kim, C.; Marra, R. Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann.
PDE 4 (2017), Paper No. 1, 119 pp.

[23] Esposito, R.; Guo, Y.; Marra, R. Hydrodynamic limit of a kinetic gas flow past an obstacle, Comm. Math. Phys., 364

(2018), 765–823.
[24] Esposito, R.; Guo, Y.; Marra, R.; Wu, L. Ghost effect from Boltzmann theory. Comm. Pure Appl. Math. advance online

publication, 15 Oct. 2025, doi:10.1002/cpa.70017.

[25] Gilbarg, D.; Trudinger, N. Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wis-
senschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977.

[26] Golse, F.; Levermore, C. D. Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs. Comm.
Pure Appl. Math. 55 (2002), no. 3, 336–393.

[27] Golse, F.; Lions, P.-L.; Perthame, B.; Sentis, R. Regularity of the moments of the solution of a transport equation. J. Func.

Anal., 76 (1988), no. 1, 110–125.
[28] Golse, F.; Saint-Raymond, L. The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent.

Math. 155 (2004), no. 1, 81–161.



STRONG DIFFUSIVE LIMIT OF BOLTZMANN EQUATION WITH MAXWELL BOUNDARY 85

[29] Golse, F.; Saint-Raymond, L. The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials.

J. Math. Pures Appl. (9) 91 (2009), no. 5, 508–552.
[30] Guo, Y. The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (2003), no. 3, 593–630.

[31] Guo, Y. Boltzmann diffusive limit beyond the Navier-Stokes approximation. Comm. Pure Appl. Math. 59 (2006), no. 5,

626–687.
[32] Guo, Y. Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197 (2010), no.

3, 713–809.

[33] Guo, Y.; Huang, F.; Wang, Y. Hilbert expansion of the Boltzmann equation with specular boundary condition in half-space.
Arch. Ration. Mech. Anal. 241 (2021), no. 1, 231–309.

[34] Guo, Y.; Jang, J. Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Comm. Math. Phys. 299 (2010), no.

2, 469–501.
[35] Guo, Y.; Jang, J.; Jiang, N. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models 2 (2009), no.

1, 205–214.
[36] Guo, Y.; Jang, J.; Jiang, N. Acoustic limit for the Boltzmann equation in optimal scaling. Comm. Pure Appl. Math. 63

(2010), no. 3, 337–361.

[37] Guo, Y.; Kim, C.; Tonon, D.; Trescases, A. Regularity of the Boltzmann equation in convex domains. Invent. Math., 207
(2017), no. 1, 115–290.

[38] Guo, Y.; Liu, S. Incompressible hydrodynamic approximation with viscous heating to the Boltzmann equation. Math. Models

Meth. Appl. Sci., 27 (2017), no. 12, 2261–2296.
[39] Hilbert, D. Begründung der kinetischen gastheorie. Math. Ann. 72 (1912), no. 4, 562–577.

[40] Hilbert, D. Mathematical Problems. Bull. Amer. Math. Soc. 8 (1902), no. 10, 437–479, 1902.

[41] Jang, J., Kim, C. Incompressible Euler limit from Boltzmann equation with diffuse boundary condition for analytic data.
Ann. PDE 7 (2021), no. 2, Paper No. 22, 103pp.

[42] Jiang, N., Masmoudi, N. Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in

bounded domain I. Comm. Pure Appl. Math. 70 (2017), no. 1, 90–171.
[43] Jiang, N.; Luo, Y.-L.; Tang, S. Compressible Euler limit from Boltzmann equation with complete diffusive boundary con-

dition in half-space. Trans. Amer. Math. Soc. 377 (2024), no. 8, 5323–5359.
[44] Jiang, N.; Luo, Y.-L. Compressible Navier-Stokes system with slip boundary from Boltzmann equations with reflection

boundary: derivations and justifications. arXiv:2501.08715, 2025.

[45] Jung, J. Global diffusive expansion of Boltzmann equation in exterior domain. arXiv:2308.03984, 2023.
[46] Kawashima, S.; Matsumura, A.; Nishida, T. On the fluid-dynamical approximation to the Boltzmann equation at the level

of the Navier-Stokes equation. Comm. Math. Phys. 70 (1979), no. 2, 97–124.

[47] Kim, C.; Nguyen, T. T. Validity of Prandtl’s boundary layer from the Boltzmann theory. arXiv:2410.16160, 2024.
[48] Kim, C.; Lee, D. The Boltzmann equation with specular boundary condition in convex domains. Comm. Pure Appl. Math.

71 (2018), no. 3, 411–504.

[49] Leoni, G. A First Course in Sobolev Spaces. Graduate Studies in Mathematics, 105. American Mathematical Society,
Providence, RI, 2009.

[50] Levermore, C. D.; Masmoudi, N. From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system. Arch.

Ration. Mech. Anal. 196 (2010), no. 3, 753–809.
[51] Liu, S.; Yang, T.; Zhao, H. Compressible Navier-Stokes approximation to the Boltzmann equation. J. Differential Equations,

256 (2014), no. 11, 3770–3816.

[52] Masmoudi, N.; Saint-Raymond, L. From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. Comm.
Pure Appl. Math. 56 (2003), no. 9, 1263–1293.

[53] Maxwell, J.-C. On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. Roy. Soc. London 170
(1879), 231–256.

[54] Mischler, S. Kinetic equations with Maxwell boundary conditions. Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 5, 719–760.
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