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The emergence of memristor technologies brings new prospects for modern electronics 

via enabling novel in-memory computing solutions and affordable and scalable 

reconfigurable hardware implementations. Several competing memristor technologies 

have been presented with each bearing distinct performance metrics across multi-bit 

memory capacity, low-power operation, endurance, retention and stability. Application 

needs however are constantly driving the push towards higher performance, which 

necessitates the introduction of standard characterisation protocols for fair 

benchmarking. At the same time, opportunities for innovation are missed by focusing on 

excessively narrow performance aspects. To that end our work presents a complete, 

technology agnostic, characterisation methodology based on established techniques that 

are adapted to memristors/RRAM characterisation needs. Our approach is designed to 

extract information on all aspects of device behaviour, ranging from deciphering 

underlying physical mechanisms to benchmarking across a variety of electrical 

performance metrics that can in turn support the generation of device models. 

Resistive switching devices, also known as memristors1, have exhibited an unmatched potential 

for a broad range of applications ranging from non-volatile memories2 to neuromorphic 

computing3,4 and reconfigurable circuits5,6. As the scope of the resistive memories expands 

there is the need for a holistic testing and electrical characterisation methodology that covers 

all aspects of the performance evaluation of the device under test. In this paper we propose a 

comprehensive characterisation protocol for resistive memory cells that is technology agnostic, 

i.e. supports equally well volatile/non-volatile and binary/analogue memory technologies. Our 

approach also allows capturing signatures that are indirectly related to their performance, such 

as the physical mechanisms enabling resistive switching. Starting with the pristine device we 

link the I-V characteristics with the underlying conduction mechanisms followed by the 

electroforming process. As the electroforming fundamentally affects the material properties of 

the stack the conduction mechanisms need to be re-evaluated. Next part of the protocol are the 

basic endurance/retention tests. Finally we assess the memory capacity of the cell followed by 

a phenomenological model extract. All the measurements have been performed with our in-

house developed memristor characterisation platform, ArC ONE7. 

I-V characterisation of pristine devices 

Memristors are two-terminal Metal-Oxide-Metal (MOX) stacks that typically obtain their 

memristive nature after the electroforming process. However analysis of the I–Vs in their pre-

formed, or the so called pristine, state could be a very useful initial characterisation step. 

Recording of the pristine state I–V provides i) a straightforward testing for the device operation 

ii) indications for any type (volatile or stable) of forming-free switching ability and iii) a deeper 

insight on the device physics, i.e. the mechanism underneath the electrical response. Potential 
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straightforward correlation between the pre- and post-formed characteristics, not yet achieved, 

would be extremely useful as it will enable performance optimization through design and 

fabrication. 

Regarding the responsible mechanisms, the I–V is the most valuable tool to reveal the 

underlying physics. An unstable/non reproducible I–V (fig. 1a), could be associated with 

important contribution of movable ions, associated to the oxygen vacancies spontaneously 

generated in the transition metal oxides. Movable ions could also results in stable I–Vs 

presenting notable hysteresis loops on a full acquisition cycle. The ions contribution to the 

device conduction could be direct or indirect, for example by modifying the charge close to the 

interface, thus the potential barrier accordingly, resulting in a conductivity change. 

 

Fig. 2: Temperature analysis for pristine Metal-Oxide-Metal stacks depicting evolution of I–V characteristics with 

increasing temperature (left) and temperature dependent signature plots (right) deriving from them. This analysis 

allows for determining the dominant transport mechanism. This particular case corresponds to thermionic 

emission over the interface-formed Schottky barrier8. 

 

Fig. 1: Pre-forming current – voltage characteristics. (left) Hysteresis loop and drift of the I–V arise by the multiple 

acquisition iterations. This behaviour denotes strong ionic character in the core metal oxide thin film. (right) Typical 

asymmetric (red) and symmetric (yellow) I–Vs of a Au/TiO2/Pt device and a Au/TiO2/Al respectively, obtained for 

interface and material controlled transport respectively in Metal-Oxide-Metal stacks. 



 

Stable and reproducible I–Vs can be further assessed. An asymmetric response with respect to 

the bias polarity is a strong indication of transport determined by the interface barriers whilst a 

symmetric curve should be associated with core-material controlled transport (fig. 1b). 

Despite this, the in depth clarification of the transport properties requires assessing the 

temperature dependence of the I–Vs. This is because the various conduction mechanisms obey 

both field and temperature dependence9 and thus the recording of the I–V curves at different 

temperatures (fig. 2a) will allow the extraction of characteristic signature plots. This could be 

simple Arrhenius plots or more sophisticated when the dominant mechanism involves 

processes such as hopping, Frenkel-Poole emission10 or thermionic emission over an interface 

Schottky barrier8. Further assessment of the signature plots allows for extraction of quantitative 

results for parameters such the interface barrier height or the activation energy of the involved 

defects in the cases of interface and material controlled transport respectively. 

The electroforming process 

In order for the devices to be practically exploitable as tunable resistors (aka memristors), an 

electroforming step is usually required. Electroforming was originally mentioned by 

Hickmott11,12 where he describes it as an irreversible change of the electrical properties of the 

material by applying a voltage greater than a minimum forming voltage. Depending on the 

RRAM technology used the electroforming process can represent either the formation of a 

conductive filament due to structure altering effects or oxygen deprivation13, the diffusion of 

metal into the metal oxide layer or the lowering of the interfacial barrier between the electrodes 

and the metal oxide active layer14. 

 

 

Fig 3: Two step electroforming using staircase I-V of a Pt/TiO2/Pt device. Apparent electroforming voltage 

from the GΩ range is ~-6.5 V (left). The device is undergoing a further electroforming step bringing it down 

to the ~30 kΩ range (middle) where a steady state is established (right). 

 



Regardless of the actual forming mechanism during the process the resistance of the device is 

usually lowered to ranges that are typically relevant to applications. It is apparent that 

electroforming is not possible before a device-dependent voltage threshold is reached. 

However the way to cross that threshold is not immediately obvious. One way to form a device 

is during an I–V cycle as can be seen in fig. 3a. The device is biased with increasingly higher 

voltage steps until an immediate change in the resistive state is observed. Further steps might 

be required to move the device to non-volatile region. As can be seen from fig. 3b the 

conductance of the device is still lower than the one achieved in the first step. So a further 

forming cycle is required (fig. 3b) before reaching a final state (fig. 3c).  As further increasing 

the voltage amplitude leads to partial dielectric breakdown15 of the active layer compliance is 

an issue that must be dealt with during electroforming in order to prevent irreversible switching 

degeneration of the device. Two distinct forms of compliance can be identified: current 

compliance and time compliance (ie. short controllable pulses). The key issue with the former 

mode is that there is a distinct delay before reaching the current cut-off threshold with current 

overshoot, partly due to delayed compliance system reaction and partly due to residual parasitic 

capacitance16, posing a significant problem. As such, short sequential pulses can be a better 

alternative for a controllable forming procedure. Instead of continuously biasing the device, 

sequential voltage pulses of continuously increasing duration and amplitude are applied to the 

device. The result is a more uniform procedure of attaining the desired formed state. In the 

example shown in fig. 4 a series of programming pulses from 3 to 10 V is applied to the device. 

Within each step the pulse duration is modulated from the low-μs up to the ms range. 

In addition fig. 4 further illustrates the common pattern in the electroforming process where 

there is an initial increase in the electrical conductivity of the device which marks the onset of 

the electroforming mechanism. By continuing the application of the programming pulses the 

device is finally driven to its target resistive state. While after the first forming the device is 

 
Fig 4: Typical two step electroforming process using a pulse sequence. This device is formed with pulses of 

increasing amplitude and pulse width. Target resistance threshold has been set to 10 kΩ. The device initially 

drops to the MΩ range before attaining its final value. Highlighted in blue is the biasing region, followed by a 

series of READ pulses (highlighted in yellow). 

 

 



able to be tuned to a multitude of resistive states the initial increase to the conductance of the 

device is irreversible as it is associate with morphological alterations of the active layer17. This 

behaviour is also evident in the electroforming procedure using staircase I-Vs (fig. 3). 

Post electroforming I-V characterisation 

After the electroforming process the device typically obtain its memristive nature. At this point 

the core material and the interfaces of the stack have been completely reformed with respect to 

their pristine state. It is therefore essential to commerce the post forming characterisation by 

acquiring once more the non-invasive current vs voltage characteristics. This analysis will 

provide all the information discussed in the previous part, such as the stability/reproducibility 

of the device characteristics (many post forming conditions are not stable – referred to as 

 
Fig. 5: Post-forming I–V characteristics exhibiting typical bipolar behaviour (left; opposite bias polarity is 

required to SET/RESET the device resistive states) and unipolar behaviour (right; the device SET/RESET 

by increasing the applied bias even at the same polarity). 

 

 

Fig. 6: Endurance characterisation of two different devices. On the left a Pt (TE)/AlxOy/TiO2/Pt (BE) is 

subjected to 5000 pulses of 2 V pulses of alternating polarity for two different resistive ranges. In both cases 

the resistive window is maintained throughout. On the right figure a device failing after 1000 pulses. 



volatile), the operation limits and physical mechanism underneath the conduction process, by 

involving characterisation at different temperatures. Further to this, recording of the I-Vs will 

provide an initial indication of the resistive switching character i.e. bipolar (fig. 5a) or unipolar 

(fig. 5b), whilst it leads to detail recording of the SET/RESET voltages. These indications can 

be more accurately recorded by more specialised testing (see section “Switching dynamics”).  

This is important information to be used also on the following characterisation steps, such as 

the endurance and/or multi state seeking, described in more details in the following sections. 

Base Performance evaluation (Endurance/Retention) 

A basic characteristic of a RRAM cell is its ability to alternate between two resistive states. In 

order to determine how the devices behave under repeated stress an endurance test is required. 

For a typical bipolar device a series of alternating polarity pulses is applied to the device 

switching it between neighbouring resistive states. 

A typical output of a device under this test can be seen in fig. 6 where 2 V 100 μs pulses of 

alternating polarity are applied to a Pt/AlxOy/TiO2/Pt device for two different resistive ranges. 

A well behaving device retains its memory window while subject to such biasing. A failing 

device (also evident in fig. 6) will have its memory window, created between a low (LRS) and 

high resistive state (HRS), quickly deteriorating to a point that the memory window is 

completely eliminated. 

Although the endurance test exhibits the ability of the device to switch reliably between two 

states it does not account for the longevity of the two states once they are established. In order 

to do so a retention step is required. In fig. 7 the device is continuously read for a period of up 

to three hours for the two different resistive ranges as defined in fig. 6. The data are then 

extrapolated for a period of up to 10 years (~106 minutes) so that the stability of the memory 

 

Fig. 7: Retention measurements for the two different resistive states defined in fig. 6. Read voltage set at 0.2 V. 

By extrapolating the retention sampling data the device on the left retains its memory window despite the drift 

in resistance, whereas the device on the right has seen a deterioration to its window for the same period. 



window can be established. Retention testing can be performed at any state within the operating 

range of the device. 

Switching dynamics 

Important information can be gathered from the device to evaluate its switching dynamics, ie. 

the switching range, the switching polarity as well as its behaviour given a specific stimulus 

which allows for further optimisation of the biasing scheme applied. To do so a two-stage 

characterisation algorithm can be used18. Initially pulses of alternating polarity are applied to 

the device in order to determine the direction of change in the conductance of the device given 

the stimulus and then voltage ramps are used to determine the actual change in the conductance. 

 A typical output of such routine can be seen in fig. 8 where a series of 100 μs pulses of 

increasing amplitude has been applied to two different Pt/TiO2/Pt and Au/TiO2/Pt devices 

operating at the ~30 kΩ and ~5 kΩ range respectively. Given these results it is possible to 

establish a switching regime for the two devices. The first has an evidently bipolar response to 

pulses of different polarity which is the typical behaviour expected for a bistable memory 

device. However, the second device exhibits a hybrid bipolar/unipolar behaviour where the 

applied bias can result to both an increase and a decrease of the device conductance depending 

on the amplitude when the applied bias surpasses a threshold and the behaviour of the device 

changes to unipolar. Although in the first case the operating boundaries of the device are clear 

in the second case this analysis, and given the application at hand, allows us to establish an 

operating voltage range where the device remains strictly within the bipolar switching regime. 

 
Fig. 8: Relative conductance change in response to a given stimulus. Typical response of a Pt/TiO2/Pt device 

exhibiting bipolar behaviour (left) and a Au/TiO2/Pt exhibiting a hybrid unipolar/bipolar behaviour (right). 

 



From devices to applications – Memory capacity 

All of the previous steps mostly focus on the evaluation of the performance of the device itself. 

Broaching into the area of applications of particular importance is the ability to identify the 

memory capacity of the device. Although the bistable aspect of the device operation is 

straightforward give the capability of the memristor to variate between two extreme states 

exposing further resistive states warrants a more targeted characterisation sequence. The need 

for multibit memory capacity in conventional RRAM cells is of utmost importance to a series 

of applications ranging from non-volatile memories to reconfigurable circuits and 

neuromorphic computing. 

Towards that end a comprehensive characterisation routine can be used as described in a 

previous publication19. A succession of fixed pulse width pulse trains each containing an 

increasing number of programming pulses is applied to the device followed by a short retention 

test to assess the stability of the current resistance. If during this test the resistance of the device 

remains within a tolerance band a new state is registered. If not the amplitude of the bias is 

increased up to a specified limit and a new succession of pulse trains in applied. In figure 9 we 

can see a typical multibit characterisation output for a Pt/TiO2/Pt RRAM cell. Read voltage is 

kept at 0.5 V and the characterisation protocol is applied for up to 10 pulses of 1 μs 

programming pulses ranging from 1.6 V to 2.1 V with a confidence interval of 2σ. In this 

example, 5 bits of information (31 states) can be extracted from the device within just 4 kΩ of 

resistance span (8 to 12 kΩ). Depending on the target application the confidence intervals can 

be adjusted to allow for either a high number of states or a larger interval in terms of resistance 

between the states. As such the effective range of a device can be tiled in an efficient way to 

accommodate for the demands of the application at hand. 

 

Fig. 9: Multibit evaluation of a Pt/TiO2/Pt RRAM cell. In the top figure stable resistive states have been 

marked with red crosses. The corresponding programming protocol is shown in the bottom figure. Read 

pulses are applied continuously throughout and are set at 0.5 V. 



From devices to applications – Phenomenological modelling 

In order to properly integrate RRAM into an integrated circuit workflow it is necessary to have 

realistic, accurate and computationally efficient behavioural models extracted from readily 

available data. By analysing the transient response of the device under continuous bias using 

pulse trains of varying amplitudes and alternating polarities it is possible to extract an accurate 

phenomenological model for a device where the rate of change of the resistance of the device 

is modelled a function of the resistance itself (R) and the applied bias (v)20.  

𝑑𝑅

𝑑𝑡
= 𝑠(𝑣) × 𝑓(𝑅, 𝑣) 

where 𝑠(𝑣) is the switching sensitivity and 𝑓(𝑅, 𝑣) the window function. 

 

Fig 10: Analytical model (solid blue line) extracted from the resistive response of a Pt/TiO2/Pt RRAM 

cell (red points) using 500 pulse batches of alternating polarities. The amplitude of each of the pulse 

trains applied is indicated on the bottom of the graph. The initial resistance of the device is 18.3 kΩ. 

Positive pulses Negative pulses Units 

𝑨𝒑 = −𝟎.𝟏𝟒 𝐴𝑛 = 0.02 𝛺 ∙ 𝑠−1 

𝒕𝒑 = 𝟐. 𝟕𝟒 𝑡𝑛 = 3.03 𝑉 

𝒂𝟎𝒑 = 𝟐𝟒. 𝟒 × 𝟏𝟎
𝟑 𝑎0𝑛 = 14.7 × 10

3 𝛺 

𝒂𝟏𝒑 = −𝟒. 𝟕𝟓 × 𝟏𝟎𝟑 𝑎1𝑛 = −2.33 × 103 𝛺 ∙ 𝑉−1 

Table 1: Fitting parameters for the phenomenological model used in this example. 



𝑠(𝑣) =  

{
 
 

 
 𝐴𝑝 (−1 + exp(

|𝑣|

𝑡𝑝
)) , 𝑣 > 0

𝐴𝑛 (−1 + exp(
|𝑣|

𝑡𝑛
)) , 𝑣 < 0

 and 𝑓(𝑅, 𝑣) {
(𝑎0,𝑝 + 𝑎1,𝑝𝑣 − 𝑅)

2
, 𝑣 > 0

(𝑅 − 𝑎0,𝑛 + 𝑎1,𝑛𝑣)
2
, 𝑣 < 0

 

The rest of the parameters are free fitting variables for the positive and negative branch of the 

bias. The model can be readily applied to data obtained during the characterisation procedure 

by applying a fixed number of programming pulses while alternating the polarities and fitting 

the above equations in a least square fashion. An example of such application can be observed 

in fig. 9 where a bipolar Pt/TiO2/Pt RRAM cell is biased with alternating programming pulses 

of increasing amplitude ranging from 1.5 V to 1.9 V and -1.7 V to -2.1 V. The fitting 

parameters for this device are summarised in table 1. 

Conclusions 

In this paper we presented a complete testing methodology to address the characterisation of 

memristive cells. Our routine covers all technological facets required to integrate a new 

resistive memory technology on any workflow, starting from fundamental physical aspects to 

performance characteristics memory capacity and behavioural modelling. Figure 11 

summarises the aspects that were discussed in this article. 
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Figure 11: The complete proposed characterisation routine as discussed in this article. 
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