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Abstract

Cytokines orchestrate immune responses, yet we still lack a comprehensive

understanding of their specific effects across human immune cells due to their

pleiotropy, context dependence and extensive functional redundancy. Here, we

present a Human Cytokine Dictionary, created from high-resolution single-cell

transcriptomes of 9,697,974 human peripheral blood mononuclear cells (PBMC)

from 12 donors stimulated in vitro with 90 different cytokines. We describe

donor-specific response variation and uncover robust consensus cytokine signatures

across individuals. We then delineate similarities between cytokine response

profiles, and derive cytokine-induced immune programs that organize responsive

genes into data-driven, biologically interpretable functional modules. By integrating

cell type-specific responses with expression of cytokines, we infer higher-order

cell-to-cell and cytokine-to-cytokine communication networks exemplified by an

IL-32-β-initiated signaling cascade, which rewires myeloid programs by inducing

neutrophil-recruiting factors while suppressing Th1-responses and promoting

IL-10-family cytokines. Finally, we show how the Human Cytokine Dictionary enables

the interpretation of cytokine-driven immune responses in other studies and disease

contexts, including systemic lupus erythematosus, multiple sclerosis, and non-small

cell lung carcinoma. Together, the Human Cytokine Dictionary constitutes the first

comprehensive cell type-resolved transcriptional screen of human cytokine

responses and provides an essential open-access, easy-to-use community resource

with accompanying software package to advance our understanding of cytokine

biology in human disease and guide therapeutic discovery.
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Main

Cytokines are small signaling proteins that regulate immune cell differentiation and

activity, coordinating systemic responses from inflammation to tissue homeostasis1.

Clinically, cytokine activity is modulated using blocking antibodies, small molecule

inhibitors, engineered cytokines, or cytokine-based immunotherapies to suppress or

enhance immune responses in inflammatory disorders and cancer2–4. As central

players in immune biology, cytokines and their interactions with diverse cell types

have been studied for decades. However, substantial gaps remain in our

understanding of these interactions for many cell type-cytokine pairs. Moreover, the

heterogeneity of experimental systems as well as batch effects make it difficult to

directly compare cytokine effects across studies and thus reliably decipher a

universal cytokine code5. With single-cell technologies, it is now possible to record

detailed responses to many perturbations at once, enabling direct comparison

across many cytokine-cell type pairs6–8. Building on these developments, we here

use a combinatorial barcoding single-cell RNA sequencing approach9 (Parse

Biosciences) to generate a dataset encompassing millions of cells and hundreds of

cell type-cytokine interactions, thereby taking a step towards a systematic catalog of

human cytokine responses.

Creating the Human Cytokine Dictionary

To construct the Human Cytokine Dictionary, we obtained PBMCs from 12 healthy

donors (6 males, 6 females, ages ranging from 34 to 75, Supplementary Table 1)

from Seattle Bloodworks and treated them in vitro with 90 individual cytokines or

PBS for 24h, then sequenced using split-pool barcoding (Parse Biosciences

GigaLab)9 (Fig. 1a). We selected cytokines representing the biologically and

clinically most relevant signaling pathways and major cytokine families, including

IL-1, common γ chain, IL-4/IL-13, common β chain, IL-6, IL-12, IL-10, IL-17,

interferon (IFN), tumor necrosis factor (TNF), complement, growth factors,

transforming growth factor (TGF)-β, and others8, with concentrations chosen towards

the upper range typically used in in vitro studies (Supplementary Table 2). We

retained 9,697,974 cells after applying QC thresholds and annotated clusters based

on expression of marker genes10,11 (Methods, Fig. S1, Fig. S2). This resulted in 16

distinct major cell types, namely B cells (naive + intermediate), CD4 T cells (naive +
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memory), CD8 T cells (naive + memory), regulatory T cells (Treg),

mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, CD56high

natural killer (NK) cells (NK CD56hi), CD56low NK cells (NK CD56low), conventional

dendritic cells (cDC), CD14 monocytes (CD14 Mono), CD16 monocytes (CD16

Mono), hematopoietic stem and progenitor cells (HSPC), plasmacytoid dendritic cells

(pDC), innate lymphoid cells (ILC), granulocytes, and plasmablasts (Fig. 1b). The

last four (pDC, ILC, granulocytes, plasmablasts) were discarded from downstream

gene expression analysis due to a low median abundance of <10 cells per condition

and donor (Fig. S3a-b).

Few perturbations result in major shifts in cell type abundance or composition: In

differential abundance tests (per donor Wilcoxon signed rank), the most abundant

cell types exhibit no statistically significant (adjusted p-value (padj)<0.05) fold

changes (|log2FC|>0.5) (Fig. S3c). We do observe significant changes in less

abundant cell types such as a >2-fold decrease in NKT cells upon interferon

perturbation or a >2-fold decrease in CD16 Mono upon IL-4 stimulation.

Compositional modeling (scCODA)12, using CD4 T cells as reference, similarly

identifies no large compositional changes among major cell types and largely

recapitulates the perturbation-specific changes in rarer subsets (Fig. S3d).
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Fig. 1. The human cytokine dictionary. a, Overview of the experimental procedure

for generating the dictionary. b, UMAP of cell type populations across all conditions.

The legend indicates total cell counts for each population. c, Overview of the

response to different cytokines. The box size is proportional fraction of DEGs relative

to the maximum number of DEGs for that cell type (cf. bar plot on top). The color

saturation denotes the transcriptomic response magnitude as defined in the main

text. The first bar plot on the right shows the tissue specificity index (TSI) of the

response magnitude, a measure of whether a cytokine response is highly specific to

a single cell type (TSI=1) or has the same strength across tissues (TSI=0). Gray

crosses indicate that no TSI was calculated due to an absence of a strong response

in any cell type. The second bar plot shows the count of cell types per cytokine in
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which the response magnitude is larger than a threshold value (“strong impact”). d,

Normalized receptor expression (top) and response magnitudes (bottom) for a

subset of cytokines. e, Fold changes for individual cytokines, cell types, and genes.

Genes are grouped by function.

We aggregated expression profiles by donor, cell type, and cytokine perturbation to

robustly13 identify donor-consensus differentially expressed genes (DEGs) and

log2FCs (cytokine treated vs PBS) (Fig. 1c, Fig. S4, methods)14. Subpopulations of

B cells, CD4 T cells, and CD8 T cells were merged for downstream analysis due to a

high similarity in their log2FCs (Fig. S5). The number of DEGs (padj<0.05,

|log2FC|>0.25) varied strongly by cytokine and cell type (Fig. 1c, Fig. S6a-c). IL-1,

common γ chain interleukins, IL-4, IL-10, interferons, and IL-32-β have the largest

number of DEGs across cell types. Most other cytokines elicit fewer DEGs and

responses that are limited to a single or few cell types (Fig. 1c).

To quantify the global transcriptional response to a cytokine by a more continuous

measure independent of specific adjusted p-value and log2FC thresholds, we

defined a response magnitude based on Euclidean distance of log2 expression

vectors between each perturbation and the PBS controls and log2FCs weighted by

p-values (Methods, Fig. S6d, color saturation in Fig. 1c, Supplementary Table 3).

Response magnitude variation across cell types is captured by a tissue specificity

index (TSI)15, which is highest for TPO (0.93, only affects HSPCs) and lowest for

IL-15 (0.07, affects all cell types) (bar plot in Fig. 1c, Fig. S6e). We further define a

per cell type threshold value for the response magnitude that classifies whether a

cytokine has a strong impact on a particular cell type (bar plot in Fig. 1c, Fig. S6f,
Fig. S7, Supplementary Table 4). For example, IL-4 has a strong impact on all cell

types while CD40L has a strong impact only on B cells and cDCs.

Cytokine-induced responses include expected marker genes and match
receptor expression

We compared the cell type-specific expression of cytokine receptors in the baseline

(PBS) state to the response magnitude of their associated cytokine responses (Fig.
1d, Fig. S8a, Supplementary Table 5). As expected, receptor expression and

responses for IL-4, IL-7, and IL-12 are distributed widely across cell types, albeit with

a much stronger response in NK CD56hi for the latter. In contrast, receptor
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expression and responses for CD40L, TPO, and GM-CSF are mostly constrained to

B cells, HSPCs, and monocytes, respectively (Fig. 1d)16–23. Target gene expression

downstream of cytokine signals also matches responses expected from the literature

(Fig. 1e): In B cells, CD40L induces NF-κB signaling22 while IL-4 upregulates IGHE

(isotype switch)20, its own receptor (IL4R), and IL4I1. IL-7 upregulates survival genes

in CD4 T cells and NK CD56hi21, while IL-12 upregulates the production of

inflammatory cytokines and cytotoxicity genes also in NK CD56hi23.

Across all cytokines and cell types, receptor expression and response magnitude are

correlated (r≈0.4) and responses generally require a minimum baseline receptor

expression (≈8 counts per million (cpm)) (Fig. S8b). However, high receptor

transcript abundance does not always translate into strong responses. This is most

evident for atypical ligands such as Decorin, Resistin (ADSF) or LT-α2β1, whose

activities rely on non-classical or low-affinity receptor interactions24–26, death ligands

(TRAIL, FasL) to which resting immune cells are resistant until activated27,28, and

TGF-β1 (Fig. S8c). A few other cytokines, e.g., IL-2 and IL-15 in CD14 monocytes,

induce strong responses despite lacking receptor expression. This is likely due to

secondary cytokine release, as discussed later. More generally, mRNA expression

levels do not always predict receptor function, because protein abundance, receptor

stability, and post-translational modifications can modulate signaling activity.
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Fig. 2. Donor variability analysis reveals subpopulations with distinct cytokine

responses. a, Age and sex distribution of donors. b, Cell type fractions across

cytokine perturbations by donor c. Comparison of baseline log2FC for donors D1

and D3 in CD14 Mono (top) and CD4 T cells (bottom). d, Correlations of the baseline

log2FC between donors averaged across all cell types. e, Baseline log2FC of

interferon response genes for two groups of donors identified in (d). f, UMAP of CD4

T cells of the two groups for PBS and IFN-β. g, Difference in the mean response

magnitude by cytokine averaged across four cell types for the two groups. The gray

area shows the standard deviation. h, Correlation of donor-specific log2FCs for

different cell types and cytokines. The bottom barplot shows the correlation to the

donor-consensus log2FCs. Responses below the shaded grey region (see Methods)

are considered outliers. i, Donor-consensus log2FC for IL-10 versus group mean

per-donor log2FC for IL-32-β in CD4 T cells. j, Overview of cytokines and cell types

with substantial substructure in donor responses. k, UMAP of CD14 Mono for PBS,
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IL-32-β, and IL-4. Donor D2 cells are highlighted in red. l, Total outlier response

count by donor. m, Average number of outlier responses across all cell types by

cytokine.

Cytokine response profiles are consistent across donors despite inherent
heterogeneity

We next investigated donor heterogeneity (Fig. 2a). Cell type composition varies by

donor but aligns with expectations for PBMCs10 (Fig. 2b). To understand gene

expression heterogeneity before cytokine perturbation, we calculated a baseline

log2FC as the ratio of cpm for a given donor in the PBS control to the median cpm

across all donors in the PBS controls (Fig. S9a). A subset of donors (D1, D3, D4,

D10) is highly correlated in its baseline log2FC across cell types (r=0.61±0.10, Fig.
2c-d). These donors have high baseline expression of interferon-stimulated genes

(ISG)29 (e.g., IFIT1-3) in CD4 T cells (Fig. 2e, Fig. S9b). In the UMAP visualization of

CD4 T cells, PBS-treated cells from these donors cluster with IFN-β-treated CD4 T

cells of all other donors (Fig. 2f). Together these observations indicate a higher

baseline interferon signaling in this group (“interferon group”). Interestingly, three out

of four members of this group are the oldest donors in our set.

Next, we asked whether this baseline heterogeneity imperils the determination of a

meaningful consensus response to cytokine perturbations. Generally, donor

response magnitudes correlated well for most cell types (r=0.55±0.23), suggesting

that consistent responses are observed even for donors with different baselines. Still,

pairwise correlations between donors were higher in the non-interferon group

(r=0.69±0.19) than in the interferon group (r=0.45±0.23) or across groups

(r=0.45±0.20) (Fig. S9c-e). For most cytokines, mean response magnitudes are

similar for the two groups (Fig. 2g). Notable exceptions include, for example,

stronger responses to IL-10, IL-1Ra, and IL-32-β and weaker responses to

interferons and IL-2 in CD4 T cells for donors in the interferon group.

An individual donor's response to a specific cytokine sometimes differed substantially

from the consensus response calculated across all donors. For example, donor 3

log2FCs and donor-consensus log2FCs for the response to IFN-β are only weakly

correlated, making donor 3 an outlier. Donor 3 stands out even among members of

the interferon group which collectively are less correlated with the consensus (Fig.
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2h, left, Fig. S9f-g). For other cytokines and cell types, e.g., IL-15 in NK CD56low,

the baseline state, while still visible in the response, has a relatively weak impact and

all individual donor responses are well correlated with the overall response (Fig. 2h,

middle, Fig. S9f-g).

Notably, the response to IL-32-β in CD4 T cells, although not in CD14 Mono,

depended heavily on the donor interferon state (Fig. 2h, Fig. S9f). There, the two

donor groups exhibited responses that were internally consistent within groups

(r=0.60±0.08, r=0.76±0.03) but divergent between groups (r=0.29±0.19). To

understand how these responses differ biologically, we calculated correlations to the

consensus log2FCs of all other cytokines. The interferon group response showed a

strong correlation with the consensus IL-10 log2FCs that is absent in the

non-interferon group (Fig. 2i), indicating an anti-inflammatory response to IL-32-β for

pre-inflamed cells only. Although there are other examples of such response

substructure (IL-1-α or IL-1Ra in CD4 T cells, Fig. S10a-b), which we define as the

presence of at least two groups of donors with internally consistent but externally

divergent responses (Fig. S10c), they are rare (Fig. 2j) and overwhelmingly focused

on only donors 3 and 4 of the interferon group (Fig. S10d).

Baseline interferon-signaling was not the only source of donor heterogeneity. For

example, the donor 2 CD14 Mono population was almost completely separate from

those of all other donors in the UMAP of the PBS controls. However, stimulation with

IL-32-β shifted all other donors' monocytes to the same spot in the UMAP as the

donor 2 baseline (Fig. 2k), while donor 2 monocytes showed only weak responses to

IL-32-β (Fig. S11a), suggesting strong pre-existing IL-32-β-like signaling for donor 2.

Indeed, the donor-consensus log2FCs for IL-32-β were highly correlated (r>0.91 for

CD14 Mono) with the donor 2 baseline log2FCs across cell types but uncorrelated

for other donors (Fig. S11b-c). Conversely, IL-4 treatment shifted donor 2 monocytes

back to the space occupied by the other donors' baseline (Fig. 2k, Fig. S11d).

IL-32-β treatment of CD14 Mono in our screen upregulated CD14 and

downregulated monocyte-derived dendritic cell (moDC) markers30 (Fig. S11e-f). The

overall state of macrophage differentiation markers31 was more consistent with a

unique monocyte activation state rather than macrophage differentiation32 (Fig.
S11e-f). Despite this difference in the baseline state, donor 2 was usually not an

outlier in responses to cytokines other than IL-32-β (Fig. 2l).
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Overall, outlier responses were well distributed across cell types (Fig. S10e) and

most cytokine-cell type combinations had relatively few outliers (Fig. 2m,

mean=1.2±0.8 in cell types with strong impact). While a few cases exhibited a clear

donor-specific substructure, the overall patterns were thus robust enough that a

single set of log2FCs per cell type captures a meaningful consensus response.

Comparison across mouse and human datasets identifies shared and
divergent cytokine responses

We next examined how cytokine-induced responses in human immune cells relate to

those previously reported in mice. Of the 90 cytokines profiled in our study, 81

mouse homologues were also used in the cytokine response screen generated by

Cui et al.8. To ensure that the comparison reflects genuine perturbation effects, we

focused on strong cytokine responses. These were defined for our dataset as in Fig.
1c, and the same thresholding criterion was applied to the response magnitudes

reported by Cui et al. for the mouse. We find an intersection of 8–20 cytokines per

cell type that elicit strong responses in both datasets (Fig. 3a).

To assess response similarity, we calculated Pearson correlations of gene-wise

log2FCs for each cell type-cytokine condition. To ensure robustness, we only

included samples (human donors or mouse replicates) containing at least 20 cells

and genes with sufficiently high expression levels (≥ 20 cpm) in either PBS- or

cytokine-treated cells in both species. Consistent with our previous analysis of donor

variability, correlations of IFN-β-stimulated CD14 Mono across human donors were

high (median r=0.78), as were correlations among the two mouse replicates (r=0.5)

(Fig. 3b). In contrast, cross-species correlations were substantially lower (median

r=0.19), a pattern that held across cytokines and cell types (Fig. 3c,d). Restricting

the analysis to genes that are differentially expressed in both species increased

correlations markedly across most sample pairs and cell types (Fig. 3e).

To finally compare average human and mouse responses, we created pseudobulks

per condition within each species. Log2FC correlations across differentially

expressed genes were generally moderate to high, but notable exceptions included

IL-13 in cDCs, TNF-α in CD14 Mono, and IL-10 in B cells, all of which showed mildly

negative correlations (Fig. 3f).
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Restricting correlation analyses to shared differentially expressed genes imposes a

stringent constraint and relies on DE results that may be difficult to compare across

datasets, e.g., due to differences in statistical power arising from unequal cell

numbers per condition. We therefore asked how many genes meaningfully contribute

to these correlations. To address this, we defined strongly regulated concordant

genes as those with log2FC > 1 in both datasets or log2FC < –1 in both datasets,

and discordant genes as those exhibiting strong but opposing fold changes (log2FC

>1 in human but <–1 in mouse, or vice versa). This analysis revealed that only a

relatively small fraction of genes (mean=11.3%) display strongly concordant

regulation (Fig. 3g) and that a non-negligible amount (mean=6.9%) of genes showed

strong discordant responses (Fig. 3h).

Although these results indicate that there are substantial differences between the

mouse and human cytokine datasets, these cannot be readily ascribed to

fundamental interspecies divergence, given the differences in experimental design -

most notably in vitro versus in vivo conditions, stimulation duration (4h versus 24h),

and cytokine dosage. We therefore compared cytokine responses to an independent

dataset of in vitro IFN-β-stimulated human PBMCs with a readout time similar to the

mouse dataset (6h)33. Although correlations vary by cell type, they are consistently

higher in the within-human comparison (mean r=0.61) than in comparisons across

species (mean r=0.45 (mouse cyto. dict. vs Kang et al.) and r=0.34 (human vs

mouse cyto. dict.)) (Fig. 3i) both when considering all shared expressed genes (cpm

≥ 20 in stimulated or control cells) and when restricting to genes that show large fold

changes (|log2FC| > 1) in both datasets (within-human mean r=0.77; across species

mean r=0.57 (mouse cyto. dict. vs Kang et al.) and r=0.59 (human vs mouse cyto.

dict); Fig. 3j).

To extend our comparison beyond the study by Kang et al., we collected a reference

database of cytokine-immune cell interactions by integrating data from the

ImmunoGlobe34 and immuneXpresso35 databases. ImmunoGlobe consists of

expert-curated relationships summarizing Janeway's Immunobiology36;

immuneXpresso was constructed by text-mining PubMed abstracts. After merging

entries based on Cell Ontology identifiers37 (Fig. S12a), our reference database lists

well-studied cytokine-cell interactions, including the number of supporting
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publications and an indication of expert review status (Fig. 3k, Fig. S12b). Based on

the observation that stronger responses are supported by a larger number of

publications (Fig. S12c, Spearman’s ρ=0.42 for human, ρ=0.33 for mouse), we can

use this database to compare and verify differences in response magnitudes

between the human and mouse datasets. Interestingly, large differences in response

magnitudes occur in cell-cytokine pairs with fewer supporting publications whereas

conditions that are supported by a large number of publications tend to show

relatively small differences in response magnitudes, with the only clear outlier being

TNF-α in monocytes (cf. Fig. 3l). Experimentally determined response magnitudes

and database-derived numbers of publications remain fairly well correlated when the

analysis is performed separately for each major cell type (Fig. 3m, Fig. S12d).

However, we do see a difference in the Treg and monocyte response Spearman ρ,

with the humans showing higher correlations between response magnitude and

number of reported publications. Finally, we can directly compare response

magnitudes for shared cytokine-cell pairs between the mouse and human cytokine

dictionaries. We find that most cell types are decently correlated (Spearman’s ρ

~0.25-0.5) with the exception of monocytes (Fig. 3n). These correlations increase if

we only consider cell-cytokine pairs that also occur in the reference database, again

indicating that strong changes tend to be more correlated.
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Fig. 3. Comparison between human and mouse cytokine responses highlights

overlapping yet distinct gene signatures. a, Per cell type, number of cytokines

that induce a strong response in humans, mice or in both species (overlap). b,

Pearson correlation of log2FC (IFN-β vs PBS) between all human donors (D1-12)

and mouse replicates (M1-2) in CD14 Mono. c, Distribution of Pearson correlations

across all cross-species sample pairs, per cytokine in CD14 Mono. The purple line

shows correlations between all human donor pairs; green line shows correlations

between mouse replicates. The point corresponds to the median, the error bars

indicate the quartile range. d, Aggregation of Pearson correlations including all

strong-response cytokines in a given cell type. As in c, boxplots represent

cross-species correlations, purple and green curves within-species correlations. e,

Same as d, but restricted genes that are differentially expressed in both human and

mouse. f, Pearson correlations of average human and average mouse log2FCs for

strong-response cytokines per cell type; restricted to cell type-cytokine combinations

with at least 5 genes. CD14 and CD16 monocyte labels apply only to the human

dataset, as the mouse dataset does not distinguish monocyte subtypes; all

comparisons are therefore made against the single monocyte population in mouse.
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Conversely, the mouse dataset separates cDCs into cDC1 and cDC2, whereas the

human dataset contains a single cDC population. g, Percentage of concordant

genes, defined as the number of genes with log2FC>1 in both datasets plus those

with log2FC<–1 in both datasets, divided by the number of genes with |log2FC|>1 in

the human dataset. h, Percentage of discordant genes, defined as number of genes

with log2FC>1 in human but log2FC<-1 in mouse or vice versa, divided by the

number of genes with |log2FC|>1 in the human dataset. i, Pearson correlations of

log2FC for IFN-β-stimulated cells across studies. Cell type labels are shared with j. j,

Same as i but only considering genes with |log2FC>1| in both datasets of the

comparison. k, Integration of the ImmunoGlobe and ImmuneXpresso databases into

a unified reference database of cytokine-immune cell effect annotations, with

indications of number of supporting publications. l, Difference between human and

mouse response magnitudes for the indicated cell types vs the number of supporting

publications from the reference database. m, Spearman’s ρ of the correlation

between response magnitude and number of supporting reference publications, for

cell types with >10 cytokine effect annotations. n, Spearman’s ρ of human vs. mouse

response magnitudes per cell type, for all shared cell type-cytokine relationships and

subsetted to those which have supporting publications in the reference database.

Cell type-specific production and response patterns define a detailed network
of cellular communication via cytokines

To unravel how cytokines orchestrate multicellular responses, we assessed how

cytokine signaling connects the cell types in our dataset. For each of 184 cytokines

from a manually curated list (Supplementary Table 6), we first averaged the

expression values of its encoding genes across all stimulation conditions, providing a

stimulation-agnostic, cell type-specific view of cytokine production (Fig. 4a, Fig.
S13a). This analysis revealed that production for most cytokines is strongly cell

type-specific. For example, IL-10 is strongly produced by CD14 Mono, CD40L by

CD4 T cells and MAITs, and IL-32 by all T cell subtypes but in particular by Tregs.

When aggregating over all cytokines that belong to a specific family (e.g., all

chemokines) and counting the number of produced cytokines (Fig. 4a, average

cpm>4), we observe that certain families are preferentially produced by specific cell

types. For example, monocytes and cDCs dominate chemokine production, albeit far
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more strongly for CXCL than CCL chemokines (Fig. S13b). Results from this

stimulation agnostic analysis are also supported by our literature-derived reference

database (Fig. S14).

Next, we studied cell-cell communication via specific cytokines. A cell-cell signaling

connection was considered present when a cytokine was expressed in a given cell

type and had a strong impact on a target cell type in our screen. All cell types

signaled to other cell types by a variety of cytokines (Fig. S15, Supplementary
Table 7), such as cDCs signaling to all other cell types via IL-15 (Fig. 4b)38.

For a more quantitative view, we defined sender strength as the relative expression

for a cytokine compared to other cell types, receiver sensitivity as the response

magnitude for that cytokine, and their product as the interaction score. We used

interaction scores to identify the central signaling cytokines for all cell type pairs in

our screen (Fig. S16), yielding IL-32 as a potential dominant signaling molecule

connecting all T cell subtypes to all other cell types39. Adding the interaction scores

between two cell types yields an overall cell-cell connection strength (Fig. 4c).

Notably, while the signaling from NK CD56low is too weak to generate even a single

connection, NK CD56hi signals to nearly all other cell types40.

Cytokine responses enable mapping of cytokine signaling cascades via
immune cells

Complementing the cell type-centric communication analysis, we next performed a

cytokine-focused analysis by initially summing interactions across cell types. We find

a wide range of signaling activities with the most prolific cytokine, IL-15, activating or

repressing the expression of other cytokines 146 times across our cell types (Fig.
4d-e, Fig. S17, padj<0.05 and |log2FC|>1). We found some expected patterns: For

example interferons and common γ chain cytokines upregulate ELR- CXCL

chemokines41, while IL-10, IL-4, and IL-13 downregulate them (Fig. 4e).

Next, we looked at individual up- or downregulated cytokines for a specific

stimulation and cell type (Fig. S18-S21, Supplementary Table 8). For example,

IFN-γ was upregulated by various inflammatory cytokines in NK cells and TNF-α was

broadly upregulated by inflammatory cytokines across cell types (Fig. 4f). IL-32 was

upregulated by common γ chain cytokines and interferons in T cells and myeloid
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cells (Fig. 4f). In turn, IL-32-β shifted the chemokine profile in myeloid cells

(monocytes, cDCs) effecting a strong shift from Th1/interferon-like recruitment

(downregulation of CXCL9, CXCL10, CXCL11, and IL-18; median log2FC~-3.8) to

neutrophil recruitment42 (upregulation of CXCL1, CXCL2, CXCL3, CXCL5, and

CXCL8 as well as IL-1-α and IL-1-β; median log2FC~5) (Fig. 4g). IL-32-β is also the

only cytokine that strongly upregulated the IL-10 family in myeloid cells (IL-10, IL-19,

IL-24)43, a response that is surprisingly weaker in the interferon donor group (mean

log2FC 1.2±0.4 vs mean log2FC 2.5±1.1 for IL-10 in CD14 Mono, cf. Fig. 2h), while

Th1-attractant chemokine downregulation is stronger in the interferon group (Fig.
S22). Taken together, IL-32-β is a highly donor context-specific cytokine that

converts monocytes from an initial antiviral/T cell-based response to a potent,

neutrophil-driven, and highly inflammatory (but IL-10-family-based self-regulating)

strategy consistent with aggressive, localized containment.
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Fig. 4. The Human Cytokine Dictionary unveils cell type-specific cytokine

signaling networks. a, Cytokine production by different cell types and how this

connects them to other cell types (sketch). The left heatmap shows the relative

levels of production for five different example cytokines. The middle bar graph shows

the number of expressed cytokines per cytokine family per cell type. The right bar

graph shows the number of times a cytokine has its maximum expression level in a

given cell type. b, Cytokines secreted by cDCs cause strong responses in other cell

types. The height of each box is proportional to the number of connections through

that box. IL-15 connections are highlighted. c, Strength of cell-to-cell signaling given

the cytokine secretion profile. The transparency of connections shows the overall

connection strength, normalized to the maximum within that cell type and subset to

connections with an interaction score>0.25. d, The number of times a given cytokine

significantly regulates another cytokine summed across all cell types. e, Up- and

downregulation of different cytokine families by cytokine treatments. The figure sums
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regulation in the different cell types and then divides by the maximum value for that

family to get a relative number. When different cytokines of a given family are both

up- and downregulated, values are subtracted. f, Upregulation (padj<0.05, logFC>1)

of a specific cytokine by other cytokines. g, Cytokines up- or downregulated by

IL-32-β (padj<0.05, |log2FC|>2) in myeloid cells. h, Secondary responses due to

cytokines secreted in response to the initial cytokine change the response profile.

Low receptor expression and high response magnitude for IL-12 along with a high

response similarity implies IFN-γ as likely responsible for the response in monocytes.

i. IL-2, IL-12, and IL-15 all signal to secondary cells via IFN-γ released by NK cells.

Response similarity allows for the detection of potential secondary cytokine
responses

The 24-hour stimulation allows PBMCs not only to respond directly to the primary

cytokine but also to produce and secrete secondary (and higher-order) cytokines

(Fig. 4h). Thus, the transcriptomic profiles measured at this time point capture the

cumulative response to both the initial cytokine stimulus and the downstream

cytokine signaling cascade. This signaling cascade explains cases in which cell

types show strong transcriptional responses to a cytokine despite low expression of

the corresponding primary cytokine receptor (<5 cpm, 'secondary target') (Fig. S8c,

Fig. S23a). To identify which secondary cytokines might be causing these indirect

responses, we applied two criteria: First, the secondary cytokine must be

upregulated (log2FC>1, padj<0.05) after stimulation with the primary cytokine in cell

types that clearly express the primary cytokine receptor (>16 cpm, 'primary target').

This ensures that the cell is capable of responding directly to the primary cytokine

and producing the secondary one. Second, the cell type that shows the secondary

response should respond to the primary cytokine in a way that resembles its

response when the secondary cytokine is directly applied to the cells. We measured

this similarity by correlating log2FC values requiring a Pearson correlation above 0.5.

For the effect of IL-12, IL-2, and IL-15 on monocytes only IFN-γ released by NK

CD56hi fulfills these criteria (Fig. 4h-i, Fig. S23b)44.
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Fig. 5. Data-driven deconvolution of cytokine responses defines

cytokine-induced immune programs. a, Log2FCs between different cytokines in

CD14 Mono. b, Pearson correlation between log2FCs for different cytokines in CD14

Mono. Cytokines were clustered based on their correlation patterns (black boxes). c,

Clustering in individual cell types was used to derive consensus groups (white box).

Highly similar cytokines (mean r>0.7) are marked with a dashed blue box. d, Table

with CIPs and key genes that are associated with selected cytokines and cell types.

e, Summary of how many programs one cytokine (left) or cytokine combinations

(top) are part of (cytokines and combinations with one occurrence are omitted). f,

CIP activity in relevant cell types as a function of activating cytokines. g-i,
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Significantly up- or downregulated cytokine-induced immune programs (CIPs) across

cell types and the corresponding biological categories.

Classifying cytokine responses identifies consensus groups and unique
effectors

The scale and design of our dataset allows unbiased discovery of functional

similarity between cytokine responses without confounding batch effects, which

previously allowed us to identify the IL-10-like character of IL-32-β responses in CD4

T cells for donors of the interferon group (cf. Fig. 2i). We quantified the similarity of

responses between cytokines in the same cell type in terms of Pearson correlations

of log2FC (Fig. S24, Supplementary Table 9). For example, in CD14 Mono,

responses to common γ chain interleukins IL-2 and IL-15 are highly similar (r=0.92),

as are responses to IL-4 and IL-13 (r=0.94), which partially share receptors and

signaling pathways45. Conversely, pro-inflammatory IL-15 and anti-inflammatory

IL-10 have a strong negative correlation (r=-0.64) (Fig. 5a).

To systematically identify groups of cytokines eliciting similar responses in a given

cell type, we clustered log2FC correlations using the Leiden algorithm (Fig. 5b, Fig.
S25-S27). The largest group in all cell types consists of type 1/antiviral cytokines,

most notably IL-1-α/β, common γ chain interleukins, and interferons. Other groupings

are more cell type specific: For example, in monocytes GM-CSF forms a group with

IL-318 that is negatively correlated with interferons but in B and T cells it groups with

type 1 cytokines (Fig. 5b, Fig. S25). Interestingly, IL-32-β, despite having strong

effects in all cell types, does not cluster with other cytokines except for IL-10 in CD4

T cells and Tregs (Fig. S25).

To integrate information from all cell types, we counted the number of cell types in

which a particular pair of cytokines was found in the same cluster, then used Leiden

clustering on the count patterns to derive consensus similarity groups (Fig. 5c,

Supplementary Table 10-11). We also defined subgroups of highly similar cytokines

by a mean r>0.7. The largest group is type 1 cytokines, in which common γ chain

interleukins and interferons form highly similar subgroups (group 1). IL-12 is also part

of that latter subgroup, though in fewer cell types, and its high similarity to interferons

in monocytes is a consequence of secondary responses to IFN-γ (cf. Fig. 4i). Two
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other large groups contain cytokines associated with inflammatory barrier defense

and tissue protection (group 2) or cell growth, survival, and tissue development

(group 3). IL-4 and IL-13 form a fourth r consensus group (group 4). However, while

IL-4 has a strong impact on all cell types, IL-13 only significantly affects B cells,

cDCs, and monocytes. Other cytokines such as IL-10 or IL-21 do not belong to any

group because the responses they induce are similar to other response patterns in at

best a small subset of the cell types they affect.

Universal cytokine-induced immune programs (CIPs) reveal functional states
of immune cells

To more comprehensively dissect the biology underlying cytokine-induced

responses, we applied Disentangled Representation Variational Inference (DRVI)46 to

identify cytokine induced gene programs (CIPs) - groups of genes that are jointly up-

or downregulated upon cytokine stimulation. These programs represent the

functional modules underlying cytokine-driven responses and may be unique to

specific cell types or shared across multiple cell types. DRVI builds on the classical

variational autoencoder framework but introduces key modifications to the decoder,

enabling each latent dimension (CIP) to be linked to a distinct set of genes that is, to

a large extent, exclusively modulated by that CIP (Fig. S28).

Applying DRVI to our dataset revealed 82 CIPs whose associated gene sets were

manually inspected, annotated based on expert knowledge, and further summarized

into 11 broad categories (Methods, Supplementary Table 12-13). For example, IL-4

stimulation in B cells induces a humoral effector program (IgE-Humoral) linked to

IL-4-mediated class switching, as well as a transcriptional activation program

(Transcriptional) that represents early signaling events, supporting differentiation

toward antibody production20 (Fig. 5d). IL-32-β elicits a robust proinflammatory

reprogramming in CD14 Mono, driving CIPs centered on myeloid activation

(MyeloidRemodel), cytokine production (CytokineProd), and chemokine-driven

neutrophil recruitment (Recruitment-2). Concomitantly, IL-32-β downregulates

antiviral programs (ViralResponse), suggesting a shift from tissue-resident or

antiviral states toward an acutely activated, recruitment-focused phenotype.
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Since CIPs can be modulated by multiple cytokines, we next examined the overlap

of programs across cytokines (Fig. 5e). IL-2, IL-7, IL-15, and IL-32-β modulate the

largest number of programs (>⅓ of all CIPs), whereas M-CSF, IL-21, and CD40L

each appear in only two programs. The broad influence of IL-2, IL-7, and IL-15 is

consistent with their well-characterized roles in lymphoid activation, proliferation, and

survival47. Consistent with the highly similar responses described earlier (Fig. 5c),

IL-2, IL-7, and IL-15 co-regulate 13 programs. In contrast, IL-32-β acts predominantly

independently, suggesting more unique regulatory activities.

Next, we inspected the cytokines that modulate a specific CIP (Fig. 5f). For example,

the myeloid-associated CIP ‘Immune response to viral infection and inflammation’

(ViralResponse) is active in CD14 and CD16 Mono as well as cDCs. In cDCs,

ViralResponse is primarily upregulated by the interferons IFN-β and IFN-ω, whereas

in monocytes, additional cytokines like IFN-α, IL-1, and IL-12 also induce the

program, consistent with their role in promoting antiviral and inflammatory gene

expression48–50. Conversely, IL-32-β and IL-10 inhibit ViralResponse in monocytes,

reflecting interferon counter-regulation. Among lymphoid programs, the CIP

‘immunomodulatory and inhibitory reprogramming of NK cells’ (NK-Immuno) is

specific to NK CD56hi, where it is upregulated by IL-10 and downregulated by IL-15

and IL-2, reflecting enhanced inhibitory receptor signaling and dampened activation.

In contrast, ‘Cytotoxic effector cell activation and target recognition’ (Cytotoxic-1), is

upregulated by IL-15 and IL-2 in NK cells and inhibited by IL-10. Together, these

results confirm that the cytokine-program associations observed in our analysis

reflect established patterns of cell type-specific regulation in both myeloid and

lymphoid populations.

The full set of CIPs reflects the diversity of cytokine responses in our dataset. The

majority of CIPs were found in myeloid populations (57 programs, Fig. 5i), with fewer

linked to lymphoid cells (12 programs, Fig. 5g) and shared across compartments (10

programs, Fig. 5h). This distribution likely reflects the biology of PBMCs: monocytes

and dendritic cells act as innate first responders, expressing broad cytokine and

pattern-recognition receptor repertoires, and serve as central coordinators that link

innate and adaptive immunity. As a result, myeloid cells engage diverse programs

linked to chemotaxis, phagocytosis, antigen presentation, inflammatory activation,
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and pattern-recognition signaling. In contrast, lymphoid cells, as adaptive effectors,

predominantly deploy cytokine-driven transcriptional programs supporting effector

function, proliferation, and immune trafficking, resulting in a smaller number of

detectable cytokine-induced signatures in this experimental context. Together, our

newly defined CIPs link cytokines to cell type-specific functional states, offering a

biologically meaningful framework for interpreting cytokine-induced immune

responses.

HuCIRA decodes cytokine responses in disease

We assembled a unified reference compendium (Fig. 6a) of cell type-specific gene

sets comprising (1) differentially up- and downregulated genes induced by individual

cytokine stimulations as inferred in our DE analysis (Fig. 1c) as well as (2) gene sets

associated with particular immune functions as defined in our CIP analysis (Fig. 5).

These gene sets enable researchers to decode cytokine activity in independent

datasets, providing a means to identify which cytokines may underlie molecular

differences between experimental conditions. To facilitate such analyses, we

developed huCIRA (short for human Cytokine Immune Response Analysis), an

open-source, easy-to-use Python tool that interfaces gseapy51 and supports the use

of these gene sets in enrichment analyses and differential cell-cell communication

inference (methods). The input to huCIRA consists of our provided gene sets as

well as a user-supplied transcriptomics dataset along with a specification of the

conditions across which differential cytokine or program activity should be compared.

To illustrate its potential, we applied huCIRA to published transcriptomic datasets

from autoimmune diseases, specifically systemic lupus erythematosus (SLE) and

multiple sclerosis (MS), as well as spatial transcriptomics data from a non-small cell

lung cancer (NSCLC) study.

Systemic lupus erythematosus cases exhibit strong IFN signaling activity

SLE is a complex and clinically heterogeneous disease characterized by chronic

inflammation affecting multiple organs52. There is a well-established association

between SLE disease and type I IFNs, with approximately 50% of SLE patients

exhibiting elevated type I IFN blood levels, accompanied by increased expression of

interferon stimulated genes (ISGs) in their peripheral blood cells53,54. Here, we used
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huCIRA to infer cytokine responses in a published single-cell transcriptomics dataset

containing 1.2Mio PBMCs from 162 SLE cases and 99 healthy controls, with

associated clinical assessments (healthy, flare, treated) and self-reported ethnicity 55.

We found that responses to type I IFNs such as IFN-β are strongly enriched in all cell

types in flare compared to healthy controls (Fig. 6b, Fig. S29a), which is in line with

the elevated levels of ISGs reported in the literature55. Beyond type I IFNs, we

observed prominent IL-15 signaling activity in CD4 and CD8 T cells as well as NK

cells, reflecting enhanced survival, homeostatic expansion, cytotoxic function and

memory activation56–58. Collectively, these effects may amplify tissue-damaging

immune responses, consistent with the immune dysregulation characteristic of SLE.

Interestingly, we found selective upregulation of IL-32-β signaling in NK cells and

non-classical monocytes in flare cases. While the biology of IL-32 in SLE remains

largely unexplored59,60, it highlights a potential role for IL-32-β in both understanding

lupus pathogenesis and monitoring disease activity.

Next, we examined cytokine response changes when comparing flare vs treated

cases. Surprisingly, the observed enrichment of IFN-β, IFN-γ, and IL-15 during flares

was not reduced in the treatment condition. In fact, it was further elevated (Fig. 6c,
Fig. S29b). Paired donor-specific analyses (n=10) revealed that this effect occurs

specifically in the non-Asian donor ancestry whereas we find the expected

enrichment pattern in Asian donors (Fig. 6d, Fig. S29c-d). While the limited

availability of detailed treatment and genetic information prevents definite

conclusions about ethnic contributions, these donor-specific differences highlight the

need for caution when interpreting treatment-response biomarker data and

underscore the value of personalized medicine approaches in complex diseases.

Multiple sclerosis cases are marked by cytotoxic immune responses

MS is an autoimmune disease of the central nervous system (CNS) characterized by

autoreactive T and B cells that contribute to demyelination and neurodegeneration61.

Here, we used huCIRA to analyse CIPs and cytokine communication networks in a

single-cell transcriptomics dataset containing blood samples from MS patients and

control cases62. Comparing disease vs healthy samples, we observe an enrichment

of CIPs including Cytotoxic-1, Cytotoxic-2, and EffectorTraffic in NK cells in disease
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samples (Fig. 6e, Fig. S29e), reflecting both enhanced killing potential and

tissue-trafficking capacity, consistent with previous reports63. In B cells from MS

cases, enriched CIPs included IgE-Humoral, BcellDiff-1, and BcellReg, indicative of

dysregulated differentiation, enhanced humoral activation, and impaired immune

regulation, in line with with B cell states capable of producing pathogenic

antibodies64. Together, these programs point towards a state of systemic immune

dysbalance that contributes to the CNS-directed autoimmunity.

Since the activity of each CIP is modulated by one or several cytokines, we next

examined the enrichment of these cytokines in the disease context (Fig. 6f, Fig.
S29f). Cytotoxic-2 is regulated by IFN-γ, IFN-β, IFN-ω, IL-7, IL-2, and IL-15. This

finding aligns well with the known biology of NK cell activation and cytotoxic

effectorness65. BcellDiff-1 is modulated by multiple cytokines of which IL-21, IL-7,

and IL-2 are most prominently enriched. These cytokines are key regulators of B cell

activation and differentiation, with IL-21 particularly driving proliferation and plasma

cell maturation66–68. Finally, we examined the cytokines relevant to the inhibitory

NK-Immuno CIP, which was downregulated in the disease state (Fig. 6e). IL-10

promotes its activity, whereas IL-12, IL-15, and IL-2 suppress it (Fig. 6f). This pattern

is consistent with the enhanced enrichment of the cytotoxic CIPs observed earlier.

Next, we investigated differential cell-cell communication networks in the MS dataset

(Fig. 6g). A cytokine communication (sender-receiver interaction) was considered

valid when the cytokine was found to be differentially expressed in the sender cell

and the receiver both expressed the receptor and showed a significant huCIRA

enrichment (methods). In line with the identified biology from our CIPs and cytokine

activity enrichment analysis, we found enhanced IFN-γ (from NK cells and CD8a T

cells), IL-15 (from monocytes and granulocytes), and IL-7 (from B cells) signaling in

NK cells in disease vs healthy samples.
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Fig. 6. HuCIRA characterizes cytokine and immune program enrichment
across conditions, donors, and diseases. a, Schematic representation of the
cytokine response enrichment analysis. b-c, Transcriptomics dataset from PBMCs
with 162 SLE and 99 control cases (red: up, blue: down, (*: p<0.1, **: p<0.05, ***: p <
0.01) if significant). b, Normalised enrichment scores (NES) for the cytokine activity
of flare vs healthy controls. c-d, NES for the cytokine activity of flare vs treated
across cell types (c) and in CD8 T cells across ethnicities (d). e-g, Transcriptomics
dataset from PBMCs with 5 MS and 5 control cases (red: up, blue: down, (*) if
significant). e, NES for CIP activity of disease vs control across cell types. f, NES for
cytokines that regulate the CIPs in d. g, Cytokine mediated cell-cell communication
(direction indicated by arrow). h-j, Spatial transcriptomics dataset from one NSCLC
patient (red: up, blue: down, (*) if significant). h, Tissue section with niche
annotations. i, NES for the cytokine activity of tumor vs other niches for monocytes.
j, NES for the cytokine activity of T cell aggregates vs other niches for cytotoxic T
cells.
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Tumor-localised GM-CSF activity shapes monocyte reprogramming

We next applied huCIRA to investigate cytokine activities in a non-small cell lung

cancer (NSCLC) spatial transcriptomics dataset (Fig. 6h). We compared signaling

activity between immune cells in tumor and non-tumor regions. Notably, monocytes

in the tumor exhibited significantly enriched GM-CSF and IL-3 signaling, particularly

relative to T cell aggregates and the alveolar niche (Fig. 6i). GM-CSF is often

overexpressed by tumor cells in NSCLC and other solid tumors69–71, and its presence

promotes the recruitment and differentiation of monocytes into immunosuppressive

tumor-associated macrophages (TAMs)72. These findings suggest that

GM-CSF-driven monocyte activation is a spatially regulated process within the TME,

shaping monocyte reprogramming to support immune suppression and highlighting

the spatial as well as molecular complexity of the tumor-supportive myeloid

compartment described in the molecular atlas73.

Beyond the tumor core, tumor microenvironments (TMEs) contain distinct

immunological niches such as tertiary lymphoid structure-like regions74 that shape

local immune responses. Given the critical role of T cells in tumor cell killing, we

compared tissue regions identified as ‘T cell aggregates’ with other niches (Fig. 6j).
Responses to cytokines promoting T cell function (IL-1-β, IL-2, IL-7, IL-15, IFN-α1,

IFN-β, IFN-ω, IFN-γ) were downregulated in T cell aggregates relative to the tumor

core, macrophage and DC islands but upregulated compared to other niches. These

data suggest a spatial separation between lymphoid-like cytokine environments and

myeloid-instructive niches within the NSCLC TME, reflecting a balance between

immune surveillance and immune evasion. From a therapeutic perspective, these

findings support the rationale for spatially targeted immunomodulation, for example,

enhancing IL-15/IL-2 or Type I IFN signaling in T cell aggregates to potentiate local

effector responses, or blocking GM-CSF/IL-3 signaling in tumor cores to prevent

monocyte-to-TAM polarization and restore immunocompetence.

Discussion

Here, we present the Human Cytokine Dictionary, the largest single-cell perturbation

dataset of primary human immune cells to date, which facilitates the systematic

analysis of differential gene expression responses across 12 major cell types and 90
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cytokines. The Human Cytokine Dictionary enables the systematic characterization

of donor-specific cytokine-driven immune activities, uncovering intriguing variability

among donors with a pre-existing interferon-signaling state but also describing

meaningful consensus responses. The comparison to an earlier mouse dataset

revealed both similarities but also substantial differences in cytokine stimulation

responses. The large number of cytokines and cell types allowed inference of a

detailed network of cellular communication via cytokines, finding, for example, that

IL-32-β, which notably does not have a mouse homologue, converts a type I antiviral

response toward a strong neutrophil-driven inflammatory program.

To complement gene sets from our DEG analysis, we used DRVI to identify

cytokine-induced immune programs (CIPs) that link cytokines to cell type specific

functional states, and thus offering a biologically meaningful framework for

interpreting cytokine induced responses. Finally, we developed the huCIRA python

package, an easy-to-use, open-access resource which consolidates our results and

enables the community to study cytokine response and CIP enrichment, as well as

differential cell-to-cell communication, in their own datasets. We showed the utility of

huCIRA for studying cytokine signaling in autoimmune disease and cancer, revealing

context-specific cytokine profiles in single-cell and spatial transcriptomic datasets.

As the first large-scale single cell cytokine perturbation dataset in human tissue, the

Human Cytokine Dictionary sets the stage for broader perturbation atlasing efforts.

While extensive, our study was anchored at a 24-hour time point. Capturing

additional earlier and later responses would provide valuable complementary

information on signaling dynamics. Expanding cytokine perturbation screens across

multiple organ systems75 would establish the foundation of a comprehensive human

perturbation atlas. Moreover, although we found intriguing donor response variability,

our sample size currently provides limited resolution in clearly linking this variability

to genetic or demographic traits. A follow-up screen with more donors could

characterize such differences.

In line with observed scaling laws, the size of our dataset enables AI models of

cytokine perturbations76,77 paving the way towards virtual cell models of cytokine

biology78. Future expansions of perturbation atlases across tissues and conditions

will therefore not only deepen our biological understanding but also accelerate
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AI-driven inference, guiding experimental design and prioritizing clinically relevant

cytokine perturbations. In summary, the Human Cytokine Dictionary provides an

essential resource for mapping cytokine-driven immune responses in humans. It

bridges basic immunology, clinical translation, and artificial intelligence by offering

both a foundation for mechanistic discovery and a training ground for predictive

modeling.
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Methods

PBMC culturing and cytokine stimulation

Source and thawing protocol
Viably frozen healthy human PBMC samples (6 females, 6 males) were purchased
from Bloodworks Northwest (Supplementary Table 1), who confirms that donors
provide informed consent and that sample collection was approved by their
institutional review board or equivalent ethics committee. PBMC samples that were
purchased for this work were received de-identified, and no additional ethical
approval was identified to be required for this work. Prior to cytokine treatment
PBMCs were thawed in such a way as to maximize integrity and viability and to
minimize shock that could potentially alter gene expression and/or cell viability.
PBMC vials were placed in a 37C water bath for 1 minute to thaw. For the dropwise
media additions during PBMC thawing, RPMI + 10% FBS media warmed in a 37C
water bath was used. The entire contents of the PBMC vial was transferred into a
50mL conical and a series of dropwise additions of media were pipetted into the
tube. A cell aliquot was set aside for viability checks and counting while the majority
of PBMCs were centrifuged at 300g for 10 minutes and the media was removed at
the conclusion of centrifugation.

Cell resuspension and cell culture media
PBMCs were cultured in 96-well plates (Nunc™ Edge™ 96-Well, Non-Treated,
Flat-Bottom Microplate, Thermo Fisher cat. #267578). For the cytokine stimulations,
RPMI media (ATCC SKU: 30-2001) supplemented with 10% FBS (Gibco cat.
#A4766801), 2-Mercaptoethanol (50uM final, Thermo Fisher cat. #31350010), MEM
Non-Essential Amino Acids Solution (1X, Thermo Fisher cat. #11140050) and
Sodium Pyruvate (1mM final, Thermo Fisher cat. #11360070) was used.

PBMC washes and harvest
To wash and harvest cells post cytokine stimulation, we resuspended PBMCs in their
incubation media pipetting 5x with a P-200 multi-channel pipette set to 180 µL. After
resuspension PBMCs were transferred to a Protein LoBind® Plate 96-well 1mL plate
(cat. #951033308) and placed on ice. Stimulation 96-well plates were washed with
100ul of D-PBS to lift off any residual PBMCs and transferred into the Protein
LoBind® Plate 96-well plate. After collection, cells were centrifuged at 200xg for 10
minutes at 4C.

Cytokines and cytokine stimulation
Cytokines were purchased from Biotechne, PBL assay science and Acro Biosystems
as indicated in Supplementary Table 2. Cytokines were reconstituted at the
recommended stock concentrations using the recommended reconstitution buffer.
Cytokines were diluted to working concentrations on the day of stimulation. For each
donor, 1 million PBMCs cells were plated in each well of a 96-well plate at a final
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concentration of 5,000/ul in cell culture media. Cells were stimulated with cytokine or
1x PBS (control) for 24 hours.

PBMC harvesting after cytokine stimulation
After 24 hours of cytokine stimulation PBMCs were transferred to Protein LoBind®
96-well plates (cat #951033308). In order to recover any residual cells, wells were
washed once with 100ul of 1x PBS and the entire volume was transferred to the
Protein LoBind® 96-well plate. PBMCs were centrifuged at 200xg for 10 minutes at
4C and supernatant was removed prior to starting the High-Throughput Evercode
Cell Fixation v3 with Integra Assist Plus workflow.

scRNAseq data generation

Fixation
Plates of cytokine-treated PBMC samples were fixed using the High-Throughput
Evercode Cell Fixation v3 with Integra Assist Plus workflow. Fixed cells were
resuspended in 75uL of the storage buffer. Three 96-well plate aliquots were made,
two of which had 35ul of fixed cells each and 1 plate containing the remaining 5-10ul
of fixed cells that was used for getting cell counts prior to barcoding. All plates were
stored at -80C until the day of barcoding. The counting plate was thawed and
counted to determine cell concentrations for each sample prior to barcoding. To
ensure consistent cell proportions during cell barcoding, fixed cells were transferred
to plates of variable volumes of dilution buffer.

Barcoding
Each plate of fixed cells underwent three rounds of combinatorial barcoding using
Section 1 of the Parse Biosciences GigaLab protocol. After barcoding, cells were
distributed into individual sub-libraries of ~100,000 cells and lysed according to
Parse Biosciences GigaLab protocol.

Sublibrary Preparation
Lysates were processed through Sections 2 and 3 of the Parse Biosciences GigaLab
protocol in batches of 16 sublibraries each. At the end of Section 3, an Illumina i7
and i5 index was added to each sublibrary to produce a sequenceable molecule.
Each sublibrary was then converted into an Ultima Genomics-compatible sequencing
library and sequenced on the UG-100 sequencer at approximately 31,000 mean
reads per cell.

Split-pipe processing
Fastq files generated from Ultima Trimmer workflow were processed through a
modified version of spit-pipe v1.4.0 to accommodate libraries processed through the
GigaLab. For each sublibrary, split-pipe generated a cell by gene matrix
(count_matrix.mtx) as well as relevant metadata for each cell (cell_metadata.csv)
and a list of genes to which split-pipe maps fastq files (all_genes.csv). Downstream
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analysis was performed Gene and transcript definition was based on Ensembl
release 109 and genome build 38
(https://ftp.ensembl.org/pub/release-109/gtf/homo_sapiens/Homo_sapiens.GRCh38.
109.gtf.gz)

Data processing and clustering
Data processing and clustering was performed in Python 3.10 with Scanpy (v1.10.3).
Cells were filtered for a minimum of 400 genes and maximum of 7000 genes
detected and <15% mitochondrial content to filter out low quality cells and some
doublets. We additionally filtered doublets using Scrublet79 with default parameters
and clustered cells as described below. Cells from clusters that contained >50%
predicted doublets were removed to produce a final AnnData object containing
9,697,974 cells that were then re-clustered for cell type annotation.

Transcript counts per cell were normalized to 10,000 per cell and log transformed
(sc.pp.normalize_total, sc.pp.log1p). Highly variable genes were identified with
sc.pp.highly_variable(min_mean=0.0125, max_mean=3, min_disp=0.25). The
resulting matrix subset on highly variable genes was scaled to unit variance and zero
mean (sc.pp.scale, max_value=10). Principal component analysis (PCA) was
performed on the scaled highly variable genes (sc.pp.pca). The first 30 PCs were
retained for downstream steps. A k-nearest neighbor graph was built in the 30 PC
space (sc.pp.neighbors, n_neighbors = 15, n_pcs = 30). Next, we ran UMAP to
embed the neighbor graph in two dimensions (sc.tl.umap). Finally, we performed
leiden clustering to group similar cells together (sc.tl.leiden, resolution = 1.0).

Cell type annotation
We performed differential gene expression analysis to identify cluster-specific gene
markers. Clusters lacking unique markers were merged with the nearest cluster. We
then manually annotated each cell type using standard PBMC marker genes10,11.
Marker expression was visualized with dot plots to confirm specificity (see Fig. S1b).

Differential cell type abundance analysis

We analyzed both total cell type counts and cell type composition across donors and
cytokine treatments. For total counts, we first adjusted for potential technical effects
caused by well position by fitting a linear model between the total number of cells
recovered (summed across cell types) and the distance of each well to the plate’s
center row. We used this model to normalize total counts across rows. The log2FC is
the mean of log2FC values of the count for a given cell type and perturbation to the
PBS count across donors. To calculate p-values, we used a two-sided Wilcoxon
signed-rank test comparing, within each donor, the normalized counts under
perturbation versus PBS. For compositional analysis, we used scCODA12 (design
~cytokine+donor) with CD4 T cells as the reference category as they showed
relatively stable total cell numbers across cytokine perturbations.
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Differential gene expression analysis

We utilized pertpy’s80 interface to edgeR14 to identify differentially expressed genes
(DEGs). DEG analysis was performed on pseudobulked data, where all cells
belonging to the same cell type and cytokine condition were aggregated per donor.
For each cell type-cytokine subset, we included only donors for which both the PBS
and cytokine-treated pseudobulks contained at least 10 cells. Within each subset, we
further retained only genes that were expressed in at least 5% of cells in either the
PBS or cytokine-treated condition. Subsequently, DEGs were computed separately
for each cell type-cytokine subset using the design formula ~donor + cytokine, with
differential expression assessed relative to the PBS control condition.

To mitigate potential technical artifacts, we conducted a secondary differential
expression analysis. This analysis employed the same overall design but, instead of
pooling cells from all six PBS wells, we performed six independent statistical tests
per cytokine - each using a distinct PBS well as the reference. Our rationale was that
biologically driven differential responses would be consistently observed across all
six comparisons, whereas technical artifacts associated with well position on the
96-well plate would not.

In this secondary analysis, a gene was considered differentially expressed if it
satisfied both adjusted p-value < 0.1 and |log₂FC| > 0.25. For each gene, we then
counted the number of PBS wells for which it was identified as differentially
expressed. This information is supplied alongside the initial results of the DEG
analysis (computed on pooled PBS cells) and can be used as a filter criterion, e.g.
for the human cytokine dictionary we define a gene to be differentially expressed if
its adjusted p-value < 0.05, the corresponding |log₂FC| > 0.25 and a gene is
differentially expressed with respect to at least 4 out of 6 wells.

To remove additional unstable or well-biased genes, we used the per-PBS well
log2FC values to identify genes with an excessive standard deviation to mean ratio
across wells. We calculated the mean-to-stddev-ratio =
stddev(gene)/(|mean(gene)|+0.25) across the six reference wells for each gene in
each cytokine-cell type condition. Genes with a mean-to-stddev-ratio above 1 were
defined as having a high mean-to-stddev-ratio in a given condition. Genes that had a
high mean-to-std-ratio for at least 10 cytokines in a given cell type were defined as
having a high mean-to-std-ratio in that cell type. Genes with a high mean-to-std-ratio
in at least 5 cell types were removed from the DEGs.

Calculation of the response magnitude, strong impact classification, and
tissue-specificity index

We used two different measures to calculate the global response magnitude M of the
cellular transcriptome to a cytokine stimulation: First, we used the (UMI normalized)
cpm (with a pseudocount of 1) pseudobulk-averaged gene expression vector v. The
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values are subset to genes with a total average pseudobulk count of at least 20 in at
least one of the stimulation conditions for that cell type and log2-transformed before
calculating the Euclidean distance between the PBS control and the cytokine:

!"#$%&'()* =
,(*( &

.
∑ (%1,2(3$4516&*(,& + 1) − %1,2(3<=>,& + 1))2.

Second, we use edgeR-calculated significance (padj) and fold change (FC) values.
Significance values are clipped at 10-10, and a distance is calculated as

.!@)'A−%1,2BC =
,(*( &

.
∑ |%1,2(BC&)| · (− %1,10(@)'A&))

Both metrics are winsorized at the 95% percentile, then normalized to values
between 0 and 1. The used overall magnitude M is the average of these two values.
To determine whether a cytokine has a strong impact on a given cell type, we set a
threshold value T at three times the mean of the response magnitude of values
below the 35th percentile. This empirically captures the part of the distribution
without substantial effects for each cell type without relying on a particular shape of
the distribution (cf. Fig. S6f).

The tissue specificity index (tsi) of the response to a cytokine c is calculated as15:

5G&($) =
$(%% 54@( &

.
∑ (1 − (H)I(!&, $ − J/2,  0. 05))/H)I(!H)I, $ − J/2,  0. 05))/(. − 1)

wherein the deduction of half the threshold value T helps to reduce noise.

Characterization of donor-specific responses

For each donor-cell type-cytokine condition, we filtered all analyses to genes with at
least 10 raw reads in the pseudobulk. To characterize the donor baseline state, we
calculate a baseline FC as the ratio of per donor gene cpm (pseudocount of 1) in the
PBS condition to the median gene PBS cpm across donors, subsetting to
protein-coding, annotated, non-ribosomal, non-mitochondrial, and non sex-specific
(located on the X or Y chromosome) genes using pybiomart for increased
interpretability.

Per-donor response magnitudes were calculated by the Euclidean measure
described above for all conditions with at least 1000 filter-passing genes. The
per-donor response magnitude was divided by the square root of the length of the
donor gene expression vector v for normalization. Donor-specific FC values for each
cytokine and cell type were calculated by dividing the gene cpm for a condition by its
PBS value, discarding any condition with fewer than 20 cells.
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We also calculated a non-normalized raw response strength to quantify trends in
absolute response strength differences between donors:

,!M)N =
,(*( &

.
∑ 2

H)I((|%1,
2
(O)N BC

&
)|−0.5),0)

− 1

wherein the subtraction of 0.5 helps to deal with higher noise levels for individual
donor pseudocount comparisons.

Donor outlier and substantial substructure detection

Outlier detection serves to find donors whose responses differ substantially from the
consensus response across donors, whether due to a much weaker response or a
directionally different response. To find such outlier donors in cell type-cytokine
conditions, we first calculate the Pearson correlation r between the edgeR-calculated
donor-consensus log2FCs across donors and the donor-specific log2FCs for each
donor. We then get the median of the top 8 correlation values. Any donor whose
correlation r fulfills
|O − 51@8 H('&)*(O)| >  0. 35 · H)I(51@8 H('&)*(O),  0. 6)
is considered an outlier for that particular cell type and cytokine.

The goal of substantial substructure detection is to find subsets of donors that have
substantially higher correlations within the subsets than between subsets, indicating
substantial but genuinely different types of responses to that cytokine depending on
the donor state. The following algorithm was repeated for Leiden resolution
parameters of 0.3, 0.5, and 0.7, taking the smallest parameter that lead to successful
substructure detection:
First, donors (for a given cell type and cytokine) are clustered on their pairwise
donor-specific log2FC correlations using the Leiden algorithm with a given resolution
parameter. We required at least one community of size 4 and a second community of
size 2 to consider this step a success. We then calculated the mean of correlation
values within the donors of these groups (discarding the diagonal) and the between
the donors of different groups. If two such communities have a margin of at least
max(0.2, 0.3 * max(r_donor_i,j|i≠j)) to another community, substantial substructure is
present.

Receptor expression analysis

Receptor genes for each cytokine were manually curated for all cytokines except
IL-32-β, which does not have a known receptor gene. Receptor expression was
calculated for the PBS control samples. When a receptor consisted of multiple
subunits, we used the minimum cpm expression across these genes on the
assumption that all subunit genes must be expressed for the receptor to be active.
When there were multiple possible receptors for a single cytokine, we used the
maximum expression across all alternative receptors on the assumption that any of
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these receptors is sufficient for activity. We do not take into account possible
differences between different receptors for a single cytokine. The relative receptor
expression was calculated by dividing by the raw expression by the maximum
expression value across all cell types.

In considering the relationship between receptor expression and the response
magnitude, we first note that we observe an empirical threshold of around 8 cpm
receptor expression necessary to observe responses. For classification of
responses, we chose thresholds with some distance to this empirical threshold to
avoid classifications that depend too sensitively on its exact value. Accordingly, a
response magnitude 1.5 times larger than the strong impact threshold along with a
receptor expression below 5 cpm is therefore considered a potential candidate for a
secondary response. Conversely, we considered all cytokines with a response
magnitude below the strong impact threshold and a receptor expression above 32 to
have weak responses despite very clear strong receptor expression. A cell type with
a receptor expression above 16 and a response magnitude 1.5 times larger than the
strong impact threshold is considered a primary target for a cytokine.

Comparison to the mouse cytokine dictionary dataset

Single cell data for the mouse cytokine dictionary was downloaded from
https://www.immune-dictionary.org/app/home and converted to scanpy compatible
format via zellconverter81. The downloaded dataset contains 110,378 cells with
31,053 profiled genes. We used pybiomart (https://jrderuiter.github.io/pybiomart;
version 0.2.0) to convert genes to human homologs; this reduced the number of
genes to 16,004. The number of counts per cell was normalized
(scanpy.tl.normalize_total) and subsequently averaged per cell type-cytokine
combination to obtain pseudobulks per mouse replicate. Due to the in vivo setting of
the mouse dataset, there is only a single cytokine stimulation condition available per
individual mouse. For the replicate-specific comparison of log2 fold changes, we
hence used the weighted mean across all PBS-treated mice, where weights are
proportional to the number of cells per mouse.

Our human dataset was preprocessed analogously except that donor-specific log2
fold changes were computed with respect to the donor-specific PBS-treated cells.
The response magnitudes for the mouse dataset were downloaded from the figure
source data (Source data Fig. 1). For the donor/replicate-unspecific comparison of
log2 fold changes, we used the weighted mean across all samples within a cell
type-cytokine condition where weights are proportional to the number of cells per
sample.

For the comparison with the independent human PBMC dataset33, we obtained raw
count data and cell type annotations from the Gene Expression Omnibus
(GSE96583) and normalized counts on a per-cell basis (scanpy.tl.normalize_total).
Because donor information is not available in the metadata, we computed average
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expression profiles per each cell type and stimulation condition (control, IFN-β) by
weighting all cells equally.

Reference database construction
To construct the reference dataset of cytokine-cell relationships, we used the
ImmunoGlobe34 and ImmuneXpresso35 databases. As both databases use Cell
Ontology IDs (CLIDs) to identify cell types, they were merged on these keys and
cytokine identities to make a dataset of unique cell-cytokine relationships. These
included both cell source (that is, cell secreting a cytokine) relationship and cell
target (cytokines having some kind of an effect on a cell) relationships. The unique
CLIDs present in the resulting merged dataset were examined, and manually
assigned to groups corresponding to our cell cluster identities when possible. More
generic CLIDs, such as ‘T cell’, which could not be assigned to a particular cluster,
were excluded for analysis. The overall dataset construction process can be seen
outlined in Fig. S12a.

As neither database differentiated between NK cell subtypes, NK CD56low cells
were chosen to represent NK cells given they are the most common in peripheral
blood40. Similarly, as most monocyte annotations did not differentiate between CD14
or CD16 monocytes, CD14 monocytes were used to represent monocytes more
generally82. Finally, for the mouse cytokine dictionary comparisons to the reference
dataset, cDC1 cells were used as the representative cDC cell type.

For the cytokine stimulation comparisons, supporting paper counts were winsorized
at the 95th percentile and scaled between 0 and 100 per cell type (as both the
response magnitude and mouse cytokine dictionary response magnitude values
were scaled in a similar way). For the high quality analysis, only annotations shared
between the two databases for cell types with greater than 25% coverage (that is,
with more than 20.25 cytokines with supporting paper information) were used. Cell
types with less than this cutoff were cDCs and HSPCs. Mouse cytokine dictionary
values for response magnitude were downloaded from figure source data.

For the cytokine secretion comparisons, supporting paper counts were scaled
between 0 and 1 per cytokine (similar to how the relative mean production and
mouse cytokine relative expression were scaled between 0 and 1 per cytokine).
Mouse cytokine dictionary source figure data was used for the comparisons. Only
high-quality annotations of secretion which had both mouse and human
measurements were used to calculate Spearman's ρ. Cytokines with higher numbers
of annotations were considered to be any with six or more annotated secreting cell
types.

Grouping cytokine responses

Genes with a maximum expression of 20 cpm, an average expression of at least 4
cpm, and a total maximum pseudobulk count of at least 20 across all stimulation
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conditions were considered robustly expressed in a given cell type. We calculated
the similarity between different cytokine stimulation conditions in a cell type by the
Pearson correlation of consensus log2FC values for all expressed genes. To find
highly similar cytokines across cell types, we averaged the similarity (Pearson
correlation) values across all cell types for which both cytokines have a strong
impact (cf. Calculation of the response magnitude and impact classification). If there
are at least 3 cell types with strong responses and the mean r is larger than 0.7, two
cytokines were considered highly similar. To sort cytokines into highly similar groups,
we applied this relationship transitively.

To group cytokines more loosely within a cell type, we applied the Leiden algorithm83

using the python leidenalg package using the Pearson correlation similarity matrix as
input. For each cell type, we first subset to cytokines with strong impact, and then
constructed a weighted, undirected graph where each node represents a cytokine
and each edge weight corresponds to the Pearson correlation of consensus log2FC
values between two cytokines. Self-loops were eliminated by setting the diagonal of
the similarity matrix to zero. We then applied the Leiden algorithm using the
CPMVertexPartition method with a resolution parameter of 0.5 to generate
communities. To further cluster cytokines across different cell types, we repeated the
Leiden clustering procedure using grouping counts, i.e. the number of times two
cytokines were clustered by the Leiden algorithm within a cell type. Cytokines were
filtered to those that participated in clustering for at least two cell types. Row sums
were computed and used to symmetrically normalize the matrix by multiplying with
the inverse square roots of the row sums (with a small epsilon added to avoid
division by zero). Pairwise cosine distances were calculated for the normalized
matrix. Leiden clustering (resolution parameter = 0.5) was applied to the distance
matrix to identify consensus cytokine communities.

Cytokine production, crosstalk, and identification of potential secondary
responses

Human immune-related cytokines (broadly defined), cytokine genes, and families
were manually curated and classified into families using the mouse cytokine
dictionary8, immuneXpresso35, Janeway's Immunobiology36, and other information
sources. A cytokine gene was considered expressed according to the same criteria
described above for genes in general (mean cpm > 4, max cpm > 4, at least 20 total
counts in at least one condition). For cytokines consisting of multiple subunits, we
took the minimum values across the subunit genes on the assumption that all
subunits must be expressed for the cytokine to be active. We only display cytokines
that are expressed in at least one cell type. To show the production of cytokines by
cell type, we show the mean for a cell type divided by the maximum mean across
cell types.

To determine whether cell-cell communication is present, we test whether a cytokine
is expressed in a cell type and whether it has a strong impact on a target cell type.
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Strong impact was calculated as described above. If both are the case, we consider
the cytokine as mediating a response between the two cell types. To quantify the
connection strength for a cell type-cytokine-cell type connection, we define sender
strength as the relative expression of a cytokine in a cell type (compared to all other
cell types), considering only cell types in which the cytokine is expressed. We
additionally required a mean cpm > 10 in at least one cell type. Receiver sensitivity is
defined as the response magnitude for stimulation with the cytokine for a given cell
type. The product of sender strength and receiver sensitivity is the interaction score.
The overall connection strength between two cell types is the sum of their interaction
scores across cytokines. For the overall cell-cell connection plot, we subset to
connections with an interaction score of at least 0.25 to prune less relevant
connections for plotting purposes.

To quantify cytokine-cytokine signaling cascades, we classified cytokines according
to the consensus log2FC as significantly upregulated (padj<0.05, log2FC>1) or
downregulated (padj<0.05, log2FC<-1) in response to a cytokine stimulation in a
given cell type. For cytokines with multiple subunits, we required that all genes fulfill
both the significance and the fold change requirements. We used the same
thresholds to count up- and downregulation by cytokine family. Upregulation of the
same cytokine across different cell types is counted multiple times. To account for
differing family sizes, we divide by the maximum number of up- or downregulated
members for each family.

To identify secondary responses, we first identify primary and secondary target cell
type (cf. Receptor expression analysis). We then identify all cytokines upregulated in
primary target cells with a log2FC>1 as potential secondary cytokines. For each
potential secondary cytokine and secondary cell type, we check whether the
secondary target cell type is a primary target cell type for direct stimulation with the
secondary cytokine and whether the response similarity, i.e., the Pearson correlation
of log2FC values, is larger than 0.5. Any potential secondary cytokine that fulfills the
criteria is considered a likely genuine secondary cytokine affecting a given cell type.

Inferring cytokine-induced immune programs (CIPs)

To discover universal cellular programs within and across cell types, we trained
DRVI46 for 50 epochs using all genes, employing a 256-dimensional latent space.
Donor ID was included as a batch covariate. The encoder and decoder subnetworks
each comprised three 512-dimensional hidden layers. To encourage positive latent
factors, we incorporated a Continuously Differentiable Exponential Linear Unit
(CELU) activation function84 with α=0.1 in the bottleneck layer. This training yielded
147 non-vanishing factors {z_i}_i=1…147, i.e., factors having absolute value more
than one in at least one cell. For each factor z_i, DRVI provides a sorted list of genes
along with an interpretability score that indicates how relevant each gene is to that
factor. We kept the 133 factors that had at least one gene with an interpretability
score ≥ 0.5. Furthermore, for each of the 133 programs identified in this manner, and
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for every combination of donor, cytokine, and cell type, we performed separate
t-tests against their six associated PBS control cell distributions. A contrast was
considered significant if all of the following criteria hold:

(1) The t-test yielded a multiple-testing corrected p-value < 0.001 in at least four
out of six tests (i.e. against at least four out of six PBS wells). Multiple testing
correction (Bonferroni) was applied within a cell type - cytokine condition
across all programs.

(2) The absolute program activity | | ≥ 0.1 , where the program activity is
defined as

with

where K is the number of cells within a donor (d), cell type (t) and cytokine
stimulation (s) combination, and where w is indicating the contrasting PBS well (out
of the six PBS wells).

(3) To ensure that identified programs reflect consistent responses rather than
donor-specific outliers, we required each contrast to meet the aforementioned
significance criteria (1) and (2) in at least four donors.

(4) The cytokine induced program regulation direction was sufficiently robust
across donors. Robustness was assessed by a simple voting scheme: for
each cell type and cytokine, we counted how many donors showed
upregulation versus downregulation of a program, and considered the
contrast significant only when the absolute difference between these counts
was at least four.

Taken together, these filtering steps resulted in 95 significantly differential programs.
Out of these, 13 programs were furthermore manually excluded as they either
represented cell type-specific effects (9 programs), technical artifacts (3 programs),
or lacked biological relevance (1 program). The remaining 82 programs were then
manually annotated and categorized into 11 general classifications. We refer to these
programs as cytokine-induced immune programs (CIPs), which enable the inference
of CIP activities within single-cell transcriptomics datasets.

Using the human cytokine dictionary to detect cytokine responses, functional
immune states, and differential cell-cell communication patterns
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Our newly constructed human cytokine dictionary provides cell type-specific gene
signatures that are up- or downregulated in response to cytokine stimulation, as well
as signatures that define cytokine-induced immune programs (CIPs). These gene
sets can be incorporated into gene set enrichment analyses (GSEA) to assess
differential biological patterns across conditions. Our GSEA workflow uses the
prerank module from gseapy51 (the dictionary is also compatible with alternative
enrichment tools) and takes as input a gene set (e.g., genes upregulated by IL-10 or
those associated with a given CIP) together with two count matrices, X_a and X_b,
representing the transcriptomic profiles of cells from the two conditions to be
compared. In the first step, we compute average expression vectors for each
condition and combine these into a single vector of expression differences where
each component is normalized by the sum of the within group standard deviations,

i.e., . The components of this vector are then ranked, placing the largest
differences at the top and the smallest at the bottom. The enrichment test proceeds
by iterating through the ranked vector gene by gene, increasing a running sum if the
current gene belongs to the user supplied gene set and decreasing the running sum
if it does not. The rationale of this procedure is that gene sets whose members
cluster near the top or bottom of the ranked difference vector - corresponding to
large positive or negative expression differences across conditions - produce a
pronounced peak in the running sum. This peak, taken as the maximum absolute
deviation, defines the observed enrichment score. Statistical significance is
estimated via a permutation test by generating a reference null distribution through
repeated iterations with randomly sampled gene sets; we set the number of random
permutations to 20,000. The final enrichment score is normalized by the mean of this
null distribution.

The enrichment procedure involves several hyperparameter choices. To ensure
robustness to these we performed the analysis across a range of parameter values
and integrated the resulting outcomes to determine statistical significance. For
cytokine-based gene sets, we used results from our differential expression analysis
but applied five minimum thresholds (0.8, 0.9, 1.0, 1.1, 1.2) for log2 fold changes. In
parallel, we also applied five expression cutoffs (6–10 cpm) to exclude lowly
expressed genes. This yielded a 5 x 5 grid of enrichment results for cytokine gene
sets and five results for CIPs, for which log2 fold-change thresholds are not
applicable.

We only considered an enrichment to be significant if all of the following criteria were
met:
(1) the test could be performed for at least one-third of the hyperparameter
combinations, ensuring that results were not driven by a single parameter choice;
tests were skipped when the resulting gene set contained fewer than eight or more
than 1000 genes;
(2) at least two-thirds of the valid tests produced P < 0.1; and
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(3) the direction of enrichment was consistent across hyperparameter settings,
thereby excluding cases in which significance arose for different hyperparameter
combinations but with opposing signs.

The output of the cytokine enrichment analysis can be combined with gene
expression information to infer differential cell-cell communication. To infer potential
senders of cytokines we perform a Wilcoxon test for differential gene expression on
cytokine production-associated genes to compare each cell type against all other cell
types. We consider a cell type to be a sender if the adjusted (Benjamini-Hochberg) p
value < 0.1, the log2 fold change is positive and the average gene expression
exceeds 10 cpm. A cell type is considered a receiver if we find significant enrichment
for a cytokine and if the average receptor gene expression exceeds 10 cpm. For
multimeric receptors we apply the expression threshold criterion to the gene with the
lowest average gene expression.

We showcase the usage of our cytokine dictionary on three independent datasets:

Systemic lupus erythematosus
As a first application, we used the enrichment framework to analyze a single-cell
dataset of systemic lupus erythematosus55. The dataset comprises 1,263,676 cells
with expression profiles for 30,933 genes. Cells were obtained from 261 donors
classified by disease status as healthy (99 donors), managed (146), or flare (19); for
10 donors in the flare group, there is a second set of cells available in the
post-treatment (treated) stage. For enrichment analysis, we used the default
hyperparameters and filters described above. For the donor-specific analysis, we
applied a cell type-specific donor filter and only ran the analysis on donors with at
least 20 cells in that cell type. The data was normalized (scanpy.pp.normalize_total)
and log (scanpy.pp.log1p) transformed prior to the enrichment analysis. The
clustering of enrichment results for matched samples was done with
scipy.cluster.hierarchy using the method “average” and euclidean distance as metric.

Multiple Sclerosis
We secondly demonstrate the use of CIPs as well as differential cell-cell
communication on a multiple sclerosis dataset62 comprising 65,326 single cells with
expression profiles for 10,266 genes. The dataset includes cells from individuals with
multiple sclerosis (35,483 cells) and healthy controls (29,843 cells), sampled from
either peripheral blood (21,664 cells) or cerebrospinal fluid (CSF; 21,654 cells).
Before performing enrichment analysis, we normalized total counts per cell
(scanpy.pp.normalize_total) and applied log-transformation (scanpy.pp.log1p).
Enrichment was carried out using the default parameters described above.

Non-small cell lung cell cancer
Third, we apply our dictionary to a spatial transcriptomics dataset generated using
CosMx Spatial Molecular Imaging (Nanostring) from a non-small cell lung cancer
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tumor sample obtained from a single patient73. The dataset contains 340,644 cells,
distributed across six spatial sections and includes 960 genes. We focus on section
28 which contains 58,423 cells. Each cell has a cell type annotation as well as a
niche label, which reflects its neighborhood properties (e.g. cell type composition),
which we use to define contrasts for our enrichment analysis. This dataset is
particularly challenging for our enrichment analysis due to the relatively small gene
panel (relative to the previous non-spatial single cell datasets) and consequently the
reduced gene overlap with our cytokine gene signatures. We introduce an additional
filter criterion and only test enrichment of cytokines for which at least 10% of the
signatures overlap with the genes available in the dataset. Furthermore we
increased the threshold of the first robustness criterion for statistical significance (1)
and required at least 50% of the hyperparameter grid to produce valid results (i.e., to
not be filtered out due to insufficiently small gene sets). All other hyperparameters
were kept at their default values. Prior to the enrichment analysis we normalized the
total counts per cell and log transformed the data as described before.

Code usage example
Usage of huCIRA requires only a few lines of code:
The input transcriptome should include common immune cell types across different
conditions. After loading in your data and the human cytokine dictionary, the
run_one_enrichment_test() function computes cytokine enrichment scores of one
queried immune cell based on gene expression profiles of the chosen conditions, as
demonstrated in the below pseudocode:

import scanpy as sc
import hucira as hc

# 1. Load your data
adata = sc.read_h5ad("your_transcriptome.h5ad")
human_cytokine_dictionary = hc.load_human_cytokine_dict()

# 2. Run cytokine enrichment analysis for B cells between healthy
and diseased patients
enrichment_results = hc.run_one_enrichment_test(

adata = adata,
df_hcd_all = human_cytokine_dictionary,
contrasts_combo = ("healthy", "disease"),
celltype_combo = ("B cell", "B"),
contrast_column = "condition",
celltype_column = "cell_type",
direction = "upregulated",
threshold_expression = 0.0

)

# 3. Investigate enrichment scores of cytokines in your data
enrichment_results
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Statistical analysis

The statistical tests used are described for each analysis in the corresponding text.
Error bars on bar plots show the standard unless otherwise mentioned. Boxplots
show median and interquartile range; whiskers are drawn to the farthest datapoint
within 1.5 times the interquartile range from the nearest hinge.

Data availability

Single cell data will be available at
https://www.parsebiosciences.com/datasets/10-million-human-pbmcs-in-a-single-exp
eriment/. Additional analysis results are made available as Supplementary Tables.
The dataset is available under the CC BY-NC 4.0 license.

Code availability

Code used for the analysis of this study is available on GitHub at
https://github.com/theislab/HumanCytokineDict. Our python package huCIRA is
available at https://github.com/theislab/huCIRA.
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