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Abstract—Machine learning models have made 
significant progress in load forecasting, but their forecast 
accuracy is limited in cases where historical load data is 
scarce. Inspired by the outstanding performance of large 
language models (LLMs) in computer vision and natural 
language processing, this paper aims to discuss the 
potential of large time series models in load forecasting 
with scarce historical data. Specifically, the large time 
series model is constructed as a time series generative 
pre-trained transformer (TimeGPT), which is trained on 
massive and diverse time series datasets consisting of 100 
billion data points (e.g., finance, transportation, banking, 
web traffic, weather, energy, healthcare, etc.). Then, the 
scarce historical load data is used to fine-tune the 
TimeGPT, which helps it to adapt to the data distribution 
and characteristics associated with load forecasting. 
Simulation results show that TimeGPT outperforms the 
popular benchmarks for load forecasting on several real 
datasets with scarce training samples, particularly for 
short look-ahead times. However, it cannot be guaranteed 
that TimeGPT is always superior to benchmarks for load 
forecasting with scarce data, since the performance of 
TimeGPT may be affected by the distribution differences 
between the load data and the training data. In practical 
applications, operators can divide the historical data into a 
training set and a validation set, and then use the 
validation set loss to decide whether TimeGPT is the best 
choice for a specific dataset. 

 
Index Terms—Load forecasting, Large model, Time series, 

Smart grid, Artificial intelligence, Foundation model 

I. INTRODUCTION 

CCURATE load forecasting is indispensable for the 

planning and operations of smart grids [1]. For instance, it 

plays a pivotal role in scheduling generation units, thereby 

minimizing the need for unnecessary reserve power. 

Additionally, it enables power system operators to plan the 

maintenance, ensuring the safe and reliable operation of power 
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systems [2]. 

Over the past few decades, various approaches to load 

forecasting have emerged, with traditional methods relying 

primarily on statistical models. In recent years, however, 

machine learning models have achieved significant success in 

various fields [3], [4],[5], driving their application in load 

forecasting [6]. 

Specifically, statistical models estimate future load values by 

analyzing the trends and periodicity in historical data. Classic 

statistical models include the persistence model (PM), 

autoregressive moving average, exponential smoothing, 

autoregressive integrated moving average, linear regression 

(LR), adaptive filtering model, generalized additive model, and 

gray model [7]. For example, the work in [8] uses several LR 

models to forecast the short-term load in California. In [9], the 

grey model with inverse square root unit functions is introduced 

to estimate the potential electricity consumption in China over 

the next few years. In [10], the autoregressive integrated 

moving average model is designed to forecast long-term loads 

in Brazil. To mitigate the negative effects of the noise and 

seasonality in the load data, the work in [11] utilizes 

exponential smoothing to preprocess the data before 

conducting load forecasting. These statistical models are 

grounded in rigorous mathematical principles, offering a high 

interpretability and relatively low computational costs without 

requiring extensive historical data. However, their forecast 

accuracy is limited, especially for a long look-ahead time, due 

to their difficulty in handling nonlinear relationships [12]. 

Typically, machine learning models in load forecasting use 

supervised learning to project the nonlinear relationship 

between historical load data and forecast values. Popular 

machine learning models include regression tree (RT), support 

vector regression, extreme gradient boosting (XGBoost), light 

gradient boosting machine, multi-layer perceptron (MLP), long 

short-term memory (LSTM), gated recurrent unit, transformer 

neural network, convolutional neural network (CNN), and 

graph neural network [13]. For example, the work in [14] uses 

the RT model to forecast the short-term load of a city, 

incorporating the additional information from special days. In 

[15], the XGBoost model is utilized to forecast peak power 

demand and long-term electricity consumption, taking into 

account climatic and economic conditions. In [16], eight 

meta-heuristic algorithms are adopted to optimize the 

hyper-parameters of the MLP model, which forecasts the 

building energy consumption. To capture the temporal features 

from load data, the LSTM and gated recurrent unit models are 

presented in [17] and [18], respectively. Simulation analysis 

shows that LSTM and gated recurrent unit outperform 

conventional models (e.g., MLP) in short-term load forecasting. 

Similarly, CNNs and graph neural networks are designed to 

depict the spatial features from between loads of each bus in 
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[19], [20]. In general, machine learning models can provide 

high forecast accuracy, especially when dealing with 

large-scale load data and long-term forecasts. This is attributed 

to their ability to automatically extract latent features from data, 

as well as their good adaptability to complex nonlinear 

relationships. 

However, machine learning models require a large amount of 

data for training in order to accurately map complex nonlinear 

relationships. In other words, when historical data is scarce, the 

forecast accuracy of these machine learning models is limited 

[21]. For example, in some emerging markets or newly 

developed communities, inadequate infrastructure may result in 

a lack of sufficient historical load data. In addition, utilities may 

not be able to obtain detailed individual electricity consumption 

data due to privacy concerns [22]. In these scenarios, machine 

learning models may be constrained by data scarcity, making 

accurate forecast challenging. 

Over the past few years, pre-trained foundation models have 

significantly driven the rapid development of natural language 

processing (NLP), computer vision (CV), and speech 

understanding. For example, large language models (LLMs), 

such as ChatGPT [23] and Llama [24], perform well in various 

NLP tasks, even under zero-shot conditions. Similarly, 

Midjourney [25] and Sora [26] can generate various types of 

images and videos based on user prompts, respectively. The 

impressive capabilities of LLMs in CV and NLP have inspired 

the development and application of foundation models in time 

series modeling. Recently, foundation models have been 

extended from CV and NLP to time series analysis. For 

example, the time series foundation models for transportation 

and financial problems are presented in [27],[28]. The work in 

[29] trains a unified time series model to support a universal 

task specification, including anomaly detection, imputation, 

classification and prediction. In [30], a time series generative 

pre-trained transformer (TimeGPT) is presented for time series 

modeling. Trained on 100 billion data points (e.g., finance, 

transportation, banking, web traffic, weather, energy, 

healthcare, etc.), it demonstrated good performance on 

few-shot learning tasks (e.g., air quality and traffic forecasts). 

The remarkable success of these foundation models opens up 

new opportunities for load forecasting, especially in scenarios 

with scarce historical data. 

Inspired by the outstanding performance of LLMs in CV and 

NLP, this paper aims to discuss the potential of large time series 

models (LTSMs) in load forecasting with scarce historical data. 

Specifically, this paper will explore the generalization of 

TimeGPT to load forecasting, and discuss its advantages and 

limitations through extensive simulations. The main 

contributions are as follows: 

 New Perspective: Unlike classical machine learning 

models and statistical models characterized by simple 

structures and few parameters, this paper investigates the 

potential of LTSMs with complex structures and extensive 

parameters (i.e., TimeGPT) in load forecasting, from a 

new perspective. 

 New Application: By using pre-trained knowledge, the 

TimeGPT enables load forecasting for scenarios where 

historical load data is scarce. To our knowledge, this is the 

first work applying TimeGPT to load forecasting. 

 Extensive Simulations and Practical Suggestions: 

Extensive numerical simulations and comprehensive 

comparisons with eight benchmark models are conducted 

on five real load datasets to highlight the advantages and 

limitations of TimeGPT. The actionable suggestions are 

given for the practical implementation of TimeGPT in 

load forecasting. 

The rest is organized as follows: Section II formulates the 

TimeGPT. Section III and Section IV conduct simulation and 

analysis on different datasets. Section V presents the discussion. 

Finally, Section VI summarizes the conclusion. 

II. PRINCIPLES AND FRAMEWORK OF TIMEGPT 

This section will formulate the architecture of the TimeGPT, 

and then present how to train and use it. 

A. Architecture of TimeGPT 

Similar to LLMs, the transformer architecture [31] with 

attention mechanisms is used to construct TimeGPT, as shown 

in Fig. 1. 
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Fig. 1.  The basic structure of the transformer block. 

 

In particular, the architecture mainly includes the positional 

encoding (PE), multi-head attention, and CNN, in which the 

residual connection and layer normalization are integrated to 

prevent gradient degradation and accelerate algorithm 

convergence [30]. By using a segment of historical values, 

TimeGPT generates forecasts while incorporating local PE for 

improved input representation. Then, the output of the decoder 

is projected to forecast values through a linear layer. To 

maintain this autoregressive property, the input sequence of the 

decoder is its previously generated tokens, but shifted one 

position to the right. 

Similar to ChatGPT, TimeGPT has the ability to process 

time series inputs and outputs of varying lengths and 

frequencies. Firstly, TimeGPT uses the self-attention 



mechanism of the Transformer model, which enables it to 

effectively handle time series data of different lengths. The 

self-attention mechanism dynamically adjusts the focus of 

TimeGPT based on the global context of the input sequence, 

ensuring that critical long-term dependencies are not lost when 

processing long sequences. On the contrary, when dealing with 

shorter sequences, the self-attention mechanism is still flexible 

enough to capture short-term dependencies in the sequences. 

This adaptability allows TimeGPT to effectively handle input 

data of different lengths, making it suitable for both longer and 

shorter time series. Secondly, TimeGPT is good at dealing with 

changes in data frequency. Since the time series data in the 

pre-training are diverse and may come from different domains 

with different sampling frequencies, TimeGPT can adapt to 

changes in frequency when dealing with different time series 

data. Through fine-tuning, TimeGPT can further understand the 

characteristics of specific frequency data to make more 

accurate predictions. In summary, TimeGPT uses the 

transformer architecture and diverse pre-training data with a 

strong ability to handle time series data of different lengths and 

frequencies. This makes it well suited to a variety of time series 

forecasting tasks, with excellent adaptability and forecasting 

performance. 

1) Positional Encoding 

To enable the model to accurately understand the sequential 

information in the input features, the role of the PE is to assign 

positional information to each feature by using the sine-cosine 

positional coding [32]: 
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where pos denotes the length of the input sequence; i denotes 

the dimension index of the PE; and dmodel denotes the length of 

the feature. 

In PE, 2i is controlled by the sine function while 2i+1 is 

controlled by the cosine function. The value of the PE changes 

as the position pos increases. With PE, the model is able to 

distinguish features at different positions, which leads to a 

better understanding of the sequential information in the input 

sequence. 

2) Multi-Head Attention 

As the core unit of the transformer architecture, the 

multi-head attention can be regarded as an integration of 

multiple attention heads. As shown in Fig. 2, the ability of the 

transformer to focus on different features is extended by 

performing h times attention computations in parallel [33]. 

In particular, the model learns multiple sets of attention 

weights simultaneously, and then concatenates their outputs 

together. Given h attention heads, the calculation of multi-head 

attention is as follows: 
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where X denotes the input matrix; W
Q
, W

K
, and W

V
 denote the 

weight matrices of the linear transformation; Q, K, and V 

denote the query matrix, key matrix, and value matrix, 

respectively; and d denotes the dimension of the query matrix. 

3) Convolutional Neural Network 

In the encoder and decoder, a feed-forward neural network 

(e.g., it is CNN here) is applied to each position to capture the 

latent feature. The CNN consists of convolutional and pooling 

layers, which can be formulated as follows [34],[35]: 

 conv,out conv conv,in convX W X B    (6) 

 ,

pool,out pool,in
,

max j k

j k R
X X


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where Xconv,out and Xpool,out denote outputs of convolutional and 

pooling layers, respectively; Xconv,in and Xpool,in denote inputs of 

convolutional and pooling layers, respectively; σ denotes the 

activation function; Wconv and Bpool denote weights and bias 

vectors of the convolutional layer, respectively; R denotes 

pooling range; and * denotes the convolutional operation. 

4) Residual Connections and Layer Normalization 

To accelerate the convergence of model training, layer 

normalization (LN) is often used to normalize the outputs of the 

layers, so that the outputs of each sub-layer remain within a 

stable range: 
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where XSL denotes the output of the sub-layer; 
SLX  and 

X  

denote the mean and standard deviation of the output XSL, 

respectively; γ and β denote learnable scale and offset 

parameters, respectively; and   denotes a small value to avoid 

division by zero errors. 

To mitigate the problem of vanishing gradients when 

training deep networks, residual connections are used in each 

sub-layer: 

 , , ,F out F in F inX F X X   (9) 

where XF,out and XF,in denote the output and input of the 

sub-layer F, respectively. 
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Fig. 2.  The basic structure of multi-head attention. 

 
 



B. Bridging Large Models and Load Forecasting 

The large models are designed to handle natural language, 

which consists of discrete data. In contrast, load forecasting and 

other time-series forecasting tasks involve time series data, 

which is inherently continuous. This fundamental difference 

presents a challenge for large models to directly process time 

series data.  

To bridge this gap, the continuous time series data must be 

transformed into a discrete format suitable for large models. As 

shown in Fig. 3(a), this transformation involves two main steps: 

normalization and quantization. 

In the first step, normalization is applied to map the time 

series data into a specified range to allow faster convergence 

during model training. Typically, min-max normalization is 

used, scaling the data between a predefined minimum and 

maximum, as follows: 

   min max min' /X X X X X    (10) 

where Xmin and Xmax are the minimum and maximum values, 

respectively; and 'X  is the normalized value. 

Once the data is normalized, quantization is performed to 

convert the continuous values into discrete categories. This 

process uses the widely used equal width binning technique, 

which segments the normalized data into equal-width intervals. 

Each interval is assigned a unique value, effectively 

transforming the continuous values into discrete values 

compatible with model input, as follows: 
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where m is the number of bin; and Δd=(Xmax-Xmin)/m is the 

width of each bin. 

At this point, the continuous time-series data has been fully 

transformed into a discrete format, allowing it to be processed 

by large models. Additionally, the output of large models, also 

in a discrete form, must undergo a reverse transformation to 

obtain meaningful continuous forecast values, as shown in Fig. 

3(b). This reverse process converts the discrete output back into 

the continuous values required for accurate forecasting. 
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C. Training and Use of TimeGPT 

TimeGPT is trained on a large number of publicly available 

datasets with 100 billion data points, such as finance, 

transportation, banking, web traffic, weather, energy, 

healthcare, etc [30]. In regards to temporal characteristics, the 

training data includes diverse sets with different seasonality, 

cycles of varying durations, and various trend types. In addition 

to temporal characteristics, the dataset exhibits variability in 

noise levels and the presence of outliers, providing a robust 

training condition. Some datasets exhibit orderly, predictable 

patterns, while others exhibit significant noise spikes or 

unexpected events, providing a wide range of scenarios for 

model assimilation. 

TimeGPT has been trained on a cluster of NVIDIA A10G 

GPUs. The hyper-parameters (e.g. learning rates, batch sizes, 

etc.) are not open in [30], but they show that a smaller learning 

rate and a larger batch size are appropriate choices. The deep 

leaning framework is the PyTorch. The adaptive moment 

estimation (Adam) is used as the optimizer. 

Regarding whether TimeGPT is fine-tuned or not, this paper 

will consider two scenarios: zero-shot learning and few-shot 

learning. 

For zero-shot learning, the historical load data will be 

directly fed to TimeGPT to forecast future loads without any 

adjustments to TimeGPT's parameters. 

In the case of few-shot learning, where only scarce historical 

load data is available due to either inadequate infrastructure or 

privacy concerns, a fine-tuning process is employed to adapt 

TimeGPT to the specific load forecasting task. As shown in Fig. 

4, the fine-tuning process involves four steps. 

Firstly, the pre-trained TimeGPT model is utilized, with all 

layers having been pre-trained on large and diverse time series 

datasets. The pre-trained weights in each layer of TimeGPT 

serve as the starting points for fine-tuning. Secondly, the 

fine-tuning process is carried out using the scarce historical 

load data. This data is used to update the weights of all layers in 

the model. The learning rate for fine-tuning is set lower than 

typical training processes to ensure that TimeGPT does not 

deviate significantly from the pre-trained knowledge, but rather 

adapts to the specific patterns of the new load forecasting task. 

Thirdly, an appropriate optimization algorithm (e.g., Adam) is 

used to minimize the loss function, typically mean squared 

error, over the small dataset. During fine-tuning, TimeGPT is 

trained on a limited number of epochs to avoid over-fitting 

given the scarcity of data. Lastly, to prevent over-fitting and 

ensure generalization, the performance of TimeGPT is 

monitored on a validation set. Early stopping is applied if the 

validation performance does not improve after a certain number 

of epochs, ensuring that the fine-tuned TimeGPT remains 

robust and does not over-fit the small training dataset. 

The fine-tuning ensures that TimeGPT shows good 

generalization in the given specific task, i.e. load forecasting. 

Subsequently, the fine-tuned TimeGPT is used to perform load 

forecasting tasks. 
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Fig. 4.  The fine-tuning process of large models. 

III. CASE STUDY I 

This section will conduct simulations and analyses to 

thoroughly explore the performance of TimeGPT by using a 

real dataset, while its generalization to other datasets will be 

tested in the following Section IV. 

A. Simulation Settings 

1) Dataset Description 

As mentioned earlier, TimeGPT is trained on a large number 

of publicly available time series datasets. If the popular and 

publicly available load datasets are used for simulations, there 

may be a risk of data leakage, since these popular and publicly 

available datasets may have been used to parameterize 

TimeGPT. Therefore, simulations are conducted on a private 

dataset sourced from the University of Texas at Austin [36], 

ensuring fairness as the parameters of TimeGPT are unrelated 

to this dataset. 

Specifically, this dataset records the load data of 16 campus 

buildings with a time resolution of one hour. Due to limited 

application programming interface (API) tokens for TimeGPT, 

three months of load data are used for simulation and testing, 

spanning from July 17, 2011, to October 16, 2011. 

To test the model performance of TimeGPT on datasets with 

different numbers of training samples, the original dataset is 

divided into five cases, as shown in Table I. From case 1 to case 

5, the number of training samples gradually increases. Case 1 

contains very few training samples, while the training samples 

in case 5 are relatively rich. 

 
TABLE I 

DESCRIPTION OF EACH CASE 

Case Training set Test set 

Case 1 From Jul. 17 to Jul. 19 (3 days) From Jul. 20 to Oct. 16 

Case 2 From Jul. 17 to Jul. 21 (5 days) From Jul. 22 to Oct. 16 

Case 3 From Jul. 17 to Jul. 23 (7 days) From Jul. 24 to Oct. 16 

Case 4 From Jul. 17 to Jul. 31 (15 days) From Aug. 1 to Oct. 16 

Case 5 From Jul. 17 to Aug. 15 (30 days) From Aug. 16 to Oct. 16 

 

2) Benchmarks 

To fully evaluate the performance of TimeGPT, it will be 

compared to popular models, including PM, LR in [8], RT in 

[14], XGBoost in [15], MLP in [16], LSTM in [17], patch time 

series transformer (PatchTST) [37], and time series large 

language model (TimeLLM) [38]. Note that TimeLLM is 

trained on massive textual data, while TimeGPT is directly 

trained on time series data. This key difference means that 

while TimeLLM is reprogrammed to analyze time series data as 

textual input, TimeGPT is inherently designed to process time 

series information from the start, optimizing its parameters 

specifically for time-dependent data. 

Although each model contains numerous hyper-parameters, 

the impact of these hyper-parameters on performance is not 

investigated for two main reasons. Firstly, space does not 

permit a detailed discussion of these hyper-parameters. 

Secondly, the discussion of these hyper-parameters has already 

been thoroughly covered in previous works (as cited). The 

focus of this paper is on the performance of TimeGPT, not on 

the fine-tuning of the baseline models. To ensure a fair 

comparison, the Bayesian optimization in [39] is used to 

determine the most appropriate parameter settings for each 

baseline model. For example, the parameters of each model for 

load forecasting with a 1-hour look-ahead time in Case 1 are 

shown in Table II. For each model, the inputs include only 

historical loads and time (e.g., data points in the last 24 hours), 

while the outputs are future loads. It is univariate time series 

forecasts without considering other information, such as 

weather conditions. The parameters in other cases can be 

determined similarly. 
 

TABLE II 

PARAMETER OF BENCHMARKS 

Model Model structure Fitting setting 

MLP 

in [16] 

Dense 1: 16 units 
Dense 2: 16 units 

Dense 3: 1 unit 

Training epoch: 200 
Batch size: 8 

Optimizer: Adam 

Learning rate: 0.001 
Activation function: ReLU 

for input and middle layers, 

Sigmoid for the last layer 

LSTM 

in [17] 

LSTM 1:  16 units 

LSTM 2: 8 units 

Dense 1: 8 units 

Dense 2: 1 unit 

PM 
Without parameters; It forecast the load by copying the value 

from the previous time step. 

LR in [8] Intercept is used in calculations 

RT in [14] 
Max depth: 4 

Leaves: 25 

Learning rate:0.01 
Estimators: 500 

Min child samples: 90 

Subsample: 0.8 
Early stopping: 400 

Loss: squared error 

XGBoost 

in [15] 

PatchTST 

in [37] 

Length of the patch: 16 
Stride of the patch:8 

Number of time units: 96 

Size of hidden layers in the Transformer: 32 
Number of attention heads: 4 

Number of epochs: 200 

Batch size: 8 

TimeLLM 
in [38] 

Length of the patch: 16 
Stride of the patch:8 

Top tokens to consider:5 

Hidden dimension of LLM: 768 
 Number of heads in attention layer: 8 

Maximum number of training steps:1000 

Encoder input size:7 
Batch size: 8 

 

3) Evaluation Metrics 

To avoid chance or coincidence, each model is run 30 times 

to obtain average forecasts. Then, the model performance is 

evaluated by using widely used metrics, including mean 

absolute error (MAE), root mean squared error (RMSE), and 

mean absolute percentage error (MAPE): 
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where 
iy  and ˆ

iy  denotes the normalized real and forecast 

values, respectively; and n denotes the number of data points in 

the test set. 

4) Simulation Designs 

To investigate the potential of TimeGPT in load forecasting, 

simulations will be carried out from the following three points 

of view: 

Firstly, the model performance of TimeGPT will be 

discussed with and without fine-tuning in load forecasting, i.e., 

zero-shot learning and few-shot learning. Secondly, TimeGPT 

will be compared to the benchmarks in cases where historical 

data is scarce. Finally, TimeGPT will also be compared to the 

benchmarks in data-rich cases.  

B. Performance Analysis With and Without Fine-Tuning 

Zero-shot learning involves directly feeding historical load 

data directly into TimeGPT to forecast future loads without 

adjusting TimeGPT's parameters. Conversely, few-shot 

learning involves using scarce historical load data to fine-tune 

TimeGPT's weights before conducting load forecasting. 

To evaluate the model performance of TimeGPT in load 

forecasting, both few-shot learning and zero-shot learning (i.e., 

TimeGPT with and without fine-tuning) are considered in five 

cases. These cases involve load forecasting with different 

look-ahead times ranging from 1 hour to 24 hours. The average 

evaluation metrics of TimeGPT in various scenarios are shown 

in Fig. 5. 

Although TimeGPT is trained on massive and diverse 

datasets consisting of 100 billion data points, its performance 

on various metrics (e.g., RMSE, MAE, and MAPE) is poor 

prior to fine-tuning, indicating that it cannot be directly 

generalized to load forecasting. This could be attributed to the 

fact that the training data may not adequately represent the 

specific data distribution and patterns relevant to load 

forecasting, resulting in limited generalization capability.  

However, after fine-tuning, the performance of TimeGPT in 

load forecasting improves significantly, with considerable 

decreases observed in various metrics. The reason for this is 

that the fine-tuning involves specific adjustments to its weights 

tailored to the requirements of load forecasting, allowing it to 

better adapt to the data distribution, patterns, and characteristics 

associated with load forecasting. Therefore, the fine-tuning can 

significantly improve the performance of TimeGPT, making it 

more practical and accurate for real-world applications. 

C. Performance Comparison in Data Scarce Cases 

To compare the performance of TimeGPT with the 

benchmarks in cases where data is scarce, these models are 

used to conduct the load forecasting in Cases 1-3 (Data points 

in the training set range from 3 to 7 days). Note that TimeGPT 

is fine-tuned by the historical load data here. The average 

evaluation metrics of TimeGPT in various scenarios are shown 

in Tables III-V. 

 

(a) RMSE in Case 1

Result of TimeGPT with fine-tuning Result of TimeGPT without fine-tuning

(b) RMSE in Case 2 (c) RMSE in Case 3 (d) RMSE in Case 4 (e) RMSE in Case 5

(f) MAE in Case 1 (g) MAE in Case 2 (h) MAE in Case 3 (i) MAE in Case 4 (j) MAE in Case 5

(k) MAPE in Case 1 (l) MAPE in Case 2 (m) MAPE in Case 3 (n) MAPE in Case 4 (r) MAPE in Case 5

 
Fig. 5.  The results of TimeGPT with and without fine-tuning in different cases. 

 

 



TABLE III 

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A SHORT LOOK-AHEAD TIME (CASE 1) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.033  0.024  0.036  0.043  0.034  0.052  0.043  0.035  0.055  0.072  0.055  0.088  0.125  0.097  0.142  
MLP 0.051  0.046  0.075  0.070  0.057  0.091  0.089  0.063  0.094  0.099  0.077  0.123  0.091  0.073  0.119  

LSTM 0.043  0.037  0.061  0.063  0.046  0.068  0.067  0.058  0.092  0.099  0.076  0.120  0.110  0.093  0.152  
LR 0.037  0.029  0.044  0.044  0.036  0.058  0.074  0.057  0.094  0.094  0.078  0.128  0.239  0.183  0.298  

XGBoost 0.052  0.033  0.050  0.068  0.048  0.073  0.063  0.045  0.069  0.094  0.073  0.119  0.090  0.071  0.112  
RT 0.063  0.042  0.065  0.073  0.054  0.081  0.082  0.063  0.095  0.106  0.084  0.136  0.099  0.077  0.122  
PM 0.039  0.025  0.037  0.082  0.059  0.087  0.110  0.087  0.130  0.078  0.057  0.089  0.126  0.100  0.149  

PatchTST 0.091 0.074 0.101 0.066 0.053 0.076 0.063 0.052 0.080 0.080 0.068 0.109 0.140 0.114 0.186 
TimeLLM 0.137 0.123 0.176 0.286 0.236 0.371 0.232 0.191 0.305 0.242 0.189 0.312 0.167 0.134 0.224 

 
TABLE IV 

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A SHORT LOOK-AHEAD TIME (CASE 2) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.021  0.015  0.022  0.049  0.035  0.053  0.065  0.043  0.067  0.079  0.059  0.099  0.115  0.087  0.133  
MLP 0.030  0.026  0.038  0.073  0.052  0.083  0.080  0.061  0.100  0.092  0.075  0.129  0.102  0.081  0.141  

LSTM 0.022  0.019  0.025  0.076  0.050  0.080  0.097  0.076  0.126  0.096  0.075  0.129  0.102  0.082  0.141  
LR 0.022  0.016  0.024  0.053  0.037  0.059  0.070  0.054  0.088  0.093  0.077  0.133  0.101  0.079  0.139  

XGBoost 0.032  0.028  0.038  0.072  0.054  0.085  0.080  0.061  0.099  0.098  0.077  0.132  0.099  0.075  0.130  
RT 0.033  0.029  0.040  0.075  0.054  0.088  0.086  0.060  0.096  0.108  0.083  0.144  0.108  0.081  0.140  
PM 0.038  0.028  0.039  0.070  0.050  0.076  0.081  0.056  0.088  0.082  0.063  0.106  0.116  0.092  0.145  

PatchTST 0.021 0.016 0.023 0.066 0.049 0.081 0.073 0.053 0.088 0.081 0.061 0.102 0.096 0.075 0.125 
TimeLLM 0.126 0.112 0.177 0.330 0.271 0.432 0.264 0.209 0.346 0.213 0.166 0.281 0.257 0.207 0.354 

 
TABLE V 

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A SHORT LOOK-AHEAD TIME (CASE 3) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.016  0.012  0.021  0.055  0.036  0.061  0.088  0.059  0.102  0.083  0.063  0.106  0.132  0.102  0.157  
MLP 0.028  0.022  0.038  0.057  0.049  0.088  0.063  0.054  0.096  0.081  0.068  0.117  0.100  0.081  0.146  

LSTM 0.039  0.035  0.061  0.089  0.076  0.138  0.093  0.078  0.142  0.108  0.091  0.156  0.120  0.096  0.172  
LR 0.019  0.014  0.024  0.055  0.046  0.081  0.068  0.057  0.102  0.082  0.069  0.118  0.099  0.078  0.141  

XGBoost 0.022  0.017  0.030  0.080  0.062  0.113  0.087  0.070  0.128  0.100  0.082  0.143  0.108  0.085  0.151  
RT 0.030  0.023  0.041  0.101  0.079  0.144  0.091  0.074  0.133  0.112  0.085  0.146  0.123  0.096  0.170  
PM 0.017  0.013  0.022  0.058  0.038  0.064  0.098  0.070  0.121  0.091  0.071  0.120  0.132  0.105  0.166  

PatchTST 0.017 0.012 0.022 0.057 0.038 0.063 0.062 0.045 0.072 0.073 0.052 0.088 0.093 0.071 0.115 
TimeLLM 0.046 0.038 0.064 0.151 0.110 0.197 0.112 0.092 0.163 0.230 0.188 0.313 0.196 0.162 0.282 

 

1) Performance Comparison 

In scenarios with scarce historical data, TimeGPT 

demonstrates significant advantages over benchmarks for load 

forecasting, particularly with a look-ahead time of a few hours 

(e.g., 1 hour to 6 hours). For instance, in case 1 with a 1-hour 

look-ahead time, the RMSE of TimeGPT is reduced by 35.29%, 

23.26%, 10.81%, 36.54%, 47.62%, 15.38%, 63.73%, and 

75.91%, compared to MLP, LSTM, LR, XGBoost, RT, PM, 

PatchTST, and TimeLLM, respectively. The likely reasons for 

the strong performance of TimeGPT in load forecasting are as 

follows: 

TimeGPT benefits from pre-training on massive and diverse 

time series datasets, which gives it a degree of generalization. 

Even in scenarios with scarce data, it can use this rich prior 

knowledge to perform well on load forecasting. In contrast, 

traditional machine learning models struggle to capture 

complex patterns in load data due to insufficient training data, 

resulting in lower forecast accuracy. 

Similarly, in Case 2 (5 days of training data), TimeGPT 

continues to outperform baselines for load forecasting with a 

look-ahead time of 1 to 12 hours. In Case 3 (7 days of training 

data), TimeGPT still outperforms the baselines but with a 

narrower range of the look-ahead time. However, in Cases 4 

(15 days of training data) and 5 (30 days of training data), 

where more historical data is available, the performance 

advantages of TimeGPT diminish and it may underperform the 

baselines for load forecasting. These observations suggest that 

while TimeGPT performs well with extremely limited 

historical data, its advantages become less apparent as the 

amount of training data increases. This highlights the strength 

of TimeGPT in dealing with data scarcity, especially when the 

historical data is less than 7 days old. 

In Tables III to V, TimeLLM shows poor performance. This 

is mainly due to the fact that it is trained on large amounts of 

text data, making it less suited for time series tasks. In contrast, 

TimeGPT is trained directly on time series data. Its parameters 

are optimized for temporal patterns, allowing it to handle load 

forecasting tasks with greater accuracy and efficiency. 

However, the day-ahead load forecasting (e.g., the 

look-ahead time is 24 hours) involves longer temporal 

dependencies, which may exceed the scope of what TimeGPT 

learned during pre-training. As a result, its performance may be 

relatively worse compared to the benchmarks. Similarly, 

TimeGPT does not perform well in load forecasting where the 

look-ahead time is longer (e.g. the look-ahead time is greater 

than 24 hours). 

 

 

 

 



(a) Load forecast with 12-hour look-ahead time (b) Load forecast with 24-hour look-ahead time

RT XGBoost LR LSTM MLP TimeGPT PatchTST TimeLLM Real
 

Fig. 6.  The load forecasting of TimeGPT with a long look-ahead time (e.g., 12 hours and 24 hours). 

 
TABLE VI 

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A LONG LOOK-AHEAD TIME (CASE 4) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.048  0.034  0.055  0.082  0.054  0.084  0.117  0.087  0.138  0.107  0.082  0.130  0.134  0.102  0.148  
MLP 0.029  0.025  0.042  0.048  0.038  0.065  0.053  0.044  0.075  0.051  0.041  0.071  0.065  0.049  0.075  

LSTM 0.027  0.024  0.039  0.046  0.038  0.065  0.059  0.051  0.090  0.052  0.042  0.073  0.067  0.052  0.082  
LR 0.029  0.024  0.038  0.041  0.030  0.049  0.053  0.038  0.061  0.042  0.032  0.051  0.067  0.052  0.081  

XGBoost 0.035  0.031  0.055  0.064  0.051  0.098  0.070  0.056  0.103  0.078  0.052  0.093  0.080  0.056  0.091  
RT 0.041  0.034  0.056  0.099  0.067  0.128  0.105  0.077  0.142  0.101  0.070  0.121  0.092  0.065  0.105  
PM 0.036  0.027  0.043  0.089  0.060  0.095  0.134  0.103  0.168  0.099  0.079  0.131  0.126  0.097  0.145  

PatchTST 0.045 0.035 0.053 0.052 0.040 0.062 0.065 0.047 0.073 0.049 0.035 0.054 0.079 0.056 0.084 
TimeLLM 0.243 0.196 0.291 0.209 0.167 0.291 0.210 0.174 0.302 0.260 0.209 0.327 0.186 0.156 0.257 

 
TABLE VII 

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A LONG LOOK-AHEAD TIME (CASE 5) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.028  0.022  0.036  0.082  0.059  0.098  0.113  0.081  0.139  0.091  0.070  0.119  0.149  0.122  0.176  
MLP 0.039  0.035  0.056  0.099  0.081  0.132  0.138  0.116  0.193  0.132  0.106  0.174  0.153  0.127  0.186  

LSTM 0.016  0.013  0.020  0.029  0.023  0.038  0.036  0.029  0.052  0.043  0.036  0.061  0.060  0.046  0.070  
LR 0.012  0.009  0.016  0.033  0.026  0.043  0.037  0.029  0.051  0.056  0.047  0.079  0.078  0.055  0.083  

XGBoost 0.020  0.015  0.024  0.037  0.030  0.050  0.045  0.035  0.061  0.044  0.035  0.061  0.065  0.049  0.076  
RT 0.021  0.016  0.026  0.029  0.022  0.037  0.041  0.029  0.053  0.045  0.035  0.059  0.063  0.047  0.071  
PM 0.025  0.021  0.033  0.047  0.037  0.061  0.056  0.041  0.069  0.058  0.046  0.077  0.083  0.062  0.094  

PatchTST 0.017 0.013 0.020 0.031 0.025 0.042 0.041 0.032 0.057 0.051 0.039 0.067 0.070 0.053 0.083 
TimeLLM 0.158 0.134 0.194 0.228 0.183 0.303 0.187 0.153 0.275 0.184 0.152 0.269 0.240 0.194 0.316 

 

2) Visual Analysis on a Long Look-Ahead Time 

To explore why TimeGPT is not efficient in load forecasting 

with a long look-ahead time (e.g., 12 hours and 24 hours), a 

specific case (i.e., Case 1) is selected as an example to visualize 

load forecasting using the recursive forecasting method. 

Specifically, three days of load data are randomly selected to 

perform load forecasting with a long look-ahead time (e.g., 12 

hours and 24 hours), as shown in Fig. 6. Note that PM is 

removed because it is not suitable for load forecasting with a 

long look-ahead time. 

Visual analysis shows that the forecasts generated by 

TimeGPT have a conservative and smoothed pattern. This 

pattern makes it difficult for TimeGPT to capture the peaks and 

valleys of load, which explains its low accuracy in load 

forecasting with a long look-ahead time (e.g., 12 hours and 24 

hours). 

D. Performance Comparison in Data Rich Cases 

To compare the performance of TimeGPT with the 

benchmarks in cases where data is relatively rich, these models 

are used to conduct load forecasting in Cases 4-5. Note that 

TimeGPT is fine-tuned by the historical load data here. The 

average evaluation metrics of TimeGPT in various scenarios 

are shown in Tables VI-VII. 

Tables VI and VII show that, despite the fine-tuning, 

TimeGPT performs significantly worse than machine learning 

models in load forecasting with relatively rich historical data. 

This could be due to potential mismatches in distribution and 

characteristics between the training dataset and the load data. 

Machine learning models trained directly on load data have an 

optimization process entirely focused on load forecasting, 

allowing them to better adapt to the specific characteristics of 

load forecasting. In contrast, when the pre-training data of 

TimeGPT comes from different time series, such as traffic, 

weather, energy, network and financial data, the learned 

representations may capture a wide range of temporal patterns 

that do not exactly match the unique characteristics of the load 

forecast. The fine-tuning process, while beneficial, may not be 

sufficient to overcome these underlying differences as the 

pre-training weights are initially optimized for generic tasks 



rather than the specific nuances of load forecasting. In other 

words, if sufficient data is available to train machine learning 

models, the choice of classical machine learning models may 

be more desirable than LTSMs like TimeGPT. 

The impact of such distributional differences is twofold: 

firstly, it may lead to suboptimal feature extraction during the 

fine-tuning phase, as the internal representations in TimeGPT 

may be biased towards patterns that are prevalent in the 

pre-training data but less relevant to load forecasting. Secondly, 

these differences can cause TimeGPT to struggle to capture the 

intricate seasonal and temporal dependencies unique to load 

data, leading to poor performance. 

To mitigate these challenges, several strategies can be 

considered in future work. One possible research line is to 

incorporate domain adaptation techniques during the 

fine-tuning phase (e.g., adversarial training) that emphasize 

alignment between the pre-training and target data distributions 

(i.e., load data). Another research line could be the use of a 

hybrid model that combines TimeGPT with a traditional load 

forecasting model, exploiting the strengths of both. 

Additionally, the expansion of the fine-tuning dataset to include 

more diverse load-related examples or the use of techniques 

such as data augmentation could also help narrow the 

distributional gap. 

IV. CASE STUDY II 

This section will further investigate the generalization of 

TimeGPT for other load datasets. 

A. Simulation Settings 

The simulations are performed on four publicly available 

datasets from China Nongfu Spring Company (a packaged 

water supplier) [40], Midea Group (an electrical appliance 

manufacturer) [40], the Joho City Electric Power Company in 

Malaysia [41], and Arizona State University Tempe Campus 

[42], respectively. The time resolution in these four datasets is 

one hour. Although the first two datasets are publicly available, 

they should not have been used to train TimeGPT, because a 

password is required to obtain them. 

Due to limited API tokens for TimeGPT, the three months of 

load data are used for simulation and testing. Specifically, the 

dataset from Nongfu Spring Company spans from May 1, 2017, 

to July 31, 2017. The dataset from Midea Group covers the 

period from April 28, 2017, to July 27, 2017. Meanwhile, the 

dataset from Joho City ranges from January 1, 2009, to March 

31, 2009. The dataset from Arizona State University ranges 

from January 1, 2012, to March 31, 2012. 

B. Results and Analysis 

Similar to Section III, the TimeGPT and benchmarks are 

used to conduct load forecasting in the data scarce case (e.g., 

Case 1) and data rich case (e.g., Case 5). The parameter settings 

for the different cases are the same as before: 

Case 1: The first 3 days of load data are used as the training 

set, and the remainder is considered the test set. 

Case 5: The first 30 days of load data are used as the training 

set, and the remainder is considered the test set. 

The average evaluation metrics in data rich cases are 

presented in Tables VIII-XI, and the average evaluation metrics 

in data scarce cases are presented in Tables XII-XV. 

 

 

 

 

 

TABLE VIII 
RESULTS IN CHINA NONGFU SPRING COMPANY'S DATASET IN DATA RICH CASE (I.E., CASE 5) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.059  0.046  0.107  0.105  0.080  0.147  0.140  0.102  0.183  0.162  0.112  0.173  0.148  0.112  0.175  
MLP 0.056  0.042  0.098  0.114  0.092  0.151  0.142  0.112  0.201  0.151  0.115  0.169  0.150  0.118  0.168  

LSTM 0.055  0.044  0.101  0.112  0.095  0.168  0.150  0.119  0.209  0.183  0.147  0.210  0.152  0.116  0.171  
LR 0.053  0.041  0.100  0.094  0.073  0.127  0.113  0.083  0.149  0.126  0.090  0.138  0.130  0.105  0.150  

XGBoost 0.062  0.048  0.113  0.114  0.098  0.163  0.153  0.131  0.216  0.141  0.107  0.159  0.140  0.108  0.153  
RT 0.068  0.057  0.128  0.115  0.089  0.141  0.172  0.141  0.219  0.173  0.136  0.203  0.183  0.138  0.206  
PM 0.060  0.047  0.112  0.108  0.077  0.146  0.137  0.100  0.183  0.161  0.104  0.163  0.145  0.109  0.173  

PatchTST 0.058 0.045 0.105 0.114 0.092 0.151 0.126 0.095 0.160 0.152 0.112 0.176 0.138 0.104 0.157 
TimeLLM 0.197 0.159 0.306 0.286 0.226 0.357 0.226 0.178 0.259 0.246 0.189 0.279 0.273 0.215 0.300 

 

TABLE IX 

RESULTS IN MIDEA GROUP'S DATASET IN DATA RICH CASE (I.E., CASE 5) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.074  0.057  0.130  0.185  0.131  0.398  0.178  0.136  0.747  0.199  0.157  0.775  0.272  0.228  1.111  
MLP 0.062  0.042  0.094  0.084  0.059  0.185  0.113  0.077  0.800  0.215  0.150  2.933  0.210  0.133  2.022  

LSTM 0.049  0.038  0.098  0.121  0.081  0.314  0.149  0.112  0.849  0.283  0.213  4.051  0.272  0.191  2.387  
LR 0.043  0.037  0.092  0.089  0.069  0.222  0.145  0.091  1.177  0.161  0.116  1.971  0.202  0.142  1.783  

XGBoost 0.047  0.036  0.088  0.085  0.064  0.220  0.143  0.088  1.125  0.241  0.174  3.620  0.230  0.163  2.202  
RT 0.071  0.053  0.127  0.133  0.088  0.282  0.178  0.114  1.284  0.250  0.181  3.224  0.245  0.171  2.101  
PM 0.090  0.071  0.159  0.214  0.150  0.431  0.203  0.159  0.723  0.188  0.149  0.769  0.283  0.234  1.194  

PatchTST 0.060 0.048 0.137 0.090 0.068 0.269 0.149 0.092 1.206 0.201 0.152 1.886 0.228 0.152 1.565 
TimeLLM 0.206 0.189 0.554 0.294 0.232 1.037 0.397 0.303 2.354 0.365 0.309 3.867 0.552 0.443 3.043 

 
 

 

 
 

 



TABLE X 

RESULTS IN JOHO CITY'S DATASET IN DATA RICH CASE (I.E., CASE 5) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.054  0.044  0.203  0.118  0.082  0.330  0.187  0.119  0.440  0.241  0.162  0.531  0.312  0.237  0.569  
MLP 0.020  0.015  0.068  0.036  0.026  0.142  0.064  0.040  0.152  0.055  0.030  0.106  0.087  0.059  0.196  

LSTM 0.022  0.017  0.068  0.038  0.031  0.170  0.061  0.040  0.157  0.065  0.039  0.134  0.096  0.068  0.231  
LR 0.039  0.031  0.128  0.077  0.050  0.195  0.112  0.068  0.228  0.084  0.049  0.162  0.095  0.060  0.185  

XGBoost 0.031  0.023  0.102  0.048  0.031  0.126  0.088  0.055  0.174  0.062  0.035  0.113  0.090  0.058  0.160  
RT 0.037  0.024  0.127  0.042  0.026  0.133  0.104  0.053  0.185  0.076  0.036  0.128  0.104  0.057  0.170  
PM 0.056  0.038  0.158  0.144  0.096  0.424  0.203  0.136  0.594  0.243  0.171  0.673  0.286  0.224  0.643  

PatchTST 0.030 0.023 0.090 0.034 0.023 0.121 0.106 0.059 0.232 0.090 0.056 0.186 0.105 0.072 0.244 
TimeLLM 0.274 0.217 0.600 0.273 0.226 1.603 0.458 0.366 2.464 0.450 0.362 2.203 0.376 0.274 1.545 

 
TABLE XI 

RESULTS IN ARIZONA STATE UNIVERSITY'S DATASET IN DATA RICH CASE (I.E., CASE 5) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.032  0.024  0.087  0.126  0.086  0.290  0.200  0.152  0.377  0.176  0.130  0.358  0.238  0.185  0.471  
MLP 0.019  0.014  0.038  0.041  0.031  0.075  0.053  0.041  0.093  0.079  0.065  0.150  0.118  0.089  0.201  

LSTM 0.015  0.011  0.032  0.034  0.026  0.068  0.047  0.034  0.075  0.107  0.078  0.162  0.110  0.079  0.200  
LR 0.021  0.017  0.048  0.059  0.048  0.114  0.086  0.063  0.138  0.093  0.068  0.169  0.128  0.095  0.231  

XGBoost 0.014  0.010  0.034  0.034  0.026  0.063  0.072  0.049  0.097  0.087  0.068  0.163  0.117  0.087  0.205  
RT 0.023  0.017  0.060  0.033  0.026  0.075  0.093  0.060  0.140  0.105  0.081  0.202  0.142  0.101  0.232  
PM 0.052  0.039  0.135  0.135  0.106  0.356  0.242  0.200  0.570  0.155  0.126  0.442  0.218  0.175  0.539  

PatchTST 0.018 0.012 0.041 0.048 0.033 0.091 0.051 0.037 0.096 0.078 0.059 0.184 0.135 0.101 0.251 
TimeLLM 0.254 0.219 0.493 0.430 0.356 1.242 0.285 0.235 0.819 0.337 0.268 0.987 0.250 0.203 0.853 

 
TABLE XII 

RESULTS IN CHINA NONGFU SPRING COMPANY'S DATASET IN DATA SCARCE CASE (I.E., CASE 1) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.047  0.037  0.073  0.088  0.072  0.127  0.141  0.091  0.186  0.125  0.096  0.215  0.146  0.108  0.294  
MLP 0.116  0.094  0.199  0.161  0.129  0.221  0.218  0.189  0.307  0.255  0.208  0.403  0.239  0.201  0.496  

LSTM 0.096  0.079  0.166  0.228  0.177  0.293  0.319  0.261  0.403  0.265  0.214  0.446  0.362  0.312  0.716  
LR 0.084  0.071  0.141  0.168  0.135  0.235  0.212  0.162  0.268  0.324  0.245  0.476  0.582  0.432  0.960  

XGBoost 0.062  0.047  0.088  0.198  0.157  0.259  0.275  0.223  0.339  0.237  0.179  0.338  0.224  0.180  0.427  
RT 0.060  0.050  0.101  0.204  0.163  0.278  0.273  0.227  0.352  0.261  0.200  0.389  0.221  0.177  0.428  
PM 0.053  0.042  0.084  0.091  0.070  0.123  0.147  0.096  0.198  0.136  0.101  0.234  0.165  0.120  0.333  

PatchTST 0.102 0.089 0.191 0.169 0.139 0.271 0.160 0.116 0.245 0.160 0.120 0.287 0.264 0.200 0.544 
TimeLLM 0.147 0.122 0.225 0.307 0.282 0.523 0.295 0.255 0.473 0.279 0.218 0.520 0.286 0.215 0.526 

 

TABLE XIII 
RESULTS IN MIDEA GROUP'S DATASET IN DATA SCARCE CASE (I.E., CASE 1) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.051  0.037  0.170  0.185  0.117  0.650  0.204  0.151  0.750  0.167  0.134  0.647  0.234  0.195  0.627  
MLP 0.070  0.056  0.234  0.116  0.084  0.366  0.174  0.136  0.460  0.345  0.294  0.638  0.343  0.297  0.597  

LSTM 0.117  0.100  0.389  0.206  0.164  1.099  0.198  0.147  0.562  0.263  0.218  0.479  0.381  0.313  0.641  
LR 0.051  0.038  0.201  0.137  0.109  0.815  0.151  0.117  0.616  0.376  0.290  0.808  0.434  0.345  0.703  

XGBoost 0.090  0.076  0.385  0.144  0.108  0.522  0.207  0.153  0.462  0.331  0.278  0.555  0.364  0.307  0.574  
RT 0.138  0.104  0.589  0.158  0.113  0.487  0.226  0.173  0.456  0.328  0.276  0.561  0.372  0.314  0.618  
PM 0.063  0.036  0.162  0.203  0.126  0.736  0.223  0.164  0.829  0.169  0.146  0.674  0.247  0.198  0.654  

PatchTST 0.086 0.073 0.279 0.205 0.174 1.223 0.247 0.216 1.040 0.258 0.231 0.896 0.267 0.218 0.837 
TimeLLM 0.176 0.137 0.394 0.592 0.489 3.438 0.268 0.218 0.991 0.280 0.224 0.858 0.250 0.197 0.726 

 

 

TABLE XIV 
RESULTS IN JOHO CITY'S DATASET IN DATA SCARCE CASE (I.E., CASE 1) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.019  0.015  0.078  0.104  0.081  0.299  0.153  0.134  0.417  0.269  0.181  0.552  0.341  0.259  0.557  
MLP 0.080  0.070  0.438  0.141  0.124  0.644  0.154  0.130  0.576  0.129  0.096  0.328  0.146  0.117  0.453  

LSTM 0.104  0.084  0.735  0.294  0.272  1.715  0.224  0.184  1.054  0.185  0.136  0.561  0.193  0.147  0.698  
LR 0.053  0.038  0.141  0.165  0.105  0.339  0.219  0.112  0.431  0.583  0.417  1.823  0.864  0.554  2.065  

XGBoost 0.084  0.072  0.580  0.181  0.141  0.664  0.155  0.117  0.543  0.163  0.114  0.487  0.163  0.115  0.407  
RT 0.126  0.115  0.806  0.241  0.191  0.857  0.201  0.146  0.705  0.215  0.138  0.718  0.205  0.147  0.530  
PM 0.051  0.030  0.192  0.178  0.107  0.382  0.246  0.155  0.575  0.272  0.191  0.684  0.324  0.254  0.655  

PatchTST 0.098 0.082 0.519 0.155 0.117 0.412 0.164 0.123 0.488 0.153 0.098 0.374 0.223 0.167 0.591 
TimeLLM 0.290 0.243 0.838 0.558 0.448 2.304 0.328 0.270 1.661 0.337 0.278 1.526 0.380 0.333 1.735 

 

 

 



TABLE XV 

RESULTS IN ARIZONA STATE UNIVERSITY'S DATASET IN DATA SCARCE CASE (I.E., CASE 1) 

Model 
Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours Look-ahead time=12 hours Look-ahead time=24 hours 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

TimeGPT 0.030  0.025  0.128  0.097  0.063  0.399  0.162  0.123  0.645  0.101  0.079  0.583  0.207  0.169  0.607  
MLP 0.039  0.032  0.130  0.051  0.040  0.190  0.059  0.048  0.198  0.103  0.082  0.378  0.146  0.114  0.399  

LSTM 0.049  0.040  0.154  0.075  0.060  0.238  0.083  0.065  0.241  0.107  0.088  0.482  0.179  0.139  0.410  
LR 0.017  0.015  0.067  0.032  0.025  0.129  0.067  0.047  0.318  0.099  0.073  0.471  0.195  0.132  0.351  

XGBoost 0.080  0.068  0.222  0.068  0.051  0.210  0.073  0.057  0.241  0.102  0.078  0.408  0.152  0.106  0.283  
RT 0.107  0.089  0.291  0.117  0.094  0.335  0.086  0.073  0.303  0.118  0.092  0.404  0.162  0.118  0.319  
PM 0.042  0.032  0.156  0.099  0.075  0.414  0.165  0.133  0.710  0.108  0.086  0.648  0.171  0.142  0.604  

PatchTST 0.080 0.067 0.412 0.122 0.098 0.679 0.129 0.099 0.734 0.136 0.103 0.856 0.178 0.142 0.755 
TimeLLM 0.237 0.203 0.598 0.244 0.200 1.082 0.354 0.302 1.601 0.157 0.125 0.890 0.305 0.250 1.180 

 

1) Model Performance in Data-rich Cases 

Tables VIII-XI show that in data-rich cases, the evaluation 

metrics of TimeGPT are generally larger than those of most 

machine learning models. For example, in Table VIII, the 

RMSE, MAE, and MAPE of TimeGPT are larger than those of 

MLP, LSTM, and LR for load forecasting with a 1-hour 

look-ahead time. This again highlights that TimeGPT is not 

suitable for load forecasting when extensive historical load data 

is available. 

2) Model Performance in Data Scarce Cases 

In Tables XII and XV, TimeGPT usually outperforms the 

benchmarks in cases with scarce historical data, especially for 

load forecasting with a short look-ahead time. For example, in 

Table XII with a 1-hour look-ahead time, the RMSE of 

TimeGPT is reduced by 59.48%, 51.04%, 44.05%, 24.19%, 

21.67%, 11.32%, 53.92%, 68.03%, compared to MLP, LSTM, 

LR, XGBoost, RT, PM, PatchTST, and TimeLLM, respectively. 

Similarly, the MAE and MAPE of TimeGPT also are smaller 

than those of benchmarks. This reaffirms the effectiveness of 

TimeGPT in load forecasting with a short look-ahead time. 

However, in Table XV, the evaluation metrics of TimeGPT 

are not minimal for load forecasting with various look-ahead 

times. This could be due to significant distribution differences 

between the load dataset from Arizona State University and the 

training data. For example, if a machine learning model is 

trained on images to recognize cats and dogs, its performance 

will be very limited when transferred to the task of tumor 

recognition in medical imaging. This is because the data 

differences between animal images and medical images are too 

significant. In fact, TimeGPT can be seen as a classic 

application of transfer learning based on the pre-training and 

fine-tuning paradigm. TimeGPT first learns the general 

knowledge from massive and diverse time series data, and then 

adapts to specific tasks through fine-tuning. Therefore, the 

performance of TimeGPT in load forecasting is influenced by 

the differences between datasets in the target and the source 

domains. If these differences are large, TimeGPT cannot 

generalize well to load forecasting tasks.  

In transfer learning, domain adaptation techniques are 

commonly used to reduce the distributional differences 

between source and target domains [43]. However, the domain 

adaptation techniques are not suitable for TimeGPT and other 

LTSMs. In LTSMs, the source domain contains massive data, 

while the load data in the target domain is scarce. This 

imbalance between the source and target domains can cause 

domain adaptation techniques to be ineffective, resulting in 

poor performance of LTSMs in the target domain. One possible 

solution is to train a specialized LTSM for the energy domain 

using massive energy data. This can help to maintain the 

generalization ability of the model while reducing the 

distributional differences between the source and target 

domains. 

The result in Table XV illustrate that it cannot be guaranteed 

that TimeGPT is always superior to benchmarks for load 

forecasting with scarce data. In other words, although 

TimeGPT performs well on multiple datasets (e.g., load data 

from China Nongfu Spring Company and University of Texas 

at Austin), it cannot be ensured to always be the best choice for 

load forecasting with scarce data. 

Overall, TimeGPT has shown strong potential and good 

performance in load forecasting with scarce historical data on 

several datasets (e.g., datasets from China Nongfu Spring 

Company and University of Texas at Austin). However, 

TimeGPT may not perform as well as the benchmarks on some 

datasets, possibly due to a significant difference between the 

current load dataset and the training data. 

V. DISCUSSION 

To summarize the performance of TimeGPT in load 

forecasting, Table XVI compares TimeGPT and benchmark 

models across different datasets under data scarce cases (i.e., 

three days of training data). In the first four datasets, TimeGPT 

outperforms all the benchmarks, particularly for short forecast 

horizons (e.g., 1 hour). However, TimeGPT does not show an 

advantage in the fifth dataset, likely due to differences between 

source and target domains, as explained in detail in Section IV. 

In practical applications, operators can use the following 

strategy to determine whether to use TimeGPT for load 

forecasting with scarce historical data: 

Firstly, the historical data can be divided into a training set 

and a validation set. Secondly, the training set is used to 

fine-tune the weights of TimeGPT, while the validation set is 

used to test the performance of TimeGPT and benchmarks. If 

TimeGPT outperforms the benchmarks on the validation set 

(i.e., the evaluation metrics of TimeGPT is minimal on the 

validation set), then TimeGPT would be the optimal choice for 

load forecasting with scarce historical data. 

 

 

 

 

 

 

 

 

 



TABLE XVI 

COMPARISON OF TIMEGPT AND BENCHMARKS ACROSS DATASETS 

Dataset LAT=1 h LAT=4 h LAT=6 h LAT=12 h LAT=48 h 

Texas 

dataset in [36] 
√ √ √ √ √ 

Nongfu Dataset 

in [40] 
√ √ √ √ √ 

Midea 
Dataset in [40] 

√ × × × × 

Joho city 

dataset in [41] 
√ √ × × × 

Arizona state 
dataset in [42] × × × × × 

LAT: look-head time.√: Proposed method outperforms all the benchmarks. ×: 

Proposed method does not outperform all the benchmarks. 

VI. CONCLUSION 

This paper explores the potential of large time series models, 

specifically TimeGPT, in load forecasting with limited 

historical data. Key findings from simulations and analyses on 

various datasets are summarized as follows: 

While TimeGPT is trained on massive and diverse datasets 

totaling 100 billion data points, fine-tuning is essential to adapt 

it effectively for load forecasting tasks. 

TimeGPT shows inferior performance to popular machine 

learning models when abundant historical data is available. In 

data-scarce scenarios, TimeGPT generally outperforms 

benchmarks, particularly for short forecast horizons. This 

highlights the superiority of TimeGPT for load forecasting in 

scenarios where data is scarce due to the various reasons, such 

as privacy concerns. However, its performance may be affected 

by disparities between the training data and the target dataset, 

emphasizing the need to consider data distribution when 

applying TimeGPT. In practical applications, operators can 

divide the historical data into a training set and a validation set, 

and then use the validation set loss to decide whether TimeGPT 

is the best choice for a specific dataset. 

Although TimeGPT demonstrates strong potential in load 

forecasting with limited historical data, it relies exclusively on 

historical load data, which restricts its ability to integrate 

additional relevant information, such as weather forecasts. To 

improve forecast accuracy, weather forecasts will be integrated 

into TimeGPT in future work. 
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