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Abstract

Context-specific eQTLs mediate genetic risk for complex diseases. However, limitations in cur-
rent methods for identifying these eQTLs have hindered their comprehensive characterization and
downstream interpretation of disease-associated variants. Here, we introduce FastGxC, a method
to efficiently and powerfully map context-specific eQTLs by leveraging the correlation structure
in genomic studies with repeated sampling, e.g., single-cell RNA-seq studies. Using simulations,
we demonstrate that FastGxC is up to nine times more powerful and 10° times faster than exist-
ing approaches, reducing computation time from years to minutes. We applied FastGxC to bulk
multi-tissue (N=698) and single-cell PBMC (N=1,218) RNA-seq datasets, generating comprehen-
sive tissue- and cell-type-specific eQTL maps. These eQTLs exhibited up to four-fold enrichment
in open chromatin regions from matched contexts and were twice as enriched as standard context-
specific eQTLs, highlighting their biological relevance. Furthermore, we examined the relationship
between context-specific eQTLs and complex human traits and diseases. FastGxC improved pre-
cision in identifying relevant contexts for each trait by three-fold and expanded candidate causal
genes by 25% in cell types and 6% in tissues compared to standard eQTLs. In summary, FastGxC
provides a powerful framework for mapping context-specific eQTLs, advancing our understanding

of gene regulatory mechanisms underlying complex human traits and diseases.

1 Introduction

Over the past 15 years, genome-wide association studies (GWAS) have identified tens of thousands
of genetic variants linked to complex traits and diseases [1]. A majority of these variants reside in
non-coding regions, often overlapping DNA regulatory elements [2], which suggests their functional
effects are mediated through transcriptional regulation [2-5]. This observation has driven significant
efforts to identify expression quantitative trait loci (eQTLs) — genetic variants associated with
gene expression changes — and use them to link GWAS variants to their regulatory targets [6/-
15]. Despite these efforts, only 21% of GWAS variants, on average per trait, overlap with known

cis eQTLs from bulk tissues [12], underscoring a persistent gap between genetic associations and
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regulatory function [16H18].

A key factor for this missing regulation is the context-specific nature of many disease-relevant
eQTLs |16, 18], which often appear only in specific tissues [12], cell types |10, 14, |15, or environ-
mental conditions [19-23], making them difficult to detect. In contrast, broadly shared eQTLs,
while easier to detect, are less enriched for GWAS variants [12} [14], likely due to negative selec-
tion [16, [18]. Another major factor is that many bulk [8, 12] and all single cell RNA-Sequencing
(RNA-Seq) studies rely on repeated sampling, where the same donor provides samples across mul-
tiple contexts. While this design minimizes experimental variability, it introduces intra-individual
correlation, which, if unaccounted for, inflates type I error rate to identify an eQTL and reduces
the power to test if the eQTL is context-specific.

Several methods have been developed to identify context-specific eQTLs in studies with re-
peated sampling (see Table . These methods fall into two broad categories. The first comprises
approaches that jointly analyze data across contexts and test for context-specific eQTLs by incor-
porating a genotype-by-context (GxC) interaction term. Note that, while we refer to eQTLs with
significant GxC effects as context-specific, in alignment with common genomics terminology [24,
25], the more precise term would be context-dependent eQTLs. This includes (generalized) linear
mixed model (LMM)-based methods [24-29], which model the GxC effect linearly, and methods
that capture non-linear GxC effects [30]. To account for repeated measurements, these methods
include a random effect for the individual or cell. While powerful, their mixed model framework
makes them computationally intensive for large eQTL studies. This challenge is particularly ex-
acerbated when modeling all cell types jointly. Additionally, some of these methods |24} 30| infer
latent cellular contexts, further increasing computational costs.

The other category includes methods that follow a two-step process: first, they map eQTLs
separately in each context (context-by-context; CxC), then they define context-specificity by post
hoc examination of eQTL summary statistics across contexts [10, 12, 15, 31H33]. While CxC
approaches are fast, particularly those developed for (pseudo)-bulk data [10, (12} |15, 33|, they have
major limitations. First, CxC approaches can be significantly underpowered because they do not
fully leverage all available data. Second, many rely on ad hoc definitions of context-specificity based

on subjective thresholds of effect size differences between contexts |33, 34] or the significance of an
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eQTL in a single context [10, (12, |15]. These definitions can lead to both false-positive context-
specificity (e.g., when effects in certain contexts fail to reach significance due to chance or uneven
power across contexts) and false-negative context-specificity (e.g., when an eQTL is shared across
contexts but still shows GxC interaction effects). Taken together, these limitations constrain the
interpretation of disease-associated variants, as current methods fail to fully capture the complexity
of context-specific regulatory variation.

To address these challenges, we introduce FastGxC, a novel method that efficiently maps
context-specific eQTLs while accounting for repeated sampling. In brief, FastGxC decomposes
gene expression into context-shared and context-specific components and estimates genetic effects
on these components using linear regression. We show analytically and empirically that FastGxC’s
eQTL effect estimates can be viewed as computationally efficient reparametrizations of those ob-
tained through CxC and LMM-GxC approaches. FastGxC has several key advantages over previous
methods. First, it directly maps specific eQTLs without the need for post hoc analyses or arbitrary
thresholds. Second, by accounting for intra-individual correlation, it adjusts for background noise
and confounding factors unrelated to the context of interest, e.g., sex, age, population stratification,
or sequencing batch [35H37], maximizing power to detect context-specific eQTLs (Figure . Third,
FastGxC leverages ultra-fast implementations of linear regression models, similar to those used in
CxC eQTL mapping approaches [38-40], which reduce computational time from years to minutes.
FastGxC can work on any continuous molecular phenotype and its output integrates naturally with
methods developed to improve the statistical power of eQTL mapping, such as mash [34].

We first show in simulations that FastGxC is as powerful as the LMM-GxC approachs but
orders of magnitude faster. Both approaches significantly outperform CxC-based methods to map
context-specific eQTLs. We then applied FastGxC to multi-tissue bulk RNA-Seq data from the
GTEx Consortium|[12] (N=698 individuals) and single-cell peripheral blood mononuclear (PBMC)
RNA-Seq data from the CLUES [14] (N = 237) and OneK1K[15] (N = 981) cohorts, which we
meta-analyze, to produce comprehensive tissue- and cell type-specific eQTL maps across 49 tissues
and 8 PBMC cell types. FastGxC context-specific eQTLs show up to four-fold enrichment in open
chromatin regions from matched contexts and are twice as enriched as standard context-specific

eQTLs, highlighting their biological relevance. We further examine their relationship with complex
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traits and diseases, showing that FastGxC eQTLs improve precision in identifying relevant GWAS
contexts by three-fold and expand candidate causal genes by 25% in cell types and 6% in tissues
compared to standard eQTLs. In addition, FastGxC context-specific eQTLs show a 1.2-fold in-
crease in colocalization with complex traits compared to shared eQTLs, providing evidence that
context-specific regulation helps explain regulatory mechanisms of complex diseases that remain
unaccounted for by shared eQTLs. In summary, FastGxC provides a powerful framework for con-
structing context-specific eQTL maps, offering key insights into the gene regulatory mechanisms

underlying complex human diseases.

2 Results

FastGxC method overview. We illustrate the FastGxC method using tissues as contexts (Fig-
ure ), but the method can be applied to any set of discrete contexts, for example, cell types [10,
14} [15] or environmental stimuli, sampled across overlapping individuals. FastGxC works in three
steps. First, for each individual ¢ (i = 1,...,N) and context ¢ (c =1,..., (), FastGxC decomposes
the expression of each gene (Fj.) into two components: a shared component (E:"), representing the
average expression across contexts, and a context-specific component (Efcp ), representing the resid-
ual expression in the contexts after subtracting the shared component (Figure - Decomposition
step), i.e., B, = E$" — E;P. This decomposition, analogous to repeated-measures ANOVA, removes
shared eQTLs effects and shared noise from the context-specific components, thereby increasing
power to detect context-specific eQTLs (Figure [41].

Next, for each gene—cis-SNP pair, FastGxC estimates a shared eQTL effect (3*") and C' spe-
cific eQTL effects (57", ..., B¢ ) by regressing the genotype at the cis-SNP on the shared expression
component and each of the C' context-specific components (Figure - eQTL mapping step). This
step employs ultra-fast implementations of linear regression models optimized for eQTL mapping
[38, 139], enabling computational efficiency comparable to standard eQTL mapping methods. The
shared and context-specific effects represent a reparametrization of the eQQTL effects obtained from
conventional context-by-context eQTL mapping (01, ..., Sc)(Figure [[]B and [S16). Specifically, the

shared effect corresponds to the mean eQTL effect size across contexts, i.e., 3" = %25:1 Be,
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while the context-specific effects capture the residual eQTL effects in each context after account-
ing for the shared effect, ie., 8 = 3. — 3*", Ve € {1,...,C}. This decomposition separates
the pleiotropic (shared) effect of an eQTL across all contexts from the context-specific effects, en-
abling clearer interpretation of context-specific genetic effects. Because CxC itself can be viewed
as a reparametrization of the LMM-GxC framework, FastGxC provides a computationally efficient
reparametrization of LMM-GxC. Full details of the analytical derivation are provided in the Online
Methods and Supplementary Text.

Finally, to account for multiple testing across genes, SNPs, and contexts, FastGxC employs the
hierarchical False Discovery Rate (FDR)-controlling procedure implemented in [42] (Online Methods
and Figure [S2)). FastGxC defines a gene-SNP pair as an eQTL if the SNP has a significant effect on
the shared or any of the specific components of gene expression, i.e., if the global null hypothesis
Hy : g = BY = BF = -+ = BF = 0 is rejected. If an eQTL is detected, FastGxC defines a
context-specific eQTL as a SNP with a significant effect on at least one of the specific components
of expression of the gene, i.e., if the global null hypothesis Hy" : 8" = 5" = --- = 7 = 0 is rejected.
This global test directly identifies context-specific eQTLs, eliminating the need for post hoc analyses
or arbitrary thresholds. Finally, if significant eQTL effect size heterogeneity is detected, FastGxC
conducts C' marginal tests to determine the specific context(s) driving the observed heterogeneity,
ie, HS: B? =0 Vcel,...,C. Note that these tests do not specifically flag the contexts with
non-zero eQTL effects; rather, they detect contexts whose effect sizes deviate significantly from the
shared effect. To illustrate how FastGxC identifies different patterns of context-specificity, Figure
shows toy examples of eQTLs with varying patterns of effects across contexts.

The first two panels (“No Heterogeneity”) depict scenarios under the null hypothesis of no
eQTL effect size heterogeneity across contexts, with either a shared eQTL effect (“Shared”) or no
shared eQTL effect (“No Shared”). FastGxC does not classify either of these eQTLs as context-
specific, as there is no significant heterogeneity of their effects across contexts, but it would classify
the second scenario as a (shared) eQTL. The remaining panels illustrate scenarios under the al-
ternative hypothesis of eQTL effect size heterogeneity. These include heterogeneity driven by a
single context (“Single-context Heterogeneity”) or heterogeneity spanning all contexts (“Extensive

Heterogeneity”). FastGxC identifies all these scenarios as context-specific eQTLs, irrespective of
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the presence of a shared eQTL effect. By contrast, the commonly used CxC approach defines
context-specific eQTLs as variants with significant eQTL effects in only a single context. As a re-
sult, this approach would classify only the first alternative scenario (“Single-context Heterogeneity
- No Shared”) as a context-specific eQTL and would overlook more complex patterns of hetero-
geneity, such as cases where heterogeneity exists alongside a shared effect or where heterogeneity is

distributed across multiple contexts, highlighting its limitations compared to FastGxC.

FastGxC outperforms existing methods in simulation studies. We used a series of sim-
ulated scenarios to evaluate the performance of FastGxC to detect an eQTL and determine if the
eQTL effect is context-specific as a function of intra-individual residual correlation (see Online
Methods and Table . In each scenario, we varied the number of individuals and contexts and
the proportion of missing expression data to reflect those in GTEx [12] and the OneK1K cohort
[15], two of the largest bulk and single cell RNA-Seq studies. The performance of FastGxC was
systematically compared to three commonly used approaches: (1) the CxC approach, which per-
forms context-by-context eQTL mapping and defines a context-specific eQTL as a variant with a
significant effect in a single context, (2) MetaTissue [43], a multi-tissue eQTL mapping method
that combines mixed models and meta-analysis, and defines a context-specific eQTL as a variant
with a posterior probability greater than 0.9 of having an effect present in exactly one context, and
(3) the linear mixed model (LMM-GxC) approach, which includes a random intercept for individ-
uals to account for intra-individual residual correlation and defines a context-specific eQTL based
on the significance of the genotype-by-context (GxC) interaction term (see Online Methods). To
illustrate the impact of ignoring intra-individual correlation on the identification of context-specific
eQTLs, we also include performance of a linear model with a GxC interaction term (LM-GxC) but
no random intercept. Note that due to the large computational burden of MetaTissue, we did not
obtain results for all scenarios with larger sample size (N=698).

We first evaluated the global type I error rates of each method for detecting an eQTL (Figure
2/A and and for testing whether an eQTL is context-specific (Figure and . FastGxC
is well-calibrated across all tested scenarios and for both tests. LMM-GxC is generally calibrated

but becomes inflated in settings with low sample size and high missing data rates. As expected,
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both the CxC and LM-GxC approaches, which do not account for intra-individual correlation, are
miscalibrated (Figure . As intra-individual correlation increases, LM-GxC becomes increasingly
inflated for eQTL detection and increasingly conservative for testing context-specificity. The CxC
approach, by contrast, remains mostly calibrated when testing for the presence of an eQTL. How-
ever, depending on sample size, missing data rate, and the presence or absence of a shared eQTL,
CxC becomes either increasingly conservative (Figure ) or anti-conservative (Figure when
testing for (single-)context-specificity. Finally, MetaTissue is consistently conservative in scenarios
with low sample size (Figure when testing for the presence of an eQTL. However, when evaluat-
ing context specificity, MetaTissue becomes anticonservative or conservative, depending on whether
a shared eQTL effect is present (Figure .

Next, we evaluated the global power of each method to identify an eQTL. Among the calibrated
methods, FastGxC and LMM-GxC exhibit complementary strengths. FastGxC is generally more
powerful when eQTL effect size heterogeneity is strong or driven by a few contexts (Figure ,
@, as it leverages the Simes’ method to combine p-values. LMM-GxC is more powerful when
heterogeneity is weak but spread across many or all contexts (Figure , due to its reliance
on the likelihood ratio test (LRT). The CxC and MetaTissue approaches are less powerful than
FastGxC to identify an eQTL for all scenarios with non-zero intra-individual correlation, with the
power advantage of FastGxC increasing as correlation rises. The LM-GxC method is miscalibrated
for eQTL detection; therefore, we do not report or discuss its power to map an eQTL.

For all methods, power to detect an eQTL also depends on whether variability in expression
is explained by shared or context-specific effects. When the shared eQTL effect explains all (*No
heterogeneity”, Figure or most of the expression variability (”Single-context Heterogeneity -
Shared”, Figure , power to identify an eQTL declines as intra-individual correlation increases,
whereas the opposite occurs when the specific eQTL effect explains all or most variability (“Single-
context Heterogeneity - No shared”, Figure . In scenarios with intermediate shared and specific
effects, power to identify an eQTL follows a U-shaped relationship with intra-individual correlation
(“Extensive heterogeneity”, Figure .

We next examined power to assess eQTL context specificity. For both FastGxC and LMM-

GxC, power increases as intra-individual correlation increases, regardless of whether a shared eQTL
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effect is present. Notably, FastGxC is more powerful than the CxC and MetaTissue approaches even
in the single-context heterogeneity scenario without a shared effect—the scenario in which these
approach are specifically used. As expected from its performance under the null, the LM-GxC
method loses power to test for eQTL context specificity as intra-individual correlation increases
(Figures 2B, [S6HS10).

Then, to evaluate the ability of FastGxC to identify specific contexts driving effect size hetero-
geneity, i.e. contexts most different from the shared effect, we examined the marginal type I error
rate and power per context. Under the null hypothesis (“No heterogeneity” ), FastGxC is calibrated
for each context (FDR <5%, Figure . Under the alternative hypothesis, power was highest
for contexts with effect sizes farthest from the shared effect and increased with intra-individual
correlation (Figures , @ For example, in single-context heterogeneity scenarios, FastGxC
accurately identifies the context with the non-zero (“No shared” scenario) or single strongest eQTL
effect (“Shared” scenario) (Figures 2IC and [S12).

In addition, we assessed FastGxC’s parameter estimation accuracy by evaluating its ability
to estimate the shared (i.e., 3°") and specific eQTL effect sizes (i.e., 3% = B, — 3*") as well as the
overall eQTL effect sizes in each context (i.e., 8. = 5" + 3P; Figure @— @ FastGxC provided
unbiased estimates for the shared, specific, and overall eQTL effect sizes under conditions with no
missing data or with missing data levels typical of single-cell RNA-Seq studies such as OneK1K
and CLUES (approximately 5%). When the proportion of missing data was high (mean of 63%
and up to 84% in some contexts), FastGxC estimates remained largely unbiased, with only slight
deviations from the true effect in contexts with high missing rate.

Finally, we benchmarked the computational costs of FastGxC against other approaches. To
obtain practical run-times, we used study parameters from GTEx, i.e., approximately 50 contexts
and an average of 250 individuals per context, while varying the number of tests performed (Figure
2D). When extrapolated to the entire GTEx dataset, which involves 200 million tests for 25,000
genes and 3 million SNPs, we estimated that LMM-GxC and LM-GxC would require approximately
30 years and 10 months, respectively, to complete. In contrast, CxC and FastGxC completed the
same task in under one minute on average (based on 100 iterations). Even at a larger scale with 1,000

individuals, FastGxC remained computationally efficient, completing all tests in approximately five
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minutes, whereas LMM-GxC was estimated to take over 500 years (Figure [S17). MetaTissue was
not included in the runtime analysis due to its substantial computational burden, which exceeds

that of LMM-GxC.

Context-specificity of eQTLs is widespread across tissues and PBMC cell types. To
evaluate performance in bulk tissue, we applied FastGxC to multi-tissue RNA-Seq data from the
GTEx consortium (N = 698 individuals, 49 tissues) [12], identifying cis-eQTLs and assessing their
tissue specificity. To assess performance in single-cell data, we applied FastGxC to peripheral blood
mononuclear cells (PBMCs) from the CLUES [14] and OneK1K [15] cohorts (N = 237 and N =
981 individuals, respectively, across 8 cell types), and performed meta-analysis to map cis-eQTLs
and evaluate their cell type specificity (Online Methods). Before quantifying cis-regulation, we
confirmed that FastGxC reduces background noise, as the top principal components (PCs) of the
decomposed expression data showed minimal correlation with technical and biological covariates
compared to the original GTEx data (Figure .

We then assessed the extent of cis regulation and how context-specific these effects are across
tissues and cell types (Figure . We identified a total of 24,196 eGenes across tissues (70.21% of
tested genes) and 4,564 eGenes across cell types (29.05% of tested genes), defined as genes with
at least one eQTL in any context (hierarchical FDR (hFDR) < 5%, Table [S5). The majority of
FastGxC eGenes (86.5% and 82.7% across tissues and cell types) had at least one shared eQTL
(Figure ), aligning with previous observations of widespread cis regulation and eQTL sharing
[12,34]. Despite extensive sharing, effect sizes varied substantially between contexts, with 72.1% of
tissue eGenes and 63.9% of PBMC cell-type eGenes harboring at least one context-specific eQTL
(Figure ) Notably, most of these context-specific eQTLs overlapped with shared eQTL loci
(81.3% and 73.1% across tissues and cell types), suggesting that context-specificity often arises
from effect size heterogeneity rather than the presence of an eQTL in a single context (Figure )
Representative examples illustrating shared-only and shared-plus-specific effects are discussed in
the supplement (Figure [S19).

We next aimed to determine how many and which context(s) drive the effect size heterogeneity

for eGenes with context-specific eQTLs (Figure —C and In both bulk and single-cell data, we
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observed that the majority of specific eQTLs are identified in only a few contexts (Figure ) In
tissues, much of the heterogeneity is driven by testis (6,124 eGenes), followed by whole blood (5,219
eGenes), consistent with findings from studies mapping eQTLs specific to a single tissue. |12]. Testis,
which is biologically distinct from other GTEx tissues, also contributes the largest proportion (16%)
of single-context-specific eQTLs—i.e., eQTLs unique to a single tissue—highlighting FastGxC’s
ability to detect biologically meaningful context-specific regulation (Figure ) For PBMC cell
types, CD4 cells (1,907 eGenes) and classical monocytes (980 eGenes) account for the majority of
the heterogeneity and also contain the highest number of eQTLs unique to a single cell type. Both
the number of specific eGenes and single-context specific eGenes per context are strongly correlated
to the number of samples per tissue and the number of cells per cell type (Figure @A), indicating
that we may not yet have reached saturation in identifying these context-specific regulatory effects.

We next compared the eGenes identified by FastGxC to those identified by the CxC ap-
proach. Consistent with our simulation results, FastGxC identified substantially more eGenes than
CxC, detecting an additional 2,159 eGenes in bulk tissues and 679 eGenes in PBMC cell types
(Figure [S18B). Broadly, most (96.6% in tissues and 62.8% in PBMCs) FastGxC shared eQTLs
overlapped with eQTLs detected in multiple contexts by CxC (Figure ) Importantly, FastGxC
single-context-specific eQTLs mapped almost exclusively to single-context-specific eQTLs detected
by CxC, demonstrating strong concordance in these cases. However, a substantial fraction (48.1%
in tissues and 43.1% in PBMC cell types) of CxC single-context-specific eQTLs corresponded to
FastGxC shared-only eQTLs. This discrepancy reflects the false positive specific effects that the
CxC approach tends to identify — an issue we also observed in simulation results (Figure . More-
over, the number of context-specific eQTLs detected by CxC showed a stronger correlation with
sample size than FastGxC (Figure @A), further highlighting its sensitivity to power differences
across contexts. These results underscore the limitations of CxC approaches that define context-
specificity solely by the presence of significant eQTLs in isolated contexts, rather than accounting
for heterogeneity in effect sizes.

Finally, we show that context-specific eQTL effect sizes are correlated within groups of bi-
ologically related tissues and cell types. For example, we see that context-specific eQTL effects

are correlated among 13 brain, two heart (left ventricular and atrial appendage), two artery (tibial
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and aorta), two esophagus (muscularis and gastro-esophageal junction), three adipose (visceral,
subcutaneous, and breast), and two intestine tissues (Figure - right triangle). In addition,
context-specific eQTL effects are correlated most across CD4 and CDS8 cells, NK cells, and B cells,
between plasmacytoid and conventional dendritic cells, as well as between classical and non-classical
monocytes. Furthermore, while FastGxC context-specific eQTL effect sizes show little to no corre-
lation outside groups of biologically related tissues and cell types, CxC effect sizes show widespread
correlation across all tissues and cell types regardless of biological relationships (Figure - left
triangle). This again demonstrates that FastGxC is able to disentangle tissue and cell type specific

effects from shared effects.

Context-specific eQTLs are enriched in functional genomic features from their matched
context. o investigate functional differences between shared and context-specific eQTL variants,
we performed enrichment analysis of regulatory genomic elements, comparing variants with only
shared or only context-specific effects to MAF-matched non-eQTL variants (Figure , right panel).
In bulk tissues, variants with context-specific effects were enriched within enhancers (Odds Ratio
[OR] =1.06, p = 1.16 x 1075, FDR< 5%), while those with shared effects were depleted (OR = 0.98,
p = 2.87 x 1072). Both sets of variants were enriched within promoters but the enrichment was
stronger for variants with shared effects (OR = 1.14, p = 1.39 x 1073") compared to those with
specific effects (OR = 1.04, p = 3.14 x 1072) only. In single cell PBMC cell types, we see a similar
trend for enhancers (ORgpared = 0.98 and ORgpecific = 1.02) but the enrichment is not significant
after multiple testing adjustment, likely because the number of variants with only shared or specific
effects is much smaller for single cell than bulk data. In addition, variants with shared effects
only were enriched within promoters (OR = 1.10, p = 5.34 x 107!3), while those with specific
effects were depleted (OR = 0.88, p = 8.26 x 107%). These findings are consistent with previous
observations that variants with context-specific effects are more enriched in genomic elements that
confer context specificity to gene expression, such as enhancers, while variants with shared effects
are more common within promoters |18, |44].

To understand how variants with eQTL effects mapped by the CxC approach differ func-

tionally from those identified by FastGxC, we performed another enrichment analysis for genomic
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elements using sets of variants that are only discovered by CxC or FastGxC (Figure right panel).
Compared to CxC-only variants, FastGxC-only variants are enriched (FDR< 5%) in more genomic
features (50% versus 12.5% of annotations in tissues and 87.5% versus 37.5% in PBMCs) and show
stronger enrichment in key genomic elements, such as CTCF binding sites (ORpqsiczc = 1.08 and
ORcyc = 1.04 in tissues and ORpgsigec = 1.07 and ORee = 1.03 in PBMCs). Additionally, in
tissues, FastGxC-only variants are significantly enriched in enhancers (OR = 1.05,p = 2.1 x 1073),
while CxC-only variants are not (OR = 1.02, p = 1.8 x 107!). In PBMCs, FastGxC-only variants
are depleted in enhancers but are enriched in every other genomic feature that we tested.
Chromatin is strongly context-specific [45] and therefore provides a natural framework for
validating FastGxC-mapped context-specific eQTLs and quantifying the functional differences be-
tween FastGxC and CxC-mapped eQTLs. To this end, we tested for enrichment of variants with
FastGxC or CxC single-context-specific eQTL effects in regions of open chromatin from matching
tissues and cell types. Among bulk tissues, FastGxC variants were more often enriched in open
chromatin from the corresponding tissues compared to CxC variants, with enrichment observed in
54% (29/54) versus 30% (16/54) of cases (One-sided McNemar test, p = 1.95 x 1073; Figure [5B).
Additionally, we observed widespread enrichment in open chromatin for both FastGxC and CxC
variants in tissues with broadly distributed cell types, such as whole blood [46, 47]. In PBMCs, four
out of six (66.6%) cell types with matching chromatin data demonstrated significant enrichment
in open chromatin regions from corresponding cell types versus 50% of cell types for CxC eQTLs
(One-sided McNemar test, p = 1). CD4 and CDS8 cells lacked significant enrichment (FDR< 5%)
within the broader T cell group, likely due to the aggregation of more granular subtypes, reducing
specificity (see Methods) but the enrichment trend is similar (ORcpy = 1.03 and OReps = 1.34).
Together, these results highlight the functional relevance of FastGxC context-specific eQTLs,
showing greater enrichment in functional genomic elements and improved capture of context-specific
chromatin accessibility in matched contexts compared to CxC eQTLs. Additionally, context-specific

eQTLs identified exclusively by FastGxC are more likely to reside in functional regions.

Context-specific eQTLs identify putatively causal contexts and genes of complex traits.

Mapping eQTLs is crucial for identifying the regulatory targets and context of action of disease-
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associated non-coding variation. To evaluate whether FastGxC eQTLs improve our understanding
of the context mediating complex disease risk, we analyzed trait-associated variants from 539 traits
in the NHGRI-EBI GWAS catalog [48]. Specifically, we tested for enrichment of variants with
specific and shared eQTL effects identified by FastGxC in trait-associated variant sets, comparing
them to an equal-sized set of MAF-matched non-eQTL variants (Table . Following the GTEx
consortium protocol, we used expert curation to assign the most relevant tissues for each trait (Table
[12] and assessed precision and recall rates to identify the tissue labeled as relevant for each
trait. These results were compared with those obtained from CxC eQTLs in individual contexts.
PBMC cell types were excluded from this analysis due to the uncertainty regarding the exact cell
type relevant for each trait.

At the same recall rate, FastGxC eQTLs achieved a three-fold increase in precision for identi-
fying disease-relevant tissues and a two-fold improvement in their ranking compared to CxC eQTLs
(Figure []A). While CxC eQTLs typically prioritized a median of 10 out of 49 tissues per trait,
likely due to widespread tissue-sharing (Figure ), FastGxC prioritized a median of two tissues.
This suggests that modeling the extensive sharing of eQTL effects across tissues can better localize
GWAS associations to a smaller, more relevant subset of tissues.

Overall, FastGxC enrichment patterns aligned well with known trait-tissue associations (Fig-
ure , FDR < 5%). In cancer traits, where the relevant tissue is typically well-defined, FastGxC
demonstrated superior tissue localization compared to CxC. For instance, in breast carcinoma,
FastGxC showed the strongest enrichment in breast mammary tissue (OR = 5.0, p = 3.2 x 107),
while CxC prioritized EBV-transformed lymphocytes, with breast mammary tissue ranking 25th
(OR =224, p = 7.5 x 107%). In lung adenocarcinoma, CxC identified significant associations in
22 tissues, many unrelated to lung physiology (lung OR = 2.83, ranked 18th, p = 1.6 x 1073),
whereas FastGxC found associations only in lung (OR = 5.67, p = 2.60 x 1073) and nerve tibial
(OR = 20, p = 2.1 x 107°). For traits not specific to a single tissue, such as the “any cancers” trait,
FastGxC showed the strongest enrichment for shared eQQTLs, consistent with processes common
across tissues. This improved tissue resolution was also evident in non-cancer traits. For example,
in coronary artery disease, FastGxC identified significant associations in 17 tissues, compared to 43

for CxC, with the top tissues being cardiovascular-relevant, such as coronary (OR = 13.0, ranked
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Ist) and aortic (OR = 2.96, ranked 2nd) artery, heart left ventricle (OR = 2.82, ranked 5th), and
atrial appendage (OR = 2.37, ranked 8th).

To evaluate the ability of FastGxC eQTLs to identify the regulatory targets of trait-associated
variants, we performed a colocalization analysis integrating GWAS summary statistics for 63 com-
plex traits and diseases with FastGxC shared and specific eQTLs in bulk tissues and single-cell
PBMC types (Figure @C and Table . We compared these results to colocalizations based on
CxC eQTLs mapped separately in each tissue and PBMC cell type. Across all traits and methods,
we prioritized candidate causal genes for 5,726 (47.12% of tested) GWAS loci at a colocalization
posterior probability (CLPP) threshold of 50%. The majority of the colocalizations (83.56% in
tissues and 61.75% in PBMC cell types) were identified by both methods, while 6.40% and 20.18%
were unique to FastGxC in tissues and PBMC cell types, respectively. This represents a 6.84%
and 25.28% increase in significant colocalizations for tissues and PBMCs, respectively (Figure [6C),
with the percentage increase remaining relatively consistent across CLPP thresholds for tissues and
reaching up to 50% for PBMCs (Figure [S20).

Previous studies suggest that context-specific eQTLs are more enriched for disease associations
than shared eQTLs ([12, |14]). To test this hypothesis, we compared the colocalization rates of
FastGxC shared and specific eQTLs. In tissues, most colocalizations (54.25%) involved eQTLs
with both shared and context-specific effects, while 33.80% were specific-only eQTLs. In PBMCs,
colocalizations were highest for shared-only eQTLs (40.93%), followed by those with both shared and
specific effects (32.62%, Figure Ep) However, after normalizing by the number of shared and specific
eQTLs tested for colocalization, specific eQTLs showed higher colocalization rates than shared
eQTLs in both tissues (41.52% vs. 32.19%, One-sided Binominal proportion test p = 1.25 x 10791)
and PBMCs (29.78% vs. 25.93% p = 0.108) (Figure [6IC). This represents a 1.2-fold enrichment
in the ability of specific eQTLs to identify candidate causal genes for trait-associated variants,
reinforcing their disease relevance.

Taken together, we demonstrate that FastGxC-specific eQTLs enhance the resolution of
context-trait associations, increase the number of candidate causal genes for human traits, and

are more disease relevant than shared eQTLs.


https://doi.org/10.1101/2021.06.17.448889
http://creativecommons.org/licenses/by-nc-nd/4.0/

397

398

399

400

401

402

403

404

405

406

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448889; this version posted December 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3 Discussion

We developed FastGxC, a novel statistical method for efficiently and powerfully mapping context-
specific eQTLs by leveraging the correlation structure of functional genomic studies with repeated
sampling. Through simulations, we demonstrated that FastGxC is well-calibrated for both iden-
tifying eQTLs and assessing their context specificity. Furthermore, FastGxC provides unbiased
estimates of overall eQTL effect sizes in each context, with only slight bias in cases of extensive
missing data (over 63% of data missing). FastGxC matches the power of LMM-GxC—the only other
properly calibrated method for context-specific eQTL mapping—while being orders of magnitude
faster.

We applied FastGxC to bulk multi-tissue and single-cell RNA-seq data sets and identified
17,447 tissue-specific and 2,920 cell-type-specific eGenes. The majority of context-specific effects
appeared in loci that exhibited context-shared effects, highlighting the importance of defining
context-specificity by effect size heterogeneity rather than the presence or absence of significant
eQTL effects in each context. In addition, we found that context-specific eQTLs are shared mostly
between groups of biologically related contexts and are more frequently enriched in genomic ele-
ments that confer context specificity to gene expression, e.g., enhancers and context-specific regions
of open chromatin, providing further evidence of their validity. Finally, we found that context-
specific eQTLs provide increased precision for identifying disease-relevant contexts compared to
CxC eQTLs, and FastGxC specific eQTLs provided a 1.2 fold increase over shared eQTLs to iden-
tify putative causal genes that drive human traits, confirming their utility in understanding the
regulatory mechanisms underlying complex human diseases.

Despite its advantages, FastGxC has certain limitations that warrant consideration. For single-
cell RNA-seq data, FastGxC operates on pseudo-bulked data, aggregating expression profiles across
cells within the same context. While this approach may lead to power loss in cases of substantial
cell-to-cell heterogeneity within cell types, prior studies suggest that pseudo-bulk methods perform
comparably to single-cell approaches |31} 49]. Additionally, FastGxC relies on predefined contexts,
which can be challenging in single-cell data due to the lack of a unified framework for defining

and classifying cell types [50]. Finally, while FastGxC’s marginal tests are well-calibrated, their
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utility diminishes in cases of extensive heterogeneity, where many contexts contribute to effect
size variation (Figure . In addition, the context driving heterogeneity can be one without a
detected eQTL—e.g., if all but one context have a significant eQTL, the remaining context will
exhibit the largest (absolute) context-specific effect size (Figure [S14). This highlights the nuances
of interpreting context specificity in these scenarios. Nevertheless, in real-world data, FastGxC
performs well, as evidenced by the enrichment of its context-specific eQTLs in functional genomic
annotations and disease associations.

Additional extensions of FastGxC have the potential to further improve the power and scal-
ability of the method, but we leave these directions to future work. The current implementation
models a single shared component across all contexts, which performs well in many datasets. How-
ever, this formulation does not identify which specific contexts contribute to the shared signal and
may fail to capture finer subgroup structures, such as sets of closely related tissues (e.g., brain
regions in GTEx). We have previously shown that incorporating hierarchical decompositions can
refine estimates of context-group-specific and context-specific eQTL effects [51]. Moreover, Fast-
GxC defines specificity as deviation from the average effect across contexts, but some studies, such
as time-course or environmental perturbation experiments, may require comparisons against a base-
line context. Adjusting the decomposition step to accommodate these cases is straightforward and
could expand FastGxC’s applicability. Furthermore, FastGxC assumes normally distributed ex-
pression residuals after rank-based inverse normal transformation. Extending FastGxC to handle
non-normal phenotypes using generalized linear models [31} 33, 52] is straightforward but could be
computationally costly. Similarly, FastGxC can be extended to capture non-linear genetic effects
[30] but at a considerable computational cost and likely limited yield at current single cell sample
sizes. Further improvements could come from integrating methods that model shared effect patterns
across contexts [34] and incorporating fine-mapping approaches like [53| to refine candidate causal
variants within significant loci, both of which are compatible with FastGxC.

In conclusion, we show that accounting for the intra-individual correlation and extensive
sharing of eQTLs across contexts reveals context-specific eQTLs that can aid downstream interpre-
tation of disease-associated variants. Furthermore, we highlight the importance of defining context

specificity based on effect size heterogeneity, rather than relying on heuristic definitions and miscal-
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ibrated tests. We anticipate that applying FastGxC to the growing number of multi-context bulk
and single-cell RNA-Seq studies will significantly expand our understanding of the context-specific

gene regulatory mechanisms underlying complex human diseases.
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PBMCs, are available as supplementary tables [54] - Data used to replicate GTEx and PBMC
eQTLs are available via the GTEx portal and GEO (see Online Methods).
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Figure 1. Overview of the FastGxC method and toy examples of eQTLs. A. FastGxC de-
composes gene expression for each individual into a context-shared component and context-specific
components (Step 1). It then estimates both the shared eQTL effect across contexts and the context-
specific eQTL effects within each context by regressing genotypes on these components (Step 2).
B. Toy examples of eQTLs. Y axis and color represent the context and x axis lists the eQTL
effect. The first example represents a scenario with no eQTLs in any tissue and, thus, no shared
or specific eQTLs. The second example represents a scenario with equal eQTL effects across all
tissues, corresponding to a scenario with a shared eQTL but no specific eQTLs. The third, fourth,
and fifth examples corresponds to a scenario with an eQTL in which a single context (e.g., blood)
or multiple contexts drive the effect size heterogeneity.
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Figure 2. FastGxC outperforms existing methods in simulated data. A-B. Global Type
I error rate (A) and global and marginal power (B and C) for detecting an eQTL (A and B - left
panel), testing for context-specificity of its effect (A and B - right panel), and identify which context
drives the heterogeneity (C) under the no heterogeneity (A) and single-context heterogeneity (B, C)
scenarios (Figure [IB) across different levels of intra-individual correlation (rows). For effect sizes in
each scenario, see Table[S2. For power under the two-context and extensive heterogeneity scenarios,
see Figures [S8 - [S10. For marginal Type I error rates and marginal power under the two-context
and extensive heterogeneity scenarios see Figures [S11 - [S14. Figure panels A-C show results from
simulations with 698 individuals and 49 contexts and GTEx missing data patterns (63%). For
results without or less missing data, lower sample size, and fewer contexts see Figures [S3]-[S14. D.
Run time for all methods for varying number of tests performed in a sample size of 250 individuals
(average sample size across tissues in GTEx). See Figure @ for sample size of 1,000 individuals.
Last points reflect projected run time for entire GTEx data-set - 50 contexts, 25K x 3M tests, and
250 samples per context. Analyses were run on 8 cores on a 2.70 GHz Intel Xeon Gold Processor

on the UCLA Hoffman2 Computing Cluster.
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Figure 3. Context-specific eQTL mapping in bulk tissues and single-cell PBMC cell
types. A. Percent of eGenes with shared-only (”Shared”), specific-only (”Specific”), and both
specific and shared (“Both”) eQTLs across all tissues (left) and PBMC cell types (right). B.
Number of contexts that drive the effect size heterogeneity for eGenes with context-specific eQTLs
across tissues (left) and PBMC cell types (right). C. Number of eGenes with shared and context-
specific eQTLs per context. For eGenes with context-specific eQTLs, opacity of color indicates
the number of eGenes with specific eQTLs shared with other contexts (lightest opacity) or specific
eQTLs unique to that context (darkest opacity). Tissue and cell type abbreviations are explained
in Table FSE
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Figure 4. FastGxC specific eQTLs are concordant with CxC, and have strong effect size
correlations among biologically related contexts. A. Sankey diagrams showing how eQTLs
identified by FastGxC match to eQTLs identified by CxC in both tissues (left) and PBMCs (right).
Node colors represent categories of eQTLs classified by CxC and FastGxC. FastGxC categories
include single-context-specific eQTLs (single context specific), eQTLs that are shared or specific
only (Shared, Specific), and eQTLs that are both shared and specific (Shared and specific). CxC
categories include eQTLs that are found only in a single context (single context), eQTLs found
in more than 1 context but <50% of contexts (<50% of contexts), and eQTLs found in >50% of
contexts (>50% of contexts). B. Heatmap with Pearson’s correlation of CxC eQTL effect sizes
(left) and FastGxC context-specific eQTL effect sizes (right) across tissues (top) and PBMC cell
types (bottom). Tissue and cell type abbreviations are explained in Table
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Figure 5. Context-specific eQTL variants are enriched in functional genomic features
from their respective contexts. A. Enrichment of variants with FastGxC shared or context-
specific effects only (left) and variants discovered by FastGxC or CxC only (right) across tissues
(top) and PBMCs cell types (bottom) in genomic elements with known regulatory effects. Shape
indicates different sets of variants. Color indicates different methods. Shape fill indicates significance
of enrichment at FDR < 5%. B. Enrichment of variants with FastGxC context-specific (left) or
CxC (right) eQTL effects that are unique to a single context in regions of open chromatin across
multiple tissues and cell types. Tissue and PBMC cell type open chromatin regions were obtained
from ENCODE and Calderon et al. [21], respectively. Boxes indicate manual matching between
chromatin and expression context. Color indicates strength of enrichment/depletion in logy scale.
Dot indicates significant enrichment at FDR < 5%.
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Figure 6. FastGxC identifies context-relevant mechanisms and increases colocalizations
of complex traits. A. Accuracy of FastGxC and CxC eQTLs to prioritize the most relevant
tissue(s) across 539 complex traits with a strong prior indication for the likely relevant tissue(s).
Number of enriched tissues for each method was computed only for traits that had at least one
significant enrichment in either method. B. Tissues prioritized by FastGxC and CxC eQTLs as well
as the rank of the known relevant tissues for specific complex traits. C. Colocalization of FastGxC
and CxC eQTLs with GWAS summary statistics across 63 human traits. Left: Proportion of
colocalizations found uniquely by FastGxC or CxC and by both methods. Middle: Proportion
of FastGxC identified colocalizations that are shared-eQTLs only, specific-eQTLs only, or both.
Right: Percentage of FastGxC shared and specific eQTLs that co-localized over the total number
of shared and specific eQTLs tested for colocalization for tissues and PBMCs.
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Online Methods

Overview of FastGxC method Let E;. be the observed expression of a gene for individual
i (it =1,...,1) in context ¢ (¢ = 1,...,C). FastGxC first decomposes E;. into an offset term, a

context-shared component, and a context-specific component [54], i.e.

Ei.=FE. +£Ei. —E.)+ (B — E;) (1)

where £ = (Zle chzl Eic> /(I x C) is the average expression of the gene, computed over
all I individuals and all C' contexts, and E; = <Z§:1 EZ-C> /C' is the average expression of the gene
for individual ¢, computed over all contexts. In (1), £ is a term that is constant across individuals
and contexts for each gene, E$" is the context-shared expression component for individual i and is
constant across contexts for each gene and individual, and E;” is the context-c-specific expression
component for individual 7.

Next, FastGxC estimates one shared and C' context-specific cis genetic effects by regressing
the genotypes on each component using ultra-fast implementations of fixed-effect linear regression

models [3§], i.e.,

B = o4 G+ et

7

sp sp sp sp

sp sp sp sp

where o, ai?, ... af are intercepts. G; € {0,1,2} is the genotype of individual i, coded as

number of minor alleles, and 3%, B,..., B are the genetic effects on the shared and each of

the context-specific expression components. Finally, 7,7, ... et are each normally distributed

. . . 2 2 2
residual errors with mean zero and variances 0y, 05,1, ...,05, c-
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Finally, to account for multiple testing across genes, SNPs, and contexts, FastGxC employs
the hierarchical FDR-controlling procedure implemented in [42] (Figure [S2)). We define a gene-SNP
pair as an eQTL if the SNP has a significant effect on the shared or any of the specific components of
gene expression, i.e., if the global null hypothesis Hy : 85" = ;¥ = 8F = -+« = ¥ = 0 is rejected.
If an eQTL exists, we define a shared-eQTL as a variant with a statistically significant effect on
the shared expression component, i.e. if Hy : 3" = 0 is rejected, and a context-specific eQTL as
a variant with a statistically significant genetic effect on at least one context-specific expression
components, i.e., if the global null hypothesis Hy : ;¥ = 857 = -+ = 7 = 0 is rejected (Figure
. In addition, we define a specific-e@QTL in context ¢ as a variant with a statistically significant

genetic effect on the context-c-specific expression component, i.e., if the marginal null hypothesis

Hy : 5P =0 is rejected.

Relationship between FastGxC, CxC, and LM(M)-GxC parameters. FastGxC’s eQTL
effect estimates can be viewed as a computationally efficient reparametrization of those obtained
through CxC and LMM-GxC approaches. Specifically, let . represent the eQTL effect in context c,
estimated by fitting a linear regression model for each context, i.e., E;. = a.+ 8.G; + ;.. Then, the
CxC eQTL effect in context ¢ is equal to the sum of the shared and context-c-specific eQTL effects
from FastGxC, i.e. 8. = $*" + 5. In addition, let 8; be the eQTL effect in an arbitrarily defined
reference context and o, be the interaction eQTL effects for the non-reference context ¢ from an
L(M)M model with a genotype-by-context interaction term, i.e. E;. = (u;)+a+[5; GH—ZS:Q YKo+
50, 8.Gix Kipteic. Then, By = 8485 and 6, = Bo—B1 = B+ — BN — B = BB for ¢ # 1.

Full details of the analytical derivation are provided in the Supplementary Text.

Simulation study Genotypes were simulated using a binomial distribution with a minor allele
frequency of 0.2. Gene expression data were generated under 35 scenarios, varying intra-individual
correlation from 0 (independent contexts) to 0.8 and the cis-variant effect in each context (Table
. Under the null hypothesis of no context-specific eQTLs (No heterogeneity), the eQTL effect
was either absent across all contexts (No shared eQTL) or identical across contexts (Shared eQTL),

with effect sizes explaining 5% of gene expression variability, consistent with prior estimates of
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cis-genetic contributions to gene expression heritability [55, [56].

Under the alternative hypothesis of eQTL effect size heterogeneity, we simulated three sce-
narios: (i) Single-context heterogeneity, where the eQTL explained 5% of variability in one context
and 0% in others (No shared) or 10% in one context and 5% in others (Shared); (ii) Two-context
heterogeneity, using similar effect size patterns; and (iii) Extensive heterogeneity, where effect sizes
varied across all contexts, ranging from 0% to 10%. For each scenario, we simulated 1,000 datasets.
To assess the impact of sample size, number of contexts, and missing data, we varied the number of
individuals (100 or 698), contexts (8 or 49), and the proportion of missing expression data (approx.
63% and 7% across individuals and contexts), reflecting patterns observed in the GTEx [12] and
OneK1K [15] data.

We obtained global estimates of type I error rates and power to identify an eQTL and test
whether the eQTL was context-specific as follows. For the CxC-based approach, we used the
MatrixEQTL R package [57] to fit linear regression models for the effect of the eQTL on expression
in each context ¢, i.e., F;. = a. + B.G; + €;., and obtained t-test p-values for the null hypothesis
of no eQTL effect in context ¢, Hy : 8. = 0. Following the hierarchical FDR-controlling procedure
implemented in [42], we then tested the global null hypothesis of no eQTL effect across contexts,
Hy: py = ... = B. = 0, using Simes’s method [58], as implemented in the mppa R package [59], to
combine the t-test p-values. Global Type I error rate and power to identify an eQTL were computed
as the proportion of datasets in which the eQTL Simes’ p-value was significant at the a = 5% level.
For the MetaTissue approach, we followed the procedure implemented in [43] and obtained the RE2
p-values which assume no heterogeneity under the null to test the null hypothesis of no eQTL effect.
Global Type I error rate and power to identify a single-context-specific eQTL were computed as the
proportion of datasets in which the ¢-test p-value was significant in only one context at FDR < 5%
for CxC and M-value >0.9 in exactly one context for MetaTissue.

We used a similar strategy for FastGxC. Specifically, we fitted linear regression models for the
effect of the eQTL on the shared and each of the C' specific components of expression ¢, i.e., Ef" =
@+ 3G+ e and EF = off + 8PG, + €, and obtained t-test p-values for the null hypothesis of
no shared or context-c-specific eQTL effect, i.e., Hy : 3" = 0 and Hy : 5. = 0. We then tested the

global null hypothesis of no eQTL effect across contexts, Hy : 85" = 87 = ... = 7 = 0, and the
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global null hypothesis of no context-specific eQTL effect in any context, Hy : 8" = ... = 5% =0,
using Simes’ method to combine the corresponding p-values (Figure . We computed the global
Type I error rate and power as the proportion of datasets in which the eQTL Simes’ p-value was
significant at the o = 5% level .

Finally, for the LM-GxC approach, we fitted one linear model with a genotype-by-context
interaction term E;. = a+ G, + ZCCZQ Ve Kie + chzz 0.G; X K;.+ ¢, and tested the null hypothesis
of no eQTL (Hy : f =62 = ... = d¢ = 0) as well as the null hypothesis of no context-specific eQTL
(Hp : 09 = ... = d¢ = 0) using likelihood ratio tests (LRT). For the LMM-GxC approach, we fitted
one linear random effects model with a genotype-by-context interaction term F;. = u; + o + 8G; +
chzg YKo + chzz 0.Gi X Ko + €ie, u; ~ N(0,0?) using the 1lme4 R package [60] and tested the
same null hypotheses as the LM-GxC model.

To assess the ability of FastGxC to identify the heterogeneous context(s), we also obtain
marginal estimates of type I error rate and power within each context by testing C' null hypotheses
of no context-specific eQTL in each context (HS : 57 = 0) using the t-test implemented in the
MatrixEQTL R package [38] and adjust for multiple testing across contexts using the Benjamini-
Hochberg procedure [61]. To compare FastGxC estimates with true simulated effect sizes, we report
the mean effect size across 1,000 simulated datasets for each scenario with a 95% confidence interval

computed as 5 + 7 % \/Lﬁ where Z is the z-score at a = 0.05.

GTEx data quality control. Fully processed, filtered, and normalized gene expression matrices
(in BED format) as well as meta data including genotype PCs, PEER factors, etc (see GTEx paper
[12] for more details) for each tissue across 698 individuals were downloaded through the GTEx
portal (https://www.gtexportal.org/home/datasets) on March 11, 2020. Only genes expressed
(as defined by the GTEx consortium [12]) in at least two tissues were considered for downstream
analyses. Prior to eQTL mapping, gene expression matrices were residualized for major sources of
expression variability, including PEER factors, as per the GTEx Consortium|12]).

WGS genotype VCF data were downloaded from dbGap (dbGaP Accession phs000424.v8.p2),
and only individuals with both genotype and gene expression data were retained (N=698). The VCF

files were processed using vcftools (v0.1.16) to retain only bi-allelic SNPs, with variants filtered to
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include only those with minor allele frequencies greater than 5% in the tissue of interest. Genotype
files were annotated with rs IDs using bceftools (v1.12) [62], and Plink (v1.90) [63] was used to
transpose and convert the VCF files into a sample-by-genotype matrix, which served as input for

eQTL mapping.

OneK1K Genotype QC and Imputation. Array genotype data for OneK1K was obtained
via the Gene Expression Omnibus (GSE196830) and included genotypes for 1,104 individuals and
759,993 markers on the Illumina Infinium Global Screening Array. For downstream analyses, only
individuals with gene expression data were considered (N = 981). Bcftools version 1.18 was used
to map SNPs to the GRCh37.13 build 151 of dbSNP [64] and adjust allele strand orientation for
mismatches. PLINK version 1.90 [63] was used to filter SNPs and individuals with a call rate
less than 0.95 (zero individuals and 11,317 SNPs), SNPs with a Hardy-Weinberg equilibrium test
p-value less than 107% (1,857 SNPs), minor allele frequency (MAF) below 0.01 (211,894 SNPs), and
individuals with ambiguous sex labeling (one individual).

To identify ancestry outlier samples, we performed principal component analysis (PCA) jointly
on the OneK1K and 1000 Genome Phase I samples. 1000 Genome Phase I data was downloaded
from the EMBL-EBI public endpoint (http://ftp.ebi.ac.uk/1000g/ftp/). PCA was conducted
on the merged data using PLINK version 2.0, and 3 individuals with non-European ancestry, defined
as being within three standard deviations from the European mean of genetic principal components
1 and 2, were excluded. Excess autosomal heterozygosity, defined as being within three standard
deviations from the mean, was computed with PLINK version 1.90 and 7 individuals were removed.
A genetic relationship matrix from all autosomal SNPs was generated using KING version 2.3.1
[65]. No individuals were excluded based on a 0.125 relatedness threshold (second-degree relatives).

After quality control, 499,909 autosomal SNPs from 970 individuals were retained for im-
putation. Imputation was performed using the Michigan Imputation Server [66] with the 1000G
phase III V5 reference panel [67] and was run using Minimac4 and Eagle v2.4. For subsequent
cis-eQTL analyses, 5,849,361 SNPs with imputation quality R-squared of at least 0.8 and a minor

allele frequency above 0.05 were retained.


http://ftp.ebi.ac.uk/1000g/ftp/
https://doi.org/10.1101/2021.06.17.448889
http://creativecommons.org/licenses/by-nc-nd/4.0/

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448889; this version posted December 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CLUES Genotype QC and Imputation. Genotype data for 237 individuals (188 labeled
as SLE and 49 labeled as Immvar) from CLUES was obtained from dbGap (accession number
phs002812.v1.pl). Genotypes from the SLE and Immvar CLUES cohorts were processed and im-
puted separately, as in |14], resulting in 22,159,030 variants for the SLE cohort and 9,797,072 variants
for the Immvar cohort. After imputation, variants with an imputation quality R-squared greater
than 0.8 were retained, and the datasets were merged using PLINK v2.0, producing a combined
total of 16,616,859 variants.

Based on genetically determined ancestry, individuals were then split into European (N=140)
and Asian (N=97) cohorts, following the approach described in Perez et al [14]. Within each
ancestry group, PLINK v2.0 was used to filter for variants with a minor allele frequency above 5%,
resulting in 4,995,061 variants in the Asian cohort and 5,292,554 variants in the European cohort for
further analysis. Genotype principal components were computed within each cohort using PLINK
v1.90 to identify outlier individuals, defined as those within three standard deviations of the mean
for genetic principal components 1 and 2. This filtering excluded 5 individuals from the Asian

cohort and 8 from the European cohort.

OneK1K and CLUES Gene Expression QC. Gene expression data for the CLUES cohort
was obtained from GEO (accession number GSE174188). For downstream analysis, we retained cells
from the eight cell types used for cis-eQTL analysis in [14]: B cells, conventional and plasmacytoid
dendritic cells (cDC and pDC), classical and non-classical monocytes (cMono and ncMono), NK
cells, CD4 T cells, and CD8 T cells. As with genotype data, the CLUES cohort was divided into
European and Asian ancestry groups. Only individuals with both expression and genotypes were
retained, i.e., N=140 and N=97 European and Asian ancestry individuals.

Gene expression data for the OneK1K cohort was obtained via GEO (accession number
GSE196830). From the 29 pre-defined cell type clusters, we consolidated labels for similar cell
types. Specifically, memory B cells, naive B cells, and transitional B cells were grouped as B cells;
natural killer cells and CD16-negative, CD56-bright natural killer cells were combined as NK cells;
T alpha-beta cytotoxic, CD4-positive cells, T alpha-beta, CD4-positive cells, and T regulatory cells

were grouped as CD4 T cells; and T alpha-beta, CD8-positive cells, T gamma-delta cells, and T
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mucosal invariant cells were grouped as CD8 T cells. For downstream analyses, only cells from the
eight cell types present in CLUES were retained. In addition, only individuals with both expression
and genotypes were retained, i.e., N=981 individuals.

For each individual in the CLUES European, CLUES Asian, and OneK1K cohorts, a pseudo-
bulk expression profile was generated by averaging counts across cells for each cell type and gene.
The following steps were then applied separately within each cohort and cell type. First, expression
values for each gene were adjusted for library size factors and normalized using counts per million
(CPM) and transcripts per million (TPM). Genes with normalized expression greater than zero in at
least 10% of samples were retained. Gene expression values were then transformed to approximate
normality using the RankNorm function in the RNOmni R package [68]. Within each cohort, genes
expressed in fewer than three cell types were excluded. Next, principal component analysis (PCA)
was applied to identify and remove outlier samples defined as those falling outside three standard
deviations from the mean of expression principal components 1 and 2. After quality control, 17,199,
16,225, and 14,701 genes and 132, 92, and 970 individuals in the CLUES European, CLUES Asian,
and OneK1K cohorts, respectively, were retained for downstream analyses.

To capture major sources of expression variation, the PCA implementation in the PCAForQTL
R package [69] was used with the runBE function to determine the number of principal components
that explain a significant portion of variation in each cell type. Gene expression data for each
cell type and cohort was then residualized for six genotype principal components, selected gene

expression principal components, sex, age, batch, and, in CLUES cohorts only, SLE status.

Expression principal components analysis and correlation with covariates. To evaluate
the effectiveness of FastGxC in removing gene expression background noise, we first applied PCA
separately to the original gene expression data and the decomposed shared and context-specific
expression data, using the prcomp function in the stats R package. Next, we correlated technical
and biological covariates with the first ten principal components (PCs) from each data. The corre-
lation between expression PCs and covariates was computed using the canCorPairs function from
the variancePartition R package (|70]). In short, when comparing two continuous variables (e.g.

gPC1 or weight), Pearson correlation was used. In order to accommodate the correlation between a
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continuous and a categorical variable (e.g. cohort) canonical correlation analysis (CCA) was used.

Note that CCA returns correlations values between 0 and 1.

FastGxC and CxC eQTL mapping. Residualized gene expression (see methods above) for
each was mean-centered across all individuals and contexts, then decomposed into 49 tissue-specific
components for GTEx and 8 -cell type-specific components for CLUES and OneK1K, along with one
shared expression component. Cis genetic effects were estimated on shared gene expression levels
(FastGxC), context-specific gene expression levels (FastGxC), and gene expression levels within
each context (CxC) using ultra-fast linear regression models in the MatrixEQTL R package [38],
with model=modelLINEAR and a 1 Mb window for cis-eQTL calls. The CLUES European, CLUES
Asian, and OneK1K cohorts were then meta-analyzed within each cell type using METASOFT
(v2.0) [71] random effect model (RE2) with default parameters.

Multiple testing correction was applied separately for CxC and FastGxC and for bulk and
meta-analyzed single-cell results using the hierarchical FDR procedures in the TreeQTL R package
[42] with an alpha level of 5% in each level. For the CxC approach, a three-level hierarchy with
genes, gene-SNP pairs, and gene-SNP-context triplets was used . For FastGxC, multiple testing
correction was applied separately for the shared and specific components using a two-level hierarchy
for shared eQTLs (genes and gene-SNP pairs) and a three-level hierarchy for context-specific eQTLs
(genes, gene-SNP pairs, and gene-SNP-context triplets) (Figure [S2B).

Correlations of eQTL effect sizes across context. Pearson correlations were computed across
all tissues in GTEx using effect sizes of only the significant eQTLs in each tissue for the CxC
approach or tissue-specific eQTLs for FastGxC. Missing effect size values, due to an eQTL not
being tested or not reaching significance in some tissues, were set to zero, and pairwise complete
correlations were calculated using the cor function in R. For single PBMC cell types, Pearson
correlations of eQTL effect sizes across cell types were computed using all tested, meta-analyzed

METASOFT RE2 effect sizes.

Building set of background SNP for enrichment analyses The matchit function from

the MatchIt R package was used to create a set of background SNP-gene pairs for each variant
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set of interest, matched by minor allele frequency (MAF) using the nearest neighbor matching
method with a 1:1 ratio [72]. Only variants used for eQTL mapping were included in building
these background sets. For eQTL sets containing more than 5,000 variants, the sets were randomly

split into chunks to expedite computation. This analysis was done separately in bulk-tissues and

single-cell PBMCs and for FastGxC and CxC eQTLs.

EQTL enrichment in genomic features To test for enrichment of various eQTL types within
genomic annotations, we first created variant sets specific to each type of eQTL. This analysis
was conducted separately for bulk tissues and single-cell PBMC cell types. Specific-eQTL-only
and shared-eQTL-only variant sets were derived by taking the set difference of specific-eQTL and
shared-eQTL variants. The FastGxC eQTL variant set was constructed by combining shared- and
specific-eQTL variants across contexts, and the CxC eQTL variant set was created by taking the
union of eQTL variants across contexts. We then calculated the set difference between the FastGxC
and CxC eQTL variant sets to obtain the final FastGxC-only and CxC-only eQTL variant sets.
Variants from each set were annotated using the Ensembl Variant Effect Predictor (VEP) tool,
which identifies variant effects, such as potential impacts on protein sequences or positioning within
genomic regulatory elements. Enrichment of each eQTL set within VEP-annotated categories was
tested using a one-sided Fisher’s exact test from the stats R package, followed by BH correction;

significance was defined as a BH-adjusted p-value less than 0.05.

Enrichment in regions of open chromatin For bulk tissues, all available tissue ATAC-seq
data in the 'not perturbed,” GRCh38, and bigBed narrowPeak categories were downloaded from
www.encodeproject.org in November 2020. The downloaded bigBed files were converted to
bed format using the UCSC bigbedtobed tool for downstream analysis. For single-cell PBMC
cell types, cell-type-specific ATAC-seq peaks were downloaded from https://web.stanford.edu/
group/pritchardlab/dataArchive/immune_atlas_web/index.html [21] and grouped into major
cell types (B, T, NK, Myeloid, Open), following the approach of Perez et al. [14]. Bed files were then
sorted using the command bedtools sort -k1,1 -k2,2n to enable memory-efficient processing for

subsequent intersections.


www.encodeproject.org
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Enrichment analysis of FastGxC and CxC single-context eQTL variants from both bulk tis-
sues and single-cell PBMC cell types in regions of open chromatin was performed by intersecting
each eQTL variant set of interest with each pre-sorted bed file, representing ATAC-seq peaks from
a tissue, cell type, or sample (when multiple samples were available for each context), using the
bedtools intersectBed command. A one-sided Fisher’s exact test was used to obtain the statis-
tical significance of each enrichment, followed by BH multiple testing adjustment. Significance was

called for BH-adjusted p-values less than 0.05.

Enrichment of bulk tissue eQTLs in GWAS loci Genome-wide association study (GWAS)
data (gwas_catalog_v1.0.2-associations_el100_r2020-06-17) including 1,563 unique traits was
downloaded from the NHGRI-EBI GWAS Catalog in August 2020 [48] and processed for down-
stream analysis. Matching of variants with and without eQTL effects was performed as previously
described.

Enrichment analysis of FastGxC and CxC eQTL variants was performed by intersecting each
eQTL variant set of interest with trait-associated variants from the GWAS catalog based on rs IDs.
Statistical significance was assessed using a one-sided Fisher’s exact test for each enrichment. Only
mapped traits within the GWAS catalog that contained at least 10 significant loci were included in
our downstream analysis resulting in 539 traits with complete enrichment results. Multiple testing
correction was applied using the hierarchical FDR procedures in the TreeQTL R package [42], with
tissues at level one and tissue-trait pairs at level two, maintaining an FDR of 5% at each level.

The most likely causal tissue(s) for the 539 GWAS traits were annotated manually, following
the approach used in [12]. These annotations were used to calculate precision and recall rates.
Specifically, for each trait, a contingency table was constructed to capture the frequency with which
a trait of interest is both enriched in a tissue’s eQTLs and assigned as the likely relevant tissue.
This yielded true positive, false positive, true negative, and false negative counts (TP, FP, TN, FN).
Precision was calculated as TP / (TP + FP), and recall as TP / (TP + FN).

Colocalization of eQTLs with GWAS variants We obtained complete GWAS summary

statistics for 63 unique complex traits. The list of traits analyzed, along with their references,


gwas_catalog_v1.0.2-associations_e100_r2020-06-17
https://doi.org/10.1101/2021.06.17.448889
http://creativecommons.org/licenses/by-nc-nd/4.0/

757

758

759

760

761

762

763

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448889; this version posted December 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

is available in Table Colocalization analysis of GWAS variants with eQTLs from bulk tissues
and single-cell PBMC cell types was conducted using a custom integration of FINEMAP [73] and
eCAVIAR [74] with an LD-modified colocalization posterior probability (CLPP,,.q) following the
method outlined in Gloudemans et al. [13]. Significant colocalization was defined as CLPP,,,q
above 0.5, as in [75], and impact of this threshold on results is studied in Figure @ To assess the
colocalization contribution from FastGxC specific versus shared eQTLs in PBMCs, we limited our

analysis to the 10 immune related traits out of the original 63.
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