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Abstract Distortion (Denneberg 1990) is a well known premium calculation
principle for insurance contracts. In this paper, we study sensitivity properties
of distortion functionals w.r.t. the assumptions for risk aversion as well as
robustness w.r.t. ambiguity of the loss distribution. Ambiguity is measured
by the Wasserstein distance. We study variances of distances for probability
models and identify some worst case distributions. In addition to the direct
problem we also investigate the inverse problem, that is how to identify the
distortion density on the basis of observations of insurance premia.

Keywords Ambiguity · Distortion premium · Dual representation · Premium
principles · Risk measures · Wasserstein distance

1 Introduction

The function of the insurance business is to carry the risk of a loss of the
customer for a fixed amount, called the premium. The premium has to be
larger than the expected loss, otherwise the insurance company faces ruin with
probability one. The difference between the premium and the expectation is
called the risk premium. There are several principles, from which an insurance
premium is calculated on the basis of the loss distribution.

Let X be a (non-negative) random loss variable. Traditionally, an insurance
premium is a functional, π : {X ≥ 0 defined on (Ω,F , P )} → R≥0. We will
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work with functionals that depend only on the distribution of the loss random
variable (sometimes called law-invariance or version-independence property,
Young 2014 [33]). If X has distribution function F we use the notation π(F )
for the pertaining insurance premium, and E(F ) for the expectation of F . We
use alternatively the notation π(F ) or π(X), resp. E(F ) or E(X) whenever
it is more convenient. To the extent of the paper, a more specific notation is
used for particular cases of the premium.

We consider the following basic pricing principles:

– The distortion principle (Denneberg 1990 [3]).
– The certainty equivalence principle (v Neumann and Morgenstern 1947 [25]).
– The ambiguity principle (Gilboa and Schmeidler 1989 [7]).
– Combinations of the previous (for instance Luan 2001 [15]).

The distortion principle. The distortion principle is related to the idea
of stress testing. The original distribution function F is modified (distorted)
and the premium is the expectation of the modified distribution. If g : [0, 1]→
R is a concave monotonically increasing function with the property g(0) = 0,
g(1) = 1, then the distorted distribution F g is given by

F g(x) = 1− g(1− F (x)).

The function g is called the distortion function and

h(v) = g′(1− v),

with g′ being the derivative of g, is the distortion density.1 Notice that h is a
density in [0, 1]. We denote by H(u) =

´ u
0
h(v) dv the distortion distribution.

Since the assumptions imply that g(x) ≥ x for 0 ≤ x ≤ 1, F g ≤ F , i.e.
F g is first order stochastically larger than F .2 The distortion premium is the
expectation of F g

πh(F ) =

ˆ ∞
0

g(1− F (x)) dx ≥
ˆ ∞
0

(1− F (x)) dx = E(X).

By a simple integral transform, one may easily see that the premium can
equivalently be written as

πh(F ) =

ˆ 1

0

F−1(v)h(v) dv =

ˆ 1

0

V@Rv(F )h(v) dv, (1)

where V@Rv(F ) = F−1(v), the quantile function. Note that a functional of
this form is called an L-estimates (Huber 2011 [11]). If the random variable

1 The derivative of a concave function is a.e. defined, even if it is not differentiable every-
where.

2 F1 is first order stochastically larger than F2 if F1(x) ≤ F2(x) for all x.
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X takes as well negative values, we could generally define the premium as a
Choquet integral

πh(F ) =

ˆ 0

−∞
g(1− F (x))− 1 dx+

ˆ ∞
0

g(1− F (x)) dx. (2)

In principle, any distortion function which is monotonic and satisfies g(u) ≥
u is a valid basis for a distortion function. However, the concavity of g guaran-
tees that the pertaining distortion density h is increasing, which - in insurance
application - reflects the fact that putting aside risk capital gets more ex-
pensive for higher quantiles of the risk distribution. Nondecreasing distortion
functions lead to non-negative distortion densities with the consequence that

πh(F1) ≤ πh(F2) whenver F2 is stochastically larger than F1.

Relaxing the monotonicity assumption for g would violate in general the mono-
tonicity w.r.t. first stochastic order.

Examples of distortion functions. Widely used distortion functions g
resp. the pertaining distortion densities h are

– the power distortion with exponent s. If 0 < s < 1,

g(s)(v) = vs, h(s)(v) = s(1− v)s−1. (3)

The premium is known as the Proportional Hazard transform (Wang 1995 [27])
and calculated as

πh(s)(F ) =

ˆ ∞
0

1− F (x)s dx = s

ˆ 1

0

F−1(v)(1− v)s−1 dv. (4)

If s ≥ 1, then we take

g(s)(v) = 1− (1− v)s, h(s)(v) = svs−1. (5)

The premium is

πh(s)(F ) =

ˆ ∞
0

1− (1− F (x))s dx = s

ˆ 1

0

F−1(v)vs−1 dv. (6)

If we consider integer exponent, the premium has a special representation.

Proposition 1 Let X(i), i = 1, . . . , n be independent copies of the random
variable X, then the power distortion premium with integer power s has the
representation

πh(s)(X) = E
(

max{X(1), . . . , X(s)}
)
.

Proof Let F be the distribution of X. The power distortion premium for
integer power s is computed with g(s) in (5) and by definition

πh(s)(F ) =

ˆ ∞
0

g(s)(1− F (x)) =

ˆ ∞
0

1− F (x)s dx.

The assertion follows from the fact that the distribution function of the
random variable max{X(1), . . . , X(s)} is F (x)s.
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Finally, notice that the distortion density is bounded for s ≥ 1, but un-
bounded for 0 < s < 1.

– the Wang distortion or Wang transform (Wang 2000 [26])

g(v) = Φ
(
Φ−1(v) + λ

)
, h(v) =

φ(Φ−1(1− v) + λ)

φ (Φ−1(1− v))
, λ > 0,

where Φ is the standard normal distribution and φ its density.
– the AV@R (average value-at-risk) distortion function and density are

gα(v) = min

{
v

1− α
, 1

}
, hα(v) =

1

1− α
1v≥α, (7)

where 0 ≤ α < 1. The pertaining premium has different names, such as
conditional tail expectation (CTE), CV@R (conditional value at risk) or
ES (expected shortfall) (Embrechts et al. 1997 [4]). The premium is

πhα(F ) =

ˆ ∞
0

min

{
1− F (x)

1− α
, 1

}
dx =

1

1− α

ˆ 1

α

F−1(v) dv. (8)

– piecewise constant distortion densities. The insurance industry uses also
piecewise constant increasing distortion functions. For example, the fol-
lowing distortion function is used by a large reinsurer.

v h(v) v h(v)
[0,0.85] 0.8443 [0.988,0.992) 3.6462
[0.85,0.947) 1.1731 [0.992,0.993) 4.0572
[0.947,0.965) 1.4121 [0.993,0.996) 6.5378
[0.965,0.975) 1.7335 [0.996,0.996) 12.7020
[0.975,0.988) 2.4806 [0.996,1] 14.9436.

For more examples on different choices of h and also for different families of
distributions, see Wang 1996 [28] and Furmann and Zitikis 2008 [6].

Certainty Equivalence. Let V be a convex, strictly monotonic disutility
function.3 The certainty equivalence premium is the solution of

V (π) = E(V (X)),

i.e. it is obtained by equating the disutility of the premium and the expected
disutility of the loss. The premium is written as follows

πV (F ) = V −1 (E(V (X))) = V −1
(ˆ 1

0

V
(
F−1(v)

)
dv

)
.

By Jensen’s inequality πV (F ) ≥ E(F ). Examples for disutilities V are the
power utility V (x) = xs for s ≥ 1 or the exponential utility V (x) = exp(x).

3 The original notion of a utility function introduced by Neumann/Morgenstern was a
concave monotonic U , such that the decision maker maximizes the expectation E(U(Y )) of
a profit variable Y . A disutility function can be defined out of a utility function by setting
V (u) = −U(−u).
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Related to this premium, one could consider just the expected value and
compute the expected disutility (Borch 1961 [2]) obtaining

π(F ) = E(V (X)). (9)

For generalizations of the CEQ premium see Vinel and Krokhmal 2017 [24].
The ambiguity principle. Let F be a family of distributions, which contains
the ”most probable” loss distribution F . The ambiguity insurance premium is

πF(F ) = sup{E(G) : G ∈ F}.

F is called the ambiguity set. In an alternative, but equivalent notation, the
ambiguity premium is given by

πQ(X) = max {EQ(X) : Q ∈ Q} , (10)

where Q is a family of probability models containing the baseline model P .
The functional inside the maximization needs not to be the expectation, but
can be general, see e.g. Wozabal 2012 [30], Wozabal 2014 [31], Gilboa and
Schmeidler 1989 [7] and our Section 6.

Remark 1 In their seminal paper from 1989, Gilboa and Schmeidler [7] give
an axiomatic approach to extended utility functionals of the form

min {EQ(U(Y )) : Q ∈ Q} ,

where U is a utility function and Y is a profit variable. For the insurance case,
U should be replaced by a disutility function V and Y should be replaced by
a loss variable X leading to an equivalent expression

max {EQ(V (X)) : Q ∈ Q} .

The link to (10) is obvious and it can be seen as a combination of expected
disutility (9) and ambiguity.

Remark 2 Recall the fundamental pricing formula of derivatives in financial
markets states that the price can be obtained by taking the maximum of the
discounted expected payoffs, where the maximum is taken over all probability
measures, which make the discounted price of the underlying a martingale.
This can be seen as an ambiguity price.

The ambiguity premium is characterized by the choice of the ambiguity set
F. In principle, this set can be arbitrary given as long as it contains F . Convex
premium functionals have a dual representation, which are also in the form
of an ambiguity functional. For distortion functionals, this will be illustrated
in the next section. Other important examples for ambiguity premium prices
can be defined through distances for probability distributions. Let D be such
a distance, then an ambiguity set is given by

F = {G : D(F,G) ≤ ε} ,
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with ambiguity premium

πεD(F ) = max{E(G) : D(F,G) ≤ ε}.

We call ε the ambiguity radius. This radius quantifies not only the risk pre-
mium, but also the model uncertainty, since the real distribution is typically
not exactly known and all we have is a baseline model F . In our Section 6 we
base ambiguity models on the Wasserstein distance WD.

Combined models. Luan 2001 [15] introduced a combination of distor-
tion and certainty equivalence premium prices by defining a variable W dis-
tributed according to F g and setting

πVh (F ) = V −1(E[V (W )]) = V −1
(ˆ 1

0

V
(
F−1(v)

)
h(v) dv

)
.

Notice that (F g)−1(v) = F−1(1− g−1(1− v)).

More generally, one may also add ambiguity respect to the model and set

πV, εh (F ) = sup

{
V −1

(ˆ 1

0

V
(
G−1(v)

)
h(v) dv

)
: D(F,G) ≤ ε

}
. (11)

Notice that (11) contains all previous definitions by making some of the fol-
lowing parameter settings

h(v) = 1, V (v) = v, ε = 0.

If all parameters are set like that, we recover the expectation.

We could also consider the expected disutility premium (9) and combine
it with the distortion premium,

ˆ 1

0

V (F−1(v))h(v) dv = E[V (W )].

Section 6 will be dedicated to study the combination of distortion and ambi-
guity premium prices.

As to notation, we denote by Lp the space of all random variables with
finite p-norm for all p ≥ 1

‖X‖p = [E(|X|p)]1/p,

resp. ‖X‖∞ = ess sup(|X|), the essential supremum. The same notation is used
for any real valued function on [0, 1] and p and q are conjugates if 1/p+1/q = 1.
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2 The distortion premium and generalizations

The characterization and represestations of the distortion premium were stud-
ied exhaustively. Among some of the most classic contributions we mention
the dual theory of Yaari 1987 [32]; and the characterization by axioms of this
premium developed in Wang, et al. 1997 [29], where the power distortion for
0 < s < 1 is also characterized in a unique manner. A summary of other known
representations and new generalization of this premium will be presented be-
low. Recall that any mapping X 7→ π(X) which is monotone, convex and fulfils
translation equivariance4 is a risk measure. Furthermore, if π is also positively
homogeneous, monotonic w.r.t. the first stochastic order and subadditive5,
then it is a coherent risk measure (Artzner et al. 1999 [1]). The distortion pre-
mium fulfils all these properties, therefore by the Fenchel-Moreau-Rockefellar
Theorem, it has a dual representation.

Theorem 1 (see Pflug 2006 [19]) The dual representation of the distortion
premium with distortion density h is given by

πh(X) = sup{E(X·Z) : Z = h(U), where U is uniformly distributed on [0, 1]}.

Note that all admissible Z’s in Theorem 1 are densities on [0,1], since h ≥ 0
and E(h(U)) = 1. To put it differently, given X defined on (Ω,F , P ) and let
Q be the set of all probability measures on (Ω,F) such that the density dQ

dP
has distribution function H, the distortion distribution, then

πh(X) = sup{EQ(X) : Q ∈ Q}.

Therefore, every distortion premium can be seen as well as an ambiguity pre-
mium with Q as the ambiguity set.

Let us look into more detail to the special case of the AV@R premium. In
this case, the dual representation specializes to

πhα(X) = sup{E(X · Z) : 0 ≤ Z ≤ 1

1− α
; E(Z) = 1}.

From the previous representation, we can see that the AV@R-distortion
densities hα are the extremes of the convex set of all distortion densities. This
fact implies that any distortion premium can be represented as mixtures of
AV@R’s, such representations are called Kusuoka representations (Kusuoka
2001 [14], Jouini et al. 2006 [12]). Coherent risks have a Kusuoka representa-
tion of the form

π(F ) = sup
K∈K

ˆ 1

0

AV@Rα(F ) dK(α),

where K is a collection of probability measures in [0,1]. In particular, for the
distortion premium we have the following result (Pflug/Römisch 2007 [18]).

4 π has translation equivariance property, if π(X + c) = π(X) + c, for c ∈ R.
5 A premium π is called subadditive, if π(X + Y ) ≤ π(X) + π(Y ). Subadditivity and

positive homogeneity imply convexity.
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Theorem 2 Any distortion premium can be written as

πh(F ) =

ˆ 1

0

AV@Rα(X) dK(α).

The mixture distribution K is given by the way how h is represented as a
mixture of the AV@R-distortion densities, i.e.

h(v) =

ˆ v

0

1

1− α
dK(α).

The pure AV@Rβ is contained in this class by setting K(α) = δβ , the Dirac
measure at β. Moreover, the integral of the AV@R’s is obtained for K(α) = α
and is defined asˆ 1

0

AV@Rα(F ) dα =

ˆ 1

0

F−1(v) [− log(1− v)] dv,

if the integral exists.

Remark 3 Some other generalizations of the distortion premium were studied
in Greselin and Zitikis 2018 [10], where they consider a class of functionals

ˆ 1

0

ν(AV@Rα(X),AV@R0(X)) dα,

with ν(·, ·) an integrable function and show the Gini-index and Bonferroni-
index belong to this class. These generalizations lead to inequality measures
instead of risk measures.

As a related generalization of the distortion premium one may consider

R(X) =

ˆ 1

0

ν(AV@Rα(X)) k(α) dα, (12)

for some convex and monotonic Lipschitz function ν and some non-negative
function k on [0,1]. Clearly, R(X) is convex and monotonic, but in general
is neither positively homogeneous nor translation equivariant unless ν is the
identity (see Appendix for a proof). To our knowledge, functionals of the form
(12) are not used in the insurance sector. For this and some other general-
izations see the papers of Goovaerts et al. 2004 [8] and Furman and Zitikis
2008 [6].

3 Continuity of the premium w.r.t. the Wasserstein distance

In this section we study sensitivity properties of the distortion premium respect
to the underlying distribution. Some results in this section are related to those
in Pichler 2013 [21], Pflug and Pichler 2014 [17] and Kiesel et al. 2016 [13].
Similar results of continuity for variability measures are studied in Furman et
al. 2017 [5]. To start, we recall the notion of the Wasserstein distance.
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Definition 1 Let (Ω, d) be a metric space and P , P̃ be two Borel probability
measures on it. Then the Wasserstein distance of order r ≥ 1 is defined as

WDr,d(P, P̃ ) =

(
inf
X∼P
Y∼P̃

E (d(X,Y )r)

)1/r

.

Here the infimum is over all joint distributions of the pair (X,Y ), such that
the marginal distributions are P resp. P̃ , i.e. X ∼ P , Y ∼ P̃ .

For two distributions F and G on the real line endowed with metric

d1(x, y) = |x− y|.

this definition specializes to (see Vallender 1974 [23])

WD1,d1(F,G) =

ˆ ∞
−∞
|F (x)−G(x)| dx =

ˆ 1

0

|F−1(v)−G−1(v)| dv.

Therefore, the Wasserstein distance is the (absolute) area between the dis-
tribution functions which is also the (absolute) area between the inverse distri-
butions. By a similar argument one may prove that the Wasserstein distance
of order r ≥ 1 with the d1 metric on the real line is

WDr
r,d1(F,G) =

ˆ 1

0

|F−1(v)−G−1(v)|r dv = ‖F−1 −G−1‖rr. (13)

We now study continuity properties of the functional F 7→ πh(F ).

Proposition 2 (Continuity for bounded distortion densities) Let F
and G be two distributions on the real line and h a distortion density function.
If the distributions have both finite first moments and h is bounded, then

|πh(F )− πh(G)| ≤ ||h||∞ ·WD1,d1(F,G).

Proof See Pichler 2010 [20].

Remark 4 The boundedness of h is ensured if g has a finite right hand side
derivative at 0, and also if g has finite Lipschitz constant L, since ‖h‖∞ ≤ L.

Proposition 2 can be easily generalized as follows.

Proposition 3 (Continuity for distortion densities in Lq for q < ∞)
Let F and G be two distributions on the real line and h a distortion density
function. If F , G have finite p−moments and h ∈ Lq, then

|πh(F )− πh(G)| ≤ ||h||q ·WDp,d1(F,G),

where p and q are conjugates.
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Proof By Hölder’s inequality for p and q we obtain

|πh(F )− πh(G)| =
∣∣∣∣ˆ 1

0

h(v) ·
(
F−1(v)−G−1(v)

)
dv

∣∣∣∣
≤
(ˆ 1

0

|h(v)|q dv
)1/q

·
(ˆ 1

0

∣∣F−1(v)−G−1(v)
∣∣p dv)1/p

≤ ||h||q ·WDp,d1(F,G).

Example 1 Let F and G be two distributions with finite first moments.

– For the AV@R distortion premium ||hα||∞ = 1
1−α , and therefore

|πhα(F )− πhα(G)| ≤ 1

1− α
·WD1,d1(F,G).

– For the power distortion with s ≥ 1, ||h(s)||∞ = s, and therefore

|πh(s)(F )− πh(s)(G)| ≤ s ·WD1,d1(F,G).

The power distortion with 0 < s < 1 is not bounded. The next result is
dedicated for this particular case.

Proposition 4 (Continuity for the the power distortion with 0 < s <
1) Let F and G be distribution functions and h(s) the distortion density defined
in (3). If F and G have finite p−moments for p > 1

s and h ∈ Lq, then

|πh(s)(F )− πh(s)(G)| ≤ s
q
√

1 + q (s− 1)
·WDp,d1(F,G),

where p and q are conjugates.

Proof We first note that p > 1
s implies q < 1

1−s and let t = 1 + q (s− 1) > 0.

(ˆ 1

0

h(s)(v)q dv

)1/q

=

(ˆ 1

0

sq · (1− v)q·(s−1) dv

)1/q

=

(ˆ 1

0

sq · (1− v)t−1 dv

)1/q

=
s
q
√
t
·
(ˆ 1

0

t (1− v)t−1 dv

)1/q

=
s
q
√
t
.

Proposition 3 proves the statement.

The next result is a direct consequence of Proposition 4.
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Corollary 1 (Continuity for distortion densities dominated by power
distortion densities with 0 < s < 1) Let F and G be distribution functions
and h a distortion density. If h is such that h(v) ≤ c ·h(s)(v), for all v ∈ [0, 1],
c > 0 and 0 < s < 1, F and G have finite p−moments for p > 1

s , then h ∈ Lq
and

|πh(F )− πh(G)| ≤ c · s
q
√

1 + q (s− 1)
·WDp,d1(F,G),

where p and q are conjugates.

Corollary 2 (Convergence) If F, Fn for all n ≥ 1 have finite uniformly
bounded p−moments, h ∈ Lq and WDp,d1(Fn, F )→ 0 as n→∞, then

|πh(F )− πh(Fn)| −−−−→
n→∞

0,

where p and q are conjugates.

Remark 5 Corollary 2 holds when the sequence of distributions are the em-
pirical distributions F̂n defined on an i.i.d. sample of size n, (x1, . . . , xn) from

X ∼ F . If F has finite p−moments, then WDp,d1(F̂n, F ) −−−−→
n→∞

0, hence∣∣∣πh(F̂n)− πh(F )
∣∣∣ −−−−→
n→∞

0. This result follows by applying Lemma 4.1 in [17].

Finally notice that, for continuity, the order of the Wasserstein distance r
coincides with the number of finite moments of F .

3.1 Partial coverage

Many insurance contracts do not guarantee complete indemnity, but their
payoff is just a part of the full damage. Such contracts include proportional
insurance, deductibles and capped insurance. In general, there is a (monotonic)
payoff function T such that the payoff is T (X), if the total loss is X. A quite
flexible form is for instance the excess-of-loss insurance (XL-insurance), which
has a payoff function

T (x) =

0 if x ≤ a
x− a if a ≤ x ≤ e
e− a if x ≥ e.

(14)

Denote by FT the distribution of T (X), if F is the distribution of X. The
distortion premium for partial coverage is πh(FT ). We study the relationship
between FT and GT as well as between πh(FT ) and πh(GT ) in a slightly
more general setup, namely for Hölder continuous T . Recall that T is Hölder
continuous with constant Hβ , if |T (x)−T (y)| ≤ Hβ · |x− y|β , for some β ≤ 1.

Theorem 3 (Distance between the original and image probabilities
by T ) Let P and Q be two probability measures and consider their image
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probabilities under T denoted by PT and QT , respectively. If T is a β−Hölder
continuous mapping, then

WDrβ ,d1(PT , QT ) ≤ Hβ ·WDβ
r,d1

(P,Q),

for rβ = r
β ≥ 1 and r ≥ 1, where Hβ is the β−Hölder constant.

Proof Let the joint distribution of X and Y such that

WDr,d1(X,Y ) = E1/r(|X − Y |r),

then

WD
rβ
rβ ,d1

(PT , QT ) ≤ E(|T (X)− T (Y )|rβ )

≤ Hrβ
β · E(|X − Y |r) = H

rβ
β ·WDr

r,d1(P,Q).

Taking the rβ root on both sides finished the proof.

For the XL-insurance, the Hölder-constant is a Lipschitz constant (β = 1) and
has the value 1.

From the previous Theorem we can conclude that, if two probabilities are
close, then the image probabilities by a mapping T with the characteristics of
Theorem 3, are close in Wasserstein distance as well. Theorem 3 isolates the
argument also used in Theorem 3.31 in [17]. Note that the underlying distances
for the Wasserstein distances are the metrics of the respective spaces.

Corollary 3 Let F,G be two distributions defined by the probabilities P and
Q, respectively, and FT , GT be their image distributions by T , respectively. If T
is a β−Hölder continuous mapping with constant Hβ, h ∈ Lq, the distributions
FT , GT with finite p−moments, then for all r = p · β (r ≥ 1), the distortion
premium with payment function T satisfies

|πh(FT )−πh(GT )| ≤ ||h||q ·WDp,d1(PT , QT ) ≤ ||h||q ·Hβ ·WDβ
r,d1

(P,Q). (15)

We proceed now to study sensitivity properties of the distortion premium
w.r.t. the distortion density.

4 Continuity of the premium w.r.t. the distortion density

Previously, we studied the mapping F 7→ πh(F ) for fixed h. In this section,
we consider and present properties of the mapping h 7→ πh(F ) for fixed F .
Different sensitivity properties w.r.t. the distortion parameters were studied
in Gourieroux and Liu 2006 [9].

Proposition 5 (Continuity of the distortion premium w.r.t. the dis-
tortion density h) Let F be a distribution and consider two different distor-
tion densities h1, h2. If F has finite p−moments and h1, h2 ∈ Lq, then

|πh1
(F )− πh2

(F )| ≤ ||F−1||p · ||h1 − h2||q,

where p and q are conjugates. Here the choices p = 1, q = ∞ and p = ∞,
q = 1 are included.
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Proof Use Hölder inequality and the result is direct.

We can conclude that, if h1 and h2 are close, then also the premium prices
are close. However, h is always identifiable by the following Proposition.

Proposition 6 If πh1
(F ) = πh2

(F ) for all distribution functions F (the value
∞ is not excluded), then

h1(v) = h2(v) a.s.

Proof Let Fa be the distribution which takes the value 0 with probability a
and the value 1 with probability 1 − a, for some a ∈ (0, 1), then its inverse
F−1a is the indicator function of the interval [a, 1]. Hence,

πh1
(Fa) =

ˆ
1[a,1](v)h1(v) dv =

ˆ 1

a

h1(v) dv = πh2
(Fa) =

ˆ 1

a

h2(v) dv.

Thus, the distortion distributions H1 and H2 are equal and therefore h1 = h2
almost surely.

Remark 6 Note the previous proposition is true if the family of distributions
where the premium prices coincide contains all the Bernoulli variables. Com-
pare also Theorem 2 in [29].

Remark 7 Another family with the property that the premium prices for this
family determine the distortion in a unique manner is the family of Power
distributions of the form Fγ(u) = uγ on [0, 1] and more general of the form
Fγ,β(u) = β−γuγ on [0, β]. The distortion premium prices for this family are

ˆ 1

0

β v1/γ h(v) dv,

and the uniqueness of h and β is obtained since

β = lim
γ→∞

ˆ 1

0

βv1/γ h(v) dv,

and the inversion formula for the Mellin transform (see Zwillinger 2002 [34]).

5 Estimating the distortion density from observations

The way how insurance companies calculate a premium is typically not re-
vealed to the customer. Notice that risk premia appear not only in the insur-
ance business, see the link of insurance premium prices and asset pricing in
Nguyen et al. 2012 [16]. Risk premia appears in other areas such as

– power future markets. A future contract fixes the price today for deliv-
ery of energy later. There is the risk of price changes between now and the
delivery period. Thus, such a contract has the character of an insurance
and the pricing principles apply, although the price is found in exchange
markets (e.g. electricity future markets).
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– exotic options. While standard options are priced through a replication
strategy argument, this argument does not apply for other types of options
and these options have the character of insurance contracts. Pricing of such
contracts is often done over the counter, but again the pricing principle is
not revealed to the counterparty.

– credit derivatives. Also these contracts carry the character of insurance
and can be priced according to insurance price principles.

In this section we assume that we know the distortion premium prices of
m contracts, which are all priced with the same distortion density h. For each

contract j, we also have a sample x
(j)
1 , . . . , x

(j)
n of size n drawn from the loss

distribution of this contract at our disposal. For simplicity we assume that n
is the same for all contracts, but this is not crucial.

The goal of this section is to show how the distortion density h can be
regained from the observations of the insurance prices, which would help us to
shed more light on the price formation of contract counterparties. Notice that
our aim is not to estimate the distortion premium prices from empirical data
as is done in Gourieroux and Liu 2006 [9] or Tsukahara 2013 [22].

A simulation example. As an example we consider m different loss dis-
tributions, all of Gamma type. From each distribution, we obtain a sample of
size n. For each sample, we calculate the AV@R and power distortion premium
prices. Based on the prices obtained and our samples, we aim to recover the
distortion density h. We denote the ordered sample from the j-th loss distri-

bution by x
(j)
[1] , . . . , x

(j)
[n] . The distortion premium, with distortion density h for

each sample j = 1, . . . ,m, is

π(j) =

n∑
i=1

x
(j)
[i]

ˆ i
n

i−1
n

h(v) dv =

n∑
i=1

x
(j)
[i]

(
H

(
i

n

)
−H

(
i− 1

n

))
. (16)

On the following, we develop (16) for the particular cases of AV@R and
power distortion premium prices for each sample j = 1, . . . ,m.

AV@R distortion premium. The price for hα defined on (7) is

π(j) =
1

n (1− α)
·

n∑
i=ia

x
(j)
[i] , (17)

where 1 < iα < n s.t. iα−1
n ≤ α < iα

n .

Power distortion premium. The price given by the power distortion
h(s) defined in (3) with 0 < s < 1 is

π(j) =

n∑
i=1

x
(j)
[i] ·

((
1− i− 1

n

)s
−
(

1− i

n

)s)
, (18)
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and the price given by h(s) defined in (5) with s ≥ 1 is

π(j) =

n∑
i=1

x
(j)
[i] ·

((
i

n

)s
−
(
i− 1

n

)s)
. (19)

The inverse problem consists on estimating the distortion density h from ob-
served prices. Recall that among the examples we presented of common dis-
tortion densities we had step functions and continuous functions, therefore we
will use step and spline functions in order to estimate estimate h. We do so
for the prices obtained in (17), (18) and (19).

5.1 Estimation of the distortion density with a step function

Distortion density as a step function. Let ĥ1l denote the step function
consisting of l equal-size steps, defined as

ĥ1l (v) =

l∑
k=1

λk · I[L· k−1
n ,L· kn )(v) =

l∑
k=1

λk · I[ k−1
l , kl )

(v), (20)

where L = n/l, λs ∈ R for k = 1, . . . , l and l denotes the dimension of the
step function space. We also impose

ˆ 1

0

ĥ1l (v) dv =

l∑
k=1

ˆ k
l

k−1
l

λk dv =
1

l
·

l∑
k=1

λk = 1, (21)

with 0 ≤ λ1 ≤ · · · ≤ λl. In this way, ĥ1l fulfils the density constraints as well
as the non-decreasing constraints.

Prices with the step function. For each sample j = 1, . . . ,m, the prices
with ĥ1l are

π̂(j) =

n∑
i=1

x
(j)
[i] ·
ˆ i

n

i−1
n

ĥ1l (v)dv =

l∑
k=1

L·k∑
i=k

x
(j)
[i] ·
ˆ i

n

i−1
n

λkdv =

l∑
k=1

λk
n
·
L·k∑
i=k

x
(j)
[i] , (22)

Estimation. In order to estimate ĥ1l we will minimize the squares of the
differences between the prices obtained by a distortion function h and the
premium obtained by ĥ1l in (22). We will test our results with the given prices
π(j) calculated in (17), (18) and (19). We solve,

min
λ

m∑
j=1

(π̂(j) − π(j))2

s.t.
1

l
·

l∑
i=1

λi = 1

0 ≤ λ1 ≤ · · · ≤ λl.

(P1)
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5.2 Estimation of the distortion density with a cubic monotone spline

B-splines construction. For our purposes we will define the splines on the
interval [0, 1]. Any B-spline is a linear combinations of the B-spline basis func-
tions. The B-spline basis functions have all the same degree, b and we choose
to define them at equally spaced knots tk = k/L, for k = 0, . . . , L, hence L
subintervals. The functions for this basis are denoted as Bk,b and constructed
following a recursion formula. The B-spline basis function of degree 0 is de-
noted and defined as

Bk,0(v) =

{
1 tk ≤ v ≤ tk+1

0 otherwise.

The B-spline basis functions of degree b, Bk,b are obtained as an interpolation
between Bk,b−1 and Bk+1,b−1, following the recursion formula

Bk,b(v) =
v − tk
tk+b − tk

Bk,b−1(v) +
tk+b+1 − v

tk+b+1 − tk+1
Bk+1,b−1(v).

In the recursion we need to define fake knots t−k = 0 and tL+k = 1 for
k = 1, . . . , b. In our case, we consider splines of degree b = 2. If we divide [0, 1]
in L equally sized intervals, the basis has L+ 2 functions

{B−2,2, B−1,2, B0,2, B1,2, . . . , BL−1,2}. (23)

Notice that all the elements of the basis can be obtained by translating the
B-spline basis function B0,2 defined on the first b + 2 = 4 knots. In order to
have a base of increasing monotone cubic splines we integrate the functions of
(23) and obtain a new base

{S−2, S−1, S0, . . . , SL−1}, (24)

where Sk(v) =
´ v
0
Bk,2(w) dw for all k = −2, . . . , L−1. We scale the functions

of (23) so the splines in (24) are distribution functions. Note that no linear
combination of (24) gives us a constant function, due to construction of (24).
Therefore, we need one element to our base, say SL(v) = c and hence

{S−2, S−1, S0, . . . , SL−1, SL}, (25)

is our final base with l = L+ 3 elements, where l denotes its dimension.

As an example we illustrate the base obtained for L = 5. Starting with
B0,2 defined on t0 = 0, t1 = 1/5, t2 = 2/5, t3 = 3/5, precisely

B0,2(v) =
53

2
·
(
v21[t0,t1) + (v(t2 − v) + (t3 − v)(v − t1))1[t1,t2) + (t3 − v)21[t2,t3)

)
We denote by S0 the distribution of B0,2 and obtain the rest of the mono-
tone cubic splines by translating S0. The basis of cubic monotone splines of
dimension l = 8, illustrated in Figure 1, is denoted as

{S−2, S−1, S0, . . . , S4, S5}, (26)

where Sk(v) = S0(v − k/5) for k = −2, . . . , 4 and S5(v) = c.
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Fig. 1: Cubic increasing monotonic base functions.

Any linear combination with positive scalars of the splines in (26) define a
spline which is an increasing and positive function.

Distortion density as a spline. Let ĥ2l (v) denote an increasing monotone
cubic density defined as a linear combination of l = L+ 3 splines in (25)

ĥ2l (v) =

L∑
k=−2

λk · Sk(v), (27)

where λk ≥ 0 for all k = −2, . . . , L. Notice that by setting the scalars to be
non-negative, ĥ2l is increasing. However, ĥ2l must integrate to 1 on [0, 1], hence

ˆ 1

0

ĥ2l (v)dv =

L∑
k=−2

λk ·
ˆ 1

0

Sk(v)dv =

L∑
k=−2

λk ·

(
n∑
i=1

Aik

)
=

L∑
k=−2

λk ·ak = 1,

where

Aik =

ˆ i
n

i−1
n

Sk(v) dv, ak =

n∑
i=1

Aik. (28)

Prices with the spline. For each sample j = 1, . . . ,m, the prices with
ĥ2l are

π̂(j) =

n∑
i=1

x
(j)
[i] ·
ˆ i

n

i−1
n

ĥ2l (v) dv =

n∑
i=1

x
(j)
[i] ·

(
L∑

k=−2

λk Aik

)
. (29)

Estimation. Given prices π(j) calculated as in (17), (18) or (19) and the
prices calculated in (29) for every sample j = 1, . . . ,m, we solve

min
λ

m∑
j=1

(π̂(j) − π(j))2

s.t.

L∑
k=−2

λk · ak = 1

λk ≥ 0, k = −2, . . . , L,

(P2)
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where ak is defined in (28).
The estimations obtained by solving (P1) and (P2) are presented below.

AV@R distortion premium. We consider particular cases of hα for
α = 0.9, 0.95. We estimate the distortion density for each of the cases, with
two different step functions, corresponding to l = 8, 10 steps, and two different
spline basis functions of dimensions l = 8, 13, respectively.

Step function. The estimated step distortions ĥl for l = 8, 10 are obtained
by solving (P1) and illustrated below.

Fig. 2: The true distortion density hα for α = 0.9, 0.95 and their respective
step functions estimators for l = 8 steps, and l = 10 steps.

Splines. The estimated spline distortions ĥ2l for l = 8, 13 are obtained by
solving (P2) and illustrated below.

Fig. 3: The true distortion density hα for α = 0.9, 0.95 and their respective
spline estimators for l = 8 and l = 13 spline base dimension.

Power distortion premium. For this case we considerh(s) for s = 0.8, 3.
We solve (P1) and (P2) with the same number of steps and number of spline
basis functions as before.

Step function. The estimated step distortions ĥ1l for l = 8, 10 are obtained
by solving (P1) and illustrated below.
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Fig. 4: The true distortion density h(s) for s = 0.8, 3 and their respective
estimated step distortions with l = 8, 10 steps.

Splines. The estimated spline distortions ĥ1l for l = 8, 13 are obtained by
solving (P2) and illustrated below.

Fig. 5: The true distortion density h(s) for s = 0.8, 3 and their respective
estimated spline distortions with l = 8, 13 spline base dimension.

The optimal values of the optimization problems for all the cases can be
seen in the following table.

AV@R α = 0.9 α = 0.95
Step l = 8 7.3248 107.1562
Step l = 10 0 58.4835
Spline l = 8 0.0322 13.0785
Spline l = 13 0.0154 0.0502

Power s = 0.8 s = 3
Step l = 8 0.0012 1.1466e-04
Step l = 10 0 5.1772e-05
Spline l = 8 3.6976e-04 0
Spline l = 13 1.3251e-04 0

Table 1: Optimal values of the problems (P1) and (P2) for the
AV@R−distortion and the power distortion.
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6 Ambiguity

In this section we combine the distortion premium with the ambiguity prin-
ciple. Such an approach allows us to incorporate model uncertainty into the
premium. Recall that, by setting the distortion density to h = 1, we would
price just with the ambiguity principle. As was mentioned in Section 1, dis-
tances can be used to define ambiguity sets. Here, closed Wasserstein balls will
serve as ambiguity sets. These sets will be centred at F , an initial distribution,
that we refer to as our baseline model.

Definition 2 (Robust distortion premium under Wasserstein balls
with d1) Let F be the baseline loss distribution, h a distortion density. The
robust distorted price of order r ≥ 1 is

πεh,r,d1(F ) = sup{πh(G) : G ∈ Br,d1(F, ε)}, (P-r)

where Br,d1(F, ε) = {G : WDr,d1(G,F ) ≤ ε}. We call the worst case distribu-
tion and denote it by F ∗ if F ∗ ∈ Br,d1(F, ε) and is such that

πεh,r,d1(F ) = πh(F ∗).

Remark 8 Notice that for r1 ≤ r2

WDr1,d1 ≤WDr2,d1 , (30)

thus Br1,d1 ⊇ Br2,d1 .

We can say more about the value and solution of (P-r) if we choose r = p.
We start with bounded distortion densities, i.e. for p = 1 and q =∞.

Proposition 7 (Characterization of the worst case distribution for
r ≥ p = 1) Let the baseline distribution F have its first moment finite.

(i) If h is unbounded, then (P-r) for r = 1 is unbounded.
(ii) If h is bounded with supv h(v) = ‖h‖∞, then (P-r) is bounded for all r ≥ 1.

If r = 1, the optimal value of (P-r) is

πεh,1,d1(F ) = πh(F ) + ε · ‖h‖∞.

We interpret the additional term ε · ‖h‖∞ as the ambiguity premium. For
the worst case distribution,
– if h(v) = ‖h‖∞ for v ≥ 1 − η and 0 < η ≤ 1, then the supremum is

attained at

F ∗η (x) =

F (x) x < F−1(1− η),
1− η F−1(1− η) ≤ x < F−1(1− η) + ε/η,
F (x− ε/η) x ≥ F−1(1− η) + ε/η.

– Otherwise, the supremum is not attained, but can be approximated by
the sequence F ∗1/n(x), ∀n ∈ N.
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Proof (i) Given that h is increasing and unbounded, the increasing sequence
Kn = h (1− 1/n), is such that limn→∞Kn = ∞. For all n ∈ N we define a
distribution Gn such that

G−1n (v) = F−1(v) + ε · n1[1−1/n,1].

Gn is on the boundary of B1,d1(F, ε) and

πh(Gn) = πh(F ) + ε · n
ˆ 1

1−1/n
h(v) dv ≥ πh(F ) + εKn.

Hence, (P-r) is unbounded for r = 1. (ii) It is sufficient to prove (P-r) is
bounded for r = 1 since B1,d1 ⊇ Br,d1 for all r ≥ 1 (see Remark 8). Any
admissible G for r = 1 can be written as G−1(v) = F−1(v) + G−11 (v), where

G1 is such that
´ 1
0
G−11 (v) dv ≤ ε. Since F has its first moment finite, the

following upper bound is finite:

πh(G) = πh(F ) +

ˆ 1

0

G−11 (v)h(v) dv ≤ πh(F ) + ε · ‖h‖∞. (31)

The distribution F ∗η (x) given in the Proposition has inverse

(F ∗η )−1(v) = F−1(v) +
ε

η
1[1−η,1].

Therefore, F ∗η is on the boundary of B1,d1(F, ε) and

πh(F ∗η ) =

ˆ 1

0

(
F−1(v) +

ε

η
1[1−η,1]

)
h(v) dv = πh(F ) +

ε

η

ˆ 1

1−η
h(v) dv.

If h(v) = ‖h‖∞ for v ≥ 1 − η, then F ∗η attains the upper bound in (31).
Otherwise, F ∗1/n approaches the maximum from below, since

(F ∗1/n)−1(v) = F−1(v) + ε · n1[1−1/n,1],

and

πh(F ∗1/n) = πh(F ) + ε · n
ˆ 1

1−1/n
h(v) dv ↑ πh(F ) + ε · ‖h‖∞.

Remark 9 The solution F ∗η in Proposition 7 is not unique. Any distribution

F̃η such that F̃−1η (v) = F−1(v)+ ε
η ·k(v)1[1−η,1], with 1

η ·k(v)1[1−η,1] a density

on [0, 1], attains the supremum.

As an example, we illustrate the worst case distribution for the AV@R pre-
mium.
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Fig. 6: The worst case distribution F ∗η for hα with α = 0.9 is obtained by
shifting F from xα, a length ε/η, where xα = F−1(α) and η = 1− α.

If h is unbounded we can characterize the solution of (P-r) as follows.

Proposition 8 (Characterization of the worst case distribution for
r ≥ p > 1) Let the baseline distribution F have finite p−moments. If h ∈ Lq,
then (P-r) is bounded for r ≥ p. If r = p, the optimal value of (P-r) is

πεh,p,d1(F ) = πh(F ) + ε · ‖h‖qq.

Also in this case, the term ε · ‖h‖qq is interpreted as ambiguity premium.
Furthermore, the worst case distribution F ∗ of (P-r) for r = p is such that

F ∗−1(v) = F−1(v) + ε ·
(
h(v)

||h||q

)q/p
.

Proof We prove (P-r) is bounded for r = p and by Remark 8 we have bound-
ness for all r ≥ p. Notice that, for all admissible G, if r = p, we have

ˆ 1

0

G−1(v)h(v) dv ≤
ˆ 1

0

F−1(v)h(v) dv +

ˆ 1

0

|G−1 − F−1|h(v) dv

≤ πh(F ) +

(ˆ 1

0

|G−1 − F−1|p dv
)1/p

||h||q

≤ πh(F ) + ε · ||h||q.

F ∗ is admissible since it is on the boundary of Bp,d1(F, ε)

WDp,d1(F, F ∗) =

(ˆ 1

0

εp ·
(
h(v)

||h||q

)q
dv

)1/p

= ε,

and F ∗ attains the upper bound

πh(F ∗)− πh(F ) =

ˆ 1

0

ε ·
(
h(v)

||h||q

)q/p
h(v) dv = ε ·

ˆ 1

0

h(v)q

||h||q−1q

dv = ε · ||h||q.

Under some conditions on h we can also prove unboundness of (P-r) for
r > p > 1 in the case where h is not in Lq, where q is the conjugate of p, the
finite moments of F .
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Proposition 9 (Unboundness for r > p > 1) Let the baseline distribution
F have finite p−moments and let h /∈ Lq, for p, q conjugates and r, s conju-

gates with r > 1. If there exists s1 < s such that
´ 1
0
h(v)s1 dv =∞ and h ∈ Lt,

for all t < s1, then (P-r) is unbounded for all r > p.

Proof Define ψη(v) = h(v)s1−11[1−η,1]. Since ψη ∈ Lr for r > 1 (note that
r(s1 − 1) < s1), there exists an 0 < η < 1 such that

ˆ 1

0

ψη(v)r dv =

ˆ 1

1−η
h(v)r(s1−1) dv < ε.

Thus, the distribution Gη such that G−1η (v) = F−1 + ψη(v) is in Br,d1(F, ε).
And its premium is unbounded

πh(Gη) = πh(F ) +

ˆ 1

0

ψη(v)h(v) dv = πh(F ) +

ˆ 1

1−η
h(v)s1 >∞.

Remark 10 If instead of the metric d1 we consider dp(x, y) = |xp − yp| as
underlying metric for the Wasserstein distance, we could define the ambiguity
principle

πεh,1,dp(F ) = sup{πh(G) : G ∈ B1,dp(F, ε)}, (P-dp)

where Br,dp(F, ε) = {G : WDr,dp(G,F ) ≤ ε}. It is easy to see that, if F has
p−moments the constraint of the balls make all of admissible distributions to
have also p−moments, therefore for Proposition 3, if h ∈ Lq , then (P-dp) is
bounded. Furthermore, continuity respect to this Wasserstein distance implies
our continuity results in Section 3.

7 Conclusions

After some introduction about general premium principles we propose gener-
alizations of the distortion premium. In addition, we have studied in detail
three functional relationships for the distortion premium

– the premium function F 7→ πh(F ), i.e. the properties of πh as a premium
principle,

– the direct function h 7→ πh(F ), i.e. the dependency on the distortion den-
sity,

– the inverse functions πh(F ) 7→ h.

The smoothness properties are important for robustness aspects, however
it is well known that a quite smooth direct function makes the inverse problem
difficult. We showed however that the inverse problem is identifiable and we
gave a simple quadratic optimization problem to estimate it from empirical
data. We successfully illustrated this in a simulation study, the application on
real data is left for further research. We also identified the ambiguity premium
for Wasserstein balls as ambiguity sets offering, in some cases, a specific for-
mulation of the worst case distribution. It turned out that the extra premium
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for ambiguity depends on the distortion function h and in a multiplicative way
on the ambiguity radius ε, but does not on the loss distribution F itself. Thus
it is the same for all contracts and can be calculated in a separate manner.
Finally, by using different distances as underlying metrics for the Wasserstein
ball, and hence, for the ambiguity set, we could find bounds for the robust
premium is always bounded.
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Appendix

Properties of the generalized distortion premium. We consider here
the generalized distortion premium

R(X) =

ˆ 1

0

ν(AV@Rα(X)) k(α) dα, (32)

where X ∈ L1, ν a convex, monotone Lipschitz function and k a non-negative

weight function on [0,1], which satisfies
´ 1
0

(1 − α)−1 k(α) dα < ∞. Clearly,
X 7→ R(X) is convex and monotone, but is positively homogeneous and/or
translation equivariant only if ν is a multiple of the identity. To see this,
consider the subdifferential of R at Y ∈ L1 is

ZY =

ˆ 1

0

ν′(AV@Rα(Y ))(1− α)−11lY >F−1
Y (α) k(α) dα ∈ L∞, (33)

where FY is the distribution function of Y . Notice that E(Y · ZY ) depends
only on the distribution function FY . After some calculation, one finds that

E(Y · ZY ) =

ˆ 1

0

ν′(AV@Rα(Y )) ·AV@Rα(Y ) k(α) dα.

http://EconPapers.repec.org/RePEc:eee:insuma:v:21:y:1997:i:2:p:173-183
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Finally, based on the subdifferential, one gets a dual representation

R(X) = sup
Y ∈L1

{E(X · ZY )

−
ˆ 1

0

[ν′(AV@Rα(Y ))AV@Rα(Y )− ν(AV@Rα(Y ))] k(α) dα},

where ZY is given by (33).
It is well known (see Pflug and Römisch 2007 [18]) that R is positively

homogeneous only if

ˆ 1

0

[ν′(AV@Rα(Y ))AV@Rα(Y )− ν(AV@Rα(Y ))] k(α) dα = 0,

when it is finite. This implies that ν(x) = γ ·x for some γ > 0. R is translation
equivariant, if in addition the expectation of the dual multiplier ZY is one,

which in happens only if
´ 1
0
γ k(α) dα = 1.

On different underlying metrics for the Wasserstein distance.
There is a whole family of distances on R, which are generalizations of d1.
Set for x, y ≥ 0, dp(x, y) = |xp− yp|. The Wasserstein distance of order 1 with
distance dp is

WD1,dp(F,G) =

ˆ 1

0

|(F−1(v))p − (G−1(v))p| dv.

Lemma 1 Notice that for p ≥ 1

WDp,d1(F,G) ≤ [WD1,dp(F,G)]1/p.

Proof By the subadditivity of x 7→ xp on R≥0 one has that |x−y|p ≤ |xp−yp|
and therefore

WDp,d1(F,G) =

[ˆ ∞
0

|F−1(v)−G−1(v)|p dv
]1/p

≤ [WD1,dp(F,G)]1/p.

Remark 11 This argument also shows that if F has finite p−moments and if
WD1,dp(F,G) < ∞ (and a fortiori if WDp,d1(F,G) < ∞), then also G has
finite p−moments. On the other hand, if both F and G have finite p−moments,
then

WD1,dp(F,G) ≤ p ·WDp,d1(F,G)(1 + ‖F−1‖p−1p + ‖G−1‖p−1p )

(see Lemma 2.19 in[17]). Therefore, imposing conditions on WD1,dp or on
WDp,d1 leads to quite similar results.
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