

The developing premature infant gut microbiome is a major factor shaping the microbiome of neonatal intensive care unit rooms

Brandon Brooks¹, Matthew R. Olm¹, Brian A. Firek², Robyn Baker³, David Geller-McGrath⁴, Sophia R. Reimer⁴, Karina R. Soenjoyo⁴, Jennifer S. Yip⁴, Dylan Dahan^{5,6}, Brian C. Thomas⁴, Michael J. Morowitz², Jillian F. Banfield^{4*}

1 – Department of Plant and Microbial Biology, University of California, Berkeley, CA

2 – University of Pittsburgh School of Medicine, Pittsburgh, PA

3 – Division of Newborn Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA

4 – Department of Earth and Planetary Sciences, University of California, Berkeley, CA

5 – Department of Biology, Bard College, Annandale-on-Hudson, NY, USA

6 – Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA (current location)

* corresponding author: jbanfield@berkeley.edu

18 **1.1 Abstract**

19
20 Background: The neonatal intensive care unit (NICU) contains a unique cohort of patients with
21 underdeveloped immune systems and nascent microbiome communities. Patients often spend
22 several months in the same room and it has been previously shown that the gut microbiomes of
23 these infants often resemble the microbes found in the NICU. Little is known, however, about the
24 identity, persistence and absolute abundance of NICU room-associated bacteria over long stretches
25 of time. Here we couple droplet digital PCR (ddPCR), 16S rRNA gene surveys, and recently
26 published metagenomics data from infant gut samples to infer the extent to which the NICU
27 microbiome is shaped by its room occupants.

28 Results: Over 2,832 swabs, wipes, and air samples were collected from sixteen private-style NICU
29 rooms housing very low birthweight (<1,500 g), premature (<31 weeks' gestation) infants. For
30 each infant, room samples were collected daily, Monday through Friday, for one month. The first
31 samples from the first infant and last samples from the last infant were collected 383 days apart.
32 Twenty-two NICU locations spanning room surfaces, hands, electronics, sink basins, and air were
33 collected. Results point to an incredibly simple room community where 5-10 taxa, mostly skin
34 associated, account for over 50% of 16S reads. Biomass estimates reveal 4-5 orders of magnitude
35 difference between the least to the most dense microbial communities, air and sink basins,
36 respectively. Biomass trends from bioaerosol samples and petri dish dust collectors suggest
37 occupancy to be a main driver of suspended biological particles within the NICU. Using a machine
38 learning algorithm to classify the origin of room samples, we show that each room has a unique
39 microbial fingerprint. Several important taxa driving this model were dominant gut colonizers of
40 infants housed within each room.

41 Conclusions: Despite regular cleaning of hospital surfaces, bacterial biomass was detectable at
42 varying densities. A room specific microbiome signature was detected, suggesting microbes
43 seeding NICU surfaces are sourced from reservoirs within the room and that these reservoirs
44 contain actively dividing cells. Collectively, the data suggests that hospitalized infants, in
45 combination with their caregivers, shape the microbiome of NICU rooms.

46
47 **1.2 Keywords**

48
49 Infant gut, microbiome, built environment, neonatal intensive care unit

50
51 **1.3 Background**

52 Hospital acquired infections (HAIs) remain a major problem in the US. One out of every
53 twenty-five patients will experience a HAI, costing the US approximately \$30 billion per year [1].
54 Infants hospitalized in the neonatal intensive care units (NICU) are particularly susceptible to
55 infection due to their underdeveloped immune systems [2, 3]. To protect against infection, infants
56 are often prescribed antibiotics during the first week of life. In fact, antibiotics are three of the six
57 most commonly administered medications in the NICU [4]. This treatment likely kills microbes
58 acquired during the birthing process [5] and promotes a categorically different colonization pattern
59 in preterm infants relative to full term infants [6]. Preterm infants are often colonized by ESKAPE
60 organisms (*Enterococcus* spp., *Staphylococcus aureus*, *Klebsiella* spp., *Acinetobacter* spp.,
61 *Pseudomonas aeruginosa*, and other Enterobacteriaceae), which are also the most frequent cause
62 of nosocomial infections [7]. The relatively sterile preterm infant gut microbiome and the high
63

frequency at which infants are colonized by hospital associated microbes, creates a valuable study setting to better understand how the room microbiome is shaped by its occupants. Here, we conducted an experiment to quantify and characterize NICU room microbes to enable comparison with microbiomes that develop in the premature infant gut

The source of early stage gut colonizers in preterm infants has been explored to some extent [8–11]. In a pilot study, we tracked two infants over the first month of life, collecting samples from room surfaces and infant fecal samples [12]. Using an amplicon-EMIRGE approach, which allows for recovery of full-length 16S rRNA genes (~1500 b) [13], as opposed to the more common hypervariable region approach (~150-400 b), we detected the same sequences in room samples before they were detected in gut samples. In a much higher resolution genome-resolved metagenomics study we recently showed evidence for the presence of some infant gut associated strains in the NICU room environment and for exchange of those strains between infant and room environments [24].

Recent genomic studies have shown that the vast majority of strains in the premature infant gut are not shared among infants [5]. Nearly 150 strains were recovered from 10 infants' fecal samples and only 4 of these were shared. These samples were collected within a month of each other, suggesting that a multitude of strains are available in the NICU at any given point in time, and only a few strains may be widespread, a conclusion supported by the more recent research [Brooks et al. in revision]. However, a few strains were identified in infant fecal samples collected years apart from different infants housed the same NICU [14]. These were referred to as "persister" strains.

A recent study identified 794 antibiotic resistance genes in preterm infant stool samples, 79% which had not previously been classified as associated with resistance [15]. It is possible that these genes provide a competitive advantage for survival in the highly cleaned room environment [16]. However, in our prior work we found that persister strains, which we infer have a room reservoir, were not found to differ significantly in virulence, antibiotic resistance, or metabolism from non-persister strains.

An important question from the perspective of HAI and microbiome establishment of hospitalized premature infants relates to the diversity and biomass distributions over room environments. To address this knowledge gap, we conducted a study with sixteen infants, whose rooms were sampled Monday through Friday from twenty two room locations. We performed droplet digital PCR (ddPCR) on all room samples to directly quantify biomass (2832 samples in total) to determine how biomass varies in the NICU with additional quantification of negative controls. Overall, the findings provide new information about the NICU microbiome and its relationship to room occupant microbiomes.

2 Methods

2.1 Sample Collection

Infants were enrolled in the study based on the criteria that they were < 33 weeks gestation and were housed in the same physical location within the NICU during the first month of life. Samples were collected Monday through Friday for days of life (DOL) 5-28. Fecal samples were collected from infant diapers and were stored at -20 °C within 10 minutes of collection for short term storage. Shortly after collection, samples were archived and transferred to a -80 °C freezer

109 for long term storage until DNA extraction. All samples were collected after signed guardian
110 consent was obtained, as outlined in our protocol to the ethical research board of the University of
111 Pittsburgh (IRB PRO12100487). This consent included sample collection permissions and consent
112 to publish study findings.

113 All samples were obtained from a private-style NICU at Magee-Womens Hospital of the
114 University of Pittsburgh Medical Center. Twenty-two of the most frequently touched surfaces were
115 determined by visual observation and health care provider interviews in the weeks leading up to
116 sample collection. Microbial cells were removed from most surfaces using nylon FLOQSwabs
117 (Copan Diagnostics, Brescia, Italy) and a sampling buffer of 0.15 M NaCl and 0.1% Tween20.
118 Samples were collected by one research nurse to ensure consistent sampling technique. Ten square
119 centimeters of each surface was sampled or, for smaller surfaces, the entire surface itself (e.g.,
120 isolette knobs and sink basin drain grill). Wipe samples were collected from the floor and exterior
121 top of the isolette using Texwipe TX1086 wipes (Texwipe, Kernersville, NC, USA). Before
122 collecting each wipe sample, the collector would put on latex examination gloves and clean these
123 gloves with an isopropanol wipe. The wiped surface area was approximately forty-eight square
124 centimeters or, for smaller surfaces, the entire surface itself (e.g., isolette top). A wipe was also
125 used to collect microbial cells at the exterior facet of the heating, ventilation and air conditioning
126 (HVAC) system. The wipe was suspended via airflow on the exterior (upstream) face of the
127 MERVE 8 pleated filter, the zone in which supply and return air are mixed before thermal and
128 humidity treatment of the airstream for four days. Features of the HVAC system are described in
129 detail in a recently published paper [18].

130 Air samples were collected using the NIOSH two-stage bioaerosol cyclone 251 sampler
131 [19] and a suspended petri dish method [20]. The NIOSH sampler collected samples continuously
132 Monday through Friday, comprising approximately 96 hours of sampling at 3.5 L/minute (total
133 volume sampled = 20 m³). Petri dish samples were suspended approximately one meter below the
134 drop ceiling in the corner of the room that was the furthest away from the sink. These samplers
135 were maintained in place for the duration of the infant's stay. Petri dish "cooler" samples are plates
136 that were taped to the top of a cooler which collected abiotic aerosol data [18]. At the end of the
137 sample collection period, all samples were placed in a sterile transport tube and stored within 10
138 minutes at -80 °C until further processing.

139

140 2.2 DNA extraction and PCR amplification

141

142 DNA was extracted using either the MO BIO PowerSoil DNA Isolation kit (single tube
143 extractions) or PowerSoil-htp 96 Well DNA Isolation kit (MoBio Laboratories, Carlsbad, CA,
144 USA). For DNA extracted from feces with the 96-well kit fecal samples were kept frozen on dry
145 ice and added to individual wells of the bead plate and stored at -80°C until extraction. The day of
146 extraction Bead Solution and Solution C1 were added and the plates were incubated at 65°C for
147 10 minutes. The plates were shaken on a Retsch Oscillating Mill MM400 with 96-well plate
148 adaptors for 10 minutes at speed 20. The plates were rotated 180° and shaken again for 10 minutes
149 at speed 20. All remaining steps followed the manufacturer's centrifugation protocol. For swab
150 samples the heads were snapped at the perforation into the wells of the bead plate and stored at -
151 80°C. The day of extraction the Bead Solution and Solution C1 were added and the plates were
152 incubated at 65°C for 10 minutes. The plates were shaken on a Retsch Oscillating Mill MM400
153 with 96 well plate adaptors for 5 minutes at speed 20. The plates were rotated 180° and shaken
154 again for 5 minutes at speed 20. The Solution C2 and C3 steps were combined (200 µl of each

155 added) to improve DNA yield. All remaining steps followed the manufacturer's centrifugation
156 protocol.

157 Wipe samples were stored in a sterile 250 mL tissue culture flask upon collection and
158 thawed on ice before extraction. Cells were dislodged from wipes in a protocol adapted from
159 Yamamoto *et al.* [17]. Briefly, 150 mL of dislodging buffer was poured into a flask (1X PBS,
160 0.04% Tween 80, passed through a 0.2 μ m filter) and the flask was shaken vigorously for one
161 minute. Supernatant was then decanted into a 250 mL disposable filter funnel with a pore size of
162 0.2 μ m (Thermo Scientific, Waltham, MA, USA) and the filter was then placed in a MoBio
163 PowerWater extraction tube. PowerWater extraction followed manufacturer recommendations.

164 Droplet digital PCR (ddPCR) was adapted from a method previously published on
165 quantification of 16S rRNA templates in infant fecal samples [5]. The only deviation from the
166 previous method was that a diluted gDNA template of 1:10 instead of 1:1000 was utilized. Both
167 MiSeq library preparation and ddPCR were performed in 96-well plate format. Each plate had
168 three no template PCR controls, one no template extraction control, and three positive controls
169 containing varying concentrations of purified *E. coli* gDNA. Counts from the negative control
170 types were averaged across type and the highest was used to correct for contaminant counts in
171 sample data.

173 2.3 Sequencing preparation and sequencing

174 Genomic DNA from room samples were subjected to 16S rRNA V3-4 MiSeq library
175 preparation which included dual-barcoded multiplexing with a heterogeneity spacer for higher
176 sequence quality [22]. Two microliters of 5X concentrated gDNA template was used in the
177 reaction and run at 35 cycles. Amplicons were purified using the Just-a-Plate PCR normalization
178 and purification kit (Charm Biotech, San Diego, CA, USA). Equal amounts of each sample were
179 sent to the University of California Davis DNA Technologies Core Facility
180 (<http://dnatech.genomecenter.ucdavis.edu>) and run on a MiSeq with v3 300PE chemistry.

181 Illumina library construction for infant fecal samples followed standard protocols at
182 University of California QB3 Vincent J. Coates Genomics Sequencing Core Facility
183 (<http://qb3.berkeley.edu/gsl/>). Briefly, gDNA was sheared using a Covaris to approximately 600
184 bp and 1000 bp. Wafergen's PrepX DNA library prep kits were used in conjunction with the
185 Apollo324 robot following factory recommendations (Integenx). Thirteen cycles of PCR were
186 used during library construction. Libraries were added at 12 samples per lane, in equimolar
187 amounts, to the Illumina HiSeq 2500 platform. Paired-end sequences were obtained with 150
188 cycles and the data processed with Casava version 1.8.2. Raw read data were deposited in the
189 NCBI Short Read Archive (Bioproject PRJNA376566, SRA SUB2433287).

193 2.4 16S amplicon data processing

194 The LotuS 1.562 pipeline in short amplicon mode was used for quality filtering,
195 demultiplexing, and OTU picking [23]. LotuS was run with the following command line options:
196 '-refDB SLV,GG -highmem 1 -p miseq -keepUnclassified 1 -simBasedTaxo lambda -threads 10.'
197 The OTU data was rarefied to 1,000 sequences per sample, without replacement, unless explicitly
198 stated. OTU table and LotuS log files are available in Additional file 1.

201 **2.5 Metagenomic data from infant gut samples**
202

203 For comparative purposes, this study made use of previously published infant metagenomic
204 data from 290 fecal samples collected from infants housed in the NICU rooms studied here (~800
205 Gb of 150 bp paired-end reads). Methods for data analysis are described within this publication
206 [24].
207

208 **3 Results**
209

210 **3.1 Sequencing summary and contamination removal**
211

212 In total, 2832 room samples were processed through a MiSeq library preparation protocol.
213 After quality filtering and demultiplexing, 84,939,529 read pairs were generated. These reads were
214 clustered into 18,093 OTUs. Using a ratio OTU (ROTU) method that leverages biomass
215 quantification and sequencing of negative controls [25], 269 OTUs and 925 samples were removed
216 from the dataset when using an ROTU threshold of 0.001. A second *in silico* contamination
217 cleaning method was applied [26], which removed an additional 323 OTUs and 1 sample. In total,
218 approximately 3% of generated OTUs and 33% of samples present too weak of a signal to
219 confidently distinguish them from negative control signatures.
220

221 **3.2 Biomass and taxonomic variation across petri dish replicates**
222

223 Biological and technical replicates performed for petri dish plates established the
224 reproducibility of extraction of DNA from petri dish swabs and provided evidence for highly
225 reproducible ddPCR measurements (Additional file 2). The highest standard deviation in ddPCR
226 values for biological replicates in a single room was 106,760 copies/sample (infant 6's petri plates;
227 mean = 99,677) and for technical replicates, the largest standard deviation was 15,534
228 copies/sample (infant 12's petri plates, mean = 81,044). The lowest standard deviation for
229 biological replicates was 1,981 copies/sample (infant 1's petri plates, mean = 13,785) and 737
230 copies/sample for technical replicates (infant 11's petri plates, mean = 32,396). Overall, this
231 equates to a reproducibility range of 2.69 to 6.87 \times more reproducibility across technical ddPCR
232 runs relative to biological replicates, with an average reproducibility ratio of 5.37 \times better for
233 technical replicates.
234

235 **3.3 Biomass varies significantly across sample type**
236

237 16S rRNA gene copies were quantified for 2,883 samples using ddPCR and showed day-to-
238 day variation ranging from approximately 4 to 33000 16S rRNA copies/cm² (Figure 1a). Samples
239 from the HVAC system had the highest biomass of all types and bioaerosol samples had the lowest
240 (Additional file 3 a and b). Sinks had the highest biomass of the swabbed samples and hands had
241 the lowest average median template count (Figure 1b). Petri dishes suspended from the ceiling had
242 the lowest biomass relative to other passive dust collectors, whereas the nurse's station dishes
243 contained the highest bacterial load. The infant room consistently had higher template counts than
244 the hallway bioaerosol samples. Overall, the median biomass varied over 4 orders of magnitude
245 across all sample types.

246
247

248 **3.4 Skin associated taxa dominate the NICU surface environment**

249

250 The microbial communities in most NICU environments were highly uneven and were
251 dominated by 5-10 OTUs (Figure 2). 41% and 55% of all amplicon reads belong to the top five
252 and ten OTUs in the NICU, respectively (Figure 2 and Table 1). Most of these taxa are human
253 associated with many commonly associated with the skin (*Corynebacterium*), mouth
254 (*Streptococcus*), or nose (*Staphylococcus*). SourceTracker v1.0.1 [27] was run using skin, oral,
255 and fecal samples from the American Gut project as the putative source database with NICU
256 samples labeled as “sink” samples. Skin was the most likely contributor to taxa in the NICU,
257 accounting for upwards of 50% of the most probable sources, followed by oral and fecal samples
258 (Additional file 4).

259 Samples collected from the HVAC system had the highest bacterial diversity with 405
260 OTUs on average per sample, whereas bioaerosol samples had the lowest, with 13 (Additional file
261 5a). The HVAC samples had the highest Shannon community evenness, followed by floor wipes,
262 and the bioaerosol samples had the lowest Shannon diversity (Additional file 5b). Thus, overall,
263 the HVAC had highly even consortia with high diversity. This is expected due to the way that the
264 HVAC sample was collected, with metric tons of air passing through the collection wipe before
265 sequencing [18]. The NICU room air was also found to have low biomass and low diversity, with
266 strong dominance by members of the *Aeromonadaceae* in the small size fraction and
267 *Streptococcaceae*, *Rhizobiaceae*, *Clostridiaceae* in the large size fraction.

268 All touched surfaces had similar numbers of OTUs per sample, although the surface
269 monitors showed the most unevenness (Additional file 5). These surfaces were dominated by
270 similar groups of microbes. Although many touched surfaces were associated with skin-associated
271 bacteria, gut associated Enterobacteriaceae OTUs also dominated environments such as the surface
272 monitors, counter tops, and scanners (Figure 2). In contrast, the sink basins had comparatively low
273 numbers of OTUs per sample (Additional file 5a), in part due to the high dominance by four
274 bacterial groups (Figure 2).

275

276 **3.5 Biomass suggests growth patterns in sink basins**

277

278 A range of 29 to 38 sink basin samples per weekday were collected from 14 unique sink
279 basins. When comparing biomass trends across days (Figure 3a), a distinct pattern of decreasing
280 biomass is apparent in sink samples relative to other swabbed environments. In comparing
281 Shannon diversity across weekdays (Figure 3b), bacterial diversity in Tuesday versus Friday
282 samples were the most distinct, whereas biomass was most different in Monday versus Thursday
283 samples (Wilcoxon rank sum, Bonferroni adjusted $p = 0.47$ and 0.012 , respectively). Sink basins
284 were cleaned approximately every twenty-four hours, but less frequently on the weekends, so the
285 elevated biomass at the beginning of the week may be due to regrowth of sink adapted taxa
286 throughout the weekend (e.g., *Rhizobiaceae*, *Pseudomonas*, *Aeromonas*, and *Enterobacteriaceae*).
287 The increase in Shannon diversity from Monday to Friday strengthens this inference.

288

289 **3.6 NICU rooms harbor a unique microbial signature**

290

291 Using a support vector machine (SVM) classifier with a linear kernel [28], we determined

292 that each room's microbiome contained a unique microbial fingerprint. We could predict the room
293 origins with an overall accuracy of 56% (when we knew the room's origin but withheld that
294 information from the classifier), which is 5x better than random chance (Figure 4). The use of
295 ROTU over a standard pipeline achieved an increase in accuracy of approximately 16%. Typically,
296 the most confusion occurred between samples that were collected at similar times, although infants
297 that had similar gut communities had decreased prediction accuracy (e.g. infants 2, 3, and 8).
298 Important OTUs driving the SVM model are plotted and listed in Additional file 6 and Table 2.
299 Interestingly, there is an overlap between room specific OTUs that drive the SVM model and
300 occurrence of these taxa in the gut of infant occupants. For example, the most visible signature in
301 SVM taxa comes from a spike in *Veillonella* in infant 6's room on DOL 18 (Additional file 6). A
302 major increase of *Veillonella* in infant 6's gut occurred on DOL 16 (ref
303 http://ggkbase.berkeley.edu/project_groups/human-gut-metagenome-sloan-infants and Additional
304 file 7). The same pattern is seen for infant 8, and in fact, most infants that contain *Veillonella* have
305 strong SVM signals associated with their room. The second strongest signal from the SVM model
306 comes from a *Clostridium* OTU. This group is present in infants 2, 3, and 8's room samples and it
307 strongly contributes to the SVM model prediction. All three of these infants have high abundances
308 of *Clostridium*.
309

310 **3.7 Composition of persister taxa in the room echoes infant gut composition**

311 To visualize the distribution of families with representative strains known to persist in infants
312 over multi-year periods [14, 15], we collapsed each study day and infant pairing by averaging all
313 amplicon abundance data across environments (Additional file 8, "average" panel). In this
314 analysis, the subset of all OTUs that belonged to a persister family was assigned a distinct color
315 but often one OTU could be distinguished within a family. However, due to high abundance, we
316 gave OTU_5 (an *Enterobacteriaceae*) dedicated coloring. Surprisingly, persister families account
317 for > 50% of the data at many time points.
318

319 Episodes of particularly high persister family abundance occurred in rooms housing infants
320 1, 9, 12, and 16. To better visualize which samples contributed to the averaged data (Additional
321 file 8, "average" panel), we also plotted data for the specific environments for which we had the
322 most samples (armrests and sinks). Both the armrests and sinks are dominated by these groups of
323 organisms during these episodes, but *Staphylococcaceae* OTUs are much more abundant in
324 armrest samples relative to sinks. Two dominant *Pseudomonas* OTUs that comprised 70% and
325 24% of all *Pseudomonadaceae* (OTU_8 and OTU_15, respectively) were detected throughout the
326 time series, but were at very low abundance in armrest samples over long time spans.
327

328 **Composition of persister taxa in infant 9**

329 Since the room data for infant 9 had a strong signal for persister groups, we analyzed samples
330 from all environments separately to visualize temporal patterns (Figure 5a). Persister groups
331 dominated most of infant 9's room samples, with cellphones having the fewest and scanner and
332 surface counter samples having the most persister groups per sample. The red lines in Figure 5a
333 highlight the time point where a major increase in relative abundance of *Enterobacteriaceae* taxa
334 occurred in infant 9's gut (Figure 5b and Additional file 7). This group is present in multiple room
335 environments prior to the increase, particularly associated with the isolette and armrest. At
336 subsequent time points, this group becomes highly prominent in some room environments (e.g.,
337

338 scanner and surface counter).

339 OTUs belonging to the persister groups cannot be confidently classified genus level via 16S
340 rRNA gene sequencing [29], and since *Enterobacteriaceae* dominates the gut of infant 9, we
341 leveraged room and fecal sample context to infer a possible identity for OTU_5. Using OTU_5's
342 reference sequence as a query, we ran ublast [30] on a database of 16S rRNA genes reassembled
343 from infant 9's fecal metagenomic samples using the REAGO algorithm (Yuan *et al.*, 2015). The
344 top hit to our 429 bp query was 99.5% identical (2 mismatches) and came from several of infant
345 9's fecal samples. Most of the top hits have the entire 16S rRNA gene recovered from the REAGO
346 assembly (~1,520 bp). These fecal sequences were searched against the Silva database
347 (SLV_119_SSU) and returned identical, full-length matches to *Klebsiella pneumoniae*. While this
348 is an extrapolation from the V3-4 region, it is possible that OTU_5 in the room is a *Klebsiella* and
349 may be *Klebsiella pneumoniae*, the dominant bacterium colonizing infant 9.

350 4 Discussion

351 The first question that we aimed to answer in this study related to how biomass varies across
352 a NICU. Using ddPCR to quantify 16S rRNA gene copy number, we show biomass density varies
353 across NICU surfaces by 4-5 orders of magnitude (Figure 1). Surprisingly, the floor in front of the
354 infant's isolette had the highest density of microbes relative to any other environment within the
355 NICU. Naively, it may seem intuitive that the region with the most foot traffic, e.g. the floor at the
356 main entrance of the NICU, would have the highest biomass. While the main entrance floor has a
357 high density, it is significantly lower than the floor in front of the isolette. This finding may be due
358 to the increased occupancy at the isolette versus the main entrance, where occupancy is more
359 transient.

360 Petri dish data also suggest that higher levels of human activity drive higher amounts of
361 microbial deposition in the room environment. The nursing station has higher petri dish-associated
362 biomass than the infant room, followed by the hallway (Figure 1). This outcome occurred despite
363 the fact that the infant room and hallway coolers collected dust at the same height (1 m), whereas
364 the nurse station collector was at approximately double the height (1.8 m). As height above the
365 floor increases, detection of resuspended particles from dust decreases exponentially [32, 33]. This
366 finding suggests that floor dust is not the main source of biological particles accumulated in the
367 petri dishes, but rather the microbes are human-derived. Greater occupancy or rigor of activity
368 [34] at the nursing station compared to the infant room and hallway likely explains this result.

369 A recently published study noted a stronger occupancy signal from the occupancy sensors in
370 the infant room compared to the hallway [18]. The occupancy signal directly overlapped with the
371 coarse particle signal (which detected particles > 10 μm in diameter). This signal was interpreted
372 to indicate that resuspension or deposition of particles from occupants is the largest contributor of
373 aerosolized particles in the NICU. In the current study, our Petri dish ceiling analyses suggest a
374 similar conclusion for settled particles, but in this case based on biological data.

375 If occupancy is a key feature of the NICU environment, one would expect human associated
376 microbes to dominate in most room environments. We found that 5-10 OTUs account for most of
377 the amplicon data and a majority of these are typically skin, nose, or fecal associated (Figure 2).
378 The enrichment of human associated taxa is likely due to tight control of the building envelope via
379 HVAC treatment [35] combined with a strict cleaning schedule.

380 An interesting finding of this study related to the change in biomass and microbial
381 community structure of the sink basins over the course of the week. We attribute this pattern to
382 the room cleaning regime, which is more limited on weekend days than during the week. On

384 Mondays, the sink biomass is highest (Figure 3a) and communities are relatively uneven (Figure
385 3b), presumably due to extensive growth of a few sink-associated taxa over the weekend. More
386 intensive cleaning of the sink early in the week likely removes the majority of biomass, which is
387 comprised of the sink-adapted taxa and enables detection of a wider diversity of low abundance,
388 poorly adapted or transient, taxa.

389 The second question addressed in our study related to the taxa that dominate NICU surfaces.
390 To investigate this, it was necessary to adapt a method to eliminate spurious contaminant-based
391 signals in data from low biomass samples [25]. The ROTU cleaning method implemented here to
392 clean data of spurious OTUs and contaminants *in silico* was made possible due to the availability
393 of ddPCR quantification of negative controls. This capability is particularly important for NICU
394 studies since the rooms are cleaned regularly, causing low biomass levels to be present in many
395 samples. Some of the bacteria that we conclude were introduced in sample processing are skin
396 associated, although many types of taxa were encountered. After accounting for contamination,
397 we conclude that human associated taxa dominate most surfaces.

398 Human associated taxa are likely sourced and trafficked throughout the NICU by healthcare
399 providers [36] and many hand hygiene studies have reported as much [37]. Here, we implemented
400 a machine learning classifier to address the possibility that infants and their caretakers shape the
401 microbiome to be distinctive in each room. Our model reliably classified samples of unknown
402 origin to their correct room-infant pair at an accuracy two times better than a recently published
403 office microbiome study [28] and achieved predictive power five times better than random chance.
404 This outcome suggests that NICU rooms are more personalized than other common built
405 environments. There are typically a larger variety of activities and people in office spaces and air
406 treatment is less (lower air exchange rates and less filtration). The combination of less frequent
407 cleaning, increased occupancy, and more unfiltered outdoor air supply drives many of the
408 differences between other common indoor environments and the NICU. The more unique room
409 signal based on NICU room microbes suggests a localized source of bacteria, since a more diffuse
410 source would lower prediction accuracy. A similar result was recently described in a microbiome
411 study conducted in a Chicago hospital [38]. Microbial community similarity increased between
412 patients' hand and floor samples over time, highlighting the exchange between patient and room.
413 Interestingly, infants in this cohort are rarely removed from their isolettes, so room specific
414 microbiomes were likely mediated by health care providers, rather than direct infant interaction
415 with surrounding room surfaces.

416 Finally, we tested for patterns of association between room occupants and NICU room
417 environments. We found that many taxa driving our machine learning model for the room
418 microbiome were from groups also present in the gut of the infant occupant. Other signals came
419 from *Firmicutes* and *Actinobacteria* not affiliated with the infant gut and that were relatively
420 uniquely detected in certain rooms. Focusing on the subset of taxa that are gut colonizers, we show
421 a relatively high abundance of these taxa throughout the sampling campaign (Additional file 8).
422 Episodes where persistent families increase and 2-3 OTUs comprise > 30% of the data across all
423 environments occurred several times throughout the study (e.g., in infants 9, 12, and 16). These
424 OTUs are detected in low abundance in the room before detection in the gut (Figure 5). Once in
425 the infant gut, a far more favorable environment for growth and reproduction than on exposed
426 hospital surfaces, bacterial density can reach nearly 10 billion cells per gram [5]. After a spike in
427 relative abundance in the gut, we see these organisms increase in abundance in the room
428 environment. It is impossible to resolve room 16S rRNA amplicon data to the strain-level in order
429 to make claims that the same gut bloom resulted in a subsequent expanded appearance in the room.

430 Potentially, infant 9's dominant gut *Klebsiella pneumonia* may be linked to an increased
431 abundance of Enterobacteriaceae in the room. Interestingly, the same strain of *K. pneumoniae*
432 found in the gut was detected years apart in different infants within this NICU [14].
433

434 **5 Conclusions**

435

436 Based on the current study, we conclude that two factors shape room microbiomes. First,
437 our taxa identifications and occupancy results extend prior findings of a strong link between human
438 activity levels and room microbiology [12, 18, 24, 34] In fact, this connection appears to be strong
439 enough to give rise to a relatively unique room microbiome character. Second, environmental
440 stresses, likely associated with cleaning [12, 16, 39–41], likely selectively shape NICU
441 microbiomes, primarily by selecting for microbial specialists that can both thrive in the gut and
442 tolerate the NICU environment. While daily cleaning substantially lowers the bioburden in the
443 NICU [42], the harshest cleaning methods cannot sterilize hospital surfaces [7]. Creative new
444 approaches to displace or prevent entrenchment of these NICU specialists, possibly through
445 prebiotic building materials or clever probiotics, may present opportunities to break the room-
446 occupant cycle.
447

448 **6 Declarations**

449

450

451 **7 Ethics approval and consent to participate**

452

453 All samples were collected after signed guardian consent was obtained, as outlined in our
454 protocol to the ethical research board of the University of Pittsburgh (IRB PRO12100487). This
455 consent included sample collection permissions and consent to publish study findings.
456

457 **8 Consent for publication**

458

459 Consent was obtained to publish study findings (IRB PRO12100487).
460

461 **9 Availability of data and materials**

462

463 Raw read data were deposited in the NCBI Short Read Archive (Bioproject PRJNA376566, SRA
464 SUB2433287). OTU table and LotuS log files are available at <https://goo.gl/zQf7FY>.
465

466 **10 Competing Interests**

467

468 The authors declare that they have no competing interests.
469

470 **11 Funding**

471

472 Funding was provided through the Alfred P. Sloan Foundation under grant APSF-2012-10-05, NIH under grant 5R01AI092531 and the National Science Foundation's Graduate Research Fellowship Program to BB and MRO. This work used the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 OD018174 Instrumentation Grant.

473

474

475

476

477 **12 Authors' Contributions**

478

479 JFB, MJM, and BB conceived of the project. RB organized cohort recruitment and sample

480 collections. BAF conducted nucleic acid extractions. BB, DG, SRR, KRS, and DD conducted

481 ddPCR quantifications and MiSeq library preparations. BB conducted the metagenomic

482 assemblies, BCT provided bioinformatics support and MRO contributed to data analysis. BB and

483 JFB wrote the final manuscript. All authors have read and approved the manuscript.

484

485 **13 Acknowledgments**

486

487 **14 References**

488

489 **1. Healthcare-associated Infections**

490 [<http://www.cdc.gov/winnablebattles/healthcareassociatedinfections/>]

491 2. Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic
492 B, Gold MJ, Britton HM, Lefebvre DL, Subbarao P, Mandhane P, Becker A, McNagny KM,
493 Sears MR, Kollmann T, Mohn WW, Turvey SE, Brett Finlay B: **Early infancy microbial and**
494 **metabolic alterations affect risk of childhood asthma.** *Sci Transl Med* 2015, **7**:307ra152.

495 3. Cahenzli J, Köller Y, Wyss M, Geuking MB, McCoy KD: **Intestinal microbial diversity**
496 **during early-life colonization shapes long-term IgE levels.** *Cell Host Microbe* 2013, **14**:559–
497 570.

498 4. Gasparrini AJ, Crofts TS, Gibson MK, Tarr PI, Warner BB, Dantas G: **Antibiotic**
499 **perturbation of the preterm infant gut microbiome and resistome.** *Gut Microbes* 2016,
500 7:443–9.

501 5. Raveh-Sadka T, Thomas BC, Singh A, Firek B, Brooks B, Castelle CJ, Sharon I, Baker R,
502 Good M, Morowitz MJ, Banfield JF: **Gut bacteria are rarely shared by co-hospitalized**
503 **premature infants, regardless of necrotizing enterocolitis development.** *Elife* 2015, **2015**:1–
504 25.

505 6. Groer MW, Luciano AA, Dishaw LJ, Ashmeade TL, Miller E, Gilbert JA: **Development of**
506 **the preterm infant gut microbiome: a research priority.** *Microbiome* 2014, **2**:38.

507 7. Hu H, Johani K, Gosbell IB, Jacombs ASW, Almatroudi A, Whiteley GS, Deva AK, Jensen S,
508 Vickery K: **Intensive care unit environmental surfaces are contaminated by multidrug-**
509 **resistant bacteria in biofilms: Combined results of conventional culture, pyrosequencing,**
510 **scanning electron microscopy, and confocal laser microscopy.** *J Hosp Infect* 2015, **91**:35–44.

511 8. Shin H, Pei Z, Martinez KA, Rivera-Vinas JI, Mendez K, Cavallin H, Dominguez-Bello MG:
512 **The first microbial environment of infants born by C-section: the operating room**
513 **microbes.** *Microbiome* 2015, **3**:59.

514 9. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H,
515 Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding
516 C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Jun W:
517 **Dynamics and stabilization of the human gut microbiome during the first year of life.** *Cell*
518 *Host Microbe* 2015, **17**:690–703.

519 10. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM: **Maturation of the**
520 **infant microbiome community structure and function across multiple body sites and in**
521 **relation to mode of delivery.** *Nat Publ Gr* 2017(August 2016).

522 11. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R:
523 **Delivery mode shapes the acquisition and structure of the initial microbiota across multiple**
524 **body habitats in newborns.** *Proc Natl Acad Sci U S A* 2010, **107**:11971–5.

525 12. Brooks B, Firek BBA, Miller CCS, Sharon I, Thomas BC, Baker R, Morowitz MJ, Banfield
526 JF: **Microbes in the neonatal intensive care unit resemble those found in the gut of**
527 **premature infants.** *Microbiome* 2014, **2**:1.

528 13. Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF: **EMIRGE: reconstruction of**
529 **full-length ribosomal genes from microbial community short read sequencing data.** *Genome*
530 *Biol* 2011, **12**:R44.

531 14. Raveh-Sadka T, Firek B, Sharon I, Baker R, Brown CT, Thomas BC, Morowitz MJ, Banfield
532 JF: **Evidence for persistent and shared bacterial strains against a background of largely**
533 **unique gut colonization in hospitalized premature infants.** *ISME J* 2016, **10**:2817–2830.

534 15. Gibson MK, Wang B, Ahmadi S, Burnham C-AD, Tarr PI, Warner BB, Dantas G:
535 **Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome.** *Nat*
536 *Microbiol* 2016, **1**:16024.

537 16. Buffet-Bataillon S, Branger B, Cormier M, Bonnaure-Mallet M, Jolivet-Gougeon A: **Effect**
538 **of higher minimum inhibitory concentrations of quaternary ammonium compounds in**
539 **clinical *E. coli* isolates on antibiotic susceptibilities and clinical outcomes.** *J Hosp Infect*
540 2011, **79**:141–6.

541 17. **Strain-resolved community genomic analysis of gut microbial colonization in a**
542 **premature infant Michael J. Morowitz.** 2010.

543 18. Licina D, Bhagat S, Brooks B, Baker R, Firek B, Tang X, Morowitz MJ, Banfield JF,
544 Nazaroff WW, Berkeley UC, Jillian F, William W: **Concentrations and sources of airborne**
545 **particles in a neonatal intensive care unit.** *PLoS One* 2016, **11**:e0154991.

546 19. Lindsley WG, Blachere FM, Thewlis RE, Vishnu A, Davis KA, Cao G, Palmer JE, Clark
547 KE, Fisher MA, Khakoo R, Beezhold DH: **Measurements of airborne influenza virus in**
548 **aerosol particles from human coughs.** *PLoS One* 2010, **5**:e15100.

549 20. Adams RI, Miletto M, Taylor JW, Bruns TD: **Dispersal in microbes: fungi in indoor air**
550 **are dominated by outdoor air and show dispersal limitation at short distances.** *ISME J*
551 2013, **7**:1262–73.

552 21. Yamamoto N, Shendell DG, Peccia J: **Assessing allergenic fungi in house dust by floor**
553 **wipe sampling and quantitative PCR.** *Indoor Air* 2011, **21**:521–30.

554 22. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J: **An improved**
555 **dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq**
556 **platform.** *Microbiome* 2014, **2**:6.

557 23. Hildebrand F, Tadeo R, Voigt AY, Bork P, Raes J: **LotuS: an efficient and user-friendly**
558 **OTU processing pipeline.** *Microbiome* 2014, **2**:1–7.

559 24. Brooks B, Olm MR, Firek BA, Baker R, Thomas BC, Morowitz MJ, Banfield JF: **Strain-**

560 **resolved analysis of hospital rooms and infants reveals overlap between the human and**
561 **room microbiome.** *Nat Commun* 2017, **In Review.**

562 25. Lazarevic V, Gaia N, Girard M, Schrenzel J: **Decontamination of 16S rRNA gene**
563 **amplicon sequence datasets based on bacterial load assessment by qPCR.** *BMC Microbiol*
564 2016, **16**:73.

565 26. Meadow JF, Altrichter AE, Bateman AC, Stenson J, Brown G, Green JL, Bohannan BJM:
566 **Humans differ in their personal microbial cloud.** *PeerJ* 2015, **3**:e1258.

567 27. Knights D, Kuczynski J, Charlson E, Zaneveld J, Mozer MC, Collman RG, Bushman FD,
568 Knight R, Kelley ST: **Bayesian community-wide culture-independent microbial source**
569 **tracking.** *Nat Methods* 2011, **8**:761–3.

570 28. Chase J, Fouquier J, Zare M, Sonderegger DL, Knight R, Kelley ST, Siegel J, Caporaso JG:
571 **Geography and location are the primary drivers of office microbiome composition.**
572 *mSystems* 2016, **1**:e00022-16.

573 29. Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S, Mitchel T, Perry T, Kao D, Mason AL,
574 Madsen KL, Wong GKS: **Characterization of the gut microbiome using 16S or shotgun**
575 **metagenomics.** *Front Microbiol* 2016, **7**(APR):1–17.

576 30. Edgar RC: **Search and clustering orders of magnitude faster than BLAST.**
577 *Bioinformatics* 2010, **26**:2460–1.

578 31. Yuan C, Lei J, Cole J, Sun Y: **Reconstructing 16S rRNA genes in metagenomic data.**
579 *Bioinformatics* 2015, **31**:i35–i43.

580 32. Luoma M, Batterman SA: **Characterization of particulate emissions from occupant**
581 **activities in offices.** *Indoor Air* 2001, **11**:35–48.

582 33. Fairchild CI, Tillery MI: **Wind tunnel measurements of the resuspension of ideal**
583 **particles.** *Atmos Environ* 1982, **16**:229–38.

584 34. Bhangar S, Brooks B, Firek B, Licina D, Tang X, Morowitz MJ, Banfield JF, Nazaroff WW:
585 **Pilot study of sources and concentrations of size-resolved airborne particles in a neonatal**
586 **intensive care unit.** *Build Environ* 2016, **106**:10–19.

587 35. Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, Bohannan BJ, Brown
588 GZ, Green JL: **Architectural design influences the diversity and structure of the built**
589 **environment microbiome.** *ISME J* 2012, **6**:1469–79.

590 36. Kembel SW, Meadow JF, O'Connor TK, Mhuireach G, Northcutt D, Kline J, Moriyama M,
591 Brown GZ, Bohannan BJM, Green JL: **Architectural design drives the biogeography of**
592 **indoor bacterial communities.** *PLoS One* 2014, **9**:e87093.

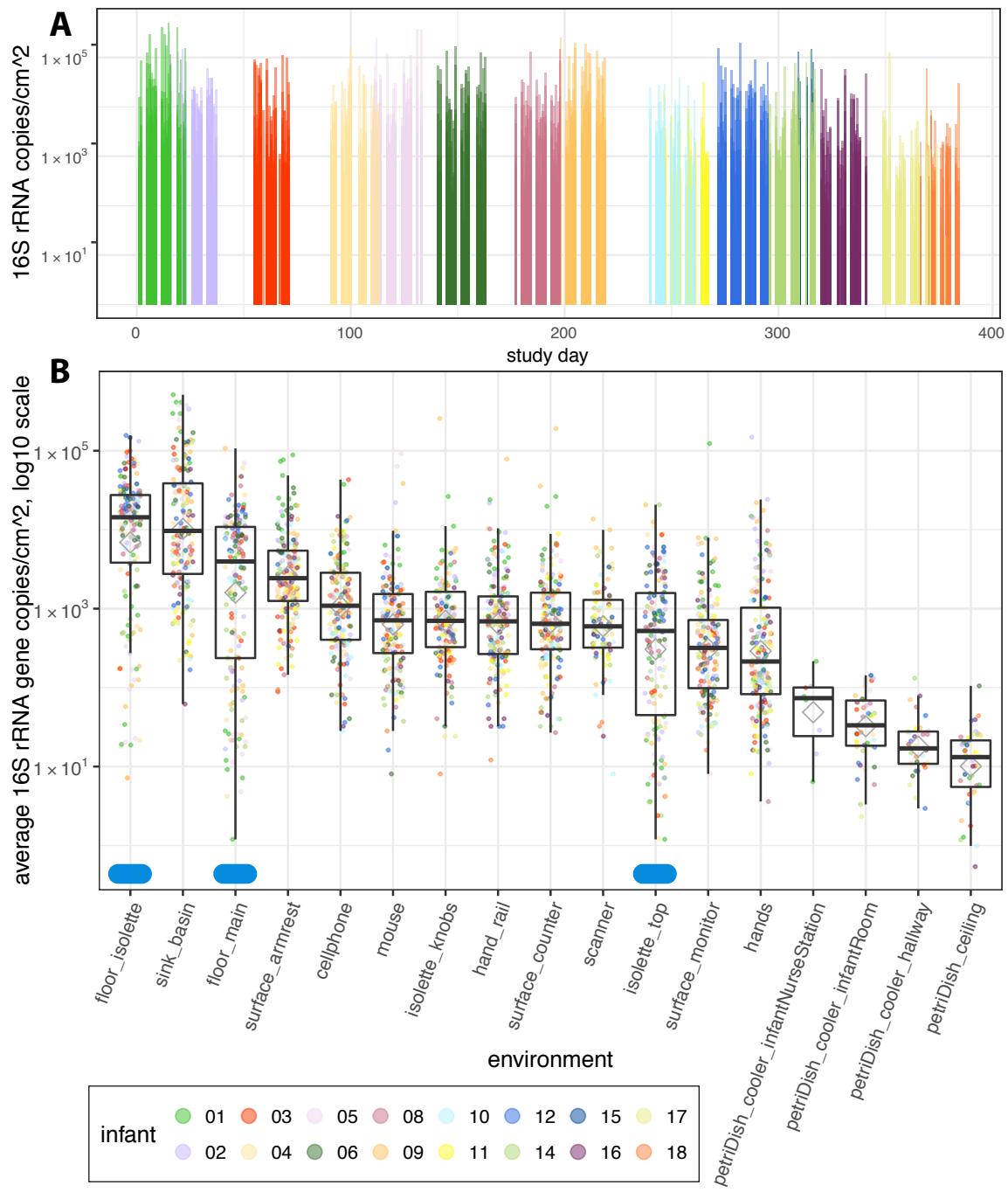
593 37. Luangasanatip N, Hongsuwan M, Limmathurotsakul D, Lubell Y, Lee AS, Harbarth S, Day
594 NPJ, Graves N, Cooper BS: **Comparative efficacy of interventions to promote hand hygiene**
595 **in hospital: systematic review and network meta-analysis.** *BMJ* 2015, **351**:h3728.

596 38. Lax S, Sangwan N, Smith D, Larsen P, Handley KM, Richardson M, Guyton K, Krezalek M,
597 Shogan BD, Defazio J, Flemming I, Shakhsheer B, Weber S, Landon E, Garcia-Houchins S,
598 Siegel J, Alverdy J, Knight R, Stephens B, Gilbert JA: **Bacterial colonization and succession in**
599 **a newly opened hospital.** *Sci Transl Med* 2017, **9**:1–11.

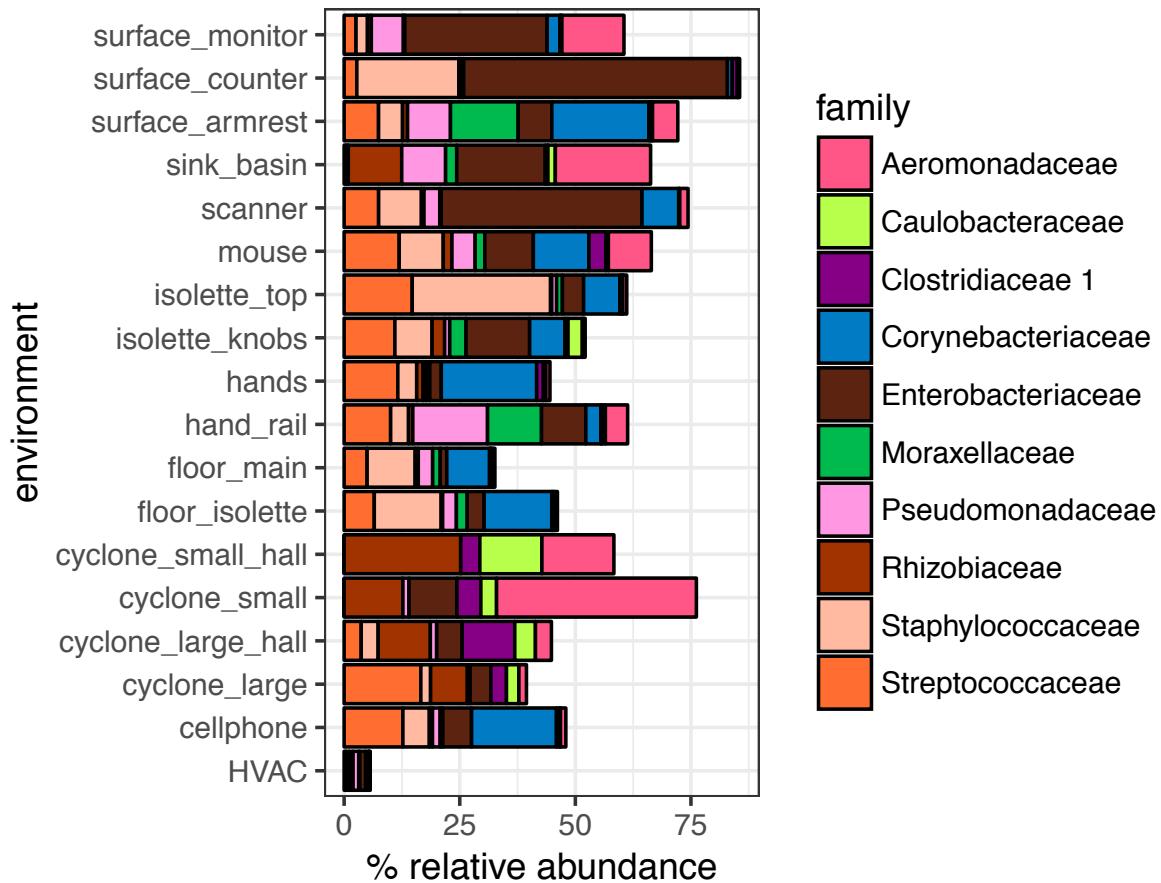
600 39. Romanova NA, Gawande P V, Brovko LY, Griffiths MW: **Rapid methods to assess**
601 **sanitizing efficacy of benzalkonium chloride to *Listeria monocytogenes* biofilms.** *J Microbiol*
602 *Methods* 2007, **71**:231–7.

603 40. Weiss-Muszkat M, Shakh D, Zhou Y, Pinto R, Belausov E, Chapman MR, Sela S: **Biofilm**
604 **formation by and multicellular behavior of *Escherichia coli* O55:H7, an atypical**
605 **enteropathogenic strain.** *Appl Environ Microbiol* 2010, **76**:1545–54.

606 41. Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI: **Aminoglycoside**
607 **antibiotics induce bacterial biofilm formation.** *Nature* 2005, **436**:1171–5.

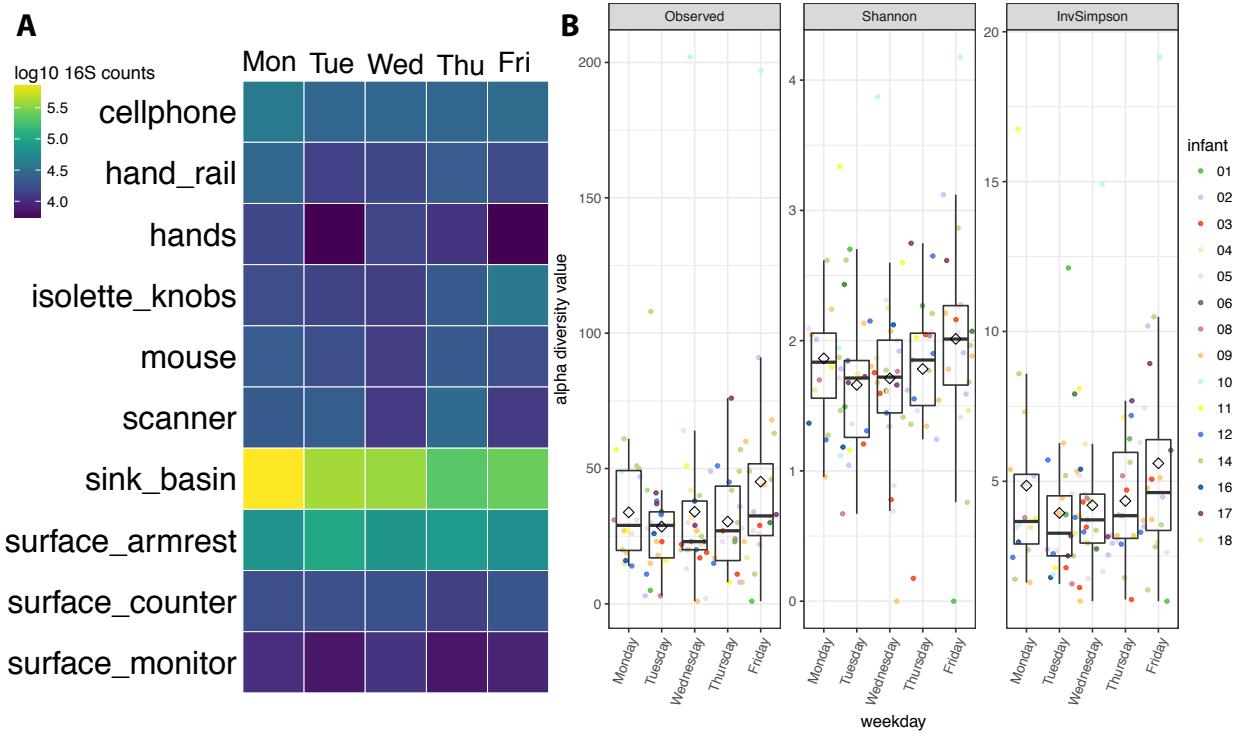

608 42. Bokulich NA, Mills DA, Underwood M a.: **Surface microbes in the neonatal intensive**
609 **care unit: Changes with routine cleaning and over time.** *J Clin Microbiol* 2013, **51**:2617–24.

610

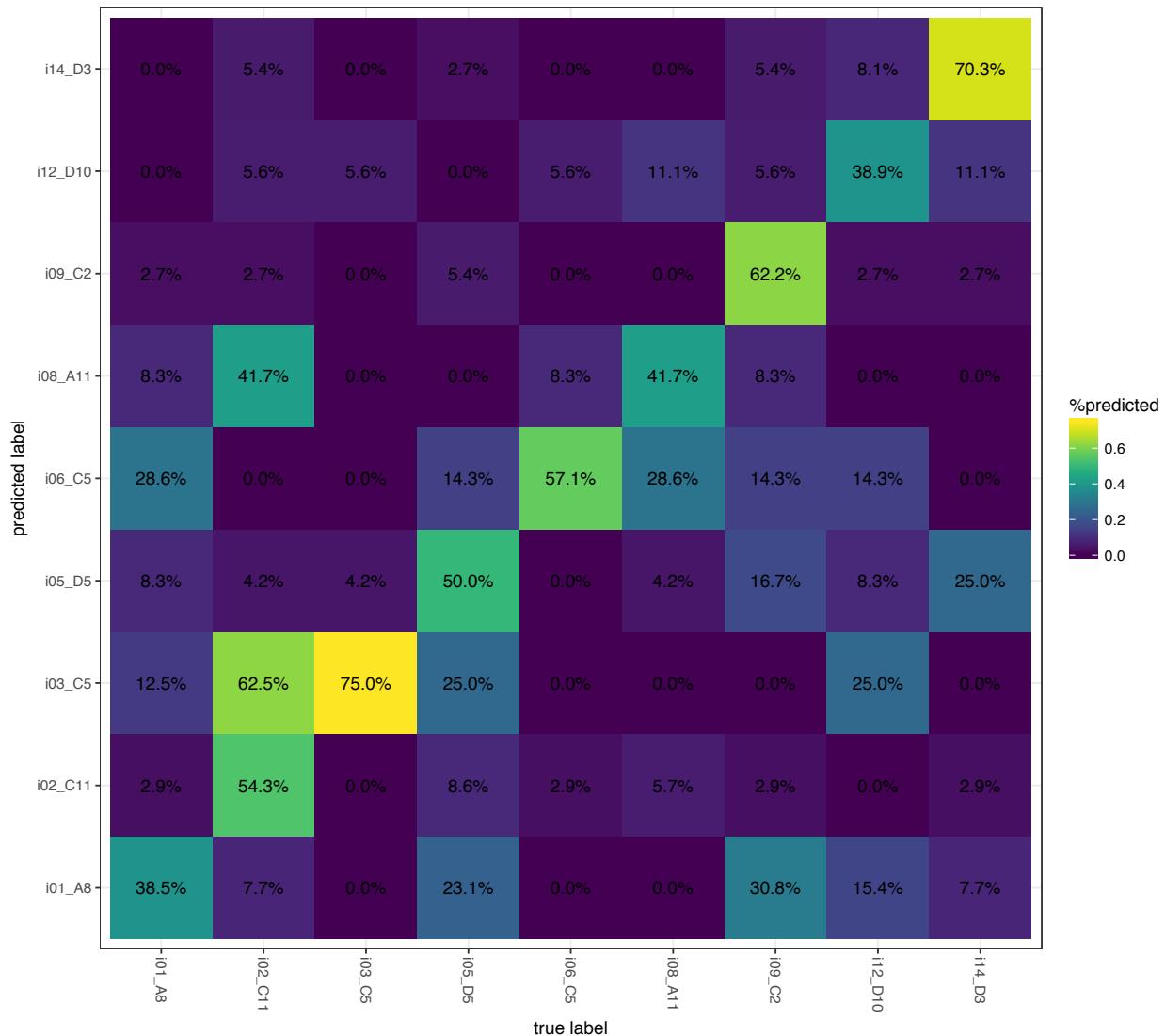

611

612 15 Figure legends

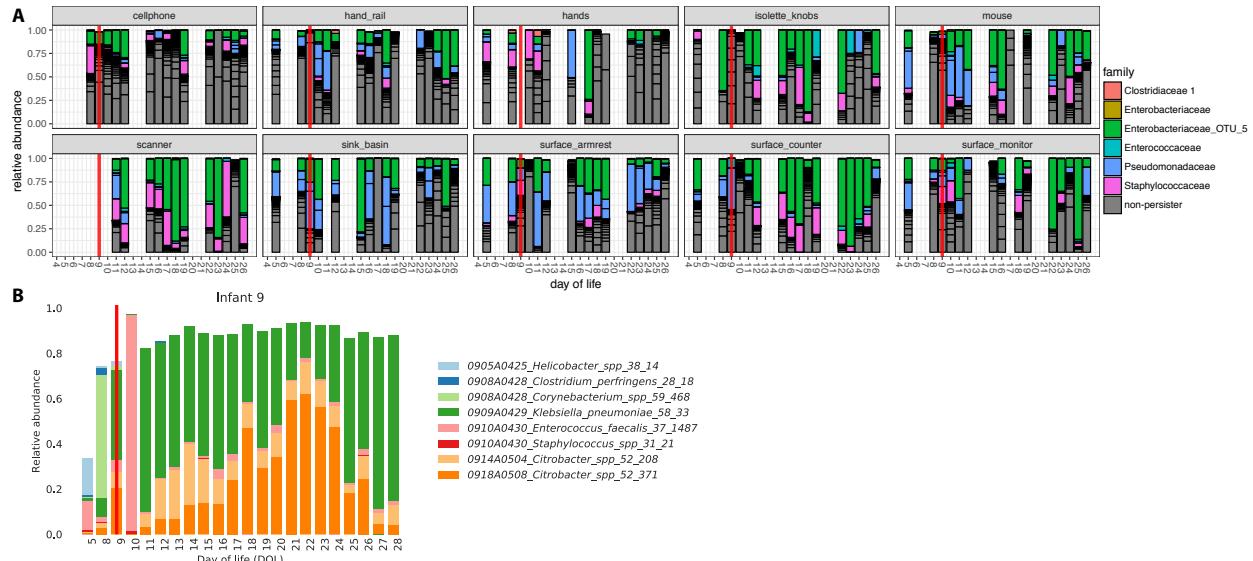
Figure 1: **Biomass varies by 4-5 orders of magnitude in a NICU.** 16S rRNA template copy number was quantified via ddPCR. (A) Biomass was averaged across all swab and wipe samples for each sampling day and plotted on a timeline to visualize variation in biomass over the sampling campaign. (B) Each dot reflects the average across triplicate runs. Grey diamonds represent averages per environment. Blue ellipses along the x-axis represent samples collected using a wipe method. All other samples were collected with swabs or using a petri plate to collect settled dust (noted in label). All counts are normalized to represent one day of collection.



622 Figure 2: **Top 10 NICU OTUs comprise > 50% of NICU taxa.** Amplicon data from a 16S
623 rRNA V3-4 workflow is plotted for each environment. Only the top 10 OTUs, determined from
624 averages across all samples, are plotted. Each OTU is colored by its family-level classification.


625
626
627

628 Figure 3: **Growth detected in NICU sink samples.** 16S rRNA template copy number was
 629 quantified via ddPCR. Average copy number was averaged for each weekday and swabbed
 630 environment and displayed in this heatmap (a). 16S rRNA amplicon data was used to calculate
 631 number of OTUs, Shannon, and Inverse Simpson diversity metrics for sink basin samples (b).
 632 Black diamonds represent averages per weekday.


633
 634
 635

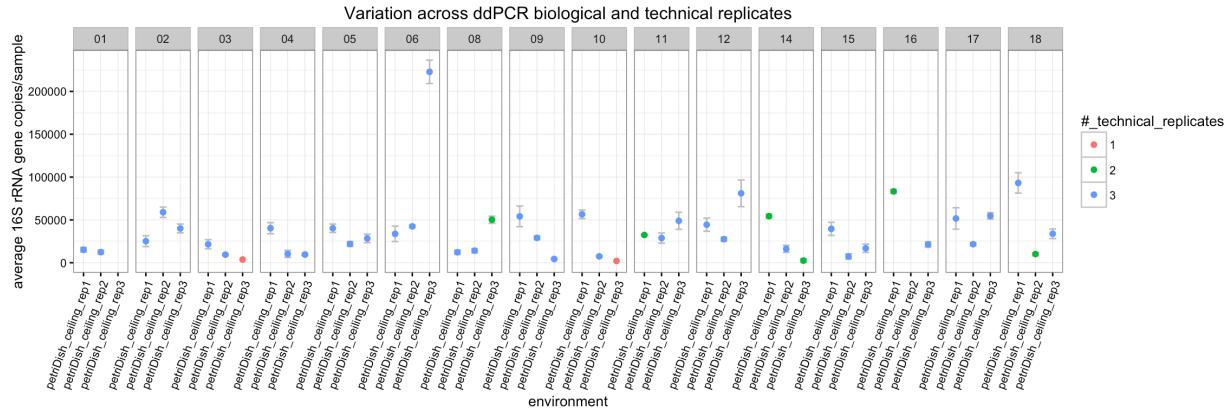
636 Figure 4: **NICU rooms have a unique microbial signature.** 16S rRNA amplicon data was split
 637 into training, test, and validation sets to train, test, and validate a support vector machine classifier.
 638 The confusion matrix plots the accuracy of our model on the validation dataset. Percentages note
 639 the number of times a sample was predicted to belong to a room-infant pairing divided the total
 640 number of samples for that room-infant pairing. The heat coloring is based on shown percentages.

641
 642
 643

644 Figure 5: **'Persister taxa in the room reflect composition of the infant gut.** Infant 9's room
 645 amplicons are plotted for each swabbed environment (a). Colored are OTUs that belong to a
 646 persister lineage. Red lines highlight day of life 9, which coincides with an increase of several
 647 *Enterobacteriaceae* taxa in the infant gut (b). (b) is the microbial profile for fecal samples
 648 generated via genomes recovered from a metagenomics approach.

649
 650
 651
 652
 653
 654

655 **16 Additional file legends**

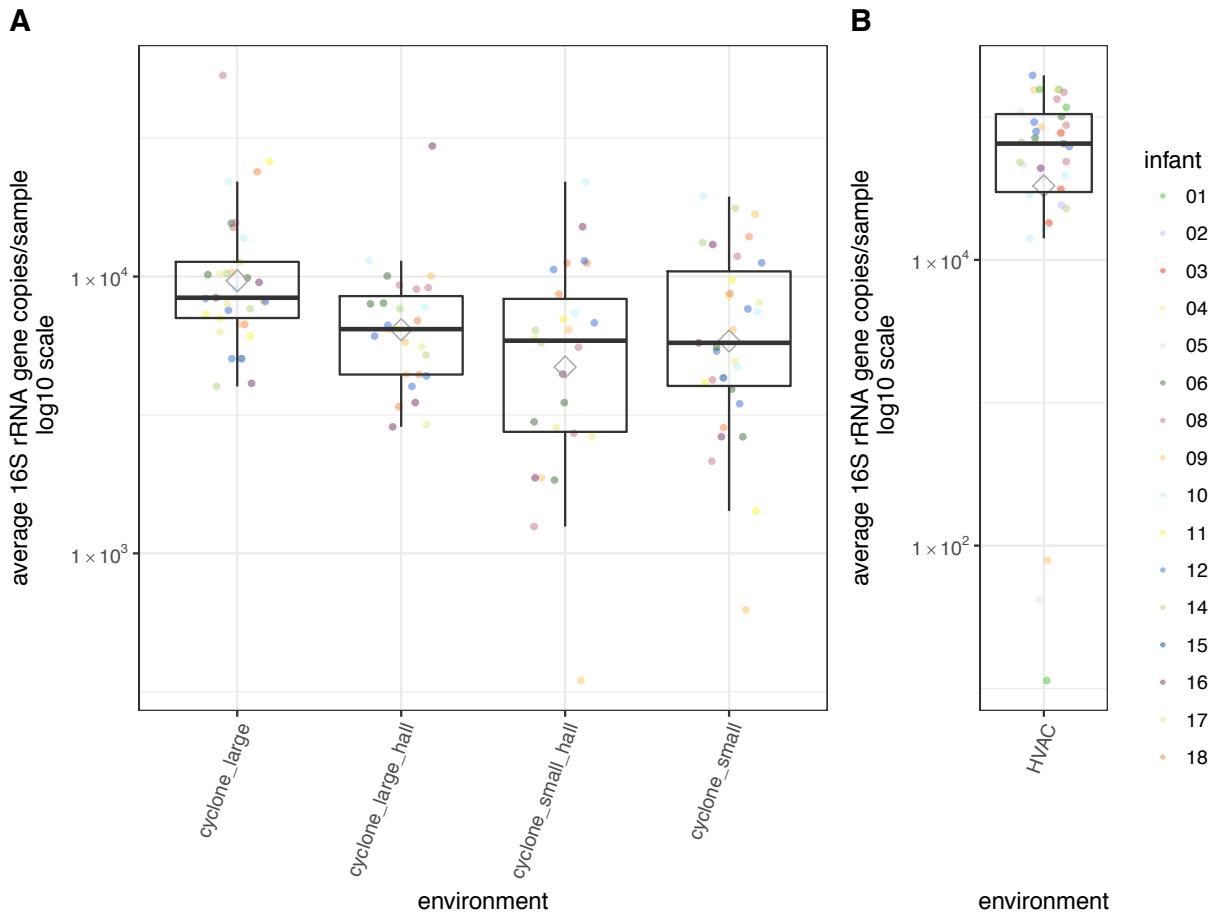

656

657 Additional file 1: **OTU table and LotuS log files**. Output from the LotuS pipeline is provided
658 including raw OTU table, accompanying mapping file with cohort and ddPCR count data, and
659 accompanying log files.

660

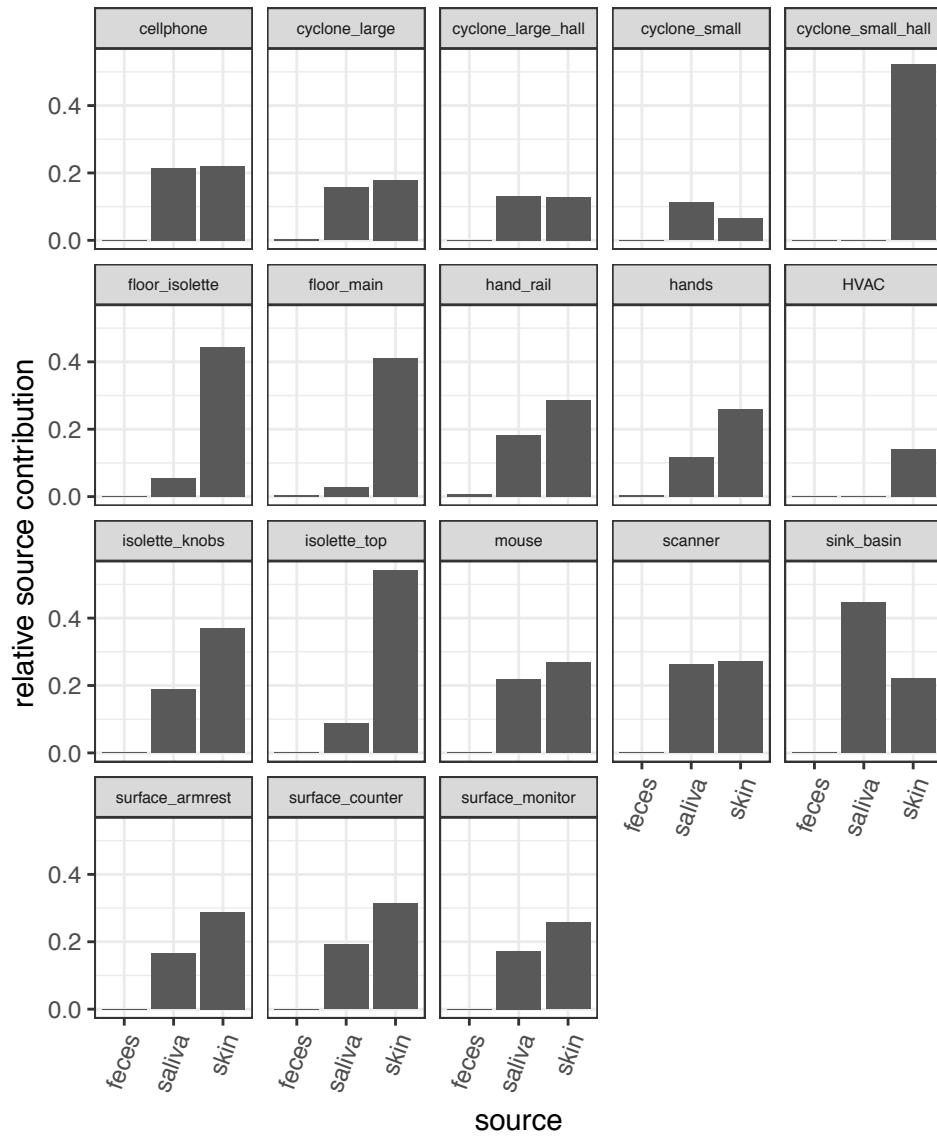
661

662 Additional file 2: **Biological and technical variation across ddPCR replicates.** 16S rRNA
 663 template copy number was quantified via ddPCR for three petri dish dust collectors suspended
 664 from the drop ceiling in each infant's room. Each dot reflects the average across triplicates runs.
 665 Each infant set is labeled at the top of the plot facets.

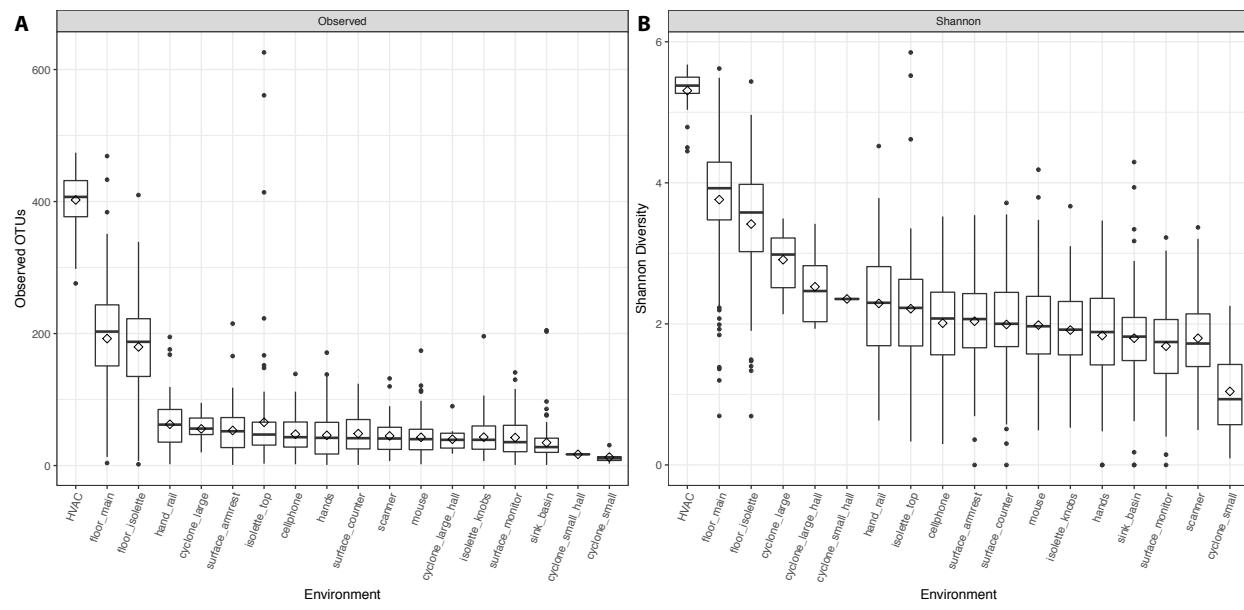


666

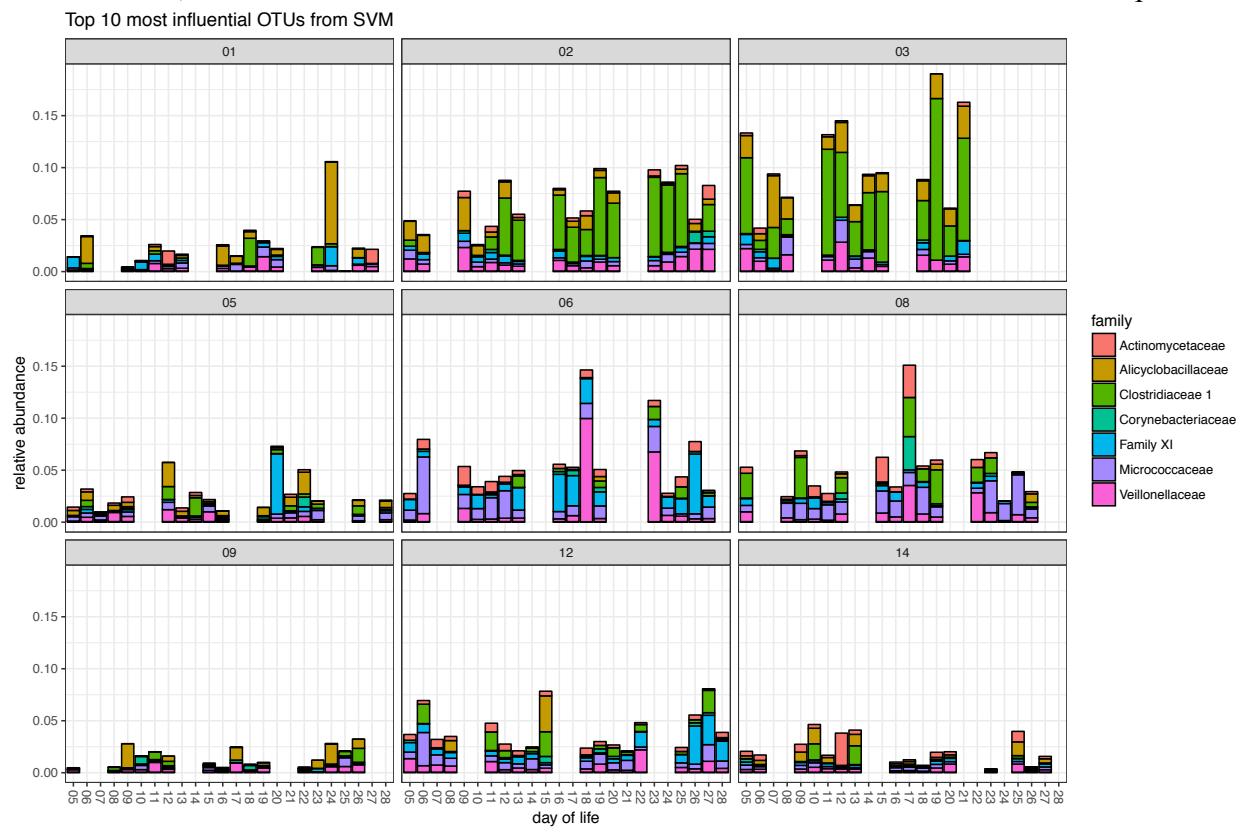
667


668

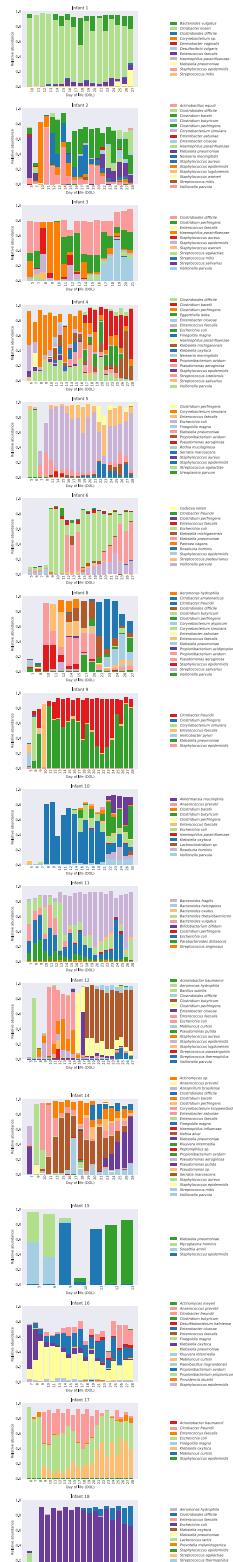
669 Additional file 3: **Biomass in air samples from a NICU.** 16S rRNA template copy number was
 670 quantified via ddPCR. Each dot reflects the average across triplicates runs. Grey diamonds
 671 represent averages per environment. Bioaerosol measurements in (A) are separated by small and
 672 large size fractions (particles 1-4 μm and $> 4 \mu\text{m}$, respectively). HVAC samples in (B) were
 673 collected from the exterior facet of the HVAC system and represent pretreated air. Counts are
 674 normalized per sample per day of collection.


675
676
677

678 Additional file 4: **SourceTracker reveals human skin is dominant source of NICU microbes.**
 679 American Gut skin, oral, and fecal samples were used as “sources” and NICU room samples
 680 were used as “sinks” and input into the SourceTracker software. Plotted on the y-axis is the mean
 681 relative contribution of each human-associated source to each environmental sample.

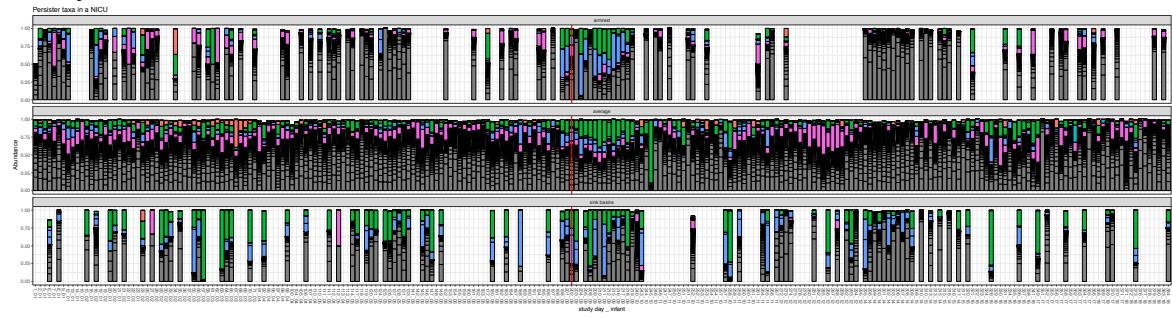

682
 683
 684

685 Additional file 5: **Alpha diversity in a NICU.** 16S rRNA amplicon data was used to calculate
 686 number of OTUs per environment (a) and the Shannon diversity (b).


687
 688
 689

690 Additional file 6: **Top 10 most important taxa driving the machine learning model.** The top
 691 10 most important variables driving the SVM model are plotted for each infant. On the y-axis,
 692 “Abundance”, notes the relative importance.

693
 694
 695


696 Additional file 7: **Fecal sample community composition**. Plotted in each panel is the community
697 composition of each infant's fecal samples derived from metagenomics data.

698

699

700 Additional file 8: **Episodic increases in persistent taxa.** The “average” panel represents 16S
701 amplicon data averaged across all samples at each time point per infant. The “armrest” and
702 “sink_basins” panel is the same data but without averaging across environments. The red line
703 highlights the time point in which an increase of *Enterobacteriaceae* was detected in infant 9’s
704 gut. Samples are plotted in chronological order on the x-axis. The plot is split across two pages for
705 clarity.

706

707 **Table 1: Top 10 OTUs in the NICU**

OTU	Kingdom	Phylum	Class	Order	Family	Genus	Species	% Abundance
OTU_5	Bacteria	Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Klebsiella	?	12.9
OTU_6	Bacteria	Firmicutes	Bacilli	Bacillales	Staphylococcaceae	Staphylococcus	?	7.3
OTU_4	Bacteria	Actinobacteria	Actinobacteria	Corynebacteriales	Corynebacteriaceae	Corynebacterium	?	7.1
OTU_7	Bacteria	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	?	6.9
OTU_9	Bacteria	Proteobacteria	Gammaproteobacteria	Aeromonadales	Aeromonadaceae	Aeromonas	?	6.9
OTU_10	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiaceae	Rhizobium	?	4.5
OTU_8	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	?	3.7
OTU_11	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	?	2.3
OTU_30	Bacteria	Firmicutes	Clostridia	Clostridiales	Clostridiaceae 1	Clostridium sensu stricto 1	?	1.9
OTU_32	Bacteria	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Brevundimonas	?	1.8

708

709

710 **Table 2: Most important variables to SVM model**

711

OTU	Kingdom	Phylum	Class	Order	Family	Genus	Species
OTU_29	Bacteria	Firmicutes	Clostridia	Clostridiales	Clostridiaceae 1	<i>Clostridium sunsu</i> <i>stricto</i> 1	uncultured organism
OTU_39	Bacteria	Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	<i>Rothia</i>	uncultured organism
OTU_41	Bacteria	Firmicutes	Bacilli	Bacillales	Family XI	<i>Gemella</i>	?
OTU_30	Bacteria	Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	<i>Kocuria</i>	?
OTU_45	Bacteria	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	<i>Actinomyces</i>	?
OTU_43	Bacteria	Firmicutes	Bacilli	Bacillales	Alicyclobacillacea e	<i>Tumebacillus</i>	uncultured Firmicutes bacterium
OTU_76	Bacteria	Firmicutes	Clostridia	Clostridiales	Family XI	<i>Peptoniphilus</i>	?
OTU_74	Bacteria	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	<i>Actinomyces</i>	uncultured organism
OTU_28	Bacteria	Firmicutes	Negativicutes	Selenomonadale s	Veillonellaceae	<i>Veillonella</i>	uncultured organism
OTU_66	Bacteria	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	<i>Streptococcus</i>	?

712