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An additional channel opens for photoionization of atom A by an electromagnetic field if it
traverses a gas of atoms B resonantly coupled to this field. We show that this channel, in which
A is ionized via resonant photoexcitation of B with subsequent energy transfer to A through two-
center electron correlations and which is very efficient when A and B constitute a bound system,
can strongly dominate the ionization of A also in collisions where the average distance between A
and B exceeds the typical size of a bound system by orders of magnitude.

PACS numbers: 34.10.+x 34.50.Fa 34.50.Rk 32.80.-t, 32.80.Hd,

INTRODUCTION

The breakup of bound microscopic systems by pho-
toabsorption is characterized by well defined energy and
momentum transfers, which often enables one to extract
precise information about the process and the system it-
self. Studies of photo-induced breakup reactions – such
as atomic photoionization (PI), molecular photodissoci-
ation, and nuclear photo-disintegration – have therefore
played a key role in our understanding of the structure
and dynamics of matter on a microscopic scale.

Electron correlations are omnipresent in the quantum
world, ranging from atoms and small molecules to or-
ganic macromolecules and solids. They drive autoioniza-
tion of atoms and ions and mutual electron transitions in
high-energy ion-atom collisions [1]-[2], can result in de-
excitation reactions in very slow atomic collisions [3] and
in ultracold quantum gases [4], govern energy transfer be-
tween chromophores [5] and lattice dynamics in polymers
[6], and are even responsible for magnetism and super-
conductivity [7]. Electron correlations coupling different
atoms, which occur in bound systems with more than one
atomic center, lead to inter-atomic Coulombic decay of
inner-shell vacancies [8] – an autoionization-type reaction
representing a kind of a two-center Auger decay – ob-
served in dimers and clusters [9–11] and water molecules
[12]. Inter-atomic electron correlations can greatly en-
hance recombination processes [13, 14] and lead to reso-
nances in electron scattering on two-atomic systems [14].

Particularly clean manifestations of electron correla-
tions are revealed in some PI processes, e.g. in single-
photon double ionization [15], in atomic autoionization
triggered by photoabsorption [16], in non-sequential dou-
ble ionization in strong laser fields [17] and resonant two-
center PI [18]. In the latter, ionization of a large-size
molecule occurs via resonant photoabsorption by one of
its atoms with subsequent transfer of excitation energy
via two-center electron correlations to another atom lead-

ing to its ionization. This two-center ionization channel
can be remarkably effective strongly dominating over the
usual direct single-center PI and it was experimentally
observed in helium-neon dimers using synchrotron radi-
ation [19].

In this communication we study a dynamic variant of
resonant two-center PI occurring in slow atomic collisions
(see fig. 1). The average distance R between colliding
atoms is (many) orders of magnitude larger than in a
bound system and the probability for the two-center PI
scales as R−6 [18]. Therefore, it might seem at first sight
that in collisions the two-center ionization channel be-
comes already completely negligible. However, it turns
out, quite unexpectedly, that it can dominate PI also in
collisions.

Atomic units are used throughout unless otherwise
states.

FIG. 1: Scheme of photoionization in atomic collisions.
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GENERAL CONSIDERATION

Two-center ionization

Let us consider a collision between two atoms, A and
B, which are are initially (at t → −∞) in their ground
states, supposing that the binding energy in the ground
state of A is smaller than an excitation energy of a dipole
allowed transition from the ground state in B.

We shall assume the collision to be slow enough such
that practically no excitation (or ionization) of the collid-
ing partners is possible if A and B enter the collision be-
ing in their ground states. This is the case if ωfia0/v � 1
(Massey adiabatic criterion, see e.g. [20]), where ωfi and
a0 are typical transition frequency and linear size, respec-
tively, of A and/or B and v is the collision velocity.

However, if atom B is coupled to an electromagnetic
(EM) field resonant to a dipole transition between its
ground and excited states, then the incident atom A can
be ionized by absorbing the excitation energy of B via
dynamic two-center electron correlations.

We shall consider only very distant collisions, in which
the interaction between A and B is quite weak and their
nuclei move practically undeflected, and assume that, al-
though the collision velocity is low, the relative motion
of the nuclei can still be regarded as classical. In a ref-
erence frame, where atom B is at rest and taken as the
origin, atom A moves along a classical straight-line tra-
jectory R(t) = b+vt, where b = (bx, by, 0) is the impact
parameter and v = (0, 0, v) the collision velocity. In this
frame the collision is described by the Schrödinger equa-
tion

i
∂Ψ(t)

∂t
= Ĥ(t)Ψ(t), (1)

where the total Hamiltonian is given by

Ĥ(t) = ĤA + ĤB + V̂ AB + ŴA + ŴB . (2)

Here, ĤA (ĤB) is the Hamiltonian of a free (non-
interacting) atom A (B), and

V̂ AB =
r · ξ
R3(t)

− 3
(R(t) · r) (R(t) · ξ)

R5(t)
(3)

is the interaction between A and B, where r (ξ) is the
coordinate of the electron of A (B) with respect to the
nucleus of A (B). Further, ŴA (ŴB) is the interaction
of A (B) with the external EM field which will be taken
as a classical linearly polarized field F0 cos(ωt − k · ξ)
(F = F0 cos(ωt − k · (R + r))), where F0 is the field
strength, ω the field frequency and k the wave vector
(F0 · k = 0). The interactions ŴA and ŴB read

ŴA =
A(r, t) · p̂r

c
+

A2(r, t)

2c2

ŴB =
A(ξ, t) · p̂ξ

c
+

A2(ξ, t)

2c2
, (4)

where A(r, t) = A0 sin(ωt − k · (R + r)) (A(ξ, t) =
A0 sin(ωt− k · ξ)) with A0 = −cF0/ω is the vector po-
tential of the EM field at the position of the electron of
atom A (B) and p̂r (p̂ξ) is the momentum operator for
the electron of atom A (B). Below these interactions are
taken in the dipole approximation: k · r = 0, k · ξ = 0.

We first include the interaction between atom B and
the EM field by replacing the ground state φ0 (with an
energy ε0) and the excited state φ1 (with an energy ε1) of
non-interacting atom B by its field-dressed bound states,

φ±(t) = α±0 (t)φ0 + α±1 (t)φ1, (5)

where α±0 (t) and α±1 (t) are time-dependent coefficients to
be determined. We assume that the field is switched on
adiabatically at t→ −∞ and impose the boundary con-
ditions φ+(t → −∞) = φ0 exp(−iε0t), φ−(t → −∞) =
φ1 exp(−iε1t).

Using the first order of perturbation theory in the in-
teraction ŴB we obtain

α+
0 (t) = exp(−iε0t)

α+
1 (t) =

WB
10(

∆ + iΓBrad/2
) exp(−i(ε0 + ω)t) (6)

and

α−0 (t) = − WB
01(

∆ + iΓBrad/2
) exp(−i(ε1 − ω)t)

α−1 (t) = exp(−iε1t), (7)

where ∆ = ε0 + ω − ε1 is the detuning, ΓBrad the width
of the excited state φ1 due to its spontaneous radiative
decay and WB

10 = 0.5 〈φ1|F0 · ξ |φ0〉 (WB
01 = (WB

10)∗).

If |WB
10| > ΓBrad (|WB

10| � ΓBrad) the first order pertur-
bation theory is no longer valid and instead we may use
the rotating wave-approximation [21] to get

α+
0 (t) =

√
Ω + |∆|

2Ω
exp(−i(ε+ − ω)t)

α+
1 (t) =

2WB
10√

2Ω(Ω + |∆|)
∆

|∆|
exp(−iε+t) (8)

and

α−0 (t) =

√
Ω− |∆|

2Ω
exp(−i(ε− − ω)t)

α−1 (t) = − 2WB
10√

2Ω(Ω− |∆|)
∆

|∆|
exp(−iε−t), (9)

where ε± = ε1+0.5(|∆|±Ω) ∆/|∆| are the quasi-energies
of the field-dressed states.

Using the states (5), the first order perturbation theory
with respect to the interaction V̂ AB , and keeping in mind
that at t → −∞ both atoms were in the ground states
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we obtain that the two-center ionization amplitudes for
atom A reads

a2c,±0→p = i

∫ +∞

−∞
dt exp(i(εp − ε0)t)〈ψpφ

±|V̂AB |ψ0φ
+〉(10)

where ψ0 with an energy ε0 is the ground state of atom A
and ψp with an energy εp describes an electron emitted
with an asymptotic momentum p (all the quantities refer
to the rest frame of A) [22].

Performing the integration over time in (10) we obtain

a2c,±0→p =
2iβ±

v
s±p

(
K1(s±p )

rp,0 · ξ 0,1 − zp,0 ξz0,1
b2

+s±p K0(s±p )
zp,0 ξz0,1

b2

−i q s±p K1(s±p )
(rp,0 · b) ξz0,1 + (b · ξ 0,1) zp,0

b3

−s±p K2(s±p )
(rp,0 · b) (b · ξ 0,1)

b4

)
. (11)

Here, s+p = |εp − ε0 − ω|b/v, s−p = |εp − ε0 − ω −
Ω ∆/|∆||b/v, q = (εp − ε0 − ω)/|εp − ε0 − ω|, rp,0 =
〈ψp|r|ψ0〉, zp,0 = 〈ψp|z|ψ0〉, ξ 0,1 = 〈φ0| ξ |φ1〉, ξz0,1 =
〈φ0|ξz|φ1〉 and Kn (n = 0, 1, 2) are the modified Bessel
functions [24]. In the first order perturbation theory in
the interaction ŴB β+ = WB

10/
(
∆ + iΓBrad/2

)
and β− ≈

0. In the rotating-wave approximation β+ = WB
10/Ω and

β− =
√

(Ω− |∆|)/(Ω + |∆)|WB
10/Ω.

The differential, dP 2c(b)
d3p , and total, P 2c(b), ionization

probabilities are given by

dP 2c(b)

d3p
=

dP 2c,+(b)

d3p
+
dP 2c,−(b)

d3p
(12)

with

dP 2c,±(b)

d3p
=

1

2π

∫ 2π

0

dϕb |a2c,±0→p|2, (13)

where the integration runs over the azimuthal angle ϕb

of the impact parameter b, and

P 2c(b) = P 2c,+(b) + P 2c,−(b), (14)

with

P 2c,±(b) =

∫
d3p

dP 2c,±(b)

d3p
. (15)

The differential cross section, which describes the spectra
of electrons emitted via the two-center channel in colli-
sions with the impact parameters b ≥ bmin � 1, read

dσ2c

d3p
=
dσ2c,+

d3p
+
dσ2c,−

d3p
, (16)

where

dσ2c,±

d3p
= 2π

∫ +∞

bmin

db b
dP 2c(b)

d3p
. (17)

In (17) the integration runs over the absolute value of
the impact parameter. In particular, after some rather
lengthy calculations we obtain that

dσ2c,±

d3p
=

1

2π
|β±|2 |ξ01|2

r2p,0
p2

(s±p )2 b2min
v4

×(
(s±p )2(K2

1 (s±p )−K2
0 (s±p )) cos2(ϑp)

+
(
s±p K1(s±p )K0(s±p )

−
(s±p )2

2
(K2

1 (s±p )−K2
0 (s±p ))

)
sin2(ϑp)

)
(18)

if the field is polarized along the z-direction (along the
collision velocity) and

dσ2c,±

d3p
=

1

2π
|β±|2 |ξ01|2

r2p,0
p2

(s±p )2 b2min
v4

×(
s±p K0(s±p )K1(s±p )

−1

2
(s±p )2(K2

1 (s±p )−K2
0 (s±p )) cos2(ϑp)

+
1

4
(s±p )2(K2

1 (s±p )−K2
0 (s±p )) sin2(ϑp)

+

(
1

2
K2

1 (s±p ) +
1

8
(s±p )2(K2

1 (s±p )−K2
0 (s±p ))

)
× sin2(ϑp)

)
(19)

if the field is polarized along the x-direction. In (18)-

(19) rp,0 =
∫ +∞
0

dr r3 up1(r)u0(r) is the radial matrix
element for transitions between the ground and contin-
uum states of atom A with u0 and up,1 being their ra-
dial parts (the ground state of atom A was assumed
to be an s-state and up,1 denotes the continuum radial
wave with the orbital quantum number l = 1). Further,

ξ01 = 1√
3

∫ +∞
0

dξ ξ3 d0(ξ) d1(ξ) where d0 and d1 are the

radial parts of the ground and excited states of atom B.
The modified Bessel functions Kn(x) (n = 0, 1, 2, ..)

diverge at x → 0 and decrease exponentially at x > 1
[24]. Therefore, in distant low-velocity collisions (b ≥
bmin � 1, v � 1) the main contribution to the total cross
section is given by a small interval of emission energies
δεp ∼ v/b � 1 centred at εp,r = ε0 + ω. If this interval
is much less than a typical energy range ∆εp in which
the quantity r2p,0/p substantially varies (∆εp ∼ 10 eV for
atoms and ∆εp ∼ 1 eV for negative ions), then r2p,0/p
remains within δεp roughly a constant, r2p,0/p ≈ r2pr,0/pr
where pr =

√
2(ε0 + ω), and we obtain that

P 2c,±(b) =
3π α

16
|β±|2 |ξ01|2

r2pr,0
pr

1

v b5
, (20)

P 2c(b) =
3π α

16

(
|β+|2 + |β−|2

)
|ξ01|2

r2pr,0
pr

1

v b5
(21)

and

σ2c,±(b) =
π2 α

8 v
|β±|2 |ξ01|2

r2pr,0
pr

1

b3min
, (22)
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σ2c(b) =
π2 α

8 v

(
|β+|2 + |β−|2

)
|ξ01|2

r2pr,0
pr

1

b3min
,(23)

where α = 1 (α = 3
2 ) if the field is polarized along the

z-axis (x- or y-axis).
Taking into account that atom A moves in a gas of

atoms B, the total ionization rate per unit of time via
the two-center channel is given by

K2c = σ2c nB v

=
π2 α

8

(
|β+|2 + |β−|2

)
|ξ01|2

r2pr,0
pr

nB
b3min

, (24)

where nB is the density of atoms B. The rate K2c, which
turned out to be velocity independent, is proportional to
nB and by increasing it the two-center ionization process
can be made more effective. However, there is a limita-
tion on the upper boundary of nB set by the condition
that the gas has to remain transparent for the EM field.
At the resonance the excitation cross section reaches a
large value: σexcit = 3π(c/ω)2 � π a20. The mean free
path λ for the EM field in the gas of atoms B can be
estimated according to λ = 1/(nBσexcit) and it has to be
larger than the size lB of the gas target, λ > lB , in order
that the target remains transparent for the EM field.

Single-center ionization

The amplitude for the direct (single-center) ionization
of atom A is given by

a1c0→p =
i

2

∫ +∞

−∞
dt exp(i(εp − ε0 − ω)t)〈ψpφ

+|F0 · r|ψ0φ
+〉

= πi 〈ψp|F0 · r|ψ0〉δ (εp − ε0 − ω) . (25)

This channel is described by the differential, dK1c/d3p,
and total, K1c, decay rates per unit of time which read

dK1c

d3p
=

1

16π

r2p,0
p2

f(ϑp, ϕp)F 2
0 δ(εp − ε0 − ω) (26)

and

K1c =
1

12

r2pr,0
pr

F 2
0 , (27)

where the value pr =
√

2 (ε0 + ω) follows from the energy
conservation expressed by the delta-function in (26). The
angular distribution is given by the function f(ϑp, ϕp)
depended on the polar, ϑp, and azimuthal, ϕp, emission
angles of the electron. For instance, f = cos2 ϑp if F0 =
(0, 0, F0) and f = sin2 ϑp cos2 ϕp if F0 = (F0, 0, 0).

Two-center versus single-center ionization

The competition between the two-center and single-
center ionizations is natural to characterize by the ratio

η = K2c/K1c. Using (27) and (24) we obtain

η =
K2c

K1c

=
3π2 α

2

(
|β+|2 + |β−|2

)
|ξ01|2

nB
b3min

. (28)

Inserting into (28) expressions for β±, derived within the
first order in the interaction ŴB , results in

η =
3π2 α

8

nB
b3min

|ξ01|4

∆2 + (ΓBrad)
2/4

. (29)

Since ΓBrad = 4
3
ω3

c3 |ξ01|
2, at the resonance (∆ = 0) the

ratio becomes

η =
27π2 α

32

nB
b3min

( c
ω

)6
. (30)

In stronger fields, where the rotating-wave approxima-
tion should be used instead of the first-order perturba-
tion theory, the ratio becomes smaller and decreases with
increasing the field.

RESULTS AND DISCUSSION

Let us now apply formula (30) to the following collision
systems:

i) H(1s) (atom A, |ε0| ≈ 13.6 eV) – He(1s2) (atom B);
ii) Li(1s2 2s) (atom A, |ε0| ≈ 5.39 eV) – H(1s) (atom B);
iii) K(4s) (atom A, |ε0| ≈ 4.3 eV) – Si (3p2) (atom B);
iv) Li(2s) (atom A, |ε0| ≈ 5.6 eV) – Mg(3s) (atom B);
v) H−(1s 1s’) (’atom’ A, |ε0| ≈ 0.7 eV) – Li(2s) (atom
B);
vi) H−(1s 1s’) (’atom’ A, |ε0| ≈ 0.7 eV) – Rb(5s) (atom
B).

i. H(1s) – He(1s2): Considering that the field is in
resonance with the 1s2 - 1s2p transition in helium (ω ≈ 21
eV) we obtain that at bmin = 10 a.u. η ≥ 1 provided
nB ≥ 2.6 × 1013 cm−3. However, at nB = 6.76 × 1013

cm−3 the mean free path λ of the radiation in a gas of
helium atoms would be merely 4.6× 10−3 cm. Thus, for
this collision system a substantial enhancement of photo
ionization (by factor of 2) from distant collisions due to
the two-center channel would be possible only for very
small-size helium gas targets.

ii. Li(2s) – H(1s): Assuming that the field is resonant
to the 1s - 2p transition in hydrogen (ω ≈ 10 eV) η ≥ 1
with bmin = 10 a.u. is reached if nB ≥ 3 × 1011 cm−3.
At the density nB = 3 × 1011 cm−3 λ ≈ 0.09 cm which
means that the size of the target should not exceed 1
mm in order that the two-center correlations in distant
collisions yield a substantial contribution to PI.

iii. K(4s) – Si (3p2): Considering that the field is in
resonance with the 3p - 4s transition in silicon (ω ≈ 4.9
eV) we obtain that with bmin = 10 a.u. η ≥ 1 if
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nB ≥ 4.2× 109 cm−3. At nB = 4.2× 109 cm−3 the mean
free path λ of the radiation in a gas of silicon atoms is
about 1.6 cm. Thus, for this collision system a substan-
tial enhancement of PI from distant collisions due to the
two-center channel would be possible for gas targets not
exceeding ∼ 2 cm.

iv. Li(2s) – Mg(3s): Assuming that the field is reso-
nant to the 3s - 4p transition in magnesium (ω ≈ 6.1
eV) we get that η ≥ 1 at bmin = 10 a.u. provided
nB ≥ 1.56× 1010 cm−3. At the density nB = 1.56× 1010

cm−3 λ ≈ 0.65 cm which means that the size of the target
should not exceed 5-7 mm in order that the two-center
contribution from distant collisions doubles the ioniza-
tion rate.

v. H−(1s 1s’) – Li(2s): Considering that the field is
resonant to the 2s-2p transition in lithium (ω ≈ 1.85 eV)
we obtain that η ≥ 1 at bmin = 10 a.u. is reached at
nB ≥ 1.2× 107 cm−3. At nB = 1.2× 107 cm−3 the mean
free path of the radiation in lithium is already rather
large, λ ≈ 77 cm. Since the typical size of targets in
experiments with lasers is normally of the order of 1 mm,
one can increase the target density by about 800 times
which will reduce its size of transparency to the above
1 mm. Then η ' 800 with bmin = 10 a.u. and even
with bmin as large as 50 a.u. one still obtains η ∼ 6-7.
Thus, for H− – Li system already very distant collisions
may result in a strong enhancement of photo detachment
from H− caused by the two-center ionization channel.

vi. H−(1s 1s’) – Rb(5s): Considering that the field is
resonant to the 5s1/2-5p3/2 transition in rubidium (ω ≈
1.59 eV) we obtain that at bmin = 10 a.u. η ≥ 1 provided
nB ≥ 4.88×106 cm−3. At nB = 4.88×106 cm−3 the mean
free path of the radiation in rubidium is λ ≈ 140 cm. For
rubidium targets with the size lB ≈ 1 mm the trans-

parency condition (λ
<∼ lB cm) allows one to increase the

target density up to nB ≈ 1.4×103×4.88×106 ≈ 6.8×109

cm−3 resulting in η ≈ 1.4× 103 with bmin = 10 a.u. and
even with bmin = 50 a.u. the ratio is still quite large,
η ≈ 11. Thus, for H− – Rb collision system the effect is
even larger than for H− – Li one.

Unlike the rates K1c and K2c their ratio η does not
depend on the transition matrix element of A. There-
fore, we can apply (29)-(30) also if ’atom’ A is in fact
a molecule. In particular, for photo dissociation of I2
(|ε0| ≈ 1.57 eV) in collisions with Li (ω ≈ 1.85 eV) or
Rb (ω ≈ 1.59 eV we obtain the same enhancements as
for the H−– Li and H−– Rb systems.

Since, according to our estimates, the inclusion of the
contribution from collisions with b < bmin (not taken into
account here) strongly increases η, the effectiveness of the
two-center channel seems to be really amazing. Indeed,
let us put it into a perspective: in a gas of atoms B with
nB ∼ 1010 cm−3 the average distance Rav between the

atoms A and B (Rav ∼ 1/n
1/3
B ) is about 2.5×10−4 cm ∼

104-105 a.u. and nevertheless the two-center mechanism

may still strongly dominate ionization of A. One of the
reason for such a high effectiveness of this channel is that
the effective mean distance Reff between the atoms in
the collision, where the energy exchange between them

is most likely to occur, is given by Reff ∼
√
bmin/n

1/3
B

and turns out to be much smaller than Rav.

CONCLUSION

In conclusion, photoionization of atom A in an exter-
nal electromagnetic field can strongly increase if it moves
with a low velocity in a gas of atoms B which are in a
dipole resonance with this field. This enhancement is
caused by the transmission – via the dynamic two-center
electron correlations – of photo-excitation energy from
atom B, which acts as a very efficient antenna absorbing
quanta from the field, to atom A resulting in ionization
of the latter.

Two-center correlations are already known as an ex-
tremely efficient mechanism of ’communication’ between
parts of a bound system whose size R is typically of the
order of few or several Bohr radii. At R � 1 most of
the two-center processes show the R−6 scaling and the
largest distances probed so far (R . 102 a.u.) were in
helium dimers [11].

In collisions the average distance between the atoms
reaches tens of thousands of the Bohr radii. Nevertheless,
the two-center correlations turn out to be quite effective
also in collisions. This, in particular, suggests that a
large variety of inter-atomic phenomena extensively in-
vestigated recently in bound systems, can play a role in
collisions as well.

It is planned that a Rb gas target with up to 20% atoms
transferred from the ground state (5 2S1/2 to the excited
5 2P3/2-state by a weak resonant (ω ≈ 1.5 eV) continuous
laser field, which functions at the Institute of Modern
Physics, will be combined in the near future with a beam
of ∼ 100 eV H− in order to perform an experiment on
the two-center PI in slow atomic collisions.
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