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Asymptotic expansions of complete Kihler-Einstein metrics with
finite volume on quasi-projective manifolds

Xumin Jiang" and Yalong Shi**

Abstract

We give an elementary proof to the asymptotic expansion formula of Rochon-Zhang for
the unique complete Kéhler-Einstein metric of Cheng-Yau, Kobayashi, Tian-Yau and Bando
on quasi-projective manifolds. The main tools are the solution formula for second order
ODE’s with constant coefficients and spectral theory for Laplacian operator on a closed man-
ifold.
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1 Introduction

Complete non-compact Kéhler-Einstein metrics play an important role in several complex
variables and geometry as observed by C. Fefferman [6]] , S. Cheng and S.T.Yau [3] in
the 1970’s. The existence of such metrics in strictly pseudoconvex domains with smooth
boundary in C" is proved by Cheng-Yau [4] extending Yau’s solution of Calabi’s conjec-
ture [24]. In [4], boundary regularity for the solution is also discussed. Later, a more
precise boundary regularity theorem and an asymptotic expansion of the solution near
boundary are obtained by J. Lee and R. Melrose in 1982 [[I4]. Later, the coefficients of
Lee-Melrose’s expansion have been calculated by J. Lee [[13]] and R. Graham [7]. See also
the recent work of Q. Han and X. Jiang [9] for another proof for the asymptotic expansion
formula.
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If the manifold is not an Euclidean domain, up to now, all the known examples of
complete Kihler-Einstein metrics with negative Einstein constants are quasi-projective.
Let X be a smooth projective manifold of complex dimension n, D ¢ X a smooth hyper-
surface such that Ky + D is ample. In the 1990’s, in a series of works Cheng-Yau [3],
R. Kobayashi [[12]], Tian-Yau [21]], S. Bando [2] proved that the quasi-projective manifold
X := X \ D admits a unique complete Kihler-Einstein metric wg with finite volume and
Ric(wgg) = —wkg. In fact, their results also allows D to be a simple normal crossing di-
visor, and K5 + D is only big and nef, and “ample modulo D ”. For the Kéhler-Ricci flow
approach to the existence of such metrics, please look at the work of J. Lott and Z. Zhang
[13].

The asymptotic expansion of these quasi-projective Kihler-Einstein metrics is first
studied by G. Schumacher in 1998. By adjunction formula K = (K3 + D)|p > 0, so
Yau’s theorem guarantees the existence of a unique Kéhler-Einstein metric wp satisfy-
ing Ric(wp) = —wp. Schumacher proved in that the restriction of wgy to directions
parallel to D will converges to wp. Later, a systematical study is done by D. Wu in his
thesis [23]] in 2006 by analyzing the mapping property of the linearized complex Monge-
Ampere operator on weighted Cheng-Yau Holder rings. Wu obtained an asymptotic ex-
pansion of the solution u to the complex Monge-Ampie equation in terms of powers of
o = (log||s||*)™!, where s is the defining section of D. However, as observed by F. Rochon
and Z. Zhang in 2012 [[16], o~ log o-term should appear in general, depending on the nor-
mal bundle of D. In Rochon-Zhang [16]], a more precise asymptotic expansion is obtained
using the so called “b-calculus”, developed by Melrose and his students.

For asymptotic expansions of other types of canonical metrics, for example complete
Calabi-Yau metrics or conic Kihler-Einstein metrics, we refer the reader to the works of
B. Santoro [[17]], T. Jeffres, R. Mazzeo and Y. Rubinstein [[10]], H. Yin and K. Zheng [23]].

In this paper, we will give another proof of Rochon-Zhang’s theorem by elementary
tools, namely, besides rescaled interior Schauder estimates, the key tools are spectral de-
composition for Laplacian operators on closed manifolds and the elementary theory of
second order ordinary differential equations with constant coefficients. See also L. Ander-
sson, P. Chrusciel and H. Friedrich [1I], H. Jian and X. Wang [11]], and Han-Jiang [8] [9]
for the ODE iteration method. Even though our result is not new, this elementary approach
is interesting in itself, and the authors expect it to be useful in other geometric problems.

The main theorem of this paper is:

Theorem 1.1 Let wxr = w + V—=180u be the unique complete Kiihler-Einstein metric
with finite volume on X = X \ D, and let_x = (= log r*)7!, where r is the distance to D with
respect to some fixed Kdhler metric on X. Then we have a poly-homogeneous asymptotic

expansion for u:
Ni
u -~ Z Z c; ;X' (log x)’,

iel j=0
where I is the index set determined by the eigenvalues of the Laplacian operator of the
unique Kiihler-Einstein metric on D and c;;’s are smooth functions on D, regarded as
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functions in a neighborhood of D via the Tubular Neighborhood Theorem. The precise
meaning of the above expansion is that

i

u— zk: i cij¥(log x)) = O(x*),

i=0 j=0
where k. is the next term of k in 1.

In this paper, O(x"), for any real number N > 0, denotes a function ¢ such that, for
integers k,[ > 0,
|(xax)la§/,z/w| < Ck,l,NxN-

Remark 1.1 It is obvious that in the statement of Theorem [[.I, we can replace x by
(—log||sI)!, where s is the defining section of D.

Usually, the coeflicients of an asymptotic expansion formula in a geometric problem
will carry important geometric informations. For example the famous heat kernel expan-
sion and Bergman kernel expansion play very important role in Riemannian geometry and
Kihler geometry. Let’s also mention the boundary asymptotic expansion of conformally
compact Einstein metrics, which is very useful in conformal geometry. It is expected that
the coefficients of the asymptotic expansion in Theorem [L.I] will also carry interesting
geometric informations. We leave this problem to a future work ]

Recently, J. Sun and S. Sun studied the log K-stability of polarized Riemann surface
with standard cusp singularities [20]. An important ingredient of their proof is a precise
estimate of the Bergman kernel near the cusp singularity and in the neck region, which
in turn requires better asymptotic behaviors of the hyperbolic metric near the singularity.
The result and method of this paper should be helpful to attack the higher dimensional log
K-stability problem.

The paper is organized as follows: In §2 we recall the basic facts concerning the con-
struction of finite volume complete quasi-projective Kihler-Einstein metrics, including
Cheng-Yau’s quasi-coordinate map and their Holder spaces. We shall derive some basic
properties that will be used in later sections, and obtain the leading term of the solution
via Cheng-Yau’s maximum principle on complete non-compact manifolds. Then in §3]
we compute the linearization of the associated complex Monge-Ampere equation in lo-
cal holomorphic charts. Since we need to work “semi-globally”, we shall need another
set of coordinates that is not holomorphic in general, namely coordinates from the Tubu-
lar Neighborhood Theorem. Since the holomorphic version of the Tubular Neighborhood
Theorem does not hold in general, this non-holomorphic coordinate transformation causes
most of the complication of this paper. The detailed computation is included in the ap-
pendix for the convenience of the readers. Then we show in §4 that one can derive a series
of formal approximate solutions. They can be viewed as a formal asymptotic expansion.

'Some initial terms have already been carried out by Rochon-Zhang [16]]. See also Lemma.2l



The xlog x-term and index set appear naturally in this process. Even though this part is
not logically required in our proof, we feel that it may be helpful for the readers to under-
stand our proof. Finally, in §3] we use the solution formula of second order ODE to do
induction, and hence finish the proof.

Acknowledgements: This work is carried out during the second author’s visit at Rutgers
University by the support of Hwa Ying Foundation. He would like to thank the Founda-
tion for its support, thank Professor Jian Song for his invitation and the Department of
Mathematics at Rutgers University for its hospitality. Both authors thank Professor Jian
Song for his interest in this work.

2 Generalities on the complete Kihler-Einstein metrics

Let D be a smooth hypersurface in X. As is well known, D determines a unique holomor-
phic line bundle O(D), and D = (s) is the divisor of a (unique up to a non-zero constant
factor) holomorphic section s € H°(X,O(D)). In the following, we always assume that
L := Ky + D is ample. We choose a smooth Hermitian metric /4 on L, such that the curva-
ture form V=10, > 0. We also choose a smooth metric on O(D), locally of the form e7%.
Locally at some point p € D, we choose coordinates s.t. D is defined by {z, = 0}, then
151> = |za|*e*.
Now consider the following Carlson-Griffiths [3] reference metric on X = X\D

w:= V-10, - \/—_laélog(log

)2
ellsl?’

Direct computation shows that when € << 1, it is indeed a complete Kéhler metric with
finite volume. For simplicity, we rescale s by Ve, and from now on, we always assume
€ = 1. As observed by Kobayashi [12] and Tian-Yau [21]], (X, w) has bounded geometry
of infinite order, which means that one can find a family of holomorphic maps of maximal
rank from balls of definite size in C" into X (the so called “quasi-coordinates’), whose
images cover X, such that the pull backs of w to the pre-images are uniformly equivalent
to the standard Euclidean metric and all the derivatives of the pull-back metric tensor are

uniformly bounded. If we choose local holomorphic coordinates (zi, ..., z,) such that D
is defined by z, = 0, then typical quasi-coordinates (zy, . .., z,—1, W) near D can be defined
by
20 = exp(-2 1. 20 L
g 1-n w-1

where 0 < 7 < 1 and |w| < % According to Cheng-Yau [4], one can define the global
Holder norm |[ul|y, to be the supremum of the Euclidean C5* norms of the pull-back of u
on quasi-coordinate charts. We define C*?(X) to be the space of C* functions u such that
|lullro < oo. Using Cheng-Yau’s method, Kobayashi [12], Tian-Yau [21] and Bando [2]
proved the following existence theorem:



Theorem 2.1 (Kobayashi, Tian-Yau, Bando) There exists a unique complete Kihler-Einstein
metric wxg = W+ V—100u on X satisfying

Ric(wgp) = —wgE.
Moreover, u € C**(X) for any k € N and 0 < « < 1 and wgp is equivalent to w.

The uniqueness follows from Yau’s Schwarz lemma. To prove the existence, one
solves the complex Monge-Ampere equation

(w+ V—=1ddu)"
og -

wn

1

u=f, 2.1)

where f is a smooth function on X such that Ric(w) + w = V—13df. As in [12] and [21]],
f € C*(X) forany k € Nand 0 < a < 1. In fact, if we write the bundle metric 4 on L
locally as e™/¢ where ® = ( V=1 )'ddzy AdZy .. .dz, A dZ, is a smooth volume form on X,
then f can be chosen as log 5, where and ¥ = ||s||*(— log |s||*)*w". Since D is smooth and
locally s = z,, a direct computation shows that ¥ extends to a continuous volume form on
X, hence f extends to a continuous function on X. In fact flp 1s a smooth function on D.

Lemma 2.1 If we choose the bundle metric on L such that N-10.|p is the canonical
Kdihler-Einstein metric wp satisfying Ric(wp) = —wp, H and denote o := —log(||s||%), then
there is a constant co such that f = —co + O(c™") in a neighborhood of D.

Proof We can compute in local coordinates. First, it is easy to see that f — f|p, = O(c™}).
So it suffices to show f|p = —c¢( for some constant cj.
By direct computation, we have

P(Z,0) = 2ne?CONV=10.p)"" A (V=1dz, A d3,)
= 2ne O A (V=1dz, A dZ,),

and
O(Z,0) = ¢(Z,0)(V=1)"dzy AdZy A -+ A dz, A dZ.
So we have
flp(@,0) = log¢(',0) +¢(z',0) - log det(gf[;)(Z', 0) + cp.
So we have
V_laDéDle = (V-10.)[p + Ric(wp)
= wp + Ric(wp) = 0.

So we have f|p = —c( for some constant c. O

2This is always possible by [18].



Using this Lemma, we can find the leading order behavior of u near D:
Lemma 2.2 For the same constant ¢ as above, we have u = ¢y + O(c~" log o).

Proof The main tool of our proof is the following version of Cheng-Yau’s maximum
principle in [21]]:

Lemma 2.3 (Cheng-Yau’s Maximum Principle) Let (M", g) be a complete Riemannian
manifold with sectional curvature bounded from below. Let ¢ be a smooth function on M
such that sup,, ¢ < co. Then there exist a sequence of points {p;} C M such that

limp(p;) =supe, 1im|Vel,(p;) =0, limsupHess ¢(p;) <O0.
1 M l i

Take a sufficiently small neighborhood U of D such that o~ log o is strictly positive
on dU. We shall find large positive constants a, b such that

—ac'logo <u—cy < bo'logo

in U. For this, we use the test functions M, := u — ¢y + ac~'logoand M_ := u — ¢y —
bo!'log o, with constants a, b > 0 to be determined later. We take M_ for example, and
the discussion for M, is the same.

First we assume M_ < 0 on QU. This is true if b is large enough, since u is bounded. If
supy\p M- > 0, by Cheng-Yau’s maximum principle, we can find a sequence p; € U \ D
such that M_(p;) — sup;,, M_ and

lim sup HessM_(p;) < 0.

So we have
supM_ = lim(f + w)(p;) +lim(—cy — f — bo! logo)(p;)
+ V—-100u)"
= limlog w " ") (p) + lim(—cy — f — bo" log o)(p;)
-1 Ea —11 n
< limlog @ ‘/_‘9‘3” 02T ) 4 lim(=co — f — b~ log o)(py)

w
< lim( —co— f(pi) — (%bO'_l + 0(0'_1))(19i))-
Since f + ¢y = O(c™ 1Y), for b large enough, we must have M_ < 0. m|
For the higher derivatives of u, we have:
Lemma 2.4 Under the same assumption as Lemma 2.1} for a solution u of 2.1)), we have
IVul, < Cyo'log o (2.2)

for any integer k > 1.



Proof Denote v = u — ¢yp. By Lemma2.2l v = O(c~!' log o). And v satisfies the equation

(w + V-180v)"
log

" —-v=f+c.

In quasi-coordinates, we can rewrite the equation as
A'0;05v —v = f + o,

where | _
- i
A =f ((8k1‘+mki) 1) dt.
0

By Theorem[2.1] we can view this as a uniformly elliptic linear equation on v with smooth
coeflicients. Since by Lemma v = O(c~'log o), the lemma follows from classical
interior Schauder estimates if we have the following:

Claim 1 For any integer k > 0, we have
IVE(f + co)lw = O ™).

We shall prove this by mathematical induction. The k£ = 0 case is proved in Lemma
211 Now we assume |V(f + co)l, = O(Q"l) fori = 0,...k — 1. In quasi-coordinates
(1. 2p-1, W) =: (Z,w), we have 8;',’2/6{%@( f + o) = O(c™") for all multi-index i and

integer j such that |i| + j < k — 1. Now for any [i| + j = k — 1, we have
28] L (f + co) = (og |z a@ , w).

Since f is in fact smooth with respect to £ := (= log|z,*)~!, we conclude that any deriva-
tives of a(z’, w) with respect to the coordinates (z’, w) are still bounded. If we take another
7 or 7 derivative, then obviously we still have O(c-™!). On the other hand, it is direct to
check that

0 _ -
5108 )" = O((=log |z, ™).
w

So we have 62,’2,8{%%( f+co) = O(c~") for all multi-index i and integer j such that |i|+ j < k.
O

Choose local holomorphic coordinates (zy,...,z,) such that locally, D = {z, = 0}.
Write z, := re'. At this moment, we define

x = (—log )

Another observation about f and u, which is of crucial importance for our later discus-
sions, is that they are essentially independent of 6:



Lemma 2.5 We have
Oif = O(™), dhu = O(x™)

for any k > 1. Here O(x™) means a function  satisfying

105, .0y < Crunx”

7,07 X

foranyk >0,l>0and N € N.

Proof We only need to prove the [ = 0 case. Recall that all the derivatives of f and u with
respect to quasi-local coordinates are uniformly bounded. If we choose local holomor-
phic coordinates (z;, ..., z,) such that D is defined by z, = 0, then the quasi-coordinates
(z15--+»2n1,w) can be defined by

S

where 0 < < 1 and |w| < % Then we have

L R
80 ~ gz ez,
o 1-n , 0 L, 0
= - l—-w)'— -1 -w)"—).
12<1+n)(( W g W) aw)
On the other hand, we have
L L
11— w*

Direct computation shows that

0 0 -1 0
x2a = Re(znazn) = 2271 n n)Re((l - w)2%).

This implies that the coefficients of x~'8, and xd, are bounded and smooth. So if ¥ is in
Cheng-Yau’s Holder space CM*(M, go), then &', .05 = O(x*) for k + 1 < N. Since any
such function &/, ., gy must be periodic in 6, we have fozn 9,05 ' =0whenk 12> 1.
This means we can find (for fixed z’ and x) a 6 such that 8., .d;"'y(fp) = 0. So we can
integrate the 6 variables from 6, to get 8., .05 = O(x*) for any 1 <k’ < k.

Finally, since both f and u are in all C*?(X), we get the result. O

3 Linearized operator under local coordinates

In this section, we shall compute the linearized complex Monge-Ampere operator in local
coordinate charts. This will we used in the next two sections to derive the asymptotic



expansion. Choose local holomorphic coordinates (z;, ..., z,) as before, such that locally
D = {z, = 0}. Recall that z,, := re® and

x=(=logr’)™.

Also recall that 1 {
+
o=—logllslP = —logrt + ¢ =~ +¢o= — 2
X X

If locally ®, = ¥;dz; A dZ;, and write w := V—1g;;dz; A dZ;, then we have

5 — 0;0; log( —logr* + go)z

L IR
O ) J

8ij

where

Ni = \/z(x_l)i t ¢ — \/zx . _5ine_‘/__1€ + }"QDI-'
g r 1+ xp

To compute g/, set

which is positive definite near D. Then a direct computation shows that

ol = il _ ﬁjp]}’pﬁqwq
1 +_19‘1"‘1N,—,Nq
_ i _ ﬂpr,,ﬂqqu
x2 d5anT *T
33 + 97NN,
so we derive
- . 5?1&{?[%1 ~ l?fl[lﬂ,én
gr=0 - =+ 00) = (97— = )io + Ox),
2
_ r
g = z—xz(l +2xp) + O(r?),
O o (3.1)
~ - ﬁnafﬂﬁn ~ 9 },.2
g™ = (9 - T s+ =55 (14 2xp) + o),
- . {@,ﬁaﬁﬁn 5ﬁn 72
gﬂn = (ﬁﬁa — ﬁfm )gDaZn + ﬁz_xz(l + ZXQD) + 0(}’2).



Notice that the (n — 1) X (n — 1) matrix

” ﬁr‘taﬂ[}n
(ﬂﬂ T gn

Ip

on D is exactly the inverse of (7,5)[p. We write it as e,
For an operator T\, defined as

Tov = 775"\/[4; + sze(CZﬁ%) + lxzvxx + XV, 3.2)
ox 2

wesay T = Ty + O(x), if T = T, + T, where T, has same form (3.2) as Ty, and the

coeflicients of 77 are 1 + O(x) times the corresponding coefficients of 7. T is called

a O(x™) operator, satisfying To,(1) = O(x*), where u is a solution of @.I). If Ty is of

another form, we can define T + O(x) in a similar way.

Proposition 3.1 When acting on u or function ¥ independent of 6, we have
2

. - . 0 1
§"0,0; = 178,05 + x*Re(C; e 7+ §x2<9§ + x0, + O(x),

where C:. = C,u(cos — V—1sin6). Here C;; are bounded smooth in x,6 and other
complex coordinates, and (773") I<aB<n—1 IS the inverse of the (n— 1) X (n— 1) matrix (9,3|p).
Note that 775"%5 is just the Laplacian operator on D with respect to the canonical KE
metric. For simplicity, we set Ap = 773"8(,(95.

What are most relevant to us is another set of non-holomorphic coordinates. By tubular
neighborhood theorem, we can find a neighborhood U; of D diffeomorphic to the normal
bundle of D. Even though the normal bundle can be made to a complex manifold, this
diffeomorphism is in general not holomorphic. The coordinates we use are bundle coor-
dinates: Locally z, (@ = 1,...n — 1) are coordinates of D, and &, nj are fiber coordinates.
We also need polar coordinates with respect to (£, 1), namely & = x* cos6*,n = x* sin6".
Again, we set x* = 1/(—log(x*)?). Note that x* is globally defined on Us.

We have the following relations between (zy, . ..,z,) and (2], ...,2,_, & n):

1. Zlp=2zelpfora=1,...,n-1.
2. zz=0ifand onlyif ¢ =n = 0.

3. x* equals the distance to D with respect to some fixed good Riemannian metric, and
hence is a globally defined function on Us.

We shall need the following three technical lemmas, whose proofs are contained in the
Appendix.

Lemma 3.1 All the derivatives of u with respect to 8" are of order O(x™).
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Lemma 3.2 We also have

0? .0 o . )
G T gp TR Cang ) H Ao 00, 3

ji 1 %72
80,05 = E(X )
when acting on u or on Yy which is independent of 6.

Lemma 3.3 Forany i € I and integer j > 0, and smooth function c; ; on D, we have
IVV(c; j(x") (log x))l, = O((x")' (= log x*))).

In the rest of this paper, locally we always use coordinate charts like z,, x*, 6*. By for
simplicity, we still denote them as z,, x, 6.

To simplify notations, in the following sections of the paper, we simply write
(x*,8") as (x, 6). Hopefully this will cause no confusion.

Given a function ¢ in U, we can average the ¢ direction by integratiorﬁ. To be precise,
for any fixed point p € D with coordinate 7, and fixed x, we derive a function

21

U(Z,x) = € W(Z', x, 0)do,
2

0

under the local coordinate chart. i is globally defined, and according to Lemma [2.3]
R(Z,x,0) := (7, x,0) —y(Z, x) = O(x™).

For example, we have by Lemma[2.1] that

f=) i+ 06, (3.4)
i=0

e~

In the following sections, a
direction.

over a function always means its average on the 6-

4 Constructing a formal expansion

Lemma2.3] suggests that we should find approximate solutions of the form
Ni
ve= ) > cixlogx),
iel i<k j=0

where [ is an index set defined below, and ¢; ; are functions on D, such that,

(w+ V—=10dy)"
wn

O(Wy) := log — i = f = O(" (log x)™+).

3This kind of construction has already appeared in [16]
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Here integers NV; can be defined inductively and explicitly if / is known. k. is the next
larger element of & in 1. Note that by Lemma[3.3] w + V—180y; is uniformly equivalent
to w when x is small.

The index set I is defined as follows: First we assume {4;}’s are increasing eigenvalues
of ~Ap = 7%*9,05 on D. Denote the two zeros of 1k> + 1k — 1 — A, by my, m,, where
m > 1,m < -2, and

my ~ \/2_/1k, m, ~ — 2/7.]c (41)

as k — oo. Then we define the index set I as the monoid generated by {1} U {m};”,, and
align its elements in the ascending order. We denote E, the eigenfunction space of —Ap
with respect to the eigenvalue A, and E its perpendicular space.

We need to approximate the operator Q(¥) by its linearization and estimate its error.
The following calculation is well-known:

Lemma 4.1 For any smooth function  defined near D such that w + N—190y > 0 and is
equivalent to w, then we have

|log — gyl < CIVIYP.

(w+ V-180y)"
wn
Proof Write g, for the metric associated to w + ¢ V—139y, then we have
(w + V=100y)" ) Lo
log " = ; £y log det(g;; + ty;5)dt = ( ; g dt)z,b,;
=. 1 ) =.
gz + (f gl - ¢ldt)u;
0
Lrlg -
duss( [ [ Ly

s f ( f &g )t Wi

By our assumption, the metrics g, are uniformly equivalent to g, so we get the conclusion
from the above identity. O

As the Oth order approximation, we choose ¢ = ¢, then by Lemma[2.I] we have

QW) = O().

To find higher order approximations, we define:



If Y i=co + C1,0X, then

W)

&0, + OV I2) = — f
Ap + Ny — f+ O(%)
(Apcio — fi)x + O(x%),

where f; is defined in (3.4). However, Apc, o = f; is solvable if and only if £ is orthogonal
to the eigenfunctions associate to the 0 eigenvalue of Ap, i.e. fD fidvp = 0. If this is not
true, we shall need a log-term correction: Set instead Y, := ¢y + ¢ 0x + ¢11x1og x, then

OW) = g'aidun + OV 2) — v — f
Api + Ny — f + O(x*(log x)%)

3 -
= (Apcip + FC11 fx + (Aperp)xlog x + O(x*(log x)°).

If we require Q(¢;) = O(x*(log x)?), then we have
3 -
Apcp + 501,1 - fi=0, Apc; =0.

So ¢;,; must be a constant such that fD(%Cl,l - fl)dvD = 0. Then ¢, g is solvable and unique
up to a constant. So ¢; can not be determined locally, hence we call it “the first global
term”.

Lemma 4.2 The coefficient c,; is a topological number, depending only on D and its
normal bundle.

Proof By the previous discussion, we have
2

C11 = g fflbdvp-
D

=lo .
S = o8 R og 5P P
In local holomorphic coordinates, we have

det(g;;) = det(d;5 + N;N5) = det(d;5)(1 + D'N;N).

Recall that

A direct computation shows that
filb = @+l = @:Nlp

= ax|x=0 lo

¢
& {IsIE(og Is|P7 det(g,)
ﬂﬁpﬂén
g Ip - <qu|D
ﬁﬁaﬂﬁn
ﬁr‘m

— 2(19?1[) _

= 20 -

= 2’780‘10(1[3|D'

)b - @aplp
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It is essentially the trace of ( V=180y)|p with respect to wp, up to a constant fagtor. Since
the restriction of the line bundle O(D) to D is just the normal bundle of D in X, denoted
by Np, and [wp] = 27c1(Kp), we have ¢ ; equals

K22 N
Ko

up to a constant factor depending only on 7. O

Note that the appearance of xlog x term and its coefficients are already pointed out by
Rochon-Zhang [16]].

Now we proceed to higher order approximations: Suppose we have already find _
such that

O(-) = dj;x'(log x)/ + O(x'(log x)' 1),
where i € I and d, ; is a smooth function on D. At present we assume j > 0. We want to
find ¢;; € C*(D) such that for  := ¥_ + ¢; jx'(log x)/, we have

OW) = O(x'(log x)"").
Now we have
(wy_ + V=18d(c; jx'(log x)7))"
wz_

(d;j = ci)x' (log x) + g5 8,0;(ci ¥ (log x)’) + O(x'(log x)'™),

QW)

— ¢; j*'(log x)’/

Q@) +log

where we use Lemma 4. ] in the second equality. Since

1 _
- = [ ol el dnpa
and [VVy/l,, = O(xlog x), by Lemma[3.3 we have

0W) = (dij—cipx'(logx) + g78,05(c;jx'(log x)’) + O(x'(log x)'™")
1, 1 . . . .
(dij+ (Ap + 51'2 +35i- De;i j)x'(log x) + O(x'(log x)'™).

It %iz + %i — 1 is not an eigenvalue of —Ap, or equivalently i is not one of the m;’s, then we
can find a unique ¢; ; such that Q) = O(x'(log x)'™1).

If i = m; for some [ € N, write d;; = dgj + difj,
respect to E,,. We need to first modify y_:
Claim: There is a smooth function p € C*(D) such that

the orthogonal decomposition with

QW + pxi(log x)*') = dx(log x)/ + O(¥'(log x)'™).

14



In fact, the same computation as above gives

Q- +px'(logxy™) = d;x'(logx)’ + g778,0;(px'(log x)™*")
—px'(log x)*! + O(x'(log x) )

1 . .
(dij+(+ DG+ z)p)x’(log x)/
+(App + Aip)x‘(log x)*! + O(x'(log x)/™).

We can simply choose p to be a constant multiple of dl? ;- Then we can find ¢;; such that

Y=y + ¢ X (log x)) + px'(log x)'*!

satisfies
Q) = O(x'(log x)'™).
Note that in this case ¢; ; is unique up to an element of E,.
When j = 0, initially we have Q(_) = d;ox' + O(x™ (log x)™), where i, is the next term
of i in I and m depends on the choice of yy_. We try to find ¥ = ¥_ + ¢;ox’ + px' log x such
that Q(¢) = O(x™*(log x)™). The discussion is the same as above.

Remark 4.2 From the above discussion, we see that ¢, ’s are all independent global
terms. For any / € N, ¢z 0 1s unique up to an element in E,,. So we have infinitely many
formal solutions. There exists special formal solutions such that x™(log x)/ appears in
the formal solution only if m; € N. However, from our proof in the next section, other
non-integer m,’s also appear in the expansion in general.

5 Proof of Theorem [I.1

In this section, we prove Theorem [Tl by induction. We shall prove that if we have an
asymptotic expansion of certain order, we can obtain a higher order expansion. The main
tools are the solution formula for second order ODE’s with constant coefficients and the
method of “separation of variables”. We shall use the fact that if a function ¥ on D has bet-
ter regularity, then the “generalized Fourier series” of ¢ with respect to the eigenfunctions
of Ap has better convergence properties.

We write u as u = ¢y + V + R, where

1
R(x,7,0) : = u(x,7',0) - —f u(x, 7', 6,)do,
2 sl

1
_27'[ s!

which is O(x*) by Lemma[2.3] and

1
(f Ogu(x, 7,10+ (1 —16))dt] (60— 6,)do,
0

1
) = o f (.2 06 <,
S

15



Define a nonlinear differential operator:
FQ) := Ny + Apy — Q).
Then the equation (2.1 becomes
Nu + Apu = F(u).
Taking average with respect to 6 in both sides, we have
N7V + Apb = F(D), (5.1)

where

27

. 1
Fo) = — | (Flco+7+R)+cy)dd
2 0

27

1
= — (F(co + V) + cp)df + O(x™).
27T 0

We can view ¥ as a function on D X [0,9). Even though F depends on the choice
of local coordinates, F(¥) is globally defined since the left hand side of (5.1)) is globally
defined on D X [0, 9).

Definition 5.1 We say ¥ has an expansion of order O(x*), for some k € I, if there are
smooth coefficients c; j defined on D such that,

Ni
Y= wk + Rk = Z Z c,-,jxi(log .X)J + Rk,

ieli<k j=0

where the remainder Ry, satisfies, under the local coordinate system, for some € € (0,k, —

k),

IXoLo™ Ry < Clk, 1, m, €)x**,

X7z

for any integers I, m. Equivalently, R = O(xK*€).

According to Lemma and 24 ¥ = 0 + Ry, where Ry, = ¥ such that |R0|c§ <

C;x(—log x) for any . So we say that ¥ has an expansion of order O(x°).

Inductively, we assume 7 has an expansion of order k, and the goal is to prove for case
k+-

We adjust € smaller if necessary, such that m; > k, implie that m; > k, + €. Indeed, we
do not have a uniform € for all /.

16



Lemma 5.1 If ¥ has an expansion of order O(x*), say, ¥ = Y + Ry, then yy coincides with
one of the formal approximate solutions constructed in § 4 and F(¥) has an expansion of

order O(x*), i.e.,
Ni
F@ = Y > Fipilogx) + Rey, (5.2)
iel,i<k; j=0
with Rpy, = O(x**e).

Proof We first prove that if ¥ = ¢ + Ry, then ¢, coincides with one of the formal approx-
imate solutions. By the discussion in §4] it is easy to see that we only need to prove

Oco + i) = O(x*),

then by the induction argument in §41 ¢, must coincide with one of the formal approximate
solutions for any k € Z,.
In fact, since u = ¢y + ¥ + R, + R satisfies Q(u) = 0, we must have

S
Il

1
d
Qlco + Wi+ R+ R) = Qlco + ) + f 7o+ Y+ 1(Ry + R))dr
0

1 .
Oco +Yy) + ﬁ gjl//lk+t(Rk+R)6iaj(Rk + R)dt — R, — R.

Since Ry + R = O(x**€), from the above equation we get Q(cy + ;) = O(xF+€).

Now we prove that F(¥) has an expansion of order O(x**) if ¥ has an expansion of
order O(x*). For this, by definition, we only need to check the expansion for F(cy + ).

If k=0, F(co +7) = F(co + Ry) = f + ¢o + O(x*(log x)?), which confirms the claim.
Andifk > 1,

F(co + ¢ + Ri)

Ap(i + Ry) + N(co + Y + Ry)
—Q(co + ¥i) — (Q(co + Y + Ry) — O(co + i)
!

= Flco+ W)+ (Ap+ N + DR, - f & DR
0

= F(co+ )+ (Ap + N + DRy — g78,0:R, + O(x*)
= F(co + Yi) + O,

where the last equality comes from Lemma 3.2l After averaging in 6, F(y;) has explicit
expansion of any order. From the above equality, we have F(iJy + R;) — F () = O(x*+*).
So we conclude that F(¥) has an expansion of order O(x+). O

Assume —App; = A for analytic functions ¢; on D with fD golzdvD = 1, where dvp is
the volume form associated to the canonical Kéhler-Einstein metric wp. Then {¢;}°, is an

17



orthonormal basis of L?(D, dvp). As for any fixed x > 0, ¥ is a smooth function on D, we

write ¥ = ), ¥(x)¢;, where
V= f (Ver)dvp,
D

—AV; + Ny, = (F(V))l, (53)

Then

where
(F@))(x) = f F@)eidvp.
D

We view (5.3) as a non-homogeneous second order ordinary differential equation with
respect to x, then we solve out by choosing a fixed small x; > O:

=C X" + Cyx — “1=m gy
o ” 5.4)
f (F())x ™udx.
To determine Cy, C,, we first take x = x, to get
i(x0) = C1xl" + oy
Since ¥; € L™, we then multiply (5.4) by x™, and let x — 0,
X0
0=Ch+ — f (F@))x ™udx.
mp—nm,; Jo
We conclude,
ml—mI
V= (Vz(xo) X_m' + f (F@))x™! ’"'dx) XM
2x™
— f (F@)x™dx (5.5
1 - l’l’ll
2x’”
- f (F)x"dx.
Then
) ) x_l —ny xml X0
v=> X)X ey 20 A f (F@)x dx
1 xo T m-m 0
2 my
- Z a4 f (F@)x dx (5.6)

- Z xmwl f (F@))x udx.

18



Fix an index A > 0. The first summation of (3.6)) is easy to treat:

71(x0)x™ @, vxo)er] -
Z Om/ = Z ( ;I XM HA,OxA, (5.7)
l 0 <A 0
where
~ xml_A
Hyp = Z —VI(XO) = QOI.
m>A X0

This is an expansion with respect to x, and it only has finitely many terms with m; < A, and
the corresponding coefficients only depend on z’. Our goal is to estimate the derivatives of
the remainder of the form

(xax)pag/,z/ HA’O .

To this end, notice that for any N € N,
- 1 - N
7o)l = —N) ¥ ) - A

- f (A, 30) - o)) 58)
< C(v,)lcé),N)'
A
Here Agfzc, Xp) 1s evaluated at x = xj, so bounded by the interior estimates of ¥. Then for

any p,q € N, by (3.8,

m—A

(k0,78 Ho| = |7 ag, 3 B0 e
I X0
Ay qvl(xo)xm @i
= Z () = AY A=
0
< C(®, xo,N)Z /12+q N ‘

By the standard estimates of eigenvalues and eigenfunctions of AD, (Cf for example [19]

Corollary 5.1.2), as dimg D = 2n -2, A; ~ [#7 as | — oo and 14, = g01| < C(wp). So we
canset N > £ +q+ 2” 3 so that

:

24+g-N

/12

‘ < C(N, wp).
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Note that the interchange of Ap with infinite summation is justified by the above estimate.
Now (xd,)’A?H, ¢ is bounded, which further implies that (xax)f’A‘ngA,o is CL*(D) in
7', 7' by standard elliptic estimates. Eventually it implies, (probably with a different g),

|(-xax)pazq/’z/HA,0| < C(V’ X0, P-4, (,UD). (59)

The main technical result of this section is the following proposition, whose proof
follows the same line as above:

Proposition 5.1 Fix an index A > 0. Assume that on D X (0, xy], we have a function
F(x,7") = x'(log x)/ - w(x, 7)) for some i € I, j € Z, such thati < A,0 < j < N;, and
|xlalam ’W| < Clma

X7z

under the local coordinate system. In addition, we assume that w only depends on 7' when

I <A.
Denote
F[ = fF'QO[dVD.
D

Then the following terms

m l —-my

H, = Z —_ "0’ f _1‘@Fldx
m;
o X
H, = Z i~ f A
my
e i
H3 = ; m m f 'F ,dx,
have an expansion of the form:
[} lf‘l =
j+1
D Hio@) + ) Han(x,2)x log )", (5.10)
leLI<A m=0
o ifi <A,
j+l
D Hig@) + ) Hin(@)xi(log )"
lel l<i m=0
i (5.11)
£ > Hg@ ) Ha(x, )X
leli<l<A m=0
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where all the coefficients H,,,’s satisfy for any q € N,
0%yl < Cm, i, . g). (5.12)

Here H, j.; is not a zero function only if i = m; for some | € N.
In addition, for any p,q € N, we have in D X (0, x),
X" 0RO, . Hywl < C(L,m, i, j, p, q). (5.13)

X7z

Proof First we show the expansion and (3.12). Notice that F,’s only depend on x. For
any integer N > 0, |ANF| < C(F, N)x'(—log x)’. So we have the estimate of generalized
Fourier coefficients, if 4; # 0,

1
IFil = — fF'A%‘PldVD'
VAN

1
= f (MY F)gidv) (5.14)
A4 Ip

C(F,N)

<
N
/ll

x'(—log x)’.

Now we look into the three integrals, with H, first. Formally H, is already in the form

of (5.10) or (5.11), as

BT o ]
H, = Z [_O %f x_l_m'Fldx] - X" 4+ Hy (2, 0)x",
0

where

=i g A g
— xO_ X @i ! —l—ml
Hig= Y 2= " | x'"2Fdx
0

ﬁl—ml

Here H, o 1s an infinite summation. Again, as dimg D = 2n—2, we have 4; ~ [=T as [ — oo
2n

-3
and |4, © ¢)| < C(wp). Then if m; > A, applying (5.14),

2n-3

M= —-A X
X, XMy, 0 -3
0 1 N+ A -
—— | x"mFdx <A, T xy C(F) 1A, T gl
mp—m, 0
2n=3

< C(F, N, wp, x4, 7.

We set N = %n - %, then

_ 2n-3 n
I WERD e

m=A m=A m=A
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which is bounded by a constant depending only on n. Hence the sum of terms in Hy g is
convergent. In addition, for any g € N,

m,—m, —A P
Xy XM e (0
x THFdx
0

|ALH ol = —
m; — ml

mi=A

2n-3

< C(F,N,wp,xo) ) 47

m>A

We can set N much larger than ¢, such that AqDH A0 1s bounded, which further implies that
AqD_lH 4018 C% in 7/, 7. This eventually implies (3.12).

The discussion of H, is similar. The difference here is that all terms are of order
x'(—log x)™ for some 0 < m < j.

e if i = A, we write H, as Hy ;x*(log x)’. We estimate A% H, ;, by (3.14),

o ¥4 (log x) Vg f )
A1 — x M dx
P (Z m;—m, 0 :

=1
= XA (log x) ¢ X
:g:: ( g; ) [Spl b’“ 15_1_121171(1;r
0

=1 m = m
(o]
<),
=1

< Z C(F,N, q, )4, gll,
i=1

x4 (log x)™/

ml—ml

C(F,N)A, ¢, -

f KA1 (log x)/dx
0

which converges if N is large comparing to ¢g and n.

e if i < A, by the assumption, w only depends on z’. Then

fx_l_ﬂlFldx:fWQ@deD'f X~ "M(log x)dx,
0 D 0

which generates terms like w; - ¥ (—log x)", for 0 < m < j. Hence we have the
expansion as (3.11). For the estimates of coefficients, we can proceed in a similar
way as in case i = A to derive (5.12).

1-

For H;, notice when m; = i, fx‘ M. xi(log x)/dx = jﬁ(log x)’*!. So we may have a

term of order x'(log x)’*! in the expansion of Hs. In Hs, for terms with m; > A, we just

apply (5.14) to show that
X R
P f X Fdx (5.15)
m; — ml X

mi>A

can be written as,
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o ifi=A,
Hy (2, )x" (log )",
where m = j+ 1 if A = m, for some [ € N; otherwise m = j .
e if i < A, as w only depends on 7/, (5.13]) can be written as

J
D Hin(@)x'(1og )" + Ha (2, )",

m=0

All coeflicients Hy,, satisfy (3.12)). For the finite terms with 777; < A, (essentially we do not
worry about finite summation),

o ifi=A,

m

X0 mp X0
Z XY xRy = Z XTQ; X dy
ml —m ml —m; Jo

<A x <A
X"y  m
- Z — xMEdr,
mp—m; Jo

m]<A

which can be dealt with in the same way as for H, and H,, and

e if i < A, w only depends on 7/, and we still derive (3.12)) by applying the explicit
integral formula of x~'7" . x/(log x)/ and (5.14).

Secondly, we prove (3.13). As H,,, is independent of x if [ < A, so we only need to
consider (x0,)?Hy,,. The only trouble is that xd,(x™) = m;x™, which produces an extra

i
factor m; ~ A;. So we simply increase N to deal with this factor. O

Now we continue the proof of Theorem [[LIl Recall that F(¥) has the expansion (5.2)
by induction, and ¥ can be solved out from F(¥) by (5.6).

First apply (5.7), (5.9) with A = k, + € to derive that ), %ﬁx[rnl“” has a boundary

expansion of order k,. Here € is well set such thatm; < A =k, + € ir(;lplies that m; < k,.
For each term F; ;x/(log x)’ or Ry, in the expansion of (5.6)), applying Proposition[5.1]
withA =k, + eand F = F, jx'(logx)/,w = F;; or F = R, w = x ™% Ry, respectively,
we derive finite many expansions in the form of (3.10Q), (3.11), with (3.13) holds.
Summing up these finite many expansions, v has a boundary expansion of order O(x*+)
in the sense of Definition[5.1l Then we complete the induction.
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A Proof of Lemma 3.1-Lemma

Proof of Lemma 3.1] By chain rule, we have

0 0z, 0 0z, 0 ox 9 99 9
90 000z, 00 o7, 00 Ox* 00 96*

It is easy to see that the coefficients of the first 3 terms are all of the order O(r), while %—99*
is of order O(1) and non-vanishing near D. So we can prove by induction that derivatives
with respect to 6 are also of order O(x™). O

Proof of Lemma[3.2] By Lemmal[3.1] we first check

= + +
ox Oxdz, Ox ag ox 0x*  Ox 00*

0 040 G, 0 ox 9 99 0

term by term:
0z, 0Oz, dr r 0z,

= _ = — = 0 o0 s
Ox or dx 2x% Or )
Similar for %
20" 90" r r 107"
= — = —] —_ Y — 0 -2 .
Ox or 2x2  2x2 m(= ) @)

i Or

By the previous Lemma, we can ignore all derivatives with respect to 6, too. So we only
need to compute %ix Note that we have the Taylor expansion near D:

r'=Ar+0(r")
where A > 0 is a locally defined function on D. Then we have

ox* dx"ordr r(x*)? or* A+ 0®0)
ox dr- ordx  x*x2 dr A+ O@)

(1+41ogA x+0(x*) = 1 +41log A x+ O(x%)),

and so
0*x* .
=4logA + O(x) = 4logA + O(x").
0x?
Then we conclude that
1, 0? 0 1 5 0?
X —+x—)=(=(x" + x* + O(x"
(2x 0x? xax)v (Z(X) (0x*)? o ax*)v )

Secondly we check tangential directions,

9 %o %o oxo b
020 024075 02,075 0z, 0x* 0z, 00"
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We compute term by term:
First we can write z; = zg + ap(z), where ag is a local smooth function of z such that
ag(zy, . ..,2n-1,0) = 0. This implies

aa/_; (9&5
o O(r), o O(r),
SO
az; 5 o (9'* o
a—za— op + O(r), G_Za_ (r).

For similar reason, all the higher order purely tangential derivatives of z;, are all of order
O(r). Second, we have

x 2(x")? 3 on

= sO"— +sin6"—

02, r* (co 024 sin 0z,

Recall that £|p = 0, we conclude that ‘95 (and in fact all the tangential derivatives) is of
order O(x*), from which we conclude that

ox*

= O((x*)?).
e ("))
Similarly,
* 1
gi = F( - sin@*—gi + cos 9*—577) = 0(1).

From the expression of

see that all but one term are of order O((x*)?). The remammg term is

ox* 1 or ox* 1 , 0& 877

Oz 075 Oz 1 07Zg azﬁ

This is again of order O((x*)?). For the same reason,

00"
= 0(1).
GZQGZﬁ ( )
So we get
0
- O((x*)? ) -+ O((x")™) operators
024 az;;
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For second order derivatives, we have

PE 0z, 9 0.9 ox 9 9 9
— = (L= 4+ L=+ + )o
02,073 02,0z, 02,07, 0z, Ox* 0z, 06"
075 8 0z 9 ox* d 90 9
( - T R — )
0730z, 07307, 073 0x* 07z 06"

min ¢ 5% & 0ml & 5% &

25 020 02,07, 025 020 02,07, 0 20 0,02, 02 024 D207,
az; ox* O* ox* 9z, & N ox* 0z, o> ox* 0z, O*

D2 02, OX' 0%, | 0% 02, 0,0x" 025 Oz OE,0%° 02, 025 D200

+(9x* ox* 0> .\ >’z 0 .\ >’z 0 s ’x 0 s o¢r o
0Zp 0z, (0X*)? 02,073 0Z% 02,075 07, 02,075 0X* 02,075 06"
+2nd order terms containing derivatives of 6"
2 0* 0 i i
— 0 #*\2 . #\2 _
92,07, @) [(x Vavr tar T ooz az;;ax*)

+0((x")) operators.

Next we compute mixed derivatives.

d _0z;i+822i+ax* 9,00 d
0z, 0z, dz; 0z, 075 0z, 0x" 0z, 00+

It is obvious that

az* =k
B B
= 0(1), = 0(1).
e (1 e (1
ox* 2(x")? 0 0
20 s % sing 2Ty = o).
0z, r 0z, 0z,
1 13} 0
P = F( - sin@*ai + cos 9*0_2,) = O0((r)™.
By chain rule, we can see that
(92)6* z(x*)Z 826 8277
n = n 0* — + i 0*—_
Sadn, T e sl g s
2x*) O . On 00"
T (—sin® 7 + cos @ aZn) o
2z, 0x* O0x* 7z, 0x" 0é ) on
-— cos ' —= + sinf" —
r* 0z, 073 r* az,,( 07Zg GZ[;)

O((x")*) + O((x")) + O((x'))) + O((x")*) = O((x")?)
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Similarly, we have
9’6
in Az
02,073
Since in the mixed second order derivatives, % always go with z,, all derivatives involving
6" can be ignored, we have
i 9z, & 0z, 0 ox 0 00" 0
Iy s + ) o
02,073

= O(1).

ol —— + — +
N0z, 0z, 02,07, 0z, 0x 0z, 00"
0z, d 07, d ox" 9 00° 0
( ——  — — + — — + — )
0730z, 07307, 07Zg Ox* 073 06"
9z: 0z, & dz; 9z,  &* 8z, 90z, &
in 7z — T s + Tz -
0z 0z, 07,07, 0z 0z, 07;,07; 0zp 0z, 9Z;,0z;
9z: 9z,  o* az: ox* o0? ox* 0z, 9
+Zn — — + inT— _ + inm
073 0z, azl*ﬁzjj 073 0z, 0x*0Z;, 073 0z, az/*ﬁx*
ox* 0z, & ox* 0z, O* ox* ox*  9*
o = MR i to oo
07p 0z, 07,0x* 0z, 075 07;0x* 0Zp 0z, (0x*)?
. >’z o s ’z, d s Fx 0 . o’ 9
N 2n0%5 07, 02,025 0%, | 02075 Ox | " 02,075 00"
+2nd order terms containing derivatives of 6"

0? A
+O((x*
0x*0%g () )(8)6*)2

In sum,@.3) is verified. m]
Proof of Lemma 3.3 We use the local holomorphic coordinates to check this. First, we
have

= O((x))

+ 0((x*)2)% + O((x")™) operators

’ » N ey . | |
9207, (i@ -2y D) (log x°)) = T ()ilog XY + o((x*) (log x°Y).

97,07
Recall that

g; = O((x*)%), a%, = ai;; + 0((;&)%% + O((x*)™) operators,
so we have
(92

aznGZg (

Finally, we have

(@ 2y ) Qog x)) = 0((r) ™ () log ).

0? . . . .
g (C1s(a -+ 7)) log x')Y) = O((x') (log x')).

Then the lemma follows from (3.1)). O
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