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1.1 Abstract

Background: The neonatal intensive care unit (NICU) contains a unique cohort of patients with
underdeveloped immune systems and nascent microbiome communities. Patients often spend
several months in the same room and it has been previously shown that the gut microbiomes of
these infants often resemble the microbes found in the NICU. Little is known, however, about the
identity, persistence and absolute abundance of NICU room-associated bacteria over long stretches
of time. Here we couple droplet digital PCR (ddPCR), 16S rRNA gene surveys, and recently
published metagenomics data from infant gut samples to infer the extent to which the NICU
microbiome is shaped by its room occupants.

Results: Over 2,832 swabs, wipes, and air samples were collected from sixteen private-style NICU
rooms housing very low birthweight (<1,500 g), premature (<31 weeks’ gestation) infants. For
each infant, room samples were collected daily, Monday through Friday, for one month. The first
samples from the first infant and last samples from the last infant were collected 383 days apart.
Twenty-two NICU locations spanning room surfaces, hands, electronics, sink basins, and air were
collected. Results point to an incredibly simple room community where 5-10 taxa, mostly skin
associated, account for over 50% of 16S reads. Biomass estimates reveal 4-5 orders of magnitude
difference between the least to the most dense microbial communities, air and sink basins,
respectively. Biomass trends from bioaerosol samples and petri dish dust collectors suggest
occupancy to be a main driver of suspended biological particles within the NICU. Using a machine
learning algorithm to classify the origin of room samples, we show that each room has a unique
microbial fingerprint. Several important taxa driving this model were dominant gut colonizers of
infants housed within each room.

Conclusions: Despite regular cleaning of hospital surfaces, bacterial biomass was detectable at
varying densities. A room specific microbiome signature was detected, suggesting microbes
seeding NICU surfaces are sourced from reservoirs within the room and that these reservoirs
contain actively dividing cells. Collectively, the data suggests that hospitalized infants, in
combination with their caregivers, shape the microbiome of NICU room:s.

1.2 Keywords

Infant gut, microbiome, built environment, neonatal intensive care unit

1.3 Background

Hospital acquired infections (HAIs) remain a major problem in the US. One out of every
twenty-five patients will experience a HAI, costing the US approximately $30 billion per year [1].
Infants hospitalized in the neonatal intensive care units (NICU) are particularly susceptible to
infection due to their underdeveloped immune systems [2, 3]. To protect against infection, infants
are often prescribed antibiotics during the first week of life. In fact, antibiotics are three of the six
most commonly administered medications in the NICU [4]. This treatment likely kills microbes
acquired during the birthing process [5] and promotes a categorically different colonization pattern
in preterm infants relative to full term infants [6]. Preterm infants are often colonized by ESKAPE
organisms (Enterococcus spp., Staphylococcus aureus, Klebsiella spp., Acinetobacter spp.,
Pseudomonas aeruginosa, and other Enterobacteriaceae), which are also the most frequent cause
of nosocomial infections [7]. The relatively sterile preterm infant gut microbiome and the high
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frequency at which infants are colonized by hospital associated microbes, creates a valuable study
setting to better understand how the room microbiome is shaped by its occupants. Here, we
conducted an experiment to quantify and characterize NICU room microbes to enable comparison
with microbiomes that develop in the premature infant gut

The source of early stage gut colonizers in preterm infants has been explored to some extent
[8-11]. In a pilot study, we tracked two infants over the first month of life, collecting samples
from room surfaces and infant fecal samples [12]. Using an amplicon-EMIRGE approach, which
allows for recovery of full-length 16S rRNA genes (~1500 b) [ 13], as opposed to the more common
hypervariable region approach (~150-400 b), we detected the same sequences in room samples
before they were detected in gut samples. In a much higher resolution genome-resolved
metagenomics study we recently showed evidence for the presence of some infant gut associated
strains in the NICU room environment and for exchange of those strains between infant and room
environments [24].

Recent genomic studies have shown that the vast majority of strains in the premature infant
gut are not shared among infants [5]. Nearly 150 strains were recovered from 10 infants’ fecal
samples and only 4 of these were shared. These samples were collected within a month of each
other, suggesting that a multitude of strains are available in the NICU at any given point in time,
and only a few strains may be widespread, a conclusion supported by the more recent research
[Brooks et al. in revision]. However, a few strains were identified in infant fecal samples collected
years apart from different infants housed the same NICU [14]. These were referred to as “persister”
strains.

A recent study identified 794 antibiotic resistance genes in preterm infant stool samples, 79%
which had not previously been classified as associated with resistance [15]. It is possible that these
genes provide a competitive advantage for survival in the highly cleaned room environment [16].
However, in our prior work we found that persister strains, which we infer have a room reservoir,
were not found to differ significantly in virulence, antibiotic resistance, or metabolism from non-
persister strains.

An important question from the perspective of HAI and microbiome establishment of
hospitalized premature infants relates to the diversity and biomass distributions over room
environments. To address this knowledge gap, we conducted a study with sixteen infants, whose
rooms were sampled Monday through Friday from twenty two room locations. We performed
droplet digital PCR (ddPCR) on all room samples to directly quantify biomass (2832 samples in
total) to determine how biomass varies in the NICU with additional quantification of negative
controls. Overall, the findings provide new information about the NICU microbiome and its
relationship to room occupant microbiomes.

2  Methods

2.1 Sample Collection

Infants were enrolled in the study based on the criteria that they were < 33 weeks gestation
and were housed in the same physical location within the NICU during the first month of life.
Samples were collected Monday through Friday for days of life (DOL) 5-28. Fecal samples were
collected from infant diapers and were stored at -20 °C within 10 minutes of collection for short
term storage. Shortly after collection, samples were archived and transferred to a -80 °C freezer
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for long term storage until DNA extraction. All samples were collected after signed guardian
consent was obtained, as outlined in our protocol to the ethical research board of the University of
Pittsburgh (IRB PRO12100487). This consent included sample collection permissions and consent
to publish study findings.

All samples were obtained from a private-style NICU at Magee-Womens Hospital of the
University of Pittsburgh Medical Center. Twenty-two of the most frequently touched surfaces were
determined by visual observation and health care provider interviews in the weeks leading up to
sample collection. Microbial cells were removed from most surfaces using nylon FLOQSwabs
(Copan Diagnostics, Brescia, Italy) and a sampling buffer of 0.15 M NaCl and 0.1% Tween20.
Samples were collected by one research nurse to ensure consistent sampling technique. Ten square
centimeters of each surface was sampled or, for smaller surfaces, the entire surface itself (e.g.,
isolette knobs and sink basin drain grill). Wipe samples were collected from the floor and exterior
top of the isolette using Texwipe TX1086 wipes (Texwipe, Kernersville, NC, USA). Before
collecting each wipe sample, the collector would put on latex examination gloves and clean these
gloves with an isopropanol wipe. The wiped surface area was approximately forty-eight square
centimeters or, for smaller surfaces, the entire surface itself (e.g., isolette top). A wipe was also
used to collect microbial cells at the exterior facet of the heating, ventilation and air conditioning
(HVAC) system. The wipe was suspended via airflow on the exterior (upstream) face of the
MERVE 8 pleated filter, the zone in which supply and return air are mixed before thermal and
humidity treatment of the airstream for four days. Features of the HVAC system are described in
detail in a recently published paper [18].

Air samples were collected using the NIOSH two-stage bioaerosol cyclone 251 sampler
[19] and a suspended petri dish method [20]. The NIOSH sampler collected samples continuously
Monday through Friday, comprising approximately 96 hours of sampling at 3.5 L/minute (total
volume sampled = 20 m?). Petri dish samples were suspended approximately one meter below the
drop ceiling in the corner of the room that was the furthest away from the sink. These samplers
were maintained in place for the duration of the infant’s stay. Petri dish “cooler” samples are plates
that were taped to the top of a cooler which collected abiotic aerosol data [18]. At the end of the
sample collection period, all samples were placed in a sterile transport tube and stored within 10
minutes at -80 °C until further processing.

2.2 DNA extraction and PCR amplification

DNA was extracted using either the MO BIO PowerSoil DNA Isolation kit (single tube
extractions) or PowerSoil-htp 96 Well DNA Isolation kit (MoBio Laboratories, Carlsbad, CA,
USA). For DNA extracted from feces with the 96-well kit fecal samples were kept frozen on dry
ice and added to individual wells of the bead plate and stored at -80°C until extraction. The day of
extraction Bead Solution and Solution C1 were added and the plates were incubated at 65°C for
10 minutes. The plates were shaken on a Retsch Oscillating Mill MM400 with 96-well plate
adaptors for 10 minutes at speed 20. The plates were rotated 180° and shaken again for 10 minutes
at speed 20. All remaining steps followed the manufacturer’s centrifugation protocol. For swab
samples the heads were snapped at the perforation into the wells of the bead plate and stored at -
80°C. The day of extraction the Bead Solution and Solution C1 were added and the plates were
incubated at 65°C for 10 minutes. The plates were shaken on a Retsch Oscillating Mill MM400
with 96 well plate adaptors for 5 minutes at speed 20. The plates were rotated 180° and shaken
again for 5 minutes at speed 20. The Solution C2 and C3 steps were combined (200 pl of each
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added) to improve DNA yield. All remaining steps followed the manufacturer’s centrifugation
protocol.

Wipe samples were stored in a sterile 250 mL tissue culture flask upon collection and
thawed on ice before extraction. Cells were dislodged from wipes in a protocol adapted from
Yamamoto et al. [17]. Briefly, 150 mL of dislodging buffer was poured into a flask (1X PBS,
0.04% Tween 80, passed through a 0.2 um filter) and the flask was shaken vigorously for one
minute. Supernatant was then decanted into a 250 mL disposable filter funnel with a pore size of
0.2 wm (Thermo Scientific, Waltham, MA, USA) and the filter was then placed in a MoBio
PowerWater extraction tube. PowerWater extraction followed manufacturer recommendations.

Droplet digital PCR (ddPCR) was adapted from a method previously published on
quantification of 16S rRNA templates in infant fecal samples [5]. The only deviation from the
previous method was that a diluted gDNA template of 1:10 instead of 1:1000 was utilized. Both
MiSeq library preparation and ddPCR were performed in 96-well plate format. Each plate had
three no template PCR controls, one no template extraction control, and three positive controls
containing varying concentrations of purified E. coli gDNA. Counts from the negative control
types were averaged across type and the highest was used to correct for contaminant counts in
sample data.

2.3 Sequencing preparation and sequencing

Genomic DNA from room samples were subjected to 16S rRNA V3-4 MiSeq library
preparation which included dual-barcoded multiplexing with a heterogeneity spacer for higher
sequence quality [22]. Two microliters of 5X concentrated gDNA template was used in the
reaction and run at 35 cycles. Amplicons were purified using the Just-a-Plate PCR normalization
and purification kit (Charm Biotech, San Diego, CA, USA). Equal amounts of each sample were
sent to the University of California Davis DNA Technologies Core Facility
(http://dnatech.genomecenter.ucdavis.edu) and run on a MiSeq with v3 300PE chemistry.

[llumina library construction for infant fecal samples followed standard protocols at
University of California QB3 Vincent J. Coates Genomics Sequencing Core Facility
(http://gb3.berkeley.edu/gsl/). Briefly, gDNA was sheared using a Covaris to approximately 600
bp and 1000 bp. Wafergen’s PrepX DNA library prep kits were used in conjunction with the
Apollo324 robot following factory recommendations (Integenx). Thirteen cycles of PCR were
used during library construction. Libraries were added at 12 samples per lane, in equimolar
amounts, to the Illumina HiSeq 2500 platform. Paired-end sequences were obtained with 150
cycles and the data processed with Casava version 1.8.2. Raw read data were deposited in the
NCBI Short Read Archive (Bioproject PRINA376566, SRA SUB2433287).

2.4 16S amplicon data processing

The LotuS 1.562 pipeline in short amplicon mode was used for quality filtering,
demultiplexing, and OTU picking [23]. LotuS was run with the following command line options:
‘-refDB SLV,GG -highmem 1 -p miseq -keepUnclassified 1 -simBasedTaxo lambda -threads 10.’
The OTU data was rarefied to 1,000 sequences per sample, without replacement, unless explicitly
stated. OTU table and LotuS log files are available in Additional file 1.
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2.5 Metagenomic data from infant gut samples

For comparative purposes, this study made use of previously published infant metagenomic
data from 290 fecal samples collected from infants housed in the NICU rooms studied here (~800
Gb of 150 bp paired-end reads). Methods for data analysis are described within this publication
[24].

3 Results

3.1 Sequencing summary and contamination removal

In total, 2832 room samples were processed through a MiSeq library preparation protocol.
After quality filtering and demultiplexing, 84,939,529 read pairs were generated. These reads were
clustered into 18,093 OTUs. Using a ratio OTU (ROTU) method that leverages biomass
quantification and sequencing of negative controls [25], 269 OTUs and 925 samples were removed
from the dataset when using an ROTU threshold of 0.001. A second in silico contamination
cleaning method was applied [26], which removed an additional 323 OTUs and 1 sample. In total,
approximately 3% of generated OTUs and 33% of samples present too weak of a signal to
confidently distinguish them from negative control signatures.

3.2 Biomass and taxonomic variation across petri dish replicates

Biological and technical replicates performed for petri dish plates established the
reproducibility of extraction of DNA from petri dish swabs and provided evidence for highly
reproducible ddPCR measurements (Additional file 2). The highest standard deviation in ddPCR
values for biological replicates in a single room was 106,760 copies/sample (infant 6’s petri plates;
mean = 99,677) and for technical replicates, the largest standard deviation was 15,534
copies/sample (infant 12’s petri plates, mean = 81,044). The lowest standard deviation for
biological replicates was 1,981 copies/sample (infant 1’s petri plates, mean = 13,785) and 737
copies/sample for technical replicates (infant 11°s petri plates, mean = 32,396). Overall, this
equates to a reproducibility range of 2.69 to 6.87x more reproducibility across technical ddPCR
runs relative to biological replicates, with an average reproducibility ratio of 5.37x better for
technical replicates.

3.3 Biomass varies significantly across sample type

16S rRNA gene copies were quantified for 2,883 samples using ddPCR and showed day-to-
day variation ranging from approximately 4 to 33000 16S rRNA copies/cm? (Figure 1a). Samples
from the HVAC system had the highest biomass of all types and bioaerosol samples had the lowest
(Additional file 3 a and b). Sinks had the highest biomass of the swabbed samples and hands had
the lowest average median template count (Figure 1b). Petri dishes suspended from the ceiling had
the lowest biomass relative to other passive dust collectors, whereas the nurse’s station dishes
contained the highest bacterial load. The infant room consistently had higher template counts than
the hallway bioaerosol samples. Overall, the median biomass varied over 4 orders of magnitude
across all sample types.
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3.4 Skin associated taxa dominate the NICU surface environment

The microbial communities in most NICU environments were highly uneven and were
dominated by 5-10 OTUs (Figure 2). 41% and 55% of all amplicon reads belong to the top five
and ten OTUs in the NICU, respectively (Figure 2 and Table 1). Most of these taxa are human
associated with many commonly associated with the skin (Corynebacterium), mouth
(Streptococcus), or nose (Staphylococcus). SourceTracker v1.0.1 [27] was run using skin, oral,
and fecal samples from the American Gut project as the putative source database with NICU
samples labeled as “sink™ samples. Skin was the most likely contributor to taxa in the NICU,
accounting for upwards of 50% of the most probable sources, followed by oral and fecal samples
(Additional file 4).

Samples collected from the HVAC system had the highest bacterial diversity with 405
OTUs on average per sample, whereas bioaerosol samples had the lowest, with 13 (Additional file
5a). The HVAC samples had the highest Shannon community evenness, followed by floor wipes,
and the bioaerosol samples had the lowest Shannon diversity (Additional file 5b). Thus, overall,
the HVAC had highly even consortia with high diversity. This is expected due to the way that the
HVAC sample was collected, with metric tons of air passing through the collection wipe before
sequencing [18]. The NICU room air was also found to have low biomass and low diversity, with
strong dominance by members of the Aeromonadaceae in the small size fraction and
Streptococcaceae, Rhizobiaceae, Clostridiaceae in the large size fraction.

All touched surfaces had similar numbers of OTUs per sample, although the surface
monitors showed the most unevenness (Additional file 5). These surfaces were dominated by
similar groups of microbes. Although many touched surfaces were associated with skin-associated
bacteria, gut associated Enterobacteriaceae OTUs also dominated environments such as the surface
monitors, counter tops, and scanners (Figure 2). In contrast, the sink basins had comparatively low
numbers of OTUs per sample (Additional file 5a), in part due to the high dominance by four
bacterial groups (Figure 2).

3.5 Biomass suggests growth patterns in sink basins

A range of 29 to 38 sink basin samples per weekday were collected from 14 unique sink
basins. When comparing biomass trends across days (Figure 3a), a distinct pattern of decreasing
biomass is apparent in sink samples relative to other swabbed environments. In comparing
Shannon diversity across weekdays (Figure 3b), bacterial diversity in Tuesday versus Friday
samples were the most distinct, whereas biomass was most different in Monday versus Thursday
samples (Wilcoxon rank sum, Bonferroni adjusted p = 0.47 and 0.012, respectively). Sink basins
were cleaned approximately every twenty-four hours, but less frequently on the weekends, so the
elevated biomass at the beginning of the week may be due to regrowth of sink adapted taxa
throughout the weekend (e.g., Rhizobiaceae, Pseudomonas, Aeromonas, and Enterobacteriaceae).
The increase in Shannon diversity from Monday to Friday strengthens this inference.

3.6 NICU rooms harbor a unique microbial signature

Using a support vector machine (SVM) classifier with a linear kernel [28], we determined
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that each room’s microbiome contained a unique microbial fingerprint. We could predict the room
origins with an overall accuracy of 56% (when we knew the room’s origin but withheld that
information from the classifier), which is 5x better than random chance (Figure 4). The use of
ROTU over a standard pipeline achieved an increase in accuracy of approximately 16%. Typically,
the most confusion occurred between samples that were collected at similar times, although infants
that had similar gut communities had decreased prediction accuracy (e.g. infants 2, 3, and 8).
Important OTUs driving the SVM model are plotted and listed in Additional file 6 and Table 2.
Interestingly, there is an overlap between room specific OTUs that drive the SVM model and
occurrence of these taxa in the gut of infant occupants. For example, the most visible signature in
SVM taxa comes from a spike in Veillonella in infant 6’s room on DOL 18 (Additional file 6). A
major increase of Veillonella in infant 6’s gut occurred on DOL 16 (ref
http://ggkbase.berkeley.edu/project groups/human-gut-metagenome-sloan-infants and Additional
file 7). The same pattern is seen for infant 8, and in fact, most infants that contain Veillonella have
strong SVM signals associated with their room. The second strongest signal from the SVM model
comes from a Clostridium OTU. This group is present in infants 2, 3, and 8’s room samples and it
strongly contributes to the SVM model prediction. All three of these infants have high abundances
of Clostridium.

3.7 Composition of persister taxa in the room echoes infant gut composition

To visualize the distribution of families with representative strains known to persist in infants
over multi-year periods [14, 15], we collapsed each study day and infant pairing by averaging all
amplicon abundance data across environments (Additional file 8, “average” panel). In this
analysis, the subset of all OTUs that belonged to a persister family was assigned a distinct color
but often one OTU could be distinguished within a family. However, due to high abundance, we
gave OTU 5 (an Enterobacteriaceae) dedicated coloring. Surprisingly, persister families account
for > 50% of the data at many time points.

Episodes of particularly high persister family abundance occurred in rooms housing infants
1,9, 12, and 16. To better visualize which samples contributed to the averaged data (Additional
file 8, “average” panel), we also plotted data for the specific environments for which we had the
most samples (armrests and sinks). Both the armrests and sinks are dominated by these groups of
organisms during these episodes, but Staphylococcaceae OTUs are much more abundant in
armrest samples relative to sinks. Two dominant Pseudomonas OTUs that comprised 70% and
24% of all Pseudomonadaceae (OTU_8 and OTU 15, respectively) were detected throughout the
time series, but were at very low abundance in armrest samples over long time spans.

Composition of persister taxa in infant 9

Since the room data for infant 9 had a strong signal for persister groups, we analyzed samples
from all environments separately to visualize temporal patterns (Figure 5a). Persister groups
dominated most of infant 9’s room samples, with cellphones having the fewest and scanner and
surface counter samples having the most persister groups per sample. The red lines in Figure Sa
highlight the time point where a major increase in relative abundance of Enterobacteriaceae taxa
occurred in infant 9°s gut (Figure 5b and Additional file 7). This group is present in multiple room
environments prior to the increase, particularly associated with the isolette and armrest. At
subsequent time points, this group becomes highly prominent in some room environments (e.g.,
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scanner and surface counter).

OTUs belonging to the persister groups cannot be confidently classified genus level via 16S
rRNA gene sequencing [29], and since Enterobacteriaceae dominates the gut of infant 9, we
leveraged room and fecal sample context to infer a possible identity for OTU_5. Using OTU 5’s
reference sequence as a query, we ran ublast [30] on a database of 16S rRNA genes reassembled
from infant 9’s fecal metagenomic samples using the REAGO algorithm (Yuan et al., 2015). The
top hit to our 429 bp query was 99.5% identical (2 mismatches) and came from several of infant
9’s fecal samples. Most of the top hits have the entire 16S rRNA gene recovered from the REAGO
assembly (~1,520 bp). These fecal sequences were searched against the Silva database
(SLV_119 _SSU) and returned identical, full-length matches to Klebsiella pneumoniae. While this
is an extrapolation from the V3-4 region, it is possible that OTU 5 in the room is a K/ebsiella and
may be Klebsiella pneumoniae, the dominant bacterium colonizing infant 9.

4 Discussion

The first question that we aimed to answer in this study related to how biomass varies across
a NICU. Using ddPCR to quantify 16S rRNA gene copy number, we show biomass density varies
across NICU surfaces by 4-5 orders of magnitude (Figure 1). Surprisingly, the floor in front of the
infant’s isolette had the highest density of microbes relative to any other environment within the
NICU. Naively, it may seem intuitive that the region with the most foot traffic, e.g. the floor at the
main entrance of the NICU, would have the highest biomass. While the main entrance floor has a
high density, it is significantly lower than the floor in front of the isolette. This finding may be due
to the increased occupancy at the isolette versus the main entrance, where occupancy is more
transient.

Petri dish data also suggest that higher levels of human activity drive higher amounts of
microbial deposition in the room environment. The nursing station has higher petri dish-associated
biomass than the infant room, followed by the hallway (Figure 1). This outcome occurred despite
the fact that the infant room and hallway coolers collected dust at the same height (1 m), whereas
the nurse station collector was at approximately double the height (1.8 m). As height above the
floor increases, detection of resuspended particles from dust decreases exponentially [32, 33]. This
finding suggests that floor dust is not the main source of biological particles accumulated in the
petri dishes, but rather the microbes are human-derived. Greater occupancy or rigor of activity
[34] at the nursing station compared to the infant room and hallway likely explains this result.

A recently published study noted a stronger occupancy signal from the occupancy sensors in
the infant room compared to the hallway [18]. The occupancy signal directly overlapped with the
coarse particle signal (which detected particles > 10 um in diameter). This signal was interpreted
to indicate that resuspension or deposition of particles from occupants is the largest contributor of
aerosolized particles in the NICU. In the current study, our Petri dish ceiling analyses suggest a
similar conclusion for settled particles, but in this case based on biological data.

If occupancy is a key feature of the NICU environment, one would expect human associated
microbes to dominate in most room environments. We found that 5-10 OTUs account for most of
the amplicon data and a majority of these are typically skin, nose, or fecal associated (Figure 2).
The enrichment of human associated taxa is likely due to tight control of the building envelope via
HVAC treatment [35] combined with a strict cleaning schedule.

An interesting finding of this study related to the change in biomass and microbial
community structure of the sink basins over the course of the week. We attribute this pattern to
the room cleaning regime, which is more limited on weekend days than during the week. On

9
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Mondays, the sink biomass is highest (Figure 3a) and communities are relatively uneven (Figure
3b), presumably due to extensive growth of a few sink-associated taxa over the weekend. More
intensive cleaning of the sink early in the week likely removes the majority of biomass, which is
comprised of the sink-adapted taxa and enables detection of a wider diversity of low abundance,
poorly adapted or transient, taxa.

The second question addressed in our study related to the taxa that dominate NICU surfaces.
To investigate this, it was necessary to adapt a method to eliminate spurious contaminant-based
signals in data from low biomass samples [25]. The ROTU cleaning method implemented here to
clean data of spurious OTUs and contaminants in silico was made possible due to the availability
of ddPCR quantification of negative controls. This capability is particularly important for NICU
studies since the rooms are cleaned regularly, causing low biomass levels to be present in many
samples. Some of the bacteria that we conclude were introduced in sample processing are skin
associated, although many types of taxa were encountered. After accounting for contamination,
we conclude that human associated taxa dominate most surfaces.

Human associated taxa are likely sourced and trafficked throughout the NICU by healthcare
providers [36] and many hand hygiene studies have reported as much [37]. Here, we implemented
a machine learning classifier to address the possibility that infants and their caretakers shape the
microbiome to be distinctive in each room. Our model reliably classified samples of unknown
origin to their correct room-infant pair at an accuracy two times better than a recently published
office microbiome study [28] and achieved predictive power five times better than random chance.
This outcome suggests that NICU rooms are more personalized than other common built
environments. There are typically a larger variety of activities and people in office spaces and air
treatment is less (lower air exchange rates and less filtration). The combination of less frequent
cleaning, increased occupancy, and more unfiltered outdoor air supply drives many of the
differences between other common indoor environments and the NICU. The more unique room
signal based on NICU room microbes suggests a localized source of bacteria, since a more diffuse
source would lower prediction accuracy. A similar result was recently described in a microbiome
study conducted in a Chicago hospital [38]. Microbial community similarity increased between
patients’ hand and floor samples over time, highlighting the exchange between patient and room.
Interestingly, infants in this cohort are rarely removed from their isolettes, so room specific
microbiomes were likely mediated by health care providers, rather than direct infant interaction
with surrounding room surfaces.

Finally, we tested for patterns of association between room occupants and NICU room
environments. We found that many taxa driving our machine learning model for the room
microbiome were from groups also present in the gut of the infant occupant. Other signals came
from Firmicutes and Actinobacteria not affiliated with the infant gut and that were relatively
uniquely detected in certain rooms. Focusing on the subset of taxa that are gut colonizers, we show
a relatively high abundance of these taxa throughout the sampling campaign (Additional file 8).
Episodes where persistent families increase and 2-3 OTUs comprise > 30% of the data across all
environments occurred several times throughout the study (e.g., in infants 9, 12, and 16). These
OTUs are detected in low abundance in the room before detection in the gut (Figure 5). Once in
the infant gut, a far more favorable environment for growth and reproduction than on exposed
hospital surfaces, bacterial density can reach nearly 10 billion cells per gram [5]. After a spike in
relative abundance in the gut, we see these organisms increase in abundance in the room
environment. It is impossible to resolve room 16S rRNA amplicon data to the strain-level in order
to make claims that the same gut bloom resulted in a subsequent expanded appearance in the room.
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Potentially, infant 9’s dominant gut Klebsiella pneumonia may be linked to an increased
abundance of Enterobacteriacaea in the room. Interestingly, the same strain of K. pneumoniae
found in the gut was detected years apart in different infants within this NICU [14].

5 Conclusions

Based on the current study, we conclude that two factors shape room microbiomes. First,
our taxa identifications and occupancy results extend prior findings of a strong link between human
activity levels and room microbiology [12, 18, 24, 34] In fact, this connection appears to be strong
enough to give rise to a relatively unique room microbiome character. Second, environmental
stresses, likely associated with cleaning [12, 16, 39-41], likely selectively shape NICU
microbiomes, primarily by selecting for microbial specialists that can both thrive in the gut and
tolerate the NICU environment. While daily cleaning substantially lowers the bioburden in the
NICU [42], the harshest cleaning methods cannot sterilize hospital surfaces [7]. Creative new
approaches to displace or prevent entrenchment of these NICU specialists, possibly through
prebiotic building materials or clever probiotics, may present opportunities to break the room-
occupant cycle.
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15 Figure legends

Figure 1: Biomass varies by 4-5 orders of magnitude in a NICU. 16S rRNA template copy
number was quantified via ddPCR. (A) Biomass was averaged across all swab and wipe samples
for each sampling day and plotted on a timeline to visualize variation in biomass over the sampling
campaign. (B) Each dot reflects the average across triplicate runs. Grey diamonds represent
averages per environment. Blue ellipses along the x-axis represent samples collected using a wipe
method. All other samples were collected with swabs or using a petri plate to collect settled dust
(noted in label). All counts are normalized to represent one day of collection.
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622  Figure 2: Top 10 NICU OTUs comprise > 50% of NICU taxa. Amplicon data from a 16S
623  rRNA V3-4 workflow is plotted for each environment. Only the top 10 OTUs, determined from
624  averages across all samples, are plotted. Each OTU is colored by its family-level classification.
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628  Figure 3: Growth detected in NICU sink samples. 16S rRNA template copy number was
629  quantified via ddPCR. Average copy number was averaged for each weekday and swabbed
630  environment and displayed in this heatmap (a). 16S rRNA amplicon data was used to calculate
631  number of OTUs, Shannon, and Inverse Simpson diversity metrics for sink basin samples (b).

632  Black diamonds represent averages per weekday.
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Figure 4: NICU rooms have a unique microbial signature. 16S rRNA amplicon data was split
into training, test, and validation sets to train, test, and validate a support vector machine classifier.
The confusion matrix plots the accuracy of our model on the validation dataset. Percentages note
the number of times a sample was predicted to belong to a room-infant pairing divided the total
number of samples for that room-infant pairing. The heat coloring is based on shown percentages.
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Figure 5: ‘Persister taxa in the room reflect composition of the infant gut. Infant 9’s room
amplicons are plotted for each swabbed environment (a). Colored are OTUs that belong to a
persister lineage. Red lines highlight day of life 9, which coincides with an increase of several
Enterobacteriaceae taxa in the infant gut (b). (b) is the microbial profile for fecal samples

generated via genomes recovered from metagenomics approach.
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655 16 Additional file legends

656

657  Additional file 1: OTU table and LotuS log files. Output from the LotuS pipeline is provided
658 including raw OTU table, accompanying mapping file with cohort and ddPCR count data, and
659  accompanying log files.
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Additional file 2: Biological and technical variation across ddPCR replicates. 16S rRNA
template copy number was quantified via ddPCR for three petri dish dust collectors suspended

662
663
664
665

from the drop ceiling in each infant’s room. Each dot reflects the average across triplicates runs.
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669  Additional file 3: Biomass in air samples from a NICU. 16S rRNA template copy number was
670  quantified via ddPCR. Each dot reflects the average across triplicates runs. Grey diamonds

671  represent averages per environment. Bioaerosol measurements in (A) are separated by small and
672  large size fractions (particles 1-4 um and > 4 pm, respectively). HVAC samples in (B) were

673  collected from the exterior facet of the HVAC system and represent pretreated air. Counts are
674  normalized per sample per day of collection.
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678  Additional file 4: SourceTracker reveals human skin is dominant source of NICU microbes.

679  American Gut skin, oral, and fecal samples were used as “sources” and NICU room samples
680  were used as “sinks” and input into the SourceTracker software. Plotted on the y-axis is the mean
681  relative contribution of each human-associated source to each environmental sample.
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690  Additional file 6: Top 10 most important taxa driving the machine learning model. The top
691 10 most important variables driving the SVM model are plotted for each infant. On the y-axis,

692  “Abundance”, notes the relative importance.
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696  Additional file 7: Fecal sample community composition. Plotted in each panel is the community
697  composition of each infant’s fecal samples derived from metagenomics data.
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706

Additional file 8: Episodic increases in persistent taxa. The “average” panel represents 16S
amplicon data averaged across all samples at each time point per infant. The “armrest” and
“sink basins” panel is the same data but without averaging across environments. The red line
highlights the time point in which an increase of Enterobacteriaceae was detected in infant 9’s
gut. Samples are plotted in chronological order on the x-axis. The plot is split across two pages for

clarity.
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Table 1: Top 10 OTUs in the NICU
OTU Kingdom Phylum Class Order Family Genus Species % Abundance
OTU 5 Bacteria Proteobacteria ~Gammaproteobacteria Enterobacteriales  Enterobacteriaceae Klebsiella ? 12.9
OTU_ 6 Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus  ? 7.3
OTU 4 Bacteria Actinobacteria  Actinobacteria Corynebacteriales  Corynebacteriaceae Corynebacterium  ? 7.1
OTU 7 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus ? 6.9
OTU_9 | Bacteria Proteobacteria ~Gammaproteobacteria ~Aeromonadales Aeromonadaceae Aeromonas ? 6.9
OTU_10 | Bacteria Proteobacteria  Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium ? 4.5
OTU_8 | Bacteria Proteobacteria ~Gammaproteobacteria Pseudomonadales  Pseudomonadaceae Pseudomonas ? 3.7
OTU_11 | Bacteria Proteobacteria ~Gammaproteobacteria Pseudomonadales ~ Moraxellaceae Acinetobacter ? 2.3
OTU_30 | Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae 1 Clostridium ? 1.9
sensu stricto 1
OTU 32 | Bacteria Proteobacteria  Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas ~ ? 1.8
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Table 2: Most important variables to SVM model

OTU Kingdom Phylum Class Order Family Genus Species

OTU_29 | Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae 1 Clostridium sunsu  uncultured organism
stricto 1

OTU_39 | Bacteria Actinobacteria  Actinobacteria Micrococcales Micrococcaceae Rothia uncultured organism

OTU_41 | Bacteria Firmicutes Bacilli Bacillales Family XI Gemella ?

OTU_30 | Bacteria Actinobacteria  Actinobacteria Micrococcales Micrococcaceae Kocuria ?

OTU 45 | Bacteria Actinobacteria  Actinobacteria ~ Actinomycetales Actinomycetaceae  Actinomyces ?

OTU_43 | Bacteria Firmicutes Bacilli Bacillales Alicyclobacillacea  Tumebacillus uncultured Firmicutes bacterium

OTU_76 | Bacteria Firmicutes Clostridia Clostridiales ;amily XI Peptoniphilus ?

OTU_74 | Bacteria Actinobacteria  Actinobacteria ~Actinomycetales Actinomycetaceae  Actinomyces uncultured organism

OTU 28 | Bacteria Firmicutes Negativicutes  Selenomonadale  Veillonellaceae Veillonella uncultured organism

OTU_66 | Bacteria Firmicutes Bacilli iactobacillales Streptococcaceae Streptococcus ?
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