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Abstract 
Summary: The binding interactions between small molecules and proteins are the basis of cellular functions. Yet, 
experimental data available regarding compound-protein interactions (CPIs) are not harmonized into a single entity but 
rather scattered across multiple institutions, each maintaining databases with different formats. Extracting information from 
these multiple sources remains challenging due to data heterogeneity. Here, we present CPIExtract (Compound-Protein 
Interaction Extract), a Python package that automatically retrieves CPI data from nine major repositories, filters non-human 
and low-quality records, harmonizes chemical and protein identifiers, and computes unified pChEMBL binding values. 
Compared with MINER, a state-of-the-art CPI extraction algorithm, CPIExtract retrieves 85.5% more compounds, 16-fold 
more experimentally supported interactions, and over four times more proteins, substantially increasing the availability of 
strong and weak binders. The resulting harmonized dataset enables custom filtering and export in standard tabular formats 
for downstream applications such as network medicine, drug repurposing, and training of deep learning models. 
Availability: CPIExtract is an open-source Python package under an MIT license. CPIExtract can be downloaded from 
https://github.com/menicgiulia/CPIExtract and https://pypi.org/project/cpiextract. The package can run on any standard 
desktop computer or computing cluster. 
 

1 Introduction 
Compound-protein interactions (CPI) dictate the basis of many cellular dynamics, such as signaling, enzymatic reactions, 
and gene regulations. By understanding these interactions, we can develop drugs to target specific disease phenotypes and 
study how dietary molecules affect human and microbial health (Menichetti et al., 2025). Often CPI information is generated 
with high-throughput screening, testing small molecules (≤ 1000 Daltons) against large panels of tissues, cells, or proteins 
to determine their bioactivity. The generated data are gathered and curated into multiple chemical data sources such as 
BindingDB (Gilson et al., 2016), ChEMBL (Mendez et al., 2019), and PubChem (Kim et al., 2023). Each database is 
managed by different organizations, each implementing its own format, resulting in significant heterogeneity in the types 
of information stored. For example, databases with a focus on pharmaceuticals such as DrugBank (Knox et al., 2024) and 
DrugCentral (Avram et al., 2023) mainly focus on reporting therapeutic targets, whereas databases like STITCH (Szklarczyk 
et al., 2016) and the Comparative Toxicogenomics Database (Davis et al., 2021), despite compiling extensive biological 
interaction networks, lack in-depth information on the bioactivities of these interactions. The presence of crowd-sourced 
databases like Drug Target Commons (Tanoli et al., 2018) and Open Target Platform (Ochoa et al., 2023) further exacerbates 
this diversity as each user follows individual reporting criteria. Consequently, extracting and integrating CPI data from these 
sources poses a significant challenge to researchers. The importance of interaction data has driven efforts to unify chemical 
structure notation (Heller et al., 2015, Pascazio et al., 2023), protein names (The UniProt Consortium, 2017, Seal et al., 
2023), and protein-protein interaction data (Szklarczyk et al., 2019, Dimitrakopoulos et al., 2021. Yet, no open-source 
framework currently exists for harmonizing CPI data across repositories. This gap in standardization is increasingly 
problematic, as CPI datasets form the backbone of modern computational approaches, including AI pipelines for drug–target 
prediction (Chatterjee et al., 2023), chemical language models for de novo molecular design (Grisoni, 2023), and network-
medicine analyses that rely on experimentally supported seed interactions (Nasirian and Menichetti, 2023, Sebek and 
Menichetti, 2024, Aldana et al., 2025). The sparsity of CPI data leads researchers to develop predictive tools for annotating 
understudied compounds and proteins (Tsubaki et al., 2019, Abramson et al., 2024). Yet, these models frequently depend on 
databases built using heuristics and opaque algorithms that were never rigorously validated, raising concerns about their 
reliability. To address these challenges, we present CPIExtract, a Python package that enables users to seamlessly extract 
experimental interaction data from nine compound-protein interaction databases. By automating the filtration, integration, 
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and standardization processes, CPIExtract generates a unified output that can be stored in any standard tabular file format. 
This framework not only streamlines CPI data retrieval but also emphasizes the importance of a tool that enables 
transparency and standardization in biochemical research, ensuring more reliable foundations for downstream analyses. 
 

2 CPIExtract Pipeline Workflow 
The package allows the user to execute two pipelines, Compound-Proteins Extraction (Comp2Prot) and Protein-Compounds 
Extraction (Prot2Comp). The Comp2Prot pipeline retrieves proteins that interact with the small molecule passed as input, 
while Prot2Comp returns compounds interacting with the input protein. Both pipelines comprise three phases: input data 
extraction, data filtering, and harmonization (Fig. 1A). The package is designed to support multiple user scenarios based on 
different storage and software availability (SI User scenarios). 
 

2.1 Input data extraction 
CPIExtract extracts raw data from the following nine databases: BindingDB (BDB), ChEMBL, Comparative 
Toxicogenomics Database (CTD), DrugBank (DB), DrugCentral (DC), Drug Target Commons (DTC), Open Targets 
Platform (OTP), PubChem, and STITCH. Comp2Prot accepts InChI, InChIKey, SMILES, and PubChem ID (CID) as input, 
while Prot2Comp accepts Entrezgene ID, HGNC ID, Ensembl Peptide ID, Ensembl Gene ID, UniProt ID, ChEMBL ID, 
and HGNC symbol as input. We use the APIs pubchempy for compounds and Biomart for proteins to retrieve the identifiers 
used in each database, unifying the CPI data between databases and removing duplicates. 
 

2.2 Data filtering 
CPIExtract focuses exclusively on Homo sapiens proteins and protein interactions. Thus, the package removes non-human 
data and eliminates non-protein interactions, such as RNA interactions. Afterwards, each database is curated depending on 
the available data: 1) Activity Description: remove interactions with statements indicating inconclusive or undetermined 
activity (ChEMBL, CTD, DTC, PubChem); 2) Bioactivity Measurements: remove interactions not reporting binding activity 
(BDB, ChEMBL, DC, DTC, PubChem); 3) Reporting Source: filter to ensure interactions have at least one literature source 
(ChEMBL, DTC, OTP), or at least one reported experiment (STITCH); and 4) Experimental Conditions: filter interactions 
by conditions within the human body such as temperature (< 40°C), pH (5 < pH < 9) (BDB), and use descriptions of condition 
validity (ChEMBL). Since these data are typically only reported when deviating from expected conditions, null values are 
assumed to represent standard conditions. The package supports optional filters for protein mutations, viral proteins, and 
compound stereochemistry (SI Optional Filtering Parameters). 
 

2.3 Data harmonization 
CPIExtract harmonizes the collected bioactivity data by calculating the pChEMBL value, which is defined as log10(molar 
IC50, XC50, EC50, AC50, Ki, Kd, or potency) and provides a numerical value for the binding strength (Bento et al., 2014). 
BDB, ChEMBL, DC, and PubChem report bioactivity using these standardized metrics, while the user-submitted data in 
DTC are converted to standardized metrics whenever possible. CPIExtract calculates the average pChEMBL value for 
unique bioactivities, as databases frequently reference the same sources. The results are provided to the user in a tabular 
format, which includes the compound and protein identifiers, interaction strength via pChEMBL, and the databases 
reporting each interaction. 
 

3 Applications 
To assess the effectiveness of CPIExtract, we benchmarked it against MINER (Stanford SNAP Group, 2017), the CPI 
extraction module within the Stanford Network Analysis Platform (SNAP), a widely used graph-mining and network-
analysis library (Leskovec and Sosič, 2016). We use the 11,340 small molecules within DrugBank as our comparison dataset 
between the pipelines. For this dataset, MINER collected 4,433 compounds, 13,625 binding interactions, and 2,096 proteins. 
In contrast, CPIExtract found 8,221 compounds, 219,719 binding interactions, and 9,581 proteins, representing an 85.5% 
increase in compounds and a 16-fold increase in interactions over MINER (Fig. 1B). This substantial improvement exposes 
a bias in existing extraction tools, which rely heavily on a few sources. By integrating diverse repositories, CPIExtract 
mitigates this bias and supports more comprehensive mapping of off-target effects and understudied interactions. 
Since MINER provides interaction data without quantitative bioactivity measurements, we used CPIExtract to annotate 
MINER’s retrieved CPIs with pChEMBL values, enabling the evaluation of interaction strength. Through this integration, 
we categorized the interactions as non-binding (pChEMBL ≤ 3), weakly binding (3 < pChEMBL < 6), or strongly binding 
(pChEMBL ≥ 6) [Chatterjee et al., 2023]. In MINER, 61.6% of interactions lack any strength quantification, with only 0.4% 
classified as non-binding, 12.3% as weakly binding, and 25.7% as strong binders. CPIExtract dramatically expands these 
categories, yielding a 32.5-fold increase in weakly binding interactions and a 6.1-fold increase in strong binders (Fig. 1C). 
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Overall, CPIExtract retrieves 10- to 15-fold more interactions within each pChEMBL bin than MINER, enabling improved 
contrastive learning workflows (Singh et al., 2023) and providing experimentally validated negatives not obtainable in 
MINER for training binary binding predictors (Chatterjee et al., 2023). Users may optionally filter interactions by 
pChEMBL threshold or by the number of independent sources supporting each annotation. 
Lastly, we examined the degree ki, defined as the number of unique interactions associated with each compound compi, and 
compared its distribution in MINER and CPIExtract. CPIExtract consistently produces degree distributions with 
substantially heavier tails than MINER (Fig.1D), even under stringent thresholds such as pChEMBL > 8. 
This information gain is further quantified by the ratio ki(CPIExtract)/ki(MINER) across pChEMBL cutoffs (Fig. 1E). Notably, the 
improvement is highly compound-specific: drugs such as chlorpromazine and ponatinib exhibit annotation gains that exceed 
the median two- to three-fold increase observed up to pChEMBL = 6. We performed analogous analyses to compare the 
number and type of compound–interaction annotations retrieved per protein (see SI Prot2Comp and MINER) and the 
number and type of protein targets retrieved per naturally occurring compound (see SI Comp2Prot on Naturally Occurring 
Compounds). Both analyses revealed a substantial increase in information, with CPIExtract consistently providing far more 
annotations than MINER. This expanded coverage enables a more complete characterization of competitive binding 
landscapes and clarifies how multiple molecules may interact with the same protein targets. 
 

4 Discussion 
CPIExtract provides an extensive, harmonized resource for protein–ligand interactions, addressing long-standing challenges 
arising from heterogeneous data formats and annotation biases across individual databases. In contrast to tools implemented 
with limited methodological transparency, CPIExtract offers a clear and systematic workflow that prioritizes experimentally 
supported evidence rather than inferred associations. By integrating data from nine major repositories, the tool mitigates 
annotation imbalance and enables users to access a more representative and comprehensive view of compound–protein 
interactions. Specifically, CPIExtract facilitates the stratification of binding information by chemical classes, enabling the 
creation of balanced datasets that can enhance model training performance. In the field of network medicine, CPIExtract’s 
comprehensive interaction lists enhance the prediction of health implications. In food science, the tool addresses the issue 
of limited bioactivity knowledge across databases, providing a more robust framework for understanding compound 
interactions. Overall, CPIExtract empowers researchers to thoroughly characterize their compounds or proteins of interest, 
systematically exploring mechanisms of action with robust experimental evidence. 
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Figure 1: CPIExtract pipeline and MINER. A) Schematic of the Comp2Prot pipeline to extract protein interactions for a given 
compound. The user provides the CID for Chlorpromazine. CPIExtract extracts compound identifiers from PubChem and then collects 
and filters the raw interaction data for each database. The protein information is standardized by Biomart and stored in a tabular output. 
The interaction network shows binding proteins colored by interaction strength (green: binding, yellow: weak binding, gray: no data). 
The DrugBank logo marks annotations in DrugBank. B) CPI data found in each database for the small molecule drugs from MINER 
(blue: total number of compounds, red: total number of interactions). C) The pChEMBL distribution for CPIExtract and MINER 
annotations. D) Density distribution of ki for CPIExtract and MINER data at different pChEMBL thresholds. CPIExtract has more 
interactions per compound than MINER, even with stronger thresholds. E) ki ratio distribution between CPIExtract and MINER. 
ki(CPIExtract)/ ki(MINER) = 1 dotted line highlights an equal number of interactions reported.  
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