

# Life Identification Numbers: A bacterial strain nomenclature approach

Federica Palma<sup>1,2,#</sup>, Melanie Hennart<sup>1,#</sup>, Keith A. Jolley<sup>3</sup>, Chiara Crestani<sup>1</sup>, Kelly L. Wyres<sup>4,5</sup>, Sébastien Bridel<sup>1</sup>, Corin A. Yeats<sup>6</sup>, Bryan Brancotte<sup>7</sup>, Brice Raffestin<sup>8</sup>, Sophia David<sup>6</sup>, Margaret M. C. Lam<sup>4,5</sup>, Radosław Izdebski<sup>9</sup>, Virginie Passet<sup>1</sup>, Carla Rodrigues<sup>1</sup>, Martin Rethoret-Pasty<sup>1</sup>, Audrey Combaré<sup>1</sup>, Solène Cottis<sup>1</sup>, Martin C. J. Maiden<sup>3</sup>, David M. Aanensen<sup>6</sup>, Kathryn E. Holt<sup>4,10</sup>, Alexis Criscuolo<sup>2</sup>, and Sylvain Brisson<sup>1,2,\*</sup>

<sup>#</sup> Equal contribution

## Affiliations

<sup>1</sup> Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France

<sup>2</sup> Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur, Paris, France

<sup>3</sup> Department of Biology, University of Oxford, Oxford, United Kingdom

<sup>4</sup> Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Australia

<sup>5</sup> Centre to Impact AMR, Monash University, Clayton, 3800, Australia

<sup>6</sup>Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom

<sup>7</sup> Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France

<sup>8</sup> Institut Pasteur, Université Paris Cité, HPC Core Facility, Paris, France

<sup>9</sup>Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland

<sup>10</sup>Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom

**\*Correspondence:** Prof Sylvain Brisse, Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, 25-28 rue du Docteur Roux, F-75724, Paris, France; Phone: +33 1 45 68 83 34; E-mail: sylvain.brisse@pasteur.fr

30 **Abstract**

31 Unified strain taxonomies are needed for the epidemiological surveillance of bacterial pathogens and  
32 international communication in microbiological research. Core genome multilocus sequence typing  
33 (cgMLST) holds great promise for standardized high-resolution strain genotyping. However, this  
34 approach faces challenges including classification instability and disconnection of new nomenclature  
35 from widely adopted classical MLST identifiers. This essay discusses the cgMLST-based Life  
36 Identification Number (LIN) method, recently proposed as a stable multilevel strain taxonomy system  
37 applicable to most bacterial pathogens. We describe how LIN codes are implemented and used in  
38 practice for precise strain definitions and epidemiological tracking.

39

40 **Glossary**

41 **Multilocus sequence typing (MLST).** A genotyping method applied mostly to microbial strains to  
42 study population structure and epidemiology, based on comparing the nucleotide sequences of a small  
43 number (typically seven) of housekeeping protein-coding genes. In MLST, allele numbers are  
44 assigned to each sequence variant (allele) of a given gene. The MLST genotype of a bacterial strain is  
45 defined by the combination of the allele numbers observed at the genes that are included in the  
46 genotyping scheme. A sequence type (ST) is assigned to each unique combination of alleles, called an  
47 MLST profile. MLST was invented in 1998 and became a de-facto standard taxonomy of bacterial  
48 strains, albeit at low resolution.

49 **Core genome MLST.** An extension of MLST that analyzes sequence variation across hundreds to  
50 thousands of conserved (core) genes, shared by all strains of a species, providing higher resolution  
51 typing for genomic epidemiology and evolutionary studies. cgMLST schemes typically comprise 2000  
52 to 4000 genes, depending on the genome size and genetic variation (in terms of presence/absence of  
53 genes) within bacterial species. A core genome sequence type (cgST) can be assigned to unique  
54 cgMLST profiles, i.e., a unique combination of cgMLST allelic numbers.

55 **Whole Genome Sequencing (WGS).** A method that determines the complete DNA sequence of an  
56 organism's genome in a single process, providing comprehensive information for comparative genetic  
57 analyses based on cgMLST or other analytic methods.

58 **Single Nucleotide Polymorphisms (SNPs).** Variations at a single base position in the DNA sequence  
59 among individuals isolates, strains or species, used as genetic markers for studying for example,  
60 evolutionary relationships or strain identity.

61 **Average nucleotide identity (ANI).** A measure of genomic similarity between two organisms,  
62 calculated as the average percentage of identical nucleotides in orthologous genomic regions;  
63 commonly used to assess species-level relatedness in prokaryotes.

64 **Taxonomy.** Here, we apply the word taxonomy to bacterial strains as a system of classifying, naming  
65 and identifying strains based on shared genetic characteristics as defined by *e.g.*, cgMLST.

66

## 67 **Bacterial strain taxonomies: why and how?**

68 Taxonomies of bacterial strains responsible for infectious diseases are essential resources to ensure  
69 effective communication in population biology, epidemiological surveillance, and public health  
70 response to outbreaks. As illustrated by the SARS-CoV-2 variant nomenclature, simple nicknames (*e.g.*,  
71 Alpha, Delta, Omicron can greatly improve communication among multiple actors, including the public,  
72 in face of public health threats (1,2). Strain taxonomies are therefore needed to precisely recognize and  
73 define variants with properties of special medical interest, such as antimicrobial resistance, high  
74 virulence or vaccine escape.

75 Taxonomic systems are based on three pillars: classification, nomenclature and identification. Currently,  
76 there are neither classification nor nomenclature standards to define sublineages, variants, types or  
77 clones (hereafter, collectively called “strains”) within bacterial species (3). Linnean taxonomy  
78 encompasses classification levels from Phylum down to subspecies, but the latter is seldom used for  
79 bacterial species as it is not a practical solution to describe strains. Ad-hoc phenotypic (*e.g.*, serotypes)  
80 and genotypic (*e.g.*, sequence types) methods have long been used to differentiate strains from particular  
81 species but have shown limitations in terms of universal applicability, reproducibility of classification,  
82 or level of resolution. However, the advent of universally applicable whole genome sequencing (WGS)  
83 has advanced the potential to refine and generalize strain taxonomy by providing the maximal  
84 discrimination power needed for epidemiological surveillance, while being broadly applicable as a  
85 harmonized approach across pathogen Phyla (4–6). Yet, few attempts have been made to devise genomic  
86 taxonomies of strains and evaluate their general applicability. With WGS now being implemented  
87 worldwide in all sectors of microbiology (*e.g.*, medical, veterinary, food, environmental), a precise and  
88 universal procedure for describing bacterial strains becomes a key need to translate WGS data into  
89 relevant information that would support epidemiological surveillance, outbreak investigations, cross-  
90 niche or between-host transmission tracking, and public health actions that need international and cross-  
91 sectoral coordination.

92 Several bacterial strain taxonomies have emerged in recent years. One of them, applied to bacterial  
93 pathogens with low amounts of genetic diversity (*i.e.*, evolutionary recent pathogens), relies on  
94 recognizing notable branches in phylogenetic trees, defined by specific diagnostic single nucleotide  
95 polymorphisms (7,8). A similar approach, the Pango nomenclature, was successfully applied to SARS-  
96 CoV-2 variants (2). Unfortunately, these phylogenetic approaches face challenges raised by the need to  
97 update phylogenetic trees and define novel lineages. Another classification approach, PopPunk, relies  
98 on pairwise comparisons of unaligned genomes (based on  $k$ -mers) to create groups within bacterial  
99 populations, and is scalable to large and diverse datasets (9). However, among the broad range of  
100 methods developed for bacterial strain typing and group naming (10,11), multi-locus sequence typing  
101 (MLST), based on the analysis of a few (typically seven) conserved loci, was established over the last

102 two decades as the method of choice for most bacterial species (12–14). Indeed, major strengths of  
103 MLST are its standardization, as it relies on well-defined fixed sets of genetic markers, and its ease of  
104 interpretation and portability. Classical MLST schemes form the basis of widely adopted “sequence  
105 type” (ST) taxonomies (15) in most bacterial species, which are maintained, expanded and made  
106 available to the international community through the platforms BIGSdb (16) and Enterobase (17).

107 The logical extension of MLST at genome scale, known as core genome MLST (cgMLST), uses  
108 thousands of conserved gene loci, leading to the definition of core genome sequence types, or cgST  
109 (4,18). However, because of their much higher resolution, any cgST will match only with a tiny fraction  
110 of bacterial isolates from a given bacterial species, making the cgST a less useful nomenclatural element  
111 than the classical ST for tracing genetic relationships through broad space and time scales. To define  
112 phylogenetic associations among similar cgSTs, which together might represent meaningful groups of  
113 particular medical or epidemiological interest (a common way of conceptualizing the informal notion  
114 of ‘strain’), cgMLST allele profiles can be grouped at chosen levels of dissimilarity, resulting in  
115 multilevel classifications. A single-linkage clustering was initially used to create these higher-level  
116 groups from cgMLST data (e.g., (19)), but by design this approach suffers from a lack of stability, as  
117 preexisting groups can merge when intermediate genotypes are sampled. To address this issue, profiles  
118 can be assigned to the most closely related preexisting group. This approach, called Hierarchical  
119 clustering (HierCC), represents the first multilevel bacterial strain taxonomy system based on cgMLST  
120 (20). HierCC is implemented in the platform Enterobase, where taxonomies for strains of *Salmonella*,  
121 *Escherichia coli* and other important bacterial pathogens are maintained (17,21).

122 Amongst the various efforts to align the taxonomy of all life forms with genomic data, a novel multilevel  
123 classification system was proposed by Vinatzer and colleagues, using multi-position numerical codes  
124 attributed to each individual genome (22,23). These codes, called Life Identification Numbers (LINs),  
125 were designed to encompass all domains of life in a single, unified taxonomy, based on the Average  
126 Nucleotide Identity (ANI) metric (24). A database of these ANI-based LIN codes, GenomeRxiv  
127 (initially called LINbase; <https://genomerxiv.cs.vt.edu>), was set up to enable global development and  
128 use of this taxonomic approach (25).

129 Given that the pairwise ANI estimates between genomes can be imprecise for nearly identical strains,  
130 particularly when draft genomes are significantly fragmented, some of us proposed combining LIN  
131 codes with the cgMLST approach in order to design novel taxonomies of bacterial strains within species  
132 (26). We found the use of pairwise dissimilarities between cgMLST profiles, rather than ANI estimates  
133 between genomes, provides greater reproducibility in appraising small-scale genome relationships.  
134 Hence, cgMLST-based LIN codes (hereafter, LIN codes for short) combine the strengths of both  
135 approaches.

136 Here, we first present this LIN code approach and its recent improvements, including (i) its  
137 implementation in the widely used genotyping platforms BIGSdb and Pathogenwatch (16,27) and (ii) a  
138 LIN code nicknaming procedure to facilitate the designation of familiar intra-species groups of key  
139 importance in either biological research or epidemiological surveillance. Next, we illustrate how the  
140 LIN codes can be used to address questions in population biology and genomic epidemiology, using the  
141 case of the *Klebsiella pneumoniae* Species Complex (KpSC), a phenotypically and genetically diverse  
142 ubiquitous pathogenic group (28). This essay underlines the benefits of LIN codes for stable definition  
143 and labelling of intra-species groups from epidemiologically important phylogenetic lineages down to  
144 outbreak strains.

145

## 146 **cgMLST-based LIN coding, and missing data handling**

147 LIN codes are series of numeric codes that reflect genomic similarity between organisms. cgMLST-  
148 based LIN code systems consist of multiple (e.g., 10) predefined positions (or bins), each corresponding  
149 to a range of pairwise cgMLST profile similarity values, together representing a partition of the complete  
150 range [0%-100%]. From left to right, the positions of the code correspond to decreasing allele mismatch  
151 dissimilarity, *i.e.*, increasing similarity. The leftmost bins are thus used to classify deep phylogenetic  
152 divisions, whereas the rightmost bins will distinguish recently evolved variants. Analogous to the  
153 classification levels of Linnean taxonomy (e.g., Phylum – Class - Order – Family – Genus – species),  
154 the LIN codes thus capture from left to right, the membership of a genome to taxonomic groups of  
155 increasing relatedness.

156 The process of LIN code assignment from cgMLST data, first proposed in Hennart *et al.* (26), is  
157 summarized in **Figure 1** (and formalized in **Section 1** of the Supplementary appendix). A LIN code is  
158 created for each distinct cgST. The system is initialized by creating, for a selected initial cgST, a LIN  
159 code with the integer value 0 at every bin. The initial cgST can be chosen randomly or using a reference  
160 strain of the species or group under consideration (e.g., the first strain that was sequenced, or the  
161 taxonomic type strain). The next steps are the same for each subsequent individual cgST. Each incoming  
162 cgST is matched against all already LIN-encoded cgSTs, in order to identify its most similar one  
163 (hereafter, the reference cgST), based on the fraction of allele mismatches across cgMLST loci. For  
164 creating the novel LIN code, the pivot bin is defined as the bin in which the observed allele similarity  
165 falls, and the novel LIN code is then created in three steps (**Figure 1**): (i) copying the LIN code prefix  
166 of the reference cgST, *i.e.* from the leftmost bin up to the pivot bin (excluded); (ii) incrementing by 1  
167 the maximum integer value observed in the pivot bin among the cgST(s) sharing the same prefix used  
168 at step (i); (iii) attributing the integer value 0 at the bins downstream of the pivot, corresponding to  
169 initialization of the novel subdivision created at the pivot bin level.

### A. LIN encoding process

1. Define cgMLST profile from genome, create cgST, then identify closest matching cgST (with similarity  $s$  = fraction of matching alleles) in LIN codes database and define pivot bin (contains similarity  $s$ )
2. If  $s < 100\%$ , create novel LIN code: (i) Copy closest match prefix up to pivot bin; (ii) increment by one in pivot bin; (iii) assign 0 in downstream bins; add novel LIN code to database

### B. Examples: creation of novel LIN codes

|          | Closest cgST<br>(similarity %) | 0   | 3.02 | 6.99 | 69.79 | 93.16 | 98.41 | 98.88 | 99.36 | 99.68 | 99.84 | 100 |
|----------|--------------------------------|-----|------|------|-------|-------|-------|-------|-------|-------|-------|-----|
| Genome A | Initialization                 | 0   | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   |
| Genome B | A (3.50%)                      | 0   | 1    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   |
| Genome C | B (99.0%)                      | 0   | 1    | 0    | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0   |
| Genome D | B (7.00%)                      | 0   | 1    | 1    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   |
| ...      | ...                            | ... | ...  | ...  | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ... |
| Genome X | Y (5.00%)                      | 0   | 2    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   |
| Genome Z | X (98.90%)                     | 0   | 2    | 0    | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0   |

Coding steps (genome Z):

(i)

(ii)

(iii)

170

### 171 Figure 1. Overview of the process of cgMLST-based LIN code assignment.

172 **A. LIN encoding process.** The process starts with assigning cgMLST profiles to genome sequences and  
173 next with classifying profiles into unique core genome sequence types (cgST). One genome, and its  
174 associated cgST, is selected to initiate the process, with 0 assigned to each bin. For each incoming  
175 genome, the closest already encoded cgST is then identified (based on fraction of matching alleles) and  
176 its similarity recorded to define the pivot bin (if the similarity is 100%, the LIN code is simply assigned  
177 to the query cgST, but no novel LIN code is created). When the similarity is <100%, a novel LIN code  
178 is created following steps (i), (ii) and (iii) (see details in main text and in the Supplementary Appendix).

179 **B. Examples of novel LIN code creation.** The similarity threshold values given in the header line  
180 correspond to those defined for the KpSC LIN code scheme (see correspondence with minimal allelic  
181 mismatches and other information in the Supplementary appendix). Note that there is no bin  
182 corresponding to complete similarity (gray column on the right), as in this case the LIN codes are  
183 identical, *i.e.*, there is no need to create a novel LIN code. Technically, each bin has a left border  
184 threshold (inclusive) that corresponds to a maximum number of pairwise allele differences between  
185 profiles, and is delimited on the right by the next threshold (exclusive, as the threshold value corresponds  
186 to the left threshold of the downstream bin – or, for the last bin, corresponds to LIN code identity). The  
187 first row (Genome A) corresponds to the unique initialization step (full-0 code for the initial cgST). Note  
188 that similarity values defining the bins each correspond to fixed numbers of shared alleles among  
189 cgMLST profiles, divided by the length of the cgMLST scheme.

190

191 The cgSTs are different from the classical ST in an important way: due to the often-fragmented nature  
192 of genome sequence assemblies and because many core genes are dispensable in bacteria, the cgST must  
193 accommodate missing data. If two cgSTs (new and reference) have a 100% similarity (*i.e.*, no allele

194 mismatch among the loci called in both profiles), the LIN code of the reference is simply assigned to  
195 the new cgST. This can happen when the new cgST differs from the reference only by its missing data  
196 pattern, such pairs (or groups) being called coincident cgSTs (see Supplementary appendix, **Section 2**).  
197 Consequently, a single LIN code can correspond to multiple coincident cgSTs.

198 An important implication of the encoding process is that LIN codes are created definitively, as are the  
199 assignments for LIN codes to individual cgSTs. Hence, LIN codes are stable by design, and the  
200 incorporation of novel genomes will never affect pre-existing LIN codes and their assignments. This  
201 provides trust in LIN code referencing and stability in comparisons across time.

202

### 203 **The internal structure of LIN codes and the notion of prefix**

204 A LIN code prefix can be defined as any bin subset that starts from the leftmost position. An important  
205 particularity of LIN codes is that the numerical identifiers at a given bin position (except the leftmost  
206 one) can only be interpreted in the context of the LIN code prefix preceding it: the same integer value  
207 at a given bin position corresponds to group membership only if the upstream prefixes are identical. In  
208 other words, the integer values at a given bin position are subdivisions of their respective upstream  
209 prefixes, and their numbering starts from zero independently for each prefix. This minimizes the  
210 maximal value used in each bin making them easy to read. This property can be regarded as a  
211 systematization of the analogous possibility in the Linnean nomenclature, where the same species epithet  
212 can be used for distinct genera (e.g., *Klebsiella pneumoniae* and *Streptococcus pneumoniae*). The  
213 initialization at zero for prefix subdivisions contrasts with other taxonomic systems, such as the  
214 hierarchical clustering approach used in the genomic epidemiology platform Enterobase (17,21), in  
215 which a group identifier is created independently at each level (see Supplementary appendix, **Section 3**,  
216 for details).

217 The notion of shared LIN code prefix is also important because it conveys a sense of genetic similarity  
218 among genomes: the longer the common prefix of two LIN codes is, the more similar the two  
219 corresponding genomes (in the strict sense, cgMLST profiles). For a given cgST profile, its LIN code  
220 thus expresses how similar it is to every other genome in the LIN code taxonomy. Very different profiles  
221 will show identity at few or no prefix positions of their LIN codes, whereas nearly identical genomes  
222 will yield LIN codes identical at most or all prefix positions (see e.g., **Figure 1**, genomes Z versus X:  
223 the shared prefix 0\_2\_0\_0\_0 implies a minimum similarity of 98.88% (inclusive) and a maximum  
224 similarity of 99.36% (exclusive). We note that our definition of LIN code prefix is similar to the  
225 LINgroup concept proposed by Vinatzer and colleagues (23).

226

227 **Nicknaming LIN code prefixes provides continuity with previous**  
228 **nomenclatures**

229 Whereas LIN code prefixes themselves can serve as machine-readable ‘diagnostic’ markers of groups  
230 of interest, they are not very easy to remember or pronounce by humans. It was therefore proposed to  
231 nickname relevant LIN code prefixes with simple denominations (23). A prefix nicknaming system was  
232 also implemented within the BIGSdb platform for cgMLST-based LIN codes. It is thereby possible to  
233 nickname every distinct prefix in any chosen way. For example, one option is to increment an integer  
234 identifier (analogous to the numbering of STs in the MLST framework) for each novel prefix of a given  
235 length; but alternative labelling could be applied, such as Greek letters, astronomical objects, or any  
236 other series of words that may be universally understandable and easy to remember. This nicknaming  
237 process would be particularly useful for long prefixes, or prefixes of phenotypic or taxonomic relevance  
238 that subdivide the population at particularly informative levels.

239 For bacterial species with established nomenclatures, nicknames can be assigned to LIN code prefixes  
240 based on prior denominations such as MLST or serotyping, to retain interpretation and recognition as  
241 much as possible. To enable backward compatibility of LIN codes with well-established ST identifiers,  
242 a majority identifier inheritance rule was developed (26). For example, in the KpSC LIN code system,  
243 prefixes are nicknamed using ST identifiers as a source (the process is formally defined in the  
244 Supplementary appendix, **Section 8**). For convenience, groups of KpSC genomes with the same prefix  
245 of length 3 or 4 were designated as sublineages (SL) or clonal groups (CG), respectively (see **Figure 2**).  
246 The prefixes corresponding to these two levels were nicknamed because they correspond to deep  
247 subdivisions of the KpSC population structure, and their partitions (*i.e.*, single prefixes) are highly  
248 concordant with well-known MLST-based STs (Supplementary appendix, **Section 11**).

249 Although KpSC ST identifiers and SL/CG nicknames are generally identical, some ST numbers are  
250 shared by phylogenetically distinct genomes that can result from recombination events leading to the  
251 same combination of the seven alleles (see Supplementary appendix, **Section 11**). Therefore,  
252 prioritization of LIN code nicknames over classical STs, is recommended in future.

253

The diagram illustrates the inheritance of nomenclature. On the left, a 2-bin LIN code prefix table (0-4 bins) maps to a 7-gene MLST table (3-4 bins). The 7-gene MLST table then maps to a 7-gene MLST table (3-4 bins) on the right, which maps to a 7-gene MLST table (3-4 bins) on the far right.

| LIN prefix | (sub)Species                                             |
|------------|----------------------------------------------------------|
| 0_0        | <i>K. pneumoniae</i>                                     |
| 1_0        | <i>K. variicola</i> subsp. <i>variicola</i>              |
| 1_1        | <i>K. variicola</i> subsp. <i>tropica</i>                |
| 2_0        | <i>K. quasipneumoniae</i> subsp. <i>quasipneumoniae</i>  |
| 2_1        | <i>K. quasipneumoniae</i> subsp. <i>similipneumoniae</i> |
| 3_0        | <i>K. quasivariicola</i>                                 |
| 4_0        | <i>K. africana</i>                                       |

| LIN prefix | Main ST | Nickname |
|------------|---------|----------|
| 0_0_0      | 15      | SL15     |
| 0_0_429    | 23      | SL23     |
| 0_0_105    | 258     | SL258    |
| 0_0_158    | 45      | SL45     |
| 0_0_197    | 147     | SL147    |
| 0_0_369    | 307     | SL307    |
| 0_0_750    | 6589    | SL10691  |

| LIN prefix | Main ST | Nickname |
|------------|---------|----------|
| 0_0_105_6  | 258     | CG258    |
| 0_0_105_0  | 340     | CG340    |
| 0_0_105_2  | 11      | CG11     |
| 0_0_105_11 | 11      | CG3666   |
| 0_0_105_1  | 437     | GC10268  |
| 0_0_105_29 | 11      | CG12811  |
| 0_0_105_7  | 895     | CG895    |

254

255 **Figure 2. Nicknaming of LIN code prefixes enables inheritance of previous**  
256 **nomenclatures.**

257 Nicknames of some KpSC LIN code prefixes of lengths 2 to 4 bins, inherited from Linnaean taxonomy  
258 (2-bin prefix, left panel) or 7-gene MLST (prefixes of lengths 3 and 4 bins, central and right panels,  
259 respectively). Groups corresponding to level 3 are called sublineages (SL) and groups of level 4 are  
260 called clonal groups (CG).

261

262 **How to design LIN codes: population structure and outbreak**  
263 **datasets as a guide**

264 An initial requirement for any cgMLST-based LIN code taxonomy implementation is a cgMLST scheme  
265 that has been designed and thoroughly validated to ensure the stability of the taxonomy from its  
266 inception. Subsequent removal of loci (e.g., because they are too infrequently called), or changing their  
267 template (e.g., choosing an upstream start codon) would result in potential inconsistencies with  
268 previously defined LIN codes. Therefore, it is advisable to define LIN code taxonomies following  
269 careful evaluation of the cgMLST schemes from which they are derived, particularly if these are  
270 intended for broad usage.

271 The scope of applicability of the cgMLST scheme is also an important consideration. MLST or cgMLST  
272 schemes are typically used for a single species, and less frequently for an entire genus (e.g., more than  
273 90% ANI). In rare cases, an intermediate category called species complex is covered; these correspond  
274 to groups of closely related species that are sometimes misidentified in routine microbiology diagnostic  
275 processes. The applicability of the cgMLST scheme (and related LIN code taxonomy) should ideally be  
276 broadened, but increasing the phylogenetic breadth will be at the expense of the core genome size,  
277 reducing the discriminatory power of the scheme.

278 While any number of bins (up to the number of loci in the cgMLST scheme) can be chosen to create a  
279 LIN code system, it is recommended to guide their definition by analyzing the population structure of

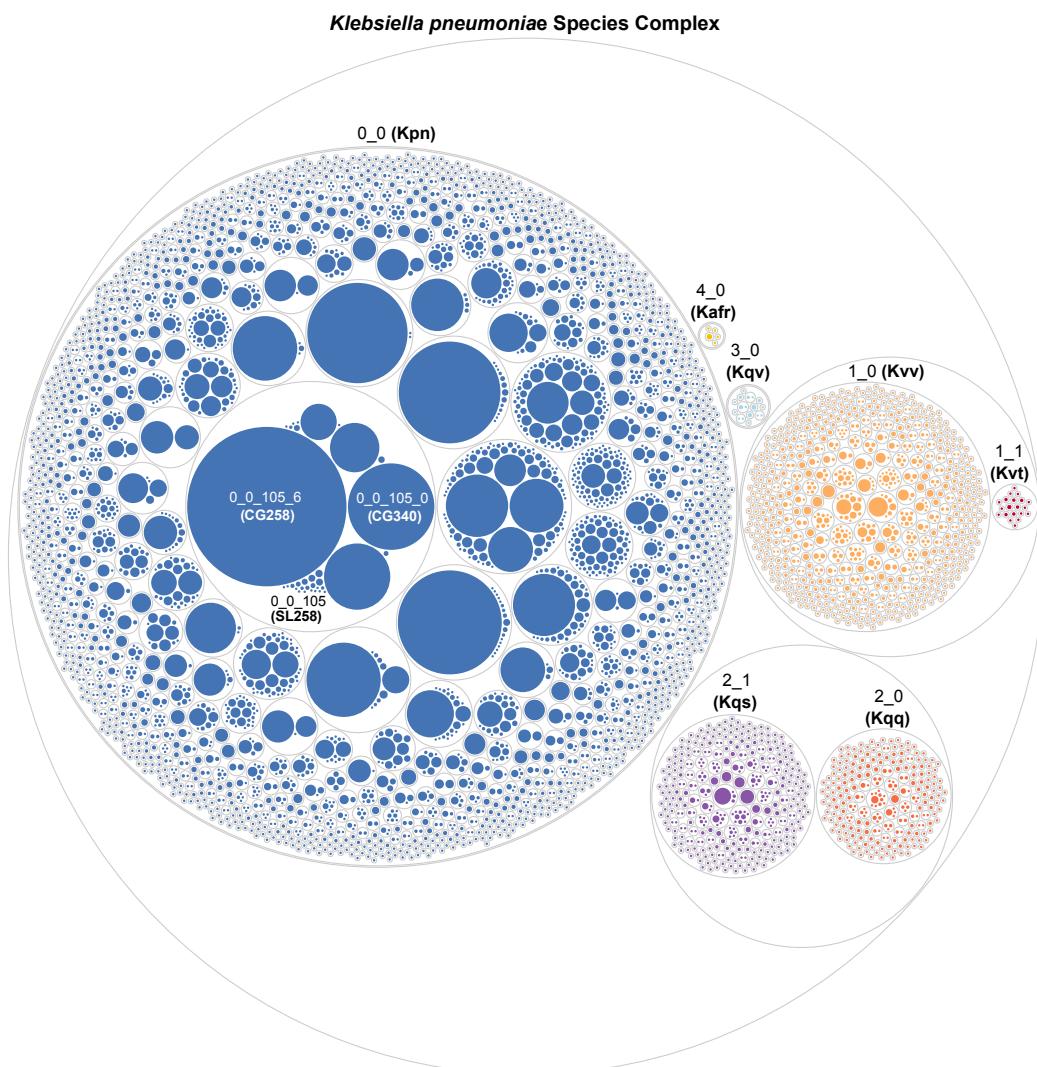
280 the species, in order to propose phylogenetically informative bin thresholds. Several methods have been  
281 designed to find optimal ranges of dissimilarities that optimize the reliability of the subsequent  
282 classifications (20,26,29).

283 Deep levels might also correspond to previously recognized subdivisions and might therefore be  
284 optimized to match these previous classifications. For example, in the KpSC scheme, the distinction of  
285 its phylogroups (taxonomic species or subspecies) was used as a guide to define the two deepest  
286 thresholds (26), as detailed in Supplementary appendix, **Section 7**.

287 For epidemiological levels, bin thresholds can be selected to reflect epidemiological surveillance  
288 practice. In a hypothetical example, four different alleles might be typically used to define clusters and  
289 trigger outbreak investigations; in this case, using a LIN code bin associated with a threshold of four  
290 allele differences would be congruent with this practice. Broader epidemiological thresholds might yield  
291 more false positives (sporadic isolates unrelated to a given common source outbreak) in detecting  
292 genetic clusters, but will on the other hand capture outbreaks during which more diversity has  
293 accumulated. It is therefore advised to use a set of epidemiological thresholds which will be useful in  
294 different situations, from the most stringent (*i.e.*, one single allelic difference) to more relaxed ones.

295

## 296 **Visualization tools for LIN codes as proxies of population 297 diversity**


298 Once LIN codes are implemented and genomes encoded, the repertoire of LIN codes can be used to  
299 derive summary views of the species diversity and its structure. The complete and up-to-date LIN code  
300 nomenclature (comprising alleles, profiles, cgSTs and LIN codes) can be extracted from BIGSdb using  
301 a single query; for example for the KpSC, the LIN code taxonomy is available at  
302 [https://bigsdb.pasteur.fr/api/db/pubmlst\\_klebsiella\\_seqdef/schemes/18/profiles\\_csv](https://bigsdb.pasteur.fr/api/db/pubmlst_klebsiella_seqdef/schemes/18/profiles_csv).

303 LIN code diversity within a bacterial species can be summarized using circular packing plots, which  
304 illustrate the diversity of populations at each classification level (**Figure 3**). These representations also  
305 convey a sense of relative frequencies of the variants and enable the identification of the most  
306 epidemiologically represented populations.

307 Second, the nested structure of a set of LIN codes can also be visualized by representing the associated  
308 prefix tree, which roughly approximates the phylogenetic relationships among isolates (26); see  
309 Supplementary appendix, **Section 6**. In such prefix trees, each internal node corresponds to a distinct  
310 LIN code prefix, where each node's height corresponds to the associated bin threshold. This tree  
311 topology can be built without the initial genomes or cgMLST profiles, based solely on the relationships

312 encoded in the nomenclature itself, and can serve as a computationally light proxy for the phylogenetic  
313 relationships among isolates.

314



315

### 316 **Figure 3. The hierarchical nature of LIN code positions applied to KpSC.**

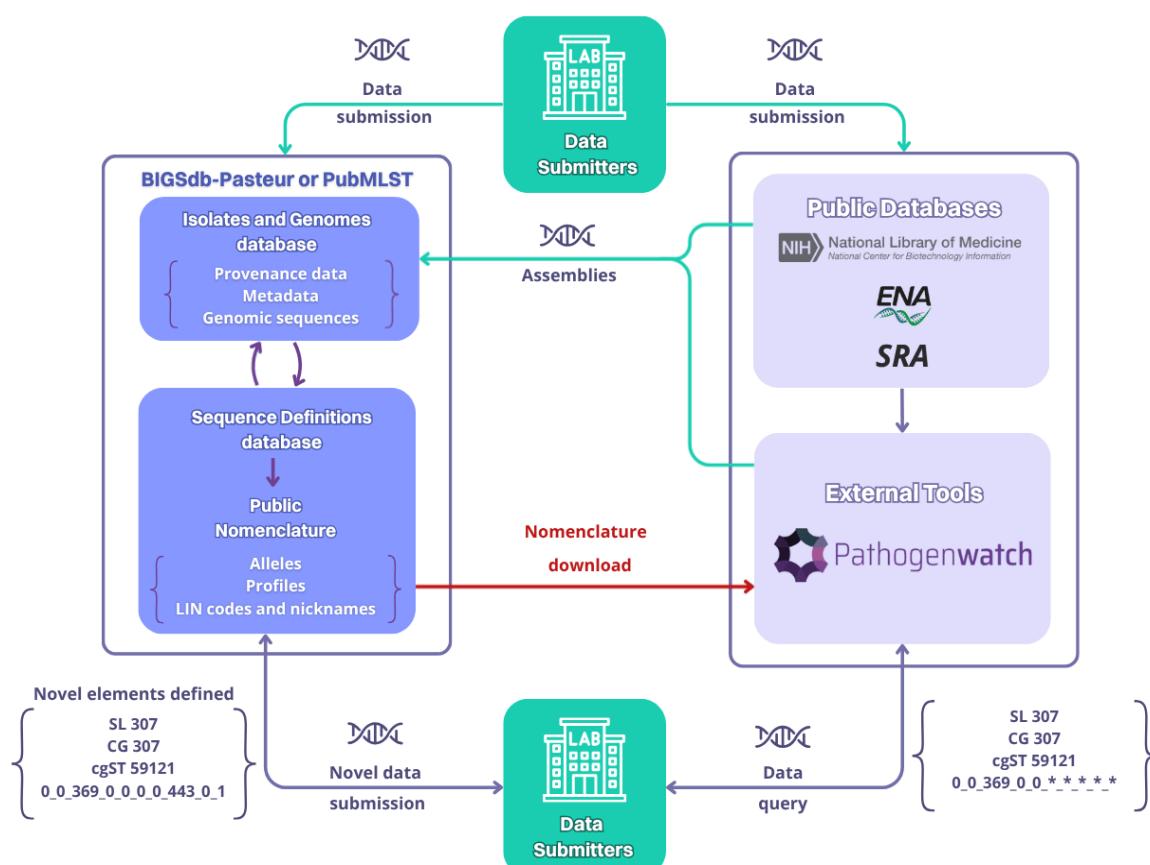
317 The hierarchical structure of LIN codes is shown via a circular packing plot (data from the BIGSdb-  
318 Pasteur KpSC database). The circles correspond to LIN code prefixes of lengths 1 to 4 (an extra, all-  
319 encompassing circle corresponds to the entire KpSC); the size of each circle is related to the number of  
320 genomes it comprises. Numbering starts from 0 for subdividing each higher-level partition,  
321 characterized by a unique LIN code prefix. The first two bins in the LIN codes are used to identify  
322 Linnaean taxa. Whereas for three species there is a unique 2-bin prefix (e.g., prefix 0\_0 for  
323 *K. pneumoniae* [Kpn], 3\_0 for *K. quasivariicola* [Kqv], 4\_0 for *K. africana* [Kafr]), in the other cases  
324 two subspecies are distinguished (2\_0 for *K. quasipneumoniae* subsp. *quasipneumoniae* [Kqq] and 2\_1  
325 for *K. quasipneumoniae* subsp. *similipneumoniae* [Kqs]; 1\_0 for *K. variicola* subsp. *variicola* [Kvv] and  
326 1\_1 for *K. variicola* subsp. *tropica* [Kvt]). The hierarchical nature of LIN codes applies to subsequent  
327 levels such as those corresponding to sublineages (third bin, e.g. Kpn SL258 is identified with the LIN  
328 code prefix 0\_0\_105) and to clonal groups (fourth bin, e.g. the LIN code prefix 0\_0\_105\_6 corresponds  
329 to Kpn CG258). Data was plotted using ggplot2 (R v4.3.2) and edited using Inkscape.

330

## 331 **LIN codes in practice: source databases of taxonomies, and** 332 **their use with external tools**

333 A taxonomic system needs to be created and updated in a coordinated manner. The cgMLST LIN code  
334 strain taxonomy approach was first implemented in BIGSdb, since v1.34.0 (26). This open-source  
335 application is so far the only platform that has implemented cgMLST-based LIN codes, and is deployed  
336 at two main sites, PubMLST (at Oxford University) and BIGSdb-Pasteur (at Institut Pasteur, Paris). For  
337 the KpSC, the BIGSdb-Pasteur database serves as the source database for the definitions of alleles,  
338 cgMLST profiles, cgSTs, and LIN codes. For other pathogens, the PubMLST platform is the source  
339 database of LIN code taxonomies (see Future directions and conclusions).

340 A LIN code taxonomy is created with reference to a defined indexed scheme (*i.e.*, a scheme with a  
341 unique identifier for each profile, *e.g.*, cgST), with allele mismatch thresholds that define the LIN code  
342 bins. **Figure 1** and **Section 7** in the Supplementary appendix give details for the KpSC example of a  
343 LIN code taxonomy.


344 Compared to the stand-alone tools initially used to create cgMLST-based LIN code taxonomies (26),  
345 the implementation of LIN codes into the BIGSdb application has been accompanied by a number of  
346 important improvements, including (i) ensuring the reproducibility of LIN encoding by addressing the  
347 dependency of this approach to rounded genetic distance values (Supplementary appendix, **Section 4**);  
348 (ii) implementing input order rules for creating novel LIN codes (Supplementary appendix, **Section 5**);  
349 and (iii) implementing formal rules for handling missing data (as described above; Supplementary  
350 appendix, **Section 2**). These improvements were introduced to achieve the robustness needed for a  
351 reference taxonomy. Furthermore, functionality was developed in BIGSdb for searching database  
352 isolates based on LIN code or prefixes (Supplementary appendix, **Section 9**).

353 Currently, there is no stand-alone bioinformatics workflow to generate and handle local LIN code  
354 taxonomies. Although managing local LIN code taxonomies might be attractive for confidentiality  
355 reasons, this usage would be restricted to internal comparisons and would not fulfil the intended shared  
356 nomenclature objective of open, central LIN code taxonomies.

357 To make the LIN code taxonomy broadly accessible, its components (alleles, profiles, cgSTs, LIN codes  
358 and nicknames) can be extracted from BIGSdb source taxonomy databases using an application  
359 programming interface (30). They can then be used with external tools and analysis platforms, for  
360 example by extracting cgMLST alleles from local genome sequences and matching these with the source  
361 nomenclature data (**Figure 4**). As a first example of external use of LIN codes, we implemented LIN  
362 code matching functions within the Pathogenwatch platform, which supports KpSC genomic typing (27)

363 and now matches genome sequences with an internal copy of the KpSC reference LIN code taxonomy  
364 (Supplementary appendix, **Section 10**).

365 When novel genome sequences are matched to the LIN code taxonomy, no identical cgMLST profile  
366 may exist at that time in the source LIN code taxonomy, implying that the cgST and complete LIN code  
367 cannot be determined. Still, the level of similarity between the query genome and the closest reference  
368 cgMLST profile enables inference of their common prefix; in other words, the LIN code of the query  
369 genome can be partially defined. If the query genome is closely related to one in the nomenclature  
370 database, its LIN code will be almost completely defined. Hence, the use of LIN codes in external  
371 databases or tools can have great functional relevance.



372

#### 373 **Figure 4. The LIN code taxonomy ecosystem.**

374 The source database of LIN code taxonomy ('Sequence Definitions database', lower left dark blue box)  
375 hosts the taxonomic elements (alleles, profiles, LIN codes). Curators create taxonomic elements from  
376 data sourced directly from data submitters, from NCBI/ENA, or from Pathogenwatch assemblies  
377 derived from SRA short-read data (green arrows). External tools or platforms such as Pathogenwatch  
378 can retrieve the LIN code taxonomy from BIGSdb using Application Programming Interfaces (API; red  
379 arrow), such that query genome sequences can be compared to the copy of the reference taxonomy in  
380 order to define their closest match (blue arrow, bottom right). The LIN code bins that can be defined are  
381 then reported (followed by asterisks for undefined ones), as well as sublineage and clonal group  
382 nickname information (if this can be extracted from the deduced LIN code). In this example, although  
383 the LIN code is incomplete, the genome can be inferred as belonging to clonal group 307 (defined as

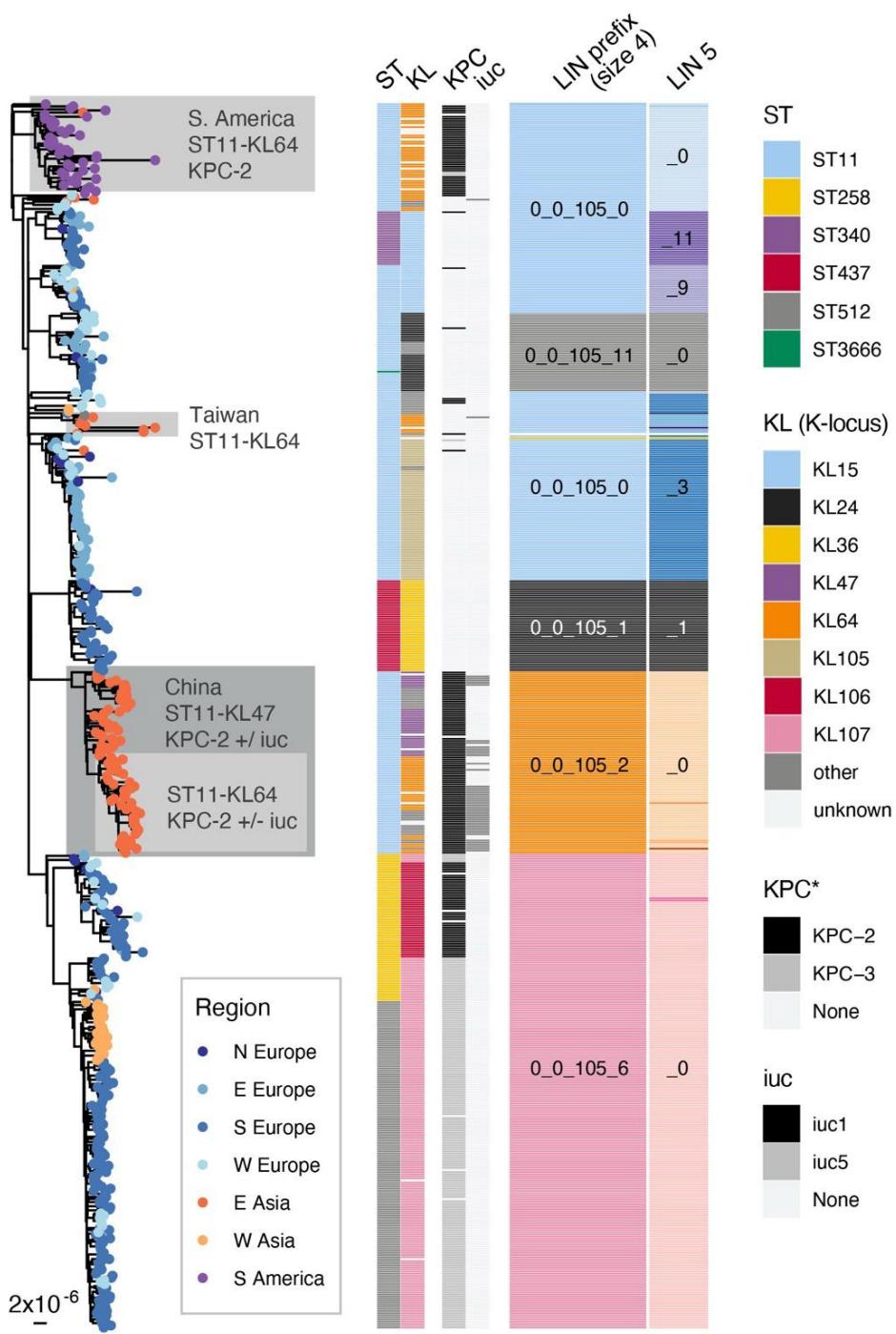
384 prefix 0\_0\_369\_0). To obtain a complete LIN code, the genomic sequence (or its extracted taxonomic  
385 elements) must be submitted to the source database (blue arrow, left) so that novel taxonomic elements  
386 can be defined consistently.

387

388 However, in the most general case, an incomplete match will be found. This implies that new  
389 nomenclatural elements (cgST profiles and LIN codes) have been discovered and could be defined for  
390 the benefit of the global community. This can only be done within the source database, otherwise the  
391 consistency of nomenclature will be lost. For any genome that has no complete LIN code, data  
392 submission to the source database is therefore encouraged. Furthermore, to be effective, external copies  
393 of the LIN code database need to be frequently (e.g., daily) synchronized with the primary database,  
394 given that the latter is updated continuously.

395

## 396 **LIN code applications in epidemiological surveillance and** 397 **outbreak investigations**


398 Bacterial species can harbor huge amounts of genetic diversity and are often structured genetically into  
399 recognizable sublineages. For example, in *K. pneumoniae*, sublineages including SL258, SL147, SL307,  
400 SL17 and SL23 have been recognized as globally distributed drivers of multidrug and/or hypervirulent  
401 infections. These sublineages have been the subject of detailed studies, that have led to defining their  
402 geographical spread and phylogenetic subgroups (31–35). However, so far, these sublineages have been  
403 defined using a mix of 7-locus MLST, cgMLST, and ANI; a clear and simple definition, and a  
404 harmonized nomenclature, have been lacking, making it difficult to recognize them in subsequent  
405 studies.

406 One prominent example of how LIN codes provide clear definitions of sublineages and disambiguate  
407 MLST definitions, is the case of hypervirulent sublineage ST23. Whole genome sequence analyses  
408 demonstrated the polyphyletic status of ST23 (Lam et al., 2023), which conflates isolates from two  
409 distant phylogenetic branches, which are appropriately separated into two LIN code sublineages (SL23:  
410 0\_0\_429 and SL218: 0\_0\_115; Supplementary appendix, **Section 11**). Here we show that beyond the  
411 case of ST23, multiple distinct sublineages are conflated into single STs, but that they are also  
412 appropriately recognized by their distinctive LIN codes (Supplementary appendix, **Section 11; Table**  
413 **S1**).

414 We further illustrate how LIN codes can help track dissemination at fine genetic scales within  
415 sublineages, using the example of SL258, a major *Klebsiella pneumoniae* carbapenemase (KPC)-  
416 producing sublineage of *K. pneumoniae*. SL258 is defined by the LIN code prefix 0\_0\_105 and

417 encompasses all isolates from 7-gene ST11, ST258, ST340, ST512 and some others (see **Figure 2**). Its  
418 phylogenetic structure is depicted in **Figure 5** (see Supplementary appendix, **Section 12** for  
419 methodological details) and shows that SL258 is divided into several subclades. These include CG258  
420 (0\_0\_105\_6), which contains all ST258 and ST512 isolates. LIN code bin 5 can further be used to  
421 distinguish major subclades within SL258, including those corresponding to ST340 (0\_0\_105\_0\_11),  
422 ST437 (0\_0\_105\_1\_1) and other subclades within ST11, some of which appearing to be associated with  
423 recombination events that include the capsule (K) locus (KL column in **Figure 5**).

424 LIN codes can help distinguish between different subclades that are associated with the same ST and  
425 capsule locus, a combination often used to describe specific subclones. For example, LIN codes clearly  
426 distinguish three phylogenetically distinct subclades that are all ST11-KL64 (grey shading on the tree  
427 branches, **Figure 5**). One of these is the major lineage circulating in China (0\_0\_105\_2\_0\_0\_2,  
428 predominantly 0\_0\_105\_2\_0\_0\_2\_17) that carries KPC-2 and often the *iucI* aerobactin virulence locus,  
429 as discussed broadly (36)(37). A second, unrelated ST11-KL64 subclade (0\_0\_105\_0\_0) is circulating  
430 in South America encoding KPC-2, but rarely *iuc* (38), while a third smaller clade (0\_0\_105\_0\_2) is  
431 detected primarily in Taiwan (39) rather than in mainland China (lacking KPC and with only one of  
432 eight genomes carrying *iuc*). These distinct clades are all referred to in the literature as ST11-KL64,  
433 despite representing phylogenetically distinct and likely unrelated, independently evolved, lineages.  
434 This example shows how LIN code classification beneath the sublineage level can help recognize and  
435 name subgroups of medical and epidemiological relevance, which should be subject to enhanced  
436 surveillance.



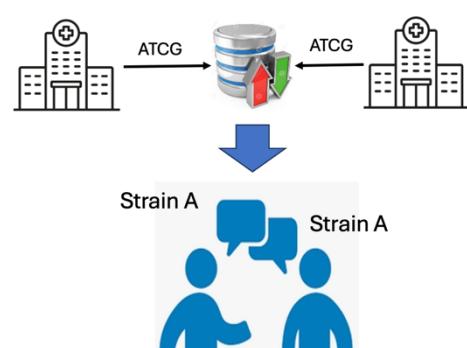
437

438 **Figure 5. SL258 phylogenetic structure and LIN codes.**

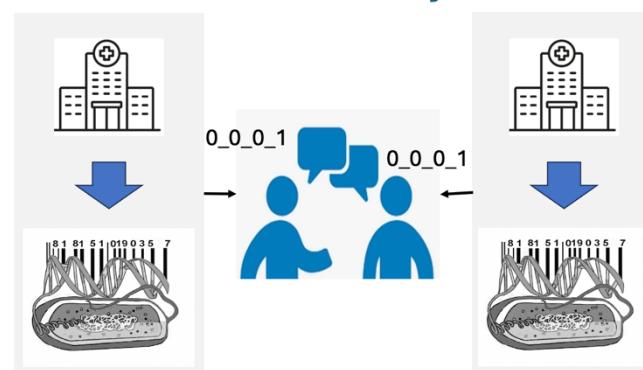
439 Maximum likelihood phylogenetic tree of SL258 genomes inferred from a recombination-free variable  
 440 site alignment (Supplementary appendix, **Section 12**). Tips are colored to indicate geographic regions  
 441 of origin as per the legend (United Nations region classifications). The distribution of 7-gene multi-  
 442 locus sequence types (STs), K-loci (KL), *bla*<sub>KPC</sub> (KPC variants), aerobactin locus lineages (*iuc*), and  
 443 LIN code prefixes of sizes 4 and 5, are indicated by colored blocks as labelled (note that colors are  
 444 independent to each column; for readability the labels for rare groups are omitted). Only K-loci  
 445 identified with a Kaptive v2 confidence score of 'Good' or better are shown (otherwise marked  
 446 'unknown'). Two isolates were detected with *bla*<sub>KPC-30</sub> and one with *bla*<sub>KPC-12</sub>, but are not shown in the  
 447 figure for brevity. Phylogenetic clades described in the text are colored and labeled accordingly.

448

449 We next illustrate how LIN codes can subdivide isolates from single long-term outbreaks. Identifying  
450 outbreak strains and tracking strain diversification during outbreaks are key objectives of genomic  
451 epidemiology, as they provide capacity to quickly respond to outbreaks and prevent further infections.  
452 We use an Italian outbreak of *K. pneumoniae* SL147, a prominent multidrug-resistant international  
453 sublineage of *K. pneumoniae*, to show that clades that diversified during the outbreak are captured and  
454 labeled unambiguously with LIN codes (Supplementary appendix, **Section 13**). LIN codes were also  
455 recently used to label isolates from eight regional *K. pneumoniae* outbreaks that occurred within Poland  
456 (including two caused by SL258 and SL147), which had initially been loosely defined based on SNPs,  
457 O and K serotypes, and *bla<sub>VIM</sub>* carbapenemase-carrying integrons (40).


458

## 459 Future directions and conclusions


460 Facilitating communication on the intra-species diversity of microbial strains is a key objective of strain  
461 taxonomies, which entail classification and naming of groups within species. In the field of  
462 epidemiological surveillance of bacterial pathogens, it has long been recognized that strain typing  
463 methods used for long-term and global strain tracking should be reproducible enough to enable  
464 internationally standardized nomenclatures, or ‘library typing systems’ (41). LIN codes based on  
465 cgMLST benefit from the high standardization and reproducibility of the cgMLST approach and provide  
466 a flexible and robust way to classify, name and identify subpopulations within bacterial species. The  
467 recognition of sub-populations associated with distinct phenotypes is an important “raison d’être” of  
468 taxonomies, and multilevel LIN codes strain taxonomies will advance our understanding of the links  
469 between genotypes and clinical phenotypes, vaccine coverage and antimicrobial resistance.

470 Given the reproducibility of cgMLST, an outbreak strain could be detected by different investigators  
471 based solely on its LIN code prefix. As LIN code prefixes are sufficient to define strain identity across  
472 countries or sectors, LIN codes provide a simple yet accurate solution for cross-border or other  
473 collaborative genomic surveillance investigations, without the need to share genomic sequences  
474 themselves (**Figure 6**). This possibility brought by shared strain taxonomies can alleviate issues around  
475 data confidentiality and sharing agreements, which are often an important barrier in genomic  
476 surveillance and rapid response to outbreaks under investigation by multiple institutional actors.  
477 Likewise, for the surveillance of particularly concerning strains, early warnings could be triggered based  
478 on the detection of the specific LIN codes of the targeted strains. LIN codes may thus become an integral  
479 part of epidemiological surveillance practice.

## A. Sequence data sharing



## B. Shared strain taxonomy



480

### 481 Figure 6. Two models of multicentric genomic epidemiology.

482 A. The current model of sequence data sharing, which necessitates the sharing of sequence data from  
483 distinct institutions for their central analysis and comparison. B. The shared strain taxonomy model,  
484 where the use of a common nomenclature enables direct communication on subtypes and the recognition  
485 of identical strains without having to share sequence data.

486

487 LIN codes represent a widely applicable strain taxonomy system, as illustrated by the rapid pace of  
488 developments of LIN code implementations to bacterial pathogens. Following the initial use case for the  
489 KpSC, cgMLST LIN codes taxonomies have been introduced for *Streptococcus pneumoniae* (42),  
490 *Staphylococcus aureus* (43); *Moraxella catarrhalis* (44), *Neisseria gonorrhoeae* (45) and  
491 *Corynebacterium diphtheriae* (46). These LIN code taxonomies use different numbers of bins and  
492 thresholds adapted to the population structure of each species, illustrating the flexibility of the LIN code  
493 approach. The rapid development and adoption of LIN code taxonomies is facilitated by their integration  
494 into the BIGSdb platforms at Institut Pasteur and at Oxford University.

495 The applicability of the cgMLST LIN codes to most other bacterial species should be straightforward,  
496 provided they comprise sufficient genetic diversity. This requirement excludes the so-called  
497 monomorphic pathogens (47), such as *Mycobacterium tuberculosis* or *Salmonella enterica* serotype  
498 Typhi, where phylogeny-based taxonomies based on whole-genome SNPs are considered more useful  
499 given their higher resolution compared to cgMLST. The cgMLST LIN code strategy can also be  
500 extended with minor adaptations to other organisms with predominantly clonal reproduction, such as  
501 protozoan parasites and fungi, even if they are not haploid, given the existence of MLST taxonomies for  
502 e.g., *Candida albicans* and *Trypanosoma cruzi* (48,49).

503 The wide adoption of cgMLST LIN code strain taxonomies has the potential to result in a universal  
504 approach for standardized bacterial genotyping that could greatly enhance microbial biodiversity  
505 studies, international genomic epidemiology and infectious disease surveillance.

## 506 **Acknowledgements**

507 We thank François Lebreton for providing the Newick file of the Italian ST147 outbreak described in  
508 Martin *et al.*, 2021. We acknowledge the help of the HPC Core Facility of the Institut Pasteur for this  
509 work.

## 510 **Funding**

511 This work was supported, in whole or in part, by the Gates Foundation (INV-025280, INV077266),  
512 Institut Pasteur and by European Union's Horizon 2020 research and innovation programme. This work  
513 was also supported financially by the French Government's Investissement d'Avenir program  
514 Laboratoire d'Excellence "Integrative Biology of Emerging Infectious Diseases" (ANR-10-LABX-62-  
515 IBEID). BIGSdb development was funded by a Wellcome Trust Biomedical Resource grant  
516 (218205/Z/19/Z). Under the grant conditions of the funders, a Creative Commons Attribution 4.0  
517 Generic License has already been assigned to the Author Accepted Manuscript version that might arise  
518 from this submission.

## 519 **Authors contributions**

520 *Klebsiella* network genomic surveillance platform (KlebNET-GSP) conceptualization and coordination:  
521 SyB (Sylvain Brisse), KEH, DMA. cgMLST LIN code conceptualization and developments: MH, AC,  
522 SyB. BIGSdb-Pasteur platform maintenance: FP, BR, BB, SeB (Sebastien Bridel), SyB. Data  
523 acquisition and curation: VP, RI, CR, FP, MH, CC, SeB, ML, KLW, CAY, MRP, AC, DA. Data  
524 analyses: MH, SeB, KLW, ML, CAY. PubMLST and BIGSdb platform software development: KAJ,  
525 MCJM. Pathogenwatch platform maintenance and software development: DMA, CAY, SD. Data  
526 visualization: FP, MH, KLW, ML, SeB, CC, AC. Writing of first draft: SyB, with help from FP, MH,  
527 SC, KLW, KEH and AC. All authors contributed to, and approved, the final version of the manuscript.

## 528 **Ethical statements**

529 Not relevant.

## 530 **Conflicts of interests**

531 The authors declare that there is no conflict of interest.

## 532 **References**

- 533 1. Konings F, Perkins MD, Kuhn JH, Pallen MJ, Alm EJ, Archer BN, et al. SARS-CoV-2 Variants  
534 of Interest and Concern naming scheme conducive for global discourse. *Nat Microbiol.* juill  
535 2021;6(7):821-3.
- 536 2. Rambaut A, Holmes EC, O'Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature  
537 proposal for SARS-CoV-2 lineages to assist genomic epidemiology. *Nat Microbiol.* nov  
538 2020;5(11):1403-7.
- 539 3. Prokaryotes IC of N of. International Code of Nomenclature of Prokaryotes. *Int J Syst Evol  
540 Microbiol.* 2019;69:S1-111.
- 541 4. Maiden MC, van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, et al. MLST revisited:  
542 the gene-by-gene approach to bacterial genomics. *Nat Rev Microbiol.* oct 2013;11(10):728-36.
- 543 5. Nadon C, Van Walle I, Gerner-Smidt P, Campos J, Chinen I, Concepcion-Acevedo J, et al.  
544 PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for  
545 global food-borne disease surveillance. *Euro Surveill.* 2017;22.
- 546 6. Struelens MJ, Brisse S. From molecular to genomic epidemiology: transforming surveillance and  
547 control of infectious diseases. *Euro Surveill* [Internet]. 2013;18. Disponible sur:  
548 10.2807/ese.18.04.20386-en
- 549 7. Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, et al. A robust SNP  
550 barcode for typing *Mycobacterium tuberculosis* complex strains. *Nat Commun.* 1 sept  
551 2014;5:4812.
- 552 8. Wong VK, Baker S, Connor TR, Pickard D, Page AJ, Dave J, et al. An extended genotyping  
553 framework for *Salmonella enterica* serovar Typhi, the cause of human typhoid. *Nat Commun.* 5  
554 oct 2016;7(1):12827.
- 555 9. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, et al. Fast and flexible  
556 bacterial genomic epidemiology with PopPUNK. *Genome Res.* févr 2019;29(2):304-16.
- 557 10. Struelens MJ. Consensus guidelines for appropriate use and evaluation of microbial epidemiologic  
558 typing systems. *Clin Microbiol Infect.* 1996;2:2-11.
- 559 11. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, et al. Guidelines for  
560 the validation and application of typing methods for use in bacterial epidemiology. *Clin Microbiol  
561 Infect.* oct 2007;13 Suppl 3:1-46.
- 562 12. Aanensen DM, Spratt BG. The multilocus sequence typing network: mlst.net. *Nucleic Acids Res.*  
563 1 juill 2005;33(Web Server):W728-33.
- 564 13. Maiden MC. Multilocus sequence typing of bacteria. *Annu Rev Microbiol.* 2006;60:561-88.
- 565 14. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence  
566 typing: a portable approach to the identification of clones within populations of pathogenic  
567 microorganisms. *Proc Natl Acad Sci U A.* 17 mars 1998;95(6):3140-5.
- 568 15. Feil EJ. Small change: keeping pace with microevolution. *Nat Rev Microbiol.* juin  
569 2004;2(6):483-95.

570 16. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software,  
571 the PubMLST.org website and their applications. Wellcome Open Res. 24 sept 2018;3:124.

572 17. Dyer NP, Päuker B, Baxter L, Gupta A, Bunk B, Overmann J, et al. Enterobase in 2025:  
573 exploring the genomic epidemiology of bacterial pathogens. Nucleic Acids Res. 6 janv  
574 2025;53(D1):D757-62.

575 18. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard AS, et al.  
576 Genomic definition of hypervirulent and multidrug-resistant *Klebsiella pneumoniae* clonal groups.  
577 Emerg Infect Dis. nov 2014;20(11):1812-20.

578 19. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, et al. Whole genome-based  
579 population biology and epidemiological surveillance of *Listeria monocytogenes*. Nat Microbiol.  
580 10 oct 2016;2:16185.

581 20. Zhou Z, Charlesworth J, Achtman M. HierCC: A multi-level clustering scheme for population  
582 assignments based on core genome MLST. Bioinforma Oxf Engl. 6 avr 2021;btab234.

583 21. Achtman M, Zhou Z, Charlesworth J, Baxter L. Enterobase: hierarchical clustering of 100 000s of  
584 bacterial genomes into species/subspecies and populations. Philos Trans R Soc Lond B Biol Sci.  
585 2022;377:20210240.

586 22. Marakeby H, Badr E, Torkey H, Song Y, Leman S, Monteil CL, et al. A system to automatically  
587 classify and name any individual genome-sequenced organism independently of current biological  
588 classification and nomenclature. PloS One. 2014;9(2):e89142.

589 23. Vinatzer BA, Tian L, Heath LS. A proposal for a portal to make earth's microbial diversity easily  
590 accessible and searchable. Antonie Van Leeuwenhoek. 2017;110:1271-9.

591 24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA  
592 hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol  
593 Microbiol. janv 2007;57(Pt 1):81-91.

594 25. Tian L, Huang C, Mazloom R, Heath LS, Vinatzer BA. LINbase: a web server for genome-based  
595 identification of prokaryotes as members of crowdsourced taxa. Nucleic Acids Res. 2 juill  
596 2020;48(W1):W529-37.

597 26. Hennart M, Guglielmini J, Bridel S, Maiden MCJ, Jolley KA, Criscuolo A, et al. A Dual  
598 Barcoding Approach to Bacterial Strain Nomenclature: Genomic Taxonomy of *Klebsiella*  
599 *pneumoniae* Strains. Mol Biol Evol. 1 juill 2022;39(7):msac135.

600 27. Argimón S, David S, Underwood A, Abrudan M, Wheeler NE, Kekre M, et al. Rapid Genomic  
601 Characterization and Global Surveillance of *Klebsiella* Using Pathogenwatch. Clin Infect Dis. 1  
602 déc 2021;73(Supplement\_4):S325-35.

603 28. Wyres KL, Lam MMC, Holt KE. Population genomics of *Klebsiella pneumoniae*. Nat Rev  
604 Microbiol. juin 2020;18(6):344-59.

605 29. Mixão V, Pinto M, Brendebach H, Sobral D, Dourado Santos J, Radomski N, et al. Multi-country  
606 and intersectoral assessment of cluster congruence between pipelines for genomics surveillance of  
607 foodborne pathogens. Nat Commun. 28 avr 2025;16(1):3961.

608 30. Jolley KA, Bray JE, Maiden MCJ. A RESTful application programming interface for the  
609 PubMLST molecular typing and genome databases. Database. 1 janv 2017;2017:bax060.

610 31. Deleo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD, Porter AR, et al. Molecular  
611 dissection of the evolution of carbapenem-resistant multilocus sequence type 258 *Klebsiella*  
612 *pneumoniae*. *Proc Natl Acad Sci U S A*. 1 avr 2014;111(13):4988-93.

613 32. Hetland MAK, Hawkey J, Bernhoff E, Bakksjø RJ, Kaspersen H, Rettedal SI, et al. Within-patient  
614 and global evolutionary dynamics of *Klebsiella pneumoniae* ST17. *Microb Genomics*.  
615 2023;9:mgen001005.

616 33. Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM, Gan YH, et al. Population genomics of  
617 hypervirulent *Klebsiella pneumoniae* clonal-group 23 reveals early emergence and rapid global  
618 dissemination. *Nat Commun*. 13 juill 2018;9(1):2703.

619 34. Rodrigues C, Desai S, Passet V, Gajjar D, Brisse S. Genomic evolution of the globally  
620 disseminated multidrug-resistant *Klebsiella pneumoniae* clonal group 147. *Microb Genomics*.  
621 janv 2022;8(1).

622 35. Wyres KL, Hawkey J, Hetland MAK, Fostervold A, Wick RR, Judd LM, et al. Emergence and  
623 rapid global dissemination of CTX-M-15-associated *Klebsiella pneumoniae* strain ST307. *J*  
624 *Antimicrob Chemother*. 1 mars 2019;74(3):577-81.

625 36. Zhou K, Xiao T, David S, Wang Q, Zhou Y, Guo L, et al. Novel Subclone of Carbapenem-  
626 Resistant *Klebsiella pneumoniae* Sequence Type 11 with Enhanced Virulence and  
627 Transmissibility, China. *Emerg Infect Dis*. févr 2020;26(2):289-97.

628 37. Wang J, Feng Y, Zong Z. The Origins of ST11 KL64 *Klebsiella pneumoniae*: a Genome-Based  
629 Study. *Microbiol Spectr*. 2023;11:e0416522.

630 38. Barroso M do V, da Silva CR, Benfatti LR, Gozi KS, de Andrade LK, Andrade LN, et al.  
631 Characterization of KPC-2-producing *Klebsiella pneumoniae* and affected patients of a pediatric  
632 hospital in Brazil. *Diagn Microbiol Infect Dis*. juin 2023;106(2):115932.

633 39. Li YT, Wang YC, Chen CM, Tang HL, Chen BH, Teng RH, et al. Distinct evolution of ST11  
634 KL64 *Klebsiella pneumoniae* in Taiwan. *Front Microbiol*. 2023;14:1291540.

635 40. Biedrzycka M, Urbanowicz P, Guzek A, Brisse S, Gniadkowski M, Izdebski R. Dissemination of  
636 *Klebsiella pneumoniae* ST147 NDM-1 in Poland, 2015-19. *J Antimicrob Chemother*. 24 juin  
637 2021;dkab207.

638 41. Struelens MJ, De Gheldre Y, Deplano A. Comparative and library epidemiological typing  
639 systems: outbreak investigations versus surveillance systems. *Infect Control Hosp Epidemiol*. août  
640 1998;19(8):565-9.

641 42. Jansen van Rensburg MJ, Berger DJ, Fohrmann A, Bray JE, Jolley KA, Maiden MCJ, et al.  
642 Development of the Pneumococcal Genome Library, a core genome multilocus sequence typing  
643 scheme, and a taxonomic life identification number barcoding system to investigate and define  
644 pneumococcal population structure. *bioRxiv*. 1 janv 2023;2023.12.19.571883.

645 43. Hadjirin NF, Yassine I, Bray JE, Maiden MCJ, Jolley KA, Brueggemann AB. Development of a  
646 core genome multilocus sequence typing scheme and life identification number code classification  
647 system for *Staphylococcus aureus*. *Microb Genomics*. août 2025;11(8):001486.

648 44. Yassine I, Jolley KA, Bray JE, Jansen van Rensburg MJ, Patel F, Sheppard AE, et al.  
649 Understanding the population structure of *Moraxella catarrhalis* using core genome multilocus  
650 sequence typing (cgMLST) and a life identification number (LIN) code classification system.  
651 *BioRxiv Prepr Serv Biol*. 4 mai 2025;2025.04.30.651387.

652 45. Unitt A, Krisna M, Parfitt KM, Jolley KA, Maiden MCJ, Harrison OB. <em>Neisseria  
653 gonorrhoeae</em> LIN codes: a Robust, Multi-Resolution Lineage Nomenclature. bioRxiv. 1  
654 janv 2025;2025.03.28.646058.

655 46. Delgado-Blas JF, Rethoret-Pasty M, Brisson S. Life identification number (LIN) codes for the  
656 genomic taxonomy of <em>Corynebacterium diphtheriae</em> strains. bioRxiv. 1 janv  
657 2025;2025.06.20.660692.

658 47. Achtman M. Evolution, population structure, and phylogeography of genetically monomorphic  
659 bacterial pathogens. Annu Rev Microbiol. 2008;62:53-70.

660 48. Bougnoux ME, Aanensen DM, Morand S, Théraud M, Spratt BG, d'Enfert C. Multilocus  
661 sequence typing of *Candida albicans*: strategies, data exchange and applications. Infect Genet  
662 Evol. 2004;4:243-52.

663 49. Yeo M, Mauricio IL, Messenger LA, Lewis MD, Llewellyn MS, Acosta N, et al. Multilocus  
664 sequence typing (MLST) for lineage assignment and high resolution diversity studies in  
665 *Trypanosoma cruzi*. PLoS Negl Trop Dis. 2011;5:e1049.

666