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In this paper, we propose a scheme to eliminate the influence of noises on system dynamics,
by means of a sequential unsharp measurements and unitary feedback operations. The unsharp
measurements are carried out periodically during system evolution, while the feedback operations
are well designed based on the eigenstates of the density matrices of the exact (noiseless) dynamical
states and its corresponding post-measurement states. For illustrative examples, we show that the
dynamical trajectory errors caused by both static and non-static noises are successfully eliminated in
typical two-level and multi-level systems, i.e., the high-fidelity quantum dynamics can be maintained.
Furthermore, we discuss the influence of noise strength and measurement strength on the degree
of precise quantum control. Crucially, the measurement-feedback scheme is quite universal in that
it can be applied to precise quantum control for any dimension systems. Thus, it naturally finds
extensive applications in quantum information processing.

PACS numbers: 03.67.Bg, 03.65. Yz, 02.30.Yy, 42.50.Dv

I. INTRODUCTION

Precise control of quantum systems plays an impor-
tant role in quantum science and technology. How to
effectively maintain high-fidelity manipulations thus be-
comes particularly critical, because it is the central re-
quirement in several fields, such as fault-tolerant quan-
tum computing [1–3]. Unfortunately, the fact that the
interested system inevitably encounters various types of
background noises always hinders the further develop-
ment of quantum-enabled technologies [4–7].

One of the biggest challenges for precise quantum con-
trol before [8] is the lack of efficient, validated approaches
in the presence of noises. To overcome the influence of
noises on system dynamics, many methods have been
proposed recently, such as the composite pulse sequences
[9–15], optimal control [16–18], the invariant-based in-
verse engineering [19, 20], filter-transfer-function [21–23],
adiabatic passages [25], single-shot shaped pulse [24], and
so on. In most of these methods, noise is assumed to be
static, i.e., time independent during system evolution.
While for a general realistic situation, the interested sys-
tem may suffer from stochastic time-varying noise [26],
1/fα noise [27], or random classical noise [28], so that
several methods would be invalid. As a result, there is
often badly in need of a simple and versatile protocol to
eliminate the influence of all kinds of noises in different
quantum systems.

On the other hand, unsharp measurement, a spe-
cial positive operator-valued measure (POVM), has been
widely used in quantum system control [29–34], including
tracking Rabi oscillations [35–38], investigating quantum
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process tomography [39], estimating full quantum state
[40], monitoring wave function [41]. For unsharp mea-
surement, one needs to design general measurement op-
erators, which has been proposed in linear optical qubit
system [42]. Recently, unsharp measurement with vari-
able measurement-strength has been reported in experi-
ment [43]. However, only using measurement in quantum
system may bring about many restrictions in practice
owing to the fact that the back-action effect of measure-
ment is sometimes thought to be detrimental. To sidestep
such restrictions, one always combine measurement with
feedback operations for quantum system control [44–51].
Indeed, it has been shown that the success probability
for manipulating quantum system to target state can be
significantly improved by making use of feedback infor-
mation [52], and a conceptual guidance is developed to
maintain quantum coherence by using unsharp measure-
ments and unitary rotations in the presence of random
classical noise fields [28].

In this work, we formulate a general measurement-
feedback scheme to correct the dynamics of quantum sys-
tem suffering from background noises. We elaborately
design the feedback operations with respect to the eigen-
states of the density matrices of the exact (noiseless) dy-
namical states and its corresponding post-measurement
states. Such a designation method is general for any di-
mension scenario, and thus can be easily employed to
different quantum systems. For illustration purpose, we
first focus on the static noises in typical qubit systems.
Then, we apply the scheme to eliminate the influence
of time-varying noises in multi-level systems. Numerical
simulations show that the exact quantum system dynam-
ics are achieved with high-accuracy via the measurement-
feedback operations. Notably, one prominent feature of
the scheme is that there is no need to worry about the
back-action effect of measurement, because such effect is
fully compensated by the well-designed feedback opera-
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tions.
The rest of this paper is organized as follows. In

Sec. II, we introduce the physical model and present the
measurement-feedback operations. In Sec. III, we take
some examples to show the performance of the scheme,
including two-level and multi-level systems. In Sec. IV,
we discuss the influence of noise strength and measure-
ment strength on the fidelity of system dynamical trajec-
tory, then give a detailed analysis on experimental feasi-
bility. Conclusions are presented in Sec. V.

II. CONTROL MODEL AND

MEASUREMENT-FEEDBACK OPERATIONS

Consider a general quantum system suffering from
background noises, whose Hamiltonian is given by

Ĥ = Ĥ0 + ĤN , (1)

where Ĥ0 is the undisturbed static Hamiltonian and ĤN

is the Hamiltonian of background noises. In the absence
of noises (ĤN = 0), the system state exactly evolves as

|ψE(t)〉 = Û(t)|ψ(0)〉, (2)

where Û(t) = exp(−iĤ0t), |ψ(0)〉 represents the initial
state of system, and we set ~ = 1 hereafter. In the
following, the dynamical trajectory of exact (noiseless)
system is labelled by DTES. However, the real situation
is that in presence of background noises the actual state
of system

|ψN (t)〉 = Û(t)|ψ(0)〉, (3)

gradually deviates away from the exact dynamical state
|ψE(t)〉, where Û(t) = exp(−iĤt) if the background
noises are unknown static. When the background noises
are time-varying, the evolution operator Û(t) in Eq. (3)
should be replaced by

Û(t) = T exp

{

−i
∫ t

0

Ĥdt

}

, (4)

where T is the time-ordering operator. In the follow-
ing, we label the dynamical trajectory of actual (noise)
system by DTAS.
To eliminate the trajectory errors caused by the back-

ground noises (i.e., making DTAS converge to DTES),
we employ a sequence of consecutive unsharp measure-
ments and well-designed feedback operations. The main
control process is as below. During system evolution
process, we first perform a sequence of periodic unsharp
measurements with period τ . Note that the time of each
measurement is assumed extremely short (e.g., adopt im-
pulsive measurement approximation) so that it can be
ignored during evolution. For the k-th unsharp measure-
ment with measurement result n (n = 1, 2, · · · , N), it

carried out on the actual state |ψN (tk)〉 of the system,
leading to the post-measurement state |ψN

n (tk)〉:

|ψN
n (tk)〉 ≡

M̂
(k)
n

√

P
(k)
n

|ψN (tk)〉, (5)

where the evolution time tk = kτ , M̂
(k)
n is the so-called

Kraus operator corresponding to the measurement re-

sult n. P
(k)
n = 〈ψN (tk)|Ê(k)

n |ψN (tk)〉 is the detection
probability of the measurement result n, with the ef-

fects Ê
(k)
n =

√

(M̂
(k)
n )†(M̂ (k)

n ), and the effects should

satisfy
∑

n Ê
(k)
n = Î, where Î is the identity operator.

Generally speaking, after a sequence of unsharp mea-
surements, the dynamical trajectory of post-measured-
actual-system (DTPMAS) would deviate from the origi-
nal one due to the back-action effect [35–39]. With such
back-action effect, one can manipulate quantum states,
including state initialization [53] and entanglement gen-
eration [54]. However, it is unfavorable for eliminating
the influence of noises on system dynamical trajectory,
i.e., obtaining the DTES in the presence of background
noises. One of the straightforward and effective strategy
is to impose well-designed feedback operation after each
measurement. Here, the feedback operation is assumed
to be instantaneous, i.e., the feedback process is accom-
plished without time consuming. In addition, the feed-
back operation should satisfy the condition of restoring
the corresponding post-measurement state of the exact
state |ψE(tk)〉 back into its pre-measurement state, i.e.,

|ψE(tk)〉 = Û (k)
n |ψE

n (tk)〉, (6)

where |ψE
n (tk)〉 =

M̂(k)
n√
P

(k)
n

|ψE(tk)〉 is the post-

measurement state after an unsharp measurement car-
ried out on the exact state |ψE(tk)〉. Therefore, the
DTES remains unchanged under the action of the se-
quence of measurement-feedback cycles. In other words,
the dynamical trajectory of the post-measured-exact-
system (DTPMES) is the same with the DTES if the

measurement-feedback cycles {Û (k)
n M̂

(k)
n } are applied on

the exact system. By the sequence of measurement-

feedback operations {Û (k)
n M̂

(k)
n }, the actual state of sys-

tem evolves as

|ψN
M (tk)〉 =

(

1
∏

k

Û (k)
n M̂ (k)

n Û (k)
τ

)

|ψ(0)〉, (7)

where Û
(k)
n is the feedback operation, and Û (k)

τ is the evo-
lution operator between two consecutive measurements.

Note that Û (k)
τ = exp(−iĤτ) if the background noises

are static, while

Û (k)
τ = T exp

{

−i
∫ tk+τ

tk

Ĥdt

}

, (8)

if the background noises are time-varying. With these
measurement-feedback operations, the DTPMAS would
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converge to the DTES eventually, indicating that we im-
plement precise quantum control in the presence of back-
ground noises.
The physical mechanism why the DTPMAS can be

driven to the DTES (i.e., the dynamical trajectory
errors caused by background noises are cancelled by
measurement-feedback operations) stems from following
facts. When the same sequence of unsharp measurements
carries out on two equal systems, the dynamical trajec-
tory of the two systems would converge together [48].
Concretely, if we apply the same sequence of unsharp
measurements on the actual system and the exact sys-
tem, it would bring the DTPMAS and DTPMES con-
verging together. However, notice that the DTPMAS
is still not converged to the DTES since the DTPMES
and DTES are not equivalent, originating from the back-
action effect of measurement. To solve this intractable
problem, we add the feedback operation after each mea-
surement on the actual system, where the feedback op-
eration restores the post-measurement exact state back
to its pre-measurement state (although there is no mea-
surements carried out on the exact system). Definitively,
the DTPMES completely coincides with DTES under
the sequence of measurement-feedback operations. Thus
the same measure-feedback operations would impose the
DTPMAS converging to the DTES. To gain a better un-
derstanding of the convergency precess, one can decom-

pose the Kraus operator M̂
(k)
n into “phase” and “mod-

ulus” as complex number [55], i.e., M̂
(k)
n = ˆ̄U

(k)
n |M̂ (k)

n |,
where ˆ̄U

(k)
n is unitary. Then, it is not hard to calculate

that

Û (k)
n M̂ (k)

n = Û (k)
n

ˆ̄U (k)
n |M̂ (k)

n | = ˆ̄U ′(k)
n |M̂ (k)

n | = M̂ ′(k)
n , (9)

where ˆ̄U
′(k)
n = Û

(k)
n

ˆ̄U
(k)
n is an unitary operator. As a

reuslt, the measurement-feedback operator Û
(k)
n M̂

(k)
n in

fact can be regarded as Kraus operator M̂ ′(k)
n as well.

In other words, the sequence of measurement-feedback

operations {Û (k)
n M̂

(k)
n } can be understood as a new se-

quence of unsharp measurements {M̂ ′(k)
n }. With this

new unsharp measurements applied on the actual sys-
tem and the exact system, the DTPMAS would con-
verge to the DTPMES. As a result, the DTPMAS con-
verges to the DTES, i.e., the dynamical trajectory errors
caused by background noises are cancelled, by applying
the measurement-feedback operations.
Finally, we elaborate on the designation of the feed-

back operations Û
(k)
n , which is based on the exact

state |ψE(tk)〉 and its post-measurement state |ψE
n (tk)〉.

Here, we denote the corresponding density matrices of
|ψE(tk)〉 and |ψE

n (tk)〉 by ρEk = |ψEk〉〈ψEk | and ρEk
n =

|ψEk
n 〉〈ψEk

n | respectively, where we ignore the label tk for
the sake of brevity. Without loss of generality, in the
N -dimensional Hilbert space, we suppose the concrete
form of wavefunction |ψEk〉 = [c1, c2, · · · , cj , · · · , cN ]T ,
where [·]T represents the transposition of the argument,
and the complex numbers cj satisfy normalization con-

dition:
∑N

j=1 |cj |2 = 1. First, we construct a set of basis

{|φEk

j 〉} to satisfy equation ρEk |φEk

j 〉 = λEk

j |φEk

j 〉, whose
expressions read

|φEk

1 〉 = |ψEk〉 = [c1, c2, · · · , cj , · · · , cN ]T ,

|φEk

2 〉 = [−c∗2, c∗1, 03, · · · , 0j, · · · , 0N ]T ,

|φEk

3 〉 = [−c∗3, 02, c∗1, · · · , 0j, · · · , 0N ]T ,
...

|φEk

j 〉 = [−c∗j , 02, 03, · · · , c∗1, · · · , 0N ]T ,
...

|φEk

N 〉 = [−c∗N , 02, 03, · · · , 0j, · · · , c∗1]T ,

(10)

where 0j denotes that the j-th element is zero. The

corresponding eigenvalues are λEk

1 = 1 and λEk

j = 0

(j = 2, 3, · · · , N). Clearly, the bases |φEk

j 〉 are linearly
independent with each other and completeness in the N -
dimensional Hilbert space. In fact, it composes of all
eigenstates of density matrix ρEk . Then, by linear combi-
nation of |φEk

j 〉, we can define another set of general basis

{|̺Ek
m 〉}, i.e., |̺Ek

m 〉 =
∑N

j=1 bj,m|φEk

j 〉, where bj,m denote
the normalized coefficients, j,m = 1, 2, · · · , N . Anal-
ogously, we suppose |ψEk

n 〉 = [c̃1, c̃2, · · · , c̃j′ , · · · , c̃N ]T ,

where the complex numbers c̃j′ satisfy
∑N

j′=1 |c̃j′ |2 = 1.

Again, we construct a set of complete basis {|φ̃Ek

j′ 〉} to

satisfy equation ρEk
n |φ̃Ek

j′ 〉 = λ̃Ek

j′ |φ̃Ek

j′ 〉:

|φ̃Ek

1 〉 = |ψEk
n 〉 = [c̃1, c̃2, · · · , c̃j′ , · · · , c̃N ]T ,

|φ̃Ek

2 〉 = [−c̃∗2, c̃∗1, 03, · · · , 0j′ , · · · , 0N ]T ,

|φ̃Ek

3 〉 = [−c̃∗3, 02, c̃∗1, · · · , 0j′ , · · · , 0N ]T ,
...

|φ̃Ek

j′ 〉 = [−c̃∗j′ , 02, 03, · · · , c̃∗1, · · · , 0N ]T ,
...

|φ̃Ek

N 〉 = [−c̃∗N , 02, 03, · · · , 0j′ , · · · , c̃∗1]T ,

(11)

with the corresponding eigenvalue λ̃Ek

1 = 1 and λ̃Ek

j′ = 0

(j′ = 2, 3, · · · , N). Then, the set of general basis {| ˜̺Ek

m′ 〉}
can be | ˜̺Ek

m′ 〉 =
∑N

j′=1 b̃j′,m′ |φ̃Ek

j′ 〉, where b̃j′,m′ denote

the normalized coefficients, m′, j′ = 1, 2, · · · , N . After
constructing the basis {|̺Ek

m 〉} and {| ˜̺Ek

m′ 〉}, the explicit

expression of the feedback operation Û
(k)
n can be chosen

as

Û (k)
n =

N
∑

m=1

N
∑

m′=1

|̺Ek
m 〉〈 ˜̺Ek

m′ |. (12)

Clearly, Û
(k)
n is unitary (i.e., (Û

(k)
n )†Û (k)

n = Î) and satis-
fies the condition of Eq. (6) since

〈ψEk |ψEk〉 = 〈ψEk |Û (k)
n |ψEk

n 〉

=

N
∑

m=1

N
∑

m′=1

〈ψEk |̺Ek
m 〉〈 ˜̺Ek

m′ |ψEk
n 〉
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=

N
∑

m=1
m′=1

N
∑

j=1
j′=1

bj,mb̃j′,m′〈ψEk |φEk

j 〉〈φ̃Ek

j′ |ψEk
n 〉

= 1. (13)

Here we have used the orthogonality relations:
〈φEk

1 |φEk

j 〉 = δ1j and 〈φ̃Ek

j′ |φ̃Ek

1 〉 = δj′1. It is worth

mentioning that the simplest way to construct Û
(k)
n is

to choose bj,m = δj,m and b̃j′,m′ = δj′,m′ , which lead to

|̺Ek
m 〉 = |φEk

m 〉 and | ˜̺Ek
m 〉 = |φ̃Ek

m 〉, respectively. Then Eq.
(12) can be further simplified as

Û (k)
n =

N
∑

m

|φEk
m 〉〈φ̃Ek

m |. (14)

Note that in the construction process of feedback oper-

ation Û
(k)
n , there is no restrictions for the dimension N

of the system. In other words, this method is completely
general for any dimension systems.

III. EXAMPLES

A. Precise control in qubit system

In this subsection, we apply the measurement-feedback
scheme to eliminate the dynamical errors caused by static
noises in qubit system, e.g., a spin- 12 particle processing
in a magnetic field. In the absence of static noises, the
Hamiltonian of the system is given by

Ĥ0 =
ΩL

2
r̂ · σ̂, (15)

where ΩL is the Larmor frequency, σ̂ = (σx, σy, σz) is the
Pauli matrices that generate rotation on x, y, z axis, re-
spectively. The normalized vector r̂ = (rx, ry, rz) repre-
sents the direction of the magnetic field. Given an initial
state, the spin system would exactly evolve as Eq. (2).
When existing static noises in the Larmor frequency and
the direction of the magnetic field, the form of system
Hamiltonian is denoted as

Ĥ =
ΩL +Ωε

2
r̂
′ · σ̂, (16)

where Ωε quantifies the amount of static noise in Larmor
frequency and r̂

′ = (r′x, r
′
y , r

′
z) denotes the direction of

magnetic field in the presence of static noise. Then, the
actual spin system would evolve as Eq. (3).
For the purpose of illustration, we now parameter-

ize the noise in Larmor frequency as Ωε = 0.05ΩL,
the original direction of the magnetic field as r̂ =
(cos θ cosφ, cos θ sinφ, sin θ), the noise-disturbed direc-
tion as r̂′ = (cos θ′ cosφ′, cos θ′ sinφ′, sin θ′), and the ini-
tial state as |ψ(0)〉 = |+〉 with |±〉 being the eigenstates
of σz. In figure 1(a), the blue dash line displays the ex-
act evolution trajectory of the expectation value 〈σz〉E
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0.8

0.9

1

Time (units of 2π/ΩL)

〈σ
z
〉 E

(N
)

(a)
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〈σz〉N
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1
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z
〉N M

(E
)
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〈σz〉E
〈σz〉

N
M

FIG. 1: Time evolution of the expectation values of σz for
the spin system in the absence of measurement-feedback oper-
ations (a), and in the presence of measurement-feedback oper-
ations (b). Parameters for the simulations are: Ωε = 0.05ΩL ,
θ = π/3, φ = π/4, θ′ = θ − θ/50, φ′ = φ − φ/50, p0 = 0.2,
K = 250, and τ = 2π/(50ΩL).

(≡ 〈ψE |σz |ψE〉), while the magenta solid line displays
the noise-disturbed evolution trajectory of the expecta-
tion value 〈σz〉N (≡ 〈ψN |σz |ψN 〉). It is clear that not
only the amplitude of the oscillation is changed, but also
a phase shift of the oscillation frequency is induced by
static noises, meaning that the static noises drive the
dynamical trajectory of the system far away from the
noiseless one.
The aim here is to adapt a sequence of unsharp mea-

surements and feedback operations to impose the dynam-
ical trajectory of noise-disturbed system approaching to
the dynamical trajectory of noiseless one. We would like
to emphasis that although the dynamical trajectory of
noiseless system can be monitored via unsharp measure-
ments [28], there generally exists unavoidable phase kicks
between post-measured system and original system due
to the back-action effect of measurements [37]. With the
help of feedback operations, the dynamical trajectory of
noiseless system is achievable. For the spin system, we
perform unsharp measurements of the σz observable with
the Kraus operators given by [39]

M̂
(k)
0 =

√

1− p0|−〉〈−|+√
p0|+〉〈+|,

M̂
(k)
1 =

√
p0|−〉〈−|+

√

1− p0|+〉〈+|, (17)

where
∑

n(M̂
(k)
n )†M̂

(k)
n = Î (n = 0, 1) and 0 < p0 < 0.5.

The strength of a single measurement is quantified by
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∆p = 1 − 2p0, and ∆p → 0 (∆p → 1) represents a fully
weak (strong) measurement of observable. Note that the
strength of a sequence of measurements depends on not
only ∆p but also the measurement frequency 1/τ . The
more frequent of the measurements are applied to the sys-
tem, the more information we obtain [28]. We now choose
p0 = 0.2 and carry out a measurement-feedback opera-
tion every τ = TL/50, where TL = 2π/ΩL is the oscilla-
tion period. The related results are shown in Fig. 1(b)
by the evolution trajectory of expectation value 〈σz〉NM
(≡ 〈ψN

M |σz |ψN
M 〉), where |ψN

M 〉 represents the state af-
ter measurement-feedback operations, i.e., Eq. (7). We
can find that there is no phase shift phenomena between
the noiseless evolution (blue dash line) and the evolution
under measurement-feedback operations (magenta solid
line), which indicates that the influence of static noises
on the dynamical trajectory of qubit system is eliminated
very well by measurement-feedback operations.

B. Precise control in multi-level system

In the above investigation, we have shown that the
measurement-feedback operations can eliminate the in-
fluence of static noises in the single two-level sys-
tem. In this subsection, we show the capability of the
measurement-feedback scheme for the multi-level sys-
tems. Here, we consider a more general case that the
system suffers from time-varying noises, where the noise
Hamiltonian is denoted by

ĤN =

L
∑

l=1

λl(t)Ĥl. (18)

where λl(t) represent the time-varying noise fields. For
simplicity, we assume the noises obey Gaussian distribu-

tion, i.e., λl(t) =
1√
2πσ

exp[− (t−µ)2

2σ2 ], where µ and σ rep-

resent the mean value and standard deviation of Gaus-
sian distribution, respectively. Under the influence of
time-varying noises, it is no doubt that the dynamical
trajectory of the system deviates away from the noise-
less one. For a single N -level system whose bare states
are marked by {|d〉, d = 1, 2, · · · , N}, the Kraus operator

M̂
(k)
n (n = 1, 2, · · · , N) can be constructed as

M̂ (k)
n =

N
∑

d=1

√
pd|d〉〈d|, (19)

where pd quantifies the strength of a single measurement

and satisfy the relation
∑N

d=1 pd = 1 (0 < pd < 1). The
single measurement strength is stronger when the value
of |pd − 1/N | is larger.
Next, we demonstrate the measurement-feedback

scheme by considering two identical Rydberg atoms cou-
pled by laser fields. As shown in Fig. 2, each atom has
ground state |g〉, excited state |e〉 and Rydberg state |r〉.

e

r

g

e

r

g

V

FIG. 2: Schematic representation of two trapped Ryd-
berg atoms. |r〉 is the Rydberg state, while |g〉 and |e〉 are
the ground and excited state, respectively. V denotes the
Rydberg-Rydberg-interaction strength. The ground states |g〉
and Rydberg state |r〉 are dispersively coupled to the excited
state |e〉 with Rabi frequencies Ω1 and Ω2, respectively. ∆
represents the corresponding detuning parameter.

The ground state |g〉 is dispersively coupled to the ex-
cited state |e〉 by a laser field with Rabi frequency Ω1 and
detuning ∆. The excited state |e〉 can be pumped into
the Rydberg state |r〉 by a laser field with Rabi frequency
Ω2 and detuning −∆. The Rydberg-Rydberg-interaction
strength is V . In the interaction picture, the Hamiltonian
of the system reads

ĤI = [(Ω1|e〉1〈g|+ Ω2|r〉1〈e|)⊗ Î2
+ Î1 ⊗ (Ω1|e〉2〈g|+Ω2|r〉2〈e|) +H.c.]

+ ∆(|e〉1〈e| ⊗ Î2 + Î1 ⊗ |e〉2〈e|) + V |rr〉〈rr|,
(20)

where |mn〉 is the abbreviation of |m〉1|n〉2 and Îj (j =
1, 2) denotes the 3× 3 identity matrix.
At large intermediate-state detuning, ∆ ≫ Ωj (j =

1, 2), the single atom state |e〉 is scarcely populated,
and it can be adiabatically eliminated in the subspace
of states |g〉 and |r〉 [57, 58]. Then, after moving ĤI to

the rotating frame with respect to Û = e−i∆t
∑2

j=1 |e〉j〈e|,
the effective Hamiltonian of the system is

Ĥeff =
√
2Ωeff (|gg〉〈T |+ |rr〉〈T |+H.c.) + V |rr〉〈rr|,

(21)

where Ωeff = Ω1Ω2/∆ and |T 〉 = (|gr〉+ |rg〉)/
√
2. Fur-

thermore, we move the effective Hamiltonian Ĥeff to the

rotating frame with respect to Û = e−iV t|rr〉〈rr|, then

Ĥeff =
√
2Ωeff (|gg〉〈T |+ |rr〉〈T |eiV t +H.c.). (22)

If the parameters satisfy V ≫
√
2Ωeff , the fast oscil-

lating term can be ignored safely. That is, the doubly
excited Rydberg state |rr〉 cannot be pumped from |T 〉,
which is known as the Rydberg blockade [59–62]. Clearly,
the population of the system then would oscillate be-
tween states |gg〉 and |T 〉 if the initial state is |gg〉 (or
|T 〉).
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FIG. 3: The time evolution of fidelities when consider-
ing time-varying noises in the case of multi-level quantum
system. The parameters for the simulations are: Ω =
2π × 15 MHz, Ω1 = Ω2 = Ω, V = Ω, ∆ = 2π×740
MHz, µ = 0.05Ω, σ = 0.1Ω, K = 3500, τ = 1 ns, and
{p1,2,3,4, p5,6,7,8, p9}={1/18, 3/18, 1/9}.

In order to illustrate the capability of the measurement
feedback scheme, we choose the undisturbed Hamiltonian
Ĥ0 = ĤI (Eq. (20)) and consider the situation that there
exists time-varying noises in the laser fields Ω1 and Ω2.
Thus the Ĥj in the noise Hamiltonian Eq. (18) are given
as

Ĥ1 = |e〉1〈g| ⊗ Î2 + Î1 ⊗ |e〉2〈g|+H.c.

Ĥ2 = |r〉1〈e| ⊗ Î2 + Î1 ⊗ |r〉2〈e|+H.c.. (23)

We use the fidelity Fms
TN = |〈T |ψN〉|2 of the entangled

state |T 〉 to represent the noise-disturbed evolution. For
contrast, we also use the fidelity Fms

TE = |〈T |ψE〉|2 to de-
note the evolution of the noiseless system. The evolution
of both fidelities Fms

TN and Fms
TE are displayed in Fig. 3(a)

with the initial state |ψ(0)〉 = |gg〉. It is clearly shown
that the initial state |gg〉 can be pumped to the entangled
state |T 〉 periodically (red solid line) in the absence of
noises. However, the original periodical evolution of the
fidelity is destroyed when the system suffering from time-
varying noises (green dash-dot line). That is, it appears
a random phase shift and amplitude fluctuation during
evolution process. As a result, the system cannot reach
the entangled state |T 〉 perfectly. To show the influence
of the noises on the fidelity more clear, we also quan-
tify the resemblance between the exact evolution |ψE〉
and the noises-disturbed evolution |ψN 〉 by the fidelity

Fms
EN = |〈ψE |ψN 〉|2, as is shown by the blue dash-dot line

in Fig. 3 (b). One can note that the value of the fidelity
Fms
EN gradually decreases, indicating the detrimental in-

fluence of the time-varying noises on the resemblance be-
tween the exact and actual dynamical trajectories.
In the following, we display the performance of the

measurement-feedback scheme for eliminating the in-
fluence of the time-varying noises. For such a com-

posite system, the Kraus operator M̂
(k)
n as given

by Eq. (19) can be constructed in the Hilbert
space {|gg〉, |ge〉, |eg〉, |ee〉, |gr〉, |er〉, |rg〉, |re〉, |rr〉}. If
we label the above corresponding basis states as
{|1〉, |2〉, |3〉, |4〉, |5〉, |6〉, |7〉, |8〉, |9〉}, the Kraus operator
can also be formally represented by Eq. (19), and the
measurement result n is the atomic state of the compos-
ite system. For instance, the measurement result “n = 1”
represents the two atoms both in the ground state |g〉, i.e.
|gg〉. As a contrast, we also display the result of the elim-
ination of the time-varying noises in Fig. 3, by defining
the fidelity Fms

TM = |〈T |ψN
M 〉|2, where |ψN

M 〉 is the state
under measurement-feedback operations and is given by
Eq. (7). By comparing the evolution of the two fideli-
ties Fms

TE and Fms
TM in Fig. 3(a), we can see that they

are coincidence with each other perfectly, including the
oscillation period and the amplitude. This point can also
be confirmed by the fidelity Fms

EM = |〈ψE |ψM
N 〉|2 (the red

solid line in Fig. 3(b)), which shows the resemblance
between the exact evolution |ψE〉 and the measurement-
feedback operated evolution |ψM

N 〉. The numerical results
demonstrate that the fidelity Fms

EM keeps higher than
0.99 all the time, indicating the good performance of the
measurement-feedback scheme in the multi-level system.

IV. DISCUSSIONS

A. Influence of noise strength

In the above applications, we only consider the case
of static noises with Ωε = 0.05ΩL for the two-level sys-
tem, in which the high fidelity qubit dynamical trajec-
tory is obtained. In realistic scenarios, the static noises
are always unknown and wide-range. Hence, thoroughly
investigating the influence of a wide range of unknown
static noises on qubit dynamics is highly desirable. For
simplicity, we consider a qubit system whose undisturbed
Hamiltonian Ĥ0 and the static noise Hamiltonian ĤN has
the following form,

Ĥ0 =
Ω0

2
σ̂x +

β0
2
σ̂z,

ĤN =
δǫ

2
σ̂x +

δβ

2
σ̂z , (24)

where Ω0 is the strength of driving field and β0 is the
energy splitting. The constant δǫ and δβ are unknown
stochastic noises that are independent of each other.
In Fig. 4, we plot the infidelity I = 1 −

|〈ψE(tK)|ψN
M (tK)〉|2 as a function of variations δβ and
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FIG. 4: The infidelity I as a function of variations δβ and δǫ
with and without measurement-feedback operations. Param-
eters for the simulation are: tf = 4π/

√

Ω2

0
+ β2

0
, Ω0 = β0,

K = 100, τ = tf/K and p0 = 0.25.

δǫ with and without measurement-feedback operations,
where |ψE(tK)〉 is the state of the noiseless system at
time tK . In the top surface of Fig. 4, the fidelity er-
ror gradually increases with the increase of the value
of δβ and δǫ in the absence of measurement-feedback
operations. After the measurement-feedback operations
are employed, the influence on I caused by stochastic
noises δβ and δǫ is almost eliminated (see from the bot-
tom surface of Fig. 4). For instance, I ∼ 0.1727 when

FIG. 5: (a) The average fidelity F qs
EM as a function of time

and the stochastic noise δǫ with δβ = 0.05Ω0 . (b) The average

fidelity F qs
EM as a function of time and the stochastic noise δβ

with δǫ = 0.05Ω0 . Other parameters for the simulation are:
TL = 2π/

√

Ω2

0
+ β2

0
, Ω0 = β0, K = 500, τ = TL/50 and

p0 = 0.35.

{δβ, δǫ} → 0.1 without control. While it can be reduced
to min{I} ∼ 10−4 when measurement-feedback opera-
tions are imposed. The almost vanishing value of I indi-
cates that the high-fidelity qubit state can be obtained for
a wide range of unknown stochastic noises at the specific
time tK by using the measurement-feedback operations.
Actually, one cares more about the influence of the noise
strength on qubit dynamical trajectory than a specific
time. Therefore, we show contour plots of the average fi-

delity F qs
EM = |〈ψE |ψN

M 〉|2 (averaged over 1000 runs) as a
function of time and the stochastic noise δǫ in Fig. 5(a)
and δβ in Fig. 5(b). We are fixing the initial state of
the qubit system in |ψ(0)〉 = |+〉 and p0 = 0.35. We
see from Fig. 5 that for small value of δǫ and δβ, such

as δǫ, δβ < 0.1Ω0, the high-fidelity (F qs
EM > 0.99) qubit

dynamical trajectory can be maintained. By increasing

the value of δǫ and δβ, the average fidelity F qs
EM displays

significant oscillation behavior. The observations indi-
cate that for the given measurement strength (quantified
by p0 and τ), the measurement-feedback scheme works
well for the noise strength below 10% of the driving field
Ω0. When the noise strength is larger than 0.1Ω0, the
qubit dynamical trajectory is gradually dominated by the
noises other than the measurement-feedback operations.

In the above discussion, we consider the influence of
noise strength of static noises on the qubit system dy-
namical trajectory. It wonders how the strength of
time-varying noises deteriorate the dynamical trajectory
of quantum system under measurement-feedback opera-
tions. Next, we are going to briefly discuss this point by
taking the multi-level system as the example. Here, we
characterize the strength of the time-varying noises by
the mean value µ and standard deviation σ. The noise
strength is large when increasing the value of µ and σ.
To quantitatively show the influence of the noise strength

FIG. 6: The average fidelity Fmc
EM as a function of time

and µ (the insert is the same figure from x-y view). Other
parameters for the simulation are: The parameters for the
simulations are: Ω = 2π × 15 MHz, Ω1 = Ω2 = Ω, V = Ω,
∆ = 2π×740 MHz, σ = 0.01Ω, K = 3500, τ = 1 ns, and
{p1,2,3,4, p5,6,7,8, p9}={1/18, 3/18, 1/9}.
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on the dynamical trajectory of the multi-level system, we

plot the average fidelity Fms
EM = |〈ψE |ψN

M 〉|2 (averaged
over 1000 runs) as a function of time and µ in Fig. 6,
which demonstrates that the fidelity Fms

EM can sustain
high value (> 0.99) when µ < 0.2Ω. When further in-
creasing the noise strength, the fidelity Fms

EM displays ran-
dom fluctuations rather than oscillation behaviors. Such
an observation indicate that the measurement-feedback
scheme can be used to eliminate the time-varying noises
for a moderate range of noise strength at the given mea-
surement strength.

B. Influence of measurement strength

We can see from Sec. IVA, for a given measure-
ment strength, the measurement-feedback scheme does
not perform very well when there exists strong back-
ground noises. It is curiosity that whether we can im-
prove the fidelity by adjusting the measurement strength.
In this subsection, we study the influence of the measure-
ment strength on the system dynamical trajectory.

Again, consider the qubit system suffering from static
noises with the undisturbed Hamiltonian Ĥ0 and the
static noise Hamiltonian ĤN given by Eq. (24). No-
tice that the measurement strength of the qubit system
is stronger when the value of p0 more approaching to
zero (∆p → 1) for a fixed τ . Figure 7 shows the av-

erage fidelity F qs
EM = |〈ψE |ψM

N 〉|2 as a function of time
and p0. The results shows that there are large regions
where the high-fidelity qubit dynamics can be achieved,

such as p0 < 0.25 ensures F qs
EM > 0.995. With increas-

ing the value of p0 in the region 0.25 < p0 < 0.35, the

average fidelity F qs
EM exhibits small oscillations. When

further increasing the value of p0 from 0.35 to 0.5, we can
never maintain the high-fidelity. Thus for the given static
noises, δǫ = δβ = 0.1Ω0, the measurement-feedback op-
erations can maintain high-fidelity qubit dynamics with
moderate measurement strength (p0 < 0.35). The larger
the measurement strength is, the higher the average fi-
delity will be. This means that the measurement accu-
racy (or the amount of information extracted from the
system) is closely related to the degree of precise for
the dynamical trajectory of quantum system. Such dec-
laration is also correct for the multi-level system case
within time-varying noises, which is illustrated in Fig. 8

by the average fidelity Fms
EM = |〈ψE |ψM

N 〉|2. Notice that
the measurement strength increases with the value of pj
further deviates away from 1/9 (i.e., the measurement
strength is stronger when the value of |pj−1/9| is larger).
For simplicity, we suppose p1 = p2 = p3 = p4 ≡ p,
p5 = p6 = p7 = p8 ≡ 1 − p − p9 and p9 = 1/9 in the
simulation. One can observe that the larger the value
of |p− 1/9| is, the higher the averaged fidelity Fms

EM will
be. When the measurement strength is approaching the
projective measurement, the unite averaged fidelity is
achieved. Thus, the degree of precise for the dynami-

cal trajectory of quantum system can be controlled by
adjusting the measurement strength.

FIG. 7: The average fidelity F qs
EM (averaged over 1000 runs)

as a function of time and p0. The parameters for the simu-
lation are: TL = 2π/

√

Ω2

0
+ β2

0
, Ω0 = β0, δǫ = δβ = 0.1Ω0,

K = 500, and τ = TL/50.
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Approaching Projective Measurement

FIG. 8: The average fidelity Fms
EM (averaged over 100 runs)

as a function of time under different measurement strength.
The parameters for the simulation are: Ω = 2π × 15 MHz,
Ω1 = Ω2 = Ω, V = Ω, ∆ = 2π×740 MHz, µ = 0.1, σ = 0.1,
τ = 1 ns, K = 1167.

C. Experimental feasibility

In this subsection, we mainly discuss the experimental
feasibility of the measurement-feedback scheme in elimi-
nating the influence of background noises. To implement
unsharp measurements on a target system, generally, an
auxiliary system is required [65]. When the target sys-
tem interacts with the auxiliary system, one can yield
universal control on the target system by manipulating
the auxiliary system [66, 67]. To be specific, the un-
sharp measurements on the target system are obtained
by performing projective measurements on the auxiliary
system. Particularly, the measurement strength can be
adjusted by regulating the interaction strength between
target system and auxiliary system. Experimentally, un-
sharp measurements on nuclear spin system have been
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achieved via single-shot readout with its measurement
strength mapped on electron spin (ancilla) rotation an-
gle [43]. On the other hand, measurement-based feedback
operations can be realized by performing external control
on the target or auxiliary system. For instance, an ex-
ternal field is added to an auxiliary system to achieve
feedback control in generating and stabilizing Bell states
[63], and cooling a mechanical resonator to its quantum
ground state [68]. Alternatively, the unitary feedback

Û
(k)
n can be implemented by the evolution operator Û (k)

n

of an extra feedback Hamiltonian Ĥ
(k)
n , i.e.,

Û (k)
n = Û (k)

n = exp (−iĤ(k)
n tF ), (25)

where tF represents feedback time and it is assumed to
be very short (instantaneous feedback). The experimen-
tal realization of the unitary feedback operation after a
measurement has also been implemented [51].
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FIG. 9: Specific values of Bx/y,1tF (a), and Bx/y,2tF (b)
versus time kτ for implementing unitary feedback operation
when eliminating the influence of static noises in spin system.
The parameters are: p0 = 0.2, K = 50, and the remaining
parameters are the same of Fig. 1.

Next, we take the system of 13C nuclear spin in dia-
mond as an example to show the detailed procedures of
measurement-feedback scheme in experiment. Here, the
unsharp measurements of the nuclear spin are realized
by coupling it to an electron spin (e.g., two energy levels
of a nitrogen-vacancy electron spin) and then perform-
ing projective measurements on the electron spin. The

Hamiltonian of the whole system, including the electron
spin (S = 1/2) and the nuclear spin (I = 1/2), reads [69]

Ĥ = gŜzÎz +ΩLÎz , (26)

where Ŝz (Îz) is the electron (nuclear) spin operator with
eigenstates |±〉e (|±〉n), g is the coupling strength be-
tween the nuclear spin and the electron spin, and ΩL is
the Larmor frequency of the nuclear spin. The evolution
operator of the whole system after applying the Ramsey
sequence is [70]

Û(t) = R̂x
e (
π

2
)[Û (+)

n (t)|+〉e〈+|+ Û (−)
n (t)|−〉e〈−|]R̂y

e(
π

2
),

(27)

where R̂h
e (

π
2 ) = e−iŜhπ/2 (h = x, y) denotes the π/2

pulse for the electron spin along h-axis, and Û
(±)
n (t) =

e−i(ΩL±g/2)Îzt is the evolution operator of the nuclear
spin conditioned on the electron spin state. Suppose the
initial state of the whole system is |ψ(0)〉 = |+〉e⊗|ψ(0)〉n
with |ψ(0)〉n = a0|+〉 + b0|−〉 (|a0|2 + |b0|2 = 1) denot-
ing the initial state of the nuclear spin, then performing
projective measurements on the electron spin with the

projective measurement operator M̂
(α)
e = (̂I + 2αŜz)/2

(α = ±1) is equivalent to an unsharp measurement on
the nuclear spin, i.e.,

M̂ (α)
n ρ̂(0)(M̂ (α)

n )† = Tre[M̂
(α)
e Û(t)ρ̂(0)Û(t)(M̂ (α)

e )†],

(28)

where ρ̂(0) = |ψ(0)〉〈ψ(0)| and

M̂ (α)
n =

1

2
[Û (+)

n (t)− iαÛ (−)
n (t)]

= e−i(ΩLÎzt+απ
4 ) [cos(ϑ)̂I + 2α sin(ϑ)Îz ]√

2
, (29)

with ϑ = gt/2. We can see that M̂
(α)
n is equivalent to

the measurement operator as that given in Eq. (17) with
p0 = 1

2 [cos(ϑ) − sin(ϑ)]2, excepting an additional phase

factor e−i(ΩL Îzt+α π
4 ) that has no effect on the probability

distribution of the measurement results. Note that the
existence of background noises on the Larmor frequency
only influence the additional phase factor, and thus has
no effect on the probability distribution of the measure-
ment results as well. For instance, when ΩL → ΩL +Ωε,

the additional phase factor becomes e−i[(ΩL+Ωε)Îzt+απ
4 ].

By repetitively applying the Ramsey sequence to the elec-
tron spin, we achieve a sequential unsharp measurements
on the nuclear spin with the measurement strength de-
pending on the time delay t and the coupling strength
g. Therefore, unsharp measurements on the nuclear spin
is achievable in the presence of the background noises.
Then, the residual crucial point of the scheme is the real-
ization of unitary feedback operations. In practice, it can
be realized by utilizing simply-designed auxiliary feed-

back Hamiltonians Ĥ
(k)
n , which are reversely solved from
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the unitary feedback Û
(k)
n according to Eq. (25). For

instance, in the elimination of the static noises with the
parameters p0 = 0.2 and τ = 2π/(50ΩL), the concrete

form of Hamiltonians Ĥ
(k)
n (n = 1, 2 and k = 1, 2, · · · ,K)

in the basis {|+〉, |−〉} is given by

Ĥ(k)
n =

[

B
(k)
z,n B

(k)
x,n + iB

(k)
y,n

B
(k)
x,n − iB

(k)
y,n −B(k)

z,n

]

, (30)

where B
(k)
z,n = 0 (n = 1, 2), and the specific real val-

ues of B
(k)
x,ntF and B

(k)
y,ntF versus time tk are plotted in

Fig. 9. In fact, the feedback Hamiltonian is easily im-
plemented by adding extra magnetic fields to the nuclear
spin along h-axis (h = x, y, z), where the corresponding

amplitudes are B
(k)
h,n/tF . Thus the implementation of the

measurement-feedback scheme for precise quantum sys-
tem control can be available in practice.

V. CONCLUSION

In conclusion, we have proposed a scheme to precisely
control system dynamics based on sequential unsharp
measurements and unitary feedback operations. The un-
sharp measurements are assumed to be the impulsive
measurements and carried out periodically. The feed-
back operation is well designed to recover the state of
DTPMES back into its pre-measurement state. For its
applications, we first demonstrate to eliminate the influ-

ence of static noises in typical qubit quantum systems,
and then generalise to eliminate the influence of time-
varying noises in multi-level systems. Simulation results
show that the scheme works well in eliminating different
kinds of noises. In particular, we can obtain high degree
of precise for quantum system dynamics by increasing the
measurement strength. Additionally, there is no need to
worry about the back-action effect of measurements, be-
cause it will be compensated by the tailored feedback
operations. Furthermore, with the well-designed unitary
feedback operation, the scheme may be applied to differ-
ent quantum systems for superposition state generation
and quantum system dynamics elicitation, which are our
further research topic. Thus the scheme is powerful in
quantum system control and is expected to have broad
applications within quantum information processing.
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