

RESEARCH ARTICLE

Running head: Cytoglobin inhibits cardiac remodeling

Genetic deletion of cytoglobin exacerbates cardiac hypertrophy and inhibits cardiac fibroblast activation independent of changes in blood pressure

Le Gia Cat Pham¹, Kurrim Gilliard¹, Frances Jourd'heuil¹, Sarahann Mistretta¹, John J. Schwarz¹, Harold A. Singer¹, and David Jourd'heuil¹

¹Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA

Correspondence: David Jourd'heuil (jourdhd@amc.edu)

Abstract

Hypertension-mediated left ventricular hypertrophy and cardiac fibrosis often precede heart failure. Recent studies indicate that cytoglobin (Cygb), a globin expressed in the vasculature, increases systemic blood pressure. The present work aims to determine the role of Cygb in angiotensin II (Ang II)-induced cardiac hypertrophy and fibrosis in the mouse. **Methods:** Males and females global Cygb knockout (*Cygb*^{-/-}), and wildtype (*Cygb*^{+/+}) mice were treated with Ang II (1.5 µg/kg/day) for two weeks via subcutaneous osmotic minipumps. Cardiac function was assessed through echocardiography, and hearts were analyzed for changes in hypertrophy, fibrosis, and gene expression. Functional studies were also performed in isolated cardiac fibroblasts. **Results:** *Cygb*^{-/-} mice from both sexes showed an increase in cardiac hypertrophy over *Cygb*^{+/+} mice. Cardiac functions were also depressed in *Cygb*^{-/-} males with no changes in females. Importantly, genetic deletion of Cygb did not affect systemic blood pressure in mice, at baseline or after Ang II treatment. We established that Cygb was expressed in fibroblasts and pericytes in humans and mice hearts. Finally, we found that *Cygb*^{-/-} cardiac fibroblast did not upregulate the expression of genes associated with myofibroblasts following treatment with Ang II. This was reversed following expression of human cytoglobin. **Conclusions:** Our findings indicate that Cygb plays a protective role in the mouse heart during Ang II-induced cardiac stress. This is the first study detailing the function of Cygb in the heart as a regulator of cardiac hypertrophy. This study also reveals a role for Cygb in regulating cardiac fibroblast activation by Ang II.

NEW & NOTEWORTHY

We identified cytoglobin as an important globin in cardiac pathophysiology. Genetic deletion of cytoglobin led to exacerbation of angiotensin II-mediated cardiac hypertrophy in the absence of any effect on systemic blood pressure. Cytoglobin is expressed in cardiac fibroblasts and pericytes and is required for cardiac fibroblast activation to myofibroblast. The present study reveals for the first time a role for cytoglobin in regulating angiotensin II signaling.

Keywords: heart failure, fibroblasts, fibrosis, myofibroblasts, hemoglobins

1 Introduction

2 Heart failure is a leading cause of morbidity and mortality in the USA and worldwide. It
3 is often preceded by compensatory adaptations that include ventricular remodeling characterized
4 by cardiac hypertrophy and fibrosis. This occurs in response to acute injury such as myocardial
5 infarction or more chronic conditions such as volume and pressure overload. In all cases,
6 hypertension is a major risk factor for the development of heart failure and blood pressure lowering
7 therapies are important strategies to manage or prevent heart failure.

8 Past studies in humans and pre-clinical models have demonstrated that hypertension is
9 associated with increased oxidative stress and decrease in the bioavailability of the second
10 messenger nitric oxide (NO). The latter plays an essential role in maintaining vascular homeostasis
11 and regulating blood pressure through its vasodilatory activity and opposing hypertensive stimuli¹.
12 Accordingly, pharmacological inhibition of NO synthesis produces a hypertensive response². In
13 the mouse, this is not sufficient to produce ventricular remodeling, although evidence of increased
14 interstitial cardiac fibrosis and cardiomyocyte subcellular remodeling have been documented³. In
15 contrast, cardiac hypertrophy and fibrosis were clearly present in mice following pharmacological
16 inhibition of nitric oxide synthase (NOS) combined with a high fat diet⁴. Genetic deletion of NOS3,
17 a primary source of NO in the vasculature, reproduces the pro-hypertensive effect of
18 pharmacological inhibition of NOS activity^{5,6}. NOS3 knockout mice also develop age-dependent
19 increase in left ventricular mass⁷ and loose cardio-protection provided by ACE inhibitors and
20 angiotensin II type 1 receptor antagonists in heart failure after myocardial infarction⁸.

21 The bioavailability of NOS3-derived NO in the vasculature is regulated by multiple
22 mechanisms. This includes oxidative inactivation to nitrate that may result from elevated
23 superoxide production as observed in several models of hypertension^{9,10}. Inactivation of NO to
24 nitrate also occurs through reactions with hemoglobin and myoglobin and more recent studies
25 suggest that a third globin, cytoglobin (gene code CYGB), also inactivates NO and plays an
26 important role in regulating vascular homeostasis. Cytoglobin is expressed in the vasculature of
27 both humans and mice, predominantly in medial smooth muscle cells and adventitial
28 fibroblasts^{11,12,13,14}. Significantly, Liu et al showed that NO consumption was attenuated in isolated
29 aortas obtained from cytoglobin knockout mice, consistent with earlier biochemical studies
30 demonstrating NO inactivation to nitrate by cytoglobin¹⁵. In the same study, global deletion of
31 cytoglobin led to a decrease in systemic blood pressure and inhibited the pro-hypertensive effect
32 of angiotensin II infusion. In the latter case however, the effect of cytoglobin deletion on
33 angiotensin II-mediated cardiac remodeling was not investigated.

34 Based on the importance of angiotensin II as a vasopressor and the contribution of vascular
35 cytoglobin in regulating NO bioavailability, a primary goal of the present study was to determine
36 the extent to which cardiac remodeling following angiotensin II infusion could be decreased in
37 mice with global deletion of cytoglobin. Surprisingly, we found that genetic deletion of cytoglobin
38 increased cardiac hypertrophy following angiotensin II infusion in the mouse. This was
39 accompanied with left ventricular dysfunctions in males. We found no evidence for a decrease in
40 systemic blood pressure at baseline or following angiotensin II treatment in the cytoglobin
41 knockout mice. In the heart, cytoglobin was primarily expressed in fibroblasts and pericytes. Our

42 study reveals that the loss of cytoglobin altered transcriptional gene programs in hypertrophied left
43 ventricles that were associated with decreased capillary density and inhibition of angiotensin II
44 mediated activation of cardiac fibroblasts to myofibroblasts. *In vitro*, we show that cytoglobin is
45 required for activation of cardiac fibroblasts to myofibroblasts.

46

47

48

49 Methods

50 Supplies and reagents

51 All supplies and reagents are listed in Supplementary Table S1.

52 Mouse line and procedures

53 All experiments involving mice were approved by the Institutional Animal Care and Use
54 Committee at Albany Medical College. Adult global wildtype and cytoglobin knockout mice were
55 generated as previously described¹³. The blood pressure and cardiac function of 11–14-week-old
56 mice were recorded prior to surgery. The mice were anesthetized using isoflurane (with 1–2%
57 oxygen) before a subcutaneous pocket was created through a 1 cm mid-scapular incision. A 14-
58 day osmotic pump (Alzet Model 1002) loaded with angiotensin-II at a dosage of 1.5 mg/kg/day or
59 saline was inserted into the pocket. The incision was closed with sutures. At the end of the two-
60 week infusion period, the ultrasound imaging and blood pressure were repeated prior to tissue
61 collection. The body weight of each mouse and that of the isolated hearts were recorded as well
62 as the length of the right femur. The heart tissue was either snap frozen in OCT media or collected
63 into cell lysis buffer or Trizol.

64 Blood pressure measurements were obtained using the CODA Mouse tail cuff high-throughput
65 acquisition system (Kent Scientific, Torrington, CT). Prior to pump insertion the mice underwent
66 a training period of 7 days during which their blood pressure (BP) was measured daily. On the day
67 of surgery and again just prior to tissue collection, 2 sessions of 10 BP measurements were
68 performed for each mouse. The average of accepted readings from both sessions were used to
69 determine the systolic, diastolic, and mean BP for each individual mouse.

70 To evaluate cardiac hypertrophy, cardiac structure and function were assessed using a Vevo
71 3100 high-resolution ultrasound imaging system (VisualSonics) before and after angiotensin II
72 (Ang-II) treatment. Mice were anesthetized with isoflurane (1–2% in oxygen), heart rate was
73 maintained within the physiological range throughout imaging. B-mode and M-mode
74 echocardiographic recordings were obtained in the parasternal long- and short-axis views. Left
75 ventricular wall thickness and chamber dimensions were measured using VevoLAB software
76 (VisualSonics).

77 Miography

78 Thoracic aortas were isolated from 11–14-week-old mice after anesthesia with isoflurane and
79 euthanasia by exsanguination via vascular perfusion with ice cold physiological salt solution (PSS).
80 The aortas were placed into a silicon bottom dissecting dish containing ice cold, carbogen aerated
81 PSS. With the aid of a stereo microscope the perivascular adipose tissue and the tunica adventitia
82 were gently removed, with care being taken to leave the tunica intima and tunica media layers
83 intact. Each aorta was cut into 2 mm rings with a sharp surgical blade. Individual rings were
84 mounted on the 200 μ m pins of a DMT model 630MA myograph in aerated room temperature
85 PSS. The mounted aortic rings were gradually warmed to 37°C and equilibrated for a minimum
86 of 5 minutes prior to automated normalization as per the manufacturer's directions. Using ProV8
87 LabChart software (ADIInstruments) the isometric force was continuously recorded; responses
88 were analyzed once the force reached a stable plateau for a minimum of 30 seconds. Washes were
89 performed between each measurement with a minimum of four buffer changes over 20 minutes by
90 replacing the chamber buffer with fresh aerated PSS until the baseline returned to normal.
91 Maximum contraction was determined by replacing the PSS with high potassium physiological

92 salt solution (KPSS) containing 10 μ M phenylephrine (PE) and recording the plateau response.
93 The depolarization response was measured in KPSS alone. Concentration response experiments
94 were performed with increasing concentrations of PE (1×10^{-9} M to 3×10^{-4} M). The relaxation
95 response curves were obtained by pre-contracting the aortic rings with a concentration of PE
96 corresponding to 60% of maximal PE contraction, followed by increasing concentrations of
97 acetylcholine (Ach; 1×10^{-12} M to 3×10^{-6} M). Data was analyzed with Prism software and values
98 expressed as % of relaxation.

99 **Isolation, culture, and treatment of adult mouse cardiac fibroblasts**

100 Mouse cardiac fibroblasts were isolated from 11- to 14-week-old C57BL/6 mice. Hearts were
101 aseptically excised and rinsed twice with warm complete M199 medium (M199 supplemented
102 with 10% fetal bovine serum, 2% Antibiotic/Antimycotic). Under sterile conditions hearts were
103 minced into ~ 1 mm² pieces, transferred to cell culture flasks with 10 ml of dissociation medium
104 (116 mM NaCl, 2 mM HEPES, 0.94 mM NaH₂PO₄, 5.4 mM KCl, 5.5 mM Dextrose, 0.9 mM
105 MgSO₄, 0.1 mM CaCl₂, 1 mg/ml BSA, 1 mg/ml Trypsin, 133 U/ml Collagenase Type 1A, 0.02
106 mg/ml Pancreatin, 0.15 U/ml DNase1) and incubated at 37 °C, 5% CO₂ with gentle agitation for
107 20 minutes. The first 10 ml cell suspensions were transferred to 15 ml tubes; 10 ml of fresh
108 dissociation medium were added to the undigested tissues and flasks were returned to the incubator
109 for an additional 20 minutes. This digestion and collection process was repeated until all tissue
110 was dissociated. The collected cell suspensions were centrifuged at 400 x g for 5 minutes and cell
111 pellets resuspended in 1 ml of prewarmed M199 media. These cell suspensions were maintained
112 at 37°C until the final fractions were collected then pooled and centrifuged at 400 x g for 5 minutes,
113 the resulting cell pellet was resuspended in 4 ml of complete M199 media. Cells were plated into
114 6 well Tissue culture plates, and incubated under standard culture conditions for 2 hours, debris
115 and non-adherent cells were washed away by rinsing twice with media. Adherent cells were
116 maintained in 2 ml of fresh media for 20 hours. The plates were gently washed twice to remove
117 dead cells, refreshed with complete medium, and returned to the incubator until reaching 80–90%
118 confluence. These cultures were designated as passage 0 (P₀) fibroblasts. Subsequent passages
119 were obtained by trypsinization and reseeding in fresh complete M199. In vitro angiotensin II
120 treatment was achieved by serum starving the cells in 0.4% FBS in M199 overnight followed by
121 stimulation with 1 μ M angiotensin II for 24 or 72 hrs.

122 Mouse cardiac fibroblasts (P₁) from cytoglobin knock out mice were transiently transfected
123 with either 1.5 μ g or 3 μ g of empty vector pcDNA or hCYGB following the standard
124 DharmaFECT kb protocol for either 6 well plates (1.5 μ g) or 60 mm dishes (3 μ g). 24 hours
125 post-transfection the 60 mm dishes were serum starved overnight in 0.4% DMEM with 500 μ g
126 ml geneticin. Cells were then treated with 1 μ M angiotensin II for 24 hrs before collecting trizol
127 lysates for qPCR.

128 **Quantitative polymerase chain reaction (qPCR)**

129 Total RNA was extracted from tissue and cells using Trizol Reagent according to the manufacturer's
130 protocol. Heart homogenates were prepared with a Bead Mill Homogenizer using 1.5 ml screw top
131 tubes containing a mixed lysing matrix of 2.8- and 1.4-mm ceramic beds in 1 ml of Trizol, the
132 mouse cardiac fibroblasts were directly lysed with Trizol. Briefly, the aqueous phase containing
133 RNA was recovered after chloroform treatment, RNA was precipitated with isopropanol, washed
134 with 75% ethanol, and resuspended in RNase-free water. RNA concentration and purity were

135 assessed using a NanoDrop 2000 spectrophotometer. The cDNA was synthesized using Qiagen's
136 QuantiTect Reverse Transcription Kits. qPCR analysis was conducted using gene-specific primers, and
137 SsoAdvanced Universal SYBR Green super mix on a BioRad CFX Connect Realtime System equipped
138 with CFX Maestro software. Oligonucleotide primers were designed using PrimerBLAST (NCBI) and
139 purchased from IDT (Coralville, IA).

140 **Immunoblotting**

141 All protein lysates were made in ice cold Radioimmunoprecipitation Assay (RIPA) buffer
142 supplemented with HALT Protease and Phosphatase Inhibitor Cocktail and stored at -80°C until
143 use. Heart homogenates were prepared with a Bead Mill Homogenizer using 1.5 ml screw top
144 tubes containing a mixed lysing matrix of 2.8- and 1.4-mm ceramic beds with 1 ml of lysis buffer.
145 Cultured cells were washed once with PBS and scraped directly into 150 µL lysis buffer. Once
146 thawed the samples were spun at 20 000 x g for 20 minutes to pellet the insoluble fraction. Protein
147 concentrations were determined using the bicinchoninic acid assay (BCA). Samples were heat-
148 denatured in 2X or 4X Laemmli reducing sample buffer. Equal amounts of protein (10-20 µg)
149 were loaded into corresponding wells and separated with 4–20% gradient Sodium Dodecyl
150 Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE), transferred to 0.2 µm Polyvinylidene
151 fluoride (PVDF) membranes and blocked in Tris-buffered saline containing 0.1% Tween-20 and
152 5% nonfat milk (TBST) overnight at 4°C. Membranes were incubated with primary antibodies for
153 1 h at room temperature, washed three times in TBST, and probed with the appropriate HRP-
154 conjugated secondary antibodies for an additional 1 hour at room temperature. After 3 washes in
155 TBST the membranes were developed with Clarity Western enhanced chemiluminescence
156 substrate and visualized on a BioRad ChemiDoc MP imaging system with Image Lab software.
157 Each membrane was probed a second time with either ACTB or GAPDH to serve as loading
158 controls. The primary and secondary antibodies are listed in Supplementary Table 1.

159 **Masson's trichrome staining**

160 Masson's Trichrome staining was used to evaluate collagen deposition and myocardial fibrosis.
161 Fresh-frozen heart sections (10 µm) were fixed in 10% neutral buffered formalin at room
162 temperature for 1 hour and stained using a Masson's Trichrome Stain Kit (Polysciences Inc.)
163 according to the manufacturer's protocol. Briefly, sections were mordanted in Bouin's fixative and
164 sequentially stained with Weigert's Iron Hematoxylin for nuclear visualization, Biebrich Scarlet-
165 Acid Fuchsin for muscle and cytoplasm, Phosphomolybdic/Phosphotungstic acid as a
166 differentiator, and Aniline Blue to label collagen fibers. Following staining, sections were
167 dehydrated through 100% ethanol, cleared in xylene, and mounted with a permanent mounting
168 medium. Images were acquired using a multimodal imaging system (BioTek Cytation 5, Agilent
169 Technologies, Inc.) in color brightfield. Images were processed in Image J and analyzed using
170 Color Deconvolution2 plugin.

171 **Hematoxylin and Eosin (H&E) staining**

172 For general histological assessment, 10 µm frozen sections were stained with Hematoxylin and
173 Eosin (H&E). Slides were removed from the freezer and immediately immersed in fixative
174 solution (70% Ethanol, 4% formaldehyde, 5% glacial acetic acid) for 3 minutes. The slides were
175 passed through 70% and 90% ethanol for 1 minute each, rinsed with tap water, and deionized water
176 for 30 seconds each. Tissues were progressively stained in Hematoxylin for nuclear staining,

177 rinsed, clarified and passed through bluing reagent before counterstaining with EosinY to highlight
178 cytoplasmic and extracellular structures. The tissues were then dehydrated, cleared, and cover
179 slipped for light microscopy.

180 **Immunofluorescence staining**

181 For tissues, 10 μ m thick sections were cut from prepared Optimal Cutting Temperature
182 Imbedding Medium (OCT) blocks using a Leica CM1850 cryostat and transferred to charged
183 microscope slides, dried at room and stored at -80°C until use. Slides were removed from the
184 freezer, air dried, fixed with ice cold acetone for 10 minutes then dried again. After outlining the
185 sections with a hydrophobic barrier pen tissue, sections were briefly rehydrated with PBS and
186 blocked with 5% sera representing the secondary antibody species for at least 1 hour. The tissues
187 were then incubated with the primary antibody or a matching isotype control diluted in blocking
188 buffer for 1 hour at room temperature then washed three times in Phosphate Buffered Saline with
189 0.1% Triton X 100 (PBST). Secondary antibody was applied and incubated at room temperature
190 for an additional hour, this step was omitted for directly conjugated primary antibodies. Slides
191 were then washed once with PBST once with a 50:50 PBS/water mix, nuclei were stained with 1
192 μ M DAPI for 15 minutes at room temperature. After a final rinse in the 50:50 PBS/water mixture,
193 they were cover-slipped with VectaShield Vibrance Antifade Mounting Medium, sealed with clear
194 nail polish, and stored protected from light at 4°C.

195 For cellular immunofluorescence studies, cells were plated on poly-L-lysine coated 8 well
196 glass bottom Ibidi chamber slides. Following treatment as described above, cells were fixed in 4%
197 formaldehyde for 15 minutes at room temperature washed with PBS then permeabilized in PBS/0.2%
198 Triton-X100 for 5 minutes at room temperature, blocked with 5% serum representing the
199 secondary antibody for at least 1 hr. Primary antibodies and matching isotype controls diluted in
200 blocking buffer were applied for 1 hour at room temperature, slides were washed again in PBST,
201 incubated with secondary antibodies for an additional hour at room temperature, this step was
202 omitted for directly conjugated primary antibodies. Slides were then washed once with PBST, once
203 with a 50:50 PBS/water mix, nuclei were stained with 1 μ M DAPI for 15 minutes. After one final
204 wash in the 50:50 mixture, the slides were cover-slipped using VectaShield Vibrance Antifade
205 Mounting media, sealed with clear nail polish and stored at 4°C in the dark until imaging.

206 Fluorescence *in situ* hybridization staining was performed using Advanced Cell
207 Diagnostics RNAscope™ Multiplex Fluorescent V2 Assay following the manufacturer's protocol.
208 For dermatopontin and cytoglobin, we used the Mm-Dpt and Mm-Cytoglobin probes, respectively.
209 Mm-Ppib served as positive control and DapB as our negative control probe. Upon completion of
210 this *in situ* hybridization protocol, sections were then stained for cytoglobin (as above).

211 **Bulk RNA sequencing**

212 Total RNA was isolated from left ventricular tissue as outlined in the qPCR method above.
213 The RNA samples were sent to GENEWIZ (Azenta Life Sciences) for sequencing. RNA integrity
214 was evaluated by Agilent TapeStation only samples with RNA integrity number (RIN) \geq 7.0 were
215 used for sequencing. Differential gene expression analysis was conducted using DESeq2 in R.
216 Genes with a P-value < 0.01 and absolute \log_2 fold change > 0.26 were considered significantly
217 differentially expressed. Gene Ontology (GO) enrichment analysis was performed using
218 Metascape. Custom gene set enrichment analysis was performed using a curated gene set related

219 to myofibroblast differentiation. The gene list was assembled by integrating Gene Ontology
220 annotations from the AmiGO2 database (Gene Ontology term myofibroblast differentiation;
221 GO:0036446) with additional genes identified from prior literature and publicly available datasets.
222 The final custom gene set was used for enrichment analysis against ranked gene expression data,
223 and enrichment significance was assessed using standard permutation-based approaches.

224 **Analysis of single-cell RNA-Seq data**

225 Publicly available single-cell RNA sequencing (scRNA-seq) datasets from adult mouse and
226 human hearts were reanalyzed to determine the expression profile of cytoglobin across major
227 cardiac cell populations. Mouse heart data were obtained from Li et al.²¹ (raw sequence data
228 available from the Genome Sequence Archive in BIG Data Center (<http://bigd.big.ac.cn/>) with the
229 accession code CRA007245), McLellan et al.¹⁶ (Raw sequence reads were accessed in
230 ArrayExpress with accession number E-MTAB-8810), and human heart data were obtained from
231 Koenig et al.²⁰ (data are available on the Gene Expression Omnibus (GSE183852). Raw or
232 processed expression matrices and corresponding metadata (cell barcodes, cluster annotations, and
233 sample identifiers) were imported into Seurat (v4.3.0) in R (v4.2.0) for downstream analysis.
234 Quality control filtering, normalization (LogNormalize), scaling, and principal component
235 analysis (PCA) were performed following standard Seurat pipelines. UMAP (Uniform Manifold
236 Approximation and Projection) was used for dimensionality reduction and visualization of cell
237 clusters. Cell-type identities were assigned based on original annotations provided by the data
238 source or by canonical marker gene expression. Dot plots were generated to visualize the
239 expression of Cygb (mouse) or CYGB (human) across annotated cardiac cell types. Dot size
240 indicates the proportion of cells expressing the gene, and color intensity reflects the average
241 expression level in each cluster. All plots and statistics were generated in R using Seurat and
242 ggplot2 packages.

243 **Statistical analysis.**

244 Statistical analyses were performed with GraphPad Prism 10.6.1. The statistical test used to
245 analyze each data set is specified in individual figure legends and p-values are shown in figures.
246 A p-value of less than 0.05 was considered statistically significant. Results are expressed as mean
247 \pm SEM, and statistical analysis using unpaired t-tests, one- or two-way ANOVA for two or more
248 groups comparison followed by Tukey's multiple comparison test were used. The number of
249 independent replicates is also indicated in the figure legends, when applicable.

250

251 **Results**

252 **Genetic deletion of cytoglobin increases cardiac hypertrophy in the mouse**
253 **angiotensin II infusion model.**

254 To establish the effect of cytoglobin on angiotensin II-mediated cardiac hypertrophy,
255 angiotensin II (1.5 mg/kg/day) was infused subcutaneously in 11-14 weeks female and male
256 cytoglobin wild-type (*Cygb*^{+/+}) or knockout (*Cygb*^{-/-}) mice for 14 days using osmotic minipumps.
257 We verified the absence of cytoglobin in *Cygb*^{-/-} mice in hearts by Western blotting (**Figure 1A**)
258 and baseline echocardiography indicated no differences in heart rate, ejection fraction (EF), or
259 fractional shortening (FS) between genotypes in either sex (**Supplementary Figure S1**). Next,
260 heart sections were stained with Wheat Germ Agglutinin (WGA) to visualize cardiomyocyte
261 boundaries and quantify cellular hypertrophy. We found that cytoglobin deletion significantly
262 increased cardiomyocyte size in both sexes over the increase observed in the wild-type mice
263 following infusion of angiotensin II (**Figure 1B and C**). Heart weight-to-body weight (HW/BW)
264 ratios were significantly elevated in male *Cygb*^{-/-} mice after angiotensin II infusion compared to
265 *Cygb*^{+/+} males (**Figure 1D**). In contrast, there were no significant differences in females (**Figure**
266 **1D**). The increased cardiac hypertrophy observed in *Cygb*^{-/-} males coincided with a decrease in
267 cardiac functions including a significant reduction in ejection fraction and fractional shortening
268 (**Figure 1E and F**). Lastly, we found no difference in fibrosis area between *Cygb*^{+/+} and *Cygb*^{-/-}
269 mice based on Masson's Trichrome staining (**Figure 2A and B**). Overall, these results indicate
270 that global deletion of cytoglobin promotes cardiac hypertrophy in response to angiotensin II
271 infusion in mice in both sexes and cardiac dysfunction in males, in the absence of additional
272 increase in cardiac fibrosis.

273 **Systemic blood pressure is not altered in the cytoglobin knockout mice at baseline or**
274 **following Angiotensin II infusion.**

275 To determine whether the changes in cardiac hypertrophy and function observed in
276 cytoglobin knockout mice were secondary to alterations in systemic hemodynamics, we assessed
277 blood pressure and vascular functions. At baseline, systolic, diastolic, and mean arterial pressures
278 were not different between genotypes (**Figure 3A and Supplementary Figure S2**). Similarly,
279 acetylcholine (ACh)-induced endothelium-dependent vasorelaxation in isolated aortic rings was
280 not different between groups (**Figure 3B**). Following two weeks of Ang II infusion, both
281 genotypes exhibited the expected increase in blood pressure. However, no significant differences
282 in systolic, diastolic, or mean arterial pressures were observed between *Cygb*^{+/+} and *Cygb*^{-/-} mice
283 (**Figure 3C and Supplementary Figure S2**). These findings indicate that the exacerbated
284 hypertrophy and systolic dysfunction observed in *Cygb*^{-/-} mice occur independently of additional
285 changes in systemic blood pressure or vascular reactivity.

286 **Cytoglobin is expressed in cardiac fibroblasts and pericytes.**

287 Previous work indicated expression of cytoglobin in the heart and association with cardiac
288 fibroblasts^{17,18} and cardiomyocytes¹⁹. Using a publicly available human²⁰ (Gene Expression
289 Omnibus GSE183852) and mouse²¹ (accession code CRA007245) single-cell RNA sequencing
290 dataset, we found that cytoglobin mRNA transcripts were enriched in fibroblasts and pericytes in

humans and mice and below detection in other cardiac cells including cardiomyocytes and endothelial cells (**Figure 4A and B**). This was further validated with a second mouse heart dataset that included control and angiotensin II-treated groups¹⁶ (accession number E-MTAB-8810; **Supplementary Figure S3**). Cytoglobin transcripts co-associated with cell clusters expressing the fibroblast marker dermatopontin (*Dpt*) and pericyte marker neuron glial antigen 2 (*Ng2*; **Supplementary Figure S3A**). There were no evident changes in cytoglobin expression following angiotensin II infusion, consistent with quantification of cytoglobin protein content by Western blotting (**Supplementary Figure S3B and Figure 1**). Unsupervised clustering to identify fibroblast subpopulations revealed broad expression of cytoglobin in fibroblasts across all subclusters (**Supplementary Figure S3C and D**). Interestingly, cytoglobin was also expressed in thrombospondin-4 (*Thbs4*) positive fibroblasts that are more abundant following angiotensin II infusion¹⁶ (**Supplementary Figure S3D**).

Next, immunostaining with an antibody against cytoglobin combined with *in situ* hybridization for dermatopontin mRNA confirmed expression of cytoglobin in perivascular and interstitial fibroblasts at baseline and following angiotensin II infusion (**Figure 4C**). Similarly, co-association was evident between NG2 (gene code *Cspg4*) protein and cytoglobin mRNA visualized by *in situ* hybridization, consistent with cytoglobin expression in pericytes (**Figure 4D**). Cardiac pericytes are vascular mural cells that are structurally and functionally associated with heart capillaries^{22,23,24}. Because changes in capillary density may determine the myocardial response to chronic pressure overload^{25,26,27} and since we show that cardiac pericytes express cytoglobin, we next determined whether cytoglobin deletion altered heart capillarization. There was no difference in capillary density at baseline between the wildtype and knockout mice, based on CD31 immunostaining of left-ventricular sections (**Supplementary Figure 3**). However, there was a small but significant decrease in capillary density in the cytoglobin knockout mice over the decrease observed in the wildtype mice following angiotensin II infusion (**Supplementary Figure S4**).

317 ***Cytoglobin is required for cardiac fibroblast activation by angiotensin II.***

To obtain additional mechanistic insights, we performed bulk RNA sequencing of left ventricular heart tissue from male *Cygb*^{+/+} and *Cygb*^{-/-} mice following 2 weeks of angiotensin II infusion. Differential gene expression analysis identified a distinct transcriptional signature associated with cytoglobin deletion, with 548 genes significantly upregulated and 327 genes downregulated in *Cygb*^{-/-} mice (**Figure 5A**). Gene ontology analysis of upregulated transcripts revealed enrichment for biological processes related to cardiac conduction, cellular response to interferon β , and DNA damage pathways (**Figure 5B**). Downregulated genes were enriched for genes associated with blood vessel development and extracellular matrix organization (**Figure 5B and C**). The gene list corresponding to the biological process “Extracellular matrix organization” included genes such as *Sox9*, *Acta2*, *Eln*, and *Comp*, which are associated with the activation of fibroblasts to myofibroblasts (**Figure 5C**). To further explore the role of cytoglobin in cardiac fibroblast activation, we performed a gene set enrichment analysis^{28,29} for genes associated with myofibroblast differentiation. We used a gene list compiled from different sources focusing on genes that represent important myofibroblast markers^{30,31,32,33,34,35,36,37} (**Figure 5D**). With a

332 normalized enrichment score of -1.9684 and an FDR q value <0.0001, the analysis results indicated
333 a strong association between cytoglobin deletion and inhibition of cardiac fibroblast differentiation
334 to myofibroblasts (**Figure 5D**).

335 To investigate whether cytoglobin has direct effects on cardiac fibroblast activation, we
336 isolated adult cardiac fibroblasts from cytoglobin *Cygb*^{+/+} and *Cygb*^{-/-} mice. Prior to passage (P₀
337 cells), indirect immunofluorescence staining for cytoglobin indicated that cytoglobin was
338 expressed across the cell preparation and that more than 70% of the cells expressed the fibroblast
339 marker dermatopontin (*Dpt*; **Figure 6A**). Similar to previous studies on freshly isolated medial
340 vascular smooth muscle cells, we found that cytoglobin protein levels were decreased following
341 passage of the cardiac fibroblasts¹² (**Figure 6B**). Next, P₁ cardiac fibroblasts from *Cygb*^{+/+} and
342 *Cygb*^{-/-} mice were treated with either saline or angiotensin II. Quantitative real time polymerase
343 chain reaction confirmed the deletion of cytoglobin in the *Cygb*^{-/-} cells (**Figure 6C**). Most notably,
344 the angiotensin II-mediated activation of cardiac fibroblasts to myofibroblasts was inhibited in
345 *Cygb*^{-/-} cells as revealed by the absence of *Acta2*, *Postn*, and *Col1a1* upregulation (**Figure 6C**) and
346 the decrease in ACTA2 positive cells determined by immunofluorescence (**Figure 6D**). The
347 angiotensin II-stimulated expression of the fibrogenic mediators CTGF (*Ccn2*) and transforming
348 growth factor beta (TGF β) was also inhibited in *Cygb*^{-/-} cells (**Figure 6C**). Finally, to ascertain a
349 causative link between cytoglobin and fibroblast activation, we performed a rescue of function
350 experiment by transfection of human cytoglobin in *Cygb*^{-/-} cardiac fibroblasts followed by
351 angiotensin II treatment. Expression of human cytoglobin (hCYGB) in *Cygb*^{-/-} cardiac fibroblasts
352 was confirmed by Western blot and qRT-PCR (**Figure 6E and F**) and we measured the relative
353 expression of *Acta2*, *Colla1*, *Postn*, *Ccn2*, and *Tgfb1*mRNA transcripts by qRT-PCR (**Figure 6F**).
354 There was no difference in transcript levels between cells expressing empty vector and hCYGB
355 when treated with PBS. However, all the transcripts measured were significantly increased in
356 *Cygb*^{-/-} cells expressing hCYGB when treated with angiotensin II. These results revealed a direct
357 causative link between cytoglobin and angiotensin II-mediated cardiac fibroblast activation.

358

359 **Discussion**

360 In the present work, we found that the loss of cytoglobin exacerbates cardiac hypertrophy
361 in mice following angiotensin II infusion. This result was unanticipated given a previous study by
362 Zweier et al. showing that global deletion of cytoglobin in the mouse was associated with sustained
363 decrease in systemic blood pressure and inhibition of the pro-hypertensive effect of Ang II
364 infusion¹⁵. In contrast, we found no changes in systemic blood pressure, angiotensin II-induced
365 hypertension, or acetylcholine-mediated vasorelaxation. Zweier et al. used 48-week-old mice, and
366 it is possible that the age of the mice, in addition to their different genetic background, altered the
367 expression and cellular distribution of cytoglobin. Previous studies have also shown an increased
368 inflammatory burden in older cytoglobin knockout mice with increased NO production through
369 activation of NOS2, which might explain the hemodynamic changes observed in the Zweier study.
370 We did not pursue additional work to firmly establish that NO bioavailability and NO dependent
371 vasoreactivity were unaltered in our cytoglobin knockout mouse line. However, our results
372 suggest that the function of cytoglobin in the cardiovascular system cannot be explained solely
373 based on its reaction with NO. Biochemical studies which indicate strong hydrogen peroxide
374 scavenging activity of cytoglobin *in vitro* and *in vivo* further support the possibility of alternative
375 functions and mechanisms of action¹⁴.

376

377 It was notable that although the exacerbation of cardiac hypertrophy was observed in both
378 sexes, decrease in left ventricular function was only evident in males. As shown in **Figure 1**, the
379 effect size on cardiomyocyte area was smaller in female knockout mice following angiotensin II
380 infusion due to a greater increase in the female wildtype mice. Importantly, the present study was
381 not specifically designed to address sex differences, which would require larger group size and
382 more detailed experimental considerations related for example to the angiotensin II dosage and
383 sampling time. Additional work is also warranted to examine age-related alterations in systemic
384 hemodynamics and cardiac remodeling following manipulation of cytoglobin levels and pro-
385 hypertensive stressors.

386

387 We establish that in the heart, cytoglobin is expressed primarily in fibroblasts and pericytes.
388 Absence of cytoglobin expression in cardiomyocytes was previously noted^{17,18}. However, a later
389 study found that heart cytoglobin protein expression was increased in a mouse line with
390 cardiomyocyte specific overexpression of activated calcineurin¹⁹. Although the same study
391 characterized cytoglobin expression *in vitro* in C2C12 myocytes, specific association of cytoglobin
392 with cardiomyocytes *in vivo* was not established. Significantly, mice with cardiomyocyte specific
393 overexpression of activated calcineurin develop extensive interstitial fibrosis, in addition to cardiac
394 hypertrophy³⁸. Thus, it is possible that the increase in cytoglobin protein expression observed by
395 the Mammen group in this mouse line was due to the expansion of activated fibroblasts expressing
396 cytoglobin, rather than cardiomyocytes. Overall, our results showing expression of cytoglobin
397 within perivascular fibroblasts of coronary arteries – in addition to interstitial fibroblasts – is
398 consistent with our previous work showing that cytoglobin is also expressed in adventitial
fibroblasts of large arteries such as the aorta and carotid arteries¹¹.

399

400 Our results indicate that the loss of cytoglobin exacerbated cardiomyocyte hypertrophy
401 with no change in fibrosis. The specific mechanism by which this may occur is unclear because of
the lack of effect of cytoglobin deletion on blood pressure and the absence of cytoglobin in

402 cardiomyocytes. The lack of effect on fibrosis is even more striking considering the inhibitory
403 effect of cytoglobin on cardiac myofibroblast differentiation and could suggest alternative sources
404 for extracellular matrix proteins. The increased expression of extracellular matrix related proteins
405 in the heart following chronic infusion of angiotensin II has been clearly established. However,
406 the demonstration that cardiac fibroblasts are primary collagen producing cells in response to
407 angiotensin II *in vivo* is lacking. Instead, bone marrow and endothelial-to-mesenchymal derived
408 fibrocytes have been proposed as alternative sources of extracellular matrix proteins. For example,
409 a set of studies has established that angiotensin II infusion stimulates the production of MCP-1 by
410 endothelial cells, that is in turn required for the accumulation of myeloid-derived collagen-
411 producing fibrocytes^{39,40,41,42,43}. Angiotensin II infusion in the mouse also increases the expression
412 of other pro-inflammatory cytokines and growth factors including TGF β , interleukin-1, and tumor
413 necrosis factor, all of which have been implicated in cardiomyocyte hypertrophy^{44,45,46,47,48}. Thus,
414 it is possible that cytoglobin deletion exacerbates the inflammatory response to enhance cardiac
415 hypertrophy. This is suggested by the upregulation of genes associated with interferon beta
416 (**Figure 5B**) and future studies will have to establish how fibroblast and pericyte cytoglobin
417 contributes to this process.

418 Lastly, our study suggests for the first time that cytoglobin is essential for the activation of
419 cardiac fibroblasts by angiotensin II. The inhibition of smooth muscle alpha actin (ACTA2)
420 expression – a marker of myofibroblast differentiation – in the absence of cytoglobin was
421 reminiscent of previous work, in which the loss of ACTA2 expressed in vascular smooth muscle
422 cells was accelerated in cytoglobin-deficient mice with carotid artery¹³. However, this was in
423 contrast with previous work showing increased expression of ACTA2 in cytoglobin-deficient
424 mouse hepatic stellate cells *in vitro*⁴⁹. Overall, these and other studies support the idea that
425 cytoglobin is an important regulator of myofibroblast differentiation^{17,18,49,50}. They also indicate
426 differences in the functional engagement of cytoglobin across cell types, which will need to be
427 mechanistically addressed in the future. Work from this laboratory and others indicate that
428 cytoglobin rapidly reacts with specific reactive oxygen species (ROS) such as hydrogen
429 peroxide^{14,51,52,53}. The role of ROS and NADPH oxidases in angiotensin II-dependent hypertension
430 and remodeling is well established⁵⁴. There is also evidence to support the role for fibroblast
431 NADPH oxidases in regulating vascular remodeling and tissue fibrosis^{55,56}. Our previous work in
432 serum-stimulated vascular smooth muscle cells suggested a link between cytoglobin, NOX4, and
433 gene expression through interaction with chromatin remodelers such as HMGB2¹³. We would like
434 to propose that the molecular function of fibroblast cytoglobin directly intersects with angiotensin
435 II signaling by regulating redox signals either proximal to the angiotensin II receptor or more distal,
436 through redox regulation of angiotensin II responsive transcription factors.

437 In summary, we established that cytoglobin inhibits cardiac hypertrophy independent of
438 blood pressure following Ang II infusion in the mouse. To our knowledge, this is the first study
439 indicating a role for cytoglobin in regulating cardiac hypertrophy and angiotensin II signaling.

440

441 **Funding Statement.** This work was supported by NIH grant R01 HL142807 (to
442 D.J.).

443 **References**

- 444 1. Palmer, R.M.J., Ferrige, A.G., and Moncada, S. (1987). Nitric oxide release accounts for
445 the biological activity of endothelium-derived relaxing factor. *Nature* 327, 524–526.
- 446 2. Sander, M., Chavoshan, B., and Victor, R.G. (1999). A large blood pressure-raising
447 effect of nitric oxide synthase inhibition in humans. *Hypertension* 33, 937–942.
- 448 3. Rossi, M.A., Ramos, S.G., and Prado, C.M. (2003). Chronic inhibition of nitric oxide
449 synthase induces hypertension and cardiomyocyte mitochondrial and myocardial collagen
450 remodelling in the absence of hypertrophy. *J. Hypertens.* 21, 993–1001.
- 451 4. Schiattarella, G.G., Altamirano, F., Tong, D., French, K.M., Villalobos, E., Kim, S.Y.,
452 Luo, X., Jiang, N., May, H.I., Wang, Z.V., Hill, T.M., Mammen, P.P.A., Huang, J., Lee,
453 D.I., Hahn, V.S., Sharma, K., Kass, D.A., Lavandero, S., Gillette, T.G., and Hill, J.A.
454 (2019). Nitrosative stress drives heart failure with preserved ejection fraction. *Nature*
455 568, 351–356.
- 456 5. Huang, P.L., Huang, Z., Mashimo, H., Bloch, K.D., Moskowitz, M.A., Bevan, J.A., and
457 Fishman, M.C. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide
458 synthase. *Nature* 377, 239–242.
- 459 6. Shesely, E.G., Maeda, N., Kim, H.-S., Desai, K.M., Krege, J.H., Laubach, V.E.,
460 Sherman, P.A., Sessa, W.C., and Smithies, O. (1996). Elevated blood pressures in mice
461 lacking endothelial nitric oxide synthase. *Proc. Natl. Acad. Sci. USA* 93, 13176–13181.
- 462 7. Barouch, L.A., Harrison, R.W., Skaf, M.W., Rosas, G.O., Cappola, T.P., Kobeissi, Z.A.,
463 Hobai, I.A., Lemmon, C.A., Burnett, A.L., O'Rourke, B., Rodriguez, E.R., Huang, P.L.,
464 Lima, J.A.C., Berkowitz, D.E., and Hare, J.M. (2002). Nitric oxide regulates the heart by
465 spatial confinement of nitric oxide synthase isoforms. *Nature* 416, 337–339.
- 466 8. Liu, Y.-H., Xu, J., Yang, X.-P., Yang, F., Shesely, E., and Carretero, O.A. (2002). Effect
467 of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial nitric
468 oxide synthase knockout mice with heart failure. *Hypertension* 39, 375–381.
- 469 9. Vaziri, N.D., Oveis, F., and Ding, Y. (1998). Role of increased oxygen free radical
470 activity in the pathogenesis of uremic hypertension. *Kidney Int.* 53, 1748–1754.
- 471 10. Vaziri, N.D., Ni, Z., Oveis, F., Liang, K., and Pandian, R. (2002). Enhanced nitric oxide
472 inactivation and protein nitration by reactive oxygen species in renal insufficiency.
473 *Hypertension* 39, 135–141.
- 474 11. Halligan, K.E., Jourd'heuil, F.L., and Jourd'heuil, D. (2009). Cytoglobin is expressed in
475 the vasculature and regulates cell respiration and proliferation via nitric oxide
476 dioxygenation. *J. Biol. Chem.* 284, 8539–8547.
- 477 12. Jourd'heuil, F.L., Xu, H., Reilly, T., McKellar, K., El Alaoui, C., Steppich, J., Liu, Y.F.,
478 Zhao, W., Ginnan, R., Conti, D., Lopez-Soler, R., Asif, A., Keller, R.K., Schwarz, J.J.,
479 Thanh Thuy, L.T., Kawada, N., Long, X., Singer, H.A., and Jourd'heuil, D. (2017). The
480 hemoglobin homolog cytoglobin in smooth muscle inhibits apoptosis and regulates
481 vascular remodeling. *Arterioscler. Thromb. Vasc. Biol.* 37, 1944–1955.
- 482 13. Mathai, C., Jourd'heuil, F., Pham, L.G.C., Gilliard, K., Howard, D., Balnis, J., Jaitovich,
483 A., Chittur, S.V., Riley, M., Peredo-Wende, R., Ammoura, I., Shin, S.J., Barroso, M.,
484 Barra, J., Shishkova, E., Coon, J.J., Lopez-Soler, R.I., and Jourd'heuil, D. (2023).

Regulation of DNA damage and transcriptional output in the vasculature through a cytoglobin–HMGB2 axis. *Redox Biol.* 65, 102838.

14. Jourd’heuil, F., Mathai, C., Pham, L.G.C., Gilliard, K., Balnis, J., Overmyer, K.A., Coon, J.J., Jaitovich, A., Boivin, B., and Jourd’heuil, D. (2025). Cytoglobin scavenges intracellular hydrogen peroxide and regulates redox signals in the vasculature. *Redox Biol.* 83, 103633.

15. Liu, X., El-Mahdy, M.A., Boslett, J., Varadharaj, S., Hemann, C., Abdelghany, T.M., Ismail, R.S., Little, S.C., Zhou, D., Thanh Thuy, L.T., Kawada, N., and Zweier, J.L. (2017). Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall. *Nat. Commun.* 8, 14807.

16. McLellan, M.A., Skelly, D.A., Dona, M.S.I., Squiers, G.T., Farrugia, G.E., Gaynor, T.L., Cohen, C.D., Pandey, R., Diep, H., Vinh, A., Rosenthal, N.A., and Pinto, A.R. (2020). High-resolution transcriptomic profiling of the heart during chronic stress reveals cellular drivers of cardiac fibrosis and hypertrophy. *Circulation* 142, 1448–1463.

17. Schmidt, M., Gerlach, F., Avivi, A., Laufs, T., Wystub, S., Simpson, J.C., Nevo, E., Saaler-Reinhardt, S., Reuss, S., Hankeln, T., and Burmester, T. (2004). Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. *J. Biol. Chem.* 279, 8063–8069.

18. Nakatani, K., Okuyama, H., Shimahara, Y., Saeki, S., Kim, D.-H., Nakajima, Y., Seki, S., Kawada, N., and Yoshizato, K. (2004). Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. *Lab. Invest.* 84, 91–101.

19. Mammen, P.P.A., Singh, S., Manda, S.M., Sikder, D., Birrer, M.J., Rothermel, B.A., and Garry, D.J. (2009). Calcineurin activates cytoglobin transcription in hypoxic myocytes. *J. Biol. Chem.* 284, 10409–10421.

20. Koenig, A.L., Shchukina, I., Amrute, J., Andhey, P.S., Zaitsev, K., Lai, L., Bajpai, G., Bredemeyer, A., Smith, G., Jones, C., Terrebonne, E., Rentschler, S.L., Artyomov, M.N., and Lavine, K.J. (2022). Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. *Nat. Cardiovasc. Res.* 1, 263–280.

21. Li, W., Lou, X., Zha, Y., Qin, Y., Zha, J., Hong, L., Xie, Z., Yang, S., Wang, C., An, J., Zhang, Z., and Qiao, S. (2023). Single-cell RNA-seq of heart reveals intercellular communication drivers of myocardial fibrosis in diabetic cardiomyopathy. *eLife* 12, e80479.

22. Armulik, A., Abramsson, A., and Betsholtz, C. (2005). Endothelial/pericyte interactions. *Circ. Res.* 97, 512–523.

23. Geevarghese, A., and Herman, I.M. (2014). Pericyte–endothelial crosstalk: implications and opportunities for advanced cellular therapies. *Transl. Res.* 163, 296–306.

24. Lee, L.L., Khakoo, A.Y., and Chintalgattu, V. (2021). Cardiac pericytes function as key vasoactive cells to regulate homeostasis and disease. *FEBS Open Bio* 11, 207–225.

25. Oka, T., Akazawa, H., Naito, A.T., and Komuro, I. (2014). Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. *Circ. Res.* 114, 565–571.

527 26. Souders, C.A., Borg, T.K., Banerjee, I., and Baudino, T.A. (2012). Pressure overload
528 induces early morphological changes in the heart. *Am. J. Pathol.* 181, 1226–1235.

529 27. Noly, P.-E., Haddad, F., Arthur-Ataam, J., Langer, N., Dorfmüller, P., Loisel, F.,
530 Guihaire, J., Decante, B., Lamrani, L., Fadel, E., and Mercier, O. (2017). The importance
531 of capillary density–stroke work mismatch for right ventricular adaptation to chronic
532 pressure overload. *J. Thorac. Cardiovasc. Surg.* 154, 2070–2079.

533 28. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
534 Paulovich, A., Pomeroy, S.L., Golub, T.R., and Mesirov, J.P. (2005). Gene set
535 enrichment analysis: a knowledge-based approach for interpreting genome-wide
536 expression profiles. *Proc. Natl. Acad. Sci. USA* 102, 15545–15550.

537 29. Mootha, V.K., Lindgren, C.M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J.,
538 Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., Houstis, N., Daly, M.J.,
539 Patterson, N., Mesirov, J.P., Golub, T.R., Tamayo, P., Spiegelman, B., Lander, E.S.,
540 Hirschhorn, J.N., Altshuler, D., and Groop, L.C. (2003). PGC-1 α -responsive genes
541 involved in oxidative phosphorylation are coordinately downregulated in human diabetes.
542 *Nat. Genet.* 34, 267–273.

543 30. Liu, X., Burke, R.M., Lighthouse, J.K., Baker, C.D., Dirkx, R.A., Kang, B., Chakraborty,
544 Y., Mickelsen, D.M., Twardowski, J.J., Mello, S.S., Ashton, J.M., and Small, E.M.
545 (2023). p53 regulates the extent of fibroblast proliferation and fibrosis in left ventricle
546 pressure overload. *Circ. Res.* 133, 271–287.

547 31. Buechler, M.B., Pradhan, R.N., Krishnamurty, A.T., Cox, C., Calviello, A.K., Wang,
548 A.W., Yang, Y., Tam, L., Caothien, R., Roose-Girma, M., Modrusan, Z., Arron, J.R., and
549 Turley, S.J. (2021). Cross-tissue organization of the fibroblast lineage. *Nature* 593, 575–
550 579.

551 32. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis,
552 A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L.,
553 Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., and
554 Sherlock, G. (2000). Gene ontology: tool for the unification of biology. *Nat. Genet.* 25,
555 25–29.

556 33. The Gene Ontology Consortium (2023). The Gene Ontology knowledgebase in 2023.
557 *Genetics* 224, iyad031.

558 34. Carbon, S., Ireland, A., Mungall, C.J., Shu, S., Marshall, B., Lewis, S., AmiGO Hub, and
559 Web Presence Working Group (2009). AmiGO: online access to ontology and annotation
560 data. *Bioinformatics* 25, 288–289.

561 35. Guo, W., Saito, S., Sanchez, C.G., Zhuang, Y., Gongora Rosero, R.E., Shan, B., Luo, F.,
562 and Lasky, J.A. (2017). TGF- β 1 stimulates HDAC4 nucleus-to-cytoplasm translocation
563 and NADPH oxidase 4–derived reactive oxygen species in normal human lung
564 fibroblasts. *Am. J. Physiol. Lung Cell. Mol. Physiol.* 312, L936–L944.

565 36. Kim, W., Barron, D.A., San Martin, R., Chan, K.S., Tran, L.L., Yang, F., and Rowley,
566 D.R. (2014). RUNX1 is essential for mesenchymal stem cell proliferation and
567 myofibroblast differentiation. *Proc. Natl. Acad. Sci. USA* 111, 16389–16394.

568 37. Wang, D., Rabhi, N., Yet, S.-F., Farmer, S.R., and Layne, M.D. (2021). Aortic
569 carboxypeptidase-like protein regulates vascular adventitial progenitor and fibroblast
570 differentiation through myocardin-related transcription factor A. *Sci. Rep.* 11, 3948.

571 38. Molkentin, J.D., Lu, J.R., Antos, C.L., Markham, B., Richardson, J., Robbins, J., Grant,
572 S.R., and Olson, E.N. (1998). A calcineurin-dependent transcriptional pathway for
573 cardiac hypertrophy. *Cell* 93, 215–228.

574 39. Tummala, P.E., Chen, X.L., Sundell, C.L., Laursen, J.B., Hammes, C.P., Alexander,
575 R.W., Harrison, D.G., and Medford, R.M. (1999). Angiotensin II induces vascular cell
576 adhesion molecule-1 expression in rat vasculature: a potential link between the renin–
577 angiotensin system and atherosclerosis. *Circulation* 100, 1223–1229.

578 40. Capers, Q., Alexander, R.W., Lou, P., De Leon, H., Wilcox, J.N., Ishizaka, N., Howard,
579 A.B., and Taylor, W.R. (1997). Monocyte chemoattractant protein-1 expression in aortic
580 tissues of hypertensive rats. *Hypertension* 30, 1397–1402.

581 41. Moore, B.B., Kolodnick, J.E., Thannickal, V.J., Cooke, K., Moore, T.A., Hogaboam, C.,
582 Wilke, C.A., and Toews, G.B. (2005). CCR2-mediated recruitment of fibrocytes to the
583 alveolar space after fibrotic injury. *Am. J. Pathol.* 166, 675–684.

584 42. Haudek, S.B., Xia, Y., Huebener, P., Lee, J.M., Carlson, S., Crawford, J.R., Pilling, D.,
585 Gomer, R.H., Trial, J., Frangogiannis, N.G., and Entman, M.L. (2006). Bone marrow-
586 derived fibroblast precursors mediate ischemic cardiomyopathy in mice. *Proc. Natl.
587 Acad. Sci. USA* 103, 18284–18289.

588 43. Ishibashi, M., Hiasa, K., Zhao, Q., Inoue, S., Ohtani, K., Kitamoto, S., Tsuchihashi, M.,
589 Sugaya, T., Charo, I.F., Kura, S., Tsuzuki, T., Ishibashi, T., Takeshita, A., and Egashira,
590 K. (2004). Critical role of monocyte chemoattractant protein-1 receptor CCR2 on
591 monocytes in hypertension-induced vascular inflammation and remodeling. *Circ. Res.* 94,
592 1203–1210.

593 44. Sadoshima, J., and Izumo, S. (1993). Molecular characterization of angiotensin II–
594 induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: critical
595 role of the AT1 receptor subtype. *Circ. Res.* 73, 413–423.

596 45. Sun, Y., Zhang, J., Lu, L., Chen, S.S., Quinn, M.T., and Weber, K.T. (2002).
597 Aldosterone-induced inflammation in the rat heart: role of oxidative stress. *Am. J. Pathol.*
598 161, 1773–1781.

599 46. Bujak, M., and Frangogiannis, N.G. (2007). The role of TGF- β signaling in myocardial
600 infarction and cardiac remodeling. *Cardiovasc. Res.* 74, 184–195.

601 47. Schultz Jel, J., Witt, S.A., Glascock, B.J., Nieman, M.L., Reiser, P.J., Nix, S.L., Kimball,
602 T.R., and Doetschman, T. (2002). TGF- β 1 mediates the hypertrophic cardiomyocyte
603 growth induced by angiotensin II. *J. Clin. Invest.* 109, 787–796.

604 48. Mann, D.L. (2002). Inflammatory mediators and the failing heart: past, present, and the
605 foreseeable future. *Circ. Res.* 91, 988–998.

606 49. Thanh Thuy, L.T., Matsumoto, Y., Van Thuy, T.T., Hai, H., Suoh, M., Urahara, Y.,
607 Motoyama, H., Fujii, H., Tamori, A., Kubo, S., Takemura, S., Morita, T., Yoshizato, K.,
608 and Kawada, N. (2015). Cytoglobin deficiency promotes liver cancer development from
609 hepatosteatosis through activation of the oxidative stress pathway. *Am. J. Pathol.* 185,
610 1045–1060.

611 50. Thanh Thuy, L.T., Matsumoto, Y., Ikura, Y., Urahara, Y., Motoyama, H., Fujii, H.,
612 Tamori, A., Kubo, S., Takemura, S., Morita, T., Yoshizato, K., and Kawada, N. (2020).
613 TGF- β 1-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells
614 during non-alcoholic steatohepatitis. *J. Hepatol.* 73, 882–895.

615 51. Kawada, N., Kristensen, D.B., Asahina, K., Nakatani, K., Minamiyama, Y., Seki, S., and
616 Yoshizato, K. (2001). Characterization of a stellate cell activation–associated protein
617 (STAP) with peroxidase activity found in rat hepatic stellate cells. *J. Biol. Chem.* 276,
618 25318–25323.

619 52. Beckerson, P., Svistunenko, D., and Reeder, B. (2015). Effect of the distal histidine on
620 the peroxidatic activity of monomeric cytoglobin. *F1000Res.* 4, 87.

621 53. DeMartino, A.W., Amdahl, M.B., Bocian, K., Rose, J.J., Tejero, J., and Gladwin, M.T.
622 (2021). Redox sensor properties of human cytoglobin allosterically regulate heme pocket
623 reactivity. *Free Radic. Biol. Med.* 162, 423–434.

624 54. Camargo, L.L., Rios, F.J., Montezano, A.C., and Touyz, R.M. (2025). Reactive oxygen
625 species in hypertension. *Nat. Rev. Cardiol.* 22, 20–37.

626 55. Harrison, C.B., Cellone Trevelin, S., Richards, D.A., Santos, C.X.C., Sawyer, G.,
627 Markovic, A., Zhang, X., Zhang, M., Brewer, A.C., Yin, X., Mayr, M., and Shah,
628 A.M. (2021). Fibroblast Nox2 (NADPH oxidase-2) regulates angiotensin II–induced
629 vascular remodeling and hypertension via paracrine signaling to vascular smooth muscle
630 cells. *Arterioscler. Thromb. Vasc. Biol.* 41, 698–710.

631 56. Hecker, L., Vittal, R., Jones, T., Jagirdar, R., Luckhardt, T.R., Horowitz, J.C., Pennathur,
632 S., Martinez, F.J., and Thannickal, V.J. (2009). NADPH oxidase-4 mediates
633 myofibroblast activation and fibrogenic responses to lung injury. *Nat. Med.* 15, 1077–
634 1081. doi:10.1038/nm.2005.

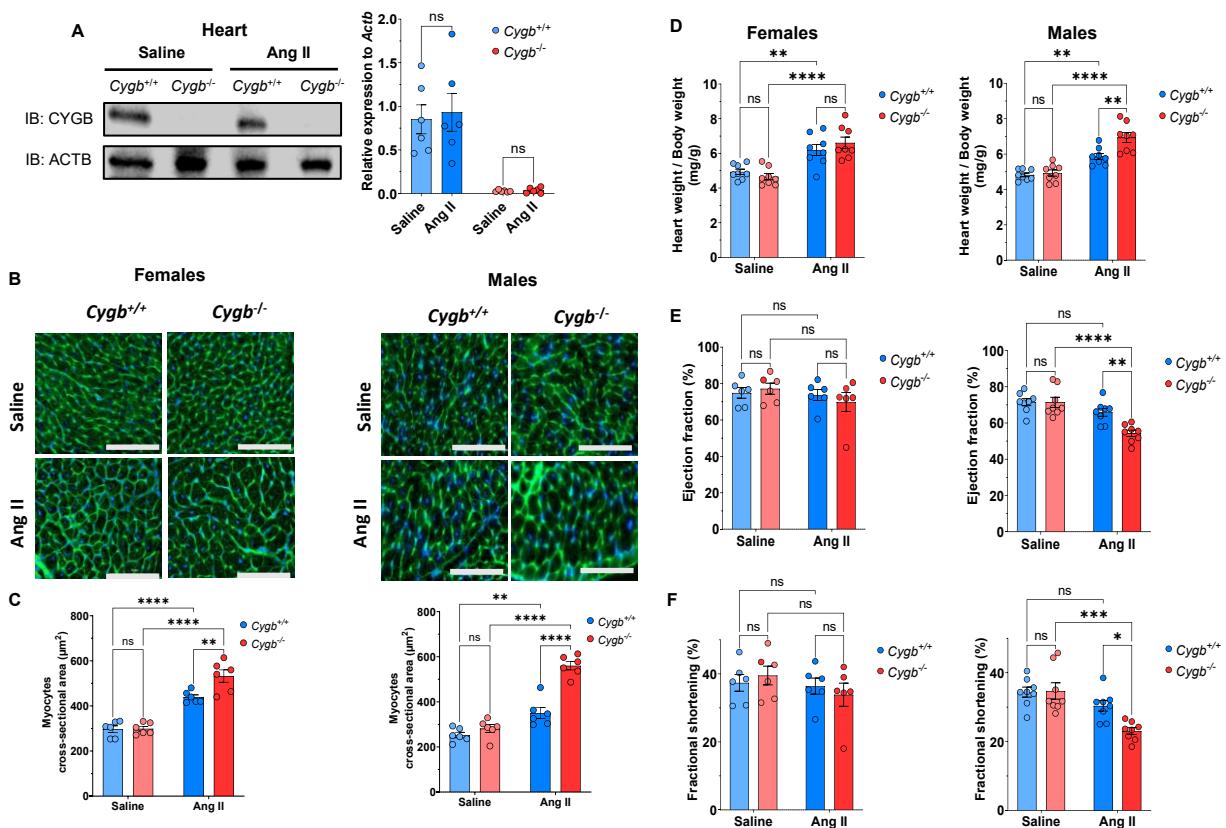
635

636

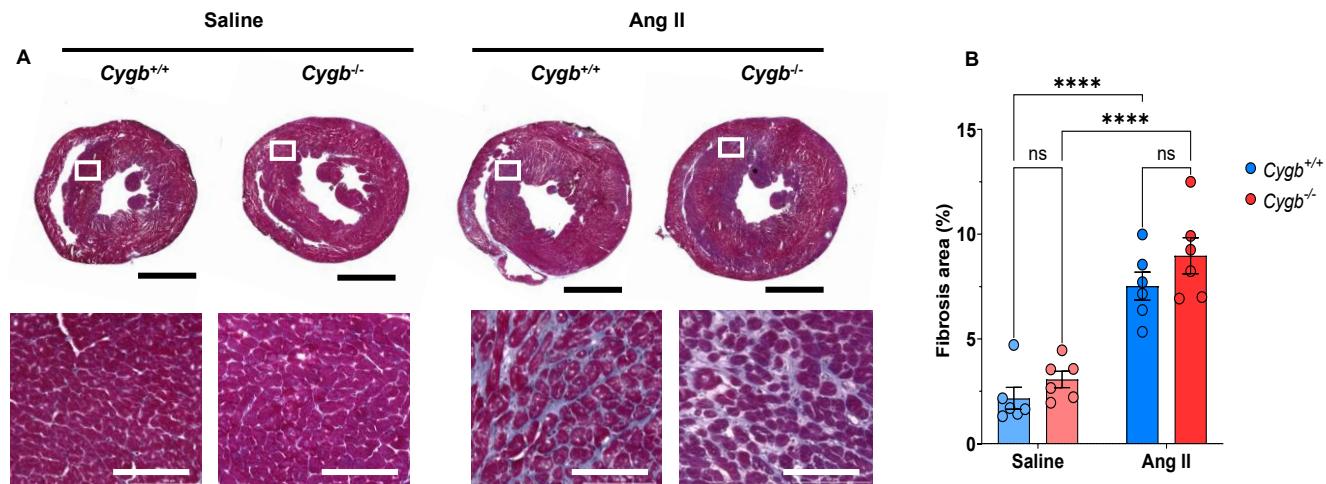
637 **Figure Legends**

638 **Figure 1. Increased cardiac hypertrophy in global cytoglobin knockout mice following**
639 **angiotensin II infusion.** Male and female $Cygb^{+/+}$ and $Cygb^{-/-}$ mice (11–14 weeks old) were
640 infused with angiotensin II (1.5 mg/kg/day) for 2 weeks using subcutaneously implanted osmotic
641 minipumps. After treatment, mice were euthanized, and hearts were collected for cytoglobin
642 protein analysis by Western blotting. **A:** Left panel, representative immunoblot showing
643 cytoglobin (CYGB) protein expression in hearts from each genotype and treatment group. ACTB
644 (β -actin) was used as a loading control. Right panel, quantification of CYGB protein expression
645 normalized to ACTB. **B:** Representative images of heart sections obtained from female (left panel)
646 and male (right panel) mice and stained with wheat germ agglutinin (WGA). Scale bar: 100 μ m.
647 **C:** Quantification of cardiomyocyte cross-sectional area in the left ventricular posterior wall of
648 hearts obtained from female (left panel) and male (right panel) hearts. **D:** Heart weight-to-body
649 weight ratio for female (left panel) and male (right panel) mice. **E and F:** ejection fraction (E) and
650 fractional shortening (F) were measured by echocardiography prior to sacrifice. Across the figure,
651 each data point represents one mouse. Data are presented as mean \pm SEM. Statistical analysis was
652 performed using two-way ANOVA. * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$, **** $P < 0.0001$, and ns
653 = not significant.

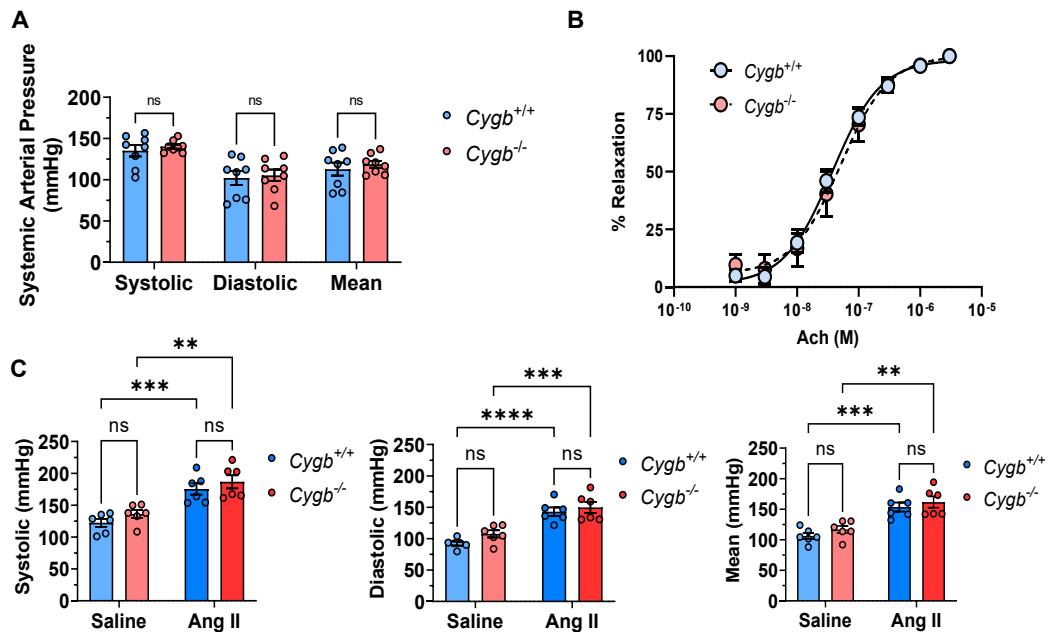
654 **Figure 2. Cytoglobin deletion does not change cardiac fibrosis.** **A:** Top panels, representative
655 trichrome-stained cardiac sections taken from the shorter axes of the hearts from both $Cygb^{+/+}$ and
656 $Cygb^{-/-}$ mice following infusion with either saline or angiotensin II (Ang II), as described in Figure
657 1. Scale bars are 2000 μ m. Bottom panels are enlargements of white insets **B:** Changes in cardiac
658 fibrosis expressed as a percentage of total area in male mice with and without Ang II infusion.
659 Scale bar = 100 μ m. Across the figure, each data point represents one mouse. Data are presented
660 as mean \pm SEM, with statistical significance determined using two-way ANOVA. * $P < 0.05$, ** P
661 < 0.01; *** $P < 0.001$, **** $P < 0.0001$ ns = not significant.

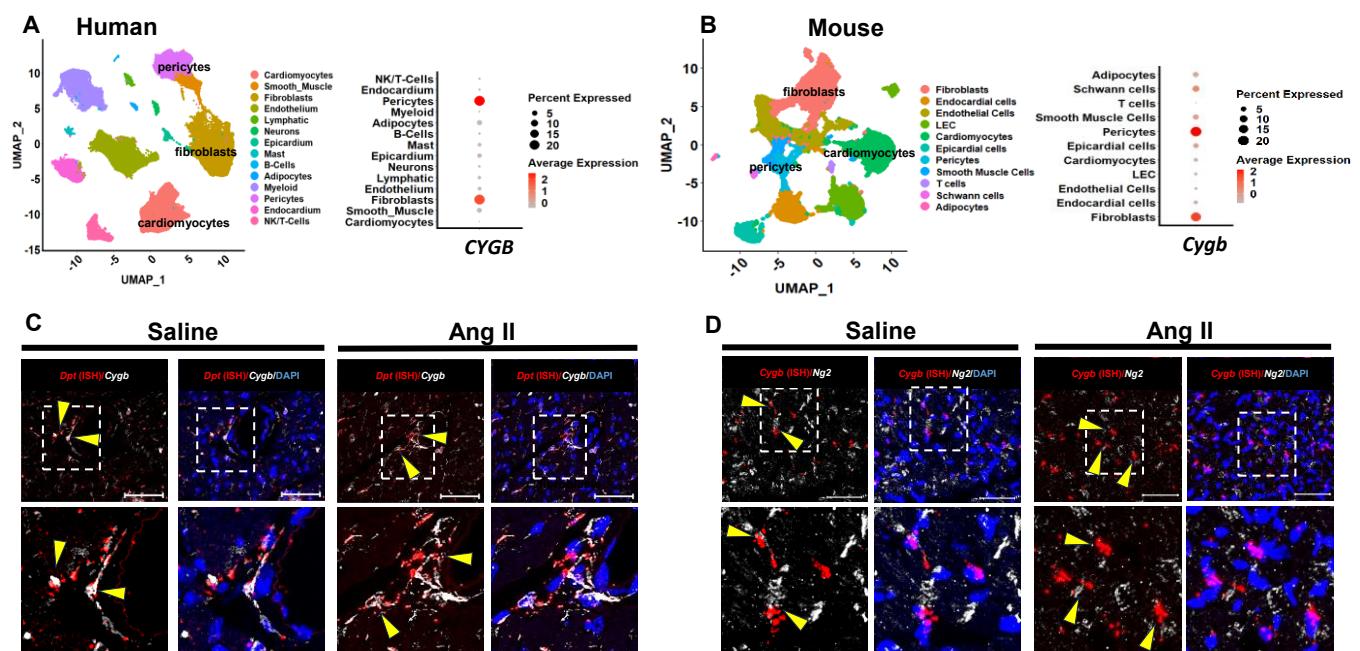

662 **Figure 3. Genetic deletion of cytoglobin does not alter blood pressure at baseline or following**
663 **Ang II infusion.** **A:** baseline blood pressure in male $Cygb^{+/+}$ and $Cygb^{-/-}$ mice measured with a
664 tail-cuff system. **B:** Acetylcholine (ACh)-induced vasorelaxation in isolated aortic rings ($n = 4$).
665 **C:** Male $Cygb^{+/+}$ and $Cygb^{-/-}$ mice (11–14 weeks old) were infused with saline or angiotensin II
666 (Ang II; 1.5 mg/kg/day) for 2 weeks via subcutaneously implanted osmotic pumps. Systolic,
667 diastolic, and mean arterial blood pressures were measured with a tail-cuff system. Data are
668 presented as mean \pm SEM, with statistical significance determined using two-way ANOVA. ** P
669 < 0.01; *** $P < 0.001$, **** $P < 0.0001$, ns = not significant.

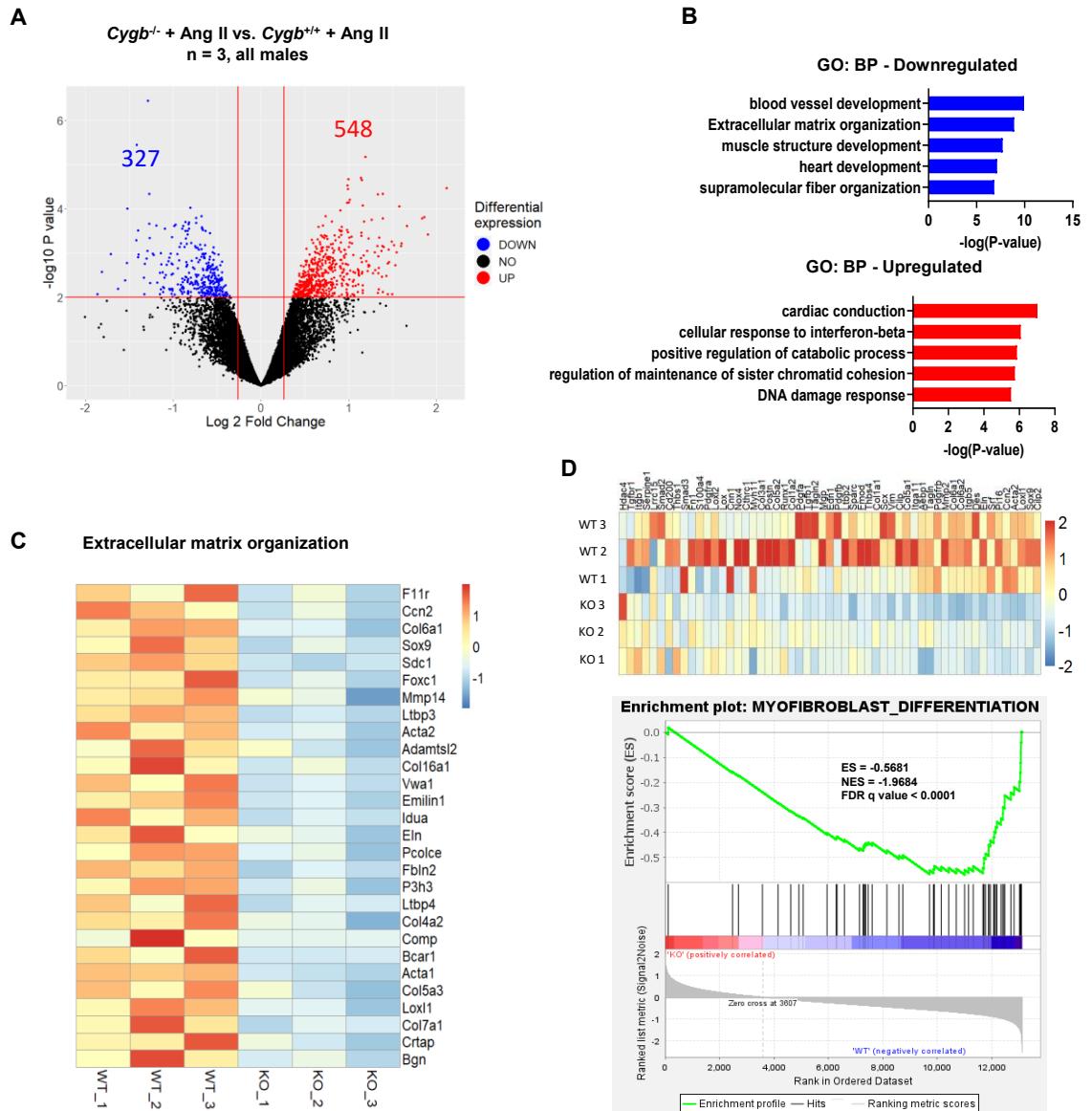
670 **Figure 4. Cytoglobin is expressed in cardiac fibroblasts and pericytes.** **A-B:** Analysis of
671 publicly available single cell RNA-seq data sets for human (GSE183852) and mouse
672 (CRA007245) hearts. For A and B, left panel is the Uniform Manifold Approximation and
673 Projection (UMAP) of isolated cardiac cells. The right panel is the dot plot of cytoglobin
674 expression in identified clusters. **C:** Cardiac tissue sections were prepared for *in situ* hybridization
675 for the fibroblast marker dermatopontin (*Dpt*, red) and immunostaining for cytoglobin (CYGB,
676 gray) with DAPI as a nuclear stain. Representative immunofluorescence staining are shown for
677 wild-type male mice following 2-week infusion of saline or Ang II.


678 **Figure 5. RNA seq analysis reveals a role for cytoglobin in myofibroblast dedifferentiation.**
679 Male *Cygb*^{-/-} and *Cygb*^{+/+} mice (n = 3 per group) were infused with angiotensin II (Ang II; 1.5
680 mg/kg/day) for 2 weeks. A: Volcano plot showing differentially expressed genes between
681 genotypes; numbers indicate upregulated (red) and downregulated (blue) transcripts in *Cygb*^{-/-}
682 hearts. B: Top Gene Ontology biological processes (GO:BP) enriched among downregulated (top
683 panel) and upregulated (bottom panel) genes. C: Heatmap of genes associated with extracellular
684 matrix organization pathway. Data were analyzed using DESeq2 for differential expression,
685 followed by GO enrichment analysis and GSEA for pathway-level interpretation. D: Heat map
686 and GSEA enrichment plot of the gene set for myofibroblast differentiation.

687 **Figure 6. Cytoglobin is required for angiotensin II-mediated cardiac fibroblast**
688 **differentiation to myofibroblast *in vitro*.** A: Cardiac fibroblasts were isolated from wildtype
689 mice. *In situ* hybridization for dermatopontin (Dpt, red) combined with indirect immunostaining
690 for cytoglobin (CYGB, green) and nuclear stain (DAPI, blue) was performed and visualized by
691 confocal microscopy. Bar graph shows the number of Dpt positive cells with all cells cytoglobin
692 positive. B: Cell lysates were prepared following initial isolation (P₀) and after one (P₁) or two
693 (P₂) passages. Cytoglobin (CYGB) expression was determined by Western blotting (top panel)
694 using beta actin (ACTB) as an internal standard and quantitation is shown in the bottom panel. C:
695 Freshly isolated *Cygb*^{-/-} and *Cygb*^{+/+} cardiac fibroblasts were treated with phosphate-buffered
696 saline (PBS) or 1 μ M angiotensin II (Ang II) for 24 hours. Relative expression levels of *Cygb*,
697 *Acta2*, *Colla1*, *Postn*, *Ccn2*, and *Tgfb-1* genes were quantified by qRT-PCR. D: Top panel,
698 representative confocal images of cardiac fibroblasts from male *Cygb*^{+/+} and *Cygb*^{-/-} mice treated
699 with angiotensin II and stained for Acta2 with quantitation of mean fluorescent intensity on the
700 bottom panel. E: Freshly isolated *Cygb*^{-/-} cardiac fibroblasts were transiently transfected with an
701 empty vector (EV) or a vector for expression of human cytoglobin (hCYGB). Cell lysates were
702 prepared and cytoglobin expression was determined by Western blotting using beta actin
703 (ACTAB) as an internal standard. F: Freshly isolated *Cygb*^{-/-} cardiac fibroblasts were transfected
704 with an empty vector (EV) or a vector for expression of human cytoglobin (hCYGB) and then
705 treated with phosphate-buffered saline (PBS) or 1 μ M angiotensin II (Ang II) for 24 hours. Relative
706 expression levels of *Cygb*, *Acta2*, *Colla1*, *Postn*, *Ccn2*, and *Tgfb-1* genes were quantified by qRT-
707 PCR. Data are presented as mean \pm SEM, with statistical significance determined using two-way
708 ANOVA. *P < 0.05, ****P < 0.0001, and ns = not significant.


Figure 1


Figure 2


Figure 3

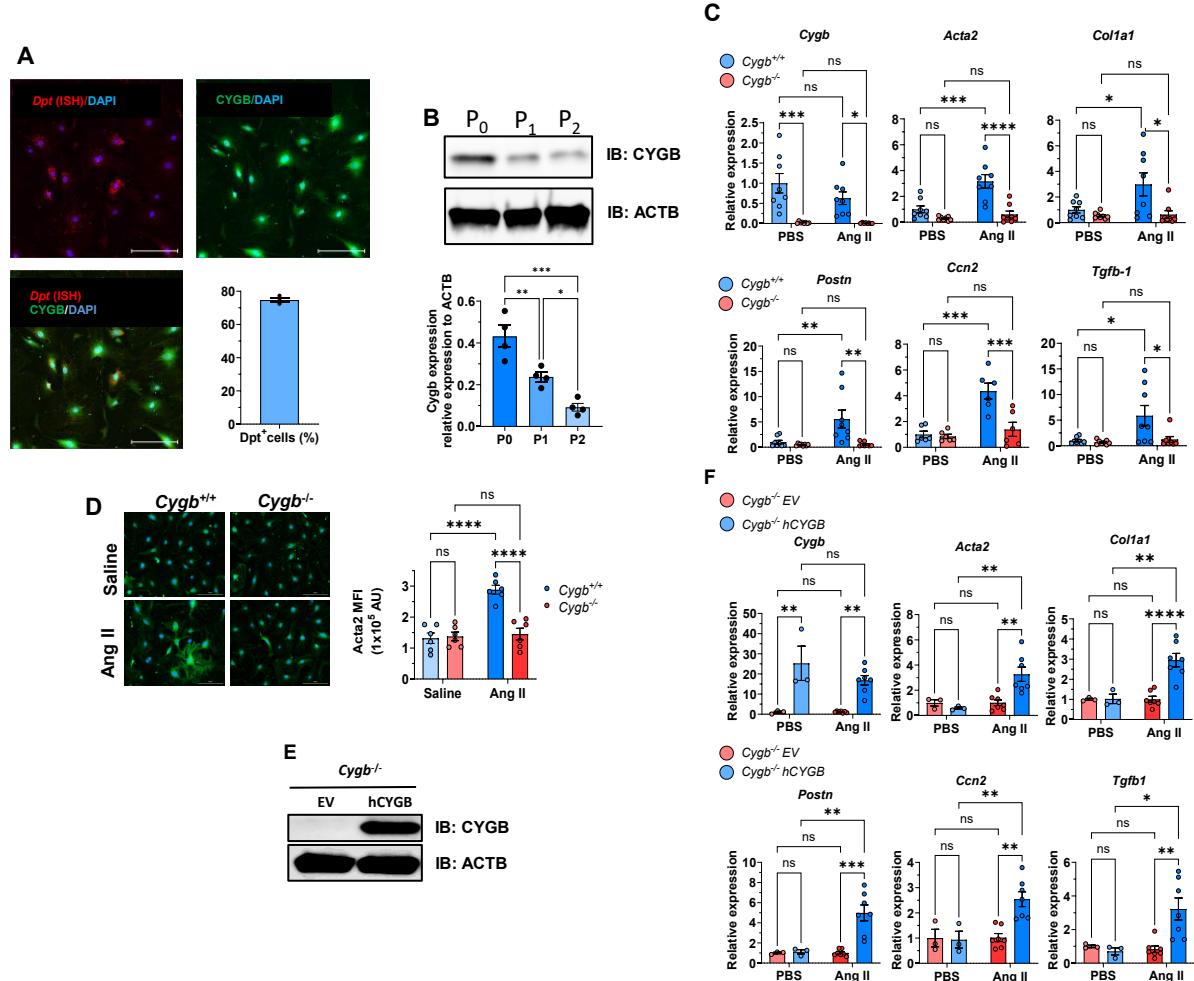
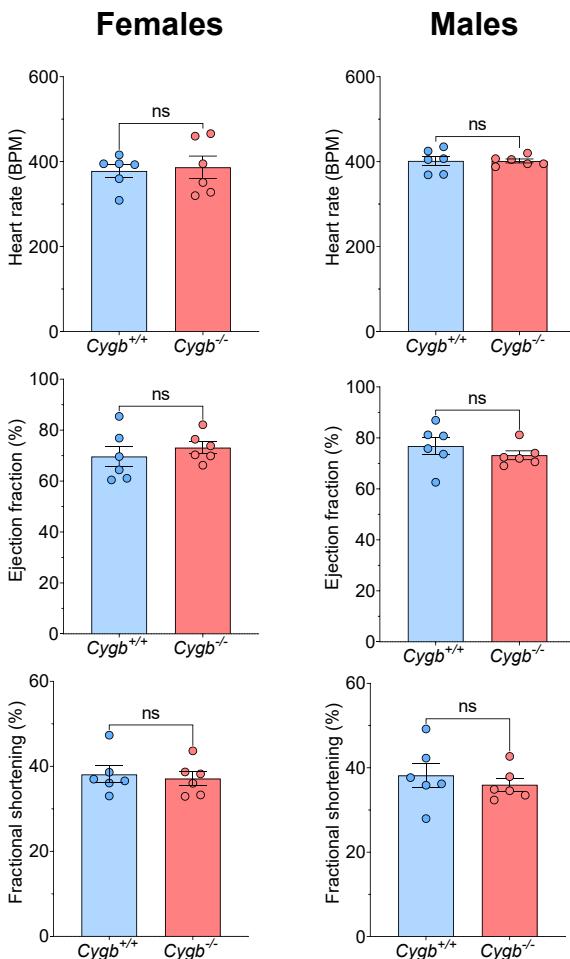
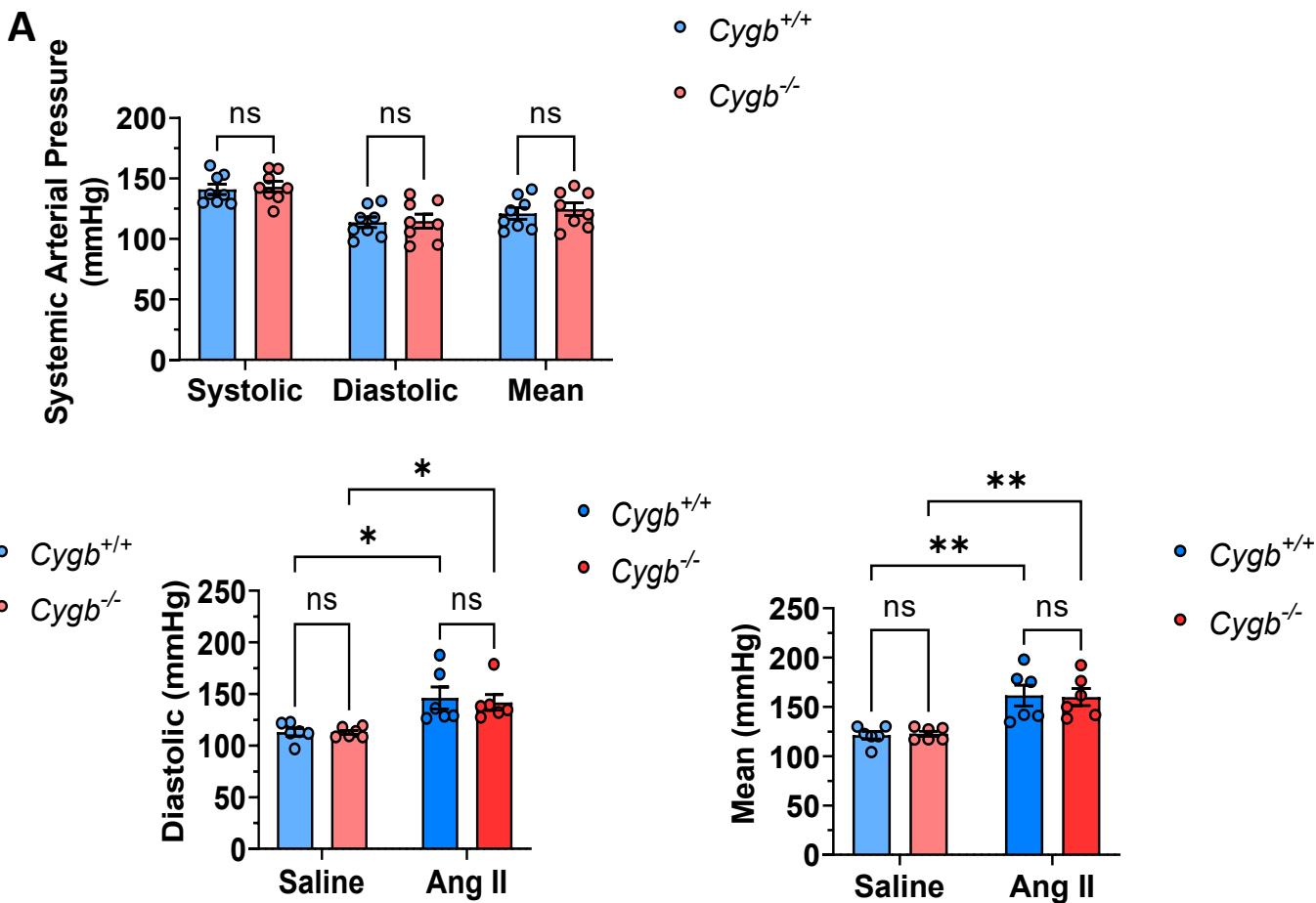

Figure 4

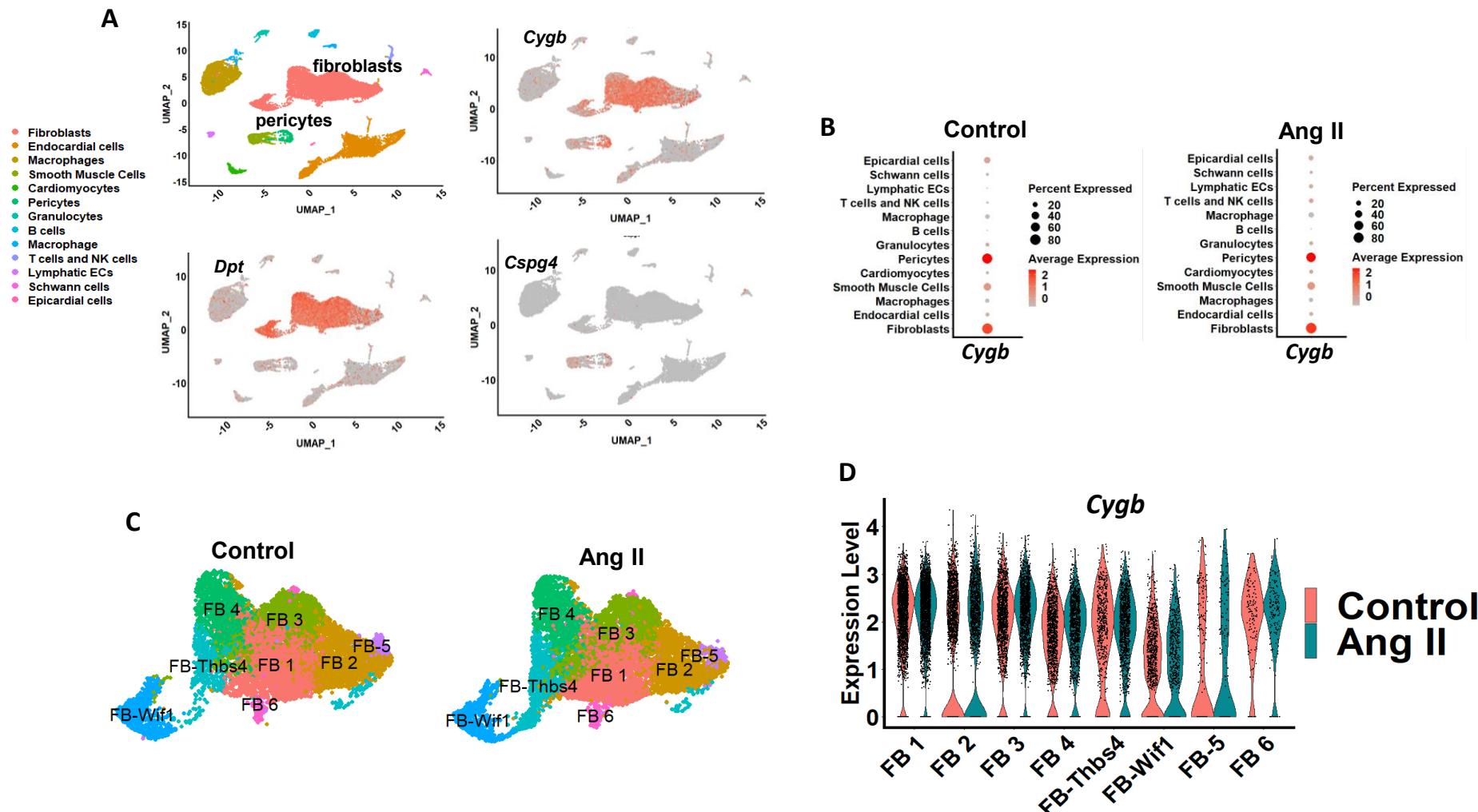
Figure 5


Figure 6

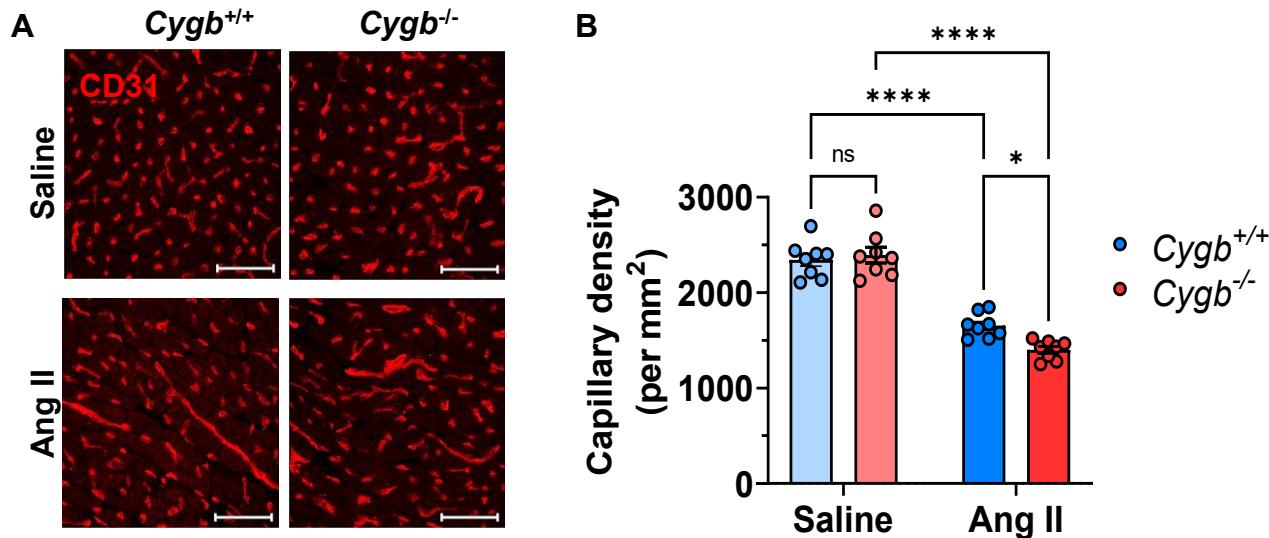

Supplementary Figures

Supplementary Table S1. Supplies and reagents

Reagents			Kits/Materials		
Acetone	Sigma	179124-1L	4-20% Mini Protein TGX stain Free gels	BioRad	4568094
Acrylchlorine	Sigma	A2261	BCA Protein Assay kit (Pierce)	Thermo Scientific	21325
Acrylarose	Thermo Scientific	90492	Colorfrost plus microscope slides	Cardinal health	161148-3P
Arginase II human	Sigma	A8526	Cryomolds (Tissue Tech 4586 10 x 10 x 5mm)	Electron Microscopy Sciences	82534-10
Antibiotic/Antimycotic	Corning	30-004-CL	EDDI 8 well/glass bottom chamber slides	BDI	204-41
β-Mercaptoethanol	Sigma	S3889	Mason's Trichrome Stain Kit	Polyscience, Inc	25086-1
Bovine Serum Albumin (BSA)	Sigma	A8806	Centrifuge Pumps Model 1002	Alzey	9004317
Calcium Chloride	Sigma	C5670	PVDF membrane	BioRad	1620177
Chloroform	Fisher	BP-145-1	QuantiTect Reverse Transcription Kit	Qiagen	205513
Clarity Western ECL Substrate	BioRad	1705061	RNA Scope Multiplex Fluorescent V2 Assay Kit	Advanced Cell Diagnostics	323100
Collagenase Type 1A	Sigma	C9891	RNA Scope Negative control probe DapB	Advanced Cell Diagnostics	310043
DAPI	Sigma	03542-5mg	RNA Scope Positive control probe Mn-Pipb	Advanced Cell Diagnostics	313911
Dextrose (D+) (Glucose)	Sigma	S8270	RNA Scope Target probe Mn-Dpl	Advanced Cell Diagnostics	361511
Dharmafect 1 (transfection reagent)	Horizon Discovery	T-2001-02	RNA Scope Oligo 570 reagent pack	Akoya	FP148801-KT
Dnae/PCR (TaqI)	Viagen	102-T			
DNA Ladder -TrackIt 100 bp	Invitrogen	10488058			
DNAse 1	Sigma	11264932001			
EDTA	Sigma	E5134			
Eosin Y (Ependia, Richard Allan Scientific 7111)	Fisher Scientific	22-050-110			
Ethanol (Ethyl alcohol - pure)	Sigma	S7023			
Fetal Bovine Serum (FBS)	Coriela	S43036E-03			
Formamide/urea solution 37%	Sigma	252549-100ML			
GelTaq G2 master mix	Promega	M7823			
HLA-T protease/phosphatase inhibitor	Thermo Scientific	1861284			
HESX	Corning	21-022-CV			
HESX with calcium and magnesium	Corning	21-023-CV			
Hematoxylin (Ependia, Richard Allan Scientific 7211)	Fisher Scientific	22-050-111			
HEPES	Sigma	H4034			
Isopropanol (2-Propanol)	Sigma	S8516			
L-Glutamine 200 mM	Sigma	S7513			
M199 Media	Corning	10-060-CV			
Magnesium Sulfate	Fisher Scientific	M63			
Methanol	JT Baker	8993-03			
2-Methyl Butane	Sigma	M32631			
Molecular weight markers (Precision Plus Western C)	BioRad	161-0385			
Mounting Media (Ependia, Richard Allan Scientific 4112)	Fisher Scientific	22-110-110			
Non-Fat Milk powder	Fisher	60-751-7665			
OCt compound	Tissue-Tek	4583			
OptiMEM	Life Technologies	31985062			
Pancreatin	Sigma	P2329			
pcDNA 3.1 (empty vector)	GeneScript	—			
pcDNA 3.1-HCYGB	GeneScript	0914114C			
Phenylurethane	Sigma	S4126			
Phosphate buffered Saline (DPBS)	Corning	21-031-CV			
Poly-Lysine solution	Sigma	S4832			
Potassium Chloride	Sigma	S3911			
Potassium Phosphate monobasic	Sigma	S0662			
Proteinase K	Viagen	S91-PK			
RIPA buffer (cell lysis buffer)	Sigma	R0278			
Saline (0.9% Sodium Chloride injection, UPS)	McKesson	236173			
SRS Laemmli Sample buffer 2X	BioRad	161-0737			
SRS Laemmli Sample buffer 4X	BioRad	161-0747			
Sodium Bicarbonate	Sigma	S8875			
Sodium Chloride	Sigma	S7653			
Sodium Phosphate Monobasic	Fisher	S369			
SanAdvanced Universal SYBR Green Supermix	BioRad	1725271			
Sucrose	Sigma	S1888			
SYBR safe DNA gel stain	Invitrogen	S33102			
Tissue X-100	Sigma	S7024			
Triton	Invitrogen	16596018			
Trypsin	Sigma	T4799			
Trypsin (0.2% Trypsin-EDTA)	Life	252-072			
Tween 20	Sigma	S2287			
Vectashield/Vibrance mounting media	Vector labs	H-1700			
Kylene	Sigma	S34056			



Supplementary Figure S1. Global deletion of cytoglobin does not alter baseline cardiac function. Echocardiographic assessment of heart rate, ejection fraction, and fractional shortening was performed in female (left panels) and male (right panels) $Cygb^{+/+}$ and $Cygb^{-/-}$ mice under baseline conditions. No significant differences were observed between genotypes for any parameter in either sex (n = 6 per group). Data are presented as mean \pm SEM, and statistical significance was determined by unpaired t-test; ns = not significant.



Supplementary Figure S2. No change in blood pressure in female mice at baseline or following

Angiotensin II infusion. A: baseline blood pressure in female *Cygb*^{+/+} and *Cygb*^{-/-} mice measured with a tail-cuff system. **B:** Female *Cygb*^{+/+} and *Cygb*^{-/-} mice (11–14 weeks old) were infused with saline or angiotensin II (Ang II; 1.5 mg/kg/day) for 2 weeks via subcutaneously implanted osmotic pumps. Systolic, diastolic, and mean arterial blood pressures were measured with a tail-cuff system. Data are presented as mean \pm SEM, with statistical significance determined using two-way ANOVA. *P < 0.05, **P < 0.01, ns = not significant.

Supplementary Figure S3. Cytoglobin expression in mouse hearts. **A:** Single-cell RNA-seq (scRNA-seq) data from publicly available mouse heart dataset (E-MTAB-8810) were reanalyzed to assess the expression pattern of *Cygb*, *Dpt*, *Cspg4* across major cardiac cell types. **B:** Dot plot indicates *Cygb* expression in control and Ang II treated hearts, enriched in fibroblasts and pericytes. Dot size represents the percentage of cells expressing *Cygb*, and color intensity indicates average expression level. **C:** UMAP plot of fibroblasts subpopulation in control and Ang II treated datasets. **D:** Violin plot showing *Cygb* expression levels in control and Ang II treated hearts.

Supplementary Figure S4. Cytoglobin deletion causes a small but significant decrease in capillary density. A: Representative left-ventricular sections from male *Cygb*^{+/+} and *Cygb*^{-/-} mice stained with CD31 to label capillaries. **B:** Quantitation of A. Scale bar = 100 μ m. Each data point represents one mouse. Data are presented as mean \pm SEM, with statistical significance determined using two-way ANOVA. *P < 0.05, ****P < 0.0001, and ns = not significant.