TimeGPT in Load Forecasting: A Large Time
Series Model Perspective

Wenlong Liao, Shouxiang Wang, Dechang Yang, Zhe Yang, Jiannong Fang, Christian
Rehtanz, Fernando Porté-Agel

Abstract—Machine learning models have made
significant progress in load forecasting, but their forecast
accuracy is limited in cases where historical load data is
scarce. Inspired by the outstanding performance of large
language models (LLMs) in computer vision and natural
language processing, this paper aims to discuss the
potential of large time series models in load forecasting
with scarce historical data. Specifically, the large time
series model is constructed as a time series generative
pre-trained transformer (TimeGPT), which is trained on
massive and diverse time series datasets consisting of 100
billion data points (e.g., finance, transportation, banking,
web traffic, weather, energy, healthcare, etc.). Then, the
scarce historical load data is used to fine-tune the
TimeGPT, which helps it to adapt to the data distribution
and characteristics associated with load forecasting.
Simulation results show that TimeGPT outperforms the
popular benchmarks for load forecasting on several real
datasets with scarce training samples, particularly for
short look-ahead times. However, it cannot be guaranteed
that TimeGPT is always superior to benchmarks for load
forecasting with scarce data, since the performance of
TimeGPT may be affected by the distribution differences
between the load data and the training data. In practical
applications, operators can divide the historical data into a
training set and a validation set, and then use the
validation set loss to decide whether TimeGPT is the best
choice for a specific dataset.

Index Terms—Load forecasting, Large model, Time series,
Smart grid, Artificial intelligence, Foundation model

. INTRODUCTION

CCURATE load forecasting is indispensable for the
planning and operations of smart grids [1]. For instance, it
plays a pivotal role in scheduling generation units, thereby
minimizing the need for wunnecessary reserve power.
Additionally, it enables power system operators to plan the
maintenance, ensuring the safe and reliable operation of power

Wenlong Liao, Jiannong Fang, and Fernando Porté&Agel (corresponding
author) are with Wind Engineering and Renewable Energy Laboratory, Ecole
Polytechnique Federale de Lausanne (EPFL), Lausanne 1015, Switzerland
(wenlong.liao@epfl.ch; jiannong.fang@epfl.ch; fernando.porte-agel@epfl.ch).

Shouxiang Wang is with the Key Laboratory of Smart Grid of Ministry of
Education, Tianjin University, Tianjin 300072, China (sxwang@tju.edu.cn).

Dechang Yang is with the College of Information and Electrical
Engineering, China Agricultural University, Beijing 100083, China
(yangdechang@cau.edu.cn).

Zhe Yang is with Department of Electrical and Electronic Engineering,
Imperial College London, London SW7 2AZ, United Kingdom
(zhe.yang@imperial.ac.uk).

Christian Rehtanz is with the Institute of Energy Systems, Energy
Efficiency and Energy Economic, TU Dortmund University, Dortmund 44227,
Germany (christian.rehtanz@tu-dortmund.de).

systems [2].

Over the past few decades, various approaches to load
forecasting have emerged, with traditional methods relying
primarily on statistical models. In recent years, however,
machine learning models have achieved significant success in
various fields [3], [4],[5], driving their application in load
forecasting [6].

Specifically, statistical models estimate future load values by
analyzing the trends and periodicity in historical data. Classic
statistical models include the persistence model (PM),
autoregressive moving average, exponential smoothing,
autoregressive integrated moving average, linear regression
(LR), adaptive filtering model, generalized additive model, and
gray model [7]. For example, the work in [8] uses several LR
models to forecast the short-term load in California. In [9], the
grey model with inverse square root unit functions is introduced
to estimate the potential electricity consumption in China over
the next few years. In [10], the autoregressive integrated
moving average model is designed to forecast long-term loads
in Brazil. To mitigate the negative effects of the noise and
seasonality in the load data, the work in [11] utilizes
exponential smoothing to preprocess the data before
conducting load forecasting. These statistical models are
grounded in rigorous mathematical principles, offering a high
interpretability and relatively low computational costs without
requiring extensive historical data. However, their forecast
accuracy is limited, especially for a long look-ahead time, due
to their difficulty in handling nonlinear relationships [12].

Typically, machine learning models in load forecasting use
supervised learning to project the nonlinear relationship
between historical load data and forecast values. Popular
machine learning models include regression tree (RT), support
vector regression, extreme gradient boosting (XGBoost), light
gradient boosting machine, multi-layer perceptron (MLP), long
short-term memory (LSTM), gated recurrent unit, transformer
neural network, convolutional neural network (CNN), and
graph neural network [13]. For example, the work in [14] uses
the RT model to forecast the short-term load of a city,
incorporating the additional information from special days. In
[15], the XGBoost model is utilized to forecast peak power
demand and long-term electricity consumption, taking into
account climatic and economic conditions. In [16], eight
meta-heuristic algorithms are adopted to optimize the
hyper-parameters of the MLP model, which forecasts the
building energy consumption. To capture the temporal features
from load data, the LSTM and gated recurrent unit models are
presented in [17] and [18], respectively. Simulation analysis
shows that LSTM and gated recurrent unit outperform
conventional models (e.g., MLP) in short-term load forecasting.
Similarly, CNNs and graph neural networks are designed to
depict the spatial features from between loads of each bus in

[19], [20]. In general, machine learning models can provide
high forecast accuracy, especially when dealing with
large-scale load data and long-term forecasts. This is attributed
to their ability to automatically extract latent features from data,
as well as their good adaptability to complex nonlinear
relationships.

However, machine learning models require a large amount of
data for training in order to accurately map complex nonlinear
relationships. In other words, when historical data is scarce, the
forecast accuracy of these machine learning models is limited
[21]. For example, in some emerging markets or newly
developed communities, inadequate infrastructure may result in
a lack of sufficient historical load data. In addition, utilities may
not be able to obtain detailed individual electricity consumption
data due to privacy concerns [22]. In these scenarios, machine
learning models may be constrained by data scarcity, making
accurate forecast challenging.

Over the past few years, pre-trained foundation models have
significantly driven the rapid development of natural language
processing (NLP), computer vision (CV), and speech
understanding. For example, large language models (LLM:s),
such as ChatGPT [23] and Llama [24], perform well in various
NLP tasks, even under zero-shot conditions. Similarly,
Midjourney [25] and Sora [26] can generate various types of
images and videos based on user prompts, respectively. The
impressive capabilities of LLMs in CV and NLP have inspired
the development and application of foundation models in time
series modeling. Recently, foundation models have been
extended from CV and NLP to time series analysis. For
example, the time series foundation models for transportation
and financial problems are presented in [27],[28]. The work in
[29] trains a unified time series model to support a universal
task specification, including anomaly detection, imputation,
classification and prediction. In [30], a time series generative
pre-trained transformer (TimeGPT) is presented for time series
modeling. Trained on 100 billion data points (e.g., finance,
transportation, banking, web traffic, weather, energy,
healthcare, etc.), it demonstrated good performance on
few-shot learning tasks (e.g., air quality and traffic forecasts).
The remarkable success of these foundation models opens up
new opportunities for load forecasting, especially in scenarios
with scarce historical data.

Inspired by the outstanding performance of LLMs in CV and
NLP, this paper aims to discuss the potential of large time series
models (LTSMS) in load forecasting with scarce historical data.
Specifically, this paper will explore the generalization of
TimeGPT to load forecasting, and discuss its advantages and
limitations through extensive simulations. The main
contributions are as follows:

® New Perspective: Unlike classical machine learning
models and statistical models characterized by simple
structures and few parameters, this paper investigates the
potential of LTSMs with complex structures and extensive
parameters (i.e., TimeGPT) in load forecasting, from a
new perspective.

o New Application: By using pre-trained knowledge, the
TimeGPT enables load forecasting for scenarios where
historical load data is scarce. To our knowledge, this is the
first work applying TimeGPT to load forecasting.

e Extensive Simulations and Practical Suggestions:
Extensive numerical simulations and comprehensive
comparisons with eight benchmark models are conducted
on five real load datasets to highlight the advantages and
limitations of TimeGPT. The actionable suggestions are
given for the practical implementation of TimeGPT in
load forecasting.

The rest is organized as follows: Section Il formulates the
TimeGPT. Section 1l and Section IV conduct simulation and
analysis on different datasets. Section V presents the discussion.
Finally, Section VI summarizes the conclusion.

Il. PRINCIPLES AND FRAMEWORK OF TIMEGPT

This section will formulate the architecture of the TimeGPT,
and then present how to train and use it.

A. Architecture of TimeGPT
Similar to LLMs, the transformer architecture [31] with
attention mechanisms is used to construct TimeGPT, as shown
in Fig. 1.
Output
Forecasts

CNN
—
Add&Norm
Multi-Head
CNN Attention
[W)
Add&Norm
Multi-Head :
Attention il ez
Attention
A4 4 AAA
Positional @—6 E)——@ Positional
Encoding Encoding
Inputs Outputs
Embedding Embedding
Outputs
Inputs p

(shifted right)
Fig. 1. The basic structure of the transformer block.

In particular, the architecture mainly includes the positional
encoding (PE), multi-head attention, and CNN, in which the
residual connection and layer normalization are integrated to
prevent gradient degradation and accelerate algorithm
convergence [30]. By using a segment of historical values,
TimeGPT generates forecasts while incorporating local PE for
improved input representation. Then, the output of the decoder
is projected to forecast values through a linear layer. To
maintain this autoregressive property, the input sequence of the
decoder is its previously generated tokens, but shifted one
position to the right.

Similar to ChatGPT, TimeGPT has the ability to process
time series inputs and outputs of varying lengths and
frequencies. Firstly, TimeGPT uses the self-attention

mechanism of the Transformer model, which enables it to
effectively handle time series data of different lengths. The
self-attention mechanism dynamically adjusts the focus of
TimeGPT based on the global context of the input sequence,
ensuring that critical long-term dependencies are not lost when
processing long sequences. On the contrary, when dealing with
shorter sequences, the self-attention mechanism is still flexible
enough to capture short-term dependencies in the sequences.
This adaptability allows TimeGPT to effectively handle input
data of different lengths, making it suitable for both longer and
shorter time series. Secondly, TimeGPT is good at dealing with
changes in data frequency. Since the time series data in the
pre-training are diverse and may come from different domains
with different sampling frequencies, TimeGPT can adapt to
changes in frequency when dealing with different time series
data. Through fine-tuning, TimeGPT can further understand the
characteristics of specific frequency data to make more
accurate predictions. In summary, TimeGPT uses the
transformer architecture and diverse pre-training data with a
strong ability to handle time series data of different lengths and
frequencies. This makes it well suited to a variety of time series
forecasting tasks, with excellent adaptability and forecasting
performance.

1) Positional Encoding

To enable the model to accurately understand the sequential
information in the input features, the role of the PE is to assign
positional information to each feature by using the sine-cosine
positional coding [32]:

. . pos
PE(pos,2i)=sin| ——————
(p) (100002|/dmudel j

(1)
PE(pos, 2i +1)=cos(

pos
10000°" e
where pos denotes the length of the input sequence; i denotes
the dimension index of the PE; and d,,4e denotes the length of
the feature.

In PE, 2i is controlled by the sine function while 2i+1 is
controlled by the cosine function. The value of the PE changes
as the position pos increases. With PE, the model is able to
distinguish features at different positions, which leads to a
better understanding of the sequential information in the input
sequence.

2) Multi-Head Attention

As the core unit of the transformer architecture, the
multi-head attention can be regarded as an integration of
multiple attention heads. As shown in Fig. 2, the ability of the
transformer to focus on different features is extended by
performing h times attention computations in parallel [33].

In particular, the model learns multiple sets of attention
weights simultaneously, and then concatenates their outputs
together. Given h attention heads, the calculation of multi-head
attention is as follows:

MultiHead (Q, K,V) = Concat (head,, ..., head,)W® (2)
head, = Attention(Q,, K;,V,) (3)

Attention (Q, K,V) = softmax(QKT]V (4)

Ja

Q=wW?X
K=W"X (5)
VvV =W"X
where X denotes the input matrix; W2, WX, and W" denote the
weight matrices of the linear transformation; Q, K, and V
denote the query matrix, key matrix, and value matrix,
respectively; and d denotes the dimension of the query matrix.
3) Convolutional Neural Network
In the encoder and decoder, a feed-forward neural network
(e.g., it is CNN here) is applied to each position to capture the

latent feature. The CNN consists of convolutional and pooling
layers, which can be formulated as follows [34],[35]:

Xcenv,out = G<Wconv * >(conv,in + Bconv) (6)
X

= max (ijz;lgl,in) (7

j.keR
where Xcony,out @Nd Xpoo1,0ut deNote outputs of convolutional and
pooling layers, respectively; Xcony,in @8N0 Xpoo1,in denote inputs of
convolutional and pooling layers, respectively; ¢ denotes the
activation function; W,y and Bye denote weights and bias
vectors of the convolutional layer, respectively; R denotes
pooling range; and * denotes the convolutional operation.

4) Residual Connections and Layer Normalization

To accelerate the convergence of model training, layer
normalization (LN) is often used to normalize the outputs of the
layers, so that the outputs of each sub-layer remain within a
stable range:

pool,out

XSL — XSL

\/m +p ®)

where Xg_ denotes the output of the sub-layer; X, and o,
denote the mean and standard deviation of the output Xg,
respectively; y and S denote learnable scale and offset
parameters, respectively; and & denotes a small value to avoid
division by zero errors.

To mitigate the problem of vanishing gradients when
training deep networks, residual connections are used in each
sub-layer:

LN(Xg)=7

XF,out :F(XF,in)+XF,in (9)

where Xeou and Xgi, denote the output and input of the
sub-layer F, respectively.

MatMul
A

Mask(opt.) N Scaled Dot-Product
Attention } h
|Linear|Linear| - Linear

PE

(a) Scaled Dot-Product Attention (b) Multi-Head Attention
Fig. 2. The basic structure of multi-head attention.

B. Bridging Large Models and Load Forecasting

The large models are designed to handle natural language,
which consists of discrete data. In contrast, load forecasting and
other time-series forecasting tasks involve time series data,
which is inherently continuous. This fundamental difference
presents a challenge for large models to directly process time
series data.

To bridge this gap, the continuous time series data must be
transformed into a discrete format suitable for large models. As
shown in Fig. 3(a), this transformation involves two main steps:
normalization and quantization.

In the first step, normalization is applied to map the time
series data into a specified range to allow faster convergence
during model training. Typically, min-max normalization is
used, scaling the data between a predefined minimum and
maximum, as follows:

XI:(X_Xmin)/(Xmax_Xmin) (10)
where Xpin and Xma are the minimum and maximum values,
respectively; and X' is the normalized value.

Once the data is normalized, quantization is performed to
convert the continuous values into discrete categories. This
process uses the widely used equal width binning technique,
which segments the normalized data into equal-width intervals.
Each interval is assigned a unique value, effectively
transforming the continuous values into discrete values
compatible with model input, as follows:

1L if X, <X <X, +Ad

2, if X, +Ad <x< X, +2Ad
g(X)=y.

m, if X, +(M-DAd <x< X,
where m is the number of bin; and Ad=(Xiax-Xmin)/m is the
width of each bin.

At this point, the continuous time-series data has been fully
transformed into a discrete format, allowing it to be processed
by large models. Additionally, the output of large models, also
in a discrete form, must undergo a reverse transformation to
obtain meaningful continuous forecast values, as shown in Fig.
3(b). This reverse process converts the discrete output back into
the continuous values required for accurate forecasting.

(11

Historical Time Series Discrete value

% @EEE8®
A

i | |k
!

Discrete value Load forecasting

Quantization Normalization

Discrete value

Dequantization
&Denormalization

(a) Time series discretization
Fig. 3.
models.

(b) Model inference
Discretization pipeline for time-series forecasting with large

C. Training and Use of TimeGPT

TimeGPT is trained on a large number of publicly available
datasets with 100 billion data points, such as finance,
transportation, banking, web traffic, weather, energy,
healthcare, etc [30]. In regards to temporal characteristics, the
training data includes diverse sets with different seasonality,
cycles of varying durations, and various trend types. In addition
to temporal characteristics, the dataset exhibits variability in
noise levels and the presence of outliers, providing a robust
training condition. Some datasets exhibit orderly, predictable
patterns, while others exhibit significant noise spikes or
unexpected events, providing a wide range of scenarios for
model assimilation.

TimeGPT has been trained on a cluster of NVIDIA A10G
GPUs. The hyper-parameters (e.g. learning rates, batch sizes,
etc.) are not open in [30], but they show that a smaller learning
rate and a larger batch size are appropriate choices. The deep
leaning framework is the PyTorch. The adaptive moment
estimation (Adam) is used as the optimizer.

Regarding whether TimeGPT is fine-tuned or not, this paper
will consider two scenarios: zero-shot learning and few-shot
learning.

For zero-shot learning, the historical load data will be
directly fed to TimeGPT to forecast future loads without any
adjustments to TimeGPT's parameters.

In the case of few-shot learning, where only scarce historical
load data is available due to either inadequate infrastructure or
privacy concerns, a fine-tuning process is employed to adapt
TimeGPT to the specific load forecasting task. As shown in Fig.
4, the fine-tuning process involves four steps.

Firstly, the pre-trained TimeGPT model is utilized, with all
layers having been pre-trained on large and diverse time series
datasets. The pre-trained weights in each layer of TimeGPT
serve as the starting points for fine-tuning. Secondly, the
fine-tuning process is carried out using the scarce historical
load data. This data is used to update the weights of all layers in
the model. The learning rate for fine-tuning is set lower than
typical training processes to ensure that TimeGPT does not
deviate significantly from the pre-trained knowledge, but rather
adapts to the specific patterns of the new load forecasting task.
Thirdly, an appropriate optimization algorithm (e.g., Adam) is
used to minimize the loss function, typically mean squared
error, over the small dataset. During fine-tuning, TimeGPT is
trained on a limited number of epochs to avoid over-fitting
given the scarcity of data. Lastly, to prevent over-fitting and
ensure generalization, the performance of TimeGPT is
monitored on a validation set. Early stopping is applied if the
validation performance does not improve after a certain number
of epochs, ensuring that the fine-tuned TimeGPT remains
robust and does not over-fit the small training dataset.

The fine-tuning ensures that TimeGPT shows good
generalization in the given specific task, i.e. load forecasting.
Subsequently, the fine-tuned TimeGPT is used to perform load
forecasting tasks.

Multi-source data

{me S i Train
E g@ : Large model
O & B
------------------ Import
Load data model Load

...................

forecasting

!] Inference

’

...................

Fig. 4. The fine-tuning process of large models.

lll. CASE STuUDY |

This section will conduct simulations and analyses to
thoroughly explore the performance of TimeGPT by using a
real dataset, while its generalization to other datasets will be
tested in the following Section 1V.

A. Simulation Settings

1) Dataset Description
As mentioned earlier, TimeGPT is trained on a large number

series information from the start, optimizing its parameters
specifically for time-dependent data.

Although each model contains numerous hyper-parameters,
the impact of these hyper-parameters on performance is not
investigated for two main reasons. Firstly, space does not
permit a detailed discussion of these hyper-parameters.
Secondly, the discussion of these hyper-parameters has already
been thoroughly covered in previous works (as cited). The
focus of this paper is on the performance of TimeGPT, not on
the fine-tuning of the baseline models. To ensure a fair
comparison, the Bayesian optimization in [39] is used to
determine the most appropriate parameter settings for each
baseline model. For example, the parameters of each model for
load forecasting with a 1-hour look-ahead time in Case 1 are
shown in Table Il. For each model, the inputs include only
historical loads and time (e.g., data points in the last 24 hours),
while the outputs are future loads. It is univariate time series
forecasts without considering other information, such as
weather conditions. The parameters in other cases can be
determined similarly.

TABLE Il
PARAMETER OF BENCHMARKS

of publicly available time series datasets. If the popular and Model Model structure Fitting setting
publicly available load datasets are used for simulations, there MLP Dense 1: 16 units Training epoch: 200
may be a risk of data leakage, since these popular and publicly in [16] Dense 2: 16 units Batch size: 8
available datasets may have been used to parameterize LsDﬁnMsel? 116“;:;5 Lgafimgfgt :‘gaggl
TimeGPT. Therefore, S|mula_t|ons. are conducted on a_prlvate LSTM LSTM 2- 8 units Activation function: ReLU
dataset sourced from the University of Texas at Austin [36], in [17] Dense 1: 8 units for input and middle layers,
ensuring fairness as the parameters of TimeGPT are unrelated Dense 2: 1 unit Sigmoid for the last layer
to this dataset. PM Without parameters; It forecast the load by copying the value

Specifically, this dataset records the load data of 16 campus : from the previous time step.

o . . X . LR in [8] Intercept is used in calculations
buildings with a time resolution of one hour. Due to limited Max depth: 4
application programming interface (API) tokens for TimeGPT, RT in [14] Leaves: 25
three months of load data are used for simulation and testing, Learning rate:0.01
spanning from July 17, 2011, to October 16, 2011. M_ESET;WS: 5|00_ %

To test the model performance of TimeGPT on datasets with XGBoost msﬁblsaniglrgpoe;
different numbers of training samples, the original dataset is in [15] Early stopping: 400
divided into five cases, as shown in Table |. From case 1 to case Loss: squared error
5, the number of training samples gradually increases. Case 1 Length of the patch: 16
contains very few training samples, while the training samples Nusr;rt')‘:f g]f ttmepﬁaci?f%
in case 5 are relatively rich. P?ECF;?T Size of hidden layers in the Transformer: 32

Number of attention heads: 4
TABLE | Number of epochs: 200
DESCRIPTION OF EACH CASE Batch size: 8

Case Training set Test set Length of the patch: 16

Case 1 From Jul. 17 to Jul. 19 (3 days) From Jul. 20 to Oct. 16 Stride of the patch:8

Case2 FromJul. 17 to Jul. 21 (5 days) From Jul. 22 to Oct. 16 _ ~ Top tokens to consider:5

Case3 FromJul. 17 to Jul. 23 (7 days) From Jul. 24 to Oct. 16 TimeLLM Hidden dimension of LLM: 768

Case4 FromJul. 17 toJul. 31 (15days) From Aug. 1 to Oct. 16 in [38] Number of heads in attention layer: 8

Case5 FromJul. 17 to Aug. 15 (30 days) From Aug. 16 to Oct. 16 Maximum number of training steps:1000

2) Benchmarks

To fully evaluate the performance of TimeGPT, it will be
compared to popular models, including PM, LR in [8], RT in
[14], XGBoost in [15], MLP in [16], LSTM in [17], patch time
series transformer (PatchTST) [37], and time series large
language model (TimeLLM) [38]. Note that TimeLLM is
trained on massive textual data, while TimeGPT is directly
trained on time series data. This key difference means that
while TimeLLM is reprogrammed to analyze time series data as
textual input, TimeGPT is inherently designed to process time

Encoder input size:7
Batch size: 8

3) Evaluation Metrics

To avoid chance or coincidence, each model is run 30 times
to obtain average forecasts. Then, the model performance is
evaluated by using widely used metrics, including mean
absolute error (MAE), root mean squared error (RMSE), and
mean absolute percentage error (MAPE):

13 .
MAE = 3|y, -3,

i=1

(12)

13 .
RMSE=J;Z(yi—yi)2 (13)
i=1
MAPE:EZ u‘ (14)
N Y,

where y, and ¥, denotes the normalized real and forecast

values, respectively; and n denotes the number of data points in
the test set.

4) Simulation Designs

To investigate the potential of TimeGPT in load forecasting,
simulations will be carried out from the following three points
of view:

Firstly, the model performance of TimeGPT will be
discussed with and without fine-tuning in load forecasting, i.e.,
zero-shot learning and few-shot learning. Secondly, TimeGPT
will be compared to the benchmarks in cases where historical
data is scarce. Finally, TimeGPT will also be compared to the
benchmarks in data-rich cases.

B. Performance Analysis With and Without Fine-Tuning

Zero-shot learning involves directly feeding historical load
data directly into TimeGPT to forecast future loads without
adjusting TimeGPT's parameters. Conversely, few-shot
learning involves using scarce historical load data to fine-tune
TimeGPT's weights before conducting load forecasting.

To evaluate the model performance of TimeGPT in load
forecasting, both few-shot learning and zero-shot learning (i.e.,
TimeGPT with and without fine-tuning) are considered in five
cases. These cases involve load forecasting with different

look-ahead times ranging from 1 hour to 24 hours. The average

0.145 — T T 0.13 0.144
LIJ0.116 o, 0-102 m0.111 ek
Lo.087| £0.074 £0.078

o~ ! a4
0.058 -+i-----§----- 0.046

0.029 0.018

1 4 o6 12 24 1 4 6
Look ahead time(hour)
(a) RMSE in Case 1

0.012 L=
12 24 1

Look ahead time(hour)
(b) RMSE in Case 2
0.114 i T T T v

0.101 0.113

0.091 ittt I 0,079

|88
<0.057

E‘:-] :
0.068 -1~
=

=

B 2
0.045 |--i-

0.035 o

0.022 0.013

1 4 6 12 24 1
Look ahead time(hour)
(f) MAE in Case 1

‘ : 0.009 =

4 6 12 24 1

Look ahead time(hour)
(9) MAE in Case 2

0.166 i i T i ;

0.156 0.174

0.133 0.122
E A B N | E o [
< odpf 4 =o0.088 20.096/-
0.067(+—84-M0-BH " 00540 0.057 -1
0.034L-= NS BN NN W 0.02 =1 K - 0.018 L=
1 4 6 12 24 1 4 6 12 24 1

Look ahead time(hour)
(k) MAPE in Case 1

Look ahead time(hour)
(I) MAPE in Case 2

& .
0.045 -+

Look ahead time(hour)
(c) RMSE in Case 3
0.087 --t--
) Lo
L0061t
0.035 |4
4 6
Look ahead time(hour)

(h) MAE in Case 3

0.135 -+
m :

4 6
Look ahead time(hour)
(m) MAPE in Case 3

Result of TimeGPT with fine-tuning

evaluation metrics of TimeGPT in various scenarios are shown
in Fig. 5.

Although TimeGPT is trained on massive and diverse
datasets consisting of 100 billion data points, its performance
on various metrics (e.g., RMSE, MAE, and MAPE) is poor
prior to fine-tuning, indicating that it cannot be directly
generalized to load forecasting. This could be attributed to the
fact that the training data may not adequately represent the
specific data distribution and patterns relevant to load
forecasting, resulting in limited generalization capability.

However, after fine-tuning, the performance of TimeGPT in
load forecasting improves significantly, with considerable
decreases observed in various metrics. The reason for this is
that the fine-tuning involves specific adjustments to its weights
tailored to the requirements of load forecasting, allowing it to
better adapt to the data distribution, patterns, and characteristics
associated with load forecasting. Therefore, the fine-tuning can
significantly improve the performance of TimeGPT, making it
more practical and accurate for real-world applications.

C. Performance Comparison in Data Scarce Cases

To compare the performance of TimeGPT with the
benchmarks in cases where data is scarce, these models are
used to conduct the load forecasting in Cases 1-3 (Data points
in the training set range from 3 to 7 days). Note that TimeGPT
is fine-tuned by the historical load data here. The average
evaluation metrics of TimeGPT in various scenarios are shown
in Tables I11-V.

0.157 0.156
-------------- 0.129 |-i—t—gM-gH 012341}
A A N I A B N
S 0.101 [t < o001l
: y =4

~ Vol BB
0.073 -+ J1- 0.0571-—H-H-H1

— 0.045 == R : 0024 = =
6 12 24 1 4 6 12 24 1 4 6 12 24
Look ahead time(hour) Look ahead time(hour)
(d) RMSE in Case 4 (e) RMSE in Case 5

0.119 0.13
0007 Al orl L3l
9 P 1 2 Lo 11
0.075 4 0.074-J- M4
= P = .
0.053 i 0.046 -l -
1 0.031 L=n_K ‘ 0.01g =1 K AR
12 24 1 4 6 12 24 1 4 6 12 24

Look ahead time(hour)
(i) MAE in Case 4

Look ahead time(hour)
(i) MAE in Case 5

0.188 0.196

0.154 |-t Qg1 015544 B
A B N m [!

012 Zoma-—FH-d- B

MAPE

0.086 i gx-- 0.073 -

0.052

1 - R 0.032
12 24 1 4 6

12 24 1
Look ahead time(hour) Look ahead time(hour)
(n) MAPE in Case 4 (r) MAPE in Case 5

Result of TimeGPT without fine-tuning

4 6 12 24

Fig. 5. The results of TimeGPT with and without fine-tuning in different cases.

TABLE 1lI
THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A SHORT LOOK-AHEAD TIME (CASE 1)

Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours [Look-ahead time=24 hours
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.033 0.024 0.036 0.043 0.034 0.052 0.043 0.035 0.055 0.072 0.055 0.088 0.125 0.097 0.142
MLP 0.051 0.046 0.075 0.070 0.057 0.091 0.089 0.063 0.094 0.099 0.077 0.123 0.091 0.073 0.119
LSTM 0.043 0037 0.061 | 0063 0046 0.068 | 0.067 0.058 0.092 | 0.099 0076 0.120 | 0.110 0.093 0.152
LR 0.037 0029 0.044 | 0044 0036 0.058 | 0.074 0.057 0.094 | 0.094 0078 0.128 | 0239 0.183 0.298
XGBoost 0.052 0.033 0.050 0.068 0.048 0.073 0.063 0.045 0.069 0.094 0.073 0.119 0.090 0.071 0.112
RT 0.063 0.042 0.065 | 0.073 0054 0.081 | 0.082 0063 0.095 | 0106 0084 0.136 | 0.099 0.077 0.122
PM 0.039 0025 0.037 | 0082 0059 0.087 | 0110 0.087 0.130 | 0.078 0.057 0.089 | 0.126 0.100 0.149
PatchTST 0.091 0.074 0.101 0.066 0.053 0.076 0.063 0.052 0.080 0.080 0.068 0.109 0.140 0.114 0.186
TimeLLM 0137 0123 0176 | 0286 0236 0371 | 0232 0191 0305 | 0.242 0189 0312 | 0.167 0.134 0.224

TABLE IV
THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A SHORT LOOK-AHEAD TIME (CASE 2)

Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours [Look-ahead time=24 hours
RMSE MAE MAPE [RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.021 0.015 0.022 | 0049 0.035 0.053 | 0.065 0.043 0.067 | 0.079 0.059 0.099 | 0.115 0.087 0.133
MLP 0.030 0.026 0.038 | 0.073 0052 0.083 | 0.080 0.061 0.100 [0.092 0.075 0129 | 0.102 0.081 0.141
LSTM 0.022 0019 0.025 | 0.076 0.050 0.080 | 0.097 0076 0.126 | 0.096 0075 0.129 | 0.102 0.082 0.141
LR 0.022 0.016 0.024 | 0.053 0.037 0.059 | 0070 0.054 0088 | 0.093 0.077 0133 | 0101 0.079 0.139
XGBoost 0.032 0.028 0.038 | 0.072 0054 0.085 | 0.080 0.061 0.099 [0.098 0.077 0132 | 0.099 0.075 0.130
RT 0.033 0.029 0.040 [0.075 0.054 0.088 | 0.086 0060 0.096 | 0.108 0083 0.144 | 0.108 0.081 0.140
PM 0.038 0.028 0.039 | 0070 0.050 0.076 | 0.081 0.056 0.088 | 0.082 0.063 0.106 | 0.116 0.092 0.145
PatchTST 0.021 0.016 0.023 | 0.066 0.049 0.081 | 0.073 0.053 0.088 | 0.081 0.061 0.102 | 0.096 0.075 0.125
TimeLLM 0126 0112 0177 | 0330 0271 0432 | 0264 0209 0.346 | 0.213 0.166 0.281 | 0.257 0.207 0.354

TABLE V
THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A SHORT LOOK-AHEAD TIME (CASE 3)

Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours [Look-ahead time=24 hours
RMSE MAE MAPE [RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.016 0.012 0021 | 0055 0.036 0.061 | 0.088 0059 0.102 | 0.083 0.063 0.106 | 0.132 0102 0.157
MLP 0.028 0.022 0.038 | 0.057 0049 0.088 | 0.063 0054 0.096 | 0.081 0068 0.117 | 0.100 0.081 0.146
LSTM 0.039 0035 0.061 [0089 0076 0.138 | 0.093 0078 0.142 | 0108 0.091 0.156 | 0.120 0.096 0.172
LR 0.019 0.014 0.024 | 0055 0046 0.081 | 0.068 0.057 0.102 | 0.082 0.069 0.118 | 0.099 0.078 0.141
XGBoost 0.022 0.017 0.030 | 0.080 0062 0.113 | 0.087 0.070 0.128 | 0.100 0.082 0.143 | 0.108 0.085 0.151
RT 0.030 0023 0.041 [0101 0079 0144 | 0.091 0074 0.133 | 0112 008 0.146 | 0.123 0.096 0.170
PM 0.017 0.013 0.022 | 0.058 0.038 0.064 | 0.098 0.070 0.121 | 0.091 0.071 0120 | 0.132 0.105 0.166
PatchTST 0.017 0.012 0.022 | 0.057 0.038 0.063 | 0.062 0.045 0.072 | 0073 0.052 0.088 | 0.093 0.071 0.115
TimeLLM 0.046 0.038 0064 [0151 0110 0.197 | 0112 0.092 0.163 | 0.230 0.188 0.313 | 0.196 0.162 0.282

1) Performance Comparison advantages of TimeGPT diminish and it may underperform the

In scenarios with scarce historical data, TimeGPT baselines for load forecasting. These observations suggest that

demonstrates significant advantages over benchmarks for load
forecasting, particularly with a look-ahead time of a few hours
(e.g., 1 hour to 6 hours). For instance, in case 1 with a 1-hour
look-ahead time, the RMSE of TimeGPT is reduced by 35.29%,
23.26%, 10.81%, 36.54%, 47.62%, 15.38%, 63.73%, and
75.91%, compared to MLP, LSTM, LR, XGBoost, RT, PM,
PatchTST, and TimeLLM, respectively. The likely reasons for
the strong performance of TimeGPT in load forecasting are as
follows:

TimeGPT benefits from pre-training on massive and diverse
time series datasets, which gives it a degree of generalization.
Even in scenarios with scarce data, it can use this rich prior
knowledge to perform well on load forecasting. In contrast,
traditional machine learning models struggle to capture
complex patterns in load data due to insufficient training data,
resulting in lower forecast accuracy.

Similarly, in Case 2 (5 days of training data), TimeGPT
continues to outperform baselines for load forecasting with a
look-ahead time of 1 to 12 hours. In Case 3 (7 days of training
data), TimeGPT still outperforms the baselines but with a
narrower range of the look-ahead time. However, in Cases 4
(15 days of training data) and 5 (30 days of training data),
where more historical data is available, the performance

while TimeGPT performs well with extremely limited
historical data, its advantages become less apparent as the
amount of training data increases. This highlights the strength
of TimeGPT in dealing with data scarcity, especially when the
historical data is less than 7 days old.

In Tables 111 to V, TimeLLM shows poor performance. This
is mainly due to the fact that it is trained on large amounts of
text data, making it less suited for time series tasks. In contrast,
TimeGPT is trained directly on time series data. Its parameters
are optimized for temporal patterns, allowing it to handle load
forecasting tasks with greater accuracy and efficiency.

However, the day-ahead load forecasting (e.g., the
look-ahead time is 24 hours) involves longer temporal
dependencies, which may exceed the scope of what TimeGPT
learned during pre-training. As a result, its performance may be
relatively worse compared to the benchmarks. Similarly,
TimeGPT does not perform well in load forecasting where the
look-ahead time is longer (e.g. the look-ahead time is greater
than 24 hours).

1.2 , : 1.1 : ,

B B
£0.9 S08
=] =]
0] [0}
A N
E E
£0.6 £0.5
z z

0.3 5 5

0 24 48 72 0'20 24 | 72
Time(hour) Time(hour)
(a) Load forecast with 12-hour look-ahead time (b) Load forecast with 24-hour look-ahead time
RT XGBoost LR LSTM MLP TimeGPT PatchTST —— TimeLLM —— Real

Fig. 6. The load forecasting of TimeGPT with a long look-ahead time (e.g., 12 hours and 24 hours).

TABLE VI
THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A LONG LOOK-AHEAD TIME (CASE 4)

Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours |Look-ahead time=24 hours
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.048 0.034 0.055 0.082 0.054 0.084 | 0.117 0.087 0.138 0.107 0.082 0.130 0.134 0.102 0.148
MLP 0.029 0.025 0.042 0.048 0.038 0.065 0.053 0.044 0.075 0.051 0.041 0.071 0.065 0.049 0.075
LSTM 0.027 0.024 0.039 0.046 0.038 0.065 0.059 0.051 0.090 0.052 0.042 0.073 0.067 0.052 0.082
LR 0.029 0.024 0.038 0.041 0.030 0.049 0.053 0.038 0.061 0.042 0.032 0.051 0.067 0.052 0.081
XGBoost 0.035 0.031 0.055 0.064 0.051 0.098 0.070 0.056 0.103 0.078 0.052 0.093 0.080 0.056 0.091
RT 0.041 0.034 0.056 0.099 0.067 0.128 0.105 0.077 0.142 0.101 0070 0.121 0.092 0.065 0.105
PM 0.036 0.027 0.043 0.089 0.060 0.095 0.134 0.103 0.168 0.099 0079 0.131 0.126 0.097 0.145
PatchTST 0.045 0.035 0.053 0.052 0.040 0.062 0.065 0.047 0.073 0.049 0.035 0.054 0.079 0.056 0.084
TimeLLM 0243 0.196 0.291 0.209 0.167 0.291 0210 0.174 0.302 0260 0.209 0.327 0.186 0.156 0.257
TABLE VII

THE RESULTS OF MACHINE LEARNING MODELS IN LOAD FORECASTING WITH A LONG LOOK-AHEAD TIME (CASE 5)
Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours |Look-ahead time=24 hours
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.028 0.022 0.036 0.082 0.059 0.098 0.113 0.081 0.139 0.091 0.070 0.119 0.149 0122 0.176
MLP 0.039 0.035 0.056 0.099 0081 0.132 0.138 0.116 0.193 0.132 0106 0.174 | 0153 0.127 0.186
LSTM 0.016 0.013 0.020 0.029 0.023 0.038 0.036 0.029 0.052 0.043 0.036 0.061 0.060 0.046 0.070
LR 0.012 0.009 0.016 0.033 0.026 0.043 0.037 0.029 0.051 0.056 0.047 0.079 0.078 0.055 0.083
XGBoost 0.020 0.015 0.024 0.037 0.030 0.050 0.045 0.035 0.061 0.044 0.035 0.061 0.065 0.049 0.076
RT 0.021 0.016 0.026 0.029 0.022 0.037 0.041 0.029 0.053 0.045 0.035 0.059 0.063 0.047 0.071
PM 0.025 0.021 0.033 0.047 0.037 0.061 0.056 0.041 0.069 0.058 0.046 0.077 0.083 0.062 0.094
PatchTST 0.017 0.013 0.020 0.031 0.025 0.042 0.041 0.032 0.057 0.051 0.039 0.067 0.070 0.053 0.083
TimeLLM 0.158 0.134 0.194 0.228 0.183 0.303 0.187 0.153 0.275 0.184 0.152 0.269 0.240 0.194 0.316

2) Visual Analysis on a Long Look-Ahead Time

To explore why TimeGPT is not efficient in load forecasting
with a long look-ahead time (e.g., 12 hours and 24 hours), a
specific case (i.e., Case 1) is selected as an example to visualize
load forecasting using the recursive forecasting method.
Specifically, three days of load data are randomly selected to
perform load forecasting with a long look-ahead time (e.g., 12
hours and 24 hours), as shown in Fig. 6. Note that PM is
removed because it is not suitable for load forecasting with a
long look-ahead time.

Visual analysis shows that the forecasts generated by
TimeGPT have a conservative and smoothed pattern. This
pattern makes it difficult for TimeGPT to capture the peaks and
valleys of load, which explains its low accuracy in load
forecasting with a long look-ahead time (e.g., 12 hours and 24
hours).

D. Performance Comparison in Data Rich Cases

To compare the performance of TimeGPT with the
benchmarks in cases where data is relatively rich, these models

are used to conduct load forecasting in Cases 4-5. Note that
TimeGPT is fine-tuned by the historical load data here. The
average evaluation metrics of TimeGPT in various scenarios
are shown in Tables VI-VII.

Tables VI and VII show that, despite the fine-tuning,
TimeGPT performs significantly worse than machine learning
models in load forecasting with relatively rich historical data.
This could be due to potential mismatches in distribution and
characteristics between the training dataset and the load data.
Machine learning models trained directly on load data have an
optimization process entirely focused on load forecasting,
allowing them to better adapt to the specific characteristics of
load forecasting. In contrast, when the pre-training data of
TimeGPT comes from different time series, such as traffic,
weather, energy, network and financial data, the learned
representations may capture a wide range of temporal patterns
that do not exactly match the unique characteristics of the load
forecast. The fine-tuning process, while beneficial, may not be
sufficient to overcome these underlying differences as the
pre-training weights are initially optimized for generic tasks

rather than the specific nuances of load forecasting. In other
words, if sufficient data is available to train machine learning
models, the choice of classical machine learning models may
be more desirable than LTSMs like TimeGPT.

The impact of such distributional differences is twofold:
firstly, it may lead to suboptimal feature extraction during the
fine-tuning phase, as the internal representations in TimeGPT
may be biased towards patterns that are prevalent in the
pre-training data but less relevant to load forecasting. Secondly,
these differences can cause TimeGPT to struggle to capture the
intricate seasonal and temporal dependencies unique to load
data, leading to poor performance.

To mitigate these challenges, several strategies can be
considered in future work. One possible research line is to
incorporate domain adaptation techniques during the
fine-tuning phase (e.g., adversarial training) that emphasize
alignment between the pre-training and target data distributions
(i.e., load data). Another research line could be the use of a
hybrid model that combines TimeGPT with a traditional load
forecasting model, exploiting the strengths of both.
Additionally, the expansion of the fine-tuning dataset to include
more diverse load-related examples or the use of techniques
such as data augmentation could also help narrow the
distributional gap.

IV. CASE STuDY Il
This section will further investigate the generalization of
TimeGPT for other load datasets.
A. Simulation Settings

The simulations are performed on four publicly available
datasets from China Nongfu Spring Company (a packaged

water supplier) [40], Midea Group (an electrical appliance
manufacturer) [40], the Joho City Electric Power Company in
Malaysia [41], and Arizona State University Tempe Campus
[42], respectively. The time resolution in these four datasets is
one hour. Although the first two datasets are publicly available,
they should not have been used to train TimeGPT, because a
password is required to obtain them.

Due to limited API tokens for TimeGPT, the three months of
load data are used for simulation and testing. Specifically, the
dataset from Nongfu Spring Company spans from May 1, 2017,
to July 31, 2017. The dataset from Midea Group covers the
period from April 28, 2017, to July 27, 2017. Meanwhile, the
dataset from Joho City ranges from January 1, 2009, to March
31, 2009. The dataset from Arizona State University ranges
from January 1, 2012, to March 31, 2012.

B. Results and Analysis

Similar to Section Ill, the TimeGPT and benchmarks are
used to conduct load forecasting in the data scarce case (e.g.,
Case 1) and data rich case (e.g., Case 5). The parameter settings
for the different cases are the same as before:

Case 1: The first 3 days of load data are used as the training
set, and the remainder is considered the test set.

Case 5: The first 30 days of load data are used as the training
set, and the remainder is considered the test set.

The average evaluation metrics in data rich cases are
presented in Tables VI11-XI, and the average evaluation metrics
in data scarce cases are presented in Tables XII-XV.

TABLE VIII
RESULTS IN CHINA NONGFU SPRING COMPANY'S DATASET IN DATA RICH CASE (I.E., CASE 5)
Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours [Look-ahead time=24 hours
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.059 0.046 0.107 0.105 0.080 0.147 0.140 0.102 0.183 0.162 0112 0.173 0.148 0112 0.175
MLP 0.056 0.042 0.098 0.114 0.092 0.151 0.142 0112 0.201 0.151 0.115 0.169 0.150 0.118 0.168
LSTM 0.055 0.044 0.101 0.112 0.095 0.168 0.150 0.119 0.209 0.183 0.147 0.210 0.152 0116 0.171
LR 0.053 0.041 0.100 0.094 0.073 0.127 0.113 0.083 0.149 0.126 0.090 0.138 0.130 0.105 0.150
XGBoost 0.062 0.048 0.113 0.114 0.098 0.163 0.153 0.131 0.216 0.141 0.107 0.159 0.140 0.108 0.153
RT 0.068 0.057 0.128 0.115 0.089 0.141 0.172 0141 0.219 0.173 0.136 0.203 0.183 0.138 0.206
PM 0.060 0.047 0.112 0.108 0.077 0.146 0.137 0.100 0.183 0.161 0.104 0.163 0.145 0109 0.173
PatchTST 0.058 0.045 0.105 0.114 0.092 0.151 0.126 0.095 0.160 0.152 0112 0.176 0.138 0.104 0.157
TimeLLM 0.197 0.159 0.306 0286 0.226 0.357 0226 0178 0.259 0246 0189 0.279 0.273 0.215 0.300
TABLE IX
RESULTS IN MIDEA GROUP'S DATASET IN DATA RICH CASE (I.E., CASE 5)
Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours [Look-ahead time=24 hours
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.074 0.057 0.130 0.185 0.131 0.398 0.178 0.136 0.747 0.199 0.157 0.775 0272 0.228 1.111
MLP 0.062 0.042 0.094 0.084 0.059 0.185 0.113 0.077 0.800 0215 0.150 2.933 0210 0.133 2.022
LSTM 0.049 0.038 0.098 0.121 0.081 0.314 0.149 0.112 0.849 0.283 0.213 4.051 0272 0191 2.387
LR 0.043 0.037 0.092 0.089 0.069 0.222 0.145 0.091 1.177 0.161 0.116 1.971 0.202 0.142 1.783
XGBoost 0.047 0.036 0.088 0.085 0.064 0.220 0.143 0.088 1.125 0241 0174 3.620 0230 0.163 2.202
RT 0.071 0.053 0.127 0.133 0.088 0.282 0.178 0.114 1.284 0250 0.181 3.224 0245 0171 2101
PM 0.090 0.071 0.159 0214 0.150 0.431 0203 0.159 0.723 0.188 0.149 0.769 0.283 0.234 1.19%
PatchTST 0.060 0.048 0.137 0.090 0.068 0.269 0.149 0.092 1.206 0201 0.152 1.886 0228 0.152 1565
TimeLLM 0.206 0.189 0.554 0294 0.232 1.037 0.397 0.303 2.354 0.365 0.309 3.867 0.552 0.443 3.043

TABLE X

RESULTS IN JOHO CITY'S DATASET IN DATA RICH CASE (I.E., CASE 5)

Look-ahead time=1 hour

Look-ahead time=4 hours

Look-ahead time=6 hours

Look-ahead time=12 hours

Look-ahead time=24 hours

Model RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.054 0.044 0.203 0.118 0.082 0.330 0.187 0.119 0.440 0241 0162 0.531 0.312 0.237 0.569
MLP 0.020 0.015 0.068 0.036 0.026 0.142 0.064 0.040 0.152 0.055 0.030 0.106 0.087 0.059 0.196
LSTM 0.022 0.017 0.068 0.038 0.031 0.170 0.061 0.040 0.157 0.065 0.039 0.134 0.096 0.068 0.231
LR 0.039 0.031 0.128 0.077 0.050 0.195 0.112 0.068 0.228 0.084 0.049 0.162 0.095 0.060 0.185
XGBoost 0.031 0.023 0.102 0.048 0.031 0.126 0.088 0.055 0.174 0.062 0.035 0.113 0.090 0.058 0.160
RT 0.037 0.024 0.127 0.042 0.026 0.133 0.104 0.053 0.185 0.076 0.036 0.128 0.104 0.057 0.170
PM 0.056 0.038 0.158 0.144 0.096 0.424 0.203 0.136 0.594 0243 0171 0.673 0.286 0.224 0.643
PatchTST 0.030 0.023 0.090 0.034 0.023 0.121 0.106 0.059 0.232 0.090 0.056 0.186 0.105 0.072 0.244
TimeLLM 0.274 0217 0.600 0273 0.226 1.603 0.458 0.366 2.464 0450 0.362 2.203 0376 0.274 1545

TABLE XI

RESULTS IN ARIZONA STATE UNIVERSITY'S DATASET IN DATA RICH CASE (I.E., CASE 5)

Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours |Look-ahead time=24 hours
ode RMSE MAE MAPE [RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.032 0.024 0.087 0.126 0.086 0.290 0.200 0.152 0.377 0.176 0.130 0.358 0.238 0185 0471
MLP 0.019 0.014 0.038 0.041 0.031 0.075 0.053 0.041 0.093 0.079 0.065 0.150 0.118 0.089 0.201
LSTM 0.015 0.011 0.032 0.034 0.026 0.068 0.047 0.034 0.075 0.107 0.078 0.162 0.110 0.079 0.200
LR 0.021 0.017 0.048 0.059 0.048 0.114 0.086 0.063 0.138 0.093 0.068 0.169 0.128 0.095 0.231
XGBoost 0.014 0.010 0.034 0.034 0.026 0.063 0.072 0.049 0.097 0.087 0.068 0.163 0.117 0.087 0.205
RT 0.023 0.017 0.060 0.033 0.026 0.075 0.093 0.060 0.140 0.105 0.081 0.202 0.142 0101 0.232
PM 0.052 0.039 0.135 0.135 0.106 0.356 0.242 0.200 0.570 0.155 0.126 0.442 0.218 0.175 0.539
PatchTST 0.018 0.012 0.041 0.048 0.033 0.091 0.051 0.037 0.096 0.078 0.059 0.184 0.135 0101 0.251
TimeLLM 0.254 0219 0.493 0430 0356 1.242 0285 0.235 0.819 0.337 0.268 0.987 0.250 0.203 0.853

TABLE XIlI

RESULTS IN CHINA NONGFU SPRING COMPANY'S DATASET IN DATA SCARCE CASE (1.E., CASE 1)

Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours [Look-ahead time=24 hours
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.047 0.037 0.073 0.088 0.072 0.127 0.141 0.091 0.186 0.125 0.096 0.215 0.146 0.108 0.294
MLP 0.116 0.094 0.199 0.161 0129 0.221 0.218 0.189 0.307 0.255 0.208 0.403 0.239 0.201 0.496
LSTM 0.096 0.079 0.166 0228 0.177 0.293 0.319 0.261 0.403 0.265 0.214 0.446 0.362 0.312 0.716
LR 0.084 0.071 0.141 0.168 0.135 0.235 0212 0.162 0.268 0324 0.245 0.476 0.582 0.432 0.960
XGBoost 0.062 0.047 0.088 0.198 0.157 0.259 0275 0.223 0.339 0237 0.179 0.338 0.224 0.180 0.427
RT 0.060 0.050 0.101 0.204 0.163 0.278 0.273 0.227 0.352 0.261 0.200 0.389 0221 0177 0.428
PM 0.053 0.042 0.084 0.091 0.070 0.123 0.147 0.096 0.198 0.136 0101 0.234 0.165 0120 0.333
PatchTST 0.102 0.089 0.191 0.169 0139 0.271 0.160 0.116 0.245 0.160 0.120 0.287 0.264 0.200 0.544
TimeLLM 0.147 0.122 0.225 0.307 0.282 0.523 0295 0.255 0.473 0279 0.218 0.520 0286 0.215 0.526

TABLE XIlI

RESULTS IN MIDEA GROUP'S DATASET IN DATA SCARCE CASE (I.E., CASE 1)

Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours [Look-ahead time=24 hours
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.051 0.037 0.170 0.185 0.117 0.650 0.204 0.151 0.750 0.167 0.134 0.647 0.234 0195 0.627
MLP 0.070 0.056 0.234 0.116 0.084 0.366 0.174 0.136 0.460 0.345 0294 0.638 0.343 0.297 0597
LSTM 0.117 0.100 0.389 0.206 0.164 1.099 0.198 0.147 0.562 0.263 0.218 0.479 0.381 0.313 0641
LR 0.051 0.038 0.201 0.137 0.109 0.815 0.151 0.117 0.616 0376 0.290 0.808 0434 0.345 0.703
XGBoost 0.090 0.076 0.385 0.144 0.108 0.522 0.207 0.153 0.462 0.331 0.278 0.555 0.364 0.307 0574
RT 0.138 0.104 0.589 0.158 0.113 0.487 0226 0.173 0.456 0.328 0.276 0.561 0.372 0314 0.618
PM 0.063 0.036 0.162 0.203 0.126 0.736 0.223 0.164 0.829 0.169 0.146 0.674 0.247 0198 0.654
PatchTST 0.086 0.073 0.279 0205 0174 1.223 0.247 0.216 1.040 0.258 0.231 0.896 0.267 0.218 0.837
TimeLLM 0.176 0.137 0.394 0592 0489 3.438 0.268 0.218 0.991 0280 0.224 0.858 0250 0.197 0.726

TABLE XIV

RESULTS IN JOHO CITY'S DATASET IN DATA SCARCE CASE (1.E., CASE 1)

Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours |Look-ahead time=24 hours
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE
TimeGPT 0.019 0.015 0.078 0.104 0.081 0.299 0.153 0.134 0417 0.269 0.181 0.552 0.341 0.259 0.557
MLP 0.080 0.070 0.438 0.141 0124 0.644 0.154 0.130 0.576 0.129 0.096 0.328 0.146 0117 0.453
LSTM 0.104 0.084 0.735 0294 0.272 1.715 0224 0.184 1.054 0.185 0.136 0.561 0.193 0.147 0.698
LR 0.053 0.038 0.141 0.165 0.105 0.339 0219 0.112 0.431 0.583 0417 1.823 0.864 0554 2.065
XGBoost 0.084 0.072 0.580 0.181 0.141 0.664 0.155 0.117 0.543 0.163 0.114 0.487 0.163 0.115 0.407
RT 0.126 0.115 0.806 0241 0191 0.857 0201 0.146 0.705 0215 0.138 0.718 0.205 0.147 0.530
PM 0.051 0.030 0.192 0.178 0.107 0.382 0246 0.155 0.575 0272 0191 0.684 0.324 0.254 0.655
PatchTST 0.098 0.082 0519 0.155 0117 0.412 0.164 0123 0.488 0.153 0.098 0.374 0223 0.167 0.591
TimeLLM 0.290 0.243 0.838 0558 0448 2.304 0.328 0.270 1.661 0.337 0.278 1.526 0380 0.333 1735

TABLE XV
RESULTS IN ARIZONA STATE UNIVERSITY'S DATASET IN DATA SCARCE CASE (I.E., CASE 1)

Model Look-ahead time=1 hour Look-ahead time=4 hours Look-ahead time=6 hours | Look-ahead time=12 hours |Look-ahead time=24 hours
RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE

TimeGPT 0.030 0.025 0.128 0.097 0.063 0.399 0.162 0.123 0.645 0.101 0.079 0.583 0.207 0.169 0.607
MLP 0.039 0.032 0.130 0.051 0.040 0.190 0.059 0.048 0.198 0.103 0.082 0.378 0.146 0114 0.399
LSTM 0.049 0.040 0.154 0.075 0.060 0.238 0.083 0.065 0.241 0.107 0.088 0.482 0.179 0139 0410
LR 0.017 0.015 0.067 0.032 0.025 0.129 0.067 0.047 0.318 0.099 0.073 0471 0.195 0132 0.351
XGBoost 0.080 0.068 0.222 0.068 0.051 0.210 0.073 0.057 0.241 0.102 0.078 0.408 0.152 0.106 0.283
RT 0.107 0.089 0.291 0.117 0.094 0.335 0.086 0.073 0.303 0.118 0.092 0.404 0.162 0118 0.319
PM 0.042 0.032 0.156 0.099 0.075 0.414 0.165 0.133 0.710 0.108 0.086 0.648 0.171 0.142 0.604
PatchTST 0.080 0.067 0.412 0.122 0.098 0.679 0.129 0.099 0.734 0.136 0.103 0.856 0.178 0.142 0.755
TimeLLM 0.237 0.203 0.598 0244 0.200 1.082 0.354 0.302 1.601 0.157 0125 0.890 0.305 0.250 1.180
1) Model Performance in Data-rich Cases using massive energy data. This can help to maintain the

Tables VIII-XI show that in data-rich cases, the evaluation
metrics of TimeGPT are generally larger than those of most
machine learning models. For example, in Table VIII, the
RMSE, MAE, and MAPE of TimeGPT are larger than those of
MLP, LSTM, and LR for load forecasting with a 1-hour
look-ahead time. This again highlights that TimeGPT is not
suitable for load forecasting when extensive historical load data
is available.

2) Model Performance in Data Scarce Cases

In Tables XII and XV, TimeGPT usually outperforms the
benchmarks in cases with scarce historical data, especially for
load forecasting with a short look-ahead time. For example, in
Table XII with a 1-hour look-ahead time, the RMSE of
TimeGPT is reduced by 59.48%, 51.04%, 44.05%, 24.19%,
21.67%, 11.32%, 53.92%, 68.03%, compared to MLP, LSTM,
LR, XGBoost, RT, PM, PatchTST, and TimeLLM, respectively.
Similarly, the MAE and MAPE of TimeGPT also are smaller
than those of benchmarks. This reaffirms the effectiveness of
TimeGPT in load forecasting with a short look-ahead time.

However, in Table XV, the evaluation metrics of TimeGPT
are not minimal for load forecasting with various look-ahead
times. This could be due to significant distribution differences
between the load dataset from Arizona State University and the
training data. For example, if a machine learning model is
trained on images to recognize cats and dogs, its performance
will be very limited when transferred to the task of tumor
recognition in medical imaging. This is because the data
differences between animal images and medical images are too
significant. In fact, TimeGPT can be seen as a classic
application of transfer learning based on the pre-training and
fine-tuning paradigm. TimeGPT first learns the general
knowledge from massive and diverse time series data, and then
adapts to specific tasks through fine-tuning. Therefore, the
performance of TimeGPT in load forecasting is influenced by
the differences between datasets in the target and the source
domains. If these differences are large, TimeGPT cannot
generalize well to load forecasting tasks.

In transfer learning, domain adaptation techniques are
commonly used to reduce the distributional differences
between source and target domains [43]. However, the domain
adaptation techniques are not suitable for TimeGPT and other
LTSMs. In LTSMs, the source domain contains massive data,
while the load data in the target domain is scarce. This
imbalance between the source and target domains can cause
domain adaptation techniques to be ineffective, resulting in
poor performance of LTSMs in the target domain. One possible
solution is to train a specialized LTSM for the energy domain

generalization ability of the model while reducing the
distributional differences between the source and target
domains.

The result in Table XV illustrate that it cannot be guaranteed
that TimeGPT is always superior to benchmarks for load
forecasting with scarce data. In other words, although
TimeGPT performs well on multiple datasets (e.g., load data
from China Nongfu Spring Company and University of Texas
at Austin), it cannot be ensured to always be the best choice for
load forecasting with scarce data.

Overall, TimeGPT has shown strong potential and good
performance in load forecasting with scarce historical data on
several datasets (e.g., datasets from China Nongfu Spring
Company and University of Texas at Austin). However,
TimeGPT may not perform as well as the benchmarks on some
datasets, possibly due to a significant difference between the
current load dataset and the training data.

V. DISCUSSION

To summarize the performance of TimeGPT in load
forecasting, Table XVI compares TimeGPT and benchmark
models across different datasets under data scarce cases (i.e.,
three days of training data). In the first four datasets, TimeGPT
outperforms all the benchmarks, particularly for short forecast
horizons (e.g., 1 hour). However, TimeGPT does not show an
advantage in the fifth dataset, likely due to differences between
source and target domains, as explained in detail in Section 1V.

In practical applications, operators can use the following
strategy to determine whether to use TimeGPT for load
forecasting with scarce historical data:

Firstly, the historical data can be divided into a training set
and a validation set. Secondly, the training set is used to
fine-tune the weights of TimeGPT, while the validation set is
used to test the performance of TimeGPT and benchmarks. If
TimeGPT outperforms the benchmarks on the validation set
(i.e., the evaluation metrics of TimeGPT is minimal on the
validation set), then TimeGPT would be the optimal choice for
load forecasting with scarce historical data.

TABLE XVI
COMPARISON OF TIMEGPT AND BENCHMARKS ACROSS DATASETS

Dataset LAT=1h LAT=4h LAT=6h LAT=12h LAT=48h
data:—eetxi%s[%] J J v M v
Non?;e[zlljoe]itaset J J J v J
Data'\s/leltdii_a[40] M X X X X
daéfsg(t) i(;:t[{ll] M M X X X
Arizona state % % % % %

dataset in [42]

LAT: look-head time. v : Proposed method outperforms all the benchmarks. X:

Proposed method does not outperform all the benchmarks.

VI. CONCLUSION

This paper explores the potential of large time series models,
specifically TimeGPT, in load forecasting with limited
historical data. Key findings from simulations and analyses on
various datasets are summarized as follows:

While TimeGPT is trained on massive and diverse datasets
totaling 100 billion data points, fine-tuning is essential to adapt
it effectively for load forecasting tasks.

TimeGPT shows inferior performance to popular machine
learning models when abundant historical data is available. In
data-scarce scenarios, TimeGPT generally outperforms
benchmarks, particularly for short forecast horizons. This
highlights the superiority of TimeGPT for load forecasting in
scenarios where data is scarce due to the various reasons, such
as privacy concerns. However, its performance may be affected
by disparities between the training data and the target dataset,
emphasizing the need to consider data distribution when
applying TimeGPT. In practical applications, operators can
divide the historical data into a training set and a validation set,
and then use the validation set loss to decide whether TimeGPT
is the best choice for a specific dataset.

Although TimeGPT demonstrates strong potential in load
forecasting with limited historical data, it relies exclusively on
historical load data, which restricts its ability to integrate
additional relevant information, such as weather forecasts. To
improve forecast accuracy, weather forecasts will be integrated
into TimeGPT in future work.

Funding

This work is funded by the Swiss Federal Office of Energy
(Grant No. SI1/502135-01). Also, this work is carried out in the
frame of the “UrbanTwin: An urban digital twin for climate
action: Assessing policies and solutions for energy, water and
infrastructure” project with the financial support of the
ETH-Domain Joint Initiative program in the Strategic Area
Energy, Climate and Sustainable Environment.

REFERENCES

[1] W. Liao, B. Bak-Jensen, J. R. Pillai, Z. Yang, Y. Wang and K. Liu,
"Scenario Generations for Renewable Energy Sources and Loads Based
on Implicit Maximum Likelihood Estimations," Journal of Modern Power
Systems and Clean Energy, vol. 10, no. 6, pp. 1563-1575, Nov. 2022.

[2] Z. Sun, L. Von Krannichfeldt and Y. Wang, "Trading and Valuation of
Day-Ahead Load Forecasts in an Ensemble Model," IEEE Transactions
on Industry Applications, vol. 59, no. 3, pp. 2686-2695, May. 2023.

[3] M. Soni, and M. Shnan, "Scalable Neural Network Algorithms for High
Dimensional Data," Mesopotamian journal of Big Data, vol. 2023, pp.
1-11, Jan. 2023.

(4]

(5]

(6]

[71

(8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Shabaz, and M. Soni, "Generative Adversarial-Based Ubiquitous Data
Integration Model for Human Re-Identification,” Journal of
Computational and Cognitive Engineering, vol. 00, pp. 1-10, May. 2024.
N. Sharma, M. Soni, S. Kumar,R. Kumar,N. Deb, and A. Shrivastava,
"Supervised Machine Learning Method for Ontology-based Financial
Decisions in the Stock Market,” ACM Transactions on Asian and
Low-Resource Language Information Processing, vol. 22, no. 5, pp. 1-24,
May. 2023.

C. Wang, Y. Zhou, Q. Wen and Y. Wang, "Improving Load Forecasting
Performance via Sample Reweighting," IEEE Transactions on Smart Grid,
vol. 14, no. 4, pp. 3317-3320, Jul. 2023.

Y. Wang, N. Gao and G. Hug, "Personalized Federated Learning for
Individual Consumer Load Forecasting," CSEE Journal of Power and
Energy Systems, vol. 9, no. 1, pp. 326-330, Jan. 2023.

N. Zhang, Z. Li, X. Zou, and S. M. Quiring, "Comparison of three
short-term load forecast models in Southern California," Energy, vol.189,
pp. 1-12, Dec. 2019.

L. Huang, Q. Liao, H. Zhang, M. lJiang, J. Yan, and Y. Liang,
"Forecasting power consumption with an activation function combined
grey model: A case study of China," International Journal of Electrical
Power & Energy Systems, vol.130, pp. 1-14, Sept. 2021.

R. Luzia, L. Rubio, C. E. Velasquez, "Sensitivity analysis for forecasting
Brazilian electricity demand using artificial neural networks and hybrid
models based on Autoregressive Integrated Moving Average," Energy,
vol. 274, pp. 1-18, Jul. 2023.

S. Smyl, G. Dudek and P. Petka, "ES-dRNN: A Hybrid Exponential
Smoothing and Dilated Recurrent Neural Network Model for Short-Term
Load Forecasting," IEEE Transactions on Neural Networks and Learning
Systems, doi: 10.1109/TNNLS.2023.3259149.

Neeraj, J. Mathew and R. K. Behera, "EMD-Att-LSTM: A Data-driven
Strategy Combined with Deep Learning for Short-term Load
Forecasting," Journal of Modern Power Systems and Clean Energy, vol.
10, no. 5, pp. 1229-1240, Sept. 2022.

W. Liao, J. Fang, L. Ye, B. Bak-Jensen, Z. Yang, and F. Porte-Agel, "Can
we trust explainable artificial intelligence in wind power forecasting?,"
Applied Energy, vol. 376, pp. 1-11, Dec. 2024.

H. Dong, Y. Gao, Y. Fang, M. Liu, and Y. Kong, "The Short-Term Load
Forecasting for Special Days Based on Bagged Regression Trees in
Qingdao, China," Computational Intelligence and Neuroscience, vol.
2021, pp. 1-16, Sept. 2021.

T. Zhang et al., "Long-Term Energy and Peak Power Demand
Forecasting Based on Sequential-XGBoost," IEEE Transactions on
Power Systems, vol. 39, no. 2, pp. 3088-3104, Mar. 2024.

S. Afzal, B. M. Ziapour, A. Shokri, H. Shakibi, and B. Sobhani, "Building
energy consumption prediction using multilayer perceptron neural
network-assisted models; comparison of different optimization
algorithms," Energy, vol. 282, pp. 1-24, Nov. 2023.

O. Rubasinghe, X. Zhang, T. K. Chau, Y. H. Chow, T. Fernando and H. lu,
"A Novel Sequence to Sequence Data Modelling Based CNN-LSTM
Algorithm for Three Years Ahead Monthly Peak Load Forecasting,"
IEEE Transactions on Power Systems, vol. 39, no. 1, pp. 1932-1947, Jan.
2024.

H. Hua, M. Liu, Y. Li, S. Deng, and Q. Wang, "An ensemble framework
for short-term load forecasting based on parallel CNN and GRU with
improved ResNet," Electric Power Systems Research, vol. 216, pp. 1-8,
Mar. 2023.

K. Li, Y. Mu, F. Yang, H. Wang, Y. Yan, C. Zhang, "A novel short-term
multi-energy load forecasting method for integrated energy system based
on feature separation-fusion technology and improved CNN," Applied
Energy, vol. 351, pp. 1-19, Dec. 2023.

W. Liao, S. Wang, B. Bak-Jensen, J. R. Pillai, Z. Yang and K. Liu,
"Ultra-short-term Interval Prediction of Wind Power Based on Graph
Neural Network and Improved Bootstrap Technique,” Journal of Modern
Power Systems and Clean Energy, vol. 11, no. 4, pp. 1100-1114, Jul.
2023.

Z. Zhang, P. Zhao, P. Wang and W. Lee, "Transfer Learning Featured
Short-Term Combining Forecasting Model for Residential Loads With
Small Sample Sets," IEEE Transactions on Industry Applications, vol. 58,
no. 4, pp. 4279-4288, Jul. 2022.

Y. Wang, J. Ma, N. Gao, Q. Wen, L. Sun, H. Guo, "Federated fuzzy
k-means for privacy-preserving behavior analysis in smart grids,"
Applied Energy, vol. 331, pp. 1-10, Feb. 2023.

T. Brown, B. Mann, N. Ryder et al. “Language models are few-shot
learners”. Advances in Neural Information Processing Systems (NeurlPS
2020), Vancouver, Canada, Dec 6-Dec. 12, 2020, pp. 1-25.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

H. Touvron, T. Lavril, G. lzacard et al., "LLaMA: Open and Efficient
Foundation Language Models," arXiv, doi: 10.48550/arXiv.2302.13971
Y. Zhang and C. Liu,"Unlocking the Potential of Artificial Intelligence in
Fashion Design and E-Commerce Applications: The Case of Midjourney,
" Journal of Theoretical and Applied Electronic Commerce Research, vol.
19, no. 1, pp. 654-670, Mar. 2024.

H. Yu, X. Liu, Y. Tian, Y. Wang, C. Gou and F. Wang, "Sora-based
Parallel Vision for Smart Sensing of Intelligent Vehicles: From
Foundation Models to Foundation Intelligence,” IEEE Transactions on
Intelligent Vehicles, doi: 10.1109/T1V.2024.3376575.

M. Goswami, K. Szafer, A. Choudhry, Y. Cai, S. Li, and A. Dubrawski,
“MOMENT: A Family of Open Time-series Foundation Models,”.
Forty-first International Conference on Machine Learning (ICML 2024),
Vienna, Austria, Jul 21-Jul. 27, 2024, pp. 1-38.

G. Woo, C. Liu, A. Kumar, C. Xiong, S. Savarese, and D. Sahoo, "Unified
Training of Universal Time Series Forecasting Transformers," arXiv, doi:
10.48550/arXiv.2402.02592

S. Gao, T. Koker, O. Queen, T. Hartvigsen, T. Tsiligkaridis, and M.
Zitnik, "Unified Training of Universal Time Series Forecasting
Transformers," arXiv, doi: 10.48550/arXiv.2403.00131

A. Garza and M. Mergenthaler-Canseco, "TimeGPT-1," arXiv, doi:
10.48550/arXiv.2310.03589

W. lJiang, B. Liu, Y. Liang, H. Gao, P. Lin, D. Zhang, and G.
Hu,"Applicability analysis of transformer to wind speed forecasting by a
novel deep learning framework with multiple atmospheric variables,"
Applied Energy, vol. 353, pp. 1-20, Jan. 2024.

J. Liu, H. Zang, L. Cheng, T. Ding, Z. Wei, and G. Sun,"A
Transformer-based multimodal-learning framework using sky images for
ultra-short-term solar irradiance forecasting," Applied Energy, vol. 342,
pp. 1-19, Jul. 2023.

W. Wang, B. Feng, G. Huang et al, "Conformal asymmetric
multi-quantile generative transformer for day-ahead wind power interval
prediction,” Applied Energy, vol. 333, pp. 1-15, Mar. 2023.

F. Yu, C. Yu, Z. Tian , X. Liu, J. Cao, L. Liu, C. Du, and M. Jiang,
"Intelligent Wearable System With Motion and Emotion Recognition
Based On Digital Twin Technology,", IEEE Internet Things J., 2024,
DOI:10.1109/J10T.2024.3394244.

F. Yu, Y. Zhang, H. Li, C. Du, L. Liu and M. Jiang, "Phase Contour
Enhancement Network for Clothing Parsing," IEEE Trans. Consum.
Electron., vol. 70, no. 1, pp. 2784-2793, Feb. 2024.

W. Liao, Y. Wang, Y. Wang, K. Powell, Q. Liu and Z. Yang, "Scenario
Generation for Cooling, Heating, and Power Loads Using Generative
Moment Matching Networks," CSEE Journal of Power and Energy
Systems, vol. 8, no. 6, pp. 1730-1740, Nov. 2022.

Q. Zhang, S. Zhou, B. Xu, Z. Shen, and W. Chang, "PSGformer: A novel
multivariate net load forecasting model for the smart grid," Journal of
Computational Science, vol. 78, pp. 1-10, Jun. 2024.

M. Jin, S. Wang, L. Ma, Z. Chu, J. Zhang, X. Shi, P. Chen, Y. Liang, Y. Li,
S. Pan, and Q. Wen, "Time-LLM: Time Series Forecasting by
Reprogramming Large Language Models," 12th International Conference
on Learning Representations (ICLR 2024), Vienna, Austria, 2024, pp.
1-24.

J. Wu, X. Chen, H. Zhang, L. Xiong, H. Lei, and S. Deng, "
Hyperparameter Optimization for Machine Learning Models Based on
Bayesian Optimization," Journal of Electronic Science and Technology,
vol. 17, no.1, pp. 26-40, Mar. 2019.

OubaheAlgorithm. (2020, Dec.). Load forecasting datasets. [Online].
Available: https://mp.weixin.qqg.com/s/Oy38thKwmC13kUhw6gDaSw
H. Sadaei, P. Silva, F. Guimaraes, and M. Lee, "Short-term load
forecasting by using a combined method of convolutional neural
networks and fuzzy time series,” Energy, vol. 175, May. 2019, pp.
365-377.

Avrizona State University. (2024, Mar.). Campus Metabolism. [Online].
Auvailable: http://cm.asu.edu/

Y. Gao, Z. Hu, S. Shi, W. Chen, and M. Liu, "Adversarial discriminative
domain adaptation for solar radiation prediction: A cross-regional study
for zero-label transfer learning in Japan," Applied Energy, vol. 359, pp.
1-12, Apr. 2024.

