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Abstract

In a variety of applications, an agent’s success depends on the knowledge that an adversarial observer has or can gather
about the agent’s decisions. It is therefore desirable for the agent to achieve a task while reducing the ability of an observer to
infer the agent’s policy. We consider the task of the agent as a reachability problem in a Markov decision process and study
the synthesis of policies that minimize the observer’s ability to infer the transition probabilities of the agent between the states
of the Markov decision process. We introduce a metric that is based on the Fisher information as a proxy for the information
leaked to the observer and using this metric formulate a problem that minimizes expected total information subject to the
reachability constraint. We proceed to solve the problem using convex optimization methods. To verify the proposed method,
we analyze the relationship between the expected total information and the estimation error of the observer, and show that, for
a particular class of Markov decision processes, these two values are inversely proportional.

I. INTRODUCTION

We consider a setting in which an agent is supposed to accomplish a task in a stochastic environment while an observer
that is potentially adversarial tries to infer the characteristics of the agent’s behavior. For a scenario where predictable
behaviors may put the success of the task at risk, it is crucial for an agent to conceal its strategy. In this paper, we study
the synthesis of policies that enable an agent to achieve its task while limiting the ability of the observer to infer.

We model the behavior of the agent by a Markov decision process (MDP). The agent follows a policy to achieve its
objective, for example, reaching a set of target states with high probability. This policy determines the transition probabilities
of the agent between the states of the MDP. The observer can observe the transitions of the agent at a subset of the states
and, solely based on the observed transitions, infers the agent’s transition probabilities at these states. As a counter objective,
the agent aims to choose its policy such that it limits the ability of the observer to infer the transition probabilities in addition
to achieving the agent’s task with high probability.

A policy can limit the ability of the observer to infer by minimizing the amount of information on the transition probabilities
that the observer can gather from each observed transition. We introduce a metric, transition information, to measure the
amount of information that a single transition leaks to the observer. This metric is related to the Fisher information which
measures the amount of information that a random variable has on a parameter [1]. An observer that is trying to estimate the
parameter would have high expected estimation error if the random variable has low Fisher information on the parameter.
The notion of transition information generalizes the Fisher information by providing a scalar value describing the information
leaked for the agent’s transition that is parametrized by the transition probabilities.

While the notion of transition information is appropriate for a single observed transition, we also need to consider the effect
of the number of observed transitions on the ability of the observer to infer. A policy that solely minimizes the transition
information for each observed state adjusts the transition probabilities to the successor states as close to each other as
possible since the uniform distribution of the successor states minimizes the transition information for a state. However, this
approach might increase the number of observed transitions, and the observer may be able to infer the transition probabilities
due to high number of observed transitions. Hence a policy that minimizes the ability of the observer to infer the transition
probabilities must also take into account the number of observed transitions and balance the number of observed transitions
and the transition information of each observed transition.

We account for the two quantities of interest, the number of observed transitions and the transition information of each
observed transition, through a unified notion of expected total information — the expected sum of transition informations
over a path generated by the agent’s policy. We propose to compute a policy that has the minimum expected total information
subject to the constraint that the task of the agent is completed with high probability.

To the best of our knowledge, the proposed method is the first policy synthesis method that uses the Fisher information
for planning in MDPs against an adversary. The method introduced in [2] uses the Fisher information for learning and
control in unknown systems that are modeled by MDPs. However, in contrast to our approach, [2] aims to increase the
information gathered from transitions. A-optimality criterion [3] for experiment design aims to minimize the total variance
of estimators by minimizing the trace of the inverse Fisher information matrix. The transition information is the reciprocal
of the trace of inverse Fisher information matrix. In contrast, by minimizing the transition information, we aim to maximize
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the total variance of estimators unlike A-optimality criterion. In terms of the use of Fisher information, the closest works
to the method proposed in this paper are [4] and [5]. The methods introduced in [4] and [5] use the Fisher information to
preserve privacy for database systems and smart meters, respectively, and they do not deal with MDPs. Planning in stochastic
control settings in the presence of an adversary has been substantially explored previously; the works closest to our paper are
[6]–[8]. The reference [6] provides a method for multi-agent perimeter patrolling scenarios and is not applicable to MDPs
in general. Papers [7], [8] propose to randomize the policy of an agent by maximizing the entropy of an induced stochastic
process. While, for an MDP, increasing the entropy of a process increases randomness of the paths, it does not necessarily
limit the ability of an observer to infer the transition probabilities.

The rest of the paper is organized as follows. Section II provides necessary background on the proposed method. In
Section III, the definition of information and the problem formulation are presented. Section IV includes the methodology to
synthesize the policy that has minimum expected total information subject to a reachability constraint by convex optimization
problems. In Section V, we show the relationship between considered problems and estimation errors of the observer. We
present numerical examples in Section VI and conclude with suggestions for the future work in Section VII. We discuss
some special cases of the proposed method in Appendix A and give the proofs for the technical results of this paper in
Appendix B.

II. PRELIMINARIES

In this section, we present some of the concepts and notation used in the rest of the paper.
We use [n] for the set {1, . . . , n}. For a finite set D, we denote the power set with 2D and cardinality with |D|. E[Θ] denotes

the expectation of the random variable Θ and Var(Θ) denotes the variance of Θ which is E
[
(Θ− E[Θ])(Θ− E[Θ])T

]
. We

use 1D for the indicator function of a set D where 1D(x) = 1 if x ∈ D and 1D(x) = 0 otherwise.

A. Markov Decision Processes

A Markov decision process is a tuple M = (S,A,P, s0) where S is a finite set of states, A is a finite set of actions,
P : S×A×S → [0, 1] is the transition probability function, and s0 is the initial state. We denote P(s, a, q) by Ps,a,q. A(s)
denotes the set of available actions at state s where

∑
q∈S Ps,a,q = 1 for all a ∈ A(s). We denote the successor states of

state s by Succ(s) such that a state q ∈ S if and only if there exists an action a such that Ps,a,q > 0. A state s is absorbing
if it has only a single successor state that is itself, i.e., Ps,a,s = 1 for all a ∈ A(s).

A sub-MDP (C,D) of M is a pair where C ⊆ S is non-empty and D : C → 2A is a function such that a inD(s) only
if Ps,a,q = 0 for all q 6∈ C. An end component is a sub-MDP (C,D) of M such that the digraph induced by (C,D) is
strongly connected. An end component (C,D) is closed if, for all s ∈ C, Succ(s) \ C = ∅. A maximal end component
(C,D) is an end component where there is no end component (C ′, D′) such that (C,D) 6= (C ′, D′), C ⊆ C ′, and D ⊆ D′.

A policy is a sequence π = [µ0, µ1, . . .] where each µt : S × A → [0, 1] is a function such that
∑
a∈A(s) µt(s, a) = 1

for every s ∈ S. A stationary policy π is a a sequence π = [µ, µ, . . .] where µ : S × A → [0, 1] is a function such that∑
a∈A(s) µ(s, a) = 1 for every s ∈ S. We denote the set of all policies by Π(M) and the set of stationary policies by

ΠSt(M). For a stationary policy π, we denote µ(s, a) by πs,a. A stationary policy π induces a Markov chain Mπ =
(S,Pπ, s0) from M where Pπ : S × S → [0, 1] is the transition probability function such that

Pπ(s, q) :=
∑

a∈A(s)

πs,a Ps,a,q

for all s, q ∈ S. We denote Pπ(s, q) by Pπs,q .
A path ξ = s0s1s2 . . . is an infinite sequence of states under policy π = [µ0, µ1, . . .] such that∑
a∈A(st)

Pst,a,st+1µt(st, a) > 0 for all t ≥ 0. The set of paths for M under policy π is denoted by Paths(Mπ).
The reachability probability to the set B of states, i.e., the probability of reaching a state b ∈ B under policy π, is denoted

by Prπ(Reach[B]).
The expected state residence time at state s is defined by

xπs :=

∞∑
t=0

Pr(st = s|s0),

where st is the state at time t. The expected state residence time xπs is also equal to E[Ns,ξ] where Ns,ξ is the number of
appearances of s in the random path ξ that is generated by the policy π. The expected state-action residence time at state
s and action a is defined by

xπs,a :=

∞∑
t=0

Pr(st = s|s0)µt(st, a).

The expected state-action residence time of a state and an action is the expected number of times that the action is taken at
the state. For a stationary policy π ∈ ΠSt(M), xπs,a = πs,a x

π
s .



B. The Fisher Information and the Cramér-Rao Bound

Let the random variable X represent the observed data from a random variable that is parametrized by Θ ∈ Rn. An
estimator is a function Θ̂ : X → Rn that estimates Θ based on observed data. The estimator Θ̂ is an unbiased estimator of
Θ if E[Θ̂]−Θ = 0.

The precision of a random variable is the reciprocal of the variance of the random variable. For an unbiased estimator,
its precision is the reciprocal of the mean squared error (MSE) of the estimator.

The Fisher information [9] IX(θ) of a discrete random variable X parametrized by θ ∈ R is

IX(θ) := −
∑

x∈Supp(X)

∂2 log(Pr(X = x|θ))
∂θ2

Pr(X = x|θ).

An important property of the Fisher information is additivity, that is, when the samples are drawn from i.i.d. random variables,
the Fisher information based on n samples IXn(θ) satisfies IXn(θ) = nIX(θ) where IX(θ) is the Fisher information of one
sample.

The Cramér-Rao inequality [9] defines a relationship between the variance of an unbiased estimator of parameter θ and
the Fisher information on the parameter θ. The inequality is stated as

Var(θ̂) ≥ IX(θ)−1 (1)

where θ̂ is any unbiased estimator of θ.
An unbiased estimator is efficient if it achieves the Cramér-Rao bound.

III. PROBLEM STATEMENT

Consider an agent whose behavior is governed by a Markov decision process (MDP)M = (S,A,P, s0) where a stationary
policy followed by the agent π implemented on this MDP induces a Markov chain. An adversary which we call observer
observes the transitions and tries to infer the transition probabilities for a set W of states in the induced Markov chain. We
assume that the observer can only observe the transitions at the states in W which we call observed states, and has no side
information.

The problem we study is the synthesis of a policy for the agent with two objectives: (i) reach a set Creach of states with
probability higher than a given threshold 0 ≤ νreach ≤ 1 and (ii) minimize the amount of information leaked to the observer.

For the first objective, we assume that the transitions of the agent after reaching Creach are irrelevant, i.e., every state in
Creach is absorbing and is not observed.

For the second objective, we define the notion of transition information to measure the amount of information leaked to
the observer due to a transition.

Definition 1. The transition information of a state s is defined by

ιπs :=
1∑

q∈Succ(s) IQ(Pπs,q)−1
(2)

where Q is the random variable that is the successor state of state s.

We remark that the Fisher information and the transition information are analogous:

• The reciprocal of the Fisher information is a lower bound on the variance of an unbiased estimator for a single parameter.
• The reciprocal of the transition information is a lower bound on the variance of an unbiased estimator for many

parameters.

For a state s, consider an unbiased estimator P̂s of transition probabilities. The reciprocal of the transition information ιπs
is a lower bound on the variance of P̂s:

Var(P̂s) ≥
1

ιπs
.

We use the transition information to define the total information of a path. The total information of a path ξ = s0s1s2 . . .
is defined as the sum of each observed transition’s transition information such that

ιπW,ξ :=

∞∑
t=0

1W (st)ι
π
st .

We then state the synthesis problem formally as follows:



Problem 1 (Synthesis of Minimum-Information Admissible Policies). Given an MDP M = (S,A,P, s0), a set Creach of
states, a probability threshold νreach, and the set W of observed states, compute

inf
π∈ΠSt(M)

E[ιπW,ξ], (3a)

s. t. Prπ(Reach[Creach]) ≥ νreach (3b)

where ξ is a random path generated under policy π. If the optimal value is attainable, compute the optimal policy π∗.

Hereafter we call the policies that satisfy the reachability constraint admissible policies and an optimal policy for Problem
1 a minimum-information admissible policy.

Example 1. We explain the characteristics of a minimum-information admissible policy through the MDP given in Figure
1 with νreach = 0 for simplicity.

so0

so1 s2

s3

α,
1

β, 1

α, 1

β, 1

α, 1

α, 1

Figure 1: An MDP with 4 states. A label a, p of a transition refers to the transition that happens with probability p when
action a is taken. The states marked with the superscript o are observed.

The goal of the agent is to find a policy that minimizes the expected total information. Consider the policy at state s1 and
note that the policy decision at s1 does not affect information leaked from state s0 since it does not change the expected
residence time at s0. Hence we may only consider the information leaked from s1. If the agent chooses a deterministic
policy, the observer can estimate the transition probabilities with no error even after observing a single transition, which
means infinite leaked information. Therefore, it is expected that the agent randomizes the transition probabilities. Formally,
we explain the reasoning by the fact that the Fisher information is minimized for a Ber(p) random variable with p = 0.5.
Similarly at state s0, the agent randomizes the transition probabilities. However, unlike s1, the policy at s0 affects the
information leaked from s1. As the agent decreases the probability of taking action α at state s0, the expected number of
visits to state s1 decreases and consequently information leaked from s1 decreases. Hence, the agent must take the action
β with a greater probability than the action α. On the other hand, taking the action β with high probability increases the
information leaked from s0. We expect that, under this trade-off, the agent must choose a policy that takes both actions, but
the action β more likely. Numerically, the optimal policy is πs0,α = 0.38, πs0,β = 0.62, πs1,α = 0.5, and πs1,β = 0.5.

Remark 1. Note that if the transition probabilities are not constant and change between observations, measurement of
inference with a transition information is not meaningful since we assume underlying probability distribution is constant.
To have a well-defined problem, we only focus on agents that have to follow stationary policies and we search the optimal
policies only in the stationary policies.

IV. SYNTHESIS OF MINIMUM-INFORMATION ADMISSIBLE POLICIES

For an MDPM = (S,A,P, s0), we aim to find a minimum-information admissible policy π that minimizes the expected
total information of a path subject to the reachability constraint Prπ(Reach[Creach]) ≥ νreach where the set of observed
states is W . In this section, we represent the expected total transition transition information in terms of expected state-action
residence times, show the existence of a minimum-information admissible policy, and give an optimization problem whose
solution is a minimum-information admissible policy. We also show that the proposed optimization problem is convex in
the expected state-action residence time parameters and hence can be solved using off-the-shelf convex optimization tools.

Note that the Fisher information for a parameter is well-defined if the regularity conditions are satisfied. These conditions
require that the distributions depending on the parameter have a common support that is independent of the parameter [9]. For
a random variable P ∼ Ber(p), the Fisher information is not defined when p = 0 or p = 1 since the probability distribution
of P does not have a common support. However, such a case practically corresponds to infinite Fisher information, which
means that the value of the parameter is estimated exactly even after a single observation. We assume that the Cramér-Rao
lower bound is zero if the Fisher information is infinite.

Consider a state w ∈W whose successor state is denoted by the random variable Q. For each q ∈ Succ(w), we have

IQ(Pπw,q) = I1q(Q)(Pπw,q) =
1

Pπw,q(1− Pπw,q)



where 1q(Q) is a Ber(Pπw,q) random variable. The transition information of a state w is a function

ιw : {Pw ∈ R|Succ(w)| :
∑

q∈Succ(w)

Pw,q = 1,Pw,q ≥ 0} → R ∪ {∞}

and, under policy π, is equal to

ιπw =

 ∑
q∈Succ(w)

Pπw,q(1− Pπw,q)

−1

. (4a)

Remark 2. The categorical random variable Q has the distribution Pπw,q where q ∈ Succ(w). The covariance matrix Σ
of Q has diagonal entries Pπw,q(1 − Pπw,q). The transition information of state w given in (4a) is also equal to tr(Σ)−1.
Since Q is a categorical random variable, a sample mean estimator achieves the Cramér-Rao bound for a single transition.
However, since the observed data consists of transitions from a path and the transitions are not independent in general, a
sample mean estimator is not necessarily unbiased and efficient.

We now construct the optimization problem whose solution gives the expected state-action residence times for a minimum-
information admissible policy. First, we rewrite (4a) as

ιπw =

 ∑
q∈Succ(w)

 ∑
a∈A(w)

xπw,a∑
a′∈A(w) x

π
w,a

Pw,a,q

1−
∑

a∈A(w)

xπw,a′∑
a′∈A(w) x

π
w,a′
Pw,a,q

−1

(5)

using the definitions of the induced Markov chain and expected state-action residence times.
We assume that the optimal value of Problem 1 is finite. If the optimal value is infinite any admissible policy is a

minimum-information admissible policy.

Proposition 1. For an MDP M, if E[ιπW,ξ] is finite where ξ is a path generated randomly under a policy π ∈ ΠSt(M),
then

E[ιπW,ξ] =
∑
w∈W

xπwι
π
w.

Note that the expected total information xπwι
π
w of a state w has some undefined points on the domain xπw,a ≥ 0 where

a ∈ A(w). We define the function at such points as follows:
• If the expected state residence time is zero, i.e., xπw =

∑
a∈A(w) x

π
w,a = 0, then xπwι

π
w := 0. Since the state will never

be visited, the observer cannot get information on the transition probabilities.
• If w deterministically transitions to one of the successor states and expected residence time is greater than zero, i.e., there

exists a state q ∈ Succ(w) such that
∑
a∈A(w) x

π
w,aPw,a,q > 0 and

∑
a∈A(w) x

π
w,aPw,a,q′ = 0 for all q′ ∈ Succ(w)\ q,

then xπwι
π
w :=∞. Since the observer can estimate the transition probabilities even after a single observation and there

is a positive probability that the state will be visited, the expected total information is infinite.
• If the expected state residence time at w is infinite, i.e., xπw =

∑
a∈A(w) x

π
w,a = ∞, then xπwι

π
w := ∞. Since the

observed distribution of transitions converges to the transition probabilities, the expected total information is infinite.
We represent the stationary policies of the agent with a set of constraints which use the expected state-action residence

times. A stationary policy makes each state either recurrent or transient. We need to identify the states that can be reachable
and recurrent. If a policy leaks finite information, a set of states can be reachable and recurrent if and only if they belong to
an end component and are not observed since the recurrence of a reachable observed state results in infinite expected total
information.

Definition 2. An unobserved end component (UEC) is a sub-MDP (C,D) such that the digraph induced by (C,D) is
strongly connected and C ∩W = ∅. An unobserved maximal end component (UMEC) (C,D) is a UEC where C ⊂ S and
there is no UEC (C ′, D′) such that (C,D) 6= (C ′, D′), C ⊆ C ′, and D ⊆ D′.

We denote the set of states that belong to some UMEC by Cend. After reaching Cend, the agent can follow a stationary
policy that always stays in the UMEC and leaks no more information. For example, s2 is a UMEC state in Figure 2.
However, due to the reachability constraints the agent might need to follow a policy that leaves a UMEC. We disallow such
cases and make the following assumption to ensure that the agent does not leave UMECs.

Assumption 1. All unobserved maximal end components are closed.

Remark 3. In the absence of Assumption 1, to find the optimal stationary policy, one needs to check every UEC to determine
whether the agents needs to stay or leave the UEC. Such a check increases computational complexity of finding a minimum-
information admissible policy. For clarity of presentation, we here adopt Assumption 1. In Appendix A, we investigate the
more general problem without Assumption 1.
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Figure 2: An MDP with 5 states. A label a, p of a transition refers to the transition that happens with probability p when
action a is taken. The states marked with the superscript o are observed.

The optimal value of Problem 1 is

inf
∑
w∈W

xπwι
π
w (6a)

s. t. xπs =
∑

a∈A(s)

xπs,a, ∀s ∈ S \ Cend (6b)

xπs,a ≥ 0, ∀s ∈ S \ Cend, ∀a ∈ A(s) (6c)∑
a∈A(s)

xπs,a −
∑
q∈S

∑
a∈A(q)

xπq,aPq,a,s = 1s0(s), ∀s ∈ S \ Cend (6d)

∑
q∈Creach

∑
s∈S\Cend

∑
a∈A(s)

xπs,aPs,a,q + 1s0(q) ≥ νreach, (6e)

where the decision variables are xπs,a for all s ∈ S\Cend and a ∈ A(s). The objective function (6a) follows from Proposition
1 and the constraints (6b)-(6c) follow from definitions of expected residence times. The constraint (6d) is the flow equation
indicating that the expected number of arrivals into a state, i.e., the inflow, is equal to the expected number of departures from
the state, i.e., the outflow. These equations ensure that there exists a policy that gives the computed expected state-action
residence times [10]. The reachability constraint in (3b) is equivalent to (6e).

Note that some stationary admissible policies are infeasible for the optimization problem given in (6). In detail, the
stationary policies that eventually always stay in an end component and visit an observed state infinitely often are infeasible.
For instance, consider a policy π such that Prπ(Reach[s2]) = 0.5 for the MDP given in Figure 2 with the reachability
constraint Pr(Reach[s2] ≥ 0.5). While π leads to infinite expected total information and satisfies the reachability constraint,
it is not feasible for the problem in (6). One can easily check the existence of a policy that satisfies the reachability constraint
via model checking tools such as [11]. If there exists a policy that satisfies the task constraints, but the optimization problem
given in (6) is infeasible, we can say that the minimum-information admissible policy leaks infinite information.

Proposition 2. If there exists a policy π ∈ ΠSt(M) that satisfies the reachability constraint given in (3b), then there exists
a policy π∗ ∈ ΠSt(M) that attains the optimal value of the optimization problem given in (6).

Proposition 3. The optimization problem given in (6) is a convex optimization problem.

Remark 4. After a preprocessing step that has polynomial-time complexity in the size of M, the optimization problem can
be formulated as a conic optimization problem which can be solved using interior-point methods [12] in polynomial-time
in the size of M.

After computing the optimal expected state-action residence times by the optimization problem in (6), a stationary,
minimum-information admissible policy can be synthesized using the relationship xπs,a = πs,a x

π
s .

V. BOUNDS ON THE ESTIMATION ERROR

In this section, we consider estimators for the transition probabilities at the observed states and derive the bounds on the
expected estimation error in terms of MSE. Define σw as the MSE of an unbiased estimator at a state w. We assume that,
for the estimator at state w, the observed data are the whole path of the agent and the transition probabilities for the set
S \ {w} of states are known.



Proposition 4. For an MDP M and a policy π ∈ ΠSt(M),

σw ≥
Prπ(Reach[w])2

xπwι
π
w

for every state w ∈W .

Corollary 5. For an MDP M and a policy π ∈ ΠSt(M), the total MSE
∑
w∈W σw satisfies

∑
w∈W

σw ≥
min
w∈W

Prπ(Reach[w])2|W |2

E[ιπW,ξ]
.

Consequently, if Prπ(Reach[w]) = 1 for every π ∈ ΠSt(M) and for all w ∈ W , then
|W |2

Eξ[ιπW,ξ]
is a lower bound on the

total MSE.

so0 so1 s2

β, 0.9
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α, 1

β, 1
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Figure 3: (a) An MDP with 3 states. A label a, p of a transition refers to the transition that happens with probability p when
action a is taken. The states marked with the superscript o are observed. (b) The Cramér-Rao bound on the total MSE of
the estimators and the error bound given in Corollary 5.

An example of the bound given in Corollary 5 is illustrated in Figure 3. Both of the observed states are visited under
any stationary policy and the reciprocal of the expected total information is directly a lower bound on the total MSE of
the estimators. One who wants to maximize the total MSE of the estimators may prefer to optimize over the expected total
information instead of the Cramér-Rao bound since the Cramér-Rao is not a convex or concave function of the expected
residence time parameters while the minimum-information admissible policy can be computed via a convex optimization
problem.

VI. NUMERICAL EXAMPLES

In this section, we illustrate the proposed method through two numerical examples. We solved the optimization problems
using CVX toolbox [13] with MOSEK [14] on a computer with an Intel Core i7-8550u 1.8 GHz CPU and 8 GB of RAM.

A. Partly Hidden Agent

In this example, we explain the characteristics of the minimum-information admissible policy through different scenarios.
The environment which is given in Figure 4 consists of 4 regions that are separated with walls and connected to each

other with bridges. Each region is a 20×20 grid world and each tile in these regions represents a state. Except for the reach
state, the agent has 4 actions, namely, up, down, left, and right, at every state. When the agent takes an action the transition
happens into the target direction with probability 0.8 and in the other directions uniformly randomly with probability 0.2. If
a direction is out of the grid the transition probability to that direction is proportionally distributed to the other directions.

The initial state is the black top-left corner tile and the reach state is the green bottom-middle tile. The task of the agent
is to reach the reach state with probability 1. While the agent is in the gray tiles, the observer cannot observe the transitions
of the agent.

In the first scenario (see Figure 4a) all states are observed except the reach state and the bridge states. The agent completes
the task with a low number of observed transitions (See Table I) with randomized transitions. Note that the randomization
only happens between the states that are in the direction of the reach state since further randomization leads to more
observations. When the unobserved regions are present in the environment (see Figure 4b), the policy generates paths that
pass through the unobserved regions to reduce the number of observations. However, the unobserved regions are not always
utilized. For example, in the top-right region if the agent is already away from the unobserved region, it directly goes to
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Figure 4: The heatmaps of expected state residence times for partly hidden agent example. For the scenario given in Figure
4b the environment has some unobserved regions while every state is observed for the scenario given in Figure 4b. The
scenario given in Figure 4c considers exit information of in addition to the transition information.

the bottom-right region. Although, no information leaks in the unobserved regions, the agent leaks information during the
process of reaching those states.

We remark that the minimum-information admissible policy minimizes only the information of transitions from the
observed states. While this approach reduces the amount of leaked information in the local sense, i.e., the transitions
between the states, the global behavior, i.e., the transitions between the regions, might be easily inferred. We observe such a
phenomenon for the scenario given in Figure 4a; the agent leaves the regions using the same bridge. This behavior may be
risky if there is an adversary that is interested in the information of which bridge is used. To avoid this behavior, we add a
weighted penalty, exit information, for each region. The exit information of a region has the same form with the transition
information and consists of the expected state residence times of the bridges. With the exit information (see Figure 4c) the
agent randomizes its exit bridge from the regions compared to the initial case (see Figure 4a).

Table I: Numerical values for partly hidden agent example.

Scenario Expected
Total Information

Expected Number
of Observations Solving Time

Figure 4a 152.20 81.87 0.52
Figure 4b 146.00 78.89 0.38
Figure 4c 179.64 98.43 0.58

B. Inference of Local Behavior

We explain the difference between the proposed method and the policy synthesis via entropy maximization through this
example. The environment is a 11 × 11 grid world given in Figure 5 where each tile represents a state. The black tile is
the initial state, the green tile is the reach state, and the red tiles are the absorbing states. Except for the absorbing states
and the reach state the agent can transition to 4 directions, namely, up, down, left, and right, at every state. When the agent
takes an action, the transition happens in the target direction with probability 1. If a direction is out of the grid the action
is not allowed. The task of the agent is to reach the reach state with probability 1.

We compare the policies in terms of their estimation error, which is calculated for different number of sample paths. The
observer gets sample paths and estimates the transition probabilities at the observed states using a sample mean estimator.
We measure the estimation error for a state by the mean squared error (MSE) between the observed and actual transition
distributions at the observed states. The total error is the sum of MSE for each state. If there is no observation sample from
a state, we set the MSE for that state.For the weighted MSE error, the weight of a state is ratio between the number of
observations from the state and the total number of observations.

Maximizing the entropy of an MDP is equivalent to maximizing the entropy of the possible paths, and a high entropy
value leads to unpredictable paths. Under the reachability constraint, the maximum entropy of the MDP given in Figure 5
is unbounded. For policy synthesis, we follow the procedure given in [8] and impose an upper bound on the expected total
state residence time Γ. As the bound increases, the maximum entropy value of the MDP increases. We synthesize three
policies that maximizes the entropy of MDP with different values for Γ = 15, 60, and 120.

For low values of Γ such as 15, the minimum-information admissible and the maximum-entropy policies show similar
behavior. However, for the high values of Γ, the difference between the minimum-information admissible policy and the
maximum-entropy policy becomes clear. The minimum-information admissible policy completes the task with a low number
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Figure 5: The expected state residence times for inference of local behavior example.

of non-informative observations. On the other hand, the maximum-entropy policy visits the observed states more to explore
more paths and randomize the probabilities of paths. While the agent follows different paths, the expected residence times
at the observed states increases and observer gets more samples. Although the policy is randomized and samples are
less informative, transition probabilities are inferred due to the high number of observations. The result suggests that
the unpredictability of the paths does not imply the limitation of inference for the transitions between states. Hence, the
minimum-information admissible policy and the maximum-entropy policy serve different purposes.
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Figure 6: The expected estimation errors. The curves are averaged over 100 experiments.

VII. CONCLUSION

We focus on policy synthesis for an agent whose behavior is inferred by an outside adversarial observer. Such an agent
must as less informative observations as possible to the observer while completing its task. Based on this criterion, we
introduced transition information which is based on the Fisher information and measures the amount of information leaked
to the observer from a transition. Then, we formulated a problem that minimizes the expected total information leaked to
the observer and showed the existence of such a policy. The significant feature of the proposed method is that it balances a
possible trade-off between the number of observations and the informativeness of each observation.

The proposed method relies on the assumption that the agent follows a stationary policy on the observed states. A history
dependent planning method may deceive the observer by actively changing the policy. We aim to remove this assumption
and design an algorithm that takes the past transitions into account.
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APPENDIX A
UNOBSERVED MAXIMAL END COMPONENTS

In Section IV, we said that after reaching an unobserved maximal end component (UMEC), the agent may leak no more
information since there exists a stationary policy that always stays in the UMEC. However, such a policy may not be
admissible due to the reachability constraint. In that case, the agent has to leave the UMEC.

Assumption 1 ensures that the agent cannot leave UMECs. Every policy stays in UMECs and hence the outflow from
these states is zero. Thanks to this assumption, we only need to consider the policies where the agent stays in UMECs and
synthesize the policy accordingly.

In the following subsections we investigate the cases where the assumption does not hold. Appendix A-A provides an
exhaustive search algorithm to find the optimal stationary policy. Appendix A-B provides an algorithm that searches a
different class of policies to find the optimal policy.

A. Agents with Stationary Policies

Consider the MDPs given in Figure 7 where the reachability requirement is Prπ(Reach[s4 ∪ s5]) ≥ 0.5. For both MDPs
information is leaked only at state s3 and it is proportional to the expected residence time at state s3, i.e., xπs3 . Note that
also the reachability probability is equal to the expected residence time at state s3, i.e., xπs3 = Prπ(Reach[s4 ∪ s5]).
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Figure 7: MDPs with 6 states. A label a, p of a transition refers to the transition that happens with probability p when action
a is taken. The states marked with the superscript o are observed.

One might naturally think that a policy that makes xπs3 = 0.5 is a minimum-information admissible policy. However,
we note that such a stationary policy might not exist since xπs3 and Prπ(Reach[s4 ∪ s5]) are not continuous functions of
stationary policies. For the MDP given in Figure 7a, a stationary policy π has Prπ(Reach[s4 ∪ s5]) = 1 if πs1,β > 0
and Prπ(Reach[s4 ∪ s5]) = 0 otherwise. Every policy π∗ such that π∗(s1, β) > 0 is a stationary, minimum-information
admissible policy. However, such a policy does not satisfy the reachability requirement with equality. For the MDP given

http://cvxr.com/cvx
http://docs.mosek.com/8.1/toolbox/index.html


Algorithm 1 Synthesis of a stationary, minimum-information admissible policy for MDPs with UMECs - Process 1

1: Input: An MDP M = (S,A,P, s0), the set of observed states W , the set of states to be reached Creach, and the
reachability probability νreach.

2: Output: A stationary, minimum-information admissible policy π∗ for M.
3: R := ∅.
4: Find every UMEC (C,D) and set R := R ∪ C.
5: L := 2R.
6: minval :=∞
7: for all l ∈ L do
8: if l is a union unobserved end component then
9: Cend := l

10: Solve (6) with Cend, Creach, and νreach. Set the optimal value to val and set the solution to restimes.
11: if val ≤ minval then
12: minval := val, minset := l, minrestimes := restimes.
13: end if
14: end if
15: end for
16: Cend := minset.
17: Synthesize the minimum-information admissible π∗ policy using Algorithm 2 with minrestimes and Cend.
18: return π∗

Algorithm 2 Synthesis of a stationary, minimum-information admissible policy for UMECs - Process 2

1: Input: An MDP M = (S,A,P, s0), the expected residence times xπ
∗

s,a for M, and Cend.
2: Output: A stationary, minimum-information admissible policy π∗ for M.
3: Synthesize a policy πstay such that for a state s ∈ Cend,

∑
q∈Cend

∑
a∈A(s) π

stay
s,a Ps,a,q = 1.

4: for all s ∈ S do
5: if

∑
a∈A(s) x

π∗

s,a = 0 then
6: for all a ∈ A(s) do
7: Set π∗s,a arbitrarily between 0 and 1 subject to

∑
a′∈A(s) = π∗s,a′ = 1.

8: end for
9: else if s ∈ Cend then

10: for all a ∈ A(s) do
11: π∗s,a := πstays,a .
12: end for
13: else
14: for all a ∈ A(s) do

15: π∗s,a :=
xπ
∗

s,a∑
a′∈A(s) x

π∗
s,a′

.

16: end for
17: end if
18: end for
19: return π∗.

in Figure 7b, it is possible to find a stationary policy that satisfies the reachability requirement with equality. The stationary
policy π∗ with π∗s1,α = 0.5, π∗s1,β = 0.5, π∗s2,α = 0, and π∗s2,β = 1 is the minimum-information admissible policy.

By the MDPs given in Figure 7, we note that determining whether the optimal policy stays in a UEC is not trivial. To
find the stationary, minimum-information admissible policy, we give an optimization algorithm that is based on exhaustive
search of all unobserved end components.

Definition 3. A union unobserved end component is a sub-MDP (C,D) that is union of UECs (C1, D1), . . . , (CN , DN )
such that C = C1 ∪ . . . ∪ CN and D(s) = D1(s) ∪ . . . ∪DN (s) for every s in C.

Algorithm 1 takes a subset of UMEC states, checks whether this subset is a union unobserved end component (see Lines
7-8). If the subset is a union unobserved end component, it finds the optimal stationary policy that makes the agent stay in
the union unobserved end component (see Lines 9 - 10). The algorithm outputs the minimum-information admissible policy
after checking all subsets.



Remark 5. Note that the size of R is O(|S|) in Algorithm 1 and the size of L is O(2|S|). Checking whether a set of states
S is a union unobserved end component has O(|S|3|A|) complexity. Hence, the exhaustive search given in Algorithm 1
increases the complexity by a factor of O(2|S||S|3|A|).

B. Agents with Nonstationary Policies

In this section, we remove Assumption 1 and introduce an algorithm that avoids the exhaustive search given in Algorithm
1. The exhaustive search is required as a drawback of stationary policies. We extend the policy space of the agent to find
the optimal policy with lower computational complexity by allowing the agent to pick a policy that might be nonstationary
for the unobserved states. We call a policy π observation stationary if it is stationary at the observed states and define
ΠObs St(M) as set of the observation stationary policies of M.

The new algorithm is based on the flow constraints that describe the policy space of the agent. Under Assumption 1, the
flow constraints given in (6c) - (6e) disallow outflow from the observed maximal end components to the other states. We
remove this assumption and allow outflow from UMECs.

To find the minimum-information admissible policy we first create a modified MDP. The modified MDP has two copies
of UMECs that are connected to each other with an action called switch. For a UMEC, while the original copy is connected
to the other states, the duplicate copy is closed. We use the duplicate copies to represent the cases where the agent decides
to stay in the UMEC.

For MDP M = (S,A,P, s0), we create a modified MDP M̄ = (S̄, Ā, P̄, s0) as follows. Let Cend be the set of states
that belong to some UMEC of M. For each s ∈ Cend, we create a duplicate state s̄. Let C̄end be the set of duplicate
UMEC states. We define S̄ := S ∪ C̄end. For all s ∈ S, we define Ā(s) := A(s) and for all a ∈ Ā(s), q ∈ S we define
P̄s,a,q := Ps,a,q . The duplicate state s̄ has the action a if and only if a ∈ A(s) and

∑
q∈Cend Ps,a,q = 1. For every s̄ ∈ C̄end,

q̄ ∈ C̄end, and a ∈ Ā(s̄), we let P̄s̄,a,q̄ = Ps,a,q . For every state s ∈ Cend, we also add a new action switch to Ā(s) such
that P̄s,switch,s̄ = 1.

Note that by definition Creach belongs to Cend. For the reachability constraint, we use the set of duplicate states C̄reach.
For modified MDP M̄ and C̄end, we find the expected residence times of a minimum-information admissible policy with
the following optimization problem

inf
∑
w∈W

xπwι
π
w (7a)

s. t. xπs =
∑

a∈A(s)

xπs,a, ∀s ∈ S̄ \ C̄end (7b)

xπs,a ≥ 0, ∀s ∈ S̄ \ C̄end, ∀a ∈ Ā(s) (7c)∑
a∈Ā(s)

xπs,a −
∑
q∈S

∑
a∈Ā(q)

xπq,aPq,a,s = 1s0(s), ∀s ∈ S̄ \ C̄end (7d)

∑
q∈C̄reach

∑
s∈S̄\C̄end

∑
a∈Ā(s)

xπs,aPs,a,q + 1s0(q) ≥ νreach, (7e)

and synthesize the optimal policy π̄∗.

Remark 6. The optimization problem given in (7) does not include the policies that always stay in Cend, in the feasible
set. However, we remark that it does not effect the optimality of the solution since the value of such a policy can also be
achieved by a policy that enters and always stays in C̄end.

We describe the policy π∗ of the agent in the original MDP with Algorithm 3. We use a memory element switched that
is True if and only if switch action is taken previously. We also synthesize a stationary policy πstay for MDP M that
always stays in Cend.

Note that the resulting policy is not stationary for the original MDP M. The agent remembers whether it switched to the
stay mode in the past. However, it is stationary for all states in S \ Cend. The inference problem is still meaningful since
the policy does not change over time for the observed states.

Proposition 6. For an MDP M, the policy π∗ that is synthesized via the optimization problem given in (7) and Algorithm
3, is a solution to the following problem

min
π∈ΠObs.St(M)

E[ιπW,ξ]

s. t. Prπ(Reach[Creach]) ≥ νreach

where ξ is a random path generated under policy π.



Algorithm 3 Synthesis of a minimum-information admissible policy

1: Input: Current state s in M, switched, π̄∗, πstay , and Cend.
2: Output: The optimal policy π∗ of M and switched.
3: if switched then
4: π := πstay .
5: else if s 6∈ Cend then
6: π∗ := π̄∗.
7: else
8: rnd := Unif [0, 1].
9: if rnd ≤ π̄∗s,switch then

10: switched := True.
11: π∗ = πstay .
12: else
13: for all a ∈ A(s) do

14: π∗s,a =
π̄∗s,a

1− π̄∗s,switch
.

15: end for
16: end if
17: end if
18: return π∗ and switched

APPENDIX B

Proof of Proposition 1. We first consider two cases:
• ιπw =∞ for a reachable state w ∈W .
• ιπw > 0 for a state w ∈W and w is recurrent under policy π.
Assume that the first case is possible. Since the path fragments of Mπ that end with w has a positive probability and

ιπw = ∞, the expected total information must be infinite. Thus, the first case is not possible. Assume that the second case
is possible. Since the paths of Mπ that visit w infinitely often has a positive probability and ιπw > 0, the expected total
information must be infinite. The second case is also not possible. Hence, all observed states must be unreachable or must
leak finite information and be transient.

The expected total information of a transient or unreachable state w ∈W is

E[ιπw,ξ] =

∞∑
n=0

Pr(Nw,ξ = n)nιπw (8a)

= E[Nw,ξ]ι
π
w (8b)

= xπwι
π
w (8c)

where Nw,ξ is the random variable that is the number of appearances of w in ξ.
The expected total information is

E[ιπW,ξ] =
∑
w∈W

E[ιπw,ξ] (9a)

=
∑
w∈W

xπwι
π
w. (9b)

�

Sketch of Proof for Proposition 2. If the optimal value of (6) is infinite then any policy that satisfies the reachability
constraints is the optimal policy. Otherwise, let M be the optimal value of (6). ιπs given in (5) is a lower semicontinuous
function in the domain xπs,a ≥ 0 where a ∈ A(s). The objective function of (6) is a sum of lower semicontinuous functions
and thus is a lower semicontinuous function in domain xπs,a ≥ 0 for all s ∈ S \ Cend and a ∈ A(s). For every xπw,a, that
satisfies xπwι

π
w ≤ M , is bounded where w ∈ W . Also every xπs,a is bounded since a state s ∈ S \ Cend must be transient.

With the constraints (6c)-(6e) the feasible region is a compact set. Since a lower semicontinuous function attains its infimum
on a compact set, we conclude that the proposition holds. �

Before we proceed to the proof of Proposition 3, we give the following lemma that will be used in the proof.



Lemma 7. If f : V → R is a positive, concave function where V ⊂ Rn is a convex set, then
1

f(x)
is a convex function on

V .

Proof of Lemma 7. Since f and log are concave functions, log f is a concave function and consequently − log f is a convex

function on V . Finally, exp(− log f) =
1

f
is a convex function on V , due to convexity of exp and − log f on V . �

Proof of Proposition 3. Let f1 : Y1 → R be a function such that f1(p) =
∑n
i=1 pi(1− pi). Clearly f1 is a positive, concave

function on the convex domain Y1 = {p | p1, . . . , pn ≥ 0,
∑n
i=1 pi = 1, ∃i, j ∈ [n], i 6= j, pi,j > 0}. Let f2 : Y1 → R be

a function such that
f2 :=

1

f1
=

1∑n
i=1 pi(1− pi)

.

By Lemma 7, f2 is a convex function on the domain Y1. A perspective function [15] of f2 is g1 : Y2 → R such that

g1

(
x,

n∑
i=1

xi

)
=

n∑
i=1

xif

(
x∑n
i=1 xi

)
=

n∑
i=1

xif(p)

where
pi =

xi∑n
i=1 xi

.

Due to the convexity property of perspective functions [15], g1 is convex on

Y2 =

{
(x,

n∑
i=1

xi) | x1, . . . , xn ≥ 0, ∃i, j ∈ [n], i 6= j, xi,j > 0

}
since f2 is convex on Y1. We eliminate the redundant dimension

∑n
i=1 xi and define g2 : V1 → R such that

g2(x) = g1

(
x,

n∑
i=1

xi

)
.

g2 is an affine transformation of g1 and convex on

V1 = {x | x1, . . . , xn ≥ 0, ∃i, j ∈ [n], i 6= j, xi,j > 0}

We introduce V0 = {x | x1 = . . . = xn = 0} and Vdet = {x | ∃i ∈ [n], ∀j ∈ [n], i 6= j, xi > 0, xj = 0}. Note that V0,
V1, and Vdet are disjoint sets.

Now we define g : V → R ∪ {∞} on V = V0 ∪ V1 ∪ Vdet such that g(x) = 0 if x ∈ V0, g(x) = g1(x) if x ∈ V1, and
g(x) =∞ if x ∈ Vdet.

Clearly g3 is convex on V0 and Vdet. We check all possible combinations for convexity where λ ∈ [0, 1]:
• λg(v1) + (1− λ)g(v2) ≥ g(λv1 + (1− λ)v2) if v1 ∈ Vdet and v2 ∈ V0 ∪ V1,
• λg(v1) + (1− λ)g(v2) = g(λY1 + (1− λ)v2) if v1 ∈ V0 and v2 ∈ V1.
Hence g is convex on V .
Now we represent the objective function of (6) using g. Without loss of generality assume that the successor states of

state s are q1, . . . , q|Succ(s)| and the actions at state s are a1, . . . , a|A(s)|. Note that

xπs ι
π
s = g(Px)

where x = [x(s, a1), . . . , x(s, a|A(s)|)]
T and P is a |Succ(s)| × |A(s)| matrix with (i, j)-th entry Ps,aj ,qi .

Since xπs ι
π
s is an affine mapping of g, xπs ι

π
s is convex on T ′ = {x ∈ R|A(s)| |

∑
a∈A(s) x

π
s,aPs,a,q ≥ 0} and consequently

on T = {x ∈ R|A(s)| | xπs,a ≥ 0} ⊆ T ′.
The objective function (6a) is a sum of convex functions and the constraints in (6) are linear. Therefore, we conclude that

the optimization problem is convex. �

Proof of Proposition 4. Due to the stochasticity of MDP, we might encounter the cases where the observer has no observation
from a state and hence no sample for estimation. For such cases, denote σw,0 for the MSE when there is no sample for
estimation. Denote σw,+ for the MSE when there is at least one sample for estimation.

The MSE of the q-th element (σw)q is the estimation error for transition probability to the successor state q such that∑
q∈Succ(s)(σw)q = σw.



Denote the result of the successor state at time t for the random path ξ by Rt,ξ where by definition R−1,ξ = s0 and Nw,ξ
for the number of times that state w appears in ξ. We have

(σw)q = Pr(Nw,ξ = 0|π)(σw,0)q + Pr(Nw,ξ > 0|π)(σw,+)q (10a)
≥Prπ(Reach[w])(σw,+)q (10b)

≥Prπ(Reach[w])

Iξ|Nw,ξ>0(πw,q)
(10c)

=
Prπ(Reach[w])∑∞

t=0 IRξ|Rt−1,ξ,...,R0,ξ,Nw,ξ>0(Pπw,q)
(10d)

=
Prπ(Reach[w])∑∞

t=0 IRt,ξ|Rt−1,ξ,Nw,ξ>0(Pπw,q)
(10e)

=
Prπ(Reach[w])Pπw,q(1− Pπw,q)∑∞

t=0 Pr(Rt−1 = w|Nw,ξ > 0)
(10f)

=
Prπ(Reach[w])2Pπw,q(1− Pπw,q)

xπw
(10g)

where (10c) is due to Cramér-Rao bound, (10d) is due to chain rule of the Fisher information [16], and (10e) is due to
Markovian property of paths.

The MSE at state w is bounded such that

σw ≥
∑

q∈Succ(s)

Prπ(Reach[w])2Pπw,q(1− Pπw,q)
xπw

(11a)

=
Prπ(Reach[w])2

xπwι
π
w

. (11b)

�

Proof of Corollary 5. Total MSE at state w is

σw ≥
Prπ(Reach[w])2

xπwι
π
w

. (12a)

The total MSE for the set of states W is ∑
w∈W

σw ≥
∑
w∈W

Prπ(Reach[w])2

xπw ιπw
(13a)

≥
∑
w∈W

min
w′∈W

Prπ(Reach[w]′)2

xπw ιπw
(13b)

≥
min
w′∈W

Prπ(Reach[w]′)2|W |2∑
w∈W xπw ιπw

(13c)

=
min
w′∈W

Prπ(Reach[w′])2|W |2

Eξ[ιπW,ξ]
. (13d)

�

Sketch of Proof for Proposition 6. The proof steps are as follows,
• show that a stationary policy π̄∗ is optimal for modified MDP M̄ among all policies in ΠObs.St(M̄),
• show that the minimum-information admissible of M is not lower than M̄,
• show that the expected total informations are equal for π∗ of M and π̄∗ of M̄.
Consider the minimum-information admissible policy π̄∗ for M̄. For every state s ∈ S̄, we identify whether π̄∗ makes s

recurrent or transient.
Let (C,D) be an original UMEC of M̄ and π1 be a policy such that Prπ

1

(st ∈ C eventually always) > 0. We claim that
the expected total information under policy π1 can also be achieved by a policy π2 such that Prπ

2

(st ∈ C infinitely often) = 0
since upon deciding to stay in C the agent can first take switch action and then take the same actions in the duplicate
UMEC C̄. Note that staying in C or C̄ does not affect the total information since both UMECs leak no information. Hence,
we only look for policies that makes Cend transient and C̄end recurrent.



Let (C,D) be an end component of M̄ such that C ∩ Cend = ∅ and there exists w ∈ W and w ∈ C. We claim that a
policy that always stays in C visits an observed state infinitely often and leaks infinite information. If it does not, then there
must exist a state s ∈ C such that s is recurrent and s 6∈ W . Such a state s must belong to a UMEC, but by construction
it is not possible. Hence if there exists a policy that leaks finite information every state s ∈ C must be transient. Also note
that a state that does not belong to an end component must be transient by definition.

We partition S̄ into two sets: transient states S̄ \ C̄end and recurrent states C̄end. Under any policy π ∈ ΠObs.St(M̄) that
makes the C̄end recurrent and S̄ \ C̄end transient, we have the flow equation∑

a∈A(s)

xπs,a −
∑

q∈S̄\C̄end

∑
a∈A(q)

xπq,aPq,a,s = 1s0(s), ∀s ∈ S̄ \ C̄end.

Since we optimize over the observation stationary policies, the Proposition 1 still holds. The optimization problem given
in (7) finds the state-action residence times of the optimal policy subject to the flow equation and the reachability constraint.
The stationary policy synthesized via (3) yields to the optimal expected residence times and hence is optimal.

Let

v∗ = inf
π∈ΠObs.St(M)

E[ιπW,ξ] (15a)

s. t. Prπ(Reach[Creach]) ≥ νreach (15b)

and

v̄∗ = inf
π̄∈ΠObs.St(M̄)

E[ιπ̄W,ξ] (16a)

s. t. Prπ(Reach[Creach]) ≥ νreach. (16b)

Since every π ∈ Π(M) is also realizable for M̄ with the same expected total information and reachability probabilities, we
have v∗ ≥ v̄∗.

Finally, we note that π∗ of M and π̄ of M̄ yield to the same expected total information v̄∗ since the expected residence
times and the policies are the same at the observed states for both policies . Consequently, π∗ is a minimum-information
admissible policy of M. �
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