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Abstract

In a variety of applications, an agent’s success depends on the knowledge that an adversarial observer has or can gather
about the agent’s decisions. It is therefore desirable for the agent to achieve a task while reducing the ability of an observer to
infer the agent’s policy. We consider the task of the agent as a reachability problem in a Markov decision process and study
the synthesis of policies that minimize the observer’s ability to infer the transition probabilities of the agent between the states
of the Markov decision process. We introduce a metric that is based on the Fisher information as a proxy for the information
leaked to the observer and using this metric formulate a problem that minimizes expected total information subject to the
reachability constraint. We proceed to solve the problem using convex optimization methods. To verify the proposed method,
we analyze the relationship between the expected total information and the estimation error of the observer, and show that, for
a particular class of Markov decision processes, these two values are inversely proportional.

I. INTRODUCTION

We consider a setting in which an agent is supposed to accomplish a task in a stochastic environment while an observer
that is potentially adversarial tries to infer the characteristics of the agent’s behavior. For a scenario where predictable
behaviors may put the success of the task at risk, it is crucial for an agent to conceal its strategy. In this paper, we study
the synthesis of policies that enable an agent to achieve its task while limiting the ability of the observer to infer.

We model the behavior of the agent by a Markov decision process (MDP). The agent follows a policy to achieve its
objective, for example, reaching a set of target states with high probability. This policy determines the transition probabilities
of the agent between the states of the MDP. The observer can observe the transitions of the agent at a subset of the states
and, solely based on the observed transitions, infers the agent’s transition probabilities at these states. As a counter objective,
the agent aims to choose its policy such that it limits the ability of the observer to infer the transition probabilities in addition
to achieving the agent’s task with high probability.

A policy can limit the ability of the observer to infer by minimizing the amount of information on the transition probabilities
that the observer can gather from each observed transition. We introduce a metric, transition information, to measure the
amount of information that a single transition leaks to the observer. This metric is related to the Fisher information which
measures the amount of information that a random variable has on a parameter [[1]. An observer that is trying to estimate the
parameter would have high expected estimation error if the random variable has low Fisher information on the parameter.
The notion of transition information generalizes the Fisher information by providing a scalar value describing the information
leaked for the agent’s transition that is parametrized by the transition probabilities.

While the notion of transition information is appropriate for a single observed transition, we also need to consider the effect
of the number of observed transitions on the ability of the observer to infer. A policy that solely minimizes the transition
information for each observed state adjusts the transition probabilities to the successor states as close to each other as
possible since the uniform distribution of the successor states minimizes the transition information for a state. However, this
approach might increase the number of observed transitions, and the observer may be able to infer the transition probabilities
due to high number of observed transitions. Hence a policy that minimizes the ability of the observer to infer the transition
probabilities must also take into account the number of observed transitions and balance the number of observed transitions
and the transition information of each observed transition.

We account for the two quantities of interest, the number of observed transitions and the transition information of each
observed transition, through a unified notion of expected total information — the expected sum of transition informations
over a path generated by the agent’s policy. We propose to compute a policy that has the minimum expected total information
subject to the constraint that the task of the agent is completed with high probability.

To the best of our knowledge, the proposed method is the first policy synthesis method that uses the Fisher information
for planning in MDPs against an adversary. The method introduced in [2] uses the Fisher information for learning and
control in unknown systems that are modeled by MDPs. However, in contrast to our approach, [2]] aims to increase the
information gathered from transitions. A-optimality criterion [3] for experiment design aims to minimize the total variance
of estimators by minimizing the trace of the inverse Fisher information matrix. The transition information is the reciprocal
of the trace of inverse Fisher information matrix. In contrast, by minimizing the transition information, we aim to maximize
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the total variance of estimators unlike A-optimality criterion. In terms of the use of Fisher information, the closest works
to the method proposed in this paper are [4] and [5]]. The methods introduced in [4] and [5] use the Fisher information to
preserve privacy for database systems and smart meters, respectively, and they do not deal with MDPs. Planning in stochastic
control settings in the presence of an adversary has been substantially explored previously; the works closest to our paper are
[6]—[8]]. The reference [6] provides a method for multi-agent perimeter patrolling scenarios and is not applicable to MDPs
in general. Papers [7], [8]] propose to randomize the policy of an agent by maximizing the entropy of an induced stochastic
process. While, for an MDP, increasing the entropy of a process increases randomness of the paths, it does not necessarily
limit the ability of an observer to infer the transition probabilities.

The rest of the paper is organized as follows. Section [[I] provides necessary background on the proposed method. In
Section the definition of information and the problem formulation are presented. Section [[V|includes the methodology to
synthesize the policy that has minimum expected total information subject to a reachability constraint by convex optimization
problems. In Section [V] we show the relationship between considered problems and estimation errors of the observer. We
present numerical examples in Section [VI] and conclude with suggestions for the future work in Section We discuss
some special cases of the proposed method in Appendix [A] and give the proofs for the technical results of this paper in

Appendix B}
II. PRELIMINARIES

In this section, we present some of the concepts and notation used in the rest of the paper.

We use [n] for the set {1, ...,n}. For a finite set D, we denote the power set with 22 and cardinality with | D|. E[©] denotes
the expectation of the random variable © and Var(©) denotes the variance of © which is E [(© — E[©])(© — E[O])T]. We
use 1p for the indicator function of a set D where 1p(x) =1 if x € D and 1p(x) = 0 otherwise.

A. Markov Decision Processes

A Markov decision process is a tuple M = (S, A, P, sp) where S is a finite set of states, .A is a finite set of actions,
P:SxAxS —[0,1] is the transition probability function, and sy is the initial state. We denote P(s, a, q) by Ps a4 A(S)
denotes the set of available actions at state s where > ¢ Psq,q = 1 for all a € A(s). We denote the successor states of
state s by Succ(s) such that a state ¢ € S if and only if there exists an action a such that P, , , > 0. A state s is absorbing
if it has only a single successor state that is itself, i.e., Py 45 = 1 for all a € A(s).

A sub-MDP (C, D) of M is a pair where C' C S is non-empty and D : C' — 24 is a function such that a inD(s) only
if Psqq =0 for all ¢ ¢ C. An end component is a sub-MDP (C, D) of M such that the digraph induced by (C, D) is
strongly connected. An end component (C, D) is closed if, for all s € C, Succ(s) \ C = 0. A maximal end component
(C, D) is an end component where there is no end component (C’, D') such that (C, D) # (C',D’), C C C’,and D C D'.

A policy is a sequence m = [po, fi1, .. .| where each i, : S x A — [0,1] is a function such that }_ .5 pe(s,a) =1
for every s € S. A stationary policy 7 is a a sequence m = [u, t,...] where u : S x A — [0,1] is a function such that
Y e As) u(s,a) = 1 for every s € S. We denote the set of all policies by II(M) and the set of stationary policies by
I1%¢(M). For a stationary policy 7, we denote (s, a) by Ts,q. A stationary policy 7 induces a Markov chain M™ =
(S, P, s0) from M where P™ : S x S — [0,1] is the transition probability function such that

P (s,q) := Z Ts,a Ps,a,q
acA(s)

for all s5,q € S. We denote P™(s,q) by PZ,.

A path §& = 50s182... is an infinite sequence of states under policy @ = [ug,pu1,...] such that
2 aeA(sy) Psisasei bt (s, @) > 0 for all ¢ > 0. The set of paths for M under policy 7 is denoted by Paths(M™).

The reachability probability to the set B of states, i.e., the probability of reaching a state b € B under policy 7, is denoted
by Pr™(Reach[B]).

The expected state residence time at state s is defined by

o0
xl = ZPr(st = sso),
t=0

where s; is the state at time ¢. The expected state residence time 7 is also equal to E[N, ¢] where N, ¢ is the number of
appearances of s in the random path ¢ that is generated by the policy 7. The expected state-action residence time at state
s and action a is defined by

o0
Ty, = ZPr(st = s|so)pt(st, a).
t=0
The expected state-action residence time of a state and an action is the expected number of times that the action is taken at
the state. For a stationary policy m € II°*(M), 27, = 74, 7.

s,a



B. The Fisher Information and the Cramér-Rao Bound

Let the random variable X represent the observed data from a random variable that is parametrized by © € R™. An
estimator is a function © : X — R™ that estimates © based on observed data. The estimator © is an unbiased estimator of
0 if E[0] — © = 0.

The precision of a random variable is the reciprocal of the variance of the random variable. For an unbiased estimator,
its precision is the reciprocal of the mean squared error (MSE) of the estimator.

The Fisher information [9)] Ix(0) of a discrete random variable X parametrized by 6 € R is

2 (0] r =X
Ix():=— Y o1 g<Pa(;§ ) pe(x = 2j0).

z€Supp(X)

An important property of the Fisher information is additivity, that is, when the samples are drawn from i.i.d. random variables,
the Fisher information based on n samples [ x~ () satisfies Ixn(0) = nlx(0) where Ix(6) is the Fisher information of one
sample.

The Cramér-Rao inequality [9]] defines a relationship between the variance of an unbiased estimator of parameter 6 and
the Fisher information on the parameter 6. The inequality is stated as

Var(6) > Ix(0)~* (1

where 0 is any unbiased estimator of 6.
An unbiased estimator is efficient if it achieves the Cramér-Rao bound.

III. PROBLEM STATEMENT

Consider an agent whose behavior is governed by a Markov decision process (MDP) M = (S, A, P, so) where a stationary
policy followed by the agent 7 implemented on this MDP induces a Markov chain. An adversary which we call observer
observes the transitions and tries to infer the transition probabilities for a set W of states in the induced Markov chain. We
assume that the observer can only observe the transitions at the states in W which we call observed states, and has no side
information.

The problem we study is the synthesis of a policy for the agent with two objectives: (i) reach a set Cyeqcn Of states with
probability higher than a given threshold 0 < v;.¢4cp < 1 and (ii) minimize the amount of information leaked to the observer.

For the first objective, we assume that the transitions of the agent after reaching C,..4., are irrelevant, i.e., every state in
Creach 18 absorbing and is not observed.

For the second objective, we define the notion of transition information to measure the amount of information leaked to
the observer due to a transition.

Definition 1. The transition information of a state s is defined by
1
o= _ 2
ZqESucc(s) IQ (,P;T,q) !

where () is the random variable that is the successor state of state s.

We remark that the Fisher information and the transition information are analogous:

o The reciprocal of the Fisher information is a lower bound on the variance of an unbiased estimator for a single parameter.
o The reciprocal of the transition information is a lower bound on the variance of an unbiased estimator for many
parameters.

For a state s, consider an unbiased estimator P, of transition probabilities. The reciprocal of the transition information ¢}
is a lower bound on the variance of P,:

Var(755) >

~
:a;\‘?—‘

We use the transition information to define the fotal information of a path. The total information of a path £ = sgs1s2. ..
is defined as the sum of each observed transition’s transition information such that

oo
Lye = Z Ty (s¢)es, -
t=0

We then state the synthesis problem formally as follows:



Problem 1 (Synthesis of Minimum-Information Admissible Policies). Given an MDP M = (S, A, P, so), a set Creqch Of
states, a probability threshold Vyeqcn, and the set W of observed states, compute

inf E[T ], 3
rentflon i .

S. L Pr” (ReaCh[CTeach]) 2 Vreach (3b)
where £ is a random path generated under policy w. If the optimal value is attainable, compute the optimal policy 7*.

Hereafter we call the policies that satisfy the reachability constraint admissible policies and an optimal policy for Problem
a minimum-information admissible policy.

Example 1. We explain the characteristics of a minimum-information admissible policy through the MDP given in Figure
[[] with Vpeqen, = 0 for simplicity.

Figure 1: An MDP with 4 states. A label a,p of a transition refers to the transition that happens with probability p when
action a is taken. The states marked with the superscript o are observed.

The goal of the agent is to find a policy that minimizes the expected total information. Consider the policy at state s; and
note that the policy decision at s; does not affect information leaked from state sy since it does not change the expected
residence time at sog. Hence we may only consider the information leaked from s;. If the agent chooses a deterministic
policy, the observer can estimate the transition probabilities with no error even after observing a single transition, which
means infinite leaked information. Therefore, it is expected that the agent randomizes the transition probabilities. Formally,
we explain the reasoning by the fact that the Fisher information is minimized for a Ber(p) random variable with p = 0.5.
Similarly at state sg, the agent randomizes the transition probabilities. However, unlike s;, the policy at s affects the
information leaked from s;. As the agent decreases the probability of taking action « at state sg, the expected number of
visits to state s; decreases and consequently information leaked from s; decreases. Hence, the agent must take the action
(£ with a greater probability than the action a. On the other hand, taking the action  with high probability increases the
information leaked from sg. We expect that, under this trade-off, the agent must choose a policy that takes both actions, but
the action /3 more likely. Numerically, the optimal policy is 75, o = 0.38, 75, 3 = 0.62, w5, o = 0.5, and 7,5, g = 0.5.

Remark 1. Note that if the transition probabilities are not constant and change between observations, measurement of
inference with a transition information is not meaningful since we assume underlying probability distribution is constant.
To have a well-defined problem, we only focus on agents that have to follow stationary policies and we search the optimal
policies only in the stationary policies.

IV. SYNTHESIS OF MINIMUM-INFORMATION ADMISSIBLE POLICIES

For an MDP M = (S, A, P, s), we aim to find a minimum-information admissible policy 7 that minimizes the expected
total information of a path subject to the reachability constraint Pr™(Reach[Creach]) = Vreach Where the set of observed
states is W. In this section, we represent the expected total transition transition information in terms of expected state-action
residence times, show the existence of a minimum-information admissible policy, and give an optimization problem whose
solution is a minimum-information admissible policy. We also show that the proposed optimization problem is convex in
the expected state-action residence time parameters and hence can be solved using off-the-shelf convex optimization tools.

Note that the Fisher information for a parameter is well-defined if the regularity conditions are satisfied. These conditions
require that the distributions depending on the parameter have a common support that is independent of the parameter [9]]. For
a random variable P ~ Ber(p), the Fisher information is not defined when p = 0 or p = 1 since the probability distribution
of P does not have a common support. However, such a case practically corresponds to infinite Fisher information, which
means that the value of the parameter is estimated exactly even after a single observation. We assume that the Cramér-Rao
lower bound is zero if the Fisher information is infinite.

Consider a state w € W whose successor state is denoted by the random variable (). For each ¢ € Succ(w), we have

1

10(Pog) = @ Pua) = o =5
w,q w,q



where 1,(Q) is a Ber(Py, ,) random variable. The transition information of a state w is a function

b : {Py € RISUCC@ Z Puwg=1,Puq >0} = RU{oc}
g€Suce(w)
and, under policy m, is equal to
-1

= oo Pra=-Pr| - (4a)

g€ Succ(w)

Remark 2. The categorical random variable Q) has the distribution Pj; . where q € Succ(w). The covariance matrix ¥
of Q has diagonal entries Py (1 — Py ). The transition information of state w given in @a) is also equal to tr(X)~",
Since Q) is a categorical random variable, a sample mean estimator achieves the Cramér-Rao bound for a single transition.
However, since the observed data consists of transitions from a path and the transitions are not independent in general, a

sample mean estimator is not necessarily unbiased and efficient.

We now construct the optimization problem whose solution gives the expected state-action residence times for a minimum-
information admissible policy. First, we rewrite as

-1
™

xga ‘rw,a’
bw = Z Z Z,A—xﬂpwya»q 1- Z W%,a,q (%)
q€Suce(w) \acA(w) —~a'€ (w) “w,a a€A(w) '€ (w) “w,a

using the definitions of the induced Markov chain and expected state-action residence times.
We assume that the optimal value of Problem [I] is finite. If the optimal value is infinite any admissible policy is a
minimum-information admissible policy.

Proposition 1. For an MDP M, if E[{y ] is finite where { is a path generated randomly under a policy T € 1%(M),
then
Elfvel = Y @i

Note that the expected total information z7,cy;, of a state w has some undefined points on the domain z7, , > 0 where
a € A(w). We define the function at such points as follows:

o If the expected state residence time is zero, i.e., 2, = > . A(w) Tiw,a = 0, then 27,07, := 0. Since the state will never
be visited, the observer cannot get information on the transition probabilities.

o If w deterministically transitions to one of the successor states and expected residence time is greater than zero, i.e., there
exists a state ¢ € Succ(w) such that 3 4,y 27%.aPw,ag > 0and 3 1) T o Pw,a,q = 0 for all ¢" € Succ(w)\ g,
then x7 7 := oo. Since the observer can estimate the transition probabilities even after a single observation and there
is a positive probability that the state will be visited, the expected total information is infinite.

« If the expected state residence time at w is infinite, i.e., 2], = ZQGA(M) Ty, o = 00, then a7y := oo. Since the
observed distribution of transitions converges to the transition probabilities, the expected total information is infinite.

We represent the stationary policies of the agent with a set of constraints which use the expected state-action residence

times. A stationary policy makes each state either recurrent or transient. We need to identify the states that can be reachable
and recurrent. If a policy leaks finite information, a set of states can be reachable and recurrent if and only if they belong to
an end component and are not observed since the recurrence of a reachable observed state results in infinite expected total
information.

Definition 2. An unobserved end component (UEC) is a sub-MDP (C, D) such that the digraph induced by (C, D) is
strongly connected and C N W = (. An unobserved maximal end component (UMEC) (C, D) is a UEC where C C S and
there is no UEC (C”, D') such that (C, D) # (C',D’), C C C’, and D C D'.

We denote the set of states that belong to some UMEC by C.,4. After reaching C¢,4, the agent can follow a stationary
policy that always stays in the UMEC and leaks no more information. For example, so is a UMEC state in Figure
However, due to the reachability constraints the agent might need to follow a policy that leaves a UMEC. We disallow such
cases and make the following assumption to ensure that the agent does not leave UMECs.

Assumption 1. All unobserved maximal end components are closed.

Remark 3. In the absence of Assumption|l| to find the optimal stationary policy, one needs to check every UEC to determine
whether the agents needs to stay or leave the UEC. Such a check increases computational complexity of finding a minimum-
information admissible policy. For clarity of presentation, we here adopt Assumption [I| In Appendix [A] we investigate the
more general problem without Assumption



Figure 2: An MDP with 5 states. A label a,p of a transition refers to the transition that happens with probability p when
action a is taken. The states marked with the superscript o are observed.

The optimal value of Problem (1] is

inf Z i, (6a)
weW
s.t. 2l = T3, Vs € S\ Cena (6b)
ac€A(s)
rg ., >0, Vs € S\ Cena, Ya € A(s) (6¢)
Z ‘:C:;ra Z Z qa (](l‘?_]lso( ) VSES\Cend (6d)
a€A(s) qeES aeA(q

Z Z Z 9337@733,(1,(1 + ]lso (Q) 2 Vreachs (6e)

q€Creach SES\Cena a€A(s)

where the decision variables are 7 , for all s € S\ Cepq and a € A(s). The objective function follows from Proposition
[[] and the constraints (6b)-(6c) follow from definitions of expected residence times. The constraint (6d) is the flow equation
indicating that the expected number of arrivals into a state, i.e., the inflow, is equal to the expected number of departures from
the state, i.e., the outflow. These equations ensure that there exists a policy that gives the computed expected state-action
residence times [10]. The reachability constraint in (3b) is equivalent to (6€).

Note that some stationary admissible policies are infeasible for the optimization problem given in (6). In detail, the
stationary policies that eventually always stay in an end component and visit an observed state infinitely often are infeasible.
For instance, consider a policy 7 such that Pr™(Reach[ss]) = 0.5 for the MDP given in Figure [2| with the reachability
constraint Pr(Reach[sz] > 0.5). While 7 leads to infinite expected total information and satisfies the reachability constraint,
it is not feasible for the problem in (6). One can easily check the existence of a policy that satisfies the reachability constraint
via model checking tools such as [[11]]. If there exists a policy that satisfies the task constraints, but the optimization problem
given in () is infeasible, we can say that the minimum-information admissible policy leaks infinite information.

Proposition 2. If there exists a policy m € 1% (M) that satisfies the reachability constraint given in (3b), then there exists
a policy 7 € ISt (M) that attains the optimal value of the optimization problem given in (G).

Proposition 3. The optimization problem given in (0)) is a convex optimization problem.

Remark 4. After a preprocessing step that has polynomial-time complexity in the size of M, the optimization problem can
be formulated as a conic optimization problem which can be solved using interior-point methods [12] in polynomial-time
in the size of M.

After computing the optimal expected state-action residence times by the optimization problem in (6)), a stationary,
minimum-information admissible policy can be synthesized using the relationship z7 , = 75 o 7.

V. BOUNDS ON THE ESTIMATION ERROR

In this section, we consider estimators for the transition probabilities at the observed states and derive the bounds on the
expected estimation error in terms of MSE. Define o,, as the MSE of an unbiased estimator at a state w. We assume that,
for the estimator at state w, the observed data are the whole path of the agent and the transition probabilities for the set
S\ {w} of states are known.



Proposition 4. For an MDP M and a policy © € TI9(M),
s 2
ou > Pr™ (Reach|w])
Tl
for every state w € W.
Corollary 5. For an MDP M and a policy = € II5*(M), the total MSE Y, .y, 0, satisfies

min Pr”(Reach[w])?|W|?

j : o > weWw
w
wew E[L?/—va]

W2

w
Consequently, if Pr™(Reach[w]) = 1 for every = € TI°'(M) and for all w € W, then ——— is a lower bound on the

s
Ee [Lw,g]
total MSE.
Cramér-Rao Bound ; Information Bound
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Figure 3: (a) An MDP with 3 states. A label a, p of a transition refers to the transition that happens with probability p when
action a is taken. The states marked with the superscript o are observed. (b) The Cramér-Rao bound on the total MSE of
the estimators and the error bound given in Corollary El

An example of the bound given in Corollary [3] is illustrated in Figure 3] Both of the observed states are visited under
any stationary policy and the reciprocal of the expected total information is directly a lower bound on the total MSE of
the estimators. One who wants to maximize the total MSE of the estimators may prefer to optimize over the expected total
information instead of the Cramér-Rao bound since the Cramér-Rao is not a convex or concave function of the expected
residence time parameters while the minimum-information admissible policy can be computed via a convex optimization
problem.

VI. NUMERICAL EXAMPLES

In this section, we illustrate the proposed method through two numerical examples. We solved the optimization problems
using CVX toolbox [13|] with MOSEK [14] on a computer with an Intel Core i7-8550u 1.8 GHz CPU and 8 GB of RAM.

A. Partly Hidden Agent

In this example, we explain the characteristics of the minimum-information admissible policy through different scenarios.
The environment which is given in Figure [4] consists of 4 regions that are separated with walls and connected to each
other with bridges. Each region is a 20 x 20 grid world and each tile in these regions represents a state. Except for the reach
state, the agent has 4 actions, namely, up, down, left, and right, at every state. When the agent takes an action the transition
happens into the target direction with probability 0.8 and in the other directions uniformly randomly with probability 0.2. If
a direction is out of the grid the transition probability to that direction is proportionally distributed to the other directions.

The initial state is the black top-left corner tile and the reach state is the green bottom-middle tile. The task of the agent
is to reach the reach state with probability 1. While the agent is in the gray tiles, the observer cannot observe the transitions
of the agent.

In the first scenario (see Figure [4a) all states are observed except the reach state and the bridge states. The agent completes
the task with a low number of observed transitions (See Table [I) with randomized transitions. Note that the randomization
only happens between the states that are in the direction of the reach state since further randomization leads to more
observations. When the unobserved regions are present in the environment (see Figure {b)), the policy generates paths that
pass through the unobserved regions to reduce the number of observations. However, the unobserved regions are not always
utilized. For example, in the top-right region if the agent is already away from the unobserved region, it directly goes to
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Figure 4: The heatmaps of expected state residence times for partly hidden agent example. For the scenario given in Figure
[b] the environment has some unobserved regions while every state is observed for the scenario given in Figure Ab] The
scenario given in Figure 4c| considers exit information of in addition to the transition information.

the bottom-right region. Although, no information leaks in the unobserved regions, the agent leaks information during the
process of reaching those states.

We remark that the minimum-information admissible policy minimizes only the information of transitions from the
observed states. While this approach reduces the amount of leaked information in the local sense, i.e., the transitions
between the states, the global behavior, i.e., the transitions between the regions, might be easily inferred. We observe such a
phenomenon for the scenario given in Figure [da} the agent leaves the regions using the same bridge. This behavior may be
risky if there is an adversary that is interested in the information of which bridge is used. To avoid this behavior, we add a
weighted penalty, exit information, for each region. The exit information of a region has the same form with the transition
information and consists of the expected state residence times of the bridges. With the exit information (see Figure the
agent randomizes its exit bridge from the regions compared to the initial case (see Figure fa).

Table I: Numerical values for partly hidden agent example.

S . Expected Expected Number Solving Ti
Cenario rytal Information of Observations olving lime
Figure 152.20 81.87 0.52
Figure [4b| 146.00 78.89 0.38
Figure [4c| 179.64 98.43 0.58

B. Inference of Local Behavior

We explain the difference between the proposed method and the policy synthesis via entropy maximization through this
example. The environment is a 11 x 11 grid world given in Figure [5] where each tile represents a state. The black tile is
the initial state, the green tile is the reach state, and the red tiles are the absorbing states. Except for the absorbing states
and the reach state the agent can transition to 4 directions, namely, up, down, left, and right, at every state. When the agent
takes an action, the transition happens in the target direction with probability 1. If a direction is out of the grid the action
is not allowed. The task of the agent is to reach the reach state with probability 1.

We compare the policies in terms of their estimation error, which is calculated for different number of sample paths. The
observer gets sample paths and estimates the transition probabilities at the observed states using a sample mean estimator.
We measure the estimation error for a state by the mean squared error (MSE) between the observed and actual transition
distributions at the observed states. The total error is the sum of MSE for each state. If there is no observation sample from
a state, we set the MSE for that state.For the weighted MSE error, the weight of a state is ratio between the number of
observations from the state and the total number of observations.

Maximizing the entropy of an MDP is equivalent to maximizing the entropy of the possible paths, and a high entropy
value leads to unpredictable paths. Under the reachability constraint, the maximum entropy of the MDP given in Figure [3]
is unbounded. For policy synthesis, we follow the procedure given in [[8] and impose an upper bound on the expected total
state residence time I'. As the bound increases, the maximum entropy value of the MDP increases. We synthesize three
policies that maximizes the entropy of MDP with different values for I" = 15, 60, and 120.

For low values of I'" such as 15, the minimum-information admissible and the maximum-entropy policies show similar
behavior. However, for the high values of I', the difference between the minimum-information admissible policy and the
maximum-entropy policy becomes clear. The minimum-information admissible policy completes the task with a low number
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Figure 5: The expected state residence times for inference of local behavior example.

of non-informative observations. On the other hand, the maximum-entropy policy visits the observed states more to explore
more paths and randomize the probabilities of paths. While the agent follows different paths, the expected residence times
at the observed states increases and observer gets more samples. Although the policy is randomized and samples are
less informative, transition probabilities are inferred due to the high number of observations. The result suggests that
the unpredictability of the paths does not imply the limitation of inference for the transitions between states. Hence, the
minimum-information admissible policy and the maximum-entropy policy serve different purposes.
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Figure 6: The expected estimation errors. The curves are averaged over 100 experiments.

VII. CONCLUSION

We focus on policy synthesis for an agent whose behavior is inferred by an outside adversarial observer. Such an agent
must as less informative observations as possible to the observer while completing its task. Based on this criterion, we
introduced transition information which is based on the Fisher information and measures the amount of information leaked
to the observer from a transition. Then, we formulated a problem that minimizes the expected total information leaked to
the observer and showed the existence of such a policy. The significant feature of the proposed method is that it balances a
possible trade-off between the number of observations and the informativeness of each observation.

The proposed method relies on the assumption that the agent follows a stationary policy on the observed states. A history
dependent planning method may deceive the observer by actively changing the policy. We aim to remove this assumption
and design an algorithm that takes the past transitions into account.
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APPENDIX A
UNOBSERVED MAXIMAL END COMPONENTS

In Section we said that after reaching an unobserved maximal end component (UMEC), the agent may leak no more
information since there exists a stationary policy that always stays in the UMEC. However, such a policy may not be
admissible due to the reachability constraint. In that case, the agent has to leave the UMEC.

Assumption 1| ensures that the agent cannot leave UMECs. Every policy stays in UMECs and hence the outflow from
these states is zero. Thanks to this assumption, we only need to consider the policies where the agent stays in UMECs and
synthesize the policy accordingly.

In the following subsections we investigate the cases where the assumption does not hold. Appendix [A-A] provides an
exhaustive search algorithm to find the optimal stationary policy. Appendix [A-B] provides an algorithm that searches a
different class of policies to find the optimal policy.

A. Agents with Stationary Policies

Consider the MDPs given in Figure [7| where the reachability requirement is Pr™ (Reach[s4 U s5]) > 0.5. For both MDPs
information is leaked only at state s3 and it is proportional to the expected residence time at state s3, i.e., xg,. Note that
also the reachability probability is equal to the expected residence time at state s3, i.e., 7, = Pr™(Reach[ss U s5]).

(b)

Figure 7: MDPs with 6 states. A label a, p of a transition refers to the transition that happens with probability p when action
a is taken. The states marked with the superscript o are observed.

One might naturally think that a policy that makes zg, = 0.5 is a minimum-information admissible policy. However,
we note that such a stationary policy might not exist since 27, and Pr™(Reach[sy U s5]) are not continuous functions of
stationary policies. For the MDP given in Figure a stationary policy 7 has Pr”"(Reach[sq U s5]) = 1 if g, 3 > 0
and Pr"(Reach[sq U s5]) = 0 otherwise. Every policy 7* such that 7*(s1, ) > 0 is a stationary, minimum-information
admissible policy. However, such a policy does not satisfy the reachability requirement with equality. For the MDP given
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Algorithm 1 Synthesis of a stationary, minimum-information admissible policy for MDPs with UMECs - Process 1

1: Input: An MDP M = (S, A, P, sg), the set of observed states T, the set of states to be reached Cjcqcn, and the
reachability probability v,eqch-

2: Output: A stationary, minimum-information admissible policy 7* for M.
3 R:=0.

4: Find every UMEC (C, D) and set R:= RUC.

5. L= QR.

6: minval := oo

7: for all [ € L do

8: if [ is a union unobserved end component then

9: Conag :i=1

10: Solve (@) with Ceng, Creach, and Vyeqen- Set the optimal value to val and set the solution to restimes.
11: if val < minval then

12: minval := val, minset := [, minrestimes := restimes.

13: end if

14: end if

15: end for

16: Cepg := minset.
17: Synthesize the minimum-information admissible 7* policy using Algorithm 2] with minrestimes and Cey,q.
18: return 7*

Algorithm 2 Synthesis of a stationary, minimum-information admissible policy for UMECs - Process 2

1: Input: An MDP M = (S, A, P, so), the expected residence times J}‘g; for M, and C,,q4.

2: Output: A stationary, minimum-information admissible policy 7* for M.

3: Synthesize a policy 7*'“¥ such that for a state s € Cends Y 4ec,, , D oacA(s) TS Poayg = 1.
4: for all s € S do

5 if 3, 4(s) #5, = 0 then
6 for all a € A(s) do
7: Set 7 , arbitrarily between 0 and 1 subject to Za,eA(S) =T = L
8 end for
9 else if s € C.,,4 then
10: for all a € A(s) do
11: Mg q = wgfgy
12: end for
13 else
14: for all a € A(s) do
s . %
: ™ _ """ -
o Za’eA(s) 'rg,*a’
16: end for
17: end if
18: end for

19: return 7*.

in Figure it is possible to find a stationary policy that satisfies the reachability requirement with equality. The stationary
policy m* with 75, , = 0.5, 73 5 =0.5, 7, , =0, and 7} 5 =1 is the minimum-information admissible policy.

By the MDPs given in Figure [/| we note that determining whether the optimal policy stays in a UEC is not trivial. To
find the stationary, minimum-information admissible policy, we give an optimization algorithm that is based on exhaustive

search of all unobserved end components.

Definition 3. A union unobserved end component is a sub-MDP (C, D) that is union of UECs (Cy, D1),...,(Cn,Dn)
such that C = C1 U...UCy and D(s) = Dy(s)U...U Dp(s) for every s in C.

Algorithm [T] takes a subset of UMEC states, checks whether this subset is a union unobserved end component (see Lines
8). If the subset is a union unobserved end component, it finds the optimal stationary policy that makes the agent stay in
the union unobserved end component (see Lines [9] - [I0). The algorithm outputs the minimum-information admissible policy
after checking all subsets.



Remark 5. Note that the size of R is O(|S|) in Algorithm |I|and the size of L is O(2!51). Checking whether a set of states
S is a union unobserved end component has O(|S|?|A|) complexity. Hence, the exhaustive search given in Algorithm
increases the complexity by a factor of O(251|S|3|A|).

B. Agents with Nonstationary Policies

In this section, we remove Assumption [1| and introduce an algorithm that avoids the exhaustive search given in Algorithm
The exhaustive search is required as a drawback of stationary policies. We extend the policy space of the agent to find
the optimal policy with lower computational complexity by allowing the agent to pick a policy that might be nonstationary
for the unobserved states. We call a policy 7 observation stationary if it is stationary at the observed states and define
I19%s St(M) as set of the observation stationary policies of M.

The new algorithm is based on the flow constraints that describe the policy space of the agent. Under Assumption |1} the
flow constraints given in - disallow outflow from the observed maximal end components to the other states. We
remove this assumption and allow outflow from UMECs.

To find the minimum-information admissible policy we first create a modified MDP. The modified MDP has two copies
of UMECs that are connected to each other with an action called switch. For a UMEC, while the original copy is connected
to the other states, the duplicate copy is closed. We use the duplicate copies to represent the cases where the agent decides
to stay in the UMEC.

For MDP M = (S, A, P, s0), we create a modified MDP M = (S, A, P, s0) as follows. Let C.,,4 be the set of states
that belong to some UMEC of M. For each s € C,,4, we create a duplicate state 5. Let C.,.a be the set of duplicate
UMEC states. We define S := S U C,pq. For all s € S, we define A(s) := A(s) and for all a € A(s), ¢ € S we define
ﬁs,a,g := Ps,a,q- The duplicate state 5 has the action a if and only if a € A(s) and qucwd Ps,a,q = 1. For every 5 € Cend,
g € Ceng, and a € A(S), we let Ps 45 = Ps q,q. For every state s € Cepq, we also add a new action switch to A(s) such
that Ps,switch,g =1 N

Note that by definition Cl.¢qcn belongs to Cl,,q. For the reachability constraint, we use the set of duplicate states Chreqch-
For modified MDP M and C,,,4, we find the expected residence times of a minimum-information admissible policy with
the following optimization problem

inf Z Tl (7a)
weWw
s.toal= > al, Vs € 5\ Cong (7b)
acA(s)
xg, >0, Vs € S\ Cong, Va € A(s) (7¢)
Z :C:,a - Z xgﬂpq,a,s = ]130 (S), Vse S \ Cend (7d)
a€A(s) q€S acA(q)
Z Z Z x;r,aps,a,q + 150 (Q) > Vreach (76)

qeév‘eac}t Ses\éend (IG.A_(S)
and synthesize the optimal policy 7*.

Remark 6. The optimization problem given in does not include the policies that always stay in Cepng, in the feasible
set. However, we remark that it does not effect the optimality of the solution since the value of such a policy can also be
achieved by a policy that enters and always stays in Cepg.

We describe the policy 7* of the agent in the original MDP with Algorithm [3] We use a memory element switched that
is True if and only if switch action is taken previously. We also synthesize a stationary policy 7, for MDP M that
always stays in Cepgq.

Note that the resulting policy is not stationary for the original MDP M. The agent remembers whether it switched to the
stay mode in the past. However, it is stationary for all states in S \ Ce,q. The inference problem is still meaningful since
the policy does not change over time for the observed states.

Proposition 6. For an MDP M, the policy 7 that is synthesized via the optimization problem given in and Algorithm
is a solution to the following problem
min E[];
TETObs.St( M) [ W*g]
S. L. Prﬂ—(ReaCh[Creach]) Z Vreach

where £ is a random path generated under policy .



Algorithm 3 Synthesis of a minimum-information admissible policy

1: Input: Current state s in M, switched, T*, Tsiqy, and Cepg.
2: Output: The optimal policy 7* of M and switched.
3: if switched then

4: T i= Tstay-

5: else if s & Cy,,q then
6: T =T,

7: else

8 rnd = Unif[0, 1].

9 if rnd < @7 ., then
10: switched := True.
11: T = Tstay-

12: else

13: for all a € A(s) do

) .

s

. * s,a

14: Tsa = 1_ =+
s,switch

15: end for

16: end if

17: end if

18: return 7* and switched

APPENDIX B

Proof of Proposition |I} We first consider two cases:

e (7, = oo for a reachable state w € W.
e 7 > 0 for a state w € W and w is recurrent under policy .

Assume that the first case is possible. Since the path fragments of M™ that end with w has a positive probability and
un, = oo, the expected total information must be infinite. Thus, the first case is not possible. Assume that the second case
is possible. Since the paths of M7 that visit w infinitely often has a positive probability and ¢, > 0, the expected total
information must be infinite. The second case is also not possible. Hence, all observed states must be unreachable or must
leak finite information and be transient.

The expected total information of a transient or unreachable state w € W is

el = D Pr(Nue = n)ni, (8a)
n=0

= E[Nw,E]Lg (8b)

=Ly (8c)

where N, ¢ is the random variable that is the number of appearances of w in §.
The expected total information is

Elfye = > ELL ] (9a)
weWw

= >l (9b)
weWw

|

Sketch of Proof for Proposition [2] If the optimal value of (6) is infinite then any policy that satisfies the reachability
constraints is the optimal policy. Otherwise, let M be the optimal value of (). :T given in (3) is a lower semicontinuous
function in the domain z7 , > 0 where a € A(s). The objective function of (6) is a sum of lower semicontinuous functions

s,a =
and thus is a lower semicontinuous function in domain x7, > 0 for all s € S\ Cepnq and a € A(s). For every 27, ,, that
satisfies 7,17, < M, is bounded where w € W. Also every x7 , is bounded since a state s € S\ Cc,q must be transient.

With the constraints (6c)-(6€)) the feasible region is a compact set. Since a lower semicontinuous function attains its infimum
on a compact set, we conclude that the proposition holds. |

Before we proceed to the proof of Proposition |3} we give the following lemma that will be used in the proof.



Lemma 7. If f : V — R is a positive, concave function where V. C R™ is a convex set, then is a convex function on

L
f(z)

V.
Proof of Lemma [/} Since f and log are concave functions, log f is a concave function and consequently — log f is a convex
function on V. Finally, exp(— log f) = ? is a convex function on V, due to convexity of exp and —log f on V. ]

Proof of Proposition[3} Let f1 : Y1 — R be a function such that f1(p) = > ., p;(1 — p;). Clearly f; is a positive, concave
function on the convex domain Y1 = {p | p1,...,p, >0, >0 p; =1, 3i,j € [n], i #j, pi; > 0}. Let fo:Y7 — R be
a function such that 1 1

SN Xhip-p)

By Lemmal (/| f5 is a convex function on the domain Y;. A perspective function [[15] of f5 is g1 : Y2 — R such that

= gxif(p)

x;
Pi==m
' 2?21 g
Due to the convexity property of perspective functions [15[], g; is convex on

where

Yy = {(I7Zx1) | T1y..yTn 207 317.76 [TL], Z#Ja Ty, j >0}

=1

since f, is convex on Y;. We eliminate the redundant dimension -, z; and define g5 : Vi — R such that

g2(z) = g1 (33,2331) .
i=1

go is an affine transformation of g; and convex on
Vi={z|x,...,2, >0, 3i,j €[n], i #J, x;; >0}

We introduce Vo ={z | 21 =... =2, =0} and Vyor = {z | Fi € [n], Vj € [n], i # j, z; >0, 2; = 0}. Note that Vj,
V1, and V. are disjoint sets.

Now we define g : V — RU {oo} on V = VUV U Ve such that g(x) = 0 if z € V, g(z) = ¢g1(x) if € V3, and
g(x) = o0 if & € Vey.

Clearly g3 is convex on V; and V.. We check all possible combinations for convexity where A € [0, 1]:

e M\g(v1) + (1 = N)g(v2) > g(Avy + (1 — N)vg) if v1 € Vyer and ve € Vo U VY,

e \g(v1) + (1 = N)g(va) = g(AY1 + (1 — A)ve) if v; € Vp and vg € V4.

Hence g is convex on V.

Now we represent the objective function of (6) using g. Without loss of generality assume that the successor states of
state s are qi, - - ., q|suce(s)| and the actions at state s are ay, ..., a)4(s)- Note that

zgig = g(Pr)

where = [(s,a1),...,2(s,a)4(5))]" and P is a |Succ(s)| x |A(s)| matrix with (i, j)-th entry Py q; g,

Since 277 is an affine mapping of g, 7.7 is convex on T’ = {z € RIAG)I | 2 aeA(s) T5,aPs,a,q = 0} and consequently
on T = {z € RMGI | 27 >0} CT".

The objective function (6a)) is a sum of convex functions and the constraints in (6) are linear. Therefore, we conclude that
the optimization problem is convex. ]

Proof of Proposition 4} Due to the stochasticity of MDP, we might encounter the cases where the observer has no observation
from a state and hence no sample for estimation. For such cases, denote o, o for the MSE when there is no sample for
estimation. Denote o, 4 for the MSE when there is at least one sample for estimation.

The MSE of the g-th element (0,,), is the estimation error for transition probability to the successor state ¢ such that

ZqES’ucc(s) (Uw)q = Ow-



Denote the result of the successor state at time ¢ for the random path £ by R; ¢ where by definition R_; ¢ = sg and Ny, ¢
for the number of times that state w appears in £&. We have

(0w)q =Pr(Nuw,e = 0|7)(0w,0)q + Pr(Nuw,e > 0|7) (0w, +)q (10a)
>Pr”(Reach[ N(ow+)q (10b)
r" (Reach[w])
Teiny >0(Twg) 10
I§|NW,§>0( w,q ) ( C)

Pr™ (Reach[w])

. (10d)
Ym0 IR IRt 6 Ro e Nuwe>0(PE )
_ Pr” (Reach|w)) (10e)
Zt:o IRt,&IRt—1,£7Nw 5>0( w,q)
" (Reachlu]) P, (1 - P5.,) on
Zt o Pr(Ri—1 = w|Ny ¢ > 0)
Reach 2pr (1 —Pr
P (Reachlu]*P5, (1 - P5,) e

7y,
where (I0c) is due to Cramér-Rao bound, is due to chain rule of the Fisher information [16], and (I0e) is due to
Markovian property of paths.

The MSE at state w is bounded such that
Pr” (Reach[w])*PT, J1=P5 )

> ) 3
ow> > e (11a)
g€ Succ(s) w
:Pr”(Reach[w])2. (11b)
L
|

Proof of Corollary[5] Total MSE at state w is
Pr”(Reach|w))?

™ T
waw

(12a)

UU}
The total MSE for the set of states W is
P hlw
Z O > Z Pr™(Reach[w])? (13a)

weW weW Tu b
Imrv%/ Pr”(Reach|w]")?
> w’' €
=3 e (13b)
weWw
min Pr”(Reach[w]")?|W |?
w' eW (13c)
o ZwEW .13; Lg
min Pr”(Reach[w'])?|W|?
w’' eW
= _ . (13d)
Ef[LW,A
|

Sketch of Proof for Proposition [6] The proof steps are as follows,

o show that a stationary policy 7* is optimal for modified MDP M among all policies in IT19%-5¢( M),

« show that the minimum-information admissible of M is not lower than M,

o show that the expected total informations are equal for 7* of M and 7* of M.

Consider the minimum-information admissible policy 7* for M. For every state s € S, we identify whether 7* makes s
recurrent or transient.

Let (C, D) be an original UMEC of M and 7! be a policy such that P (s¢ € C eventually always) > 0. We claim that
the expected total information under policy 7! can also be achieved by a policy 72 such that P (s¢ € C infinitely often) = 0
since upon deciding to stay in C' the agent can first take switch action and then take the same actions in the duplicate
UMEC C. Note that staying in C' or C' does not affect the total information since both UMECs leak no information. Hence,
we only look for policies that makes C.,  transient and Cnq recurrent.



Let (C, D) be an end component of M such that C N C,,q = () and there exists w € W and w € C. We claim that a
policy that always stays in C' visits an observed state infinitely often and leaks infinite information. If it does not, then there
must exist a state s € C' such that s is recurrent and s ¢ W. Such a state s must belong to a UMEC, but by construction
it is not possible. Hence if there exists a policy that leaks finite information every state s € C' must be transient. Also note
that a state that does not belong to an end component must be transient by definition.

We partition S into two sets: transient states S \ C.,q and recurrent states C,,,4. Under any policy 7 € [10bs-8 t(./\;l) that
makes the C.,4 recurrent and S \ C.,,q transient, we have the flow equation

Z xg,a - Z Z xg’apq,a,s = ]150(8), Vs € 5 \ éendc

a€A(s) q€S\Cena a€A(q)

Since we optimize over the observation stationary policies, the Proposition (1] still holds. The optimization problem given
in finds the state-action residence times of the optimal policy subject to the flow equation and the reachability constraint.
The stationary policy synthesized via (3] yields to the optimal expected residence times and hence is optimal.

Let

= inf  E[Lf 15
v TreHOlbl}.St(M) [1Tve] (15a)
s. t. Pr”™ (ReaCh[OreachD 2 Vreach (15b)
and
o= inf _E[] 16
v ﬁeHO]i)I.sl.St(M) [LW’E] ( a)
s. t. Pr™(Reach|Creach]) > Vreach- (16b)

Since every 7 € II(M) is also realizable for M with the same expected total information and reachability probabilities, we
have v* > v*.

Finally, we note that 7* of M and 7 of M yield to the same expected total information o* since the expected residence
times and the policies are the same at the observed states for both policies . Consequently, 7* is a minimum-information
admissible policy of M. [ |
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