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Abstract (150/150 words):

Combined multi-omics analysis of proteomics, metabolomics, and lipidomics requires separate liquid
chromatography—mass spectrometry (LC—MS), which limits throughput and increases costs, hindering the
application of mass spectrometry-based multi-omics to large-scale analyses. Here, we present single-

injection multi-omics analysis by direct infusion (SMAD), an integrated platform leveraging ion mobility
mass spectrometry and self-developed software tools to enable single injection multi-omics analysis
without liquid chromatography. SMAD allows quantification of over 9,000 metabolite m/z features and
over 1,300 proteins from the same sample in less than five minutes. We validated the efficiency and
reliability of SMAD with three case studies. (1) mouse macrophages after M1/M2 polarization and
senescence, (2) a pilot drug screen in human cells, and (3) large-scale high-throughput drug screening of
mammalian cells in 96-well plates. Finally, relationships between proteomic and metabolomic data are
discovered by machine learning and validated.

Introduction

Multi-omics analysis and integration, which involves the analysis of at least a pair of genomic, epigenomic,
transcriptomic, proteomic, lipidomic, and metabolomic data, has become increasingly essential for gaining
a comprehensive understanding of biological processes and disease progression.!? Currently, the combined
use of LC and MS is the prevailing technology for proteome, metabolome and lipidome analysis.*?
Separation of analytes with LC before MS is important to increase sensitivity and coverage, which enables
detection of over 10,000 protein groups or thousands of metabolites from separate injection.®® However,
despite advances in LC to enable shorter gradients, LC ultimately limits throughput of MS-based omics
because of separation time followed by time for column washing and equilibration, and also due to
requirements for different LC configurations for each omics layer.

The logical extreme of shorter LC is to remove LC completely and analyze molecules directly by direct
infusion, which has already been demonstrated for both proteome and metabolome analysis.'*!> However,
there exist two key challenges that restrict the coverage and depth of direct infusion mass spectrometry (DI-
MS) methods: (1) ion suppression at the ion source caused by variations in ionization efficiency or
abundance of ionizable analytes, and (2) ion competition effect in the mass analyzer, where high abundant
ions conceal lower abundance ones.

Recent improvements in MS instrumentation (acquisition speed, mass resolution and sensitivity),'>?

advancements in mass spectrum interpretation software,”*® and the integration of MS and ion mobility
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techniques (FAIMS, TIMS)?**? have encouraged us to revisit the potential of DI-MS. For example, a
spectral-stitching DI-MS method, which measures data as a series of mass-to-charge (m/z) intervals that are
subsequently ‘stitched’ together to create a full mass spectrum, realized a total of ~9,000 lipidome and
metabolome m/z features in ~5 min.>* An additional innovative technique for direct infusion metabolomic
analysis involves using computational analysis to determine the optimal scan ranges that would yield the
greatest number of m/z features.** For direct infusion proteomic analysis, we originally described a rapid
quantitative proteome analysis method by using two gas-phase separations by ion mobility and quadrupole
selection, which identified over 500 proteins and quantified over 300 proteins in up to 3 min of acquisition
time per sample.>> In a series of subsequent works, combined with our newly developed software
CsoDIAQ,*® we further improved the performance of this technology to more than 2,000 protein
identifications, of which 1,100 were quantified.’”* There are also several previous instances of proteome
analysis using direct infusion.***! However, the methods described above all focus on a single omics layer.
They are insufficient to meet current demands for multi-omics analysis, specifically the rapid analysis of
multiple omics components originating from the same sample simultaneously.**-**

Because proteomics, polar metabolomics, and lipidomics each require different LC configurations, the
removal of LC presents an opportunity for combined analysis of all three omics layers. In this article, we
describe a single-injection multi-omics analysis by direct infusion mass spectrometry (SMAD-MS) that
integrates metabolome, lipidome, and proteome analysis in a single shot from the same sample. We replace
LC with an extra gas-phase separation by high-field asymmetric waveform ion mobility spectrometry
(FAIMS). We applied data-independent acquisition mass spectrometry (DIA-MS) for proteome analysis
and spectral stitching of quadrupole slices with MS1 measurement for metabolome analysis, respectively.
As we previously demonstrated for proteomics, we found that quadrupole slices combined with FAIMS
separation enabled the detection of the most unique metabolite features. With this protocol, we achieved
more than 1,300 protein identifications and detected over 9,000 metabolite m/z features from the same
sample in just 5 minutes of total data acquisition. In two proof-of-principle applications across three case
studies, we first demonstrate themacro profiling of multi-omics variation of macrophages after different
polarizations or senescence, revealing significant multi-omics dysregulation and interaction. Secondly, in
two additional case studies, we perform high-throughput screening of human cellular multi-omics responses
to various drug treatments with 96-well plates, followed by further machine learning integration of
metabolome and proteome changes. Our approach provides a straightforward, high-throughput, and cost-
effective option for multi-omics analysis.
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Results

Overview of Single-shot Multi-Omics approach by Direct Infusion Mass Spectrometry (SMAD-MS)
The principled schematic and workflow of the SMAD method are shown in Fig. 1a. In brief, different omics
isolated from the same sample were mixed and then directly infused to the ion source without any separation
in liquid chromatography. Following the ionization, two gas-phase separation techniques were utilized with
the aim of reducing the complexity of gas-phase ions before they entered into the mass analyzer, namely,
(1) FAIMS separates ions depending on the compensation voltage and (2) the quadrupole separates ions
according to their mass-to-charge ratio (m/z). Ultimately, all gas-phase ions are sequentially detected by
the orbitrap.

We first tested the compensation voltage (CV) range of different standard molecules and results
demonstrated that lipids, amino acids, and peptides occupy different optimum CV intervals (Fig. 1b), for
example, amino acids transmit through FAIMS in the range of -5V to -20V, lipids transmit in -20V to -35V,
and peptides transmit from -30V to -70V. A more complexed real metabolome and proteome sample
derived from 293T cells further proved that the optimum CV interval for metabolome (metabolites, lipids)
and proteome (peptides) are 10-35V, and 40-60V, respectively (Fig. 1c, d). This result enables the
fractionation of molecules originating from distinct omic sources, thereby minimizing interference between
them.

Next, we assessed the impact of gas phase separation using FAIMS compensation voltages and/or
guadrupole slices on the number of detected metabolite m/z features from samples extracted from mouse
tissue and 293T cells, as we did previously for peptides from the proteome.® The number of m/z features
detected increased with the number of FAIMS CVs or with decreasing quadrupole isolation window width
(Fig 1e). The use of both FAIMS and quadrupole slices further increases the number of unique detectable
metabolite m/z features, which provided confirmation of significant ion competition in the Orbitrap and
highlighted the necessity of multiple gas-phase separations before mass analysis.

Based on these findings, we established the final experimental settings of SMAD as depicted in Fig. 1f. We
applied data-independent acquisition mass spectrometry (DIA-MS) for proteome analysis and spectral-
stitching quadrupole slices with MS1 measurement for metabolome analysis. We utilized six FAIMS CVs
ranging from -30V to -80V in a step of 10V for proteome acquisition, and -5V to -40V with a 5V step for
metabolome analysis. It is worth noting that the instrument parameters, such as mass resolution,
compensation voltages, and the number of target peptides, are adjustable and can be modified to match the
specific requirements of the experiment and the sample type. Generally, the total acquisition time does not
exceed five minutes per sample.

Data processing, performance optimization and quantitative evaluation of SMAD

Fig. 2a summarizes our initial data processing workflow for raw files produced by SMAD. MS1 data from
the metabolome part are extracted from the RAW file during transformation to mzML.* The direct infusion
data is formatted such that retention time corresponds to decreasing FAIMS compensation voltage, allowing
extraction of extracted ion mobiligrams (XIMs) for quantification using MZmine3 (Fig. S1).2* MS/MS data
from the proteome part is converted to mzXML for analysis using ZoDIAq software 3% 37
(https://github.com/xomicsdatascience/zoDIAQ) to identify and quantify peptides and proteins. This data
analysis workflow was used to assess the performance of SMAD.
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Fig.1| Overview of SMAD-MS workflow. a, Scheme of our high-throughput approach for single-injection analysis of peptides
and metabolites using SMAD-MS. b, Typical compensation voltage (CV) intervals of peptide, amino acid, and lipid standards in
FAIMS CV space. The raw data traces over CV space were smoothed to approximate Gaussian distributions. ¢, d, Number of
detected features in different m/zintervals and FAIMS compensation voltages (CV) from a real metabolome (c) and proteome
(d) sample derived from 293T cells. e, Number of detected metabolite features under various compensation voltages and
quadrupole slices of samples extracted from mouse tissue and 293T cells. Data are from three repeated injections of the same
sample (n=1) with different parameters. f, Schematic diagram of typical experimental settings for SMAD, including a typical TIC
diagram, CV settings, targeted m/z, Q slices, and typical mass spectrum of proteome and metabolome, respectively. The entire

data collection process requires approximately 5 minutes per sample for acquisition time.
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SMAD collected in only five minutes per 293T sample produced an average of 4,011 peptides, 1,343 protein
groups, and 9,093 metabolite m/z features (out of which 425 were identified) (Fig. 2b). For the identified
protein groups, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed
numerous important cellular pathways, including central carbon metabolism (i.e., tricarboxylic acid cycle,
pyruvate metabolism, pentose phosphate pathway), protein synthesis and degradation (i.e., ribosome,
spliceosome and proteasome), and nucleic acid replication and transport (DNA replication, RNA
degradation and nucleocytoplasmic transport). For TCA cycle and proteasome pathways, the identified
proteins accounted for more than 50% of all related genes in those specific pathways (Fig. 2c and Fig. S2).
The metabolite feature m/z distribution shows that most signals are within the interval from 200 to 400 m/z
(Fig. 2d). We separately performed MS/MS of same sample attempting to identify some metabolite features
quantified by SMAD. Results demonstrated that many lipids, as well as organic acids and organic nitrogen
compounds, were identified (Fig. 2d). We also applied this method to other sample types. Similar to the
results obtained from 293T cells, the analysis of macrophages yielded a comparable depth of proteome
coverage (over 1,300 proteins) and metabolite m/z features (~9,000), as well as a broad representation of
cellular pathways (Fig. S3).

We also wondered whether SMAD would result in a significant reduction in the number of detected
molecule features compared to separately analyzing the metabolome and proteome fractions by direct
infusion. The results show that the number of detected peptides, proteins, and metabolite features is
essentially the same level between the two different methods (Fig. 2e), as well as protein species and m/z
distribution of metabolite features (Fig. S4a-c). Additionally, we investigated whether variations in the
mixing ratio of two different omics samples could affect the performance of SMAD. Notably, we examined
seven samples with various mixing ratios across a 25-fold (metabolome/proteome volume ratio). We
observed that, as the proportion of metabolome increased, the number of identified proteins decreased by
up to 30%. However, the quantity of detected metabolite features remained relatively constant (Fig. 2f).
Furthermore, we also investigated the influence of the total sample concentration. The results show that as
the concentration of the sample decreases, the number of detected proteins also decreases, but the detected
metabolites show a trend of increasing first and then decreasing (Fig. 2g). These results indicate that protein
identifications, namely, the proteome part, is more sensitive to sample mixing ratios and concentrations.
The potential reason is that the signal intensity of tandem mass spectrometry in proteomic analysis is much
lower than that of the precursor signal of metabolites, resulting in a more sensitive phenomenon to factors
such as concentration. The influences of these factors for protein groups, protein functions, and metabolite
m/z distribution were illustrated in Fig. S4d-i.

The direct infusion strategy completely omitted liquid chromatography, resulting in the absence of retention
times or elution profiles that could be used for peak integration. Here, we implemented a label-free
guantitative strategy for both the metabolome and proteome, based on XIM area and peptide fragments,
respectively (Fig. S1). Starting with a mixture of 3 lipids and 10 QCAL peptide standards, the results
showed an excellent linearity across a broad range of concentrations (Fig 2h, i). We further spiked these
mixture standards into real multi-omics sample derived from HEK293T cells and surprisingly, the standards
remain good linearity across different concentrations (Fig. S5a-d). Furthermore, we applied the same
strategy for the whole proteome and metabolome, quantification results exhibit excellent repeatability (Fig.
S5e, f) and linearity across all 437 proteins and 3970 metabolites m/z features (Fig. 2j, k) and typical
proteins and metabolites were also shown in Fig. S5g, h. The coefficient of variance analysis at different
concentrations demonstrated that 90.6% proteins and 93.4% metabolite m/z features had CV less than 0.2,
which further proved the reliability and robustness of our LFQ strategy of SMAD (Fig 2I, m).
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Fig.2| Data processing, performance optimization, and quantitative evaluation of SMAD. a, Scheme showing data
processing flow starting from a typical raw file produced by SMAD. b, Number of detected metabolite features, peptides, and

proteins in a 5-minute acquisition time by SMAD of extracts from 293T cells. Counts are the average plus or minus the standard
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deviation from three independent biological samples (n=3). ¢, Proteins identified by SMAD across three replicate samples from
293T cells were analyzed by KEGG pathway enrichment analysis. The bars indicate the number of proteins identified in the
pathway, and the colored proportion of the circle reflects the coverage of proteins in each pathway. d, m/z distribution of
detected metabolite features and classes of identified metabolite features by SMAD of 293T cells. e, The comparison of detected
molecule features (metabolites, peptides, proteins) between a single-injection multi-omics acquisition method and a separate
single-omics acquisition method. f, The effect of different mixing proportions of peptides and metabolites on detected molecule
features by SMAD. (metabolome/proteome) g, Performance of SMAD in detecting different concentrations. Original
concentration is proteome samples dissolved in 40ul metabolome extraction (produced by adding 500ul solvent to 2million cells)
and maintaining the final proteome concentration to 4ug/ul. For different methods, mixing ratios, and dilutions, data from each
condition were collected from three repeated injections of the same sample (n = 1). h,i, label free quantification curve of
standard peptides from MS-QCAL protein (h) and standard lipids from Avanta (i) at different concentrations. Data are from
three repeated injections of the same sample (n=1) for each dilution. The value from each replicate was determined as the
average of at least 20 scans of that molecule in that injection. j,k Untargeted quantification of detected proteins and metabolite
features was performed using SMAD (each concentration was measured in technical triplicate, n = 1). I,m, coefficient of variation

of all quantified proteins and metabolite features for different dilutions.

Case Study 1: Accelerated Multi-Omics Profiling of Macrophage Polarization and Irradiation
Responses via the SMAD Platform

To demonstrate the potential of SMAD for real biological samples, here we conducted the first case study
focused on the multi-omics responses of macrophages following different polarization and irradiation.
Macrophages are well known to differentiate into either the pro-inflammatory M1 or anti-inflammatory M2
polarization states after treatment with lipopolysaccharide (LPS) and interleukin-4 (1L-4), respectively.*® 47
We started with this system as a positive control where we should be able to verify results with literature
context. Beyond these established treatments, irradiation was used to generate a more novel senescent
phenotype. We applied SMAD to understand the molecular mechanisms underlying these changes. Mouse
bone-marrow-derived macrophages (BMDMSs) were treated with immune stimulators LPS and IL-4 or
irradiated in 10 cm dishes for 24 hours. After washing with PBS, lipids and metabolites were extracted by
a mixed solvent (ISO/ACN/H20, 4:4:2, volume ratio), then the precipitated protein pellet from the same
sample was further processed (lysis, digest and desalt) for proteomics into peptides (Fig. 3a). We measured
the multi-omics by SMAD. A total of 1,386 protein groups were identified. We also detected 9,829
metabolite m/z features, and 541 of them were identified using GNPS? (Fig. 3b, Fig. S6, Supplementary
Table 1, See methods). Coefficient of variation (CV) analysis demonstrated the robustness and
reproducibility of the SMAD method, with median CVs of 0.18 for quantified proteins and 0.21 for
metabolite m/z features (Fig. 3c).

Before performing further multi-omics data analyses, we aimed to verify the reliability of our newly
developed SMAD method. To achieve this, we analyzed the same set of macrophage samples using a
conventional LC-MS proteomics approach (Supplementary Table 2). Dimensionality reduction analysis
of the proteomics datasets obtained from both methods revealed highly similar distribution patterns among
treatment groups (Fig. S7a, b). Furthermore, quantitative comparisons of individual protein levels, as well
as the ranking patterns of protein intensities across treatment groups, showed high consistency between the
two methods, with correlation coefficients exceeding 0.7 (Fig. S7c-e). Additionally, Pearson correlation
analysis demonstrated that over 80% of the identified proteins exhibited consistent patterns of variation
across different treatment conditions (Fig. S7f-i). Collectively, these findings indicate that the results
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obtained from the SMAD method closely align with those from conventional LC-MS analysis, thereby
further substantiating the reliability of our newly developed methodology.

Then, identified proteins and metabolites from SMAD were first analyzed using one-way ANOVA,
revealing that 545 proteins and 73 metabolites exhibited significant alterations with either treatment
(Benjamini—Hochberg (BH)-adjusted P values <0.05) (Fig. 3d). KEGG pathway enrichment demonstrated
that the significant changed proteins are related to essential pathways including glycolysis, TCA cycle,
oxidative phosphorylation, Cholesterol metabolism, mitophagy, spliceosome and endocytosis. (Fig. S8a).
Further two-sided Wilcoxon rank-sum tests between each condition and control revealed that although some
molecular features exhibited similar alterations, a larger proportion displayed divergent or even opposite
dysregulation patterns in response to different treatments (Fig. 3d). Complementary PCA and correlation
analyses of the multi-omics data also clearly distinguished the treatments from one another and
demonstrated low correlations for molecules among treatments (Extended Data Fig. S8b, c). These
findings highlight distinct multi-omic characteristics of macrophages after different polarization states or
irradiation, aligning well with established knowledge.*®

Next, to better interpret the variations in metabolites and proteins related to immune activation and
irradiation, we utilized K-means clustering to analyze the identified significant molecule features from the
ANOVA. The significantly dysregulated molecules were categorized into four primary clusters (Fig. 3e).
Specifically, cluster 1 primarily consisted of molecules (84 proteins and 28 metabolites) that were
upregulated in response to IL-4 (Fig. 3e). These features were associated with significant pathways,
including energy metabolism, immune response receptors, and fatty acid metabolism. For example, several
amino acids (histidine, lysine, tyrosine, arginine), carnitine derivatives (acetyl-carnitine, butyryl-carnitine),
and lipid metabolism-related proteins (CD36, LIPL) were significantly upregulated (Fig. 3f, Fig. S8d). The
increased levels of amino acids may support biosynthetic and immunoregulatory processes involved in
tissue repair. Elevated carnitine derivatives, along with CD36 and LIPL, suggest enhanced fatty acid uptake
and B-oxidation, contributing to sustained energy production through oxidative phosphorylation. Together,
these changes reflect a metabolic shift toward anabolic and oxidative metabolism, characteristic of M2
macrophages engaged in anti-inflammatory responses and tissue remodeling.

In addition, cluster 3, which included 12 metabolites and 165 proteins, exhibited a significant increase in
response to LPS treatment, indicating a significant upregulation following M1 polarization. The proteome
features are mainly related to KEGG pathways such as protein processing in endoplasmic reticulum,
endocytosis and spliceosome (Fig. S8e). Several immune-related proteins were consistently upregulated
(Fig. 3g), including CD14 (TLR4 co-receptor), DDX58/RIG-I (viral RNA sensor), ISG15 (ubiquitin-like
inflammatory regulator), and CMPK2 (mitochondrial kinase linked to nucleotide metabolism and immune
activation). FCERG (immunoreceptor signaling) and CASP1 (IL-1B—processing inflammasome component)
were also elevated, reflecting strong activation of innate immune pathways, consistent with previous reports
of M1 macrophage polarization. #°

In contrast, Cluster 2 contained 16 metabolites and 165 proteins significantly downregulated under M1
polarization. Reductions in glutathione and carnitine suggest a decrease in antioxidant capacity and fatty
acid oxidation, in line with the glycolytic shift of pro-inflammatory macrophages (Fig. S8f). AMP levels
were also reduced, indicating altered energy homeostasis and possible AMPK suppression. Protein-level
changes included downregulation of ALDOA (a key glycolytic enzyme), 14-3-3 gamma (1433G), and beta-
tubulin 4B (TBB4B), implicating disruptions in glycolysis, signaling, and cytoskeletal structure (Fig. S8f,
g). These coordinated molecular changes likely reflect comprehensive shifts in metabolic priorities, cellular
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signaling, and structural organization that accompany macrophage polarization toward an M1 inflammatory
state.

The final category, Cluster 4, comprising 135 proteins and 16 metabolites, exhibited significant
upregulation following irradiation. The increased expression of ATP synthase subunits (ATPK, ATPA,
ATPB, ATP5H) suggests enhanced mitochondrial oxidative phosphorylation, potentially reflecting
elevated energy demands associated with stress adaptation and cellular repair (Fig. S8h). Notably, the
upregulation of B-galactosidase (BGAL), a lysosomal hydrolase involved in the degradation of glycosylated
substrates, may indicate activation of autophagic flux. As a marker of lysosomal activity and a canonical
marker of senescence, elevated BGAL expression supports the notion of enhanced senescence and
autophagy, which may facilitate the clearance of damaged cellular components and contribute to metabolic
remodeling in irradiated macrophages (Fig. S8h, i, j).

Furthermore, we also observed several compelling instances of multi-omics co-perturbations. Notably, we
identified coordinated dysregulations involving the redox-related protein glutathione reductase (GSHR)
and the small molecule glutamine; the energy metabolism-related protein ATP synthase subunit beta (ATPB)
paired with AMP; and the lipid metabolism-related protein lipoprotein lipase (LIPL), together with the
small molecule carnitine and its associated lipid species (Fig. 3h). These co-perturbation patterns, spanning
distinct omics layers, align closely with established biological insights. Building upon these observations,
we specifically extracted multi-omics features related to lipid metabolism for further analysis. This analysis
uncovered significant correlations among proteins involved in lipid metabolism, small molecules such as
carnitine and its derivatives, and corresponding lipid species. For example, these proteins and carnitine
derivatives, known for their collaborative roles in lipid catabolism, displayed strong positive correlations.
Conversely, the associated lipid species showed negative correlations with these molecules, indicative of
their depletion during lipid breakdown processes (Fig. 3i, Fig. S9a).

To better elucidate the dysregulation patterns of macrophages following M1/M2 polarization or irradiation,
we further performed correlation network analysis of the identified proteins and metabolites (Fig. S9b),
and classified them into distinct pathways, comprising ten proteomic pathways and three metabolomic
pathways (Fig. 3j). The results revealed that proteins involved in the same pathway exhibited strong
correlations, yet also revealed complex regulatory dynamics, with both upregulated and downregulated
features observed within most multi-omics pathways. Interestingly, glycolysis-related proteins consistently
exhibited downregulation across all three treatment conditions, a pattern that was also validated by the LC-
MS results (Fig. S10). This suggests that the general suppression of glycolytic metabolism may be
associated with metabolic reprogramming during macrophage activation or stress responses (Fig. 3j, Fig.
S9c-e). Notably, although classically activated M1 macrophages are typically characterized by a firm
reliance on glycolysis, we observed a downregulation of glycolytic pathways even under M1 polarization.
This unexpected pattern may reflect the specific time point of polarization or experimental conditions used,
which may not fully sustain glycolytic activation. Alternatively, a negative feedback mechanism may have
been engaged to limit glycolytic flux and avoid excessive inflammatory responses. It is also possible that
macrophages undergo temporal metabolic transitions during polarization, initially upregulating glycolysis,
followed by a later-phase attenuation, resulting in an overall downregulated profile at the measured time
point. These findings highlight the importance of considering temporal dynamics and stimulation intensity
when studying macrophage metabolic states.

Additionally, ribosomal proteins were specifically and significantly downregulated following irradiation
(Fig. 3j, Fig. S9f-h), suggesting compromised protein synthesis under irradiation-induced cellular stress.
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Additionally, irradiation uniquely resulted in increased levels of redox-related proteins, reflecting an
elevated oxidative stress response, whereas both M1 and M2 polarization showed an overall opposite trend,
indicating divergent responses to oxidative balance (Fig. 3j). Moreover, several immune signaling and
receptor-related proteins showed differential dysregulation patterns depending on the polarization state yet
maintained strong correlations among functionally similar receptors (Fig. S9i-k). A marked upregulation
of amino acids and their derivatives was also observed in the metabolomics data, specifically under M2
polarization (Fig. 3j). This metabolic signature may reflect enhanced anabolic activity and biosynthetic
readiness in M2 polarized macrophages, which are known to support tissue remodeling and repair. The
increased availability of amino acids may also contribute to immunoregulatory functions, further
distinguishing M2 macrophages from their pro-inflammatory M1 counterparts. Collectively, these findings
underscore the significant metabolic flexibility and distinct reprogramming that macrophages undergo in
response to polarization stimuli and irradiation stress. These views of this established system would not be
possible by measuring a single omic layer, highlighting the value of this approach. Future research should
focus on exploring the functional consequences of these metabolic alterations, particularly their
implications in macrophage-driven inflammation, immunity, and tissue repair processes.
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Fig.3| SMAD enabled rapid multi-omics analysis of macrophage activation and radiation-induced
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irradiation). b, Overview of molecules monitored by SMAD. ¢, Coefficient of variance distribution for all identified
proteins and metabolite features across all samples within each treatment. d, Changes of significant dysregulated
molecules (metabolites and proteins) among three treatments and control. (two-sided Wilcoxon rank test with
Benjamini-Hochberg (BH) adjusted P values <0.05). e, The Heatmap and clustering of dysregulated multi-omics
molecules following immune activation or irradiation. (K-means clustering). f,g, Typical dysregulated multi-omics
molecules in clusterl(f) and cluster3(g). h, Typical dysregulated multi-omics feature pairs after
polarization/irradiation. The box shows the quartiles of the dataset while the whiskers extend to show the rest of
the distribution. (n=6 independent biological samples for each treatment and control for a total of 24 biological
samples). i, Pearson correlation network analysis of multi-omics molecule features involved in lipid metabolism.
Each node represents a molecule feature, and the edge width represents the correlation strength. j, Stacked
overview of boxplots showing the perturbation patterns of multi-omics pathways and metabolic molecules in

macrophages after polarization or irradiation.

Case Study 2: Drug-Induced Multi-Omics Responses in Human Cells

Rapid and high-throughput profiling of multi-omics responses to pharmacological perturbations is crucial
in drug discovery and chemical biology. Leveraging the high-throughput capability of our SMAD platform,
we further adapted it for systematic drug screening in 96-well plates. In this second case study, we applied
SMAD to monitor the multi-omics responses of human 293T cells exposed to five distinct compounds:
deferoxamine (an iron chelator), Torin2 (an MTOR inhibitor), ISRIB (an integrated stress response
inhibitor), MG132 (a proteasome inhibitor), and A939572 (an SCD1 inhibitor). Cells were cultured in a 96-
well plate and processed using a SMAD protocol optimized for high-throughput sample handling (Fig. 4a).
The total MS acquisition time for one full plate was approximately 7 hours. SMAD enabled the
identification of 1,616 proteins, with 838 proteins retained after data filtering (Fig. S11a). Additionally, a
total of 7,005 metabolite features were quantified, among which 425 metabolites were confidently identified
(Fig. 4b, Fig. S11b-c, Supplementary Table 3). Notably, over 80% of the quantified features exhibited a
coefficient of variation (CV) below 0.5, with median CVs of 0.21 for proteomics and 0.20 for metabolomics,
respectively (Fig. 4c). These results highlight the robustness and reproducibility of SMAD for high-
throughput multi-omics drug screening.

One-way ANOVA analysis was first applied to determine dysregulated proteins and metabolites after
various drug treatments (Benjamini—Hochberg (BH)-adjusted P values <0.05). As shown in Fig. 4d, a total
of 5339 metabolite features and 626 proteins were significantly altered in at least one treatment. To better
illustrate the variations across various treatments, we consolidated all significantly dysregulated molecules
and categorized them into four clusters utilizing K-means clustering (Fig. 4e). Cluster 1, which represents
the profiles of 153 proteins and 2286 metabolite m/z features, generally peaked with TORINZ2 or ISRIB
treatment. Further analysis revealed that the disrupted proteins in this cluster are primarily associated with
the pentose phosphate pathway, cell cycle, spliceosome, fatty acid degradation, and protein processing in
the endoplasmic reticulum (Fig. S11d,e). This may be due to the repair of some protein synthesis processes
and the increase in cellular energy consumption after ISRIB treatment. Additionally, cluster 3, enriched by
152 proteins and 1,116 metabolite m/z features, demonstrated an opposite trend that was downregulated at
either of these two treatments. KEGG enrichment analysis of proteome results revealed that the
dysregulated proteins are mainly related to pathways like glycolysis, HIF-1 signaling pathway, amino acid
metabolism and ribosome (Fig. 4f), which can be attributed to the inhibition of cell growth by TORIN2.
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Cluster 4, which represents the profiles of 151 proteins and 745 metabolite m/z features, generally peaked
at MG-132 treatment. MG132 is a proteasome inhibitor that blocks the activity of the proteasome. Here,
we demonstrated that proteins associated with the cytoskeleton, spliceosome, and DNA replication were
significantly upregulated in MG-132 (Fig. S11f, g). Moreover, Cluster 2 exhibited a relatively
heterogeneous alteration pattern; however, it generally demonstrated a downregulation under MG-132
treatment and dysregulation in response to ISRIB (Fig. S11h, i).

Further analysis with t-tests compared to the control also revealed TORINZ2, ISRIB, and MG-132 induced
more changes to both the proteome and metabolome layer (Fig. 4g), while limited variations were observed
between the control, DMSO, and DFO treatment. Consistent with our earlier findings, treatment with 10 pM
DFO resulted in minimal alterations across multi-omics profiles.3” Correlation analysis of significantly
altered molecules revealed that those involved in the same pathways or with similar functions tend to cluster
together (Fig. 4h). This observation is consistent with the logic of cellular functional responses and further
supports the effectiveness and accuracy of our method. Additionally, molecules from different omics layers
also exhibited correlations, suggesting potential multi-omics connections and interactions (Fig. 4h).
Furthermore, a multi-omics co-regulation related to fatty acid and lipid metabolism was discovered in the
TORIN2 treatment group. We observed a significant upregulation of mitochondrial fatty acid beta-
oxidation enzyme (Q16836, HADH) and, correspondingly, increased carnitine, acetyl-carnitine, and
hexanoyl-carnitine enhanced the lipid catabolism (Fig. 4i, Fig. S11j). We also observed a notable decrease
of fatty acid synthetase (P49327, FAS) in TORIN2 treated cells and typically lipids were accordingly
downregulated in this treatment, which represents the inhibited lipid synthesis process (Fig. 4i). Notably,
TORIN2 treatment was associated with molecular changes suggestive of decreased lipid synthesis but not
decreased lipid catabolism.

UMAP dimensionality reduction of the multi-omics data from individual replicates revealed clear
separation among treatment and control groups, highlighting distinct multi-omics profiles associated with
each condition (Fig. 4j). To further investigate the cellular responses to different drug treatments, we
assessed the correlations between metabolic and proteomic profiles across drug pairs. The analysis revealed
that TORIN2 and ISRIB exhibited the highest correlation in proteomic alterations (Pearson correlation =
0.701), while TORIN2 and MG-132 showed the strongest correlation in metabolic changes (Pearson
correlation = 0.729) (Fig. 4k, Fig. S11k,l). Notably, a relatively positive linear correlation was observed
between metabolomic and proteomic responses, suggesting a potential intrinsic link and coordinated
regulation between these two molecular layers.
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Fig.4| High-Throughput SMAD-Based Profiling of Drug-Induced Multi-Omics Responses in Human Cells. a,
Overview of experimental design and sample processing flow in 96-well plates. b, Molecular information and data
quality of multi-omics dataset acquired by SMAD. including identified, quantified features. ¢, Coefficient of
variance distribution for all identified proteins and metabolite features across all samples within each treatment.
d, The Heatmap showing significant dysregulated multi-omics molecules among drug treatments (one-way
ANOVA test with Benjamini-Hochberg (BH) adjusted P values <0.05). e, Four clusters of significantly dysregulated
multi-omics molecules of figd.d (K-means clustering). f, Enriched KEGG pathways(left) of cluster 3 and typical
proteins in glycolysis and proteolysis (right). g, Raincloud of significantly dysregulated metabolome m/z features
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box shows the quartiles of the dataset while the whiskers extend to show the rest of the distribution. Data points
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are shown as dots. j, UMAP analysis of multi-omics responses among all drugs and controls. (All metabolite
features and proteins included). k, The correlation between metabolic and proteomic levels across different drug
pairs. All data in this figure comes from 82 independent samples corresponding to unique wells in the 96 well plate.

n=11-12 per condition.

Case Study 3: SMAD enables integrative multi-omics strategies for large-scale drug screening

Encouraged by the successful application of the SMAD method demonstrated in Case Study 2, here we
expanded this approach into a broader drug screening investigation to further underscore its practical utility
and scalability. Specifically, we designed an experimental screen consisting of 72 distinct small-molecule
compounds (Fig. S12a). To enhance the statistical robustness of the experimental results, we employed six
replicates for each drug. Increasing the number of replicates significantly reduces the standard error,
improves the power of statistical tests, and enhances the ability to detect true biological differences, thereby
minimizing biases caused by random variability (Fig. S13). Additionally, up to 12 positive and negative
controls were systematically incorporated into each 96-well plate to validate data quality and facilitate
correction for potential batch effects (Fig. 5a). Following the sample processing workflow established in
Case Study 2, metabolites and proteins were separately extracted and subsequently analyzed via mass
spectrometry-based profiling.

Notably, in our previous case studies, we observed that the metabolomic coverage in 96-well-based multi-
omics analysis was relatively limited. Additionally, the identification workflow and speed of GNPS also
constrain its applicability to large-scale sample analyses. To overcome this challenge, we substantially
revamped our metabolomics identification pipeline, developing a novel software tool named DImeta, which
is explicitly optimized for direct infusion metabolomics. DImeta facilitates metabolite identification
through MS/MS spectral matching, combined with compensation voltage alignment, with quantification
relying on the intensity of secondary fragment ions (Fig. S14, Fig. S15a). We designed a graphical user
interface (GUI) for DImeta, incorporating customizable spectral library integration methods and
identification parameters. The software also supports output of visualized spectral matching results for each
identified metabolite, along with corresponding textual reports (Fig. S15b-f). This new tool significantly
expedited both identification and quantification processes. In conjunction with Zodiaq for proteomic
analysis, our enhanced workflow achieved robust identification, averaging 1,061 proteins and 681
metabolites per sample (Fig. 5a). In other words, our method can generate an integrated multi-omics dataset
encompassing over one million feature measurements (576 samples x [1,061 proteins + 681 metabolites])
in less than three days.

To ensure data quality, we performed rigorous data preprocessing, including the removal of outliers, the
removal of replicate features, the removal of missing values, and data normalization (see methods).
Ultimately, 1,012 proteins and 339 metabolites were retained for downstream analysis (Fig. 5b,
Supplementary Table 4). We first assessed the quality of this dataset. From a proteomic perspective, many
key metabolic pathways, such as DNA replication, cell cycle regulation, and central carbon metabolism,
were well represented (Fig. 5c¢). Dimensionality reduction analysis revealed that the negative control
samples clustered tightly (Fig. 5d), indicating acceptable technical variation after data preprocessing. In
addition, glycolysis-related proteins were significantly upregulated (Fig. 5e, Fig. 12c,d), consistent with
the known effects of DFO treatment and our previous findings.3” On the metabolomics side, several major
metabolic pathways were also detected, and control samples also clustered together, supporting the
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robustness of the dataset (Fig. S12 e-g). Quantified multi-omics features also exhibited a stable coefficient
of variation (CV) for all drugs (Fig. S12h).

We then conducted differential analysis for each drug treatment, examining both proteomic and
metabolomic changes relative to the controls (Fig. 5f). A key initial observation was that most compounds
did not induce substantial multi-omics perturbations. Notably, metabolic changes were generally more
pronounced than proteomic changes, which aligns with expectations, as most selected drugs were non-
cytotoxic and small molecules tend to perturb metabolism more readily than protein expression (Extended
Data Fig. S12i,j). Another important finding was that the number of significantly altered metabolites did
not show a linear relationship with the number of altered proteins. For example, riboflavin extensively
remodeled metabolites with little effect on proteins (Fig 5f). In other words, extensive perturbation at one
omics level did not necessarily result in equally extensive changes at the other (Fig. 59).

A third notable observation was that drugs belonging to the same pharmacological class did not necessarily
induce similar levels of multi-omics alterations. This may be due to the broad nature of conventional drug
classification systems, where compounds within the same category may act via distinct mechanisms or
target different pathways. To explore this further, we incorporated a chemical similarity scoring system
using the Tanimoto coefficient. The analysis revealed that most drugs exhibited low structural similarity,
with Tanimoto scores below 0.2. The only pairs with relatively high similarity were VMAT?2 inhibitors,
Tetrabenazine and Valbenazine; however, even these did not show strong multi-omics correlation (Fig. 5h).

Although the number of significantly altered features in the two omics layers did not correlate after multiple
testing correction, we observed a moderate linear relationship in the number of altered molecules when
considering the uncorrected p-values (Fig. S12k). This prompted us to investigate further whether the
direction and magnitude of changes across the proteome and metabolome were concordant. We calculated
the Pearson correlation coefficients for proteomic and metabolomic profiles across all drug pairs,
respectively. The results revealed a moderate correlation (R = 0.5) between proteomic and metabolomic

variation trends following drug treatments (Fig. 5i). This suggests that, although the number of significantly
dysregulated features differs between omics layers, their directional changes and response magnitudes are
aligned to some extent, indicating a potential intrinsic connection and coordinated regulation between the
proteome and metabolome.
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Fig.5] SMAD enables integrative multi-omics strategies for large-scale drug screening. a, an overview of
multi-omics drug screening strategy based on 96-well plate, from experimental design to data analysis. Multi-
omics analysis in duplicate is performed after 24-h treatments. b, Heatmap of all quantified proteins and
metabolites after dataset cleaning. ¢, KEGG enrichment result of proteome result. d, UMAP analysis of negative
control drug DFO for proteome result. e, Volcano plot of dysregulated proteins after DFO treatment f, bar plot of
dysregulated proteins/metabolites in each drug (Student T-test with Benjamini-Hochberg (BH) adjusted P values
<0.05, n = 6 or 12). g, Activity of top drugs measured by the number of dysregulated proteins (x axis) and
dysregulated metabolites (y axis). h, Relations of Pearson correlation and structure similarity (quantified by
tanimoto scores) of drug pairs. i, metabolome correlation and proteome correlation of all drug pairs. (All data in
this figure comes from 576 independent samples corresponding to unique wells in six 96 well plates. n=6 or 12 for
drugs and control, respectively. Significance calculated by student T-test with Benjamini-Hochberg (BH) adjusted

P values <0.05)

Multi-omics perturbation drives the organization of drug communities

We further performed Pearson correlation analysis across all drug pairs based on their multi-omics features.
Overall, we found relatively low correlations between most drug pairs, with the majority exhibiting
correlation coefficients below 0.3. By applying a correlation threshold of 0.35, we constructed a drug—drug
similarity network consisting of 469 edges. Among the 73 tested compounds (including DFO), 69 showed
significant correlation with at least one other drug (Fig. 6a).

Within this network, several distinct clustering patterns emerged based on multi-omics data, reflecting
both structural and functional relationships among compounds. A notable example is the pairing of
Tetrabenazine and Valbenazine, two structurally analogous inhibitors targeting the vesicular monoamine
transporter 2 (VMAT2). Their substantial multi-omics similarity (Fig. 6b,c) is likely attributed to their
shared molecular structures and analogous mechanisms of action, influencing comparable pathways and
downstream molecular responses. Additionally, a distinct cluster comprising Janus kinase (JAK) and
mitogen-activated protein kinase kinase (MEK) inhibitors was identified. Interestingly, despite significant
structural diversity among compounds in this cluster, they converge on common signaling pathways
involved in cellular proliferation, differentiation, and immune modulation. Consequently, these shared
biological targets result in moderate omics-level correlations, reflecting a convergence of effects at the
cellular and molecular level despite structural differences (Fig. 6d,e).

Furthermore, clusters based primarily on functional similarity were also observed. These include groups of
antibiotics, central nervous system (CNS) agents, and cardiovascular drugs (Fig. S16a,b). Although
grouped within the same therapeutic class and demonstrating some level of correlation (Fig. 6f,g), these
drugs frequently operate through varied molecular mechanisms, resulting in less pronounced multi-omics
associations compared to the other two types of clusters. For instance, within the antibiotic cluster,
compounds such as Secnidazole and Trimethoprim demonstrated notably weaker correlations with other
antibiotics (Fig. 6f, Fig. S16c). A similar pattern was also observed in the CNS and cardiovascular drug
clusters (Fig. S16d-g). This lower correlation could be attributed to their distinct modes of antimicrobial
action, which target different metabolic or synthetic pathways within bacterial cells, thereby eliciting
divergent molecular signatures detectable by omics profiling. These findings underscore the complexity
and multidimensional nature of drug interactions, highlighting the need for integrated omics analyses to
gain deeper mechanistic insights into the functionality and classification of drugs.
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Given the complexity and scale of features in multi-omics data, direct correlation calculations may
introduce noise and potential bias. To address this, we extracted a panel of 35 biological pathways,
comprising 19 protein-based and 16 metabolite-based pathways (Fig. 6h), and conducted pathway-level
comparisons across the three clustering types mentioned above. Interestingly, we found that drugs grouped
into the same cluster at the global level also can demonstrate divergent or even opposing behaviors at the
individual pathway level. For example, although Tetrabenazine and Valbenazine—two structurally similar
VMAT2 inhibitors—displayed consistent trends across most metabolomic pathways, they showed striking
differences in several proteomic pathways, including inverse patterns in TCA cycle and DNA replication
(Fig. 6i,)).

Another example is the antibiotic Piperacillin, which exhibited similarity to Ornidazole in metabolomic
pathways but differed significantly from other antibiotics (Fig. 6h, Fig. S16i,m). Likewise, Fidaxomicin,
another antibiotic, demonstrated distinct profiles from the rest of the antibiotic cluster across both omics’
layers (Fig. 6h). Similarly, within the CNS drug cluster, Penfluridol exhibited substantial differences from
other drugs in the group at the proteomic pathway level, whereas Quetiapine showed pronounced
divergence from other cluster members at the metabolomic pathway level (Fig. S16h,j ). A similar
phenomenon was also observed within the cardiovascular drug cluster (Fig. S16h,k).

Notably, For the JAK and MEK inhibitors, we found that Baricitinib and Fedratinib (both JAK inhibitors)
differed markedly in some metabolome-related pathways like histidine metabolism and
Glycerophospholipid metabolism, yet were highly similar in key proteomic pathways such as oxidative
phosphorylation and glycolysis (Fig. 6k,1). In contrast, Cobimetinib and Selumetinib, both MEK inhibitors,
showed relatively better correlations in both proteomic and metabolomic dimensions (Fig. 6h, Fig. S161,n).
While pathway-level analyses may not fully capture the global multi-omics perturbation patterns—and may
even miss critical information—they nonetheless underscore the complexity and diversity of cellular
responses to drug treatments. Taken together, these results highlight the necessity of integrating multiple
omics layers to understand drug mechanisms and their biological impact comprehensively.
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Fig.6| Drug clustering driven by multi-omics response similarity. a, Community plot built from a compound-
compound correlation matrix. Typical clusters were labeled with different color. Correlations are filtered to only
include edges with r > 0.35. b,¢, Subcommunity of VMAT2 inhibitors(b) and Pairwise correlation plot of VMAT2
inhibitors Valbenazine and Tetrabenazine(c). d,e, Subcommunity of JAK/MEK inhibitors(d) and Pairwise
correlation plot of MEK inhibitors selumetinib and cobimetinib(e). f,g, Subcommunity of antibiotics(f) and Pairwise

correlation plot of two typical antibiotics Cefodizime and Peperacillin(g). h, Clustered heatmap illustrates the
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changes in multi-omics pathways across different drug clusters, with metabolomics (red) and proteomics (black).
i, Correlation and perturbation patterns of VMAT2 inhibitors (Valbenazine and Tetrabenazine) across proteomic
and metabolomic pathways. j, changes in associated molecules within representative dysregulated pathway
related to i. k, Correlation and perturbation patterns of JAK inhibitors (Baricitinib and Fedratinib) across proteomic
and metabolomic pathways. |, changes in associated molecules within representative dysregulated pathway

related to k.

Exploration of intrinsic connections among multi-omics molecules

Given the extensive molecular interactions and co-perturbation phenomena observed both within
individual omics layers and across multi-omics layers in our other case studies, we became deeply interested
in further exploring the potential relationships among these multi-omics molecules. To this end, we first
constructed a correlation network encompassing all multi-omics features, aiming to identify molecular
entities that exhibit synergistic or antagonistic functions. Specifically, we calculated pairwise correlations
among all molecules and selected those with correlation coefficients greater than 0.7. The resulting network
consisted of 258 nodes and 1,249 edges.

Upon categorizing the molecules, we observed a tendency for features within the same omics layer to
cluster together. However, a considerable number of molecules also demonstrated high correlations across
different omics layers. Moreover, we found that multi-omics molecules involved in the same metabolic
pathways or sharing similar biological functions were more likely to form clusters. For instance, molecules
associated with glycolysis, cytoskeletal organization, and apoptosis—including both proteins and
lipid/amino acid-related metabolites—tended to aggregate, which aligns well with biological expectations
and further supports the robustness of our analytical approach (Fig. 7a).

Further extraction of these highly correlated features revealed several intriguing sub-clusters. For example,
significant correlations among the proteins ADT1, ADT2, ADT3, CYC, VDACI, VDAC2, and the 14-3-3
protein isoforms 1433B, 1433E, 1433F, 1433G, and 1433T within cells, suggesting potential coordinated
roles or shared pathways (Fig. 7b). The ADT proteins are involved in cellular energy metabolism and redox
homeostasis, whereas VDAC family proteins function as mitochondrial membrane channels regulating the
transport of metabolites and ions, thus directly influencing mitochondrial metabolism and apoptotic
signaling. Cytochrome C (CYC) is a critical component of the mitochondrial respiratory chain, participating
in both energy production and the induction of apoptosis. Additionally, the 14-3-3 family proteins are well-
known modulators of various protein-protein interactions, cell-cycle progression, and apoptotic signal
transduction pathways. The observed robust correlations among these proteins likely reflect a coordinated
regulatory mechanism integrating metabolic activities, mitochondrial functions, and apoptotic signaling.

Moreover, our results also revealed strong correlations among the metabolites lysine, histidine,
phenylalanine, tryptophan, and spermidine, suggesting an integrated metabolic network within the cell (Fig.
7¢). These amino acids participate in diverse biological functions, including protein biosynthesis, metabolic
signaling, and the regulation of oxidative stress. Spermidine, derived from amino acid metabolism, plays a
crucial role in cellular proliferation and survival. The observed coordinated changes among these
metabolites likely reflect shared regulatory mechanisms responding to cellular energy status, nutrient
availability, or stress conditions. Although these metabolites don’t share a single linear pathway, they
intersect metabolically at central hubs, such as the TCA and urea cycles.
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More interestingly, the strong correlation among a set of multi-omics features was observed (Fig. 7d),
including ACADM (medium-chain acyl-CoA dehydrogenase), triglycerides (TG(13:0/15:0/15:0),
TG(16:0/16:0/18:0)), and SRRM2 (Serine/Arginine Repetitive Matrix 2). Functionally, ACADM is
essential for fatty acid B-oxidation and may influence the metabolism of these triglycerides, while SRRM2
regulates pre-mRNA splicing. Their coordinated behavior suggests a potential link between lipid
metabolism and post-transcriptional gene regulation. Fatty acid fluctuations could affect SRRM2
expression through energy or signaling pathways, whereas SRRM2-mediated splicing may impact the
expression of lipid-related transcripts.

To further understand relationships between the metabolomic and proteomic data we used an unbiased
machine learning approach similar to our previous work.*® We first test this idea with dataset from case
study 2 to predict changes in proteins from changes in metabolites using an optimized extratrees model !
(Fig. 17a). Overall, the prediction of most proteins was very effective with an R2 score of 0.7 between true
and predicted values (Fig. S17b). Several proteins from diverse pathways were predicted with remarkable
accuracy with R2 scores over 0.98 (Fig. S17c-¢). Given the task of predicting proteins from metabolites,
we were not surprised to see metabolic proteins predicted well. Still, we were surprised to see a ribosomal
protein among the top well-predicted proteins (Fig. S17e). In fact, the distribution of all proteins predicted
from metabolites indicates that most proteins were predicted with rho over 0.8. Most ribosome proteins in
our dataset were well predicted (Fig. S17f). To determine which proteins were statistically significantly
well predicted by machine learning from metabolites measured from the same sample by SMAD, we used
a strict Bonferroni correction of the p-values from Spearman correlation between the true and predicted
protein values. This left us with 54 statistically well-predicted proteins. Term enrichment analysis of the
most well-predicted proteins revealed that diverse pathways beyond metabolic proteins are accurately
predicted from the metabolomic data, indicating strong relationships between the metabolome and multiple
cellular pathways, including protein synthesis and degradation. This makes sense because most cellular
energy is used for protein regulation.%

Encouraged by these results, we further applied the Random Forest Regressor model to predict metabolites
from proteins (Fig. 7h). Overall, the prediction of most metabolites was very effective with an R square
score of 0.88 between true and predicted values (Fig. 7i). The per-metabolite overall R2 distribution showed
that some metabolites were predicted better than others (Fig. 7j). Spermidine and phenylalanine were
among the best predicted metabolites (R? score 0.41 and 0.42), so we used SHAP to determine which
proteins were responsible for their accurate prediction (Fig. 7k, 71). This revealed that no expected proteins
known to regulate these metabolites were identified as regulators; however, RBM8A was found to be
important for both metabolites. RBMB8A is a core component of the exon junction complex, which is crucial
for the post-transcriptional regulation of mMRNA. It is known to help degrade mRNAS that contain premature
stop codons and to influence mMRNA localization. We used siRNA to knockdown GAPDH (control, Fig.
S18) or RBMB8A, one of the two probes employed (S1 and S2), resulted in a reduction of RBM8A (S2), as
determined by both immunofluorescence and proteomics (Fig. 7m, n). As predicted by the SHAP, the loss
of RBMB8A in the S2 condition was associated with a drop in both phenylalanine and spermidine (Fig. 7n).
This validates that even lower depth multi-omics from SMAD can predict causal relationships across omics
layers.


https://doi.org/10.1101/2023.06.26.546628
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.26.546628; this version posted December 1, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Proteome
@ tubulin
@ mitochondrial metabolism
@ apoptosis regulation
O glycolysis

O other proteins

Metabolome

QO Lipids

@ Amino acids

@ Amino acids derivatives
O Carnitine/derivatives
O other metabolites O

Correlations

o
Q
P
S Re
0.7 © (@]
0.8 o0
P

0.9

Proteirs

Machire Raming

l Regresaion

i 14-[R=0.88 J

” |MSE:D.47 80
B 12
=]
= >
O -
S0 éeo
B s+ S
o] 40
S 6 4 i
Qo
a4 / 20

24

-5 0 5 10 15
True Values

Nagativm conteol

RMBBA 5IRNA

0!
-0.8-0.6-0.4-0.2 0.0 0.2 0.4

R? Score

Merge

Correlations
- 07

hgh

14338 odmvhe o
NACPA ——
RBMBA -

NP2 & .-
VDAG2 -~

oSy —

RLS CRE
VDACY A F
DHE4 . 3
HZ820 [ >
CHID - £
FEMD7 - t

RS29 'Y .
ADT2 »e

GSHR -

ARLE -

RL34 -
orue e

coxz -

NACA +

how

2 g -
=0 15-C10-0 05 0 00 UGS 0.0
SHAP Value (Impact on Mode! Outpest)

REMUA - -
CX7A2
OLA1
RAP1A
DEST
ALDCC
usav
PE0E
RAGP1
MiF
R5274
ssue
RRS1
GSTOY
PURS
cae
SRSF3
ANIIE

t4

|
-

b‘#f;bf§Q'T~L“0’
Feotuee Volus

_— e ——— low
010005 000 0.05

SHAP Value (Impact on Model Output)

4 4
- * * *
9 I I ]
80.4 o
N ¢ 2 2
©
20.2|mim
Sad W
2 ° 0
£00 .
x
w RBMSA == -2{ Phenylalanine Spermidine
& 2 g & &g & o &
& &F & $ F & & &F O
Qs Qs ‘b@ Q)® Q?Q ‘b®
& & & & & &


https://doi.org/10.1101/2023.06.26.546628
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.26.546628; this version posted December 1, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Fig. 7 | Exploration of the intrinsic connections among multi-omics molecules. a, Community plot built from a
molecule-molecule correlation matrix. Typical clusters were labeled with different color. Correlations are filtered
to only include edges with r>0.7. b, Subcommunity of typical proteome cluster. ¢, Subcommunity of typical
metabolome cluster. d, Subcommunity of typical multi-omics interaction cluster. e, heatmap of selected protein
features with higher correlation that significantly dysregulated their expression in compounds. f, heatmap of
selected metabolite features with higher correlation that significantly dysregulated their expression in compounds.
g, heatmap of selected multi-omics molecule features with higher correlation that significantly dysregulated their
expression in compounds. h, Scheme showing the ML task of predicting metabolites from proteomic data
measured in parallel by SMAD. i, Overall performance of all metabolites true versus ML predicted values. j,
histogram of R squared values for all predicted metabolites. k,I, SHAP value of top contributed features of
predicted molecule spermidine (k) and phenylalanine (I). m, Validation of RBM8A gene knockdown. n, (left)

LC-MS results showing RBMS8A level is significantly downregulated in the second knockdown group (p < 0.01),
LC-MS metabolome analysis showing Phenylalanine level (middle) and Spermidine level (right) are significantly

downregulated after RBM8A knockdown (p < 0.05). S1 and S2 represents two RBMS8A siRNAs.

Discussion

Here, we present a high-throughput direct infusion mass spectrometry strategy, enabled by gas-
phase ion mobility separation, that allows for the single-injection analysis of peptides, polar
metabolites, and lipids in a single run. By integrating this method with our custom-developed
software tools, we successfully identified over 1,300 proteins and 600 metabolites within
approximately 4.3 minutes of data collection per sample. This workflow eliminates the need for
liquid chromatography, significantly simplifying instrumental requirements, increasing sample
throughput, and reducing analysis time. The successful implementation of this method is grounded
in two key advancements: (1) gas-phase separation of peptides, lipids, and polar metabolites using
both ion mobility and quadrupole selection, which effectively reduces ion complexity before
detection and improves analyte coverage across omics layers; (2) tailored computational tools,
such as ZoDIAg and DImeta, that support robust spectral matching and multi-omics integration.

We demonstrated the applicability and versatility of this method in three contexts. In macrophage
polarization experiments, our approach captured treatment-induced multi-omics changes across
several levels from global omics reprogramming and coordinated pathway regulation to individual
protein-level alterations not previously reported. In a large-scale drug screening study, we
observed both convergent and divergent omics responses across structurally and functionally
related compounds, suggesting that global multi-omics profiles can reveal both shared mechanisms
of action and drug-specific effects.>® % Furthermore, by incorporating machine learning—based
integrative analysis, we identified cross-omics interaction patterns—e.g., proteo-metabolomic
correlations—which were validated using biological assays and conventional LC-MS-based
platforms.

Despite its advantages, the current SMAD approach still falls short of traditional LC-MS methods
in terms of depth and dynamic range of identification. Moreover, the limited resolving power of
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FAIMS leads to residual overlap between the two omics layers, which in turn can compromise
identification efficiency. Furthermore, our workflow relies on label-free quantitation—an
approach widely used in conventional LC-MS—but performing single-injection multi-omics by
direct infusion may exacerbate matrix effects and thus further undermine the accuracy of label-
free quantitation. However, despite these limits, we believe this method still falls short of its
theoretical ceiling. To push the boundaries of performance, advancements are needed across both
hardware and software dimensions: (1) lon Mobility: While FAIMS offers partial ion separation,
integrating more powerful techniques such as trapped ion mobility spectrometry (TIMS) or
structures for lossless ion manipulation (SLIM) could further enhance gas-phase resolution and
reduce chimeric spectra, especially across distinct omics layers. (2) Mass analyzer: The Orbitrap's
detection speed (~100-150ms per scan) presents a throughput bottleneck. Employing faster
platforms such as time-of-flight (TOF) or the newly emerging Astral analyzers'® > could
substantially shorten analysis time, potentially enabling sub-minute total acquisition. (3) lon
Source Optimization: Improved ionization efficiency—through refined emitter geometries and
ultra-low flow regimes—can enhance signal intensity while reducing sample consumption, both
of which are critical for clinical and precious sample applications. On the computational side, our
current spectral matching relies on cosine similarity. Future development of deep learning—based
spectral deconvolution and annotation tools may yield higher identification sensitivity, better
handling of mixed spectra, and improved cross-omics feature alignment.25 %57

Looking forward, we recognize the need to reevaluate how this technology is positioned. Rather
than universally striving for maximum omics depth, more impactful applications may lie in
focused, clinically relevant use cases, such as rapid profiling of well-established biomarkers or
pathway-specific panels in disease diagnostics. In these contexts, a platform that is simple, robust,
fast, flexible, and cost-effective may provide greater clinical utility than one designed for maximal
omics coverage. For instance, clinical assays often require the detection of just dozens of disease-
associated metabolites or a few hundred proteins, with high reproducibility and minimal sample
preparation.®® Similarly, SMAD may offer unique advantages in structural or interaction
proteomics,”® enabling rapid gas-phase characterization of selected targets without the
confounding influence of LC-based retention effects.

In summary, we demonstrate for the first time the feasibility of LC-free, single-injection multi-
omics profiling using DI-MS. Coupled with integrated data processing and cross-omics analysis,
this method offers a powerful platform for high-throughput cellular phenotyping, mechanistic
studies, and pharmacological screening. We anticipate that ongoing advances in sample processing,
instrument design, and computational analytics will further elevate the utility of SMAD in both
research and clinical domains.
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Methods

Materials.

Angiotensin [ (Sigma, A9650-1MG), QCAL Peptide Mix (Sigma, MSQC2) and Hela digest standard
(Thermo Fisher Scientific, Catalog number: 88328) were dissolved into different concentrations with 50%
acetonitrile (ACN) in 0.2% formic acid (FA). Lipid standards (product No. 330707) was purchased form
Avanti. Drugs including deferoxamine mesylate salt (Product No. D9533), mTOR inhibitor torin2 (Product
No. SML1224), integrated stress response inhibitor ISRIB (Product No. SML0843), proteasome inhibitor
MG-132 (Product No. 474790) and SCD1 inhibitor A939572 (Product No. SML2356) were purchased from
Sigma-Aldrich.

Mass spectrometry and data acquisition

SMAD analysis of case study 1 and 2 was performed on an Orbitrap Lumos (Thermo Fisher Scientific)
mass spectrometer coupled with the FAIMS Pro Interface. SMAD analysis of case study 3 was performed
on an Orbitrap Ascend (Thermo Fisher Scientific) mass spectrometer coupled with the FAIMS Pro
Interface. Different compensation voltages were applied for metabolome (-5V to -40V in steps of 5V) and
proteome (-30V to -80V in steps of 10V) analysis. A nano-ESI source (“Nanospray Flex) and LOTUS
nESI emitters from Fossiliontech were used for ionization. The ultimate 3000 HPLC system (Thermo Fisher
Scientific) was used to control automated sample loading, flow rate, and mobile phase composition. Flow
rate was maintained at 1.4ul/min at the first 0.5 min for transferring samples to nano emitter and then
maintained a 0.3ul/min flowrate to the end of the acquisition. Mobile phase composition is ACN/H20
(70:30) in 0.1% formic acid (FA) for the whole acquisition process. Data acquisition was conducted at
positive mode with 2200V. AGC was set at 100% and ion injection time was set at auto. For proteome
acquisition, targeted MS2 mode was used for each compensation voltage from -30 V to -80 V in a step of
10V. For metabolome acquisition, tSIM mode with a quadrupole window of 50da was used to scan full m/z
range from 100 to 1100 for each compensation voltage from -5V to -40 V in a step of 5V. For case studies
1 and 2, three QC samples were applied every ten runs; for case study 3, twelve QC samples were applied
between each plate for batch-effect correction.

LC-MS/MS proteomic analysis was conducted on an Orbitrap Ascend Tribrid Mass Spectrometer using
data-independent acquisition (DIA) with the following settings: positive ionization (2500 V), 100 ms ion
injection time, 12 Da DIA window, MS2 range 400—1000 m/z, AGC target 100%, and HCD energy at 30%.
Peptides were first trapped on an EXP®2 Stem Trap and separated on a 200 cm pPAC™ column
(PharmaFluidics), connected via 20 um i.d. Viper™ capillaries (Thermo Fisher) and maintained at 55 °C.
The reversed-phase gradient (A: 0.1% formic acid in water; B: 0.1% formic acid in acetonitrile) was as
follows: 8% B to 25% at 70 min, to 37% at 95 min, ramped to 98% at 96 min (held for 9 min), then returned
to 8% at 105 min and held for 5 min (total 110 min). For library construction, LC-MS/MS proteomic
analysis was performed on an Orbitrap Lumos Mass Spectrometer using data-dependent acquisition (DDA)
with the following settings: FAIMS compensation voltages ranging from —30 V to —80 V in 5 V increments
(one compensation voltage per run, totaling 11 runs), positive ionization mode (2500 V), ion injection time
of 100 ms, MS2 scan range of 300—1000 m/z, AGC target set to 100%, and HCD collision energy at 30%.
The LC column and mobile phase settings were the same as those used in the DIA method described above.

LC-MS/MS metabolomic analysis was conducted on an Orbitrap Exploris 480 Mass Spectrometer using
targeted MS/MS (tMS2) with the following settings: positive ionization mode (2600 V), ion injection time
of 100 ms, MS2 scan range of 70-1000 m/z, AGC target set to 100%, and stepped HCD collision energy
(15, 30, 45%). Metabolites were trapped and separated on a 50mm UPLC HSS PFP column (Acquity, 1.8
pum) maintained at 35 °C. The reversed-phase gradient (A: 0.1% formic acid in water; B: 0.1% formic acid
in acetonitrile) was as follows: 2% B to 50% at 15 min, ramped to 98% at 30 min (held for 5 min, total 35
min).

Quantitative Evaluation of SMAD
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Three lipid standards (d18:1-18:1(d9) SM, 29.6 pug/ml; 15:0-18:1(d7) PC, 150.6 pg/ml; 18:1(d7) Lyso PC,
23.8 pg/ml) and QCAL proteins (0.25 pg/ul) was mixed and diluted every four times. The mixed standard
sample was directly analyzed by targeting their accurate m/z with SMAD. Lipid standards and MS-QCAL
peptides were quantified with python by manually extracting MS1 intensity and representative y-ion
fragments intensity, respectively. For real samples, original metabolome samples were produced by adding
500ul metabolite extraction solvent (ISO/ACN/H20, 4:4:2) to 2 million 293T cells and then the supernatant
was collected. Proteome samples was derived from 293T cells with same proteome preparation protocol
used for two case studies. Then the multi-omics sample was produced by mixture of metabolome and
proteome samples at 1:1 volume ratio. The sample was diluted every four times to produce concentration
gradients and analyzed by SMAD.

Cell culture and sample preparation for macrophages

BMDMs were derived from bone marrow extracted from the femurs of euthanized mice (11-week-old male
C57BL/6J) and plated at 3 x 10° cells per 10-cm dish in 10 ml of macrophage growth medium (complete
RPMI containing 25% M-CSF containing L929-conditioned medium). Cells were cultured for 7 days to
differentiate and were supplemented with 5 ml of macrophage growth medium on day 5. On day 7, 7x10°
BMDMs were counted and replated on 10 cm dishes in macrophage growth medium overnight prior to
experiments. On the day of experiments, BMDMs were treated with 100ng/ml LPS (Invivogen, LPS-EK
Ultrapure) and 10ng/ml recombinant murine IL-4 (Peprotech) for 24 hours. Then the cells were washed
twice with cold PBS and harvested from the plate by scraping. The cells were pelleted into 1.5 ml centrifuge
tubes and snap frozen. Then the metabolites and lipids were extracted from samples with 500pul
isopropanol/acetonitrile/water 4:4:2 for 20 min, following by a hard spin of 10 minutes in 10000 rcf and all
metabolome supernatant was removed to new centrifuge tubes and stored in -80°C. The precipitated
proteome pellet was dry out and then lysed by addition of 8 M urea with 50 mM TEAB buffer at pH 8.5.
The tubes were vortexed and sonicated until homogenous with lysis buffer. Then TCEP and
chloroacetamide were each added to 10 mM final concentration to reduce protein disulfide bonds and
alkylate the free cysteines in the dark for 30min. Then lysis buffer was diluted to 2 M urea using 50 mM
TEAB, and catalytic hydrolysis of proteins was initiated by trypsin (Promega) at a weight ratio of 1:50
protease:substrate. Proteome proteolysis was incubated in a 37°C incubator for six hours. Peptides were
desalted using Strata reversed-phase cartridges from Phenomonex, and then dried completely in Speed-Vac.
Peptides were resuspended with ACN/Water/FA (50%/49.9%/0.1%, volume ratio) and mixed with
metabolome samples for SMAD analysis. The final loading concentration of proteome is around 0.3ug/ul.

Cell culture, sample preparation for drug screening, and gene knockdown

HEK293T cells were cultured in a 96-well plate to 70% confluency and then treated with different drugs.
For case study 2, the treated concentrations of drugs were deferoxamine (10uM), Torin2 (1uM), ISRIB
(1uM), MG132 (1uM) and A939572 (1uM). For case study3, the treated concentrations of all drugs are
10uM. Drugs were dispensed to 96 well plates with Echo 650 Series Liquid Handlers. After 24 hours
incubation, cell culture media was removed and washed with PBS for twice. Then 80ul metabolite
extraction solvent (IPA/ACN/H20, 4:4:2) was added to each well of the plate and vortexed for ten minutes.
After vertexing, the plate was centrifuged in 2,000 rcf and all metabolome supernatant was removed to a
new 96-well plate and stored in -80°C. The precipitated proteome pellet in original 96-well plate was dry
out first and then lysed by addition of 8 M urea with 50 mM TEAB buffer at pH 8.5. The plate was vortexed
at 900 rpm around 5 minutes until homogenous with lysis buffer and sonicated 5 min in a Covaris sonicator
(R230 focused-ultrasonicator) maintained at 4°C. After sonication, TCEP and chloroacetamide were added
to a 10 mM final concentration to reduce protein disulfide bonds and alkylate the free cysteines in the dark
for 30 min. Then, lysis buffer was diluted to 2 M urea using 50 mM TEAB, and catalytic hydrolysis of
proteins was initiated by trypsin (Promega) at a weight ratio of 1:50 protease:substrate. Then Proteome
proteolysis was incubated in 37°C incubator for six hours. Peptides were desalted using 96-well pElution
Plate from Waters (Oasis HLB 96-well pElution Plate, 2 mg Sorbent per Well, 30 um), and then dried
completely in Speed-Vac. Peptides were resuspended in 10 ul ACN/Water/FA (50%/49.9%/0.1%, volume
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ratio) and mixed with 10ul metabolome samples for SMAD analysis. The final loading concentration of
proteome is around 0.15ug/ul. To prepare the 293T proteome for experimental parameter analysis, we
followed a consistent protocol for cell lysis and digestion except that cells were cultured in a 12¢m plate
and subsequently desalted using Strata reversed-phase cartridges from Phenomonex. HEK293T cells were
seeded in 24-well plates to reach 60% confluency at the time of transfection. Gene knockdown of GAPDH
and RMB8A was performed using Silencer Select siRNAs (Thermo Fisher Scientific; Negative Control
siRNA, Cat#4390843; GAPDH siRNA, ID#AM4624; RBMS8A siRNA, ID# 137865 and 45102) at a final
concentration of 10 nM per siRNA. Lipofectamine RNAIMAX transfection reagent was used to deliver
siRNAs according to the manufacturer’s protocol. Knockdown efficiency was assessed 48 h post-
transfection by either immunoblotting, immunofluorescence, or mass spectrometry.

Polarization and generation of senescent BMDM culture

BMDMs used in experiments were derived from bone marrow extracted from the femurs of euthanized
mice (6-12 weeks old male C57BL/6J) by mortar and pestle. Femurs were placed in the mortar and were
washed with 70% ethanol to sterilize followed by two washes with complete RPMI (cRPMI; standard RMPI
(Corning) supplemented with 10% fetal calf serum, penicillin-streptomycin solution (Corning), 1mM
sodium pyruvate solution (Corning), 2 mM L-Glutamine solution (Corning), 10nM HEPES buffer
(Corning), and 50uM 2-mercaptoethanol). After washing, 10 mls of cRPMI were added to the mortar and
the femur bones were gently crushed. The resulting media was collected and filtered through a 70pum filter
and placed in a conical tube. The filtered supernatant was centrifuged at 1200 RPM (150 RCF) for 5
minutes. Cells were resuspended, counted and plated at a density of 3E6 cells/10 cm dish in 10 ml of
macrophage growth media (cCRPMI containing 25% M-CSF containing 1.929 conditioned media (made in
house)). Cells were left to grow for 7 days to differentiate and were supplemented with 5 ml of macrophage
growth media on day 5. On day 7, BMDMs (yielding 10-12x10° cells/10cm dish) were lifted off the plate
using cold PBS containing SmM EDTA. BMDMs were counted and replated in macrophage growth media
overnight prior to experiments. On day of experiments, macrophage growth media was replaced with
cRPMI 6 hours prior to stimulation to remove M-CSF. M2 polarization was performed by stimulating
macrophages with 10 ng/ml recombinant mouse 1L.-4 (Peprotech). For M1 polarization macrophages were
stimulated with 100 ng/ml LPS (LPS EK-Ultrapure, Invivogen). On day 7, BMDMs were irradiated (10
gy) for 24 hours at 250 nM in 60% cRPMI: 40 MGM. DNA damaged cells were left in culture for 10 days
and media components were replaced every 2-3 days.

Proteome and metabolome library generation

The building of proteome library used for ZoDIAq generally including three steps: 1) performing LC-
MS/MS analysis of Macrophage and 293T samples with DDA for eleven compensation voltages from -30V
to-80V inastep of 5V. 2) Using Fragpipe to produce pepxml files of peptides and proteins with appropriate
fasta database and add decoys (50%). 3) Building library for ZoDIAq with SpectraST. The latest version of
ZoDIAq also supports proteome library generated from Fragpipe.

The building of metabolome library used for DImeta including two steps:

1) The Orbitrap-based standard metabolite spectral library was downloaded from GNPS website (
https://external.gnps2.org/gnpslibrary) .
2) The spectral data were processed and integrated into a final consensus library using the “Library handling”

module of the DImeta software. The resulting metabolite spectral library used in this study has been
uploaded to the public database.

Identification and quantification of proteome

Peptides and proteins were identified with ZoDIAq (https://github.com/xomicsdatascience/zoDIAQ).
ZoDIAg is a python software package designed to enhance usability and sensitivity of the projected
spectrum—spectrum match scoring concept. The process was described as the following steps: Firstly, the
original Thermo .RAW files were converted to mzXML files using msconvert with default settings. Then
the output mzXML files were input to ZoDIAg GUI and the appropriate spectral library for that sample was
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selected with the default settings keeping the fragment mass tolerance at 20ppm and the “Label free
guantification” should be selected. ZoDIAq produces three output files for each input mzXML file that
report spectra, peptides, and proteins filtered to <1% FDR. In each case, ZoDIAq sorts peptide
identifications by match count and cosine (MaCC) score, calculates the FDR for each identification using
a modification of the target-decoy approach where FDR at score S = number of decoys/number of targets,
and removes SSMs below a 0.01 FDR threshold. The peptide FDR calculations only use the highest-scoring
instance among all SSMs for each peptide. ZoDIAqg uses the IDPicker algorithm to identify protein groups
from the list of discovered peptides and adds them as an additional column in the output. A detailed
description about data processing, FDR calculation and protein inference was listed in our previous paper?.
Peptides and proteins were quantified using ZoDIAq to extract the sum of all detected fragment ion
intensities of common peptides in all input files. It is worth noting that, owing to FAIMS’s limited resolving
power, a very small number of MS/MS spectra acquired at intermediate compensation voltages may contain
fragment ions from metabolites; however, these occurrences are exceedingly rare—primarily below m/z
300—and do not compromise ZoDIAQ’s identifications of proteome. DIANN 1.9.2 was applied for LC-MS
proteome results analysis.

Identification and quantification of metabolome

For Case Study 3, the steps for metabolite identification and quantification are as follows: Thermo .RAW
files were converted to mzML files using msconvert. The produced mzML files were analyzed with self-
developed DImeta software (https://github.com/xomicsdatascience/DImeta). Metabolome library was
standard metabolite MS2 spectral downloaded from GNPS (https://external.gnps2.org/gnpslibrary). The
downloaded libraries were integrated and standardized using the database operation module of DImeta.
DImeta supports MS/MS spectral matching for metabolite identification, inter-sample alignment, and
guantification. The output is provided in .csv format, with entries including precursorMZ, compensation
voltage, cosine_score, ion_count, scan_number, compound_name, compoundMZ, adduct type,
compound_formula, matched_peaks and macc_score. For other studies, Thermo .RAW files were converted
to mzML files using msconvert. All peaks are picked according to the sequence of Q slices. The produced
mzML files were analyzed with MZmine3 software for mass detection, feature detection, alignment, gap
filling and feature filter. The output files contain m/z and quantification by FAIMS peak area. For metabolite
annotation, we applied a direct infusion based DDA tandem mass spectrometry analysis with the same
sample and same compensation voltages applied in SMAD analysis. Then the MS2 spectrum of metabolites
was compared with library and analyzed through GNPS website.?? Finally, the identified metabolites and
their corresponding accurate molecular masses were compiled into a database, which was then used for
subsequent identification of the same type of samples.

Consensus clustering and dimensionality reduction

In two applications of macrophage polarization and drug screening, the unsupervised k-means consensus
clustering of all treatments was performed with the python packages “sklearn”. The significantly
dysregulated molecules that were discovered among different treatments were used for clustering. The
number of groups for clustering was determined by “Elbow Method”. PCA and UMAP analysis was
performed with the python packages “sklearn” and “UMAP”, respectively.

Pathway enrichment analysis

The UniProt IDs from ZoDIAq outputs were converted to gene IDs. The KEGG_2022_Human gene set
library was applied and pathway enrichment analysis was done in Cytoscape ®° with the plugin clueGO.%
GO Term/Pathway network connectivity (Kappa score) was set at 0.5. Additional settings included GO
Term grouping and two-sided hypergeometric tests, and leading group term ranking based on highest
significance.

Data Analysis

In case studies 1 and 2, Data preparation, analysis, and visualization were performed in Python version
3.9.7. multi-omic features more than one-third missing values across all treatments were removed. KNN-
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imputer was applied for missing value imputation after log2 transformation. One-way ANOVA was applied
for group analysis and select the significant dysregulated molecules (Benjamini—Hochberg (BH)-adjusted
P values <0.05) among control and treatments. two-sided Wilcoxon rank-sum test was used to compare
each treatment with control and significant features were defined as a p-value less than 0.05 after
Benjamini—-Hochberg (BH)-adjustment. K-means clustering was applied for dysregulation pattern
clustering after z-score normalized.

In case study 3, data preparation, analysis, and visualization were performed in Python version 3.9.7. Multi-
omic features with more than half missing values across all drugs were removed. A KNN-imputer was
applied for missing value imputation after total counts were normalized. ComBat was applied for batch
effect correction. A Student t-test was used for dysregulation analysis between each treatment and control,
and significant features were defined as those with a p-value less than 0.05 after Benjamini—-Hochberg (BH)
adjustment. Pearson and Spearman correlation analysis were applied for drugs and multi-omics features
correlation analysis.

Model Training and Evaluation

For the small test dataset of one 96 well plate, machine learning was performed using scikit-learn in python.
Data was split into training and test sets where one sample from each of the 7 conditions was stratified into
the test set. An extratrees model (n_estimators = 100, max_features = "auto", max_depth = None,
min_samples_split = 2, min_samples_leaf = 1, max_features = 1, bootstrap = False, max_samples = None)
was optimized on the training data using 5-fold cross validation. A single model to predict each protein was
trained using the best parameters from 5-fold cross validation and then the model performance was
evaluated by predicting the quantity of that proteins in the test set by computing the mean squared error
(MSE) , R? scores and Spearman’s rank correlation.

For the large drug screening dataset, data were split into training and testing sets using GroupShuffleSplit,
ensuring that all instances associated with a given drug remained in the same partition. A Random Forest
Regressor model was trained using the protein expression dataset as input features and metabolite levels as
the target variables. The model was optimized using default hyperparameters, and predictions were made
on the held-out test set. Model performance was assessed using the coefficient of determination (R2 score),
which quantifies the proportion of variance explained by the model.

Feature Importance Analysis Using SHAP

To interpret the impact of individual protein features on metabolite predictions, feature importance was
assessed using SHapley Additive exPlanations (SHAP). SHAP values were computed using a Kernel
Explainer, which estimates feature contributions based on their impact on model predictions. To illustrate
feature importance for specific cases, the phenylalanine and spermidine models were selected for in-depth
SHAP analysis. SHAP values were computed for each model, and beeswarm plots were generated to
identify key protein features influencing phenylalanine or spermidine levels.

Data Availability

The data that support the findings of this study are openly available from massive.ucsd.edu at
https://doi.org/doi:10.25345/C5BV7B77J, reference number MSV00009841.

Code Availability

Python version 3.9.7 was used and all code for multi-omics analysis of two case studies, quantification
evaluation, and data visualization are provided open source via xomicsdatascience github
https://github.com/xomicsdatascience/SMAD-project.
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