


Abstract—Machine learning models have made
significant progress in load forecasting, but their forecast
accuracy is limited in cases where historical load data is
scarce. Inspired by the outstanding performance of large
language models (LLMs) in computer vision and natural
language processing, this paper aims to discuss the
potential of large time series models in load forecasting
with scarce historical data. Specifically, the large time
series model is constructed as a time series generative
pre-trained transformer (TimeGPT), which is trained on
massive and diverse time series datasets consisting of 100
billion data points (e.g., finance, transportation, banking,
web traffic, weather, energy, healthcare, etc.). Then, the
scarce historical load data is used to fine-tune the
TimeGPT, which helps it to adapt to the data distribution
and characteristics associated with load forecasting.
Simulation results show that TimeGPT outperforms the
popular benchmarks for load forecasting on several real
datasets with scarce training samples, particularly for
short look-ahead times. However, it cannot be guaranteed
that TimeGPT is always superior to benchmarks for load
forecasting with scarce data, since the performance of
TimeGPT may be affected by the distribution differences
between the load data and the training data. In practical
applications, operators can divide the historical data into a
training set and a validation set, and then use the
validation set loss to decide whether TimeGPT is the best
choice for a specific dataset.

Index Terms—Load forecasting, Large model, Time series,

Smart grid, Artificial intelligence, Foundation model

I. INTRODUCTION

CCURATE load forecasting is indispensable for the

planning and operations of smart grids [1]. For instance, it

plays a pivotal role in scheduling generation units, thereby

minimizing the need for unnecessary reserve power.

Additionally, it enables power system operators to plan the

maintenance, ensuring the safe and reliable operation of power

Wenlong Liao, Jiannong Fang, and Fernando Porté-Agel (corresponding

author) are with Wind Engineering and Renewable Energy Laboratory, Ecole

Polytechnique Federale de Lausanne (EPFL), Lausanne 1015, Switzerland

(wenlong.liao@epfl.ch; jiannong.fang@epfl.ch; fernando.porte-agel@epfl.ch).
Shouxiang Wang is with the Key Laboratory of Smart Grid of Ministry of

Education, Tianjin University, Tianjin 300072, China (sxwang@tju.edu.cn).

Dechang Yang is with the College of Information and Electrical

Engineering, China Agricultural University, Beijing 100083, China

(yangdechang@cau.edu.cn).

Zhe Yang is with Department of Electrical and Electronic Engineering,
Imperial College London, London SW7 2AZ, United Kingdom

(zhe.yang@imperial.ac.uk).

Christian Rehtanz is with the Institute of Energy Systems, Energy
Efficiency and Energy Economic, TU Dortmund University, Dortmund 44227,

Germany (christian.rehtanz@tu-dortmund.de).

systems [2].

Over the past few decades, various approaches to load

forecasting have emerged, with traditional methods relying

primarily on statistical models. In recent years, however,

machine learning models have achieved significant success in

various fields [3], [4],[5], driving their application in load

forecasting [6].

Specifically, statistical models estimate future load values by

analyzing the trends and periodicity in historical data. Classic

statistical models include the persistence model (PM),

autoregressive moving average, exponential smoothing,

autoregressive integrated moving average, linear regression

(LR), adaptive filtering model, generalized additive model, and

gray model [7]. For example, the work in [8] uses several LR

models to forecast the short-term load in California. In [9], the

grey model with inverse square root unit functions is introduced

to estimate the potential electricity consumption in China over

the next few years. In [10], the autoregressive integrated

moving average model is designed to forecast long-term loads

in Brazil. To mitigate the negative effects of the noise and

seasonality in the load data, the work in [11] utilizes

exponential smoothing to preprocess the data before

conducting load forecasting. These statistical models are

grounded in rigorous mathematical principles, offering a high

interpretability and relatively low computational costs without

requiring extensive historical data. However, their forecast

accuracy is limited, especially for a long look-ahead time, due

to their difficulty in handling nonlinear relationships [12].

Typically, machine learning models in load forecasting use

supervised learning to project the nonlinear relationship

between historical load data and forecast values. Popular

machine learning models include regression tree (RT), support

vector regression, extreme gradient boosting (XGBoost), light

gradient boosting machine, multi-layer perceptron (MLP), long

short-term memory (LSTM), gated recurrent unit, transformer

neural network, convolutional neural network (CNN), and

graph neural network [13]. For example, the work in [14] uses

the RT model to forecast the short-term load of a city,

incorporating the additional information from special days. In

[15], the XGBoost model is utilized to forecast peak power

demand and long-term electricity consumption, taking into

account climatic and economic conditions. In [16], eight

meta-heuristic algorithms are adopted to optimize the

hyper-parameters of the MLP model, which forecasts the

building energy consumption. To capture the temporal features

from load data, the LSTM and gated recurrent unit models are

presented in [17] and [18], respectively. Simulation analysis

shows that LSTM and gated recurrent unit outperform

conventional models (e.g., MLP) in short-term load forecasting.

Similarly, CNNs and graph neural networks are designed to

depict the spatial features from between loads of each bus in

TimeGPT in Load Forecasting: A Large Time
Series Model Perspective

Wenlong Liao, Shouxiang Wang, Dechang Yang, Zhe Yang, Jiannong Fang, Christian
Rehtanz, Fernando Porté-Agel

A

[19], [20]. In general, machine learning models can provide

high forecast accuracy, especially when dealing with

large-scale load data and long-term forecasts. This is attributed

to their ability to automatically extract latent features from data,

as well as their good adaptability to complex nonlinear

relationships.

However, machine learning models require a large amount of

data for training in order to accurately map complex nonlinear

relationships. In other words, when historical data is scarce, the

forecast accuracy of these machine learning models is limited

[21]. For example, in some emerging markets or newly

developed communities, inadequate infrastructure may result in

a lack of sufficient historical load data. In addition, utilities may

not be able to obtain detailed individual electricity consumption

data due to privacy concerns [22]. In these scenarios, machine

learning models may be constrained by data scarcity, making

accurate forecast challenging.

Over the past few years, pre-trained foundation models have

significantly driven the rapid development of natural language

processing (NLP), computer vision (CV), and speech

understanding. For example, large language models (LLMs),

such as ChatGPT [23] and Llama [24], perform well in various

NLP tasks, even under zero-shot conditions. Similarly,

Midjourney [25] and Sora [26] can generate various types of

images and videos based on user prompts, respectively. The

impressive capabilities of LLMs in CV and NLP have inspired

the development and application of foundation models in time

series modeling. Recently, foundation models have been

extended from CV and NLP to time series analysis. For

example, the time series foundation models for transportation

and financial problems are presented in [27],[28]. The work in

[29] trains a unified time series model to support a universal

task specification, including anomaly detection, imputation,

classification and prediction. In [30], a time series generative

pre-trained transformer (TimeGPT) is presented for time series

modeling. Trained on 100 billion data points (e.g., finance,

transportation, banking, web traffic, weather, energy,

healthcare, etc.), it demonstrated good performance on

few-shot learning tasks (e.g., air quality and traffic forecasts).

The remarkable success of these foundation models opens up

new opportunities for load forecasting, especially in scenarios

with scarce historical data.

Inspired by the outstanding performance of LLMs in CV and

NLP, this paper aims to discuss the potential of large time series

models (LTSMs) in load forecasting with scarce historical data.

Specifically, this paper will explore the generalization of

TimeGPT to load forecasting, and discuss its advantages and

limitations through extensive simulations. The main

contributions are as follows:

 New Perspective: Unlike classical machine learning

models and statistical models characterized by simple

structures and few parameters, this paper investigates the

potential of LTSMs with complex structures and extensive

parameters (i.e., TimeGPT) in load forecasting, from a

new perspective.

 New Application: By using pre-trained knowledge, the

TimeGPT enables load forecasting for scenarios where

historical load data is scarce. To our knowledge, this is the

first work applying TimeGPT to load forecasting.

 Extensive Simulations and Practical Suggestions:

Extensive numerical simulations and comprehensive

comparisons with eight benchmark models are conducted

on five real load datasets to highlight the advantages and

limitations of TimeGPT. The actionable suggestions are

given for the practical implementation of TimeGPT in

load forecasting.

The rest is organized as follows: Section II formulates the

TimeGPT. Section III and Section IV conduct simulation and

analysis on different datasets. Section V presents the discussion.

Finally, Section VI summarizes the conclusion.

II. PRINCIPLES AND FRAMEWORK OF TIMEGPT

This section will formulate the architecture of the TimeGPT,

and then present how to train and use it.

A. Architecture of TimeGPT

Similar to LLMs, the transformer architecture [31] with

attention mechanisms is used to construct TimeGPT, as shown

in Fig. 1.

Outputs

Embedding

Inputs

Embedding

Inputs
Outputs

(shifted right)

Positional

Encoding

Positional

Encoding

Multi-Head

Attention

Masked

Multi-Head

Attention

Add&Norm Add&Norm

CNN

Multi-Head

Attention

Add&Norm
Add&Norm

CNN

Add&Norm

Linear

Output

Forecasts

Fig. 1. The basic structure of the transformer block.

In particular, the architecture mainly includes the positional

encoding (PE), multi-head attention, and CNN, in which the

residual connection and layer normalization are integrated to

prevent gradient degradation and accelerate algorithm

convergence [30]. By using a segment of historical values,

TimeGPT generates forecasts while incorporating local PE for

improved input representation. Then, the output of the decoder

is projected to forecast values through a linear layer. To

maintain this autoregressive property, the input sequence of the

decoder is its previously generated tokens, but shifted one

position to the right.

Similar to ChatGPT, TimeGPT has the ability to process

time series inputs and outputs of varying lengths and

frequencies. Firstly, TimeGPT uses the self-attention

mechanism of the Transformer model, which enables it to

effectively handle time series data of different lengths. The

self-attention mechanism dynamically adjusts the focus of

TimeGPT based on the global context of the input sequence,

ensuring that critical long-term dependencies are not lost when

processing long sequences. On the contrary, when dealing with

shorter sequences, the self-attention mechanism is still flexible

enough to capture short-term dependencies in the sequences.

This adaptability allows TimeGPT to effectively handle input

data of different lengths, making it suitable for both longer and

shorter time series. Secondly, TimeGPT is good at dealing with

changes in data frequency. Since the time series data in the

pre-training are diverse and may come from different domains

with different sampling frequencies, TimeGPT can adapt to

changes in frequency when dealing with different time series

data. Through fine-tuning, TimeGPT can further understand the

characteristics of specific frequency data to make more

accurate predictions. In summary, TimeGPT uses the

transformer architecture and diverse pre-training data with a

strong ability to handle time series data of different lengths and

frequencies. This makes it well suited to a variety of time series

forecasting tasks, with excellent adaptability and forecasting

performance.

1) Positional Encoding

To enable the model to accurately understand the sequential

information in the input features, the role of the PE is to assign

positional information to each feature by using the sine-cosine

positional coding [32]:

 

 

model

model

2 /

2 /

PE ,2 sin
10000

PE ,2 1 cos
10000

i d

i d

pos
pos i

pos
pos i

  
  

  


       

 (1)

where pos denotes the length of the input sequence; i denotes

the dimension index of the PE; and dmodel denotes the length of

the feature.

In PE, 2i is controlled by the sine function while 2i+1 is

controlled by the cosine function. The value of the PE changes

as the position pos increases. With PE, the model is able to

distinguish features at different positions, which leads to a

better understanding of the sequential information in the input

sequence.

2) Multi-Head Attention

As the core unit of the transformer architecture, the

multi-head attention can be regarded as an integration of

multiple attention heads. As shown in Fig. 2, the ability of the

transformer to focus on different features is extended by

performing h times attention computations in parallel [33].

In particular, the model learns multiple sets of attention

weights simultaneously, and then concatenates their outputs

together. Given h attention heads, the calculation of multi-head

attention is as follows:

   1MultiHead , , Concat head , ,head O

hQ K V W (2)

 head Attention , ,i i i iQ K V (3)

 Attention , , softmax
TQK

Q K V V
d

 
  

 
 (4)

Q

K

V

Q W X

K W X

V W X

 







 (5)

where X denotes the input matrix; W
Q
, W

K
, and W

V
 denote the

weight matrices of the linear transformation; Q, K, and V

denote the query matrix, key matrix, and value matrix,

respectively; and d denotes the dimension of the query matrix.

3) Convolutional Neural Network

In the encoder and decoder, a feed-forward neural network

(e.g., it is CNN here) is applied to each position to capture the

latent feature. The CNN consists of convolutional and pooling

layers, which can be formulated as follows [34],[35]:

 conv,out conv conv,in convX W X B   (6)

 ,

pool,out pool,in
,

max j k

j k R
X X


 (7)

where Xconv,out and Xpool,out denote outputs of convolutional and

pooling layers, respectively; Xconv,in and Xpool,in denote inputs of

convolutional and pooling layers, respectively; σ denotes the

activation function; Wconv and Bpool denote weights and bias

vectors of the convolutional layer, respectively; R denotes

pooling range; and * denotes the convolutional operation.

4) Residual Connections and Layer Normalization

To accelerate the convergence of model training, layer

normalization (LN) is often used to normalize the outputs of the

layers, so that the outputs of each sub-layer remain within a

stable range:

  SL SL

SL
2

LN

X

X X
X  

 


 


 (8)

where XSL denotes the output of the sub-layer;
SLX and

X

denote the mean and standard deviation of the output XSL,

respectively; γ and β denote learnable scale and offset

parameters, respectively; and  denotes a small value to avoid

division by zero errors.

To mitigate the problem of vanishing gradients when

training deep networks, residual connections are used in each

sub-layer:

 , , ,F out F in F inX F X X  (9)

where XF,out and XF,in denote the output and input of the

sub-layer F, respectively.

MatMul

Scale

Mask(opt.)

Softmax

MatMul

Q K V

Linear Linear Linear

Scaled Dot-Product

Attention

Concat

Linear

(b) Multi-Head Attention

V K Q

(a) Scaled Dot-Product Attention

｛

h

Fig. 2. The basic structure of multi-head attention.

B. Bridging Large Models and Load Forecasting

The large models are designed to handle natural language,

which consists of discrete data. In contrast, load forecasting and

other time-series forecasting tasks involve time series data,

which is inherently continuous. This fundamental difference

presents a challenge for large models to directly process time

series data.

To bridge this gap, the continuous time series data must be

transformed into a discrete format suitable for large models. As

shown in Fig. 3(a), this transformation involves two main steps:

normalization and quantization.

In the first step, normalization is applied to map the time

series data into a specified range to allow faster convergence

during model training. Typically, min-max normalization is

used, scaling the data between a predefined minimum and

maximum, as follows:

   min max min' /X X X X X   (10)

where Xmin and Xmax are the minimum and maximum values,

respectively; and 'X is the normalized value.

Once the data is normalized, quantization is performed to

convert the continuous values into discrete categories. This

process uses the widely used equal width binning technique,

which segments the normalized data into equal-width intervals.

Each interval is assigned a unique value, effectively

transforming the continuous values into discrete values

compatible with model input, as follows:

 

min min

min min

min max

1, if

2, if 2

, if (1)

X X X d

X d x X d
g X

m X m d x X

   


     
 

     

 (11)

where m is the number of bin; and Δd=(Xmax-Xmin)/m is the

width of each bin.

At this point, the continuous time-series data has been fully

transformed into a discrete format, allowing it to be processed

by large models. Additionally, the output of large models, also

in a discrete form, must undergo a reverse transformation to

obtain meaningful continuous forecast values, as shown in Fig.

3(b). This reverse process converts the discrete output back into

the continuous values required for accurate forecasting.

40

50

60

70

80

90

100

110

Historical Time Series

Large Model

N
o

rm
a

li
za

ti
o

n
Q

u
a

n
ti

za
ti

o
n

Discrete value

85 12 82 21 2… … … …

Discrete value

85 12 82 21 2

D
is

cr
et

e
v

al
u

e

34 46 52

D
eq

u
a

n
ti

za
ti

o
n

&
D

en
o

rm
a

li
za

ti
o

n

Load forecasting

(a) Time series discretization (b) Model inference
Fig. 3. Discretization pipeline for time-series forecasting with large
models.

C. Training and Use of TimeGPT

TimeGPT is trained on a large number of publicly available

datasets with 100 billion data points, such as finance,

transportation, banking, web traffic, weather, energy,

healthcare, etc [30]. In regards to temporal characteristics, the

training data includes diverse sets with different seasonality,

cycles of varying durations, and various trend types. In addition

to temporal characteristics, the dataset exhibits variability in

noise levels and the presence of outliers, providing a robust

training condition. Some datasets exhibit orderly, predictable

patterns, while others exhibit significant noise spikes or

unexpected events, providing a wide range of scenarios for

model assimilation.

TimeGPT has been trained on a cluster of NVIDIA A10G

GPUs. The hyper-parameters (e.g. learning rates, batch sizes,

etc.) are not open in [30], but they show that a smaller learning

rate and a larger batch size are appropriate choices. The deep

leaning framework is the PyTorch. The adaptive moment

estimation (Adam) is used as the optimizer.

Regarding whether TimeGPT is fine-tuned or not, this paper

will consider two scenarios: zero-shot learning and few-shot

learning.

For zero-shot learning, the historical load data will be

directly fed to TimeGPT to forecast future loads without any

adjustments to TimeGPT's parameters.

In the case of few-shot learning, where only scarce historical

load data is available due to either inadequate infrastructure or

privacy concerns, a fine-tuning process is employed to adapt

TimeGPT to the specific load forecasting task. As shown in Fig.

4, the fine-tuning process involves four steps.

Firstly, the pre-trained TimeGPT model is utilized, with all

layers having been pre-trained on large and diverse time series

datasets. The pre-trained weights in each layer of TimeGPT

serve as the starting points for fine-tuning. Secondly, the

fine-tuning process is carried out using the scarce historical

load data. This data is used to update the weights of all layers in

the model. The learning rate for fine-tuning is set lower than

typical training processes to ensure that TimeGPT does not

deviate significantly from the pre-trained knowledge, but rather

adapts to the specific patterns of the new load forecasting task.

Thirdly, an appropriate optimization algorithm (e.g., Adam) is

used to minimize the loss function, typically mean squared

error, over the small dataset. During fine-tuning, TimeGPT is

trained on a limited number of epochs to avoid over-fitting

given the scarcity of data. Lastly, to prevent over-fitting and

ensure generalization, the performance of TimeGPT is

monitored on a validation set. Early stopping is applied if the

validation performance does not improve after a certain number

of epochs, ensuring that the fine-tuned TimeGPT remains

robust and does not over-fit the small training dataset.

The fine-tuning ensures that TimeGPT shows good

generalization in the given specific task, i.e. load forecasting.

Subsequently, the fine-tuned TimeGPT is used to perform load

forecasting tasks.

Large model

Large model

Train

Multi-source data

Fine-

tune Inference

Load

forecasting
Load data

Import

model

Fig. 4. The fine-tuning process of large models.

III. CASE STUDY I

This section will conduct simulations and analyses to

thoroughly explore the performance of TimeGPT by using a

real dataset, while its generalization to other datasets will be

tested in the following Section IV.

A. Simulation Settings

1) Dataset Description

As mentioned earlier, TimeGPT is trained on a large number

of publicly available time series datasets. If the popular and

publicly available load datasets are used for simulations, there

may be a risk of data leakage, since these popular and publicly

available datasets may have been used to parameterize

TimeGPT. Therefore, simulations are conducted on a private

dataset sourced from the University of Texas at Austin [36],

ensuring fairness as the parameters of TimeGPT are unrelated

to this dataset.

Specifically, this dataset records the load data of 16 campus

buildings with a time resolution of one hour. Due to limited

application programming interface (API) tokens for TimeGPT,

three months of load data are used for simulation and testing,

spanning from July 17, 2011, to October 16, 2011.

To test the model performance of TimeGPT on datasets with

different numbers of training samples, the original dataset is

divided into five cases, as shown in Table I. From case 1 to case

5, the number of training samples gradually increases. Case 1

contains very few training samples, while the training samples

in case 5 are relatively rich.

TABLE I

DESCRIPTION OF EACH CASE

Case Training set Test set

Case 1 From Jul. 17 to Jul. 19 (3 days) From Jul. 20 to Oct. 16

Case 2 From Jul. 17 to Jul. 21 (5 days) From Jul. 22 to Oct. 16

Case 3 From Jul. 17 to Jul. 23 (7 days) From Jul. 24 to Oct. 16

Case 4 From Jul. 17 to Jul. 31 (15 days) From Aug. 1 to Oct. 16

Case 5 From Jul. 17 to Aug. 15 (30 days) From Aug. 16 to Oct. 16

2) Benchmarks

To fully evaluate the performance of TimeGPT, it will be

compared to popular models, including PM, LR in [8], RT in

[14], XGBoost in [15], MLP in [16], LSTM in [17], patch time

series transformer (PatchTST) [37], and time series large

language model (TimeLLM) [38]. Note that TimeLLM is

trained on massive textual data, while TimeGPT is directly

trained on time series data. This key difference means that

while TimeLLM is reprogrammed to analyze time series data as

textual input, TimeGPT is inherently designed to process time

series information from the start, optimizing its parameters

specifically for time-dependent data.

Although each model contains numerous hyper-parameters,

the impact of these hyper-parameters on performance is not

investigated for two main reasons. Firstly, space does not

permit a detailed discussion of these hyper-parameters.

Secondly, the discussion of these hyper-parameters has already

been thoroughly covered in previous works (as cited). The

focus of this paper is on the performance of TimeGPT, not on

the fine-tuning of the baseline models. To ensure a fair

comparison, the Bayesian optimization in [39] is used to

determine the most appropriate parameter settings for each

baseline model. For example, the parameters of each model for

load forecasting with a 1-hour look-ahead time in Case 1 are

shown in Table II. For each model, the inputs include only

historical loads and time (e.g., data points in the last 24 hours),

while the outputs are future loads. It is univariate time series

forecasts without considering other information, such as

weather conditions. The parameters in other cases can be

determined similarly.

TABLE II

PARAMETER OF BENCHMARKS

Model Model structure Fitting setting

MLP

in [16]

Dense 1: 16 units
Dense 2: 16 units

Dense 3: 1 unit

Training epoch: 200
Batch size: 8

Optimizer: Adam

Learning rate: 0.001
Activation function: ReLU

for input and middle layers,

Sigmoid for the last layer

LSTM

in [17]

LSTM 1: 16 units

LSTM 2: 8 units

Dense 1: 8 units

Dense 2: 1 unit

PM
Without parameters; It forecast the load by copying the value

from the previous time step.

LR in [8] Intercept is used in calculations

RT in [14]
Max depth: 4

Leaves: 25

Learning rate:0.01
Estimators: 500

Min child samples: 90

Subsample: 0.8
Early stopping: 400

Loss: squared error

XGBoost

in [15]

PatchTST

in [37]

Length of the patch: 16
Stride of the patch:8

Number of time units: 96

Size of hidden layers in the Transformer: 32
Number of attention heads: 4

Number of epochs: 200

Batch size: 8

TimeLLM
in [38]

Length of the patch: 16
Stride of the patch:8

Top tokens to consider:5

Hidden dimension of LLM: 768
 Number of heads in attention layer: 8

Maximum number of training steps:1000

Encoder input size:7
Batch size: 8

3) Evaluation Metrics

To avoid chance or coincidence, each model is run 30 times

to obtain average forecasts. Then, the model performance is

evaluated by using widely used metrics, including mean

absolute error (MAE), root mean squared error (RMSE), and

mean absolute percentage error (MAPE):

1

1
ˆMAE

n

i i

i

y y
n 

  (12)

 
2

1

1
ˆRMSE

n

i i

i

y y
n 

  (13)

1

ˆ1
MAPE

n
i i

i i

y y

n y


  (14)

where
iy and ˆ

iy denotes the normalized real and forecast

values, respectively; and n denotes the number of data points in

the test set.

4) Simulation Designs

To investigate the potential of TimeGPT in load forecasting,

simulations will be carried out from the following three points

of view:

Firstly, the model performance of TimeGPT will be

discussed with and without fine-tuning in load forecasting, i.e.,

zero-shot learning and few-shot learning. Secondly, TimeGPT

will be compared to the benchmarks in cases where historical

data is scarce. Finally, TimeGPT will also be compared to the

benchmarks in data-rich cases.

B. Performance Analysis With and Without Fine-Tuning

Zero-shot learning involves directly feeding historical load

data directly into TimeGPT to forecast future loads without

adjusting TimeGPT's parameters. Conversely, few-shot

learning involves using scarce historical load data to fine-tune

TimeGPT's weights before conducting load forecasting.

To evaluate the model performance of TimeGPT in load

forecasting, both few-shot learning and zero-shot learning (i.e.,

TimeGPT with and without fine-tuning) are considered in five

cases. These cases involve load forecasting with different

look-ahead times ranging from 1 hour to 24 hours. The average

evaluation metrics of TimeGPT in various scenarios are shown

in Fig. 5.

Although TimeGPT is trained on massive and diverse

datasets consisting of 100 billion data points, its performance

on various metrics (e.g., RMSE, MAE, and MAPE) is poor

prior to fine-tuning, indicating that it cannot be directly

generalized to load forecasting. This could be attributed to the

fact that the training data may not adequately represent the

specific data distribution and patterns relevant to load

forecasting, resulting in limited generalization capability.

However, after fine-tuning, the performance of TimeGPT in

load forecasting improves significantly, with considerable

decreases observed in various metrics. The reason for this is

that the fine-tuning involves specific adjustments to its weights

tailored to the requirements of load forecasting, allowing it to

better adapt to the data distribution, patterns, and characteristics

associated with load forecasting. Therefore, the fine-tuning can

significantly improve the performance of TimeGPT, making it

more practical and accurate for real-world applications.

C. Performance Comparison in Data Scarce Cases

To compare the performance of TimeGPT with the

benchmarks in cases where data is scarce, these models are

used to conduct the load forecasting in Cases 1-3 (Data points

in the training set range from 3 to 7 days). Note that TimeGPT

is fine-tuned by the historical load data here. The average

evaluation metrics of TimeGPT in various scenarios are shown

in Tables III-V.

(a) RMSE in Case 1

Result of TimeGPT with fine-tuning Result of TimeGPT without fine-tuning

(b) RMSE in Case 2 (c) RMSE in Case 3 (d) RMSE in Case 4 (e) RMSE in Case 5

(f) MAE in Case 1 (g) MAE in Case 2 (h) MAE in Case 3 (i) MAE in Case 4 (j) MAE in Case 5

(k) MAPE in Case 1 (l) MAPE in Case 2 (m) MAPE in Case 3 (n) MAPE in Case 4 (r) MAPE in Case 5

Fig. 5. The results of TimeGPT with and without fine-tuning in different cases.

TABLE III

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A SHORT LOOK-AHEAD TIME (CASE 1)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.033 0.024 0.036 0.043 0.034 0.052 0.043 0.035 0.055 0.072 0.055 0.088 0.125 0.097 0.142
MLP 0.051 0.046 0.075 0.070 0.057 0.091 0.089 0.063 0.094 0.099 0.077 0.123 0.091 0.073 0.119

LSTM 0.043 0.037 0.061 0.063 0.046 0.068 0.067 0.058 0.092 0.099 0.076 0.120 0.110 0.093 0.152
LR 0.037 0.029 0.044 0.044 0.036 0.058 0.074 0.057 0.094 0.094 0.078 0.128 0.239 0.183 0.298

XGBoost 0.052 0.033 0.050 0.068 0.048 0.073 0.063 0.045 0.069 0.094 0.073 0.119 0.090 0.071 0.112
RT 0.063 0.042 0.065 0.073 0.054 0.081 0.082 0.063 0.095 0.106 0.084 0.136 0.099 0.077 0.122
PM 0.039 0.025 0.037 0.082 0.059 0.087 0.110 0.087 0.130 0.078 0.057 0.089 0.126 0.100 0.149

PatchTST 0.091 0.074 0.101 0.066 0.053 0.076 0.063 0.052 0.080 0.080 0.068 0.109 0.140 0.114 0.186
TimeLLM 0.137 0.123 0.176 0.286 0.236 0.371 0.232 0.191 0.305 0.242 0.189 0.312 0.167 0.134 0.224

TABLE IV

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A SHORT LOOK-AHEAD TIME (CASE 2)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.021 0.015 0.022 0.049 0.035 0.053 0.065 0.043 0.067 0.079 0.059 0.099 0.115 0.087 0.133
MLP 0.030 0.026 0.038 0.073 0.052 0.083 0.080 0.061 0.100 0.092 0.075 0.129 0.102 0.081 0.141

LSTM 0.022 0.019 0.025 0.076 0.050 0.080 0.097 0.076 0.126 0.096 0.075 0.129 0.102 0.082 0.141
LR 0.022 0.016 0.024 0.053 0.037 0.059 0.070 0.054 0.088 0.093 0.077 0.133 0.101 0.079 0.139

XGBoost 0.032 0.028 0.038 0.072 0.054 0.085 0.080 0.061 0.099 0.098 0.077 0.132 0.099 0.075 0.130
RT 0.033 0.029 0.040 0.075 0.054 0.088 0.086 0.060 0.096 0.108 0.083 0.144 0.108 0.081 0.140
PM 0.038 0.028 0.039 0.070 0.050 0.076 0.081 0.056 0.088 0.082 0.063 0.106 0.116 0.092 0.145

PatchTST 0.021 0.016 0.023 0.066 0.049 0.081 0.073 0.053 0.088 0.081 0.061 0.102 0.096 0.075 0.125
TimeLLM 0.126 0.112 0.177 0.330 0.271 0.432 0.264 0.209 0.346 0.213 0.166 0.281 0.257 0.207 0.354

TABLE V

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A SHORT LOOK-AHEAD TIME (CASE 3)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.016 0.012 0.021 0.055 0.036 0.061 0.088 0.059 0.102 0.083 0.063 0.106 0.132 0.102 0.157
MLP 0.028 0.022 0.038 0.057 0.049 0.088 0.063 0.054 0.096 0.081 0.068 0.117 0.100 0.081 0.146

LSTM 0.039 0.035 0.061 0.089 0.076 0.138 0.093 0.078 0.142 0.108 0.091 0.156 0.120 0.096 0.172
LR 0.019 0.014 0.024 0.055 0.046 0.081 0.068 0.057 0.102 0.082 0.069 0.118 0.099 0.078 0.141

XGBoost 0.022 0.017 0.030 0.080 0.062 0.113 0.087 0.070 0.128 0.100 0.082 0.143 0.108 0.085 0.151
RT 0.030 0.023 0.041 0.101 0.079 0.144 0.091 0.074 0.133 0.112 0.085 0.146 0.123 0.096 0.170
PM 0.017 0.013 0.022 0.058 0.038 0.064 0.098 0.070 0.121 0.091 0.071 0.120 0.132 0.105 0.166

PatchTST 0.017 0.012 0.022 0.057 0.038 0.063 0.062 0.045 0.072 0.073 0.052 0.088 0.093 0.071 0.115
TimeLLM 0.046 0.038 0.064 0.151 0.110 0.197 0.112 0.092 0.163 0.230 0.188 0.313 0.196 0.162 0.282

1) Performance Comparison

In scenarios with scarce historical data, TimeGPT

demonstrates significant advantages over benchmarks for load

forecasting, particularly with a look-ahead time of a few hours

(e.g., 1 hour to 6 hours). For instance, in case 1 with a 1-hour

look-ahead time, the RMSE of TimeGPT is reduced by 35.29%,

23.26%, 10.81%, 36.54%, 47.62%, 15.38%, 63.73%, and

75.91%, compared to MLP, LSTM, LR, XGBoost, RT, PM,

PatchTST, and TimeLLM, respectively. The likely reasons for

the strong performance of TimeGPT in load forecasting are as

follows:

TimeGPT benefits from pre-training on massive and diverse

time series datasets, which gives it a degree of generalization.

Even in scenarios with scarce data, it can use this rich prior

knowledge to perform well on load forecasting. In contrast,

traditional machine learning models struggle to capture

complex patterns in load data due to insufficient training data,

resulting in lower forecast accuracy.

Similarly, in Case 2 (5 days of training data), TimeGPT

continues to outperform baselines for load forecasting with a

look-ahead time of 1 to 12 hours. In Case 3 (7 days of training

data), TimeGPT still outperforms the baselines but with a

narrower range of the look-ahead time. However, in Cases 4

(15 days of training data) and 5 (30 days of training data),

where more historical data is available, the performance

advantages of TimeGPT diminish and it may underperform the

baselines for load forecasting. These observations suggest that

while TimeGPT performs well with extremely limited

historical data, its advantages become less apparent as the

amount of training data increases. This highlights the strength

of TimeGPT in dealing with data scarcity, especially when the

historical data is less than 7 days old.

In Tables III to V, TimeLLM shows poor performance. This

is mainly due to the fact that it is trained on large amounts of

text data, making it less suited for time series tasks. In contrast,

TimeGPT is trained directly on time series data. Its parameters

are optimized for temporal patterns, allowing it to handle load

forecasting tasks with greater accuracy and efficiency.

However, the day-ahead load forecasting (e.g., the

look-ahead time is 24 hours) involves longer temporal

dependencies, which may exceed the scope of what TimeGPT

learned during pre-training. As a result, its performance may be

relatively worse compared to the benchmarks. Similarly,

TimeGPT does not perform well in load forecasting where the

look-ahead time is longer (e.g. the look-ahead time is greater

than 24 hours).

(a) Load forecast with 12-hour look-ahead time (b) Load forecast with 24-hour look-ahead time

RT XGBoost LR LSTM MLP TimeGPT PatchTST TimeLLM Real

Fig. 6. The load forecasting of TimeGPT with a long look-ahead time (e.g., 12 hours and 24 hours).

TABLE VI

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A LONG LOOK-AHEAD TIME (CASE 4)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.048 0.034 0.055 0.082 0.054 0.084 0.117 0.087 0.138 0.107 0.082 0.130 0.134 0.102 0.148
MLP 0.029 0.025 0.042 0.048 0.038 0.065 0.053 0.044 0.075 0.051 0.041 0.071 0.065 0.049 0.075

LSTM 0.027 0.024 0.039 0.046 0.038 0.065 0.059 0.051 0.090 0.052 0.042 0.073 0.067 0.052 0.082
LR 0.029 0.024 0.038 0.041 0.030 0.049 0.053 0.038 0.061 0.042 0.032 0.051 0.067 0.052 0.081

XGBoost 0.035 0.031 0.055 0.064 0.051 0.098 0.070 0.056 0.103 0.078 0.052 0.093 0.080 0.056 0.091
RT 0.041 0.034 0.056 0.099 0.067 0.128 0.105 0.077 0.142 0.101 0.070 0.121 0.092 0.065 0.105
PM 0.036 0.027 0.043 0.089 0.060 0.095 0.134 0.103 0.168 0.099 0.079 0.131 0.126 0.097 0.145

PatchTST 0.045 0.035 0.053 0.052 0.040 0.062 0.065 0.047 0.073 0.049 0.035 0.054 0.079 0.056 0.084
TimeLLM 0.243 0.196 0.291 0.209 0.167 0.291 0.210 0.174 0.302 0.260 0.209 0.327 0.186 0.156 0.257

TABLE VII

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A LONG LOOK-AHEAD TIME (CASE 5)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.028 0.022 0.036 0.082 0.059 0.098 0.113 0.081 0.139 0.091 0.070 0.119 0.149 0.122 0.176
MLP 0.039 0.035 0.056 0.099 0.081 0.132 0.138 0.116 0.193 0.132 0.106 0.174 0.153 0.127 0.186

LSTM 0.016 0.013 0.020 0.029 0.023 0.038 0.036 0.029 0.052 0.043 0.036 0.061 0.060 0.046 0.070
LR 0.012 0.009 0.016 0.033 0.026 0.043 0.037 0.029 0.051 0.056 0.047 0.079 0.078 0.055 0.083

XGBoost 0.020 0.015 0.024 0.037 0.030 0.050 0.045 0.035 0.061 0.044 0.035 0.061 0.065 0.049 0.076
RT 0.021 0.016 0.026 0.029 0.022 0.037 0.041 0.029 0.053 0.045 0.035 0.059 0.063 0.047 0.071
PM 0.025 0.021 0.033 0.047 0.037 0.061 0.056 0.041 0.069 0.058 0.046 0.077 0.083 0.062 0.094

PatchTST 0.017 0.013 0.020 0.031 0.025 0.042 0.041 0.032 0.057 0.051 0.039 0.067 0.070 0.053 0.083
TimeLLM 0.158 0.134 0.194 0.228 0.183 0.303 0.187 0.153 0.275 0.184 0.152 0.269 0.240 0.194 0.316

2) Visual Analysis on a Long Look-Ahead Time

To explore why TimeGPT is not efficient in load forecasting

with a long look-ahead time (e.g., 12 hours and 24 hours), a

specific case (i.e., Case 1) is selected as an example to visualize

load forecasting using the recursive forecasting method.

Specifically, three days of load data are randomly selected to

perform load forecasting with a long look-ahead time (e.g., 12

hours and 24 hours), as shown in Fig. 6. Note that PM is

removed because it is not suitable for load forecasting with a

long look-ahead time.

Visual analysis shows that the forecasts generated by

TimeGPT have a conservative and smoothed pattern. This

pattern makes it difficult for TimeGPT to capture the peaks and

valleys of load, which explains its low accuracy in load

forecasting with a long look-ahead time (e.g., 12 hours and 24

hours).

D. Performance Comparison in Data Rich Cases

To compare the performance of TimeGPT with the

benchmarks in cases where data is relatively rich, these models

are used to conduct load forecasting in Cases 4-5. Note that

TimeGPT is fine-tuned by the historical load data here. The

average evaluation metrics of TimeGPT in various scenarios

are shown in Tables VI-VII.

Tables VI and VII show that, despite the fine-tuning,

TimeGPT performs significantly worse than machine learning

models in load forecasting with relatively rich historical data.

This could be due to potential mismatches in distribution and

characteristics between the training dataset and the load data.

Machine learning models trained directly on load data have an

optimization process entirely focused on load forecasting,

allowing them to better adapt to the specific characteristics of

load forecasting. In contrast, when the pre-training data of

TimeGPT comes from different time series, such as traffic,

weather, energy, network and financial data, the learned

representations may capture a wide range of temporal patterns

that do not exactly match the unique characteristics of the load

forecast. The fine-tuning process, while beneficial, may not be

sufficient to overcome these underlying differences as the

pre-training weights are initially optimized for generic tasks

rather than the specific nuances of load forecasting. In other

words, if sufficient data is available to train machine learning

models, the choice of classical machine learning models may

be more desirable than LTSMs like TimeGPT.

The impact of such distributional differences is twofold:

firstly, it may lead to suboptimal feature extraction during the

fine-tuning phase, as the internal representations in TimeGPT

may be biased towards patterns that are prevalent in the

pre-training data but less relevant to load forecasting. Secondly,

these differences can cause TimeGPT to struggle to capture the

intricate seasonal and temporal dependencies unique to load

data, leading to poor performance.

To mitigate these challenges, several strategies can be

considered in future work. One possible research line is to

incorporate domain adaptation techniques during the

fine-tuning phase (e.g., adversarial training) that emphasize

alignment between the pre-training and target data distributions

(i.e., load data). Another research line could be the use of a

hybrid model that combines TimeGPT with a traditional load

forecasting model, exploiting the strengths of both.

Additionally, the expansion of the fine-tuning dataset to include

more diverse load-related examples or the use of techniques

such as data augmentation could also help narrow the

distributional gap.

IV. CASE STUDY II

This section will further investigate the generalization of

TimeGPT for other load datasets.

A. Simulation Settings

The simulations are performed on four publicly available

datasets from China Nongfu Spring Company (a packaged

water supplier) [40], Midea Group (an electrical appliance

manufacturer) [40], the Joho City Electric Power Company in

Malaysia [41], and Arizona State University Tempe Campus

[42], respectively. The time resolution in these four datasets is

one hour. Although the first two datasets are publicly available,

they should not have been used to train TimeGPT, because a

password is required to obtain them.

Due to limited API tokens for TimeGPT, the three months of

load data are used for simulation and testing. Specifically, the

dataset from Nongfu Spring Company spans from May 1, 2017,

to July 31, 2017. The dataset from Midea Group covers the

period from April 28, 2017, to July 27, 2017. Meanwhile, the

dataset from Joho City ranges from January 1, 2009, to March

31, 2009. The dataset from Arizona State University ranges

from January 1, 2012, to March 31, 2012.

B. Results and Analysis

Similar to Section III, the TimeGPT and benchmarks are

used to conduct load forecasting in the data scarce case (e.g.,

Case 1) and data rich case (e.g., Case 5). The parameter settings

for the different cases are the same as before:

Case 1: The first 3 days of load data are used as the training

set, and the remainder is considered the test set.

Case 5: The first 30 days of load data are used as the training

set, and the remainder is considered the test set.

The average evaluation metrics in data rich cases are

presented in Tables VIII-XI, and the average evaluation metrics

in data scarce cases are presented in Tables XII-XV.

TABLE VIII
RESULTS IN CHINA NONGFU SPRING COMPANY'S DATASET IN DATA RICH CASE (I.E., CASE 5)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.059 0.046 0.107 0.105 0.080 0.147 0.140 0.102 0.183 0.162 0.112 0.173 0.148 0.112 0.175
MLP 0.056 0.042 0.098 0.114 0.092 0.151 0.142 0.112 0.201 0.151 0.115 0.169 0.150 0.118 0.168

LSTM 0.055 0.044 0.101 0.112 0.095 0.168 0.150 0.119 0.209 0.183 0.147 0.210 0.152 0.116 0.171
LR 0.053 0.041 0.100 0.094 0.073 0.127 0.113 0.083 0.149 0.126 0.090 0.138 0.130 0.105 0.150

XGBoost 0.062 0.048 0.113 0.114 0.098 0.163 0.153 0.131 0.216 0.141 0.107 0.159 0.140 0.108 0.153
RT 0.068 0.057 0.128 0.115 0.089 0.141 0.172 0.141 0.219 0.173 0.136 0.203 0.183 0.138 0.206
PM 0.060 0.047 0.112 0.108 0.077 0.146 0.137 0.100 0.183 0.161 0.104 0.163 0.145 0.109 0.173

PatchTST 0.058 0.045 0.105 0.114 0.092 0.151 0.126 0.095 0.160 0.152 0.112 0.176 0.138 0.104 0.157
TimeLLM 0.197 0.159 0.306 0.286 0.226 0.357 0.226 0.178 0.259 0.246 0.189 0.279 0.273 0.215 0.300

TABLE IX

RESULTS IN MIDEA GROUP'S DATASET IN DATA RICH CASE (I.E., CASE 5)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.074 0.057 0.130 0.185 0.131 0.398 0.178 0.136 0.747 0.199 0.157 0.775 0.272 0.228 1.111
MLP 0.062 0.042 0.094 0.084 0.059 0.185 0.113 0.077 0.800 0.215 0.150 2.933 0.210 0.133 2.022

LSTM 0.049 0.038 0.098 0.121 0.081 0.314 0.149 0.112 0.849 0.283 0.213 4.051 0.272 0.191 2.387
LR 0.043 0.037 0.092 0.089 0.069 0.222 0.145 0.091 1.177 0.161 0.116 1.971 0.202 0.142 1.783

XGBoost 0.047 0.036 0.088 0.085 0.064 0.220 0.143 0.088 1.125 0.241 0.174 3.620 0.230 0.163 2.202
RT 0.071 0.053 0.127 0.133 0.088 0.282 0.178 0.114 1.284 0.250 0.181 3.224 0.245 0.171 2.101
PM 0.090 0.071 0.159 0.214 0.150 0.431 0.203 0.159 0.723 0.188 0.149 0.769 0.283 0.234 1.194

PatchTST 0.060 0.048 0.137 0.090 0.068 0.269 0.149 0.092 1.206 0.201 0.152 1.886 0.228 0.152 1.565
TimeLLM 0.206 0.189 0.554 0.294 0.232 1.037 0.397 0.303 2.354 0.365 0.309 3.867 0.552 0.443 3.043

TABLE X

RESULTS IN JOHO CITY'S DATASET IN DATA RICH CASE (I.E., CASE 5)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.054 0.044 0.203 0.118 0.082 0.330 0.187 0.119 0.440 0.241 0.162 0.531 0.312 0.237 0.569
MLP 0.020 0.015 0.068 0.036 0.026 0.142 0.064 0.040 0.152 0.055 0.030 0.106 0.087 0.059 0.196

LSTM 0.022 0.017 0.068 0.038 0.031 0.170 0.061 0.040 0.157 0.065 0.039 0.134 0.096 0.068 0.231
LR 0.039 0.031 0.128 0.077 0.050 0.195 0.112 0.068 0.228 0.084 0.049 0.162 0.095 0.060 0.185

XGBoost 0.031 0.023 0.102 0.048 0.031 0.126 0.088 0.055 0.174 0.062 0.035 0.113 0.090 0.058 0.160
RT 0.037 0.024 0.127 0.042 0.026 0.133 0.104 0.053 0.185 0.076 0.036 0.128 0.104 0.057 0.170
PM 0.056 0.038 0.158 0.144 0.096 0.424 0.203 0.136 0.594 0.243 0.171 0.673 0.286 0.224 0.643

PatchTST 0.030 0.023 0.090 0.034 0.023 0.121 0.106 0.059 0.232 0.090 0.056 0.186 0.105 0.072 0.244
TimeLLM 0.274 0.217 0.600 0.273 0.226 1.603 0.458 0.366 2.464 0.450 0.362 2.203 0.376 0.274 1.545

TABLE XI

RESULTS IN ARIZONA STATE UNIVERSITY'S DATASET IN DATA RICH CASE (I.E., CASE 5)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.032 0.024 0.087 0.126 0.086 0.290 0.200 0.152 0.377 0.176 0.130 0.358 0.238 0.185 0.471
MLP 0.019 0.014 0.038 0.041 0.031 0.075 0.053 0.041 0.093 0.079 0.065 0.150 0.118 0.089 0.201

LSTM 0.015 0.011 0.032 0.034 0.026 0.068 0.047 0.034 0.075 0.107 0.078 0.162 0.110 0.079 0.200
LR 0.021 0.017 0.048 0.059 0.048 0.114 0.086 0.063 0.138 0.093 0.068 0.169 0.128 0.095 0.231

XGBoost 0.014 0.010 0.034 0.034 0.026 0.063 0.072 0.049 0.097 0.087 0.068 0.163 0.117 0.087 0.205
RT 0.023 0.017 0.060 0.033 0.026 0.075 0.093 0.060 0.140 0.105 0.081 0.202 0.142 0.101 0.232
PM 0.052 0.039 0.135 0.135 0.106 0.356 0.242 0.200 0.570 0.155 0.126 0.442 0.218 0.175 0.539

PatchTST 0.018 0.012 0.041 0.048 0.033 0.091 0.051 0.037 0.096 0.078 0.059 0.184 0.135 0.101 0.251
TimeLLM 0.254 0.219 0.493 0.430 0.356 1.242 0.285 0.235 0.819 0.337 0.268 0.987 0.250 0.203 0.853

TABLE XII

RESULTS IN CHINA NONGFU SPRING COMPANY'S DATASET IN DATA SCARCE CASE (I.E., CASE 1)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.047 0.037 0.073 0.088 0.072 0.127 0.141 0.091 0.186 0.125 0.096 0.215 0.146 0.108 0.294
MLP 0.116 0.094 0.199 0.161 0.129 0.221 0.218 0.189 0.307 0.255 0.208 0.403 0.239 0.201 0.496

LSTM 0.096 0.079 0.166 0.228 0.177 0.293 0.319 0.261 0.403 0.265 0.214 0.446 0.362 0.312 0.716
LR 0.084 0.071 0.141 0.168 0.135 0.235 0.212 0.162 0.268 0.324 0.245 0.476 0.582 0.432 0.960

XGBoost 0.062 0.047 0.088 0.198 0.157 0.259 0.275 0.223 0.339 0.237 0.179 0.338 0.224 0.180 0.427
RT 0.060 0.050 0.101 0.204 0.163 0.278 0.273 0.227 0.352 0.261 0.200 0.389 0.221 0.177 0.428
PM 0.053 0.042 0.084 0.091 0.070 0.123 0.147 0.096 0.198 0.136 0.101 0.234 0.165 0.120 0.333

PatchTST 0.102 0.089 0.191 0.169 0.139 0.271 0.160 0.116 0.245 0.160 0.120 0.287 0.264 0.200 0.544
TimeLLM 0.147 0.122 0.225 0.307 0.282 0.523 0.295 0.255 0.473 0.279 0.218 0.520 0.286 0.215 0.526

TABLE XIII
RESULTS IN MIDEA GROUP'S DATASET IN DATA SCARCE CASE (I.E., CASE 1)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.051 0.037 0.170 0.185 0.117 0.650 0.204 0.151 0.750 0.167 0.134 0.647 0.234 0.195 0.627
MLP 0.070 0.056 0.234 0.116 0.084 0.366 0.174 0.136 0.460 0.345 0.294 0.638 0.343 0.297 0.597

LSTM 0.117 0.100 0.389 0.206 0.164 1.099 0.198 0.147 0.562 0.263 0.218 0.479 0.381 0.313 0.641
LR 0.051 0.038 0.201 0.137 0.109 0.815 0.151 0.117 0.616 0.376 0.290 0.808 0.434 0.345 0.703

XGBoost 0.090 0.076 0.385 0.144 0.108 0.522 0.207 0.153 0.462 0.331 0.278 0.555 0.364 0.307 0.574
RT 0.138 0.104 0.589 0.158 0.113 0.487 0.226 0.173 0.456 0.328 0.276 0.561 0.372 0.314 0.618
PM 0.063 0.036 0.162 0.203 0.126 0.736 0.223 0.164 0.829 0.169 0.146 0.674 0.247 0.198 0.654

PatchTST 0.086 0.073 0.279 0.205 0.174 1.223 0.247 0.216 1.040 0.258 0.231 0.896 0.267 0.218 0.837
TimeLLM 0.176 0.137 0.394 0.592 0.489 3.438 0.268 0.218 0.991 0.280 0.224 0.858 0.250 0.197 0.726

TABLE XIV
RESULTS IN JOHO CITY'S DATASET IN DATA SCARCE CASE (I.E., CASE 1)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.019 0.015 0.078 0.104 0.081 0.299 0.153 0.134 0.417 0.269 0.181 0.552 0.341 0.259 0.557
MLP 0.080 0.070 0.438 0.141 0.124 0.644 0.154 0.130 0.576 0.129 0.096 0.328 0.146 0.117 0.453

LSTM 0.104 0.084 0.735 0.294 0.272 1.715 0.224 0.184 1.054 0.185 0.136 0.561 0.193 0.147 0.698
LR 0.053 0.038 0.141 0.165 0.105 0.339 0.219 0.112 0.431 0.583 0.417 1.823 0.864 0.554 2.065

XGBoost 0.084 0.072 0.580 0.181 0.141 0.664 0.155 0.117 0.543 0.163 0.114 0.487 0.163 0.115 0.407
RT 0.126 0.115 0.806 0.241 0.191 0.857 0.201 0.146 0.705 0.215 0.138 0.718 0.205 0.147 0.530
PM 0.051 0.030 0.192 0.178 0.107 0.382 0.246 0.155 0.575 0.272 0.191 0.684 0.324 0.254 0.655

PatchTST 0.098 0.082 0.519 0.155 0.117 0.412 0.164 0.123 0.488 0.153 0.098 0.374 0.223 0.167 0.591
TimeLLM 0.290 0.243 0.838 0.558 0.448 2.304 0.328 0.270 1.661 0.337 0.278 1.526 0.380 0.333 1.735

TABLE XV

RESULTS IN ARIZONA STATE UNIVERSITY'S DATASET IN DATA SCARCE CASE (I.E., CASE 1)

Model
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

TimeGPT 0.030 0.025 0.128 0.097 0.063 0.399 0.162 0.123 0.645 0.101 0.079 0.583 0.207 0.169 0.607
MLP 0.039 0.032 0.130 0.051 0.040 0.190 0.059 0.048 0.198 0.103 0.082 0.378 0.146 0.114 0.399

LSTM 0.049 0.040 0.154 0.075 0.060 0.238 0.083 0.065 0.241 0.107 0.088 0.482 0.179 0.139 0.410
LR 0.017 0.015 0.067 0.032 0.025 0.129 0.067 0.047 0.318 0.099 0.073 0.471 0.195 0.132 0.351

XGBoost 0.080 0.068 0.222 0.068 0.051 0.210 0.073 0.057 0.241 0.102 0.078 0.408 0.152 0.106 0.283
RT 0.107 0.089 0.291 0.117 0.094 0.335 0.086 0.073 0.303 0.118 0.092 0.404 0.162 0.118 0.319
PM 0.042 0.032 0.156 0.099 0.075 0.414 0.165 0.133 0.710 0.108 0.086 0.648 0.171 0.142 0.604

PatchTST 0.080 0.067 0.412 0.122 0.098 0.679 0.129 0.099 0.734 0.136 0.103 0.856 0.178 0.142 0.755
TimeLLM 0.237 0.203 0.598 0.244 0.200 1.082 0.354 0.302 1.601 0.157 0.125 0.890 0.305 0.250 1.180

1) Model Performance in Data-rich Cases

Tables VIII-XI show that in data-rich cases, the evaluation

metrics of TimeGPT are generally larger than those of most

machine learning models. For example, in Table VIII, the

RMSE, MAE, and MAPE of TimeGPT are larger than those of

MLP, LSTM, and LR for load forecasting with a 1-hour

look-ahead time. This again highlights that TimeGPT is not

suitable for load forecasting when extensive historical load data

is available.

2) Model Performance in Data Scarce Cases

In Tables XII and XV, TimeGPT usually outperforms the

benchmarks in cases with scarce historical data, especially for

load forecasting with a short look-ahead time. For example, in

Table XII with a 1-hour look-ahead time, the RMSE of

TimeGPT is reduced by 59.48%, 51.04%, 44.05%, 24.19%,

21.67%, 11.32%, 53.92%, 68.03%, compared to MLP, LSTM,

LR, XGBoost, RT, PM, PatchTST, and TimeLLM, respectively.

Similarly, the MAE and MAPE of TimeGPT also are smaller

than those of benchmarks. This reaffirms the effectiveness of

TimeGPT in load forecasting with a short look-ahead time.

However, in Table XV, the evaluation metrics of TimeGPT

are not minimal for load forecasting with various look-ahead

times. This could be due to significant distribution differences

between the load dataset from Arizona State University and the

training data. For example, if a machine learning model is

trained on images to recognize cats and dogs, its performance

will be very limited when transferred to the task of tumor

recognition in medical imaging. This is because the data

differences between animal images and medical images are too

significant. In fact, TimeGPT can be seen as a classic

application of transfer learning based on the pre-training and

fine-tuning paradigm. TimeGPT first learns the general

knowledge from massive and diverse time series data, and then

adapts to specific tasks through fine-tuning. Therefore, the

performance of TimeGPT in load forecasting is influenced by

the differences between datasets in the target and the source

domains. If these differences are large, TimeGPT cannot

generalize well to load forecasting tasks.

In transfer learning, domain adaptation techniques are

commonly used to reduce the distributional differences

between source and target domains [43]. However, the domain

adaptation techniques are not suitable for TimeGPT and other

LTSMs. In LTSMs, the source domain contains massive data,

while the load data in the target domain is scarce. This

imbalance between the source and target domains can cause

domain adaptation techniques to be ineffective, resulting in

poor performance of LTSMs in the target domain. One possible

solution is to train a specialized LTSM for the energy domain

using massive energy data. This can help to maintain the

generalization ability of the model while reducing the

distributional differences between the source and target

domains.

The result in Table XV illustrate that it cannot be guaranteed

that TimeGPT is always superior to benchmarks for load

forecasting with scarce data. In other words, although

TimeGPT performs well on multiple datasets (e.g., load data

from China Nongfu Spring Company and University of Texas

at Austin), it cannot be ensured to always be the best choice for

load forecasting with scarce data.

Overall, TimeGPT has shown strong potential and good

performance in load forecasting with scarce historical data on

several datasets (e.g., datasets from China Nongfu Spring

Company and University of Texas at Austin). However,

TimeGPT may not perform as well as the benchmarks on some

datasets, possibly due to a significant difference between the

current load dataset and the training data.

V. DISCUSSION

To summarize the performance of TimeGPT in load

forecasting, Table XVI compares TimeGPT and benchmark

models across different datasets under data scarce cases (i.e.,

three days of training data). In the first four datasets, TimeGPT

outperforms all the benchmarks, particularly for short forecast

horizons (e.g., 1 hour). However, TimeGPT does not show an

advantage in the fifth dataset, likely due to differences between

source and target domains, as explained in detail in Section IV.

In practical applications, operators can use the following

strategy to determine whether to use TimeGPT for load

forecasting with scarce historical data:

Firstly, the historical data can be divided into a training set

and a validation set. Secondly, the training set is used to

fine-tune the weights of TimeGPT, while the validation set is

used to test the performance of TimeGPT and benchmarks. If

TimeGPT outperforms the benchmarks on the validation set

(i.e., the evaluation metrics of TimeGPT is minimal on the

validation set), then TimeGPT would be the optimal choice for

load forecasting with scarce historical data.

TABLE XVI

COMPARISON OF TIMEGPT AND BENCHMARKS ACROSS DATASETS

Dataset LAT=1 h LAT=4 h LAT=6 h LAT=12 h LAT=48 h

Texas

dataset in [36]
√ √ √ √ √

Nongfu Dataset

in [40]
√ √ √ √ √

Midea
Dataset in [40]

√ × × × ×

Joho city

dataset in [41]
√ √ × × ×

Arizona state
dataset in [42] × × × × ×

LAT: look-head time.√: Proposed method outperforms all the benchmarks. ×:

Proposed method does not outperform all the benchmarks.

VI. CONCLUSION

This paper explores the potential of large time series models,

specifically TimeGPT, in load forecasting with limited

historical data. Key findings from simulations and analyses on

various datasets are summarized as follows:

While TimeGPT is trained on massive and diverse datasets

totaling 100 billion data points, fine-tuning is essential to adapt

it effectively for load forecasting tasks.

TimeGPT shows inferior performance to popular machine

learning models when abundant historical data is available. In

data-scarce scenarios, TimeGPT generally outperforms

benchmarks, particularly for short forecast horizons. This

highlights the superiority of TimeGPT for load forecasting in

scenarios where data is scarce due to the various reasons, such

as privacy concerns. However, its performance may be affected

by disparities between the training data and the target dataset,

emphasizing the need to consider data distribution when

applying TimeGPT. In practical applications, operators can

divide the historical data into a training set and a validation set,

and then use the validation set loss to decide whether TimeGPT

is the best choice for a specific dataset.

Although TimeGPT demonstrates strong potential in load

forecasting with limited historical data, it relies exclusively on

historical load data, which restricts its ability to integrate

additional relevant information, such as weather forecasts. To

improve forecast accuracy, weather forecasts will be integrated

into TimeGPT in future work.

Funding

This work is funded by the Swiss Federal Office of Energy

(Grant No. SI/502135–01). Also, this work is carried out in the

frame of the “UrbanTwin: An urban digital twin for climate

action: Assessing policies and solutions for energy, water and

infrastructure” project with the financial support of the

ETH-Domain Joint Initiative program in the Strategic Area

Energy, Climate and Sustainable Environment.

REFERENCES

[1] W. Liao, B. Bak-Jensen, J. R. Pillai, Z. Yang, Y. Wang and K. Liu,
"Scenario Generations for Renewable Energy Sources and Loads Based

on Implicit Maximum Likelihood Estimations," Journal of Modern Power

Systems and Clean Energy, vol. 10, no. 6, pp. 1563-1575, Nov. 2022.
[2] Z. Sun, L. Von Krannichfeldt and Y. Wang, "Trading and Valuation of

Day-Ahead Load Forecasts in an Ensemble Model," IEEE Transactions

on Industry Applications, vol. 59, no. 3, pp. 2686-2695, May. 2023.
[3] M. Soni, and M. Shnan, "Scalable Neural Network Algorithms for High

Dimensional Data," Mesopotamian journal of Big Data, vol. 2023, pp.

1-11, Jan. 2023.

[4] M. Shabaz, and M. Soni, "Generative Adversarial-Based Ubiquitous Data

Integration Model for Human Re-Identification," Journal of

Computational and Cognitive Engineering, vol. 00, pp. 1-10, May. 2024.

[5] N. Sharma, M. Soni, S. Kumar,R. Kumar,N. Deb, and A. Shrivastava,

"Supervised Machine Learning Method for Ontology-based Financial
Decisions in the Stock Market," ACM Transactions on Asian and

Low-Resource Language Information Processing, vol. 22, no. 5, pp. 1-24,

May. 2023.
[6] C. Wang, Y. Zhou, Q. Wen and Y. Wang, "Improving Load Forecasting

Performance via Sample Reweighting," IEEE Transactions on Smart Grid,

vol. 14, no. 4, pp. 3317-3320, Jul. 2023.
[7] Y. Wang, N. Gao and G. Hug, "Personalized Federated Learning for

Individual Consumer Load Forecasting," CSEE Journal of Power and

Energy Systems, vol. 9, no. 1, pp. 326-330, Jan. 2023.
[8] N. Zhang, Z. Li, X. Zou, and S. M. Quiring, "Comparison of three

short-term load forecast models in Southern California," Energy, vol.189,

pp. 1-12, Dec. 2019.
[9] L. Huang, Q. Liao, H. Zhang, M. Jiang, J. Yan, and Y. Liang,

"Forecasting power consumption with an activation function combined

grey model: A case study of China," International Journal of Electrical
Power & Energy Systems, vol.130, pp. 1-14, Sept. 2021.

[10] R. Luzia, L. Rubio, C. E. Velasquez, "Sensitivity analysis for forecasting

Brazilian electricity demand using artificial neural networks and hybrid
models based on Autoregressive Integrated Moving Average," Energy,

vol. 274, pp. 1-18, Jul. 2023.

[11] S. Smyl, G. Dudek and P. Pełka, "ES-dRNN: A Hybrid Exponential
Smoothing and Dilated Recurrent Neural Network Model for Short-Term

Load Forecasting," IEEE Transactions on Neural Networks and Learning
Systems, doi: 10.1109/TNNLS.2023.3259149.

[12] Neeraj, J. Mathew and R. K. Behera, "EMD-Att-LSTM: A Data-driven

Strategy Combined with Deep Learning for Short-term Load
Forecasting," Journal of Modern Power Systems and Clean Energy, vol.

10, no. 5, pp. 1229-1240, Sept. 2022.

[13] W. Liao, J. Fang, L. Ye, B. Bak-Jensen, Z. Yang, and F. Porte-Agel, "Can

we trust explainable artificial intelligence in wind power forecasting?,"

Applied Energy, vol. 376, pp. 1-11, Dec. 2024.

[14] H. Dong, Y. Gao, Y. Fang, M. Liu, and Y. Kong, "The Short-Term Load
Forecasting for Special Days Based on Bagged Regression Trees in

Qingdao, China," Computational Intelligence and Neuroscience, vol.

2021, pp. 1-16, Sept. 2021.
[15] T. Zhang et al., "Long-Term Energy and Peak Power Demand

Forecasting Based on Sequential-XGBoost," IEEE Transactions on

Power Systems, vol. 39, no. 2, pp. 3088-3104, Mar. 2024.
[16] S. Afzal, B. M. Ziapour, A. Shokri, H. Shakibi, and B. Sobhani, "Building

energy consumption prediction using multilayer perceptron neural

network-assisted models; comparison of different optimization
algorithms," Energy, vol. 282, pp. 1-24, Nov. 2023.

[17] O. Rubasinghe, X. Zhang, T. K. Chau, Y. H. Chow, T. Fernando and H. lu,

"A Novel Sequence to Sequence Data Modelling Based CNN-LSTM
Algorithm for Three Years Ahead Monthly Peak Load Forecasting,"

IEEE Transactions on Power Systems, vol. 39, no. 1, pp. 1932-1947, Jan.

2024.
[18] H. Hua, M. Liu, Y. Li, S. Deng, and Q. Wang, "An ensemble framework

for short-term load forecasting based on parallel CNN and GRU with

improved ResNet," Electric Power Systems Research, vol. 216, pp. 1-8,
Mar. 2023.

[19] K. Li, Y. Mu, F. Yang, H. Wang, Y. Yan, C. Zhang, "A novel short-term

multi-energy load forecasting method for integrated energy system based
on feature separation-fusion technology and improved CNN," Applied

Energy, vol. 351, pp. 1-19, Dec. 2023.

[20] W. Liao, S. Wang, B. Bak-Jensen, J. R. Pillai, Z. Yang and K. Liu,
"Ultra-short-term Interval Prediction of Wind Power Based on Graph

Neural Network and Improved Bootstrap Technique," Journal of Modern

Power Systems and Clean Energy, vol. 11, no. 4, pp. 1100-1114, Jul.
2023.

[21] Z. Zhang, P. Zhao, P. Wang and W. Lee, "Transfer Learning Featured

Short-Term Combining Forecasting Model for Residential Loads With
Small Sample Sets," IEEE Transactions on Industry Applications, vol. 58,

no. 4, pp. 4279-4288, Jul. 2022.

[22] Y. Wang, J. Ma, N. Gao, Q. Wen, L. Sun, H. Guo, "Federated fuzzy
k-means for privacy-preserving behavior analysis in smart grids,"

Applied Energy, vol. 331, pp. 1-10, Feb. 2023.

[23] T. Brown, B. Mann, N. Ryder et al. “Language models are few-shot
learners”. Advances in Neural Information Processing Systems (NeurIPS

2020), Vancouver, Canada, Dec 6–Dec. 12, 2020, pp. 1-25.

[24] H. Touvron, T. Lavril, G. Izacard et al., "LLaMA: Open and Efficient

Foundation Language Models," arXiv, doi: 10.48550/arXiv.2302.13971

[25] Y. Zhang and C. Liu,"Unlocking the Potential of Artificial Intelligence in

Fashion Design and E-Commerce Applications: The Case of Midjourney,

" Journal of Theoretical and Applied Electronic Commerce Research, vol.
19, no. 1, pp. 654-670, Mar. 2024.

[26] H. Yu, X. Liu, Y. Tian, Y. Wang, C. Gou and F. Wang, "Sora-based

Parallel Vision for Smart Sensing of Intelligent Vehicles: From
Foundation Models to Foundation Intelligence," IEEE Transactions on

Intelligent Vehicles, doi: 10.1109/TIV.2024.3376575.

[27] M. Goswami, K. Szafer, A. Choudhry, Y. Cai, S. Li, and A. Dubrawski,
“MOMENT: A Family of Open Time-series Foundation Models,”.

Forty-first International Conference on Machine Learning (ICML 2024),

Vienna, Austria, Jul 21–Jul. 27, 2024, pp. 1-38.
[28] G. Woo, C. Liu, A. Kumar, C. Xiong, S. Savarese, and D. Sahoo, "Unified

Training of Universal Time Series Forecasting Transformers," arXiv, doi:

10.48550/arXiv.2402.02592
[29] S. Gao, T. Koker, O. Queen, T. Hartvigsen, T. Tsiligkaridis, and M.

Zitnik, "Unified Training of Universal Time Series Forecasting

Transformers," arXiv, doi: 10.48550/arXiv.2403.00131
[30] A. Garza and M. Mergenthaler-Canseco, "TimeGPT-1," arXiv, doi:

10.48550/arXiv.2310.03589

[31] W. Jiang, B. Liu, Y. Liang, H. Gao, P. Lin, D. Zhang, and G.
Hu,"Applicability analysis of transformer to wind speed forecasting by a

novel deep learning framework with multiple atmospheric variables,"

Applied Energy, vol. 353, pp. 1-20, Jan. 2024.
[32] J. Liu, H. Zang, L. Cheng, T. Ding, Z. Wei, and G. Sun,"A

Transformer-based multimodal-learning framework using sky images for
ultra-short-term solar irradiance forecasting," Applied Energy, vol. 342,

pp. 1-19, Jul. 2023.

[33] W. Wang, B. Feng, G. Huang et al, "Conformal asymmetric
multi-quantile generative transformer for day-ahead wind power interval

prediction," Applied Energy, vol. 333, pp. 1-15, Mar. 2023.

[34] F. Yu, C. Yu, Z. Tian , X. Liu, J. Cao, L. Liu, C. Du, and M. Jiang,

"Intelligent Wearable System With Motion and Emotion Recognition

Based On Digital Twin Technology,", IEEE Internet Things J., 2024,

DOI:10.1109/JIOT.2024.3394244.
[35] F. Yu, Y. Zhang, H. Li, C. Du, L. Liu and M. Jiang, "Phase Contour

Enhancement Network for Clothing Parsing," IEEE Trans. Consum.

Electron., vol. 70, no. 1, pp. 2784-2793, Feb. 2024.
[36] W. Liao, Y. Wang, Y. Wang, K. Powell, Q. Liu and Z. Yang, "Scenario

Generation for Cooling, Heating, and Power Loads Using Generative

Moment Matching Networks," CSEE Journal of Power and Energy
Systems, vol. 8, no. 6, pp. 1730-1740, Nov. 2022.

[37] Q. Zhang, S. Zhou, B. Xu, Z. Shen, and W. Chang, "PSGformer: A novel

multivariate net load forecasting model for the smart grid," Journal of
Computational Science, vol. 78, pp. 1-10, Jun. 2024.

[38] M. Jin, S. Wang, L. Ma, Z. Chu, J. Zhang, X. Shi, P. Chen, Y. Liang, Y. Li,

S. Pan, and Q. Wen, "Time-LLM: Time Series Forecasting by
Reprogramming Large Language Models," 12th International Conference

on Learning Representations (ICLR 2024), Vienna, Austria, 2024, pp.

1-24.
[39] J. Wu, X. Chen, H. Zhang, L. Xiong, H. Lei, and S. Deng, "

Hyperparameter Optimization for Machine Learning Models Based on

Bayesian Optimization," Journal of Electronic Science and Technology,
vol. 17, no.1, pp. 26-40, Mar. 2019.

[40] OubaheAlgorithm. (2020, Dec.). Load forecasting datasets. [Online].

Available: https://mp.weixin.qq.com/s/Oy38thKwmC13kUhw6qDa9w
[41] H. Sadaei, P. Silva, F. Guimaraes, and M. Lee, "Short-term load

forecasting by using a combined method of convolutional neural

networks and fuzzy time series," Energy, vol. 175, May. 2019, pp.
365-377.

[42] Arizona State University. (2024, Mar.). Campus Metabolism. [Online].

Available: http://cm.asu.edu/
[43] Y. Gao, Z. Hu, S. Shi, W. Chen, and M. Liu, "Adversarial discriminative

domain adaptation for solar radiation prediction: A cross-regional study

for zero-label transfer learning in Japan," Applied Energy, vol. 359, pp.
1-12, Apr. 2024.

