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Asymptotic expansions of complete Kähler-Einstein metrics with
finite volume on quasi-projective manifolds

Xumin Jiang∗ and Yalong Shi∗∗

Abstract

We give an elementary proof to the asymptotic expansion formula of Rochon-Zhang for

the unique complete Kähler-Einstein metric of Cheng-Yau, Kobayashi, Tian-Yau and Bando

on quasi-projective manifolds. The main tools are the solution formula for second order

ODE’s with constant coefficients and spectral theory for Laplacian operator on a closed man-

ifold.
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1 Introduction

Complete non-compact Kähler-Einstein metrics play an important role in several complex

variables and geometry as observed by C. Fefferman [6] , S. Cheng and S.T.Yau [5] in

the 1970’s. The existence of such metrics in strictly pseudoconvex domains with smooth

boundary in Cn is proved by Cheng-Yau [4] extending Yau’s solution of Calabi’s conjec-

ture [24]. In [4], boundary regularity for the solution is also discussed. Later, a more

precise boundary regularity theorem and an asymptotic expansion of the solution near

boundary are obtained by J. Lee and R. Melrose in 1982 [14]. Later, the coefficients of

Lee-Melrose’s expansion have been calculated by J. Lee [13] and R. Graham [7]. See also

the recent work of Q. Han and X. Jiang [9] for another proof for the asymptotic expansion

formula.
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If the manifold is not an Euclidean domain, up to now, all the known examples of

complete Kähler-Einstein metrics with negative Einstein constants are quasi-projective.

Let X be a smooth projective manifold of complex dimension n, D ⊂ X a smooth hyper-

surface such that KX + D is ample. In the 1990’s, in a series of works Cheng-Yau [5],

R. Kobayashi [12], Tian-Yau [21], S. Bando [2] proved that the quasi-projective manifold

X := X \ D admits a unique complete Kähler-Einstein metric ωKE with finite volume and

Ric(ωKE) = −ωKE. In fact, their results also allows D to be a simple normal crossing di-

visor, and KX + D is only big and nef, and “ample modulo D ”. For the Kähler-Ricci flow

approach to the existence of such metrics, please look at the work of J. Lott and Z. Zhang

[15].

The asymptotic expansion of these quasi-projective Kähler-Einstein metrics is first

studied by G. Schumacher in 1998. By adjunction formula KD = (KX + D)|D > 0, so

Yau’s theorem guarantees the existence of a unique Kähler-Einstein metric ωD satisfy-

ing Ric(ωD) = −ωD. Schumacher proved in [18] that the restriction of ωKE to directions

parallel to D will converges to ωD. Later, a systematical study is done by D. Wu in his

thesis [23] in 2006 by analyzing the mapping property of the linearized complex Monge-

Ampère operator on weighted Cheng-Yau Hölder rings. Wu obtained an asymptotic ex-

pansion of the solution u to the complex Monge-Ampr̀e equation in terms of powers of

σ = (log ‖s‖2)−1, where s is the defining section of D. However, as observed by F. Rochon

and Z. Zhang in 2012 [16], σ logσ-term should appear in general, depending on the nor-

mal bundle of D. In Rochon-Zhang [16], a more precise asymptotic expansion is obtained

using the so called “b-calculus”, developed by Melrose and his students.

For asymptotic expansions of other types of canonical metrics, for example complete

Calabi-Yau metrics or conic Kähler-Einstein metrics, we refer the reader to the works of

B. Santoro [17], T. Jeffres, R. Mazzeo and Y. Rubinstein [10], H. Yin and K. Zheng [25].

In this paper, we will give another proof of Rochon-Zhang’s theorem by elementary

tools, namely, besides rescaled interior Schauder estimates, the key tools are spectral de-

composition for Laplacian operators on closed manifolds and the elementary theory of

second order ordinary differential equations with constant coefficients. See also L. Ander-

sson, P. Chruściel and H. Friedrich [1], H. Jian and X. Wang [11], and Han-Jiang [8] [9]

for the ODE iteration method. Even though our result is not new, this elementary approach

is interesting in itself, and the authors expect it to be useful in other geometric problems.

The main theorem of this paper is:

Theorem 1.1 Let ωKE = ω +
√
−1∂∂̄u be the unique complete Kähler-Einstein metric

with finite volume on X = X \D, and let x = (− log r2)−1, where r is the distance to D with

respect to some fixed Kähler metric on X. Then we have a poly-homogeneous asymptotic

expansion for u:

u ∼
∑

i∈I

Ni
∑

j=0

ci, jx
i(log x) j,

where I is the index set determined by the eigenvalues of the Laplacian operator of the

unique Kähler-Einstein metric on D and ci, j’s are smooth functions on D, regarded as
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functions in a neighborhood of D via the Tubular Neighborhood Theorem. The precise

meaning of the above expansion is that

u −
k

∑

i=0

Ni
∑

j=0

ci, jx
i(log x) j

= O(xk+),

where k+ is the next term of k in I.

In this paper, O(xN), for any real number N > 0, denotes a function ψ such that, for

integers k, l ≥ 0,

|(x∂x)
l∂k

z′,z̄′ψ| ≤ Ck,l,N xN .

Remark 1.1 It is obvious that in the statement of Theorem 1.1, we can replace x by

(− log ‖s‖)−1, where s is the defining section of D.

Usually, the coefficients of an asymptotic expansion formula in a geometric problem

will carry important geometric informations. For example the famous heat kernel expan-

sion and Bergman kernel expansion play very important role in Riemannian geometry and

Kähler geometry. Let’s also mention the boundary asymptotic expansion of conformally

compact Einstein metrics, which is very useful in conformal geometry. It is expected that

the coefficients of the asymptotic expansion in Theorem 1.1 will also carry interesting

geometric informations. We leave this problem to a future work.1

Recently, J. Sun and S. Sun studied the log K-stability of polarized Riemann surface

with standard cusp singularities [20]. An important ingredient of their proof is a precise

estimate of the Bergman kernel near the cusp singularity and in the neck region, which

in turn requires better asymptotic behaviors of the hyperbolic metric near the singularity.

The result and method of this paper should be helpful to attack the higher dimensional log

K-stability problem.

The paper is organized as follows: In §2, we recall the basic facts concerning the con-

struction of finite volume complete quasi-projective Kähler-Einstein metrics, including

Cheng-Yau’s quasi-coordinate map and their Hölder spaces. We shall derive some basic

properties that will be used in later sections, and obtain the leading term of the solution

via Cheng-Yau’s maximum principle on complete non-compact manifolds. Then in §3,

we compute the linearization of the associated complex Monge-Ampère equation in lo-

cal holomorphic charts. Since we need to work “semi-globally”, we shall need another

set of coordinates that is not holomorphic in general, namely coordinates from the Tubu-

lar Neighborhood Theorem. Since the holomorphic version of the Tubular Neighborhood

Theorem does not hold in general, this non-holomorphic coordinate transformation causes

most of the complication of this paper. The detailed computation is included in the ap-

pendix for the convenience of the readers. Then we show in §4 that one can derive a series

of formal approximate solutions. They can be viewed as a formal asymptotic expansion.

1Some initial terms have already been carried out by Rochon-Zhang [16]. See also Lemma 4.2.
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The x log x-term and index set appear naturally in this process. Even though this part is

not logically required in our proof, we feel that it may be helpful for the readers to under-

stand our proof. Finally, in §5, we use the solution formula of second order ODE to do

induction, and hence finish the proof.

Acknowledgements: This work is carried out during the second author’s visit at Rutgers

University by the support of Hwa Ying Foundation. He would like to thank the Founda-

tion for its support, thank Professor Jian Song for his invitation and the Department of

Mathematics at Rutgers University for its hospitality. Both authors thank Professor Jian

Song for his interest in this work.

2 Generalities on the complete Kähler-Einstein metrics

Let D be a smooth hypersurface in X. As is well known, D determines a unique holomor-

phic line bundle O(D), and D = (s) is the divisor of a (unique up to a non-zero constant

factor) holomorphic section s ∈ H0(X,O(D)). In the following, we always assume that

L := KX + D is ample. We choose a smooth Hermitian metric h on L, such that the curva-

ture form
√
−1ΘL > 0. We also choose a smooth metric on O(D), locally of the form e−ϕ.

Locally at some point p ∈ D, we choose coordinates s.t. D is defined by {zn = 0}, then

||s||2 = |zn|2e−ϕ.

Now consider the following Carlson-Griffiths [3] reference metric on X = X \ D

ω :=
√
−1ΘL −

√
−1∂∂̄ log

(

log
1

ǫ ||s||2
)2
.

Direct computation shows that when ǫ << 1, it is indeed a complete Kähler metric with

finite volume. For simplicity, we rescale s by
√
ǫ, and from now on, we always assume

ǫ = 1. As observed by Kobayashi [12] and Tian-Yau [21], (X, ω) has bounded geometry

of infinite order, which means that one can find a family of holomorphic maps of maximal

rank from balls of definite size in Cn into X (the so called “quasi-coordinates”), whose

images cover X, such that the pull backs of ω to the pre-images are uniformly equivalent

to the standard Euclidean metric and all the derivatives of the pull-back metric tensor are

uniformly bounded. If we choose local holomorphic coordinates (z1, . . . , zn) such that D

is defined by zn = 0, then typical quasi-coordinates (z1, . . . , zn−1,w) near D can be defined

by

zn = exp
(1 + η

1 − η ·
w + 1

w − 1

)

,

where 0 < η < 1 and |w| ≤ 2
3
. According to Cheng-Yau [4], one can define the global

Hölder norm ‖u‖k,α to be the supremum of the Euclidean Ck,α norms of the pull-back of u

on quasi-coordinate charts. We define Ck,α(X) to be the space of Ck functions u such that

‖u‖k,α < ∞. Using Cheng-Yau’s method, Kobayashi [12], Tian-Yau [21] and Bando [2]

proved the following existence theorem:
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Theorem 2.1 (Kobayashi, Tian-Yau, Bando) There exists a unique complete Kähler-Einstein

metric ωKE = ω +
√
−1∂∂̄u on X satisfying

Ric(ωKE) = −ωKE.

Moreover, u ∈ Ck,α(X) for any k ∈ N and 0 < α < 1 and ωKE is equivalent to ω.

The uniqueness follows from Yau’s Schwarz lemma. To prove the existence, one

solves the complex Monge-Ampère equation

log
(ω +

√
−1∂∂̄u)n

ωn
− u = f , (2.1)

where f is a smooth function on X such that Ric(ω) + ω =
√
−1∂∂̄ f . As in [12] and [21],

f ∈ Ck,α(X) for any k ∈ N and 0 < α < 1. In fact, if we write the bundle metric h on L

locally as e−ϕ/φ where Φ = (
√
−1)nφdz1∧ dz̄1 . . . dzn∧ dz̄n is a smooth volume form on X,

then f can be chosen as log Φ
Ψ

, where and Ψ = ‖s‖2(− log ‖s‖2)2ωn. Since D is smooth and

locally s = zn, a direct computation shows that Ψ extends to a continuous volume form on

X, hence f extends to a continuous function on X. In fact f |D is a smooth function on D.

Lemma 2.1 If we choose the bundle metric on L such that
√
−1ΘL|D is the canonical

Kähler-Einstein metric ωD satisfying Ric(ωD) = −ωD, 2 and denote σ := − log(‖s‖2), then

there is a constant c0 such that f = −c0 + O(σ−1) in a neighborhood of D.

Proof We can compute in local coordinates. First, it is easy to see that f − f |D = O(σ−1).

So it suffices to show f |D ≡ −c0 for some constant c0.

By direct computation, we have

Ψ(z′, 0) = 2ne−ϕ(z′,0)(
√
−1ΘL|D

)n−1 ∧ (

√
−1dzn ∧ dz̄n

)

= 2ne−ϕ(z′,0)ωn−1
D ∧ (

√
−1dzn ∧ dz̄n

)

,

and

Φ(z′, 0) = φ(z′, 0)(
√
−1)ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

So we have

f |D(z′, 0) = logφ(z′, 0) + ϕ(z′, 0) − log det(gD

αβ̄
)(z′, 0) + cn.

So we have

√
−1∂D∂̄D f |D = (

√
−1ΘL)|D + Ric(ωD)

= ωD + Ric(ωD) = 0.

So we have f |D ≡ −c0 for some constant c0. �

2This is always possible by [18].
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Using this Lemma, we can find the leading order behavior of u near D:

Lemma 2.2 For the same constant c0 as above, we have u = c0 + O(σ−1 logσ).

Proof The main tool of our proof is the following version of Cheng-Yau’s maximum

principle in [21]:

Lemma 2.3 (Cheng-Yau’s Maximum Principle) Let (Mn, g) be a complete Riemannian

manifold with sectional curvature bounded from below. Let ϕ be a smooth function on M

such that supM ϕ < ∞. Then there exist a sequence of points {pi} ⊂ M such that

lim
i
ϕ(pi) = sup

M

ϕ, lim
i
|∇ϕ|g(pi) = 0, lim sup

i

Hess ϕ(pi) ≤ 0.

Take a sufficiently small neighborhood U of D such that σ−1 logσ is strictly positive

on ∂U. We shall find large positive constants a, b such that

−aσ−1 logσ ≤ u − c0 ≤ bσ−1 logσ

in U. For this, we use the test functions M+ := u − c0 + aσ−1 logσ and M− := u − c0 −
bσ−1 logσ, with constants a, b > 0 to be determined later. We take M− for example, and

the discussion for M+ is the same.

First we assume M− < 0 on ∂U. This is true if b is large enough, since u is bounded. If

supU\D M− ≥ 0, by Cheng-Yau’s maximum principle, we can find a sequence pi ∈ U \ D

such that M−(pi)→ supU\D M− and

lim sup
i

HessM−(pi) ≤ 0.

So we have

sup M− = lim( f + u)(pi) + lim(−c0 − f − bσ−1 logσ)(pi)

= lim log
(ω +

√
−1∂∂̄u)n

ωn
(pi) + lim(−c0 − f − bσ−1 logσ)(pi)

≤ lim log
(ω + b

√
−1∂∂̄σ−1 logσ)n

ωn
(pi) + lim(−c0 − f − bσ−1 logσ)(pi)

≤ lim
(

− c0 − f (pi) −
(3

2
bσ−1

+ o(σ−1)
)

(pi)
)

.

Since f + c0 = O(σ−1), for b large enough, we must have M− ≤ 0. �

For the higher derivatives of u, we have:

Lemma 2.4 Under the same assumption as Lemma 2.1, for a solution u of (2.1), we have

|∇ku|ω ≤ Ckσ
−1 logσ (2.2)

for any integer k ≥ 1.
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Proof Denote v = u − c0. By Lemma 2.2, v = O(σ−1 logσ). And v satisfies the equation

log
(ω +

√
−1∂∂̄v)n

ωn
− v = f + c0.

In quasi-coordinates, we can rewrite the equation as

A j̄i∂i∂ j̄v − v = f + c0,

where

A j̄i
=

∫ 1

0

(

(gkl̄ + tukl̄)
−1

) j̄i

dt.

By Theorem 2.1, we can view this as a uniformly elliptic linear equation on v with smooth

coefficients. Since by Lemma 2.2, v = O(σ−1 logσ), the lemma follows from classical

interior Schauder estimates if we have the following:

Claim 1 For any integer k ≥ 0, we have

|∇k( f + c0)|ω = O(σ−1).

We shall prove this by mathematical induction. The k = 0 case is proved in Lemma

2.1. Now we assume |∇i( f + c0)|ω = O(σ−1) for i = 0, . . . k − 1. In quasi-coordinates

(z1, . . . , zn−1,w) =: (z′,w), we have ∂i
z′,z̄′∂

j

w,w̄( f + c0) = O(σ−1) for all multi-index i and

integer j such that |i| + j ≤ k − 1. Now for any |i| + j = k − 1, we have

∂i
z′,z̄′∂

j

w,w̄( f + c0) = (log |zn|2)−1a(z′,w).

Since f is in fact smooth with respect to x̂ := (− log |zn|2)−1, we conclude that any deriva-

tives of a(z′,w) with respect to the coordinates (z′,w) are still bounded. If we take another

z′ or z̄′ derivative, then obviously we still have O(σ−1). On the other hand, it is direct to

check that
∂

∂w
(− log |zn|2)−1

= O((− log |zn|2)−1).

So we have ∂i
z′,z̄′∂

j

w,w̄( f +c0) = O(σ−1) for all multi-index i and integer j such that |i|+ j ≤ k.

�

Choose local holomorphic coordinates (z1, . . . , zn) such that locally, D = {zn = 0}.
Write zn := reiθ. At this moment, we define

x = (− log r2)−1.

Another observation about f and u, which is of crucial importance for our later discus-

sions, is that they are essentially independent of θ:
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Lemma 2.5 We have

∂k
θ f = O(x∞), ∂k

θu = O(x∞)

for any k ≥ 1. Here O(x∞) means a function ψ satisfying

|∂k
z′,z̄′∂

l
xψ| ≤ Ck,l,N xN

for any k ≥ 0, l ≥ 0 and N ∈ N.

Proof We only need to prove the l = 0 case. Recall that all the derivatives of f and u with

respect to quasi-local coordinates are uniformly bounded. If we choose local holomor-

phic coordinates (z1, . . . , zn) such that D is defined by zn = 0, then the quasi-coordinates

(z1, . . . , zn−1,w) can be defined by

zn = exp
(1 + η

1 − η ·
w + 1

w − 1

)

,

where 0 < η < 1 and |w| ≤ 2
3
. Then we have

∂

∂θ
= i

(

zn

∂

∂zn

− z̄n

∂

∂z̄n

)

= −i
1 − η

2(1 + η)

(

(1 − w)2 ∂

∂w
− (1 − w̄)2 ∂

∂w̄

)

.

On the other hand, we have

x−1 ∼ 1 − |w|2
|1 − w|2 .

Direct computation shows that

x2 ∂

∂x
= Re

(

zn

∂

∂zn

)

=
η − 1

2(1 + η)
Re

(

(1 − w)2 ∂

∂w

)

.

This implies that the coefficients of x−1∂θ and x∂x are bounded and smooth. So if ψ is in

Cheng-Yau’s Hölder space CN,α(M, g0), then ∂l
z′,z̄′∂

k
θ
ψ = O(xk) for k + l ≤ N. Since any

such function ∂l
z′,z̄′∂

k
θ
ψ must be periodic in θ, we have

∫ 2π

0
∂l

z′,z̄′∂
k−1
θ
ψ = 0 when k − 1 ≥ 1.

This means we can find (for fixed z′ and x) a θ0 such that ∂l
z′,z̄′∂

k−1
θ
ψ(θ0) = 0. So we can

integrate the θ variables from θ0 to get ∂l
z′,z̄′∂

k′

θ
ψ = O(xk) for any 1 ≤ k′ ≤ k.

Finally, since both f and u are in all Ck,α(X), we get the result. �

3 Linearized operator under local coordinates

In this section, we shall compute the linearized complex Monge-Ampère operator in local

coordinate charts. This will we used in the next two sections to derive the asymptotic
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expansion. Choose local holomorphic coordinates (z1, . . . , zn) as before, such that locally

D = {zn = 0}. Recall that zn := reiθ and

x = (− log r2)−1.

Also recall that

σ = − log ‖s‖2 = − log r2
+ ϕ =

1

x
+ ϕ =

1 + xϕ

x
.

If locally ΘL = ϑi j̄dzi ∧ dz̄ j, and write ω :=
√
−1gi j̄dzi ∧ dz̄ j, then we have

gi j̄ = ϑi j̄ − ∂i∂ j̄ log
(

− log r2
+ ϕ

)2

= ϑi j̄ −
2xϕi j̄

1 + xϕ
+ NiN j̄,

where

Ni =

√
2

(x−1)i + ϕi

x−1 + ϕ
=

√
2x

r
· −δine−

√
−1θ
+ rϕi

1 + xϕ
.

To compute g j̄i, set

ϑ̃i j̄ = ϑi j̄ −
2xϕi j̄

1 + xϕ

which is positive definite near D. Then a direct computation shows that

g j̄l
= ϑ̃ j̄l −

ϑ̃ j̄pNpϑ̃
q̄lNq̄

1 + ϑ̃p̄qNp̄Nq

,

= ϑ̃ j̄l −
ϑ̃ j̄pÑpϑ̃

q̄lÑq̄

x2

2x2 + ϑ̃
p̄qÑp̄Ñq

,

so we derive

gβ̄α = ϑ̃β̄α − ϑ̃
n̄αϑ̃β̄n

ϑ̃n̄n
+ O(r) =

(

ϑβ̄α − ϑ
n̄αϑβ̄n

ϑn̄n

)

|D + O(x),

gn̄n
=

r2

2x2
(1 + 2xϕ) + O(r2),

gn̄α
=

(

ϑ̃β̄α − ϑ̃
n̄αϑ̃β̄n

ϑ̃n̄n

)

ϕβ̄z̄n +
ϑ̃n̄α

ϑ̃n̄n

r2

2x2
(1 + 2xϕ) + O(r2),

gβ̄n
=

(

ϑ̃β̄α − ϑ̃
n̄αϑ̃β̄n

ϑ̃n̄n

)

ϕαzn +
ϑ̃β̄n

ϑ̃n̄n

r2

2x2
(1 + 2xϕ) + O(r2).

(3.1)

9



Notice that the (n − 1) × (n − 1) matrix

(

ϑβ̄α − ϑ
n̄αϑβ̄n

ϑn̄n

)

|D

on D is exactly the inverse of (ϑαβ̄)|D. We write it as ηβ̄α.

For an operator T0, defined as

T0v = ηβ̄αvαβ̄ + x2Re(C∗αn̄

∂vα

∂x
) +

1

2
x2vxx + xvx, (3.2)

we say T = T0 + O(x), if T = T1 + T∞, where T1 has same form (3.2) as T0, and the

coefficients of T1 are 1 + O(x) times the corresponding coefficients of T0. T∞ is called

a O(x∞) operator, satisfying T∞(u) = O(x∞), where u is a solution of (2.1). If T0 is of

another form, we can define T0 + O(x) in a similar way.

Proposition 3.1 When acting on u or function ψ independent of θ, we have

g j̄i∂i∂ j̄ = η
β̄α∂α∂β̄ + x2Re(C∗αn̄

∂2

∂zα∂x
) +

1

2
x2∂2

x + x∂x + O(x),

where C∗αn̄ = Cαn̄(cos θ −
√
−1 sin θ). Here Ci j̄ are bounded smooth in x, θ and other

complex coordinates, and (ηβ̄α)1≤α,β≤n−1 is the inverse of the (n−1)× (n−1) matrix (ϑαβ̄|D).

Note that ηβ̄αuαβ̄ is just the Laplacian operator on D with respect to the canonical KE

metric. For simplicity, we set ∆D := ηβ̄α∂α∂β̄.

What are most relevant to us is another set of non-holomorphic coordinates. By tubular

neighborhood theorem, we can find a neighborhood Uδ of D diffeomorphic to the normal

bundle of D. Even though the normal bundle can be made to a complex manifold, this

diffeomorphism is in general not holomorphic. The coordinates we use are bundle coor-

dinates: Locally z∗α (α = 1, . . . n − 1) are coordinates of D, and ξ, η are fiber coordinates.

We also need polar coordinates with respect to (ξ, η), namely ξ = x∗ cos θ∗, η = x∗ sin θ∗.

Again, we set x∗ = 1/(− log(x∗)2). Note that x∗ is globally defined on Uδ.

We have the following relations between (z1, . . . , zn) and (z∗1, . . . , z
∗
n−1, ξ, η):

1. z∗α|D = zα|D for α = 1, . . . , n − 1.

2. zn = 0 if and only if ξ = η = 0.

3. x∗ equals the distance to D with respect to some fixed good Riemannian metric, and

hence is a globally defined function on Uδ.

We shall need the following three technical lemmas, whose proofs are contained in the

Appendix.

Lemma 3.1 All the derivatives of u with respect to θ∗ are of order O(x∞).

10



Lemma 3.2 We also have

g j̄i∂i∂ j̄ =
1

2
(x∗)2 ∂2

(∂x∗)2
+ x∗

∂

∂x∗
+ (x∗)2Re(C∗αn̄

∂2

∂x∂z∗α
) + ∆D + O(x∗), (3.3)

when acting on u or on ψ which is independent of θ∗.

Lemma 3.3 For any i ∈ I and integer j ≥ 0, and smooth function ci, j on D, we have

|∇∇̄(ci, j(x∗)i(log x∗) j)|ω = O((x∗)i(− log x∗) j).

In the rest of this paper, locally we always use coordinate charts like z∗α, x∗, θ∗. By for

simplicity, we still denote them as zα, x, θ.

To simplify notations, in the following sections of the paper, we simply write

(x∗, θ∗) as (x, θ). Hopefully this will cause no confusion.

Given a function ψ in Uδ, we can average the θ direction by integration3. To be precise,

for any fixed point p ∈ D with coordinate z′, and fixed x, we derive a function

ψ̃(z′, x) =
1

2π

∫ 2π

0

ψ(z′, x, θ)dθ,

under the local coordinate chart. ψ̃ is globally defined, and according to Lemma 2.5,

R(z′, x, θ) := ψ(z′, x, θ) − ψ̃(z′, x) = O(x∞).

For example, we have by Lemma 2.1 that

f =

∞
∑

i=0

f̃ix
i
+ O(x∞). (3.4)

In the following sections, a “ ˜ ” over a function always means its average on the θ-

direction.

4 Constructing a formal expansion

Lemma 2.5 suggests that we should find approximate solutions of the form

ψk =

∑

i∈I,i≤k

Ni
∑

j=0

ci, jx
i(log x) j,

where I is an index set defined below, and ci, j are functions on D, such that,

Q(ψk) := log
(ω +

√
−1∂∂̄ψk)

n

ωn
− ψk − f = O(xk+(log x)Nk+ ).

3This kind of construction has already appeared in [16]
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Here integers Ni can be defined inductively and explicitly if I is known. k+ is the next

larger element of k in I. Note that by Lemma 3.3, ω +
√
−1∂∂̄ψk is uniformly equivalent

to ω when x is small.

The index set I is defined as follows: First we assume {λk}’s are increasing eigenvalues

of −∆D = ηβ̄α∂α∂β̄ on D. Denote the two zeros of 1
2
k2
+

1
2
k − 1 − λk by mk,mk

, where

mk ≥ 1,m
k
≤ −2, and

mk ∼
√

2λk, m
k
∼ −

√

2λk (4.1)

as k → ∞. Then we define the index set I as the monoid generated by {1} ∪ {mk}∞k=1
, and

align its elements in the ascending order. We denote Eλ the eigenfunction space of −∆D

with respect to the eigenvalue λ, and E⊥
λ

its perpendicular space.

We need to approximate the operator Q(ψ) by its linearization and estimate its error.

The following calculation is well-known:

Lemma 4.1 For any smooth function ψ defined near D such that ω+
√
−1∂∂̄ψ > 0 and is

equivalent to ω, then we have

| log
(ω +

√
−1∂∂̄ψ)n

ωn
− g j̄iψi j̄| ≤ C|∇∇̄ψ|2ω.

Proof Write gt for the metric associated to ω + t
√
−1∂∂̄ψ, then we have

log
(ω +

√
−1∂∂̄ψ)n

ωn
=

∫ 1

0

∂

∂t
log det(gi j̄ + tψi j̄)dt =

(

∫ 1

0

g
j̄i
t dt

)

ψi j̄

= g j̄iψi j̄ +

(

∫ 1

0

g
j̄i
t − g j̄idt

)

ψi j̄

= g j̄iψi j̄ +

(

∫ 1

0

∫ 1

0

∂

∂s
g

j̄i
stds dt

)

ψi j̄

= g j̄iψi j̄ −
(

∫ 1

0

t
(

∫ 1

0

g
j̄p
st g

q̄i
stds

)

dt
)

ψi j̄ψpq̄.

By our assumption, the metrics gst are uniformly equivalent to g, so we get the conclusion

from the above identity. �

As the 0th order approximation, we choose ψ0 = c0, then by Lemma 2.1, we have

Q(ψ0) = O(x).

To find higher order approximations, we define:

N :=
1

2
x2 ∂

2

∂x2
+ x

∂

∂x
− 1.

12



If ψ1 := c0 + c1,0x, then

Q(ψ1) = g j̄i∂i∂ j̄ψ1 + O(|∇∇̄ψ1|2ω) − ψ1 − f

= ∆Dψ1 + Nψ1 − f + O(x2)

= (∆Dc1,0 − f̃1)x + O(x2),

where f̃1 is defined in (3.4). However, ∆Dc1,0 = f̃1 is solvable if and only if f̃1 is orthogonal

to the eigenfunctions associate to the 0 eigenvalue of ∆D, i.e.
∫

D
f̃1dvD = 0. If this is not

true, we shall need a log-term correction: Set instead ψ1 := c0 + c1,0x + c1,1x log x, then

Q(ψ1) = g j̄i∂i∂ j̄ψ1 + O(|∇∇̄ψ1|2ω) − ψ1 − f

= ∆Dψ1 + Nψ1 − f + O(x2(log x)2)

= (∆Dc1,0 +
3

2
c1,1 − f̃1)x + (∆Dc1,1)x log x + O(x2(log x)2).

If we require Q(ψ1) = O(x2(log x)2), then we have

∆Dc1,0 +
3

2
c1,1 − f̃1 = 0, ∆Dc1,1 = 0.

So c1,1 must be a constant such that
∫

D
(3

2
c1,1− f̃1)dvD = 0. Then c1,0 is solvable and unique

up to a constant. So c1,0 can not be determined locally, hence we call it “the first global

term”.

Lemma 4.2 The coefficient c1,1 is a topological number, depending only on D and its

normal bundle.

Proof By the previous discussion, we have

c1,1 =
2

3

?
D

f̃1|DdvD.

Recall that

f = log
Φ

‖s‖2(log ‖s‖2)2ωn
.

In local holomorphic coordinates, we have

det(gi j̄) = det(ϑ̃i j̄ + NiN j̄) = det(ϑ̃i j̄)(1 + ϑ̃
j̄iNiN j̄).

A direct computation shows that

f̃1|D = (∂x∗ f )|D = (∂x f )|D
= ∂x|x=0 log

φ

‖s‖2(log ‖s‖2)2 det(gi j̄)

= 2
(

ϑq̄p − ϑ
n̄pϑq̄n

ϑn̄n

)

|D · ϕpq̄|D

= 2
(

ϑβ̄α − ϑ
n̄αϑβ̄n

ϑn̄n

)

|D · ϕαβ̄|D

= 2ηβ̄αϕαβ̄|D.

13



It is essentially the trace of (
√
−1∂∂̄ϕ)|D with respect to ωD, up to a constant factor. Since

the restriction of the line bundle O(D) to D is just the normal bundle of D in X, denoted

by ND, and [ωD] = 2πc1(KD), we have c1,1 equals

Kn−2
D
· ND

Kn−1
D

up to a constant factor depending only on n. �

Note that the appearance of x log x term and its coefficients are already pointed out by

Rochon-Zhang [16].

Now we proceed to higher order approximations: Suppose we have already find ψ−
such that

Q(ψ−) = di, jx
i(log x) j

+ O(xi(log x) j−1),

where i ∈ I and di, j is a smooth function on D. At present we assume j > 0. We want to

find ci, j ∈ C∞(D) such that for ψ := ψ− + ci, jx
i(log x) j, we have

Q(ψ) = O(xi(log x) j−1).

Now we have

Q(ψ) = Q(ψ−) + log

(

ωψ− +
√
−1∂∂̄(ci, jx

i(log x) j)
)n

ωn
ψ−

− ci, jx
i(log x) j

= (di, j − ci, j)xi(log x) j
+ g

q̄p

ψ−
∂p∂q̄(ci, jx

i(log x) j) + O(xi(log x) j−1),

where we use Lemma 4.1 in the second equality. Since

g
q̄p

ψ−
− gq̄p

= −
(

∫ 1

0

g
q̄k

tψ−
g

l̄p

tψ−
dt

)

ψkl̄

and |∇∇̄ψ|ω = O(x log x), by Lemma 3.3 we have

Q(ψ) = (di, j − ci, j)xi(log x) j
+ gq̄p∂p∂q̄(ci, jx

i(log x) j) + O(xi(log x) j−1)

=
(

di, j + (∆D +
1

2
i2
+

1

2
i − 1)ci, j

)

xi(log x) j
+ O(xi(log x) j−1).

If 1
2
i2
+

1
2
i− 1 is not an eigenvalue of −∆D, or equivalently i is not one of the mk’s, then we

can find a unique ci, j such that Q(ψ) = O(xi(log x) j−1).

If i = ml for some l ∈ N, write di, j = d0
i, j
+ d⊥i, j, the orthogonal decomposition with

respect to Eλl
. We need to first modify ψ−:

Claim: There is a smooth function ρ ∈ C∞(D) such that

Q(ψ− + ρxi(log x) j+1) = d⊥i, jx
i(log x) j

+ O(xi(log x) j−1).
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In fact, the same computation as above gives

Q(ψ− + ρxi(log x) j+1) = di, jx
i(log x) j

+ gq̄p∂p∂q̄(ρxi(log x) j+1)

−ρxi(log x) j+1
+ O(xi(log x) j−1)

=
(

di, j + ( j + 1)(i +
1

2
)ρ

)

xi(log x) j

+
(

∆Dρ + λlρ
)

xi(log x) j+1
+ O(xi(log x) j−1).

We can simply choose ρ to be a constant multiple of d0
i, j

. Then we can find ci, j such that

ψ := ψ− + ci, jx
i(log x) j

+ ρxi(log x) j+1

satisfies

Q(ψ) = O(xi(log x) j−1).

Note that in this case ci, j is unique up to an element of Eλl
.

When j = 0, initially we have Q(ψ−) = di,0xi
+O(xi+(log x)m), where i+ is the next term

of i in I and m depends on the choice of ψ−. We try to find ψ = ψ− + ci,0xi
+ ρxi log x such

that Q(ψ) = O(xi+(log x)m). The discussion is the same as above.

Remark 4.2 From the above discussion, we see that cml,0’s are all independent global

terms. For any l ∈ N, cml,0 is unique up to an element in Eλl
. So we have infinitely many

formal solutions. There exists special formal solutions such that xml(log x) j appears in

the formal solution only if ml ∈ N. However, from our proof in the next section, other

non-integer ml’s also appear in the expansion in general.

5 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by induction. We shall prove that if we have an

asymptotic expansion of certain order, we can obtain a higher order expansion. The main

tools are the solution formula for second order ODE’s with constant coefficients and the

method of “separation of variables”. We shall use the fact that if a function ψ on D has bet-

ter regularity, then the “generalized Fourier series” of ψ with respect to the eigenfunctions

of ∆D has better convergence properties.

We write u as u = c0 + ṽ + R, where

R(x, z′, θ) : = u(x, z′, θ) − 1

2π

∫

S 1

u(x, z′, θ1)dθ1,

=
1

2π

∫

S 1

(∫ 1

0

∂θu(x, z′, tθ + (1 − t)θ1)dt

)

(θ − θ1)dθ1

which is O(x∞) by Lemma 2.5, and

ṽ(x, z′) =
1

2π

∫

S 1

u(x, z′, θ)dθ − c0.
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Define a nonlinear differential operator:

F(ψ) := Nψ + ∆Dψ − Q(ψ).

Then the equation (2.1) becomes

Nu + ∆Du = F(u).

Taking average with respect to θ in both sides, we have

Nṽ + ∆Dṽ = F̃(ṽ), (5.1)

where

F̃(ṽ) =
1

2π

∫ 2π

0

(F(c0 + ṽ + R) + c0) dθ

=
1

2π

∫ 2π

0

(F(c0 + ṽ) + c0) dθ +O(x∞).

We can view ṽ as a function on D × [0, δ). Even though F depends on the choice

of local coordinates, F̃(ṽ) is globally defined since the left hand side of (5.1) is globally

defined on D × [0, δ).

Definition 5.1 We say ṽ has an expansion of order O(xk), for some k ∈ I, if there are

smooth coefficients ci, j defined on D such that,

ṽ = ψk + Rk =

∑

i∈I,i≤k

Ni
∑

j=0

ci, jx
i(log x) j

+ Rk,

where the remainder Rk satisfies, under the local coordinate system, for some ǫ ∈ (0, k+ −
k),

|xl∂l
x∂

m
z′,z̄′Rk| ≤ C(k, l,m, ǫ)xk+ǫ ,

for any integers l,m. Equivalently, Rk = O(xk+ǫ ).

According to Lemma 2.2 and 2.4, ṽ = 0 + R0, where R0 = ṽ such that |R0|Cl
g
≤

Clx(− log x) for any l. So we say that ṽ has an expansion of order O(x0).

Inductively, we assume ṽ has an expansion of order k, and the goal is to prove for case

k+.

We adjust ǫ smaller if necessary, such that ml > k+ implie that ml > k+ + ǫ. Indeed, we

do not have a uniform ǫ for all l.
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Lemma 5.1 If ṽ has an expansion of order O(xk), say, ṽ = ψk +Rk, then ψk coincides with

one of the formal approximate solutions constructed in § 4, and F̃(ṽ) has an expansion of

order O(xk+), i.e.,

F̃(ṽ) =
∑

i∈I,i≤k+

Ni
∑

j=0

F̃i, jx
i(log x) j

+ R̃F,k+ (5.2)

with R̃F,k+ = O(xk++ǫ).

Proof We first prove that if ṽ = ψk + Rk, then ψk coincides with one of the formal approx-

imate solutions. By the discussion in §4, it is easy to see that we only need to prove

Q(c0 + ψk) = O(xk+ǫ),

then by the induction argument in §4, ψk must coincide with one of the formal approximate

solutions for any k ∈ Z≥0.

In fact, since u = c0 + ψk + Rk + R satisfies Q(u) = 0, we must have

0 = Q(c0 + ψk + Rk + R) = Q(c0 + ψk) +

∫ 1

0

d

dt
Q(c0 + ψk + t(Rk + R))dt

= Q(c0 + ψk) +

∫ 1

0

g
j̄i

ψk+t(Rk+R)
∂i∂ j̄(Rk + R)dt − Rk − R.

Since Rk + R = O(xk+ǫ ), from the above equation we get Q(c0 + ψk) = O(xk+ǫ).

Now we prove that F̃(ṽ) has an expansion of order O(xk+) if ṽ has an expansion of

order O(xk). For this, by definition, we only need to check the expansion for F(c0 + ṽ).

If k = 0, F(c0 + ṽ) = F(c0 + R0) = f + c0 + O(x2(log x)2), which confirms the claim.

And if k ≥ 1,

F(c0 + ψk + Rk) = ∆D(ψk + Rk) + N(c0 + ψk + Rk)

−Q(c0 + ψk) − (Q(c0 + ψk + Rk) − Q(c0 + ψk))

= F(c0 + ψk) + (∆D + N + 1)Rk −
∫ 1

0

g
j̄i

ψk+tRk
∂i∂ j̄Rkdt

= F(c0 + ψk) + (∆D + N + 1)Rk − g j̄i∂i∂ j̄Rk +O(xk++ǫ)

= F(c0 + ψk) +O(xk++ǫ),

where the last equality comes from Lemma 3.2. After averaging in θ, F̃(ψk) has explicit

expansion of any order. From the above equality, we have F̃(ψk + Rk) − F̃(ψk) = O(xk++ǫ).

So we conclude that F̃(ṽ) has an expansion of order O(xk+). �

Assume −∆Dϕl = λlϕl for analytic functions ϕl on D with
∫

D
ϕ2

l
dvD = 1, where dvD is

the volume form associated to the canonical Kähler-Einstein metric ωD. Then {ϕl}∞l=0
is an
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orthonormal basis of L2(D, dvD). As for any fixed x > 0, ṽ is a smooth function on D, we

write ṽ =
∑

l ṽl(x)ϕl, where

ṽl =

∫

D

(ṽϕl)dvD,

Then

−λlṽl + Nṽl = (F̃(ṽ))l, (5.3)

where

(F̃(ṽ))l(x) =

∫

D

F̃(ṽ)ϕldvD.

We view (5.3) as a non-homogeneous second order ordinary differential equation with

respect to x, then we solve out by choosing a fixed small x0 > 0:

ṽl =C1xml + C2xml − 2xml

ml − m
l

∫ x0

x

(F̃(ṽ))lx
−1−mldx

+
2xml

ml − m
l

∫ x0

x

(F̃(ṽ))lx
−1−mldx.

(5.4)

To determine C1,C2, we first take x = x0 to get

ṽl(x0) = C1x
ml

0
+C2x

ml

0
.

Since ṽl ∈ L∞, we then multiply (5.4) by x−ml , and let x→ 0,

0 = C2 +
2

ml − m
l

∫ x0

0

(F̃(ṽ))lx
−1−mldx.

We conclude,

ṽl =

(

ṽl(x0) · x−ml

0
+

2x
ml−ml

0

ml − m
l

∫ x0

0

(F̃(ṽ))lx
−1−mldx

)

· xml

− 2xml

ml − m
l

∫ x0

x

(F̃(ṽ))lx
−1−mldx

− 2xml

ml − m
l

∫ x

0

(F̃(ṽ))lx
−1−mldx.

(5.5)

Then

ṽ =
∑

l

ṽl(x0)xmlϕl

x
ml

0

+

∑

l

2x
ml−ml

0
xmlϕl

ml − m
l

∫ x0

0

(F̃(ṽ))lx
−1−mldx

−
∑

l

2xmlϕl

ml − m
l

∫ x0

x

(F̃(ṽ))lx
−1−mldx

−
∑

l

2xmlϕl

ml − m
l

∫ x

0

(F̃(ṽ))lx
−1−mldx.

(5.6)
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Fix an index A > 0. The first summation of (5.6) is easy to treat:

∑

l

ṽl(x0)xmlϕl

x
ml

0

=

∑

ml<A















ṽl(x0)ϕl

x
ml

0















· xml + HA,0xA, (5.7)

where

HA,0 =

∑

ml≥A

ṽl(x0)xml−Aϕl

x
ml

0

.

This is an expansion with respect to x, and it only has finitely many terms with ml < A, and

the corresponding coefficients only depend on z′. Our goal is to estimate the derivatives of

the remainder of the form

(x∂x)
p∂

q

z′,z̄′HA,0.

To this end, notice that for any N ∈ N,

|ṽl(x0)| = 1

λN
l

∣

∣

∣

∣

∫

D

ṽ(·, x0) · ∆N
Dϕl(·)dvD

∣

∣

∣

∣

=
1

λN
l

∣

∣

∣

∣

∫

D

(∆N
Dṽ(·, x0) · ϕl(·)dvD

∣

∣

∣

∣

≤ C(ṽ, x0,N)

λN
l

.

(5.8)

Here ∆N
D

ṽ(·, x0) is evaluated at x = x0, so bounded by the interior estimates of ṽ. Then for

any p, q ∈ N, by (5.8),

∣

∣

∣(x∂x)
p
∆

q

D
HA,0

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

(x∂x)
p
∆

q

D

∑

l

ṽl(x0)xml−Aϕl

x
ml

0

∣

∣

∣

∣

∣

∣

∣

=

∑

l

∣

∣

∣

∣

∣

∣

∣

(ml − A)pλ
q

l

ṽl(x0)xmlϕl

x
ml

0

∣

∣

∣

∣

∣

∣

∣

≤ C(ṽ, x0,N)
∑

l

∣

∣

∣

∣

λ
p

2
+q−N

l
ϕl

∣

∣

∣

∣

.

By the standard estimates of eigenvalues and eigenfunctions of ∆D, (cf. for example [19]

Corollary 5.1.2), as dimR D = 2n − 2, λl ∼ l
1

n−1 as l → ∞ and |λ−
2n−3

4

l
ϕl| ≤ C(ωD). So we

can set N >
p

2
+ q + 2n−3

4
, so that

∑

l

∣

∣

∣

∣

λ
p

2
+q−N

l
ϕl

∣

∣

∣

∣

≤ C(N, ωD).
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Note that the interchange of ∆D with infinite summation is justified by the above estimate.

Now (x∂x)
p
∆

q

D
HA,0 is bounded, which further implies that (x∂x)

p
∆

q−1

D
HA,0 is C

1,α
ω (D) in

z′, z̄′ by standard elliptic estimates. Eventually it implies, (probably with a different q),

|(x∂x)
p∂

q

z′,z̄′HA,0| ≤ C(v, x0, p, q, ωD). (5.9)

The main technical result of this section is the following proposition, whose proof

follows the same line as above:

Proposition 5.1 Fix an index A > 0. Assume that on D × (0, x0], we have a function

F(x, z′) = xi(log x) j · w(x, z′) for some i ∈ I, j ∈ Z, such that i ≤ A, 0 ≤ j ≤ Ni, and

|xl∂l
x∂

m
z′,z̄′w| ≤ Cl,m,

under the local coordinate system. In addition, we assume that w only depends on z′ when

i < A.

Denote

Fl =

∫

D

F · ϕldvD.

Then the following terms

H1 =

∞
∑

l=1

x
ml−ml

0
xmlϕl

ml − m
l

∫ x0

0

x−1−ml Fldx

H2 =

∞
∑

l=1

xmlϕl

ml − m
l

∫ x

0

x−1−ml Fldx

H3 =

∞
∑

l=1

xmlϕl

ml − m
l

∫ x0

x

x−1−ml Fldx,

have an expansion of the form:

• if i = A,

∑

l∈I,l<A

Hl,0(z′)xl
+

j+1
∑

m=0

HA,m(x, z′)xA(log x)m, (5.10)

• if i < A,

∑

l∈I,l<i

Hl,0(z′)xl
+

j+1
∑

m=0

Hi,m(z′)xi(log x)m

+

∑

l∈I,i<l<A

Hl,0(z′)xl
+

j+1
∑

m=0

HA,m(x, z′)xA,

(5.11)
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where all the coefficients Hl,m’s satisfy for any q ∈ N,

|∂q

z′,z̄′Hl,m| ≤ C(l,m, i, j, q). (5.12)

Here Hi, j+1 is not a zero function only if i = ml for some l ∈ N.

In addition, for any p, q ∈ N, we have in D × (0, x0),

|xp∂p
x∂

q

z′,z̄′Hl,m| ≤ C(l,m, i, j, p, q). (5.13)

Proof First we show the expansion and (5.12). Notice that Fl’s only depend on x. For

any integer N > 0, |∆N
D

F | ≤ C(F,N)xi(− log x) j. So we have the estimate of generalized

Fourier coefficients, if λl , 0,

|Fl| =
1

λN
l

∣

∣

∣

∣

∫

D

F · ∆N
DϕldvD

∣

∣

∣

∣

=
1

λN
l

∣

∣

∣

∣

∫

D

(∆N
DF)ϕldvD

∣

∣

∣

∣

≤ C(F,N)

λN
l

xi(− log x) j.

(5.14)

Now we look into the three integrals, with H1 first. Formally H1 is already in the form

of (5.10) or (5.11), as

H1 =

∑

ml<A

















x
ml−ml

0
ϕl

ml − m
l

∫ x0

0

x−1−ml Fldx

















· xml + HA,0(z′, x)xA,

where

HA,0 =

∑

ml≥A

x
ml−ml

0
xml−Aϕl

ml − m
l

∫ x0

0

x−1−ml Fldx.

Here HA,0 is an infinite summation. Again, as dimR D = 2n−2, we have λl ∼ l
1

n−1 as l→ ∞
and |λ−

2n−3
4

l
ϕl| ≤ C(ωD). Then if ml ≥ A, applying (5.14),

∣

∣

∣

∣

x
ml−ml

0
xml−Aϕl

ml − m
l

∫ x0

0

x−1−ml Fldx
∣

∣

∣

∣

≤ λ−N+ 2n−3
4

l
x

ml−A

0
C(F) · |λ−

2n−3
4

l
ϕl|

≤ C(F,N, ωD, x0)λ
−N+ 2n−3

4

l
.

We set N = 5
2
n − 3

4
, then

∑

ml≥A

λ
−N+ 2n−3

4

l
=

∑

ml≥A

λ−2n
l ≤

∑

ml≥A

l−
2n

n−1
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which is bounded by a constant depending only on n. Hence the sum of terms in HA,0 is

convergent. In addition, for any q ∈ N,

|∆q

D
HA,0| =

∣

∣

∣

∣

∣

∣

∣

∑

ml≥A

x
ml−ml

0
xml−Aλ

p

l
ϕl

ml − m
l

∫ x0

0

x−1−ml Fldx

∣

∣

∣

∣

∣

∣

∣

≤ C(F,N, ωD, x0)
∑

ml≥A

λ
p−N+ 2n−3

4

l
.

We can set N much larger than q, such that ∆
q

D
HA,0 is bounded, which further implies that

∆
q−1

D
HA,0 is C1,α in z′, z̄′. This eventually implies (5.12).

The discussion of H2 is similar. The difference here is that all terms are of order

xi(− log x)m for some 0 ≤ m ≤ j.

• if i = A, we write H2 as HA, jx
A(log x) j. We estimate ∆

q

D
HA, j, by (5.14),

∣

∣

∣

∣

∣

∣

∣

∆
q

D















∞
∑

l=1

xml−A(log x)− jϕl

ml − m
l

∫ x

0

x−1−ml Fldx















∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∞
∑

l=1

xml−A(log x)− jλ
q

l
ϕl

ml − m
l

∫ x

0

x−1−ml Fldx

∣

∣

∣

∣

∣

∣

∣

≤
∞
∑

l=1

∣

∣

∣

∣

∣

∣

C(F,N)λ
−N+q

l
ϕl ·

xml−A(log x)− j

ml − m
l

∫ x

0

xA−1−ml(log x) jdx

∣

∣

∣

∣

∣

∣

≤
∞
∑

i=1

C(F,N, q, j)λ
−N+q

l
|ϕl|,

which converges if N is large comparing to q and n.

• if i < A, by the assumption, w only depends on z′. Then
∫ x

0

x−1−ml Fldx =

∫

D

wϕldvD ·
∫ x

0

xi−1−ml(log x) jdx,

which generates terms like wl · xi−ml(− log x)m, for 0 ≤ m ≤ j. Hence we have the

expansion as (5.11). For the estimates of coefficients, we can proceed in a similar

way as in case i = A to derive (5.12).

For H3, notice when ml = i,
∫

x−1−ml · xi(log x) jdx = 1
j+1

(log x) j+1. So we may have a

term of order xi(log x) j+1 in the expansion of H3. In H3, for terms with ml ≥ A, we just

apply (5.14) to show that

∑

ml≥A

xmlϕl

ml − m
l

∫ x0

x

x−1−ml Fldx (5.15)

can be written as,
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• if i = A,

HA,m(z′, x)xA(log x)m,

where m = j + 1 if A = ml for some l ∈ N; otherwise m = j .

• if i < A, as w only depends on z′, (5.15) can be written as

j
∑

m=0

Hi,m(z′)xi(log x)m
+ HA,0(z′, x)xA.

All coefficients Hl,m satisfy (5.12). For the finite terms with ml < A, (essentially we do not

worry about finite summation),

• if i = A,

∑

ml<A

xmlϕl

ml − m
l

∫ x0

x

x−1−ml Fldr =
∑

ml<A

xmlϕl

ml − m
l

∫ x0

0

x−1−ml Fldr

−
∑

ml<A

xmlφl

ml − m
l

∫ x

0

x−1−ml Fldr,

which can be dealt with in the same way as for H1 and H2, and

• if i < A, w only depends on z′, and we still derive (5.12) by applying the explicit

integral formula of x−1−ml · xi(log x) j and (5.14).

Secondly, we prove (5.13). As Hl,m is independent of x if l < A, so we only need to

consider (x∂x)
pHA,m. The only trouble is that x∂x(xml) = mlx

ml , which produces an extra

factor ml ∼ λ
1
2

l
. So we simply increase N to deal with this factor. �

Now we continue the proof of Theorem 1.1. Recall that F̃(ṽ) has the expansion (5.2)

by induction, and ṽ can be solved out from F̃(ṽ) by (5.6).

First apply (5.7), (5.9) with A = k+ + ǫ to derive that
∑

l
ṽl(x0)xmlϕl

x
ml
0

has a boundary

expansion of order k+. Here ǫ is well set such that ml < A = k+ + ǫ implies that ml ≤ k+.

For each term F̃i, jx
i(log x) j or R̃F,k+ in the expansion of (5.6), applying Proposition 5.1

with A = k+ + ǫ and F = F̃i, jx
i(log x) j,w = F̃i, j or F = R̃F,k+ ,w = x−k+−ǫR̃F,k+ respectively,

we derive finite many expansions in the form of (5.10), (5.11), with (5.13) holds.

Summing up these finite many expansions, v has a boundary expansion of order O(xk+)

in the sense of Definition 5.1. Then we complete the induction.
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A Proof of Lemma 3.1-Lemma 3.3

Proof of Lemma 3.1 By chain rule, we have

∂

∂θ
=
∂z∗α
∂θ

∂

∂z∗α
+
∂z∗α
∂θ

∂

∂z∗α
+
∂x∗

∂θ

∂

∂x∗
+
∂θ∗

∂θ

∂

∂θ∗
.

It is easy to see that the coefficients of the first 3 terms are all of the order O(r), while ∂θ∗

∂θ

is of order O(1) and non-vanishing near D. So we can prove by induction that derivatives

with respect to θ∗ are also of order O(x∞). �

Proof of Lemma 3.2 By Lemma 3.1, we first check

∂

∂x
=
∂z∗α
∂x

∂

∂z∗α
+
∂z∗α
∂x

∂

∂z∗α
+
∂x∗

∂x

∂

∂x∗
+
∂θ∗

∂x

∂

∂θ∗

term by term:
∂z∗α
∂x
=
∂z∗α
∂r

dr

dx
=

r

2x2

∂z∗α
∂r
= O(x∞),

Similar for
∂z∗α
∂x

.

∂θ∗

∂x
=
∂θ∗

∂r

r

2x2
=

r

2x2
Im(

1

z∗n

∂z∗n
∂r

) = O(x−2).

By the previous Lemma, we can ignore all derivatives with respect to θ∗, too. So we only

need to compute ∂x∗

∂x
. Note that we have the Taylor expansion near D:

r∗ = Ar + O(r2)

where A > 0 is a locally defined function on D. Then we have

∂x∗

∂x
=

dx∗

dr∗
∂r∗

∂r

dr

dx
=

r(x∗)2

x∗x2

∂r∗

∂r
=

A + O(r)

A + O(r)
(1+4 log A x+O(x2)) = 1+4 log A x+O(x2)),

and so
∂2x∗

∂x2
= 4 log A + O(x) = 4 log A + O(x∗).

Then we conclude that

(
1

2
x2 ∂

2

∂x2
+ x

∂

∂x
)v = (

1

2
(x∗)2 ∂2

(∂x∗)2
+ x∗

∂

∂x∗
)v + O(x∗)

Secondly we check tangential directions,

∂

∂zα
=

∂z∗
β

∂zα

∂

∂z∗
β

+

∂z̄∗
β

∂zα

∂

∂z̄∗
β

+
∂x∗

∂zα

∂

∂x∗
+
∂θ∗

∂zα

∂

∂θ∗
.

24



We compute term by term:

First we can write z∗β = zβ + aβ(z), where aβ is a local smooth function of z such that

aβ(z1, . . . , zn−1, 0) ≡ 0. This implies

∂aβ

∂zα
= O(r),

∂āβ

∂zα
= O(r),

so
∂z∗β

∂zα
= δαβ + O(r),

∂z̄∗β

∂zα
= O(r).

For similar reason, all the higher order purely tangential derivatives of z∗α are all of order

O(r). Second, we have

∂x∗

∂zα
=

2(x∗)2

r∗
(

cos θ∗
∂ξ

∂zα
+ sin θ∗

∂η

∂zα

)

.

Recall that ξ|D ≡ 0, we conclude that
∂ξ

∂zα
(and in fact all the tangential derivatives) is of

order O(x∗), from which we conclude that

∂x∗

∂zα
= O((x∗)2).

Similarly,
∂θ∗

∂zα
=

1

r∗
( − sin θ∗

∂ξ

∂zα
+ cos θ∗

∂η

∂zα

)

= O(1).

From the expression of ∂x∗

∂zα
, we can further calculate ∂2x∗

∂zα∂z̄β
by chain rule, and easy to

see that all but one term are of order O((x∗)2). The remaining term is

−∂x∗

∂zα

1

r∗
∂r∗

∂z̄β
= −∂x∗

∂zα

1

r∗
(

cos θ∗
∂ξ

∂z̄β
+ sin θ∗

∂η

∂z̄β

)

.

This is again of order O((x∗)2). For the same reason,

∂2θ∗

∂zα∂z̄β
= O(1).

So we get
∂

∂zα
=

∂

∂z∗α
+ O((x∗)2)

∂

∂x∗
+ O((x∗)∞) operators
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For second order derivatives, we have

∂2

∂zα∂z̄β
=

(∂z∗µ

∂zα

∂

∂z∗µ
+
∂z̄∗µ

∂zα

∂

∂z̄∗µ
+
∂x∗

∂zα

∂

∂x∗
+
∂θ∗

∂zα

∂

∂θ∗

)

◦

(∂z∗ν
∂z̄β

∂

∂z∗ν
+
∂z̄∗ν
∂z̄β

∂

∂z̄∗ν
+
∂x∗

∂z̄β

∂

∂x∗
+
∂θ∗

∂z̄β

∂

∂θ∗

)

=
∂z̄∗ν
∂z̄β

∂z∗µ

∂zα

∂2

∂z∗µ∂z̄∗ν
+
∂z∗ν
∂z̄β

∂z∗µ

∂zα

∂2

∂z∗µ∂z∗ν
+
∂z∗ν
∂z̄β

∂z̄∗µ

∂zα

∂2

∂z̄∗µ∂z∗ν
+
∂z̄∗ν
∂z̄β

∂z̄∗µ

∂zα

∂2

∂z̄∗µ∂z̄∗ν

+
∂z̄∗ν
∂z̄β

∂x∗

∂zα

∂2

∂x∗∂z̄∗ν
+
∂x∗

∂z̄β

∂z∗µ

∂zα

∂2

∂z∗µ∂x∗
+
∂x∗

∂z̄β

∂z̄∗µ

∂zα

∂2

∂z̄∗µ∂x∗
+
∂x∗

∂zα

∂z∗ν
∂z̄β

∂2

∂z∗ν∂x∗

+
∂x∗

∂z̄β

∂x∗

∂zα

∂2

(∂x∗)2
+

∂2z∗ν
∂zα∂z̄β

∂

∂z∗ν
+

∂2z̄∗ν
∂zα∂z̄β

∂

∂z̄∗ν
+

∂2x∗

∂zα∂z̄β

∂

∂x∗
+

∂2θ∗

∂zα∂z̄β

∂

∂θ∗

+2nd order terms containing derivatives of θ∗

=
∂2

∂z∗α∂z̄∗
β

+ O((x∗)2) ·












(x∗)2 ∂2

(∂x∗)2
+

∂

∂x∗
+

∂2

∂x∗∂z̄∗
β

+
∂2

∂z∗α∂x∗













+O((x∗)∞) operators.

Next we compute mixed derivatives.

∂

∂zn

=

∂z∗
β

∂zn

∂

∂z∗
β

+

∂z̄∗
β

∂zn

∂

∂z̄∗
β

+
∂x∗

∂zn

∂

∂x∗
+
∂θ∗

∂zn

∂

∂θ∗
.

It is obvious that
∂z∗β

∂zn

= O(1),
∂z̄∗β

∂zn

= O(1).

∂x∗

∂zn

=
2(x∗)2

r∗
(

cos θ∗
∂ξ

∂zn

+ sin θ∗
∂η

∂zn

)

= O((x∗)2(r∗)−1).

∂θ∗

∂zn

=
1

r∗
( − sin θ∗

∂ξ

∂zn

+ cos θ∗
∂η

∂zn

)

= O((r∗)−1).

By chain rule, we can see that

zn

∂2x∗

∂zn∂z̄β
= zn

2(x∗)2

r∗
(

cos θ∗
∂2ξ

∂zn∂z̄β
+ sin θ∗

∂2η

∂zn∂z̄β

)

+zn

2(x∗)2

r∗
( − sin θ∗

∂ξ

∂zn

+ cos θ∗
∂η

∂zn

)∂θ∗

∂z̄β

+
2zn

r∗
∂x∗

∂zn

∂x∗

∂z̄β
− zn

r∗
∂x∗

∂zn

(

cos θ∗
∂ξ

∂z̄β
+ sin θ∗

∂η

∂z̄β

)

= O((x∗)2) + O((x∗)2) + O((x∗)3) + O((x∗)2) = O((x∗)2)
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Similarly, we have

zn

∂2θ∗

∂zn∂z̄β
= O(1).

Since in the mixed second order derivatives, ∂
∂zn

always go with zn, all derivatives involving

θ∗ can be ignored, we have

zn

∂2

∂zn∂z̄β
= zn

(∂z∗µ

∂zn

∂

∂z∗µ
+
∂z̄∗µ

∂zn

∂

∂z̄∗µ
+
∂x∗

∂zn

∂

∂x∗
+
∂θ∗

∂zn

∂

∂θ∗

)

◦

(∂z∗ν
∂z̄β

∂

∂z∗ν
+
∂z̄∗ν
∂z̄β

∂

∂z̄∗ν
+
∂x∗

∂z̄β

∂

∂x∗
+
∂θ∗

∂z̄β

∂

∂θ∗

)

= zn

∂z̄∗ν
∂z̄β

∂z∗µ

∂zn

∂2

∂z∗µ∂z̄∗ν
+ zn

∂z∗ν
∂z̄β

∂z∗µ

∂zn

∂2

∂z∗µ∂z∗ν
+ zn

∂z∗ν
∂z̄β

∂z̄∗µ

∂zn

∂2

∂z̄∗µ∂z∗ν

+zn

∂z̄∗ν
∂z̄β

∂z̄∗µ

∂zn

∂2

∂z̄∗µ∂z̄∗ν
+ zn

∂z̄∗ν
∂z̄β

∂x∗

∂zn

∂2

∂x∗∂z̄∗ν
+ zn

∂x∗

∂z̄β

∂z∗µ

∂zn

∂2

∂z∗µ∂x∗

+zn

∂x∗

∂z̄β

∂z̄∗µ

∂zn

∂2

∂z̄∗µ∂x∗
+ zn

∂x∗

∂zn

∂z∗ν
∂z̄β

∂2

∂z∗ν∂x∗
+ zn

∂x∗

∂z̄β

∂x∗

∂zn

∂2

(∂x∗)2

+zn

∂2z∗ν
∂zn∂z̄β

∂

∂z∗ν
+ zn

∂2z̄∗ν
∂zn∂z̄β

∂

∂z̄∗ν
+ zn

∂2x∗

∂zn∂z̄β

∂

∂x∗
+ zn

∂2θ∗

∂zn∂z̄β

∂

∂θ∗

+2nd order terms containing derivatives of θ∗

= O((x∗)2)
∂2

∂x∗∂z̄β
+ O((x∗)4)

∂2

(∂x∗)2
+ O((x∗)2)

∂

∂x∗
+ O((x∗)∞) operators

In sum,(3.3) is verified. �

Proof of Lemma 3.3 We use the local holomorphic coordinates to check this. First, we

have

∂2

∂zα∂z̄β

(

ci, j(z
∗
1, . . . , z

∗
n−1)(x∗)i(log x∗) j

)

=
∂2ci, j

∂z∗α∂z̄∗
β

(x∗)i(log x∗) j
+ o((x∗)i(log x∗) j).

Recall that

∂x∗

∂zα
= O((x∗)2),

∂

∂zα
=

∂

∂z∗α
+ O((x∗)2)

∂

∂x∗
+ O((x∗)∞) operators,

so we have

∂2

∂zn∂z̄β

(

ci, j(z
∗
1, . . . , z

∗
n−1)(x∗)i(log x∗) j

)

= O((r∗)−1(x∗)i+1(log x∗) j).

Finally, we have

∂2

∂zn∂z̄n

(

ci, j(z
∗
1, . . . , z

∗
n−1)(x∗)i(log x∗) j

)

= O((x∗)i(log x∗) j).

Then the lemma follows from (3.1). �

27



References
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