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Abstract1

Context-specific eQTLs mediate genetic risk for complex diseases. However, limitations in cur-2

rent methods for identifying these eQTLs have hindered their comprehensive characterization and3

downstream interpretation of disease-associated variants. Here, we introduce FastGxC, a method4

to e�ciently and powerfully map context-specific eQTLs by leveraging the correlation structure5

in genomic studies with repeated sampling, e.g., single-cell RNA-seq studies. Using simulations,6

we demonstrate that FastGxC is up to nine times more powerful and 106 times faster than exist-7

ing approaches, reducing computation time from years to minutes. We applied FastGxC to bulk8

multi-tissue (N=698) and single-cell PBMC (N=1,218) RNA-seq datasets, generating comprehen-9

sive tissue- and cell-type-specific eQTL maps. These eQTLs exhibited up to four-fold enrichment10

in open chromatin regions from matched contexts and were twice as enriched as standard context-11

specific eQTLs, highlighting their biological relevance. Furthermore, we examined the relationship12

between context-specific eQTLs and complex human traits and diseases. FastGxC improved pre-13

cision in identifying relevant contexts for each trait by three-fold and expanded candidate causal14

genes by 25% in cell types and 6% in tissues compared to standard eQTLs. In summary, FastGxC15

provides a powerful framework for mapping context-specific eQTLs, advancing our understanding16

of gene regulatory mechanisms underlying complex human traits and diseases.17

1 Introduction18

Over the past 15 years, genome-wide association studies (GWAS) have identified tens of thousands19

of genetic variants linked to complex traits and diseases [1]. A majority of these variants reside in20

non-coding regions, often overlapping DNA regulatory elements [2], which suggests their functional21

e↵ects are mediated through transcriptional regulation [2–5]. This observation has driven significant22

e↵orts to identify expression quantitative trait loci (eQTLs) — genetic variants associated with23

gene expression changes — and use them to link GWAS variants to their regulatory targets [6–24

15]. Despite these e↵orts, only 21% of GWAS variants, on average per trait, overlap with known25

cis eQTLs from bulk tissues [12], underscoring a persistent gap between genetic associations and26
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regulatory function [16–18].27

A key factor for this missing regulation is the context-specific nature of many disease-relevant28

eQTLs [16, 18], which often appear only in specific tissues [12], cell types [10, 14, 15], or environ-29

mental conditions [19–23], making them di�cult to detect. In contrast, broadly shared eQTLs,30

while easier to detect, are less enriched for GWAS variants [12, 14], likely due to negative selec-31

tion [16, 18]. Another major factor is that many bulk [8, 12] and all single cell RNA-Sequencing32

(RNA-Seq) studies rely on repeated sampling, where the same donor provides samples across mul-33

tiple contexts. While this design minimizes experimental variability, it introduces intra-individual34

correlation, which, if unaccounted for, inflates type I error rate to identify an eQTL and reduces35

the power to test if the eQTL is context-specific.36

Several methods have been developed to identify context-specific eQTLs in studies with re-37

peated sampling (see Table S1). These methods fall into two broad categories. The first comprises38

approaches that jointly analyze data across contexts and test for context-specific eQTLs by incor-39

porating a genotype-by-context (GxC) interaction term. Note that, while we refer to eQTLs with40

significant GxC e↵ects as context-specific, in alignment with common genomics terminology [24,41

25], the more precise term would be context-dependent eQTLs. This includes (generalized) linear42

mixed model (LMM)-based methods [24–29], which model the GxC e↵ect linearly, and methods43

that capture non-linear GxC e↵ects [30]. To account for repeated measurements, these methods44

include a random e↵ect for the individual or cell. While powerful, their mixed model framework45

makes them computationally intensive for large eQTL studies. This challenge is particularly ex-46

acerbated when modeling all cell types jointly. Additionally, some of these methods [24, 30] infer47

latent cellular contexts, further increasing computational costs.48

The other category includes methods that follow a two-step process: first, they map eQTLs49

separately in each context (context-by-context; CxC), then they define context-specificity by post50

hoc examination of eQTL summary statistics across contexts [10, 12, 15, 31–33]. While CxC51

approaches are fast, particularly those developed for (pseudo)-bulk data [10, 12, 15, 33], they have52

major limitations. First, CxC approaches can be significantly underpowered because they do not53

fully leverage all available data. Second, many rely on ad hoc definitions of context-specificity based54

on subjective thresholds of e↵ect size di↵erences between contexts [33, 34] or the significance of an55
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eQTL in a single context [10, 12, 15]. These definitions can lead to both false-positive context-56

specificity (e.g., when e↵ects in certain contexts fail to reach significance due to chance or uneven57

power across contexts) and false-negative context-specificity (e.g., when an eQTL is shared across58

contexts but still shows GxC interaction e↵ects). Taken together, these limitations constrain the59

interpretation of disease-associated variants, as current methods fail to fully capture the complexity60

of context-specific regulatory variation.61

To address these challenges, we introduce FastGxC, a novel method that e�ciently maps62

context-specific eQTLs while accounting for repeated sampling. In brief, FastGxC decomposes63

gene expression into context-shared and context-specific components and estimates genetic e↵ects64

on these components using linear regression. We show analytically and empirically that FastGxC’s65

eQTL e↵ect estimates can be viewed as computationally e�cient reparametrizations of those ob-66

tained through CxC and LMM-GxC approaches. FastGxC has several key advantages over previous67

methods. First, it directly maps specific eQTLs without the need for post hoc analyses or arbitrary68

thresholds. Second, by accounting for intra-individual correlation, it adjusts for background noise69

and confounding factors unrelated to the context of interest, e.g., sex, age, population stratification,70

or sequencing batch [35–37], maximizing power to detect context-specific eQTLs (Figure S1). Third,71

FastGxC leverages ultra-fast implementations of linear regression models, similar to those used in72

CxC eQTL mapping approaches [38–40], which reduce computational time from years to minutes.73

FastGxC can work on any continuous molecular phenotype and its output integrates naturally with74

methods developed to improve the statistical power of eQTL mapping, such as mash [34].75

We first show in simulations that FastGxC is as powerful as the LMM-GxC approachs but76

orders of magnitude faster. Both approaches significantly outperform CxC-based methods to map77

context-specific eQTLs. We then applied FastGxC to multi-tissue bulk RNA-Seq data from the78

GTEx Consortium[12] (N=698 individuals) and single-cell peripheral blood mononuclear (PBMC)79

RNA-Seq data from the CLUES [14] (N = 237) and OneK1K[15] (N = 981) cohorts, which we80

meta-analyze, to produce comprehensive tissue- and cell type-specific eQTL maps across 49 tissues81

and 8 PBMC cell types. FastGxC context-specific eQTLs show up to four-fold enrichment in open82

chromatin regions from matched contexts and are twice as enriched as standard context-specific83

eQTLs, highlighting their biological relevance. We further examine their relationship with complex84
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traits and diseases, showing that FastGxC eQTLs improve precision in identifying relevant GWAS85

contexts by three-fold and expand candidate causal genes by 25% in cell types and 6% in tissues86

compared to standard eQTLs. In addition, FastGxC context-specific eQTLs show a 1.2-fold in-87

crease in colocalization with complex traits compared to shared eQTLs, providing evidence that88

context-specific regulation helps explain regulatory mechanisms of complex diseases that remain89

unaccounted for by shared eQTLs. In summary, FastGxC provides a powerful framework for con-90

structing context-specific eQTL maps, o↵ering key insights into the gene regulatory mechanisms91

underlying complex human diseases.92

2 Results93

FastGxC method overview. We illustrate the FastGxC method using tissues as contexts (Fig-94

ure 1A), but the method can be applied to any set of discrete contexts, for example, cell types [10,95

14, 15] or environmental stimuli, sampled across overlapping individuals. FastGxC works in three96

steps. First, for each individual i (i = 1, . . . , N) and context c (c = 1, . . . , C), FastGxC decomposes97

the expression of each gene (Eic) into two components: a shared component (Esh

i
), representing the98

average expression across contexts, and a context-specific component (Esp

ic
), representing the resid-99

ual expression in the contexts after subtracting the shared component (Figure 1A - Decomposition100

step), i.e., Eic = Esh

i
�Esp

ic
. This decomposition, analogous to repeated-measures ANOVA, removes101

shared eQTLs e↵ects and shared noise from the context-specific components, thereby increasing102

power to detect context-specific eQTLs (Figure S1) [41].103

Next, for each gene–cis-SNP pair, FastGxC estimates a shared eQTL e↵ect (�sh) and C spe-104

cific eQTL e↵ects (�sp

1 , . . . , �sp

C
) by regressing the genotype at the cis-SNP on the shared expression105

component and each of the C context-specific components (Figure 1A - eQTL mapping step). This106

step employs ultra-fast implementations of linear regression models optimized for eQTL mapping107

[38, 39], enabling computational e�ciency comparable to standard eQTL mapping methods. The108

shared and context-specific e↵ects represent a reparametrization of the eQTL e↵ects obtained from109

conventional context-by-context eQTL mapping (�1, . . . , �C)(Figure 1B and S16). Specifically, the110

shared e↵ect corresponds to the mean eQTL e↵ect size across contexts, i.e., �sh = 1
C

P
C

c=1 �c,111
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while the context-specific e↵ects capture the residual eQTL e↵ects in each context after account-112

ing for the shared e↵ect, i.e., �sp

c
= �c � �sh, 8c 2 {1, . . . , C}. This decomposition separates113

the pleiotropic (shared) e↵ect of an eQTL across all contexts from the context-specific e↵ects, en-114

abling clearer interpretation of context-specific genetic e↵ects. Because CxC itself can be viewed115

as a reparametrization of the LMM-GxC framework, FastGxC provides a computationally e�cient116

reparametrization of LMM-GxC. Full details of the analytical derivation are provided in the Online117

Methods and Supplementary Text.118

Finally, to account for multiple testing across genes, SNPs, and contexts, FastGxC employs the119

hierarchical False Discovery Rate (FDR)-controlling procedure implemented in [42] (Online Methods120

and Figure S2). FastGxC defines a gene-SNP pair as an eQTL if the SNP has a significant e↵ect on121

the shared or any of the specific components of gene expression, i.e., if the global null hypothesis122

H0 : �sh = �sp

1 = �sp

2 = · · · = �sp

C
= 0 is rejected. If an eQTL is detected, FastGxC defines a123

context-specific eQTL as a SNP with a significant e↵ect on at least one of the specific components124

of expression of the gene, i.e., if the global null hypothesisHsp

0 : �sp

1 = �sp

2 = · · · = �sp

C
= 0 is rejected.125

This global test directly identifies context-specific eQTLs, eliminating the need for post hoc analyses126

or arbitrary thresholds. Finally, if significant eQTL e↵ect size heterogeneity is detected, FastGxC127

conducts C marginal tests to determine the specific context(s) driving the observed heterogeneity,128

i.e., Hc

0 : �sp

c
= 0 8c 2 1, . . . , C. Note that these tests do not specifically flag the contexts with129

non-zero eQTL e↵ects; rather, they detect contexts whose e↵ect sizes deviate significantly from the130

shared e↵ect. To illustrate how FastGxC identifies di↵erent patterns of context-specificity, Figure131

1B shows toy examples of eQTLs with varying patterns of e↵ects across contexts.132

The first two panels (“No Heterogeneity”) depict scenarios under the null hypothesis of no133

eQTL e↵ect size heterogeneity across contexts, with either a shared eQTL e↵ect (“Shared”) or no134

shared eQTL e↵ect (“No Shared”). FastGxC does not classify either of these eQTLs as context-135

specific, as there is no significant heterogeneity of their e↵ects across contexts, but it would classify136

the second scenario as a (shared) eQTL. The remaining panels illustrate scenarios under the al-137

ternative hypothesis of eQTL e↵ect size heterogeneity. These include heterogeneity driven by a138

single context (“Single-context Heterogeneity”) or heterogeneity spanning all contexts (“Extensive139

Heterogeneity”). FastGxC identifies all these scenarios as context-specific eQTLs, irrespective of140
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the presence of a shared eQTL e↵ect. By contrast, the commonly used CxC approach defines141

context-specific eQTLs as variants with significant eQTL e↵ects in only a single context. As a re-142

sult, this approach would classify only the first alternative scenario (“Single-context Heterogeneity143

- No Shared”) as a context-specific eQTL and would overlook more complex patterns of hetero-144

geneity, such as cases where heterogeneity exists alongside a shared e↵ect or where heterogeneity is145

distributed across multiple contexts, highlighting its limitations compared to FastGxC.146

FastGxC outperforms existing methods in simulation studies. We used a series of sim-147

ulated scenarios to evaluate the performance of FastGxC to detect an eQTL and determine if the148

eQTL e↵ect is context-specific as a function of intra-individual residual correlation (see Online149

Methods and Table S2). In each scenario, we varied the number of individuals and contexts and150

the proportion of missing expression data to reflect those in GTEx [12] and the OneK1K cohort151

[15], two of the largest bulk and single cell RNA-Seq studies. The performance of FastGxC was152

systematically compared to three commonly used approaches: (1) the CxC approach, which per-153

forms context-by-context eQTL mapping and defines a context-specific eQTL as a variant with a154

significant e↵ect in a single context, (2) MetaTissue [43], a multi-tissue eQTL mapping method155

that combines mixed models and meta-analysis, and defines a context-specific eQTL as a variant156

with a posterior probability greater than 0.9 of having an e↵ect present in exactly one context, and157

(3) the linear mixed model (LMM-GxC) approach, which includes a random intercept for individ-158

uals to account for intra-individual residual correlation and defines a context-specific eQTL based159

on the significance of the genotype-by-context (GxC) interaction term (see Online Methods). To160

illustrate the impact of ignoring intra-individual correlation on the identification of context-specific161

eQTLs, we also include performance of a linear model with a GxC interaction term (LM-GxC) but162

no random intercept. Note that due to the large computational burden of MetaTissue, we did not163

obtain results for all scenarios with larger sample size (N=698).164

We first evaluated the global type I error rates of each method for detecting an eQTL (Figure165

2A and S3) and for testing whether an eQTL is context-specific (Figure 2A and S4). FastGxC166

is well-calibrated across all tested scenarios and for both tests. LMM-GxC is generally calibrated167

but becomes inflated in settings with low sample size and high missing data rates. As expected,168
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both the CxC and LM-GxC approaches, which do not account for intra-individual correlation, are169

miscalibrated (Figure S3). As intra-individual correlation increases, LM-GxC becomes increasingly170

inflated for eQTL detection and increasingly conservative for testing context-specificity. The CxC171

approach, by contrast, remains mostly calibrated when testing for the presence of an eQTL. How-172

ever, depending on sample size, missing data rate, and the presence or absence of a shared eQTL,173

CxC becomes either increasingly conservative (Figure 2A) or anti-conservative (Figure S4) when174

testing for (single-)context-specificity. Finally, MetaTissue is consistently conservative in scenarios175

with low sample size (Figure S3) when testing for the presence of an eQTL. However, when evaluat-176

ing context specificity, MetaTissue becomes anticonservative or conservative, depending on whether177

a shared eQTL e↵ect is present (Figure S4).178

Next, we evaluated the global power of each method to identify an eQTL. Among the calibrated179

methods, FastGxC and LMM-GxC exhibit complementary strengths. FastGxC is generally more180

powerful when eQTL e↵ect size heterogeneity is strong or driven by a few contexts (Figure 2B,181

S6–S8), as it leverages the Simes’ method to combine p-values. LMM-GxC is more powerful when182

heterogeneity is weak but spread across many or all contexts (Figure S9–S10), due to its reliance183

on the likelihood ratio test (LRT). The CxC and MetaTissue approaches are less powerful than184

FastGxC to identify an eQTL for all scenarios with non-zero intra-individual correlation, with the185

power advantage of FastGxC increasing as correlation rises. The LM-GxC method is miscalibrated186

for eQTL detection; therefore, we do not report or discuss its power to map an eQTL.187

For all methods, power to detect an eQTL also depends on whether variability in expression188

is explained by shared or context-specific e↵ects. When the shared eQTL e↵ect explains all (”No189

heterogeneity”, Figure S5) or most of the expression variability (”Single-context Heterogeneity -190

Shared”, Figure S6), power to identify an eQTL declines as intra-individual correlation increases,191

whereas the opposite occurs when the specific eQTL e↵ect explains all or most variability (“Single-192

context Heterogeneity - No shared”, Figure S6). In scenarios with intermediate shared and specific193

e↵ects, power to identify an eQTL follows a U-shaped relationship with intra-individual correlation194

(“Extensive heterogeneity”, Figure S9).195

We next examined power to assess eQTL context specificity. For both FastGxC and LMM-196

GxC, power increases as intra-individual correlation increases, regardless of whether a shared eQTL197
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e↵ect is present. Notably, FastGxC is more powerful than the CxC and MetaTissue approaches even198

in the single-context heterogeneity scenario without a shared e↵ect—the scenario in which these199

approach are specifically used. As expected from its performance under the null, the LM-GxC200

method loses power to test for eQTL context specificity as intra-individual correlation increases201

(Figures 2B, S6–S10).202

Then, to evaluate the ability of FastGxC to identify specific contexts driving e↵ect size hetero-203

geneity, i.e. contexts most di↵erent from the shared e↵ect, we examined the marginal type I error204

rate and power per context. Under the null hypothesis (“No heterogeneity”), FastGxC is calibrated205

for each context (FDR 5%, Figure S11). Under the alternative hypothesis, power was highest206

for contexts with e↵ect sizes farthest from the shared e↵ect and increased with intra-individual207

correlation (Figures 2C, S12–S14). For example, in single-context heterogeneity scenarios, FastGxC208

accurately identifies the context with the non-zero (“No shared” scenario) or single strongest eQTL209

e↵ect (“Shared” scenario) (Figures 2C and S12).210

In addition, we assessed FastGxC’s parameter estimation accuracy by evaluating its ability211

to estimate the shared (i.e., �sh) and specific eQTL e↵ect sizes (i.e., �sp

c
= �c � �sh) as well as the212

overall eQTL e↵ect sizes in each context (i.e., �c = �sh + �sp

c
; Figure S16- S15). FastGxC provided213

unbiased estimates for the shared, specific, and overall eQTL e↵ect sizes under conditions with no214

missing data or with missing data levels typical of single-cell RNA-Seq studies such as OneK1K215

and CLUES (approximately 5%). When the proportion of missing data was high (mean of 63%216

and up to 84% in some contexts), FastGxC estimates remained largely unbiased, with only slight217

deviations from the true e↵ect in contexts with high missing rate.218

Finally, we benchmarked the computational costs of FastGxC against other approaches. To219

obtain practical run-times, we used study parameters from GTEx, i.e., approximately 50 contexts220

and an average of 250 individuals per context, while varying the number of tests performed (Figure221

2D). When extrapolated to the entire GTEx dataset, which involves 200 million tests for 25,000222

genes and 3 million SNPs, we estimated that LMM-GxC and LM-GxC would require approximately223

30 years and 10 months, respectively, to complete. In contrast, CxC and FastGxC completed the224

same task in under one minute on average (based on 100 iterations). Even at a larger scale with 1,000225

individuals, FastGxC remained computationally e�cient, completing all tests in approximately five226

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2025. ; https://doi.org/10.1101/2021.06.17.448889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448889
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

minutes, whereas LMM-GxC was estimated to take over 500 years (Figure S17). MetaTissue was227

not included in the runtime analysis due to its substantial computational burden, which exceeds228

that of LMM-GxC.229

Context-specificity of eQTLs is widespread across tissues and PBMC cell types. To230

evaluate performance in bulk tissue, we applied FastGxC to multi-tissue RNA-Seq data from the231

GTEx consortium (N = 698 individuals, 49 tissues) [12], identifying cis-eQTLs and assessing their232

tissue specificity. To assess performance in single-cell data, we applied FastGxC to peripheral blood233

mononuclear cells (PBMCs) from the CLUES [14] and OneK1K [15] cohorts (N = 237 and N =234

981 individuals, respectively, across 8 cell types), and performed meta-analysis to map cis-eQTLs235

and evaluate their cell type specificity (Online Methods). Before quantifying cis-regulation, we236

confirmed that FastGxC reduces background noise, as the top principal components (PCs) of the237

decomposed expression data showed minimal correlation with technical and biological covariates238

compared to the original GTEx data (Figure S1).239

We then assessed the extent of cis regulation and how context-specific these e↵ects are across240

tissues and cell types (Figure 3). We identified a total of 24,196 eGenes across tissues (70.21% of241

tested genes) and 4,564 eGenes across cell types (29.05% of tested genes), defined as genes with242

at least one eQTL in any context (hierarchical FDR (hFDR)  5%, Table S5). The majority of243

FastGxC eGenes (86.5% and 82.7% across tissues and cell types) had at least one shared eQTL244

(Figure 3A), aligning with previous observations of widespread cis regulation and eQTL sharing245

[12, 34]. Despite extensive sharing, e↵ect sizes varied substantially between contexts, with 72.1% of246

tissue eGenes and 63.9% of PBMC cell-type eGenes harboring at least one context-specific eQTL247

(Figure 3A). Notably, most of these context-specific eQTLs overlapped with shared eQTL loci248

(81.3% and 73.1% across tissues and cell types), suggesting that context-specificity often arises249

from e↵ect size heterogeneity rather than the presence of an eQTL in a single context (Figure 3A).250

Representative examples illustrating shared-only and shared-plus-specific e↵ects are discussed in251

the supplement (Figure S19).252

We next aimed to determine how many and which context(s) drive the e↵ect size heterogeneity253

for eGenes with context-specific eQTLs (Figure 3B-C and S3. In both bulk and single-cell data, we254
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observed that the majority of specific eQTLs are identified in only a few contexts (Figure 3C). In255

tissues, much of the heterogeneity is driven by testis (6,124 eGenes), followed by whole blood (5,219256

eGenes), consistent with findings from studies mapping eQTLs specific to a single tissue. [12]. Testis,257

which is biologically distinct from other GTEx tissues, also contributes the largest proportion (16%)258

of single-context-specific eQTLs—i.e., eQTLs unique to a single tissue—highlighting FastGxC’s259

ability to detect biologically meaningful context-specific regulation (Figure 3D). For PBMC cell260

types, CD4 cells (1,907 eGenes) and classical monocytes (980 eGenes) account for the majority of261

the heterogeneity and also contain the highest number of eQTLs unique to a single cell type. Both262

the number of specific eGenes and single-context specific eGenes per context are strongly correlated263

to the number of samples per tissue and the number of cells per cell type (Figure S18A), indicating264

that we may not yet have reached saturation in identifying these context-specific regulatory e↵ects.265

We next compared the eGenes identified by FastGxC to those identified by the CxC ap-266

proach. Consistent with our simulation results, FastGxC identified substantially more eGenes than267

CxC, detecting an additional 2,159 eGenes in bulk tissues and 679 eGenes in PBMC cell types268

(Figure S18B). Broadly, most (96.6% in tissues and 62.8% in PBMCs) FastGxC shared eQTLs269

overlapped with eQTLs detected in multiple contexts by CxC (Figure 4A). Importantly, FastGxC270

single-context-specific eQTLs mapped almost exclusively to single-context-specific eQTLs detected271

by CxC, demonstrating strong concordance in these cases. However, a substantial fraction (48.1%272

in tissues and 43.1% in PBMC cell types) of CxC single-context-specific eQTLs corresponded to273

FastGxC shared-only eQTLs. This discrepancy reflects the false positive specific e↵ects that the274

CxC approach tends to identify — an issue we also observed in simulation results (Figure S4). More-275

over, the number of context-specific eQTLs detected by CxC showed a stronger correlation with276

sample size than FastGxC (Figure S18A), further highlighting its sensitivity to power di↵erences277

across contexts. These results underscore the limitations of CxC approaches that define context-278

specificity solely by the presence of significant eQTLs in isolated contexts, rather than accounting279

for heterogeneity in e↵ect sizes.280

Finally, we show that context-specific eQTL e↵ect sizes are correlated within groups of bi-281

ologically related tissues and cell types. For example, we see that context-specific eQTL e↵ects282

are correlated among 13 brain, two heart (left ventricular and atrial appendage), two artery (tibial283
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and aorta), two esophagus (muscularis and gastro-esophageal junction), three adipose (visceral,284

subcutaneous, and breast), and two intestine tissues (Figure 4B - right triangle). In addition,285

context-specific eQTL e↵ects are correlated most across CD4 and CD8 cells, NK cells, and B cells,286

between plasmacytoid and conventional dendritic cells, as well as between classical and non-classical287

monocytes. Furthermore, while FastGxC context-specific eQTL e↵ect sizes show little to no corre-288

lation outside groups of biologically related tissues and cell types, CxC e↵ect sizes show widespread289

correlation across all tissues and cell types regardless of biological relationships (Figure 4B - left290

triangle). This again demonstrates that FastGxC is able to disentangle tissue and cell type specific291

e↵ects from shared e↵ects.292

Context-specific eQTLs are enriched in functional genomic features from their matched293

context. To investigate functional di↵erences between shared and context-specific eQTL variants,294

we performed enrichment analysis of regulatory genomic elements, comparing variants with only295

shared or only context-specific e↵ects to MAF-matched non-eQTL variants (Figure 5A, right panel).296

In bulk tissues, variants with context-specific e↵ects were enriched within enhancers (Odds Ratio297

[OR] = 1.06, p = 1.16⇥10�5, FDR 5%), while those with shared e↵ects were depleted (OR = 0.98,298

p = 2.87 ⇥ 10�2). Both sets of variants were enriched within promoters but the enrichment was299

stronger for variants with shared e↵ects (OR = 1.14, p = 1.39 ⇥ 10�37) compared to those with300

specific e↵ects (OR = 1.04, p = 3.14⇥ 10�2) only. In single cell PBMC cell types, we see a similar301

trend for enhancers (ORshared = 0.98 and ORspecific = 1.02) but the enrichment is not significant302

after multiple testing adjustment, likely because the number of variants with only shared or specific303

e↵ects is much smaller for single cell than bulk data. In addition, variants with shared e↵ects304

only were enriched within promoters (OR = 1.10, p = 5.34 ⇥ 10�13), while those with specific305

e↵ects were depleted (OR = 0.88, p = 8.26 ⇥ 10�6). These findings are consistent with previous306

observations that variants with context-specific e↵ects are more enriched in genomic elements that307

confer context specificity to gene expression, such as enhancers, while variants with shared e↵ects308

are more common within promoters [18, 44].309

To understand how variants with eQTL e↵ects mapped by the CxC approach di↵er func-310

tionally from those identified by FastGxC, we performed another enrichment analysis for genomic311
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elements using sets of variants that are only discovered by CxC or FastGxC (Figure 5A right panel).312

Compared to CxC-only variants, FastGxC-only variants are enriched (FDR 5%) in more genomic313

features (50% versus 12.5% of annotations in tissues and 87.5% versus 37.5% in PBMCs) and show314

stronger enrichment in key genomic elements, such as CTCF binding sites (ORFastGxC = 1.08 and315

ORCxC = 1.04 in tissues and ORFastGxC = 1.07 and ORCxC = 1.03 in PBMCs). Additionally, in316

tissues, FastGxC-only variants are significantly enriched in enhancers (OR = 1.05, p = 2.1⇥ 10�3),317

while CxC-only variants are not (OR = 1.02, p = 1.8 ⇥ 10�1). In PBMCs, FastGxC-only variants318

are depleted in enhancers but are enriched in every other genomic feature that we tested.319

Chromatin is strongly context-specific [45] and therefore provides a natural framework for320

validating FastGxC-mapped context-specific eQTLs and quantifying the functional di↵erences be-321

tween FastGxC and CxC-mapped eQTLs. To this end, we tested for enrichment of variants with322

FastGxC or CxC single-context-specific eQTL e↵ects in regions of open chromatin from matching323

tissues and cell types. Among bulk tissues, FastGxC variants were more often enriched in open324

chromatin from the corresponding tissues compared to CxC variants, with enrichment observed in325

54% (29/54) versus 30% (16/54) of cases (One-sided McNemar test, p = 1.95 ⇥ 10�3; Figure 5B).326

Additionally, we observed widespread enrichment in open chromatin for both FastGxC and CxC327

variants in tissues with broadly distributed cell types, such as whole blood [46, 47]. In PBMCs, four328

out of six (66.6%) cell types with matching chromatin data demonstrated significant enrichment329

in open chromatin regions from corresponding cell types versus 50% of cell types for CxC eQTLs330

(One-sided McNemar test, p = 1). CD4 and CD8 cells lacked significant enrichment (FDR 5%)331

within the broader T cell group, likely due to the aggregation of more granular subtypes, reducing332

specificity (see Methods) but the enrichment trend is similar (ORCD4 = 1.03 and ORCD8 = 1.34).333

Together, these results highlight the functional relevance of FastGxC context-specific eQTLs,334

showing greater enrichment in functional genomic elements and improved capture of context-specific335

chromatin accessibility in matched contexts compared to CxC eQTLs. Additionally, context-specific336

eQTLs identified exclusively by FastGxC are more likely to reside in functional regions.337

Context-specific eQTLs identify putatively causal contexts and genes of complex traits.338

Mapping eQTLs is crucial for identifying the regulatory targets and context of action of disease-339
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associated non-coding variation. To evaluate whether FastGxC eQTLs improve our understanding340

of the context mediating complex disease risk, we analyzed trait-associated variants from 539 traits341

in the NHGRI-EBI GWAS catalog [48]. Specifically, we tested for enrichment of variants with342

specific and shared eQTL e↵ects identified by FastGxC in trait-associated variant sets, comparing343

them to an equal-sized set of MAF-matched non-eQTL variants (Table S5). Following the GTEx344

consortium protocol, we used expert curation to assign the most relevant tissues for each trait (Table345

S5) [12] and assessed precision and recall rates to identify the tissue labeled as relevant for each346

trait. These results were compared with those obtained from CxC eQTLs in individual contexts.347

PBMC cell types were excluded from this analysis due to the uncertainty regarding the exact cell348

type relevant for each trait.349

At the same recall rate, FastGxC eQTLs achieved a three-fold increase in precision for identi-350

fying disease-relevant tissues and a two-fold improvement in their ranking compared to CxC eQTLs351

(Figure 6A). While CxC eQTLs typically prioritized a median of 10 out of 49 tissues per trait,352

likely due to widespread tissue-sharing (Figure 4B), FastGxC prioritized a median of two tissues.353

This suggests that modeling the extensive sharing of eQTL e↵ects across tissues can better localize354

GWAS associations to a smaller, more relevant subset of tissues.355

Overall, FastGxC enrichment patterns aligned well with known trait-tissue associations (Fig-356

ure 6B, FDR  5%). In cancer traits, where the relevant tissue is typically well-defined, FastGxC357

demonstrated superior tissue localization compared to CxC. For instance, in breast carcinoma,358

FastGxC showed the strongest enrichment in breast mammary tissue (OR = 5.0, p = 3.2 ⇥ 10�4),359

while CxC prioritized EBV-transformed lymphocytes, with breast mammary tissue ranking 25th360

(OR = 2.24, p = 7.5 ⇥ 10�4). In lung adenocarcinoma, CxC identified significant associations in361

22 tissues, many unrelated to lung physiology (lung OR = 2.83, ranked 18th, p = 1.6 ⇥ 10�3),362

whereas FastGxC found associations only in lung (OR = 5.67, p = 2.60 ⇥ 10�3) and nerve tibial363

(OR = 20, p = 2.1⇥10�5). For traits not specific to a single tissue, such as the “any cancers” trait,364

FastGxC showed the strongest enrichment for shared eQTLs, consistent with processes common365

across tissues. This improved tissue resolution was also evident in non-cancer traits. For example,366

in coronary artery disease, FastGxC identified significant associations in 17 tissues, compared to 43367

for CxC, with the top tissues being cardiovascular-relevant, such as coronary (OR = 13.0, ranked368
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1st) and aortic (OR = 2.96, ranked 2nd) artery, heart left ventricle (OR = 2.82, ranked 5th), and369

atrial appendage (OR = 2.37, ranked 8th).370

To evaluate the ability of FastGxC eQTLs to identify the regulatory targets of trait-associated371

variants, we performed a colocalization analysis integrating GWAS summary statistics for 63 com-372

plex traits and diseases with FastGxC shared and specific eQTLs in bulk tissues and single-cell373

PBMC types (Figure 6C and Table S6). We compared these results to colocalizations based on374

CxC eQTLs mapped separately in each tissue and PBMC cell type. Across all traits and methods,375

we prioritized candidate causal genes for 5,726 (47.12% of tested) GWAS loci at a colocalization376

posterior probability (CLPP) threshold of 50%. The majority of the colocalizations (83.56% in377

tissues and 61.75% in PBMC cell types) were identified by both methods, while 6.40% and 20.18%378

were unique to FastGxC in tissues and PBMC cell types, respectively. This represents a 6.84%379

and 25.28% increase in significant colocalizations for tissues and PBMCs, respectively (Figure 6C),380

with the percentage increase remaining relatively consistent across CLPP thresholds for tissues and381

reaching up to 50% for PBMCs (Figure S20).382

Previous studies suggest that context-specific eQTLs are more enriched for disease associations383

than shared eQTLs ([12, 14]). To test this hypothesis, we compared the colocalization rates of384

FastGxC shared and specific eQTLs. In tissues, most colocalizations (54.25%) involved eQTLs385

with both shared and context-specific e↵ects, while 33.80% were specific-only eQTLs. In PBMCs,386

colocalizations were highest for shared-only eQTLs (40.93%), followed by those with both shared and387

specific e↵ects (32.62%, Figure 6C). However, after normalizing by the number of shared and specific388

eQTLs tested for colocalization, specific eQTLs showed higher colocalization rates than shared389

eQTLs in both tissues (41.52% vs. 32.19%, One-sided Binominal proportion test p = 1.25⇥ 10�91)390

and PBMCs (29.78% vs. 25.93% p = 0.108) (Figure 6C). This represents a 1.2-fold enrichment391

in the ability of specific eQTLs to identify candidate causal genes for trait-associated variants,392

reinforcing their disease relevance.393

Taken together, we demonstrate that FastGxC-specific eQTLs enhance the resolution of394

context-trait associations, increase the number of candidate causal genes for human traits, and395

are more disease relevant than shared eQTLs.396
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3 Discussion397

We developed FastGxC, a novel statistical method for e�ciently and powerfully mapping context-398

specific eQTLs by leveraging the correlation structure of functional genomic studies with repeated399

sampling. Through simulations, we demonstrated that FastGxC is well-calibrated for both iden-400

tifying eQTLs and assessing their context specificity. Furthermore, FastGxC provides unbiased401

estimates of overall eQTL e↵ect sizes in each context, with only slight bias in cases of extensive402

missing data (over 63% of data missing). FastGxC matches the power of LMM-GxC—the only other403

properly calibrated method for context-specific eQTL mapping—while being orders of magnitude404

faster.405

We applied FastGxC to bulk multi-tissue and single-cell RNA-seq data sets and identified406

17,447 tissue-specific and 2,920 cell-type-specific eGenes. The majority of context-specific e↵ects407

appeared in loci that exhibited context-shared e↵ects, highlighting the importance of defining408

context-specificity by e↵ect size heterogeneity rather than the presence or absence of significant409

eQTL e↵ects in each context. In addition, we found that context-specific eQTLs are shared mostly410

between groups of biologically related contexts and are more frequently enriched in genomic ele-411

ments that confer context specificity to gene expression, e.g., enhancers and context-specific regions412

of open chromatin, providing further evidence of their validity. Finally, we found that context-413

specific eQTLs provide increased precision for identifying disease-relevant contexts compared to414

CxC eQTLs, and FastGxC specific eQTLs provided a 1.2 fold increase over shared eQTLs to iden-415

tify putative causal genes that drive human traits, confirming their utility in understanding the416

regulatory mechanisms underlying complex human diseases.417

Despite its advantages, FastGxC has certain limitations that warrant consideration. For single-418

cell RNA-seq data, FastGxC operates on pseudo-bulked data, aggregating expression profiles across419

cells within the same context. While this approach may lead to power loss in cases of substantial420

cell-to-cell heterogeneity within cell types, prior studies suggest that pseudo-bulk methods perform421

comparably to single-cell approaches [31, 49]. Additionally, FastGxC relies on predefined contexts,422

which can be challenging in single-cell data due to the lack of a unified framework for defining423

and classifying cell types [50]. Finally, while FastGxC’s marginal tests are well-calibrated, their424
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utility diminishes in cases of extensive heterogeneity, where many contexts contribute to e↵ect425

size variation (Figure S14). In addition, the context driving heterogeneity can be one without a426

detected eQTL—e.g., if all but one context have a significant eQTL, the remaining context will427

exhibit the largest (absolute) context-specific e↵ect size (Figure S14). This highlights the nuances428

of interpreting context specificity in these scenarios. Nevertheless, in real-world data, FastGxC429

performs well, as evidenced by the enrichment of its context-specific eQTLs in functional genomic430

annotations and disease associations.431

Additional extensions of FastGxC have the potential to further improve the power and scal-432

ability of the method, but we leave these directions to future work. The current implementation433

models a single shared component across all contexts, which performs well in many datasets. How-434

ever, this formulation does not identify which specific contexts contribute to the shared signal and435

may fail to capture finer subgroup structures, such as sets of closely related tissues (e.g., brain436

regions in GTEx). We have previously shown that incorporating hierarchical decompositions can437

refine estimates of context-group-specific and context-specific eQTL e↵ects [51]. Moreover, Fast-438

GxC defines specificity as deviation from the average e↵ect across contexts, but some studies, such439

as time-course or environmental perturbation experiments, may require comparisons against a base-440

line context. Adjusting the decomposition step to accommodate these cases is straightforward and441

could expand FastGxC’s applicability. Furthermore, FastGxC assumes normally distributed ex-442

pression residuals after rank-based inverse normal transformation. Extending FastGxC to handle443

non-normal phenotypes using generalized linear models [31, 33, 52] is straightforward but could be444

computationally costly. Similarly, FastGxC can be extended to capture non-linear genetic e↵ects445

[30] but at a considerable computational cost and likely limited yield at current single cell sample446

sizes. Further improvements could come from integrating methods that model shared e↵ect patterns447

across contexts [34] and incorporating fine-mapping approaches like [53] to refine candidate causal448

variants within significant loci, both of which are compatible with FastGxC.449

In conclusion, we show that accounting for the intra-individual correlation and extensive450

sharing of eQTLs across contexts reveals context-specific eQTLs that can aid downstream interpre-451

tation of disease-associated variants. Furthermore, we highlight the importance of defining context452

specificity based on e↵ect size heterogeneity, rather than relying on heuristic definitions and miscal-453
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ibrated tests. We anticipate that applying FastGxC to the growing number of multi-context bulk454

and single-cell RNA-Seq studies will significantly expand our understanding of the context-specific455

gene regulatory mechanisms underlying complex human diseases.456
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B

Figure 1. Overview of the FastGxC method and toy examples of eQTLs. A. FastGxC de-
composes gene expression for each individual into a context-shared component and context-specific
components (Step 1). It then estimates both the shared eQTL e↵ect across contexts and the context-
specific eQTL e↵ects within each context by regressing genotypes on these components (Step 2).
B. Toy examples of eQTLs. Y axis and color represent the context and x axis lists the eQTL
e↵ect. The first example represents a scenario with no eQTLs in any tissue and, thus, no shared
or specific eQTLs. The second example represents a scenario with equal eQTL e↵ects across all
tissues, corresponding to a scenario with a shared eQTL but no specific eQTLs. The third, fourth,
and fifth examples corresponds to a scenario with an eQTL in which a single context (e.g., blood)
or multiple contexts drive the e↵ect size heterogeneity.
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Figure 2. FastGxC outperforms existing methods in simulated data. A-B. Global Type
I error rate (A) and global and marginal power (B and C) for detecting an eQTL (A and B - left
panel), testing for context-specificity of its e↵ect (A and B - right panel), and identify which context
drives the heterogeneity (C) under the no heterogeneity (A) and single-context heterogeneity (B, C)
scenarios (Figure 1B) across di↵erent levels of intra-individual correlation (rows). For e↵ect sizes in
each scenario, see Table S2. For power under the two-context and extensive heterogeneity scenarios,
see Figures S8 - S10. For marginal Type I error rates and marginal power under the two-context
and extensive heterogeneity scenarios see Figures S11 - S14. Figure panels A-C show results from
simulations with 698 individuals and 49 contexts and GTEx missing data patterns (63%). For
results without or less missing data, lower sample size, and fewer contexts see Figures S3 - S14. D.
Run time for all methods for varying number of tests performed in a sample size of 250 individuals
(average sample size across tissues in GTEx). See Figure S17 for sample size of 1,000 individuals.
Last points reflect projected run time for entire GTEx data-set - 50 contexts, 25K x 3M tests, and
250 samples per context. Analyses were run on 8 cores on a 2.70 GHz Intel Xeon Gold Processor
on the UCLA Ho↵man2 Computing Cluster.
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Figure 3. Context-specific eQTL mapping in bulk tissues and single-cell PBMC cell
types. A. Percent of eGenes with shared-only (”Shared”), specific-only (”Specific”), and both
specific and shared (“Both”) eQTLs across all tissues (left) and PBMC cell types (right). B.
Number of contexts that drive the e↵ect size heterogeneity for eGenes with context-specific eQTLs
across tissues (left) and PBMC cell types (right). C. Number of eGenes with shared and context-
specific eQTLs per context. For eGenes with context-specific eQTLs, opacity of color indicates
the number of eGenes with specific eQTLs shared with other contexts (lightest opacity) or specific
eQTLs unique to that context (darkest opacity). Tissue and cell type abbreviations are explained
in Table S3.
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Figure 4. FastGxC specific eQTLs are concordant with CxC, and have strong e↵ect size
correlations among biologically related contexts. A. Sankey diagrams showing how eQTLs
identified by FastGxC match to eQTLs identified by CxC in both tissues (left) and PBMCs (right).
Node colors represent categories of eQTLs classified by CxC and FastGxC. FastGxC categories
include single-context-specific eQTLs (single context specific), eQTLs that are shared or specific
only (Shared, Specific), and eQTLs that are both shared and specific (Shared and specific). CxC
categories include eQTLs that are found only in a single context (single context), eQTLs found
in more than 1 context but <50% of contexts (<50% of contexts), and eQTLs found in �50% of
contexts (�50% of contexts). B. Heatmap with Pearson’s correlation of CxC eQTL e↵ect sizes
(left) and FastGxC context-specific eQTL e↵ect sizes (right) across tissues (top) and PBMC cell
types (bottom). Tissue and cell type abbreviations are explained in Table S3.
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Figure 5. Context-specific eQTL variants are enriched in functional genomic features
from their respective contexts. A. Enrichment of variants with FastGxC shared or context-
specific e↵ects only (left) and variants discovered by FastGxC or CxC only (right) across tissues
(top) and PBMCs cell types (bottom) in genomic elements with known regulatory e↵ects. Shape
indicates di↵erent sets of variants. Color indicates di↵erent methods. Shape fill indicates significance
of enrichment at FDR  5%. B. Enrichment of variants with FastGxC context-specific (left) or
CxC (right) eQTL e↵ects that are unique to a single context in regions of open chromatin across
multiple tissues and cell types. Tissue and PBMC cell type open chromatin regions were obtained
from ENCODE and Calderon et al. [21], respectively. Boxes indicate manual matching between
chromatin and expression context. Color indicates strength of enrichment/depletion in log2 scale.
Dot indicates significant enrichment at FDR  5%.
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Figure 6. FastGxC identifies context-relevant mechanisms and increases colocalizations
of complex traits. A. Accuracy of FastGxC and CxC eQTLs to prioritize the most relevant
tissue(s) across 539 complex traits with a strong prior indication for the likely relevant tissue(s).
Number of enriched tissues for each method was computed only for traits that had at least one
significant enrichment in either method. B. Tissues prioritized by FastGxC and CxC eQTLs as well
as the rank of the known relevant tissues for specific complex traits. C. Colocalization of FastGxC
and CxC eQTLs with GWAS summary statistics across 63 human traits. Left: Proportion of
colocalizations found uniquely by FastGxC or CxC and by both methods. Middle: Proportion
of FastGxC identified colocalizations that are shared-eQTLs only, specific-eQTLs only, or both.
Right: Percentage of FastGxC shared and specific eQTLs that co-localized over the total number
of shared and specific eQTLs tested for colocalization for tissues and PBMCs.
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Online Methods487

Overview of FastGxC method Let Eic be the observed expression of a gene for individual488

i (i = 1, . . . , I) in context c (c = 1, . . . , C). FastGxC first decomposes Eic into an o↵set term, a489

context-shared component, and a context-specific component [54], i.e.490

Eic = E.. + (Ei. � E..)| {z }
Esh

i

+(Eic � Ei.)| {z }
E

sp
ic

(1)491

where E.. =
⇣P

I

i=1

P
C

c=1 Eic

⌘
/ (I ⇥ C) is the average expression of the gene, computed over492

all I individuals and all C contexts, and Ei. =
⇣P

C

c=1 Eic

⌘
/C is the average expression of the gene493

for individual i, computed over all contexts. In (1), E.. is a term that is constant across individuals494

and contexts for each gene, Esh

i
is the context-shared expression component for individual i and is495

constant across contexts for each gene and individual, and Esp

ic
is the context-c-specific expression496

component for individual i.497

Next, FastGxC estimates one shared and C context-specific cis genetic e↵ects by regressing498

the genotypes on each component using ultra-fast implementations of fixed-e↵ect linear regression499

models [38], i.e.,500

Esh

i
= ↵sh + �shGi + "sh

i
,501

Esp

i1 = ↵sp

1 + �sp

1 Gi + "sp
i1 ,502

...503

Esp

iC
= ↵sp

C
+ �sp

C
Gi + "sp

iC
,504

where ↵sh,↵sp

1 , . . . ,↵sp

C
are intercepts. Gi 2 {0, 1, 2} is the genotype of individual i, coded as505

number of minor alleles, and �sh, �sp

1 , . . . , �sp

C
are the genetic e↵ects on the shared and each of506

the context-specific expression components. Finally, "sp
i1 , "

sp

i1 , . . . , "
sp

iC
are each normally distributed507

residual errors with mean zero and variances �2
sh
, �2

sp,1, . . . , �
2
sp,C

.508
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Finally, to account for multiple testing across genes, SNPs, and contexts, FastGxC employs509

the hierarchical FDR-controlling procedure implemented in [42] (Figure S2). We define a gene-SNP510

pair as an eQTL if the SNP has a significant e↵ect on the shared or any of the specific components of511

gene expression, i.e., if the global null hypothesis H0 : �sh = �sp

1 = �sp

2 = · · · = �sp

C
= 0 is rejected.512

If an eQTL exists, we define a shared-eQTL as a variant with a statistically significant e↵ect on513

the shared expression component, i.e. if H0 : �sh = 0 is rejected, and a context-specific eQTL as514

a variant with a statistically significant genetic e↵ect on at least one context-specific expression515

components, i.e., if the global null hypothesis H0 : �sp

1 = �sp

2 = · · · = �sp

C
= 0 is rejected (Figure516

S2). In addition, we define a specific-eQTL in context c as a variant with a statistically significant517

genetic e↵ect on the context-c-specific expression component, i.e., if the marginal null hypothesis518

H0 : �sp

c
= 0 is rejected.519

Relationship between FastGxC, CxC, and LM(M)-GxC parameters. FastGxC’s eQTL520

e↵ect estimates can be viewed as a computationally e�cient reparametrization of those obtained521

through CxC and LMM-GxC approaches. Specifically, let �c represent the eQTL e↵ect in context c,522

estimated by fitting a linear regression model for each context, i.e., Eic = ↵c+�cGi+ "ic. Then, the523

CxC eQTL e↵ect in context c is equal to the sum of the shared and context-c-specific eQTL e↵ects524

from FastGxC, i.e. �c = �sh + �cs

c
. In addition, let �1 be the eQTL e↵ect in an arbitrarily defined525

reference context and �c be the interaction eQTL e↵ects for the non-reference context c from an526

L(M)M model with a genotype-by-context interaction term, i.e. Eic = (ui)+↵+�1Gi+
P

C

c=2 �cKic+527

P
C

c=2 �cGi⇥Kic+"ic. Then, �1 = �sh+�cs

1 and �c = �c��1 = �sh+�cs

c
��sh��cs

1 = �cs

c
��cs

1 for c 6= 1.528

Full details of the analytical derivation are provided in the Supplementary Text.529

Simulation study Genotypes were simulated using a binomial distribution with a minor allele530

frequency of 0.2. Gene expression data were generated under 35 scenarios, varying intra-individual531

correlation from 0 (independent contexts) to 0.8 and the cis-variant e↵ect in each context (Table532

S2). Under the null hypothesis of no context-specific eQTLs (No heterogeneity), the eQTL e↵ect533

was either absent across all contexts (No shared eQTL) or identical across contexts (Shared eQTL),534

with e↵ect sizes explaining 5% of gene expression variability, consistent with prior estimates of535
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cis-genetic contributions to gene expression heritability [55, 56].536

Under the alternative hypothesis of eQTL e↵ect size heterogeneity, we simulated three sce-537

narios: (i) Single-context heterogeneity, where the eQTL explained 5% of variability in one context538

and 0% in others (No shared) or 10% in one context and 5% in others (Shared); (ii) Two-context539

heterogeneity, using similar e↵ect size patterns; and (iii) Extensive heterogeneity, where e↵ect sizes540

varied across all contexts, ranging from 0% to 10%. For each scenario, we simulated 1,000 datasets.541

To assess the impact of sample size, number of contexts, and missing data, we varied the number of542

individuals (100 or 698), contexts (8 or 49), and the proportion of missing expression data (approx.543

63% and 7% across individuals and contexts), reflecting patterns observed in the GTEx [12] and544

OneK1K [15] data.545

We obtained global estimates of type I error rates and power to identify an eQTL and test546

whether the eQTL was context-specific as follows. For the CxC-based approach, we used the547

MatrixEQTL R package [57] to fit linear regression models for the e↵ect of the eQTL on expression548

in each context c, i.e., Eic = ↵c + �cGi + "ic, and obtained t-test p-values for the null hypothesis549

of no eQTL e↵ect in context c, H0 : �c = 0. Following the hierarchical FDR-controlling procedure550

implemented in [42], we then tested the global null hypothesis of no eQTL e↵ect across contexts,551

H0 : �1 = ... = �c = 0, using Simes’s method [58], as implemented in the mppa R package [59], to552

combine the t-test p-values. Global Type I error rate and power to identify an eQTL were computed553

as the proportion of datasets in which the eQTL Simes’ p-value was significant at the ↵ = 5% level.554

For the MetaTissue approach, we followed the procedure implemented in [43] and obtained the RE2555

p-values which assume no heterogeneity under the null to test the null hypothesis of no eQTL e↵ect.556

Global Type I error rate and power to identify a single-context-specific eQTL were computed as the557

proportion of datasets in which the t-test p-value was significant in only one context at FDR < 5%558

for CxC and M-value >0.9 in exactly one context for MetaTissue.559

We used a similar strategy for FastGxC. Specifically, we fitted linear regression models for the560

e↵ect of the eQTL on the shared and each of the C specific components of expression c, i.e., Esh

i
=561

↵sh+�shGi+"sh
i

and Esp

ic
= ↵sp

c
+�sp

c
Gi+"sp

ic
, and obtained t-test p-values for the null hypothesis of562

no shared or context-c-specific eQTL e↵ect, i.e., H0 : �sh = 0 and H0 : �c = 0. We then tested the563

global null hypothesis of no eQTL e↵ect across contexts, H0 : �sh = �sp

1 = . . . = �sp

C
= 0, and the564
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global null hypothesis of no context-specific eQTL e↵ect in any context, H0 : �
sp

1 = . . . = �sp

C
= 0,565

using Simes’ method to combine the corresponding p-values (Figure S2). We computed the global566

Type I error rate and power as the proportion of datasets in which the eQTL Simes’ p-value was567

significant at the ↵ = 5% level .568

Finally, for the LM-GxC approach, we fitted one linear model with a genotype-by-context569

interaction term Eic = ↵+�Gi+
P

C

c=2 �cKic+
P

C

c=2 �cGi⇥Kic+ "ic and tested the null hypothesis570

of no eQTL (H0 : � = �2 = ... = �C = 0) as well as the null hypothesis of no context-specific eQTL571

(H0 : �2 = . . . = �C = 0) using likelihood ratio tests (LRT). For the LMM-GxC approach, we fitted572

one linear random e↵ects model with a genotype-by-context interaction term Eic = ui + ↵+ �Gi +573

P
C

c=2 �cKic +
P

C

c=2 �cGi ⇥Kic + "ic, ui ⇠ N(0, �2
i
) using the lme4 R package [60] and tested the574

same null hypotheses as the LM-GxC model.575

To assess the ability of FastGxC to identify the heterogeneous context(s), we also obtain576

marginal estimates of type I error rate and power within each context by testing C null hypotheses577

of no context-specific eQTL in each context (Hc

0 : �sp

c
= 0) using the t-test implemented in the578

MatrixEQTL R package [38] and adjust for multiple testing across contexts using the Benjamini-579

Hochberg procedure [61]. To compare FastGxC estimates with true simulated e↵ect sizes, we report580

the mean e↵ect size across 1,000 simulated datasets for each scenario with a 95% confidence interval581

computed as ¯̂� ± Z ⇤ �p
n
where Z is the z-score at ↵ = 0.05.582

GTEx data quality control. Fully processed, filtered, and normalized gene expression matrices583

(in BED format) as well as meta data including genotype PCs, PEER factors, etc (see GTEx paper584

[12] for more details) for each tissue across 698 individuals were downloaded through the GTEx585

portal (https://www.gtexportal.org/home/datasets) on March 11, 2020. Only genes expressed586

(as defined by the GTEx consortium [12]) in at least two tissues were considered for downstream587

analyses. Prior to eQTL mapping, gene expression matrices were residualized for major sources of588

expression variability, including PEER factors, as per the GTEx Consortium[12]).589

WGS genotype VCF data were downloaded from dbGap (dbGaP Accession phs000424.v8.p2),590

and only individuals with both genotype and gene expression data were retained (N=698). The VCF591

files were processed using vcftools (v0.1.16) to retain only bi-allelic SNPs, with variants filtered to592
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include only those with minor allele frequencies greater than 5% in the tissue of interest. Genotype593

files were annotated with rs IDs using bcftools (v1.12) [62], and Plink (v1.90) [63] was used to594

transpose and convert the VCF files into a sample-by-genotype matrix, which served as input for595

eQTL mapping.596

OneK1K Genotype QC and Imputation. Array genotype data for OneK1K was obtained597

via the Gene Expression Omnibus (GSE196830) and included genotypes for 1,104 individuals and598

759,993 markers on the Illumina Infinium Global Screening Array. For downstream analyses, only599

individuals with gene expression data were considered (N = 981). Bcftools version 1.18 was used600

to map SNPs to the GRCh37.13 build 151 of dbSNP [64] and adjust allele strand orientation for601

mismatches. PLINK version 1.90 [63] was used to filter SNPs and individuals with a call rate602

less than 0.95 (zero individuals and 11,317 SNPs), SNPs with a Hardy-Weinberg equilibrium test603

p-value less than 10�6 (1,857 SNPs), minor allele frequency (MAF) below 0.01 (211,894 SNPs), and604

individuals with ambiguous sex labeling (one individual).605

To identify ancestry outlier samples, we performed principal component analysis (PCA) jointly606

on the OneK1K and 1000 Genome Phase I samples. 1000 Genome Phase I data was downloaded607

from the EMBL-EBI public endpoint (http://ftp.ebi.ac.uk/1000g/ftp/). PCA was conducted608

on the merged data using PLINK version 2.0, and 3 individuals with non-European ancestry, defined609

as being within three standard deviations from the European mean of genetic principal components610

1 and 2, were excluded. Excess autosomal heterozygosity, defined as being within three standard611

deviations from the mean, was computed with PLINK version 1.90 and 7 individuals were removed.612

A genetic relationship matrix from all autosomal SNPs was generated using KING version 2.3.1613

[65]. No individuals were excluded based on a 0.125 relatedness threshold (second-degree relatives).614

After quality control, 499,909 autosomal SNPs from 970 individuals were retained for im-615

putation. Imputation was performed using the Michigan Imputation Server [66] with the 1000G616

phase III V5 reference panel [67] and was run using Minimac4 and Eagle v2.4. For subsequent617

cis-eQTL analyses, 5,849,361 SNPs with imputation quality R-squared of at least 0.8 and a minor618

allele frequency above 0.05 were retained.619
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CLUES Genotype QC and Imputation. Genotype data for 237 individuals (188 labeled620

as SLE and 49 labeled as Immvar) from CLUES was obtained from dbGap (accession number621

phs002812.v1.p1). Genotypes from the SLE and Immvar CLUES cohorts were processed and im-622

puted separately, as in [14], resulting in 22,159,030 variants for the SLE cohort and 9,797,072 variants623

for the Immvar cohort. After imputation, variants with an imputation quality R-squared greater624

than 0.8 were retained, and the datasets were merged using PLINK v2.0, producing a combined625

total of 16,616,859 variants.626

Based on genetically determined ancestry, individuals were then split into European (N=140)627

and Asian (N=97) cohorts, following the approach described in Perez et al [14]. Within each628

ancestry group, PLINK v2.0 was used to filter for variants with a minor allele frequency above 5%,629

resulting in 4,995,061 variants in the Asian cohort and 5,292,554 variants in the European cohort for630

further analysis. Genotype principal components were computed within each cohort using PLINK631

v1.90 to identify outlier individuals, defined as those within three standard deviations of the mean632

for genetic principal components 1 and 2. This filtering excluded 5 individuals from the Asian633

cohort and 8 from the European cohort.634

OneK1K and CLUES Gene Expression QC. Gene expression data for the CLUES cohort635

was obtained from GEO (accession number GSE174188). For downstream analysis, we retained cells636

from the eight cell types used for cis-eQTL analysis in [14]: B cells, conventional and plasmacytoid637

dendritic cells (cDC and pDC), classical and non-classical monocytes (cMono and ncMono), NK638

cells, CD4 T cells, and CD8 T cells. As with genotype data, the CLUES cohort was divided into639

European and Asian ancestry groups. Only individuals with both expression and genotypes were640

retained, i.e., N=140 and N=97 European and Asian ancestry individuals.641

Gene expression data for the OneK1K cohort was obtained via GEO (accession number642

GSE196830). From the 29 pre-defined cell type clusters, we consolidated labels for similar cell643

types. Specifically, memory B cells, naive B cells, and transitional B cells were grouped as B cells;644

natural killer cells and CD16-negative, CD56-bright natural killer cells were combined as NK cells;645

T alpha-beta cytotoxic, CD4-positive cells, T alpha-beta, CD4-positive cells, and T regulatory cells646

were grouped as CD4 T cells; and T alpha-beta, CD8-positive cells, T gamma-delta cells, and T647
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mucosal invariant cells were grouped as CD8 T cells. For downstream analyses, only cells from the648

eight cell types present in CLUES were retained. In addition, only individuals with both expression649

and genotypes were retained, i.e., N=981 individuals.650

For each individual in the CLUES European, CLUES Asian, and OneK1K cohorts, a pseudo-651

bulk expression profile was generated by averaging counts across cells for each cell type and gene.652

The following steps were then applied separately within each cohort and cell type. First, expression653

values for each gene were adjusted for library size factors and normalized using counts per million654

(CPM) and transcripts per million (TPM). Genes with normalized expression greater than zero in at655

least 10% of samples were retained. Gene expression values were then transformed to approximate656

normality using the RankNorm function in the RNOmni R package [68]. Within each cohort, genes657

expressed in fewer than three cell types were excluded. Next, principal component analysis (PCA)658

was applied to identify and remove outlier samples defined as those falling outside three standard659

deviations from the mean of expression principal components 1 and 2. After quality control, 17,199,660

16,225, and 14,701 genes and 132, 92, and 970 individuals in the CLUES European, CLUES Asian,661

and OneK1K cohorts, respectively, were retained for downstream analyses.662

To capture major sources of expression variation, the PCA implementation in the PCAForQTL663

R package [69] was used with the runBE function to determine the number of principal components664

that explain a significant portion of variation in each cell type. Gene expression data for each665

cell type and cohort was then residualized for six genotype principal components, selected gene666

expression principal components, sex, age, batch, and, in CLUES cohorts only, SLE status.667

Expression principal components analysis and correlation with covariates. To evaluate668

the e↵ectiveness of FastGxC in removing gene expression background noise, we first applied PCA669

separately to the original gene expression data and the decomposed shared and context-specific670

expression data, using the prcomp function in the stats R package. Next, we correlated technical671

and biological covariates with the first ten principal components (PCs) from each data. The corre-672

lation between expression PCs and covariates was computed using the canCorPairs function from673

the variancePartition R package ([70]). In short, when comparing two continuous variables (e.g.674

gPC1 or weight), Pearson correlation was used. In order to accommodate the correlation between a675
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continuous and a categorical variable (e.g. cohort) canonical correlation analysis (CCA) was used.676

Note that CCA returns correlations values between 0 and 1.677

FastGxC and CxC eQTL mapping. Residualized gene expression (see methods above) for678

each was mean-centered across all individuals and contexts, then decomposed into 49 tissue-specific679

components for GTEx and 8 -cell type-specific components for CLUES and OneK1K, along with one680

shared expression component. Cis genetic e↵ects were estimated on shared gene expression levels681

(FastGxC), context-specific gene expression levels (FastGxC), and gene expression levels within682

each context (CxC) using ultra-fast linear regression models in the MatrixEQTL R package [38],683

with model=modelLINEAR and a 1 Mb window for cis-eQTL calls. The CLUES European, CLUES684

Asian, and OneK1K cohorts were then meta-analyzed within each cell type using METASOFT685

(v2.0) [71] random e↵ect model (RE2) with default parameters.686

Multiple testing correction was applied separately for CxC and FastGxC and for bulk and687

meta-analyzed single-cell results using the hierarchical FDR procedures in the TreeQTL R package688

[42] with an alpha level of 5% in each level. For the CxC approach, a three-level hierarchy with689

genes, gene-SNP pairs, and gene-SNP-context triplets was used . For FastGxC, multiple testing690

correction was applied separately for the shared and specific components using a two-level hierarchy691

for shared eQTLs (genes and gene-SNP pairs) and a three-level hierarchy for context-specific eQTLs692

(genes, gene-SNP pairs, and gene-SNP-context triplets) (Figure S2B).693

Correlations of eQTL e↵ect sizes across context. Pearson correlations were computed across694

all tissues in GTEx using e↵ect sizes of only the significant eQTLs in each tissue for the CxC695

approach or tissue-specific eQTLs for FastGxC. Missing e↵ect size values, due to an eQTL not696

being tested or not reaching significance in some tissues, were set to zero, and pairwise complete697

correlations were calculated using the cor function in R. For single PBMC cell types, Pearson698

correlations of eQTL e↵ect sizes across cell types were computed using all tested, meta-analyzed699

METASOFT RE2 e↵ect sizes.700

Building set of background SNP for enrichment analyses The matchit function from701

the MatchIt R package was used to create a set of background SNP-gene pairs for each variant702
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set of interest, matched by minor allele frequency (MAF) using the nearest neighbor matching703

method with a 1:1 ratio [72]. Only variants used for eQTL mapping were included in building704

these background sets. For eQTL sets containing more than 5,000 variants, the sets were randomly705

split into chunks to expedite computation. This analysis was done separately in bulk-tissues and706

single-cell PBMCs and for FastGxC and CxC eQTLs.707

EQTL enrichment in genomic features To test for enrichment of various eQTL types within708

genomic annotations, we first created variant sets specific to each type of eQTL. This analysis709

was conducted separately for bulk tissues and single-cell PBMC cell types. Specific-eQTL-only710

and shared-eQTL-only variant sets were derived by taking the set di↵erence of specific-eQTL and711

shared-eQTL variants. The FastGxC eQTL variant set was constructed by combining shared- and712

specific-eQTL variants across contexts, and the CxC eQTL variant set was created by taking the713

union of eQTL variants across contexts. We then calculated the set di↵erence between the FastGxC714

and CxC eQTL variant sets to obtain the final FastGxC-only and CxC-only eQTL variant sets.715

Variants from each set were annotated using the Ensembl Variant E↵ect Predictor (VEP) tool,716

which identifies variant e↵ects, such as potential impacts on protein sequences or positioning within717

genomic regulatory elements. Enrichment of each eQTL set within VEP-annotated categories was718

tested using a one-sided Fisher’s exact test from the stats R package, followed by BH correction;719

significance was defined as a BH-adjusted p-value less than 0.05.720

Enrichment in regions of open chromatin For bulk tissues, all available tissue ATAC-seq721

data in the ’not perturbed,’ GRCh38, and bigBed narrowPeak categories were downloaded from722

www.encodeproject.org in November 2020. The downloaded bigBed files were converted to723

bed format using the UCSC bigbedtobed tool for downstream analysis. For single-cell PBMC724

cell types, cell-type-specific ATAC-seq peaks were downloaded from https://web.stanford.edu/725

group/pritchardlab/dataArchive/immune_atlas_web/index.html [21] and grouped into major726

cell types (B, T, NK, Myeloid, Open), following the approach of Perez et al. [14]. Bed files were then727

sorted using the command bedtools sort -k1,1 -k2,2n to enable memory-e�cient processing for728

subsequent intersections.729
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Enrichment analysis of FastGxC and CxC single-context eQTL variants from both bulk tis-730

sues and single-cell PBMC cell types in regions of open chromatin was performed by intersecting731

each eQTL variant set of interest with each pre-sorted bed file, representing ATAC-seq peaks from732

a tissue, cell type, or sample (when multiple samples were available for each context), using the733

bedtools intersectBed command. A one-sided Fisher’s exact test was used to obtain the statis-734

tical significance of each enrichment, followed by BH multiple testing adjustment. Significance was735

called for BH-adjusted p-values less than 0.05.736

Enrichment of bulk tissue eQTLs in GWAS loci Genome-wide association study (GWAS)737

data (gwas_catalog_v1.0.2-associations_e100_r2020-06-17) including 1,563 unique traits was738

downloaded from the NHGRI-EBI GWAS Catalog in August 2020 [48] and processed for down-739

stream analysis. Matching of variants with and without eQTL e↵ects was performed as previously740

described.741

Enrichment analysis of FastGxC and CxC eQTL variants was performed by intersecting each742

eQTL variant set of interest with trait-associated variants from the GWAS catalog based on rs IDs.743

Statistical significance was assessed using a one-sided Fisher’s exact test for each enrichment. Only744

mapped traits within the GWAS catalog that contained at least 10 significant loci were included in745

our downstream analysis resulting in 539 traits with complete enrichment results. Multiple testing746

correction was applied using the hierarchical FDR procedures in the TreeQTL R package [42], with747

tissues at level one and tissue-trait pairs at level two, maintaining an FDR of 5% at each level.748

The most likely causal tissue(s) for the 539 GWAS traits were annotated manually, following749

the approach used in [12]. These annotations were used to calculate precision and recall rates.750

Specifically, for each trait, a contingency table was constructed to capture the frequency with which751

a trait of interest is both enriched in a tissue’s eQTLs and assigned as the likely relevant tissue.752

This yielded true positive, false positive, true negative, and false negative counts (TP, FP, TN, FN).753

Precision was calculated as TP / (TP + FP), and recall as TP / (TP + FN).754

Colocalization of eQTLs with GWAS variants We obtained complete GWAS summary755

statistics for 63 unique complex traits. The list of traits analyzed, along with their references,756
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is available in Table S5. Colocalization analysis of GWAS variants with eQTLs from bulk tissues757

and single-cell PBMC cell types was conducted using a custom integration of FINEMAP [73] and758

eCAVIAR [74] with an LD-modified colocalization posterior probability (CLPPmod) following the759

method outlined in Gloudemans et al. [13]. Significant colocalization was defined as CLPPmod760

above 0.5, as in [75], and impact of this threshold on results is studied in Figure S20. To assess the761

colocalization contribution from FastGxC specific versus shared eQTLs in PBMCs, we limited our762

analysis to the 10 immune related traits out of the original 63.763
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