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i Abstract

O\l For the observer at infinity, a Schwarzschild black hole serves as an attractive opaque disk with a radius of 3v/3M that
o will produce the diffraction pattern of gravitational waves (GWs). In this study, we demonstrate that a bright spot,
N which is a diffraction effect analogous to the Poisson—Arago spot in optics, will appear when an ingoing (quasi-)plane
= GW is diffracted by a Schwarzschild black hole. Here, we propose the diffraction effect of the GWs described by the
@) exact diffraction solution of the GWs using the Heun function. For the first time, the Fresnel half-wave zone method
Z is proposed to calculate the angular part of the GW scattering stripes for the observer at infinity. The prospect of
O) observing the diffraction bright spot is discussed with an eikonal approximation. For normal incidence (quasi)-plane

waves with 100 Hz (0.1 Hz) frequency diffracted by the central black hole of the Milky Way, the time delay between the
'G'Earth bathed in a bright spot and the minimum of the first dark stripe is 3.86 (3860) days. We will witness the second
OO bright fringe (40% amplitude of the central bright spot) after 6.2 (6200) days. This new diffraction pattern involving
! the early phase of inspirals and pulsars as continuous gravitational wave sources is a potential scientific target for future

O)space-and ground-based gravitational wave detectors, respectively.

1. Introduction

In 1916, Albert Einstein made the great prediction of
gravitational waves (GWs) [1]. Since 2015, these space-
time ripples have been detected by LIGO and in conjunc-
7 tion with Virgo Eﬂ] Diffraction and interference are
the nature of waves, as shown by pinhole diffraction and
double-slit interference. The wave effects of GWs have
been studied in the Newton-Coulomb potential limit in
. the context of strong lens ﬂg@], where a gravitational po-
tential plays the role of an optical convex lens. Although
no argument can be found on the wave nature of GWs
confirmed by detections, the diffraction of GWs, being an
important property of these waves, will be extremely in-
teresting to observe experimentally.

In history, the Poisson—Arago spot appearing in the
shadow of an opaque disk is an “experimentum crucis” to
display the wave nature of light by showing the diffraction
pattern. We will study the diffraction effects of GWs in a
black hole background using the full theory of relativity,
and show an effect similar to that of the Poisson—Arago
spot.

The wave propagation in a weak gravitational potential
is a general physical process studied using the optical ap-
proach [11] with the Kirchhoff integral method (e.g., in
terms of lens [, d]). Please see the review in [12]. In the
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geometric limit, an Einstein ring, whose size is indepen-
dent of the light wavelength, exists for a weak (Newtonian)
gravitational potential when the source lines up exactly in
front of a bright background lens [12J]. The signal (photon
or graviton) on the Einstein ring will be simultaneously de-
tected by detectors. Given the poor sky localization ability
of GW detectors and the typical Einstein ring (g ~ 1”),
we argue that the Einstein ring of GWs, if it exists, is
unlikely to be observed in the near future.

The wave propagating in a strong field is investi-
gated using the perturbation approach associated with the
Regge—Wheeler equation |13] as a wave-scattering prob-
lem m% Please see details in the review ﬂﬁ] and the
text book [26]). An intuitive geometric correspondence can
be found between the high-frequency quasinormal modes

QNMs) of Schwarzschild black holes and null geodesics
iﬂ |. Please see a review in [3(]. The perturbation ap-
proach is usually divergent for an almost on-axis scattering
angle ~ 0 and 7 and needs more approximate techniques
(e.g., series reduction technique [18, [19, [31] ) for some
physical application and gravitational rainbow , 133].
As the exact solution of the Regge-Wheeler equation, the
Heun function was recently used to study the QNMs out-
side the horizon M] It is interesting to use the Heun
function to study the on-axis scattering in a strong field
(e.g., diffraction bright spot of GWs). To the best of our
knowledge, no literature has yet discussed the diffraction
bright spot of GWs in terms of the Heun function.
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In  this  study, we  demonstrate that a
Schwarzschild black hole does similar work for GWs as
an opaque disk in the Poisson—Arago effects in optics
to estimate the measurement effect of the diffraction
pattern of GWs, but with an attractive potential. The
environmental effects on the GW signal are insignificant
within a broad class of scenarios ﬂﬁ] We ignore the lens
environment and only use the Schwarzschild black hole
potential in the wave equation (see Eq. (). We also adopt
an assumption that no interactions exist between waves
with different polarizations, such that every graviton
propagates independently. Under such an assumption,
we use a scalar to replace a full tensor to describe the
GW propagation. For the tensor nurture of the GWs in
the optical approach, please see a recent work @] on the
rotation of the polarization plane in a lensing system.
We found that for sufficiently large distance r and small
angle approximation wrf? << 1, the gravitational wave
amplitude becomes

| M
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where w is the gravitational wave frequency; 6 is the for-
ward scattering angle; = = 76 is the radius coordinate in
the polar chart at the image plane; Jj is the Bessel function
of the first kind (see more details in Eq. (24])). Mathemat-
ically, the Poisson—Arago point of light in the flat space
has a ~ 1+ J; form. Here, we obtain a form proportional
to Jy for GWs. The gravitational potential plays a key
role in this change, which attracts the gravity rays and
leads to a more notable secondary maximum. Note that
the bright spot, dark stripes, and bright fringes indicated
in Eq. () should be treated as a pattern in a space screen
and cannot be observed by a single gravitational wave de-
tector at one time. Contrarily, the Einstein ring of lights
is simultaneously observed by one optical telescope with
sufficient angular resolution.

Although the observational angle is quite small, these
spacetime stripes are a waveform -independent phe-
nomenon and could be a novel scientific target for future
ground- and space-based gravitational wave detectors.

(1)

2. Diffraction pattern of GWs by an opaque disk

Without a back-reaction, the [-th partial wave of the
gravitational wave Ry, which has an angular momentum
R/ (1 + 1)l relative to the scattering center, propagates on
a Schwarzschild black hole background and is described
by the wave equation as followsﬂﬁ]
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with effective potential Vi,

oM 2M (1 — s%)
Vie=(1-—
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where, s is the spin particle for the graviton s = 2. For

the universality of this method, we introduce mass u for

the graviton. ¢ is the Schwarzschild time coordinate. =z

denotes the tortoise coordinate obtained by a coordinate

transformation using the Schwarzschild radius coordinate
r and the Schwarzschild mass M,

—r+2MIn(— — 1 1

v =7+ 2M (5~ 1), (4)

For a wave at a given frequency w, Rls = Rise™ ™t the

radius equation is presented as follows:

2

(_8_ —w? + Vi) Rys(r) = 0.

02 (5)

Eq. (@) is a confluent Heun equation that has 24 indepen-
dent local solutions, comprising a group that is isomorphic
to the Coxeter group Ds.

The scattering boundary conditions in this case require

|Rls(0)| < o0, |Rls(2M)| < o0, Rls(r - OO) = Rlsoo(r()’)
6
where, R;5°°(r) is a function of r with a finite norm. The
boundary condition at r = 0 is required to evade the Lan-
dau fall. The equation has a singularity at » = 2M; thus,
Rys(2M) must not diverge at this singularity. The third
boundary condition at infinity is a general scattering state
requirement.
The regular solution of the confluent Heun equation
(Eq. (B)) that satisfies the three boundary conditions si-
multaneously reads [317]

Ris(r) = K(r—2M)% 3 Heunc'® (p, —b+a+1,2a+1, 1, d,

(7)
where,
a = 2M(1 - s*)wi, (8)
M 2
b= —(omye? 2 ——E (9)
/02 — 12
p = iMyw? -2, (10)
c = I(1+1)—8(w?—p*)M? —6u>M?, (11)
d = c+2p(—-2b+2a+1)—ala+1). (12)
K is a normalization constant. Heunc(® is the angular

generalized spheroidal function of the c-type, which is a
special solution of the Heun equation (Eq. (])).

Note that, this solution is a superposition of ingoing
waves and outgoing waves, which in principle could be
used to study the interior of Schwarzschild black holes
(see also discussion in [34]). Roughly speaking, it corre-
sponds sin(r)/r in the short-range interaction scattering
problems.

The scattering stripes can be derived as follows HE]
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where, P;(cosf) is the normal Legendre polynomials. At
the eikonal limit, the GWs can be treated as gravity rays
(analogous to light rays). Rays with an impact parameter
less than 3v/3M fall into the Schwarzschild black hole @]
Physically, they no longer make any contribution to the
waves at infinity. At this point, a black hole serves as an
opaque disk in the Poisson—Arago effects in optics. Note
that, a black hole is almost a unique opaque disk that can
shield GWs.

Owing to the oscillatory behavior of at r — oo, the
summation in Eq. ([I3)) is generally divergent when [ goes
infinity and cannot deal with the bright spot effects of the
GW unless arbitrarily with a cutoff at a larger I. We will
introduce here a classical technique, namely, the Fresnel
half-wave zone method, to avoid this difficulty in the next
section. To the best of our knowledge, this approach is
new to the gravitational scattering theory.

Rys

3. Bright gravitational wave spot

In principle, the gravitational wave amplitude at any
spacetime point can be calculated using Eq. (I3). How-
ever, the Rj; formula in Eq. (@) is complicated; thus, it
is inconvenient to apply in astrophysics. We now discuss
its asymptotic behavior at a large distance, which is use-
ful for detection. First, we must confirm that it describes
a (quasi)plane ingoing wave at r — oco. We create the
following eikonal approximation,

My/w? —p2 >>1, (14)

in which the angular quantum number [-th of a graviton
can reach infinity satisfying [ >> 1. Therefore, the effects
of the wave spin s are negligible; that is, the scalar, vector,
and tensor waves approximately obey the same equations.

3.1. Radius part: Eikonal approrimation
At large distance and eikonal limit, R;s becomes ﬂﬁ]

1
Rls(r—>oo)~E X

2 lm

k M

where, §; is the phase shift of the [-th partial wave, and we
define k? = w? — p2. We obtain the following phase shift
at the eikonal limit

8 = arg[[(I 4+ 1 — 2ikM)] + 2kM In 2k M,

exp (kr +2kM In % +

(16)
by using the zero-order WKB approximation, where I" is
the gamma function.

At the massless limit g — 0, the scattering function Rjs
goes to

1
Ris(r = 00, 1 —0) ~ — x
w

l
exp (wr + 2wM In2wr + arg [I'(l + 1 — 2iwM)] — ?ﬂ)

We clearly return to the familiar result of the New-
ton—Coulomb potential scattering [26].

My 3) , (15)

3.2. Angular part: Fresnel half-wave zone method

According to the Fresnel half-wave zone method, the
first 1/4 zone presents full information of the diffracted
waves, and the residues cancel each other out. We call
such a 1/4 zone the effective region. This argument is also
applicable to the gravity rays and any ray satisfying the
superposition principle. For the angular momentum J of
a graviton with an angular quantum number [,

J?2 =11+ 1)h% (18)
By contrast, a graviton with an impact parameter p has
angular momentum,

J = kph. (19)

For the Fresnel-type diffraction, we have

Pg - P% = AL, (20)
where, A is the wavelength of the scattering wave; p; and
p2 are the radii of the interior and exterior edges of the
half-wave zone, respectively; and L is the harmonic mean
of the distances between the scattering center and the
source and observation point. The wave that can reach
the observation point has a minimal Iy,

lmin(lmin + 1) = ka% (21)

For the Schwarzschild case, p; = 3vV3M. lmax reaches the
maximum value at the exterior edge of the effective zone.

Vo Umax + 1) = L

Note that this method does not work for strong GWs, for
which the back-reaction effect is so strong that the super-
position principle fails. We use the asymptotic formula of
the Legendre function for a small angle diffraction:

(22)

Py(cosb) = (Si

I+ 0. (2)

3.3. Small forward scattering amplitude

In summary, one will detect the diffraction pattern am-
plitude of the GWs (Eq. ([I3)) under the condition of a
sufficiently large r and a small forward scattering angle
approximation that becomes

) 2 M
B = e~ Whewr(=T) e™MYT (1 — 20 M) Jg (2, | — E) :
T

(24)
where, = = rf is the radius coordinate in the polar chart
at the image plane. Compared with Eq. (I3]), the above
equation is greatly simplified. In the language of wave

. (1qptics, considering paraxial rays as for the Poisson—Arago

effect is sufficient.
This result seems similar to that of the scalar scattering
image @] This is not surprising because only gravitons



with a large [ have effects on the image. For such a gravi-
ton, the coupling result of the orbital and spin angular
momenta is effectively equal to that of the orbital angular
momentum. At the eikonal limit, massless particles with
different spins obey the same equation of motion. A tech-
nical detail in our demonstration is that we do not need to
replace (I + 1) with (I + 1)? by hand in Eq. ([I3) to avoid
divergence.

4. Implication and discussion

At the eikonal limit, the diffraction wave amplitude at
a large angle is much lower than that of the forward scat-
tering waves. Therefore, only the diffraction fringes of the
GWs from a source located within a scatter angle (i.e., an
angle between the propagate and scatterer (opaque disk)
directions of the GWs) could be detected. The starting
point of the angle estimation here is different from that
of the single-slit diffraction of GWs if it can be realized.
In this example, the small angle approximation (Eq. (24]))
is applied. When one needs the full information of the
diffraction waves in the total space, one has to return to
the full form of the wave (Eq. (I3)). If an error of 1% or
5% of Eq. [24)) compared with the exact form (Eq. (I3])) is
permitted, the cone’s apex angle is 7.1% and 13.9°, corre-
sponding to 1.5% or 3% of all-sky, which means that only
a few parts of the gravitational wave source population
could observe the diffraction bright spot of GWs.

We use the eikonal limit; thus, the upper bound of the
wavelength in our calculation is approximately the radius
of the “opaque disk,” which is 6 x 10'"m for the super-
massive black hole in our galaxy and corresponds to a fre-
quency of 0.005 Hz. Therefore, planned space-based detec-
tors, such as LISA [, Taiji [3d], and Tiangin [40], could ob-
serve this type of event. The wavelength in our calculation
has no theoretical lower limit. The realistic lower bound
only depends on sensitivity gravitational wave detectors.
It is ~ a few hundred Hz for ground-based interferometer
detectors.

The time delay between observing the bright spot and
the dark stripe depends on the black hole mass (M), the
relative position of the system (r and 6), and wavelength
(k), as indicated in Eq. (24). At first sight, one may think
that the first term, which is the exponential term e=¢"/4,
will significantly affect the wave function strength. How-
ever, we will show that its impact is extremely weak and
can be safely omitted in realistic cases. The principal prop-
erty of the fringe is determined by the sector of the Bessel
function Jy.

We study here the most promising event, that is, a wave
is diffracted by the central black hole of the Milky Way.
Assume that the three points, namely, the source of the
gravitational wave, the central black hole of the Galaxy,
and the Earth, are collinear. We only live on the gravity
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Figure 1: The dark fringe appears at § = 3.485 x 10710, The sec-
ondary bright fringe appears at 6 = 5.553 x 10~10.
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Figure 2: When 0 < 1079, the exponential term is equal to 1 and
has no effect on the fringe.

diffraction axis and are now in a central bright spot of
a gravitational wave. The numerical factor setting scales
correspond to M = 4 x 10Mg, r = 2.3 x 10?°m, and
¢ =3 x10%m/s, and the velocity of the Sun in the Galaxy
is 240 km/s. For a 100 Hz-frequency wave, k = 27 x 100/c.
Using the properties of the Bessel function (Fig. [), the
first dark fringe appears at § = 3.485 x 10719, whereas the
next bright fringe appears at § = 5.553 x 1070, Thus,
the Earth floating from the central bright spot to the first
dark fringe needs a trip that is A; = 7 = 2.3 x 10%° x
3.485x 10710 = 8 x 101%n. Substituting the velocity of the
Earth in the Milky Way (i.e., 240 km/s), we obtain the
time needed to reach the first dark fringe as 8 x 1019/(24 x
3600 x 240 x 10%)=3.86 days. We will reach the next bright
fringe, whose luminosity is 40% of the central bright spot,
at 6.2 days. Fig. [2 clearly showshows the effects of the
exponential term to the fringes. For the 0.1 Hz GW, we
will witness the minimum of the first dark stripe in 3860
days and experience the secondary maximum in 6200 days.

5. Conclusion and discussion

The proposed diffraction bright spot of the GWs is a
waveform-independent phenomenon because we use the
time-independent scattering theory. Omne only needs to



search for the amplitude pattern according to Eq. (24]).
To observe the bright spot, dark stripes, and bright fringes
with planned gravitational wave detectors, we need a rel-
atively stationary source, for example, a compact binary
system in the early phase of inspiral for space-based detec-
tors, pulsars as continuous gravitational wave sources for
ground-based detectors [41], or binary-extreme-mass-ratio
inspirals for both space- and ground-based detectors HE]
One must consider time-dependent scattering theories to
study the waves from fast-changing sources (e.g., binary
stars that are about to merge or are merging). (Supermas-
sive) black holes are usually hosted in galaxies with deep
potential. The lensing effect by a black hole host galaxy
with the geometric optic limit (e.g., Einstein ring of GWs)
can also be important for the detection data analysis. In
future studies, we hope to investigate such a geometric op-
tic limit effect by a black hole host galaxy and wave effect
by a black hole.
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