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Abstract 1 
 2 
Place cells in the hippocampus and grid cells in the entorhinal cortex are elements of a neural map of self- 3 
position1–5. To benefit navigation, this representation must be dynamically related to surrounding 4 
locations2.  A candidate mechanism for linking places along an animal’s path has been described in place 5 
cells, where the sequence of spikes within each cycle of the hippocampal theta oscillation encodes a 6 
trajectory from the animal’s current location towards upcoming locations6–8. In mazes that bifurcate, such 7 
trajectories alternately traverse the two upcoming arms as the animal approaches the choice point9,10, 8 
raising the possibility that the trajectories express available forward paths encoded on previous trials10. 9 
However, to bridge the animal’s path with the wider environment, beyond places previously or 10 
subsequently visited, an experience-independent spatial sampling mechanism might be required. Here 11 
we show in freely moving rats, that within individual theta cycles, ensembles of grid cells and place cells 12 
encode a position signal that sweeps linearly outwards from the animal’s location into the ambient 13 
environment, with sweep direction alternating stereotypically between left and right across successive 14 
theta cycles. These sweeps were accompanied by, and aligned with, a similarly alternating directional 15 
signal in a discrete population of parasubiculum cells with putative connections to grid cells via 16 
conjunctive grid×direction cells. Sweeps extended into never-visited locations that were inaccessible to 17 
the animal and persisted during REM sleep. Sweep directions could be explained by an algorithm that 18 
maximizes cumulative coverage of surrounding space. The sustained and unconditional expression of 19 
theta-patterned left-right-alternating sweeps in the entorhinal-hippocampal positioning system provides 20 
an efficient ‘look-around’ mechanism for sampling locations beyond the travelled path.  21 
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Main text 22 
Grid cells are position-tuned cells whose firing locations rigidly tile the environment in a hexagonal lattice 23 
pattern4,11,12. Two decades of investigation have pointed to a mechanism for grid cells in which their firing 24 
emerges as activity is translated across an internally generated toroidal continuous attractor manifold, 25 
based on external speed and direction inputs5,11–19. However, the role of grid cells in navigation remains 26 
poorly understood. One clue is that the spatial coordinate system defined by grid cells allows position 27 
offsets to be expressed as vectors11,13–15. Not only does this make it possible to continuously update the 28 
neural position representation by path integration; it also allows the network to relate the current 29 
position estimate to target locations such as goals20–24. Grid cells have been suggested in computational 30 
models to dynamically probe the surrounding environment by way of linear “look-ahead” trajectories21–31 
25. These proposed trajectories are reminiscent of the theta-paced forward sweeps recorded in 32 
hippocampal place-cell ensembles when animals run on linear tracks or mazes6–10. The sweeps observed 33 
on tracks and in mazes have limited navigational utility, however, since they are constrained to the 34 
travelled path. Here, recording from medial entorhinal cortex (MEC) and hippocampus with high-site-35 
count Neuropixels probes26,27, we searched for a more general and experience-independent mechanism 36 
for rapid sampling of the ambient environment, including places never visited, in the population activity 37 
of many hundreds of grid, place and direction cells. 38 
 39 
Grid cells and place cells sample ambient space with alternating “sweeps” 40 
Neural activity was recorded in 16 rats with Neuropixels probes targeting MEC and parasubiculum (384 41 
to 1,559 cells per session; Extended Data Fig. 1) while the rats foraged for scattered food in an open field 42 
arena of 1.5m × 1.5m. As expected, the activity was patterned by the theta rhythm (Fig. 1a, top), which 43 
discretizes population activity in MEC and hippocampus into successive packets of ~125 ms28–30. To 44 
examine the dynamics of spatial coding within individual cycles of the rhythm, we decoded position in 10-45 
ms bins by correlating the instantaneous firing-rate population vectors from all MEC-parasubiculum cells 46 
with the session-averaged population vector at each position of the environment (i.e. the stack of firing-47 
rate maps). Over the course of each theta cycle, the decoded position generally swept in a straight 48 
trajectory outwards from the location of the animal into the nearby environment (Fig. 1a, Supplementary 49 
Video 1). In general, such trajectories, referred to as “sweeps”, moved forwards at an angle from the 50 
animal’s head axis, with direction alternating between left and right on successive theta cycles. This 51 
pattern of left-right alternating sweeps was particularly prominent during periods of fast, straight running 52 
(Fig. 1a). 53 
 54 
Sweeps were identified by a sequence detection procedure that looked for near-linear trajectories of 55 
decoded positions spanning at least 4 successive time bins of the theta cycle, with analysis restricted to 56 
locomotion periods (running speed > 15cm/s). Sweeps were detected in all 16 animals with recording sites 57 
in MEC or parasubiculum (Fig. 1b). The number of identified sweeps increased linearly with the number 58 
of recorded cells and the number of spikes recorded per theta cycle (Extended Data Fig. 2a). Sweeps were 59 
detected in 72.9 ± 3.4% (mean ± s.e.m.) of the theta cycles in rats with more than a thousand cells (3 rats). 60 
In the full sample (16 rats, mean of 769 cells), sweeps were detected in 48.0 ± 1.3% of theta cycles.  Sweep 61 
directions alternated from side to side across theta cycles in all rats (Fig. 1b-c, Extended Data Fig. 2c-d), 62 
with left-right-left or right-left-right alternation occurring in 79.8 ± 0.6% of successive sweep triplets 63 
(mean ± s.e.m.), significantly more often than when sweep directions were shuffled (61.1 ± 0.2%, >99.9th 64 
percentile in all animals). The sweeps were directed forwards at an angle of 23.9 ± 0.7 degrees to either 65 
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side of the animal’s head direction (mean ± s.e.m. across 16 animals; Fig. 1b; Extended Data Fig. 2c-d), 66 
approaching  ~30 degrees to either side in the animals with most cells (Extended Data Fig. 2d). The average 67 
length of a sweep was 22.3 ± 0.4 cm (mean ± s.e.m.). Similar left-right alternating sweeps were observed 68 
when other decoding methods were used (Extended Data Fig. 3a, Supplementary Video 1). 69 
 70 
Having observed sweeps in combined activity of all MEC-parasubiculum cells, analyzed as a whole, we 71 
next asked if they were preferentially expressed in spatially modulated neurons such as grid cells (24.8% 72 
of the recorded cells, range 8-42% across animals). Restricting the analysis to grid cells revealed a stronger 73 
presence of sweeps relative to non-grid cells (although in both cases the absolute numbers detected were 74 
smaller than when position was decoded from the full population, with many more cells). Using a criterion 75 
of at least 100 cells for the decoding, we identified sweeps in 28.5 ± 2.0% of the theta cycles in grid cells 76 
compared to only 13.4 ± 1.4% in a similar number of randomly sampled non-grid cells from the same 77 
session (p=0.001, Wilcoxon signed-rank test, 11 rats; Fig. 1d). In two rats with more than 300 grid cells, 78 
sweeps were detected in 64.0 ± 9.1% of the cycles in grid cells and 42.7 ± 8.4% in non-grid cells. The 79 
contribution of subtypes of grid cells5,31,32 was assessed by dropping out either burst-firing grid cells or 80 
non-bursting grid cells from the decoder. Burst-firing grid cells were located primarily in MEC layer II and 81 
parasubiculum and non-bursting grid cells mainly in MEC layer III (Extended Data Fig. 4b). When burst-82 
firing grid cells were omitted, the number of detected sweeps decreased in comparison to matched 83 
control analyses where the same numbers of non-grid cells were excluded at random (Extended Data Fig. 84 
4c). No reduction was observed after dropping non-bursty grid cells. In analyses of individual cells, 85 
bursting grid cells were maximally active and displayed out-of-field firing at the end of the theta cycle 86 
when the sweep signal was far away from the animal (Extended Data Fig. 4d-e). Firing in non-bursty grid 87 
cells, in contrast, was not locked to the time of outgoing sweeps (Extended Data Fig. 4d). In bursty grid 88 
cells, the firing fields were sharpened substantially when the activity was plotted as a function of decoded 89 
position instead of tracked position (Extended Data Fig. 4f-g). Non-bursty grid cells were not affected by 90 
the choice of reference position. Taken together, these comparisons point to burst-firing grid cells as the 91 
strongest carriers of the entorhinal sweep signal.  92 
 93 
Grid cells are organized in modules, with each module consisting of cells with common grid spacing and 94 
field size16,33. The fact that grid modules can operate as independent networks16, each residing on their 95 
own toroidal manifold5, raises the possibility that each module has its own sweep dynamics. To determine 96 
if sweeps are coordinated across grid modules, we began by sorting the recorded grid cells based on 97 
clustering of their spatial rate-map auto-correlograms5. We identified 36 modules, with 1-4 modules per 98 
animal and 13-215 cells per module. Position was decoded separately for each module with more than 40 99 
grid cells (31 modules in 15 animals). As in the full MEC-parasubiculum population, individual grid modules 100 
expressed sweeps that were directed forwards at an angle from the animal’s head direction (19.3 ± 0.9 101 
deg to either side; mean ± s.e.m. across 31 modules), alternating from side to side across theta cycles 102 
(alternation in 74.4 ± 0.3% of theta cycle triplets, >99.9th percentile of shuffled values in 28 out of 31 103 
modules; Fig. 1e, Extended Data Fig. 2e, 3b). Sweep directions of co-recorded grid modules were tightly 104 
aligned to each other (circular correlation between sweep directions r=0.43 ± 0.009, p<0.001 for all 23 105 
module pairs), pointing to the same side of the head-axis in 70.3 ± 0.4% of theta cycles with detectable 106 
sweeps (significantly above a chance level of 50% for all 23 module pairs, p<0.001, binomial test, Fig. 1f). 107 
Sweep lengths scaled with the spacing of the grid modules (Fig. 1e; Supplementary Video 2; Pearson 108 
correlation between grid spacing and sweep length r=0.95, p=2.9e-16, n=31 modules from 15 animals, Fig 109 
1g). Individual sweeps spanned 19.7 ± 0.09% of the module spacing on average and only rarely exceeded 110 
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half of the spacing (8.8 ± 0.3% of all sweeps; mean ± s.e.m.; mean sweep lengths from 0.07 to 0.38 m, 111 
module spacing from 0.46 to 1.62 m). The proportional relationship between sweep length and grid 112 
spacing means that sweeps lengths are approximately equal across modules when mapped onto the 113 
modules’ toroidal unit tile.  114 
 115 
Because MEC provides a major input to the hippocampus, sweeps may be propagated from grid cells to 116 
place cells. To investigate this, we decoded position from place cells in 8 animals with hippocampal 117 
implants (6 of which also had MEC-parasubiculum implants). Place cells mirrored grid cells in that they 118 
expressed sweeps forward to either side of the animal in an alternating pattern (Fig. 1h-i, Extended Data 119 
Fig. 2f). Sweeps were detected in 43.7 ± 2.1% (range: 23.9-69.4%) of identified theta cycles when position 120 
was decoded from the joint activity of all hippocampal cells (157-747 cells). Identified sweeps had average 121 
lengths of 0.27 ± 0.01 m (mean ± s.e.m.) and offsets of 20.8 ± 1.8 deg relative to the animal’s head 122 
direction. The direction of hippocampal sweeps (left or right with reference to the head axis) was aligned 123 
to sweeps in simultaneously recorded grid cells in 70.6 ± 2.1% of the theta cycles where sweeps were 124 
detected in both brain regions (range: 60.7-84.3%, p<0.001 compared to chance in all animals, one-tailed 125 
binomial test). The absolute mean angle between sweep directions in the two cell populations was only 126 
5.5 ± 0.8 deg (correlation: r=0.46 ± 0.036, n=6 rats; Fig 1i-j). Place cell sweeps were delayed compared to 127 
simultaneously recorded MEC sweeps (temporal crosscorrelation of position decoded from cells in 128 
hippocampus vs. MEC: lag of 19.4 ± 1.6 ms, mean ± s.e.m., 6 rats, all cells in each region; Fig 1k, Extended 129 
Data Fig. 2g), raising the possibility that hippocampal place cell sweeps are inherited from entorhinal grid 130 
cells24,34.  131 
 132 
Sweeps are aligned with an alternating direction signal in a separate cell population 133 
The shared direction of sweeps across grid modules implies an overarching coordination mechanism, such 134 
as a common directional input signal11,13. To search for a direction signal that matches the direction of 135 
sweeps, we examined cells in MEC-parasubiculum with time-averaged tuning to the animal’s allocentric 136 
head direction, generally referred to as head direction cells35–37. Among all cells recorded in the region, 137 
29.5% (3,632/12,300 cells) displayed significant and stable head direction tuning (16 animals, 1 session 138 
per animal; Fig. 2a and Extended Data Fig. 5a). As in previous studies36,37, these cells were often more 139 
broadly tuned than the “classical” HD cells recorded in anterior thalamus38 or presubiculum35, with 140 
directional firing fields of the former spanning angles as wide as 120 degrees (tuning width: 111.7 ± 23.9 141 
deg, mean ± s.d.; Fig. 2a). Most of the direction-tuned cells in our sample, including conjunctive 142 
grid×direction cells (referred to as ‘conjunctive grid cells’ hereafter), were strongly modulated by the local 143 
theta rhythm (Fig. 2a and Extended Data Fig. 5a). These cells were anatomically segregated from non-144 
conjunctive (‘pure’) grid cells, with most of the theta-rhythmic directional cells located in parasubiculum 145 
(85.6% or 1,699/1,984, 14 rats; Fig. 2b, Extended Data Fig. 1a-b).  146 
 147 
At the population level, there was strong correspondence between sweep direction in grid cells and the 148 
direction encoded by theta-modulated directional cells. While the population activity of the directional 149 
cells roughly tracked the animal’s head direction (Fig. 2c, top panel), sub-second analyses revealed 150 
discrete, theta-paced packets of coordinated activity that flickered from left to right on successive theta 151 
cycles (Fig 2c, bottom panel). To quantify these switches, we turned to the same population-vector 152 
correlation methodology that we previously used to decode position. Direction was decoded by 153 
correlating firing rate population vectors at the center of each theta cycle with the session-averaged 154 
population vectors for each head direction. The decoded signal, referred to as ‘internal direction’, 155 
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alternated from side to side of the head axis in 86.1 ± 0.5% of theta cycle triplets (>99.9th percentile of 156 
shuffled values in all 16 animals; Fig 2c-e, Extended Data Fig. 3c-d), with peak offsets at 19.9 ± 0.6 deg on 157 
either side of the head axis (27.9 ± 0.9 deg in the three animals with most cells). Sweeps in grid cells were 158 
aligned with the decoded internal direction (circular correlation between sweep direction and internal 159 
direction: r=0.66 ± 0.01, p<0.01 in all animals; absolute mean angle 4.4 ± 0.2 deg, mean ± s.e.m.; Fig 2f-g, 160 
Supplementary Video 3). The two signals pointed to the same side of the head axis in 72.5 ± 0.6% of theta 161 
cycles (p<0.01 compared to chance in all animals, one-tailed binomial test). The rigid left-right alternation 162 
of the population direction signal provides an explanation for the phenomenon of theta cycle skipping in 163 
individual cells, which was present in most directional cells and grid cells (Fig. 2a; Extended Data Fig. 2b 164 
and 5b). Theta cycle skipping is a pattern of activity where direction or position-tuned cells predominantly 165 
fire on every other theta cycle, resulting in prominent peaks in the autocorrelogram at even multiples of 166 
the theta period (~250 and 500 ms)10,39–41. The presence or absence of firing on alternating cycles likely 167 
reflects the left-right dynamics of grid and direction cells.   168 
 169 
To determine whether cells that participate in the alternating direction signal are distinct from classical 170 
head direction cells, we compared each cell’s relative tuning strength to tracked head direction versus 171 
decoded (‘internal’) direction (Extended Data Fig. 5c). Theta-rhythmic directional cells, including 172 
conjunctive grid cells, were more strongly tuned to internal direction (‘internal direction cells’), while the 173 
smaller sample of non-rhythmic directional cells faithfully followed tracked head direction (‘head 174 
direction cells’; Extended Data Fig. 5c). The latter cells were generally located outside the area with 175 
internal direction cells, in deep layers of MEC, presubiculum or postrhinal cortex (Extended Data Fig. 5d-176 
e). The coupling between sweeps and direction signals persisted when conjunctive grid cells were 177 
excluded, and position and direction were decoded separately from non-conjunctive grid cells and 178 
‘internal direction’ cells (Extended Data Fig. 5f).  179 
 180 
A microcircuit for directing sweeps 181 
The correlations between internal direction and sweep signals, along with the strong projections from 182 
parasubiculum to layer II of MEC42, point to internal direction cells as a possible determinant of sweep 183 
direction in grid cells. To examine if this is reflected in the functional connectivity of the circuit, we 184 
temporally cross-correlated the spikes of all recorded cell pairs (1,593,297 cell pairs, 16 animals; Fig. 3a). 185 
Pairs where one cell consistently fired ahead of the other at short latency were defined as putatively 186 
connected43,44. Putative connections were found within and between functional cell classes (Fig. 3b; 187 
Extended Data Fig. 6a-d). They included connections from internal direction cells to conjunctive grid cells 188 
(0.09±0.007% of cell pairs) and from conjunctive grid cells to pure grid cells (0.33±0.024%). Internal 189 
direction cells and conjunctive grid cells had more frequent functional connections to bursty pure grid 190 
cells (in MEC layer II, Extended Data Fig. 4b) than to non-bursty pure grid cells (in MEC layer III; Extended 191 
Data Fig. 4b) (0.26±0.014% vs. 0.006±0.003%, internal direction and conjunctive grid cells combined; 192 
p=5.8*10-65, Fisher’s exact test; Extended Data Fig. 6a).  193 
 194 
In theoretical models, the grid-cell position signal is translated across the attractor manifold by directional 195 
input that causes a phase shift of grid-cell activity in the direction of the input signal, via a layer of 196 
conjunctive grid cells11,13,15,25. Two observations in the cross-correlation analyses were consistent with this 197 
prediction. First, putative connections from internal direction cells to conjunctive grid cells were primarily 198 
between cells with similar directional tuning (Fig. 3c-e and Extended Data Fig. 6c, f; angle between tuning 199 
directions: 14.1 ± 52.1 deg, mean ± s.d.; ciruclar correlation between tuning directions: r=0.41, p=6*10-7, 200 
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n=150 connected cell pairs from 13 animals; see Extended Data Fig. 6b, e for within-class connections and 201 
other combinations). Second, putative connections from conjunctive grid cells to pure grid cells targeted 202 
cells with a slightly shifted grid phase (Fig. 3f and Extended Data Fig. 6d; magnitude of grid phase offset: 203 
26.0 ± 12.8% of the grid spacing, mean ± s.d.; n=86 connected cell pairs from 12 animals). The direction 204 
of the spatial phase offset closely matched the preferred internal direction of the conjunctive grid cells 205 
(Fig. 3f and Extended Data Fig. 6f; correlation between grid phase offset direction and preferred direction: 206 
r=0.62, p<5.1*10-8; angle between directions: 0.4 ± 55.3 deg, mean ± s.d). This directional and positional 207 
alignment of connected cell pairs differed substantially from that of randomly selected non-connected 208 
cell pairs (Extended Data Fig. 6g). Taken together, the findings support the notion that sweep direction is 209 
determined by activation of internal direction cells, via a layer of conjunctive grid cells (Fig. 3h).  210 
 211 
Sweeps extend to never-visited locations 212 
In place cells, forward-projecting sweeps before the choice point in a maze are thought to reflect a 213 
deliberation over behavioral options9,10. If sweeps are involved in planning, we would expect their 214 
direction to correlate with the rat’s subsequent movement. The sweeps recorded during foraging in the 215 
present study showed a high degree of stereotypy not consistent with a role in goal-oriented navigation. 216 
However, because most of these sweeps corresponded to navigable and previously travelled paths, they 217 
do not rule out an exclusive role for sweeps in trajectory planning. This limitation led us to record in 218 
environments where the navigational opportunities were constrained to one-dimensional paths. The rats 219 
ran either on an elevated 2.0 m linear track with reward delivered at the ends (5 rats; Fig. 4a, left) or on 220 
an elevated “wagon wheel" track consisting of a 1.5 m-diameter circle with two diagonal cross-bridges5 221 
(2 rats; Fig. 4a, right). Directional signals were decoded from all MEC-parasubiculum cells as before, by 222 
correlating instantaneous population vectors with head-direction tuning curves computed over the whole 223 
session, long enough for all directions to be sampled (Extended Data Fig. 7a). In both tasks, the decoded 224 
signal pointed consistently to the sides of the tracks, towards places never navigated, in an alternating 225 
pattern similar to what we observed in the open arena (Fig. 4a; Extended Data Fig. 7a). As before, 226 
alternating direction signals were accompanied by sweeps, decoded from grid cells belonging to a single 227 
module, based on the phase relationships of these cells in a prior open field session. Sweeps travelled into 228 
the unvisited space along the sides of the tracks in parallel with the direction signals (Fig. 4b).  229 
 230 
Representations of unvisited locations were similarly obtained when a “latent manifold tuning” (LMT) 231 
framework45 was used to decode direction and position directly from the track data, instead of referring 232 
to data from a different session (Fig. 4c, Extended Data Fig. 8). The remaining analysis of unvisited space 233 
was therefore performed with LMT analyses. Two latent variables (one in 1D, one in 2D) were respectively 234 
initialized with tracked head direction and position, and then iteratively fitted to capture the fast dynamics 235 
of internal direction cells and grid cells. After some iterations, the latent position signal started to travel, 236 
in alternating directions on successive theta cycles, into the inaccessible open space surrounding the 237 
animal’s path, either beside the edges of the elevated tracks (Fig. 4c-f, Extended Data Fig. 7c,e) or beyond 238 
the opaque, high walls of the open field (Extended Data Fig. 7d). Sweep directions were strongly 239 
correlated with decoded internal direction, regardless of whether the sweeps terminated within or 240 
outside the environmental boundaries (Fig. 4f). LMT analysis further showed that individual grid cells were 241 
tuned to unvisited locations within a sweep’s length outside the open field box or within the interior holes 242 
of the wagon wheel track, in agreement with a continuation of the periodic grid pattern (Fig. 4g, Extended 243 
Data Fig. 7g). The same pattern of results was obtained when using a single-cell GLM-based model to infer 244 
out-of-bounds tuning for each cell independently (Extended Data Fig. 7h,i).  245 
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 246 
LMT analyses showed that sweeps traveled beyond the walls of the open field arena in hippocampal place 247 
cells too (Fig. 4h). These sweeps were expressed in coordination with out-of-bounds sweeps in MEC (Fig. 248 
4h, Extended Data Fig. 7j). Individual place cells similarly showed tuning to locations beyond the walls of 249 
the arena (Fig. 4i, Extended Data Fig. 7k). Taken together, these findings show that a seamless map of 250 
ambient space – including grid cells, internal direction cells and place cells – is unfolded independently of 251 
whether the animal ever visits the locations covered by the sweep signals.  252 
 253 
Sweeps and internal direction signals persist during sleep 254 
If sweeps are a fundamental feature of the grid cell system generated entirely by local circuit properties, 255 
they might be present regardless of sensory input, past experience, or behavioral state. In agreement with 256 
this idea, sweeps maintained their stereotypic alternation profile during foraging in darkness and in novel 257 
environments (Extended Data Fig. 7f), as well as during sleep in a resting chamber (Fig. 5). Data from the 258 
sleep sessions were analyzed further. Considering that head direction cells and grid cells traverse the same 259 
low-dimensional manifolds during sleep as in the awake state5,18,19,46,47, we decoded position and direction 260 
during sleep using fitted LMT tuning curves from the preceding or succeeding wake session in the open 261 
field. Because the persistence of phase relationships across environments and brain states is stronger 262 
within than between grid modules5,18,19, we restricted our analysis of sweeps during sleep to individual 263 
grid modules. 264 
 265 
Sleep sessions were segmented into epochs of rapid eye movement (REM) sleep and slow wave sleep 266 
(SWS), based on electrophysiological and behavioral criteria (Extended Data Fig. 9a). We recorded on 267 
average 99.1 ± 34.6 min (mean ± s.d.) of sleep per rat in 9 rats, out of which 11.3 ± 4.5% was classified as 268 
REM sleep and 88.7 ± 4.5% as SWS (average epoch durations: 85 ± 54 s and 232 ± 223 s; mean ± s.d.). 269 
During REM sleep, the population dynamics of internal direction cells and grid cells was similar to wake. 270 
Spiking activity was highly theta-rhythmic (Fig. 5a, Extended Data Fig. 9b-c), and internal direction 271 
decoded from neighboring peaks of activity alternated from side to side (alternation in 70.1 ± 0.6% of 272 
triplets of neighboring peaks, mean alternation after shuffling peaks: 50.0%; angles between decoded 273 
direction at neighboring peaks: 30.5 ± 0.9 deg to the opposite side of the previous pair of peaks, mean ± 274 
s.e.m., mean shuffle: 0.04 deg, 9 rats; Fig. 5a,c). Individual grid modules expressed rhythmic sweeps that 275 
reset at each theta cycle, alternating in direction across successive theta cycles (Fig. 5d-e). Sweep 276 
directions were aligned with decoded internal direction (absolute mean angle between sweeps and 277 
internal direction: 18.4 ± 2.0 deg, offset in shuffled data: 91.6 ± 1.1 deg; Fig. 5e). Sweep lengths were 278 
comparable to those recorded in the open field (25.4 ± 0.13% of grid module spacing, mean ± s.e.m.). The 279 
sweeps were nested on top of behavioral time-scale spatial trajectories extending several meters over the 280 
course of tens of seconds (Extended Data Fig. 9g), mirroring how sweeps extend outwards from a slower 281 
running trajectory during awake exploration (Fig. 1a).  282 
 283 
During SWS, the population dynamics was less regular, and spiking activity was confined to brief bursts 284 
during up-states, followed by silent down-states (Fig. 5b, Extended Data Fig. 9b-c). There was no periodic 285 
left-right alternation of the internal direction signal between successive local maxima in the summed 286 
population activity, neither within nor across up-states (alternation on only 52.4 ± 0.1% of triplets of 287 
neighboring peaks, mean shuffle: 50.0%; average angle between neighboring activity peaks: only 5.9 ± 0.3 288 
deg, mean ± s.e.m., mean shuffle: 0.01 deg; Fig. 5b-c). During SWS, bursts of direction-tuned population 289 
activity were often accompanied, in grid cells, by sweep-like trajectories that were aligned to the decoded 290 
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internal direction signal (sweeps were observed in 30.0 ± 0.40% of identified peaks in internal-direction 291 
cell activity, mean ± s.e.m.; absolute mean angle between sweep-like trajectories and internal direction: 292 
13.7 ± 1.5 deg, corresponding offset in shuffled data: 86.7 ± 1.7 deg; Fig 5b,d-e, Extended Data Fig. 9d-f). 293 
Like the internal direction signals, the sweep trajectories were not rhythmic (Extended Data Fig. 9h). Thus, 294 
coordinated direction and sweep signals can exist in all states but theta activity is required to maintain 295 
the rigidly coupled rhythmic side-to-side pattern.  296 
 297 
Sweeps sample nearby space with optimal efficiency 298 
Having dissociated sweep and direction signals from navigational goals and spatial decision processes, we 299 
hypothesized that the alternation of sweep directions instead signifies a strategy for efficiently sampling 300 
ambient space. To test this hypothesis, we simulated an ideal sweep-generating agent that chooses sweep 301 
directions that tile space with optimal efficiency. We created a simple model of a sweep’s spatial footprint 302 
(Extended Data Fig. 10a) based on our prior observation that sweep lengths are proportional to the 303 
module’s grid spacing (Fig. 1g). At each time step, the sweep-generating agent was tasked with choosing 304 
a sweep direction that minimizes overlap with the area covered cumulatively by previous sweeps, without 305 
foresight of upcoming sweep directions. When the agent was moved along on a linear path at a constant 306 
speed, it generated sweeps that alternated between two characteristic directions, 33.0 ± 0.008 deg to 307 
either side of the movement direction (mean ± s.e.m. across 1000 runs with random initial conditions; Fig. 308 
6a, Extended Data Fig. 10b), resembling empirical sweep directions on a linear track (Fig. 4a). The 309 
prevalence of alternation was quantified using a score that measured alternation in a sliding window of 310 
three successive sweep directions, with scores ranging from 0 (no alternation) to 1 (perfect alternation). 311 
The agent reliably converged on an alternating pattern that exceeded chance level from the third sweep 312 
(mean ± s.d. alternation score at third sweep: 0.66 ± 0.34, p=2.1e-56 with respect to chance level of 0.40, 313 
one-tailed sign test) and approached perfect alternation towards the end of the run (alternation score: 314 
0.97 ± 0.020). The simulation results point to alternation as a stable regime for minimizing overlap of 315 
successive sweeps (Fig. 6b, Extended Data Fig. 10b). Robust alternation was obtained across a range of 316 
sweep widths (Extended Data Fig. 10c). 317 
 318 
To determine whether the agent could predict the angles of individual sweeps in the empirical neural 319 
data, we moved the agent along the animal’s recorded locomotor path in the open field arena, and for 320 
each sweep detected in the empirical data, we determined the optimal sweep direction at the animal’s 321 
position based on previous empirical directions (using the fitted LMT internal direction variable; Fig. 6c). 322 
In order to prevent the agent from being influenced by sweeps that occurred at similar locations far in the 323 
past, we introduced a temporal decay to the cumulative coverage trace of previous sweeps (Extended 324 
Data Fig. 10d). The agent’s chosen directions aligned with empirical directions in all 12 animals with 325 
sufficient numbers of internal direction cells to reliably extract internal direction (correlation simulated 326 
vs. decoded direction: r=0.48±0.014, p<0.001 in all animals; mean ± s.e.m. offset from the decoded 327 
direction: 0.17 ± 0.40 deg; Fig. 6d). Sweep directions of the agent alternated in step with decoded 328 
directions in 72.4 ± 0.8% (mean ± s.e.m.) of the theta cycles, more often than expected by chance (p<0.001 329 
for all sessions in all animals with respect to a chance level of 50%, binomial test, Fig. 6d, Extended Data 330 
Fig. 10f). This alignment was maintained across a range of temporal decay factors, with the highest 331 
accuracy obtained with rapid forgetting (median decay constant τ: 0.01, n=12 animals, corresponding to 332 
a halving of sweep trace intensity every 150 ms, Extended Data Fig. 10d). In both the simulated and the 333 
empirical data, the egocentric distribution of sweep and direction signals became increasingly bimodal  334 
during fast and straight running, with alternation scores increasing with running speed and path 335 
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straightness (mean ± s.e.m. correlation speed vs. alternation: r=0.92±0.003 for simulated and 336 
r=0.96±0.004 for decoded directions; straightness vs. alternation: r=0.917 ± 0.004 and r=0.862±0.013, 337 
p<0.05 in 12/12 animals, Fig. 6e-f, Extended Data Fig. 10e).  338 

Discussion 339 
We show that grid cells encode trajectories that within each theta cycle sweep outwards from the animal’s 340 
location, with direction alternating between left and right across successive theta cycles. Sweeps in grid 341 
cells were aligned to a similarly alternating directional signal in a separate population of direction-tuned 342 
neurons. Sweeps were identified also in hippocampal place cells, but these were delayed compared to 343 
sweeps in grid cells, suggesting they were propagated from MEC24,34. Collectively, the findings point to a 344 
specialized circuit of space-coding neurons that on alternating theta cycles generates paths to locations 345 
on the left and the right side of a navigating animal’s trajectory.  346 
 347 
The sustained expression of directionally oscillating sweeps and direction signals, and the invariance of 348 
the sweep geometry on the grid-cell manifold, point to a fundamental role for sweeps in sub-second 349 
mapping of the surrounding environment. Grid cells were shown to sweep with directional offsets that 350 
maximize coverage of the ambient space, at lengths traversing a substantial fraction of the periodic grid 351 
cell manifold. By way of sweeps, grid cells may link locations in the proximal environment into a 352 
continuous two-dimensional map without extensive behavioral sampling48,49, which in turn would allow 353 
new maps to be formed faster and more effectively than if animals had to physically run each of those 354 
trajectories. In familiar environments, alternating sweeps may allow animals to efficiently retrieve 355 
representations of the surrounding space, one sector at a time, mirroring the alternating sonar beams of 356 
echolocating bats50. Our data suggest that such sweep-based encoding and retrieval mechanisms are 357 
implemented in the entorhinal-hippocampal circuit. 358 
 359 
In our recordings, sweeps rarely reflected the rat’s future trajectory or the location of navigational goals. 360 
At first glance, this contrasts with the forward-directed theta sweeps reported previously in hippocampal 361 
place-cell ensembles on linear tracks6–8 or T-shaped mazes9,10. In those studies, sweeps – decoded only 362 
with respect to visited positions on the track or maze – travelled down possible future paths, with 363 
alternations on the maze stem reflecting upcoming bifurcations. In the present study, we were able to 364 
decode representations in the full ambient 2-D space, beyond the animal’s path, either by leveraging the 365 
invariance of grid phase relationships from a different condition, or by employing a latent-variable model 366 
that characterized position tuning to any location in the nearby environment. The fact that sweeps 367 
invariantly oscillated between left and right in the full 2-D space raises the possibility that forward-looking 368 
sequences reported previously in linear environments reflect projections of left-right-alternating sweeps 369 
onto the animal’s running trajectory, with sweeps towards unvisited lateral locations going undetected 370 
since the decoding procedures then used could only match activity with physically visited locations. The 371 
findings also provide a framework for understanding corollaries of sweep sequences in individual cells, 372 
such as theta phase precession6,51, and theta cycle skipping10,39–41. However, it should be noted that the 373 
presence of a hardwired side-shifting mechanism does not rule out that with training in a structured maze 374 
task, sweeps in the hippocampus9,52 or downstream53 may gradually be directed towards specific goal and 375 
reward locations, enabling encoding of preferred routes as neural maps are built up during experience. 376 
 377 
Finally, our findings provide some clues to the mechanisms of sweep formation. The functional 378 
connectivity analyses raised the possibility that internal direction cells, directly or indirectly through 379 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.16.594473doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.16.594473
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

conjunctive grid cells, drive the generation of grid-cell sweeps in the same direction21–23,25. The projections 380 
from conjunctive grid cells to pure grid cells were asymmetric, in the sense that they preferentially 381 
activated cells with grid phases displaced in the direction of the internal direction signal, mirroring a vector 382 
integration mechanism proposed for bump movement in continuous attractor network models for grid 383 
cells11,13,15,21.  The scalar component of the vector computation remains to be identified, however. Sweep 384 
lengths are not a direct reflection of running speed, since sweeps persist during sleep. Instead or 385 
additionally, their length may be influenced by factors such as intensity or duration of the internal 386 
direction input. Our observations also leave open the mechanism of directional alternation. Two classes 387 
of alternation mechanisms can be envisaged. First, alternation may be hardwired into the connectivity of 388 
the circuit. Rhythmic alternations reminiscent of those observed here have been described in many brain 389 
systems: in left-right shifting spinal-cord circuits for locomotion54, in inspiration-expiration circuits for 390 
breathing in the medulla55, and in hemisphere-alternating REM sleep circuits of reptiles56. Alternations 391 
between opposing states in these networks rely on central pattern generator mechanisms in which 392 
activity is switched periodically between two internally coupled subcircuits56–59. A central pattern 393 
generator might underlie also the left-right alternations of the cortical navigation circuit60. Second, and 394 
alternatively, alternating sweep directions may emerge spontaneously as a result of a spatial overlap-395 
minimizing rule, without explicit implementation of alternation, as shown in the artificial agent 396 
simulations. A plausible mechanistic substrate for such a rule exists in single-cell firing-rate adaptation25,61–397 
63, which penalizes repeated activation of the same neural activity patterns. 398 
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Methods 433 

Subjects 434 
The data were obtained from 18 Long Evans rats (17 males, 1 female; 300–500 g at time of 435 
implantation). Data from five of the animals have been used for other purposes in published data5,64. 436 
The rats were group-housed with three to eight of their littermates before surgery and were thereafter 437 
housed singly under enriched circumstances in large two-story metal cages (95 × 63 × 61 cm) or smaller 438 
Plexiglas cages (45 × 44 × 30 cm). They were kept on a 12-h light–12-h dark schedule in humidity and 439 
temperature-controlled rooms. Experiments were approved by the Norwegian Food Safety Authority 440 
(FOTS ID 18011). and performed in accordance with the Norwegian Animal Welfare Act and the 441 
European Convention for the Protection of Vertebrate Animals used for Experimental and Other 442 
Scientific Purposes. 443 

Surgery and electrode implantation  444 
Eighteen rats were implanted with Neuropixels silicon probes targeting either the MEC-parasubiculum 445 
region (10 rats, of which 3 rats were implanted bilaterally), the hippocampus (2 rats), or both regions 446 
(6 rats). Neuropixels prototype phase 3A single-shank probes26 were used in 8 of the rats, and 447 
prototype 2.0 multi-shank probes27 were used in the other 10 rats. Probes targeting MEC-448 
parasubiculum were implanted 4.2-4.7 mm lateral to the midline and 0.0-0.3 mm anterior to the 449 
transverse sinus, at an angle of 18-25 deg in the sagittal plane, with the tip of the probe pointing in the 450 
anterior direction. Probes were lowered to a depth of 4,100-7,200µm. Hippocampal probes were 451 
positioned vertically ML 1.4-3.0 mm from the midline and AP 1.9-4.0 mm posterior bregma. In rats 452 
with probes in both MEC-parasubiculum and hippocampus, the two probes were implanted in different 453 
hemispheres. The implants were secured with dental cement. A jeweller’s screw in the skull above the 454 
cerebellum was connected to the probe ground and external reference pads with an insulated silver 455 
wire. The detailed procedure for chronic Neuropixels surgeries has been described elsewhere27. 456 
Postoperative analgesia (meloxicam and buprenorphine) was administered during the surgical 457 
recovery period. Rats were left to recover until they resumed normal foraging behavior, at least 3 hours 458 
after surgery.  459 

Electrophysiological recordings 460 
Instruments and procedures were similar to those described for Neuropixels recordings used in the 461 
lab5,26,27,64. Briefly, neural signals were amplified (gains of 500 for phase 3A and 80 for 2.0 probes), 462 
filtered (0.3-10 kHz for phase 3A and 0.005-10 kHz 2.0 probes) and digitized at 30 kHz by the probe’s 463 
on-board circuitry. Signals were multiplexed and transmitted to the recording system along a tether 464 
cable. SpikeGLX software (https://billkarsh.github.io/SpikeGLX/) was used to control acquisition and 465 
configure the probes. A motion capture system – based on retroreflective markers on the implant, 466 
OptiTrack Flex 13 cameras, and Motive recording software – was used to track head position and 467 
orientation in 3D. The 3D tracking coordinates were subsequently projected onto the horizontal plane 468 
for estimation of 2D position and head direction azimuth. An additional camera (Basler acA2040-469 
90umNIR) was used to capture overhead infra-red video in a subset of the recordings. Overhead video 470 
frames were aligned to OptiTrack tracking data with an affine transformation between corresponding 471 
points in the video and tracking data. Timestamps from each data stream were synchronized as 472 
previously described5,64, by generating randomized sequences of digital pulses with an Arduino 473 
microcontroller and sending them to the Neuropixels acquisition system as direct TTL input and to the 474 
OptiTrack system and video camera via infrared LEDs placed on the edge of the arena. 475 

Behavioral procedures 476 
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Recordings were obtained while animals foraged in an open field, while they navigated for rewards on 477 
a linear track or on a wagon wheel-shaped circular track, or during sleep. Due to the previously 478 
reported gradual decay in signal quality over the first 7-14 days after probe implantation65, most 479 
recordings were performed within the first week after surgery (full range: 0-151 days post-operatively). 480 
All behavioral tasks for a given animal were performed in the same recording room (except for one 481 
recording in a novel room, Extended Data Fig. 7f), often consecutively on the same day. Recording 482 
sessions were sometimes interrupted to remove twists from the Neuropixels tether cable. During pre-483 
surgical training, some of the rats were food-restricted, maintaining their weight at a minimum of 90% 484 
of their free-feeding body weight. Food restriction was not used in any of the animals at the time of 485 
recording. 486 

Open-field foraging task 487 
18 rats foraged for randomly scattered food crumbs (corn puffs or vanilla cream cookies) in a square 488 
open-field (OF) box with a floor size of 150 × 150 cm and a height of 50 cm. The floor was made of 489 
black rubber; walls were made of black expanded PVC plastic. The arena was placed on the floor 490 
centrally in a large room (16 or 21 m2) with full visual access to background cues. A large white cue 491 
card was affixed to one of the walls (height same as the wall; width 41 cm; horizontal placement at the 492 
middle of the wall). In all illuminated trials, at the time of the surgery, each rat was already highly 493 
familiar with the environment and the task (having experienced 10–20 training sessions prior to 494 
surgery, lasting at least 20 min each). Recording sessions lasted 23-141 min.  495 

In one exceptional case, a rat foraged during recording in a dark room encountered for the first time 496 
(Extended Data Fig. 7f). In this experiment, a 150 cm diameter circular arena was used, as described 497 
in a previous study64. The arena was encircled by thick, dark blue curtains. All light sources in the 498 
recording room were turned off or occluded before the recording started.  499 

Linear track task 500 
Five rats with MEC-parasubiculum implants, of which two also had hippocampal implants, shuttled 501 
back and forth on a 200 cm linear track with liquid rewards delivered at each end (chocolate-flavored 502 
oat milk dispensed via a tubing system). When the rat consumed a reward at one end of the track, the 503 
reward port at the opposite end was refilled. Before surgery, rats were trained on the track task until 504 
they reliably completed ~40 laps in one training session. Recording sessions lasted 45-66 minutes, with 505 
18-48 minutes of running between reward sites.  506 

Wagon-wheel task 507 
Two rats with MEC-parasubiculum implants were tested in a "wagon-wheel” track – an elevated 10-508 
cm-wide circular track with two perpendicular cross-linking arms spanning the circle’s diameter5. The 509 
track was fitted with 8 reward wells, placed halfway between each of the 5 junctions. Each of the wells 510 
could be filled with chocolate oat milk via attached tubing. At any given time, a pseudorandom subset 511 
of 1-4 of the wells was filled to encourage steady exploration of the entire maze. Before surgery, the 512 
rats were trained to asymptotic performance levels, where they obtained at least 30 rewards per 30-513 
minute session.  514 

Natural sleep 515 
Sleep recordings including both REM and slow-wave sleep (SWS) epochs were obtained from 9 animals 516 
with MEC-parasubiculum implants (2 of them with combined MEC-hippocampal implants). Sleep was 517 
promoted by putting the rat in a black acrylic box (40 × 40-cm floor, 80 cm height), lined with towel on 518 
the floor, before recording. The box walls were transparent to infrared, allowing the rat’s position and 519 
orientation to be tracked through the walls. Water was available ad libitum. During recording, room 520 
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lights were on and pink noise was played through the computer speakers to mask background sounds. 521 
Sleep sessions typically lasted 2–3 h (see Extended Data Fig. 9a for an example recording). 522 

Spike sorting and single-unit selection 523 
Spike sorting was performed using KiloSort 2.527, with customizations as previously described5. To 524 
exclude low-firing units, fast-firing interneurons and contaminated clusters, units were excluded if they 525 
had a mean spike rate of less than 0.1 Hz or greater than 10 Hz (<0.025 Hz or >5 Hz for hippocampal 526 
units), or if their waveforms had a large spatial footprint (i.e. similar waveform amplitude across a wide 527 
range of channels), as this seemed to be a reliable indicator of poor cluster quality27. The waveform 528 
footprint was expressed as the anatomical spread of recording channels where the unit was detected 529 
(with detection defined as at least 10% of the unit’s maximal amplitude across all channels), weighted 530 
by the unit’s waveform amplitude on each channel27: 531 

�𝐰𝐰𝑖𝑖

𝑁𝑁

𝑖𝑖=1

( (𝐱𝐱𝑖𝑖 − 𝐱𝐱�)2 +  (𝐲𝐲𝑖𝑖 − 𝐲𝐲�)2) 532 

where [𝐱𝐱𝑖𝑖 , 𝐲𝐲𝑖𝑖] refers to the [𝑥𝑥,𝑦𝑦]-location of the 𝑖𝑖𝑡𝑡ℎ recording channel, 𝐱𝐱� and 𝐲𝐲� are the centers of mass 533 
of the recording channel positions where the unit was detected, 𝐰𝐰𝑖𝑖 is the amplitude of the waveform 534 
at the 𝑖𝑖𝑡𝑡ℎ recording channel, and 𝑁𝑁 is the number of channels where the unit was detected. Units were 535 
excluded if the spatial footprint of their waveforms exceeded 35 µm (50 µm for hippocampal units). 536 
Units that were recorded on sites located outside the regions of interest (MEC-parasubiculum or 537 
hippocampus) were excluded from further analysis.  538 

Preprocessing and temporal binning 539 
During awake sessions, only time epochs in which the rat was moving at a speed above 5 cm/s were 540 
used for spatial analyses. Spike times were binned in 10 ms time bins for all population analyses (unless 541 
otherwise specified), and tracking data was resampled at the same time intervals to align it with the 542 
spike-count data. For computational reasons, wake sessions were truncated in length to the nearest 543 
multiple of 100 seconds (given by the chunk size for latent manifold tuning model), by trimming the 544 
tail end of the behavior session.  545 

Rate maps and angular tuning curves 546 
To generate 2D rate maps for the open field arena and wagon wheel track, position estimates were 547 
binned into a square grid of 2.5 × 2.5-cm bins. For each bin, we calculated each cell’s firing rate 548 
(number of spikes in the bin divided by time spent in the bin). Rate maps were smoothed with a cross-549 
validated smoothing procedure. Briefly, the recording was split into 10 folds of equal duration, and the 550 
firing rate 𝒚𝒚 during each fold was compared with the expected firing rate 𝒚𝒚� based on the rate map 551 
calculated over the remaining 9 folds and smoothed with a gaussian kernel of width 𝜎𝜎. The value of 𝜎𝜎 552 
(1 𝑐𝑐𝑐𝑐 < 𝜎𝜎 < 50 𝑐𝑐𝑐𝑐) that minimized the mean squared error of the firing rate prediction (using the 553 
MATLAB function fminbnd) was chosen to smooth the rate map. The same procedure was used to 554 
compute spatial rate maps with respect to latent position signals from the LMT model (see section 555 
latent manifold tuning model). For population vector (PV) decoding analyses (see below), a fixed-width 556 
gaussian kernel was used to smooth the rate maps (σ = 7.5cm). Spatial autocorrelations and grid scores 557 
were calculated as described previously36, based on the individual cells’ rate maps. 558 
 559 
Angular tuning curves with respect to head direction, theta phase or internal direction (see section 560 
Decoding of internal direction based on population vector correlations) were calculated by binning the 561 
angular variable into 60 evenly spaced angular bins. For each 6-degree bin, spike rate was calculated 562 
as the number of spikes divided by time spent in the bin. Angular tuning curves were smoothed with 563 
the same cross-validated smoothing procedure as the spatial rate maps (0.01 rad < σ < 1 rad) 564 
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(0.01 𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜎𝜎 < 1 𝑟𝑟𝑟𝑟𝑟𝑟), except in PV-decoding analyses, where a fixed-width gaussian kernel of 565 
σ = 12 degrees was used. 566 

Identification of grid cells and grid modules 567 
Grid cells were detected as groups of cells corresponding to grid modules by finding clusters of co-568 
recorded cells that expressed similar spatially periodic activity in the open field, based on a similar 569 
procedure described previously5. Briefly, 2D autocorrelograms were calculated from the coarse-570 
grained spatial rate maps of each cell (10 × 10-cm bins, no smoothing across bins). Autocorrelogram 571 
bins within a central radius of 2 bins or beyond an outer radius corresponding to the rate-map size 572 
were masked, before vectorizing and concatenating the autocorrelograms in a matrix. Considering the 573 
spatial autocorrelograms of all cells as a point cloud, where each point (autocorrelogram) has an N-574 
dimensional position representing the value of each of its N spatial bins, the Manhattan distances 575 
between all points were calculated, and each point’s 30 nearest neighbors were identified. The 576 
resulting neighborhood graph was given as input to the Leiden clustering algorithm, which was used 577 
to partition the spatial autocorrelograms into clusters, using a resolution parameter of 1.0 (1.5 for 578 
sessions with >1000 units). Clusters that contained cells with clear and consistent grid patterns were 579 
classified as candidate modules of grid cells. For each cluster, grid periodicity was measured by the 580 
grid score of the median autocorrelogram across all cells in the cluster. Grid pattern consistency was 581 
measured by computing the Pearson correlation between the average autocorrelogram of the cluster 582 
and each individual cell’s autocorrelogram. The median consistency across all cells in the cluster was 583 
defined as the cluster’s grid consistency. For a cluster to be classified as a grid module, three criteria 584 
had to be fulfilled: (1) cluster grid score greater than 0.3, (2) grid pattern consistency greater than 0.5 585 
and (3) the cluster needed to contain a minimum of 10 cells. In some recording sessions, single grid 586 
modules appeared to be split into two clusters with similar spacing and orientation. For this reason, 587 
we added a step that merged grid clusters if the correlation between their average autocorrelograms 588 
was greater than 0.7. 589 

Subclasses of grid cells defined by differential bursting 590 
To measure the tendency of cells to fire in bursts, we devised a burst score (BS) based on the firing-591 
rate autocorrelograms of each cell (time range: ±50ms, bin width: 1 ms). The autocorrelogram value 592 
of the center bin was set to zero, and the autocorrelogram counts were normalized by the mean. Next, 593 
we compared the autocorrelogram values at short time lags (2-10ms) with those found at longer time 594 
lags (13-50ms): 595 

𝐵𝐵𝐵𝐵 =
1

𝑏𝑏 − 𝑎𝑎
�𝑦𝑦𝑖𝑖

𝑏𝑏

𝑖𝑖=𝑎𝑎

−
1

𝑑𝑑 − 𝑐𝑐
�𝑦𝑦𝑖𝑖

𝑑𝑑

𝑖𝑖=𝑐𝑐

 596 

where 𝑦𝑦𝑖𝑖  is the value of the i-th bin of the mean-normalized autocorrelogram, and [a, b, c, d] are the 597 
indices of autocorrelogram bins corresponding to 2, 10, 13 and 50ms time lags. Thresholds for 598 
classification of bursty vs. non-bursty cells were determined by inspection of the distribution of burst 599 
scores across the sample (bimodal with a trough around -0.2; Extended Data Fig. 4a). Cells with a burst 600 
score > 0.0 were classified as bursty and cells with burst scores < -0.4 were classified as non-bursty, 601 
while cells with burst scores from [-0.4, 0.0] were left unclassified. 602 
 603 
While grid cells could be classified into a bursty and non-bursty subclasses based on burst scores, a 604 
third subclass of grid cells was revealed by closer inspection of autocorrelogram shape or theta phase 605 
modulation (Extended Data Fig. 4a). To reliably identify these three subclasses in an unsupervised 606 
manner, we applied an unsupervised clustering algorithm to the temporal autocorrelograms of all grid 607 
cells5. Temporal autocorrelograms were computed, for each cell, by calculating a histogram of the 608 
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temporal lags between every spike and all surrounding spikes within a ±100 ms window, using 2 ms 609 
bins. The histogram was then divided by the mean value, and concatenated in a matrix, discarding any 610 
cells with less than 100 counts in the autocorrelogram. PCA was applied to the matrix of 611 
autocorrelograms, treating individual cells as observations and keeping the first 10 components for 612 
further analysis. Next, a neighborhood graph was constructed by computing the Manhattan distance 613 
between all pairs of points in the 10-D point cloud and finding each point’s 150 nearest neighbors. The 614 
graph was used as input to the Leiden clustering algorithm (resolution parameter 0.2). The clustering 615 
algorithm detected three distinct clusters with unique autocorrelogram shapes, in agreement with the 616 
three subclasses of grid cells identified upon inspection of the theta phase modulation and burst scores 617 
across all grid cells (Extended Data Fig. 4a). Most cells in the first two clusters had positive burst scores 618 
(referred to as bursty type I and bursty type II), while cells in the third cluster had negative burst score 619 
(referred to as non-bursty). 620 

Classification of direction-tuned cells 621 
Cells were classified as tuned to head direction (HD) if their HD-tuning curves differed significantly 622 
from a uniform distribution (p<0.001, Rayleigh test for non-uniformity) and was stable across the first 623 
and second half of the recording session (p<0.01, Pearson correlation between tuning curves from first 624 
and second half). No further criteria on tuning strength were applied to classify HD tuning, since many 625 
internal direction-tuned cells display weak HD-tuning and there was no clear cut-off between HD-626 
tuned cells and non-HD-tuned cells (Extended Data Fig. 5a). Cells were classified as internal direction 627 
cells if their tuning curves, with respect to decoded internal direction (see section Decoding of 628 
instantaneous position and direction based on population vector correlations), passed the above 629 
criteria for non-uniformity and stability and had a mean vector length > 0.3. Tuning width was defined 630 
as two standard deviations of the tuning curves. 631 

Theta phase estimation 632 
Theta phase was extracted from the population spiking activity of all units (including fast-firing, 633 
putative interneurons) within the MEC-parasubiculum region. Spike times were binned into 10-ms bins 634 
and the resulting spike counts were bandpass-filtered with a 2nd order Butterworth filter in the theta 635 
range (5-10 Hz). Principal components analysis (PCA) was applied to the matrix of bandpass-filtered 636 
spike counts (with units as variables and time bins as observations). The first two principal components 637 
typically contained an oscillating circular representation corresponding to the theta rhythm. Theta 638 
phase at time t was defined as the direction of the projection of the population vector at time t onto 639 
the plane defined by PC1 and PC2. The phase with minimal firing activity was defined as zero. In the 6 640 
rats with dual entorhinal-hippocampal implants, hippocampal sweeps were referenced to theta phase 641 
extracted from MEC-parasubiculum activity. In the two rats with probes only in the hippocampus, theta 642 
phase was estimated from hippocampal population activity. 643 

Theta cycle skipping 644 
Theta skipping, i.e. the tendency for cells to fire on every other theta cycle, was quantified by 645 
computing a theta-skipping index (TSI) as in previous descriptions of the phenomenon10,40,41. Briefly, 646 
firing-rate autocorrelograms were generated for each cell (time range: ±500 ms, bin width: 5 ms, 647 
gaussian smoothing: σ=10 ms), and the relative height of the second theta peak 𝑝𝑝2 compared to the 648 
first theta peak 𝑝𝑝1 was determined as 649 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑝𝑝2 − 𝑝𝑝1

𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝1,𝑝𝑝2) 650 

where 𝑝𝑝1 is defined as the maximum autocorrelogram value between lags 90 and 170 ms and 𝑝𝑝2 as 651 
the maximum value between lags 180 and 300 ms. Cells were classified as theta-skipping if the theta-652 
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skipping index was positive, i.e. if the second theta peak was higher than the first peak. The theta-653 
skipping index only has a clear interpretation for cells that are theta-rhythmic and is thus reported for 654 
cells that were classified as modulated by theta phase. Cells were classified as theta phase modulated 655 
if their theta phase tuning curves differed significantly from a uniform distribution (p<0.001, Rayleigh 656 
test for non-uniformity) and were stable across the first and second half of the recording session 657 
(p<0.01, Pearson correlation between tuning curves from first and second half). Cells were classified 658 
as non-rhythmic if they did not meet the above criteria and had theta phase mean vector length <0.2. 659 

Decoding sweeps based on population vector correlations 660 
This section describes how we visualized and quantified sweeps. We first decoded position from the 661 
activity of the entire set of MEC-parasubiculum neurons. For each temporal bin, we correlated the 662 
instantaneous population activity (a population vector, PV) with the session-averaged population 663 
activity for each location in the environment (reference population vector, rPV). The inputs to the PV 664 
correlation decoder were (1) a N×T matrix of temporally smoothed firing rates (gaussian kernel σ=10 665 
ms), with T columns corresponding to time bins and N rows corresponding to neurons, and (2) a N×M 666 
matrix of spatial tuning curves, with M columns corresponding to position bins and N rows 667 
corresponding to neurons. The spatial tuning curves were normalized by dividing each neuron’s tuning 668 
curve by its mean value. To decode position across successive time bins, we computed the Pearson 669 
correlation coefficient between each PV (columns of the spike count matrix) and each rPV (columns of 670 
the tuning curve matrix). This yielded a vector of correlation values for each time step, with elements 671 
corresponding to each [𝑥𝑥,𝑦𝑦]-location in the environment. The decoded position was taken as the 672 
position bin with the highest correlation value, and the resulting decoded trajectory was smoothed 673 
with an σ=8 ms gaussian kernel. To filter out unreliable estimates, the peak correlation value for each 674 
time bin was compared to a shuffled distribution of PV correlation values (computed by shuffling rows 675 
of the tuning curve matrix). Decoded estimates were discarded if their PV-correlation did not exceed 676 
the 99th percentile of the shuffled distribution. Decoding estimates were also discarded for timepoints 677 
where fewer than 5 cells were active.  678 

Within each theta cycle, the decoded position swept outwards from a location slightly behind the 679 
tracked head position of the animal (Fig. 1). Thus, the starting locations for a series of sweeps formed 680 
a slowly evolving trajectory that roughly followed the animal’s running trajectory. This trajectory, 681 
referred to as the lowpass-filtered decoded trajectory and estimated by decoding position from spikes 682 
emitted in the beginning of each theta cycle, was used as a reference signal for measuring sweeps. 683 
Spike counts from the first half of each theta cycle were smoothed with a wide gaussian kernel (σ = 1.7 684 
theta cycles) before the PV-correlation decoding method was used to decode position across all bins. 685 
The resulting decoded trajectory was smoothed with a σ=10ms gaussian kernel. Sweeps seemed to be 686 
more reliably anchored to the lowpass-filtered decoded trajectory compared to the tracked head 687 
position of the animal. This difference was particularly evident when rats navigated in darkness, when 688 
sweeps and lowpass-filtered signals could deviate substantially from the rat’s actual trajectory 689 
(Extended Data Fig. 7f). 690 

Extracting sweep trajectories 691 
Individual sweeps, defined as smooth spatial trajectories within each theta cycle, were extracted from 692 
the decoded position trajectory by a simple sequence detection algorithm. Within each theta cycle, 693 
candidate sweeps were identified as the longest sequence (highest number) of consecutive valid time 694 
bins where the decoded position jumped less than 20 cm and changed direction less than 90 deg 695 
between consecutive 10 ms bins. Candidate sweeps were truncated to maximize the net Euclidian 696 
distance from beginning to end, which effectively removed folds at either end of the sweep. A sweep 697 
vector, s, was defined as the vector between the lowpass-filtered decoded position at the beginning 698 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.16.594473doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.16.594473
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

of the theta cycle and the distal-most point of the candidate sweep. To identify sweep trajectories that 699 
were fairly straight and well described by the sweep vector, we measured, for each candidate sweep, 700 
the goodness of fit 𝑟𝑟2 between the sweep vector axis and the collection of [𝑥𝑥,𝑦𝑦]-points in the sweep, 701 
represented by vectors  𝐱𝐱, 𝐲𝐲: 702 

𝑟𝑟2 = 1 −
var(𝐞𝐞)

var(𝐱𝐱) + var(𝐲𝐲) 703 

where 𝐞𝐞 is a vector of residuals of all points with respect to the sweep vector axis, such that 𝐞𝐞𝑖𝑖 is the 704 
residual of point [𝐱𝐱𝑖𝑖, 𝐲𝐲𝑖𝑖] . Candidate sweeps were kept for further analyses if they included at least 4 705 
samples and had a 𝑟𝑟2 > 0.5 (meaning that most of the variance is explained by the sweep axis). Sweep 706 
direction and sweep length were defined as the direction and magnitude of the sweep vector.   707 

For several analyses and visualizations (e.g. Fig. 1b), sweeps (in allocentric coordinates) were 708 
transformed to head-centered coordinates. This was done by first subtracting the tracked position (e.g. 709 
Fig. 1b) or lowpass-filtered decoded trajectory (e.g. Extended Data Fig. 2e) and then rotating each 710 
[𝑥𝑥,𝑦𝑦]-coordinate by the animal’s head direction. Session-averaged sweeps (e.g. Fig. 1b) were 711 
computed by first interpolating each head-centered sweep trajectory at 50 time points linearly spaced 712 
from the beginning to the end of the trajectory. Interpolated sweeps were grouped into those that 713 
followed a right sweep or left sweep, before an average sweep was computed for each group by taking 714 
the median position at corresponding time points within the sweep (Fig. 1b, 4e, 5d; Extended Data Fig. 715 
2e-f).   716 

Decoding of internal direction based on population vector correlations 717 
Internal direction was decoded from the activity of all MEC-parasubiculum neurons using the same PV-718 
correlation procedure described for position decoding but using angular tuning curves for head 719 
direction instead of spatial position rate maps. Since we observed that internal direction cells were 720 
activated in discrete pulses during each theta cycle (Fig. 2c), the time bin corresponding to the theta 721 
phase with maximal activity was used to express internal direction within each theta cycle. The 722 
decoded internal direction α at time 𝑡𝑡 was taken as the circular mean of all possible decoding angles 723 
weighted by the correlation values for each directional bin at time 𝑡𝑡: 724 

α = angle��𝑟𝑟𝑗𝑗

𝑀𝑀

𝑗𝑗=1

⋅ exp�𝑖𝑖 ⋅ 𝜃𝜃𝑗𝑗�� 725 

where 𝜃𝜃𝑗𝑗 denotes the angular value of the 𝑗𝑗𝑡𝑡ℎ bin, 𝑖𝑖 is the imaginary unit, 𝑟𝑟𝑗𝑗 is the correlation value for 726 
the 𝑗𝑗𝑡𝑡ℎ angular bin and 𝑀𝑀 is the total number of angular bins.  727 

For some analyses and visualizations (e.g. Fig 1d), we rotated the decoded internal direction (in 728 
allocentric coordinates) to a head-centered reference frame by subtracting the animal’s head 729 
direction.  730 

Left-right alternation of sweeps and internal direction  731 
The extent of directional alternation across successive sweeps and internal direction signals was 732 
characterized in a head-centered reference frame (see above) during periods when the animals moved 733 
faster than 15 cm/s. The data were generally thresholded at 15 cm/s because alternation was more 734 
reliable during running (Fig. 6e-f; see Fig. 6e-f for data at speed thresholds down to 5 cm/s). The 735 
prevalence of directional alternation was computed by counting triplets of theta cycles where sweep 736 
direction or internal direction alternated in a left-right-left or right-left-right pattern (detected as sign-737 
inversions in the angles between successive directions), divided by the total numbers of theta cycle 738 
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triplets where sweeps or internal direction were detected. The fraction of theta cycle triplets with 739 
directional alternation was compared to a shuffled distribution of scores where head-centered 740 
directions were randomly shuffled (1000 iterations). Directional alternation was visualized in temporal 741 
autocorrelograms of angles between successive head-centered sweep direction or internal direction. 742 
Autocorrelograms were computed as the circular correlation between the original trace of head-743 
centered directions and a series of lagged versions of the signal (lags from -7 to 7 theta cycles). To find 744 
and visualize directional modes of sweep and internal direction angles, we computed histograms of 745 
head-centered directions that were conditioned on the decoded direction in the previous theta cycle. 746 
First, decoded directions were classified as left or right-directed based on the sign of their angular 747 
offset from the previous cycle. Next, two histograms were computed, one for decoded directions that 748 
followed a left-directed angle and one for decoded angles that followed a right-directed angle. Since 749 
sweeps and internal direction angles alternate reliably, this procedure resulted in two unimodal 750 
distributions, one on either side of the reference head direction. The directional modes of sweep or 751 
internal direction were taken as the peak of each of the two conditional distributions. 752 

In the artificial agent simulation, a time-resolved measure of directional alternation was used to 753 
quantify instantaneous alternation of the agent’s chosen sweep direction. A three-sweep sliding 754 
window was used, such that at the 𝑖𝑖th timestep a triplet of sweep directions α𝑖𝑖−1:𝑖𝑖+1 was selected. 755 
Within the three-sweep sliding window, the two angles between consecutive sweep pairs were 756 
calculated: 𝑎𝑎 = 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖−1 and 𝑏𝑏 = 𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖 . The alternation score 𝑠𝑠 was hence computed as: 757 

𝑠𝑠 =
|𝑎𝑎 − 𝑏𝑏|

2 ⋅ max(|𝑎𝑎|, |𝑏𝑏|) 758 

where |∙| denotes the absolute value. The alternation score ranged from 0-1, where 1 indicates perfect 759 
alternation.  760 

Single-module decoding 761 
To decode position from individual grid modules, the PV-correlation decoding analysis (first applied on 762 
all cells) was next applied to subsets of cells that belonged to individual grid modules. The decoded 763 
position from each grid module was mapped onto the grid module’s hexagonal unit tile using a 764 
crosscorrelation procedure. First, we computed a template grid pattern for each grid module by 765 
averaging the spatial rate-map autocorrelograms across all cells in the module. The template grid 766 
pattern was crosscorrelated with the 2D distribution of PV-correlation values at each time step. Peaks 767 
in the resulting spatial crosscorrelogram were detected, and for each crosscorrelogram the peak 768 
nearest to the origin was taken as the decoded position. To ensure that the decoded position was 769 
within the bounds of the central unit tile, the decoded trajectory was wrapped around the three grid 770 
axes of the template grid pattern. Single-module sweeps were detected as described for whole-771 
population decoding (i.e. by finding consecutive time bins within each theta cycle where the decoded 772 
trajectory formed a smooth trajectory), except that spatial and directional offsets between consecutive 773 
decoded positions were computed with periodic boundary conditions derived from the template grid 774 
pattern. For some visualizations (Fig. 1e, 4b) the single-module sweeps were aligned to the behavioral 775 
trajectory of the animal by subtracting the offset between the animal’s tracked position and the 776 
lowpass-filtered decoded trajectory at the beginning of each theta cycle. 777 

Identification of putative excitatory connections between cells  778 
Putative excitatory monosynaptic connections between pairs of co-recorded neurons were identified 779 
by detecting short-latency, short-duration peaks in the firing rate cross-correlograms (CCGs), following 780 
previous procedures66–68. CCGs were computed with 1 ms bins over a ± 50 ms window. A baseline CCG 781 
was computed by convolving raw CCGs with a hollowed gaussian kernel (σ=5 ms, hollow fraction 60%), 782 
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which has been shown to approximate a jittered CCG66. Neuron pairs recorded on the same probe, 783 
where each of the neurons emitted at least 2000 spikes and the raw CCG contained at least 1000 784 
counts, were tested for functional connections. The baseline CCG was subtracted from the raw CCG 785 
and subsequent peak detection was performed on the baseline-corrected CCG. Neuron pairs were 786 
classified as putatively connected if the highest positive CCG peak satisfied the following five 787 
conditions: (1) The peak occurred within an asymmetric time range consistent with monosynaptic 788 
excitation (0.7 – 4.7 ms); (2) The peak height exceeded 5 standard deviations of the baseline-corrected 789 
CCG; (3) The peak’s p-value was smaller than 0.001 (estimated from a Poisson distribution with 790 
continuity correction, as in ref.66); (4) the peak's width (defined as the set of bins contiguous with the 791 
peak whose values exceeded half of the peak height or 2 s.d. of baseline and had a p-value<0.01) was 792 
less than 3 ms (consistent with the precise spike-timing expected from a monosynaptic connection); 793 
(5) The peak’s width did not overlap with the zero-lag bin (suggestive of common input). Candidate 794 
connections were also discarded if any of the non-peak bins exceeded 2.5 standard deviations of the 795 
baseline-corrected CCG or if any of the bins in the anticausal direction had p-values <0.01. 796 

Overall connection probability was computed by dividing the total number of putatively connected 797 
neurons by the total number of pairs that were checked for connections. Similarly, target-specific 798 
connectivity rates were computed by dividing the number of connections from one functional cell class 799 
to another by the number total number of pairs.  800 

Decoding internal direction with PCA or UMAP 801 
The internal direction signal was also decoded in an unsupervised manner, with principal components 802 
analysis (PCA) or uniform manifold approximation and projection (UMAP69). In this approach, the high-803 
dimensional neural activity was projected down to a 2D subspace to characterize the trajectory of 804 
population activity on a low-dimensional manifold. Only rhythmic direction-tuned cells (with head 805 
direction mean vector length MVL > 0.3 and theta phase MVL > 0.3) were included in the analysis, to 806 
avoid interference between the ring-like manifold of interest and other ensemble representations (e.g. 807 
spatial signals from pure grid cells). Spike counts from n neurons were binned into t time bins 808 
corresponding to individual theta cycles. Theta cycle time bins were used instead of 10ms time bins to 809 
prevent global within-cycle firing rate fluctuations from driving the results. Principal components 810 
analysis was performed on the resulting t-by-n matrix. Next, internal direction was either read out (1) 811 
directly from the PCA output, or (2) by applying a second dimensionality reduction step on the data 812 
with UMAP (Extended Data Fig. 3c-d).   813 

In the PCA decoder, internal direction was read out by projecting the neural data onto the first two 814 
eigenvectors and taking the arctangent of each [𝑥𝑥,𝑦𝑦]-coordinate in the resultant 2D projection.  815 
Because these angles were arbitrarily rotated with respect to the environment, they were aligned to 816 
the environment before further analysis. We assumed that internal direction and head direction had 817 
equal mean directions, and subtracted the average difference between the two signals from the 818 
decoded signal to align it with respect to the environment. 819 

In the UMAP decoder, scores of the 20 principal components with the largest explained variance was 820 
used as input to the nonlinear dimensionality reduction algorithm UMAP with hyperparameters: 821 
n_components=3, metric=correlation, n_neighbors=199, min_dist=0.3, init=spectral. This yielded a 3-822 
D embedding of the high-dimensional population activity. The 3-D UMAP point cloud typically showed 823 
a clear circular shape. The 3-D point cloud was then collapsed to 2-D by projecting the points onto the 824 
best-fit 2-D plane. Hence, the 2-D points were converted into angles by taking the arctangent of each 825 
x- and y- coordinate. The resulting angles were aligned to the environment by subtracting the average 826 
offset from head direction, as described above. 827 
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Bayesian decoding of position 828 
Sweeps could also be decoded using Bayesian reconstruction (Extended Data Fig. 3a). Position was 829 
decoded at 10ms time steps from the matrix of firing rates and tuning curves from 𝑁𝑁 neurons, with an 830 
assumption of Poisson firing and a flat position prior70:  831 

𝑃𝑃(𝒙𝒙|𝒚𝒚) ∝ exp��𝑦𝑦𝑖𝑖log�𝑓𝑓𝑖𝑖(𝒙𝒙)�
𝑁𝑁

𝑖𝑖=1

− 𝑑𝑑𝑑𝑑�𝑓𝑓𝑖𝑖(𝒙𝒙)
𝑁𝑁

𝑖𝑖=1

� 832 

where 𝑃𝑃(𝒙𝒙|𝒚𝒚) is the conditional probability for the rat’s 2D location 𝒙𝒙, given the observed spike count 833 
𝒚𝒚 and position tuning curves 𝑓𝑓(𝒙𝒙). The decoded position was taken as the position bin that maximized 834 
𝑃𝑃(𝒙𝒙|𝒚𝒚). 835 

Latent manifold tuning model  836 
The PV-correlation method has two limitations. First, it can only be used to decode positions and 837 
directions that the animal has physically sampled, because it relies on tuning curves with respect to 838 
the animal’s tracked position and head direction. This is particularly a problem for hippocampal data, 839 
where the neural correlation structure varies between environments and brain states71–73, making it 840 
impossible to decode position in one environment based on reference tuning curves from a different 841 
context. A second challenge is that the sharp spatial and directional tuning of grid cells and internal 842 
direction cells is obscured in standard time-averaged reference tuning curves, since sweeps and 843 
internal direction deviates from tracked position and head direction (Extended Data Figs. 3f, 4d). To 844 
simultaneously extract sweeps through unvisited space and characterize spatial tuning directly from 845 
neural activity, we therefore adapted the latent manifold tuning (LMT) model introduced by Wu et al. 846 
201745. In this framework, sweeps may be considered as hidden or ‘latent’ trajectories on a neural 847 
manifold that is not directly observable. The goal of the LMT model is to infer (1) the latent trajectory 848 
and (2) each cell’s tuning to locations on the manifold, based on neural population activity. The model 849 
assumes that the latent variable evolves smoothly with time, that individual neurons are smoothly 850 
tuned to locations on the manifold, and that neurons fire according to a Poisson process (see Extended 851 
Data Fig. 8 for schematic and ref45 for details). For a multidimensional (vector-valued) latent variable 852 
x(t), the temporal evolution of component j is modelled as a Gaussian process:  853 

𝑥𝑥𝑗𝑗(𝑡𝑡) ∼ 𝒢𝒢𝒢𝒢(0,𝑘𝑘𝑡𝑡) 854 

where 𝑘𝑘𝑡𝑡 is a temporal covariance function 𝑘𝑘(𝑡𝑡, 𝑡𝑡′)  ≜ cov(𝑥𝑥𝑗𝑗(𝑡𝑡), 𝑥𝑥𝑗𝑗(𝑡𝑡′)). In this case, the exponential 855 
kernel 𝑘𝑘(𝑡𝑡, 𝑡𝑡′) = 𝑟𝑟 exp(−|𝑡𝑡 − 𝑡𝑡′|/𝑙𝑙) is used, with variance 𝑟𝑟 and length-scale 𝑙𝑙 respectively controlling 856 
the amplitude and smoothness of the latent variable. The log tuning curves 𝑓𝑓(𝐱𝐱) are also modelled as 857 
Gaussian processes, with the log tuning of the 𝑖𝑖𝑡𝑡ℎ neuron expressed as: 858 

𝑓𝑓𝑖𝑖(𝐱𝐱) ∼ 𝒢𝒢𝒢𝒢(0,𝑘𝑘𝑥𝑥) 859 

where 𝑘𝑘𝑥𝑥 is a spatial covariance function, in this case a Gaussian kernel 𝑘𝑘𝑥𝑥(𝐱𝐱,𝐱𝐱′) = 𝜌𝜌 exp(−‖𝐱𝐱 −860 
𝐱𝐱′‖22 / 2𝛿𝛿2) with variance 𝜌𝜌 and length-scale 𝛿𝛿. The value of the latent variable 𝐱𝐱(𝑡𝑡), in conjunction 861 
with each cell’s tuning curve 𝑓𝑓𝑖𝑖(𝐱𝐱), predicts the cell’s log-firing rate, which is then transformed with an 862 
exponential nonlinearity into a Poisson-distributed spike count 𝑦𝑦𝑖𝑖,𝑡𝑡 as below: 863 

𝑦𝑦𝑖𝑖,𝑡𝑡 | 𝑓𝑓𝑖𝑖,𝐱𝐱𝑡𝑡  ~ Poiss�exp(𝑓𝑓𝑖𝑖(𝐱𝐱𝑡𝑡)� 864 

The predicted and observed spike trains are compared, yielding a log-likelihood value. The model was 865 
fitted using an expectation-maximization algorithm that maximizes the log-likelihood of the spike 866 
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trains by separately optimizing the latent variable and tuning curves in alternation. Over multiple 867 
iterations of this two-step optimization procedure, both evolve to capture the latent dynamics in the 868 
neural population activity, thus improving prediction of the observed spikes.  869 

The original LMT framework uses a single latent variable to predict the neural activity; however, as a 870 
form of Poisson regression, the LMT model can be trivially combined with other Poisson regression 871 
models, as a means of extracting other factors of interest, or to regress out noise. In the present work, 872 
we formulated the activity of each neuron as a sum of log firing-rate contributions from five input 873 
variables: 874 

𝐘𝐘 ~ Poiss �exp�𝐌𝐌𝑖𝑖𝑖𝑖 + 𝐌𝐌𝑝𝑝𝑝𝑝𝑝𝑝 +𝐌𝐌𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐌𝐌ℎ𝑑𝑑 + 𝐌𝐌𝑝𝑝𝑝𝑝𝑝𝑝�� 875 

Where 𝐘𝐘 is the time-by-neurons matrix of predicted spike counts and 𝐌𝐌𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is a time-by-neurons 876 
matrix of log firing-rate contributions from model 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. The first two contributions correspond 877 
to the two latent variables of interest: internal direction (𝐌𝐌𝑖𝑖𝑖𝑖) and position (𝐌𝐌𝑝𝑝𝑝𝑝𝑝𝑝). Internal direction 878 
was modelled as a 1D latent circular variable (hyperparameters: 𝜌𝜌=0.1, 𝑟𝑟=100, 𝛿𝛿=0.5, 𝑙𝑙=0.1), that was 879 
initialized with the animal’s tracked head direction. Position was modelled as a 2D latent variable 880 
(hyperparameters: 𝜌𝜌=0.1, 𝑟𝑟=10, 𝛿𝛿=6, 𝑙𝑙=0.015) that was initialized with the animal’s tracked position. 881 

The final three covariates (theta phase 𝐌𝐌𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒, head direction 𝐌𝐌ℎ𝑑𝑑, and population firing rate 𝐌𝐌𝑝𝑝𝑝𝑝𝑝𝑝) 882 
are known to modulate MEC-parasubiculum activity4,19,36,74, and are here included as ‘noise’ covariates 883 
to regress out their substantial contributions to the neural activity, hence reducing the likelihood of 884 
them influencing the extracted latent variables. Theta phase and head direction were modeled as 885 
circular 1D variables in the LMT framework; however, the variables were respectively fixed at the 886 
values of measured theta phase and head direction, and only tuning curves were optimized 887 
(hyperparameters: 𝜌𝜌=1000, 𝛿𝛿=2 for theta phase and 𝜌𝜌=0.1, 𝛿𝛿=0.5 for head direction). The population 888 
firing rate model was implemented as a generalized linear model  𝐌𝐌𝑝𝑝𝑝𝑝𝑝𝑝 =  𝐱𝐱𝑝𝑝𝑝𝑝𝑝𝑝𝛃𝛃𝑝𝑝𝑝𝑝𝑝𝑝, where  𝐱𝐱𝑝𝑝𝑝𝑝𝑝𝑝 is 889 
a column vector of log population firing rates, and 𝛃𝛃𝑝𝑝𝑝𝑝𝑝𝑝 is a row vector of learned coefficients for all 890 
neurons. Population firing rate was computed as the average instantaneous firing rate across neurons, 891 
smoothed with a σ=20ms gaussian kernel. 892 

Each step of fitting in the composite model consisted of serially updating the parameters for each of 893 
the five sub-models by maximizing the log likelihood of the model. Since the latent trajectories may 894 
be arbitrarily rotated and distorted with respect to the physical environment, an alignment procedure 895 
was performed after model fitting45. The latent internal direction trajectory was aligned to the tracked 896 
head direction of the animal by subtracting the average angle between the two signals. The latent 897 
position trajectory was aligned to the tracked position of the animal with an affine transformation. The 898 
fitted latent variables were used for most LMT-based analyses of sweeps and internal direction. For 899 
some visualizations (e.g. Fig. 4d) and analyses during sleep, position and direction was decoded from 900 
neural activity and fitted LMT tuning curves using the Bayesian framework described in previous 901 
section. For single-module analyses during sleep (Fig. 4, Extended Data Fig. 9) and in Extended Data 902 
Fig. 3b, the LMT model was fit separately on the activity of grid cells in individual grid modules. 903 

GLM-based single-cell tuning model 904 
Theta sweeps introduce offsets between the animal’s current location and the location represented by 905 
place and grid cells, resulting in smeared receptive fields when a cell’s spikes are plotted as a function 906 
of animal location (Extended Data Fig. 4e-f). To characterize the spatial tuning of individual cells 907 
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independently, in a manner that accounts for sweeps, we used a Poisson Generalized Linear Model 908 
(GLM) to model the spike train of a cell, 𝒚𝒚, as a function of a set of explanatory variables, 𝚾𝚾, 909 
parametrized by the learned parameters 𝜷𝜷: 910 

𝒚𝒚 ∼ Poiss(exp(𝜷𝜷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜷𝜷 𝐗𝐗)) 911 

Construction of the data matrix X 912 
The model included four explanatory variables: position, head direction, internal direction (from LMT) 913 
and theta phase. The variables were expressed by using a ‘basis-expansion’ procedure, by which a set 914 
of smooth basis functions was used to decompose each single variable into multiple variables. Each 915 
basis function’s weighting was given by a corresponding 𝜷𝜷 parameter, giving the GLM flexibility to fit 916 
any smooth function of the input variable in question. The 2D position variable was expressed by a set 917 
of 2D Gaussian basis functions (σ = 2 cm) arranged in a 10-cm-spaced triangular grid which tiled the 918 
open field arena and a surrounding ‘buffer zone’. The angular variables head direction, internal 919 
direction and theta phase were expressed by a set of 50 Von-Mises functions (κ = 10) with equally 920 
spaced mean values from 0 to 2π. Basis expansion was performed by evaluating each of the basis 921 
functions for a given value of the input variable in question. 922 

The basis-expanded representations are high-dimensional and multicollinear (i.e. the basis function 923 
values are correlated). In a regression model, these attributes tend to cause overfitting; hence we used 924 
PCA to produce a low-dimensional, orthogonal representation of the basis-expanded data matrix. PCA, 925 
which acted as a form of regularization. For position, the principal components explaining 99% of the 926 
variance were retained, reducing the dimensionality from 527 to 92. For head direction and theta 927 
phase, the principal components explaining 80% of the variance were retained, reducing the 928 
dimensionality from 50 to 6. After performing basis expansion and dimensionality reduction for the 929 
input variables, the resultant matrices for all input variables were concatenated into the GLM design 930 
matrix X: 931 

𝐗𝐗 = �𝐗𝐗𝑝𝑝𝑝𝑝𝑝𝑝,𝐗𝐗𝑖𝑖𝑖𝑖 ,𝐗𝐗ℎ𝑑𝑑,𝐗𝐗𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒� 932 

 933 

Theta-phase-dependent shifting of the position covariate 934 
To model the effect of sweeps on position-modulated firing, we added a pre-processing step which 935 
applied a theta phase-dependent shift to the animal’s tracked position coordinates. Specifically, the 2D 936 
position coordinates (𝒙𝒙) were parametrically shifted by a distance 𝛿𝛿 along the internal direction axis 937 
(𝛼𝛼):  938 

𝒙𝒙𝑡𝑡′   =  𝒙𝒙𝑡𝑡 +  δ𝑡𝑡[cos(α𝑡𝑡), sin(α𝑡𝑡)] 939 

 940 

where 𝒙𝒙′ denotes the shifted position coordinates. The shift quantity, 𝛿𝛿𝑡𝑡, at each time point was 941 
modelled as a function of the current theta phase Specifically, the shift quantity δ was modelled as a 942 
function shift parameters 𝛄𝛄, fitted by the model, and the basis-expanded theta phase 𝐗𝐗𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 943 

𝜹𝜹 = 𝛄𝛄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛄𝛄 𝐗𝐗𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒  944 

The shifting parameters 𝛄𝛄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝛄𝛄 were fitted together with the GLM β parameters using a gradient-945 
based solver with the finite-difference method (MATLAB function ‘fminunc’). 946 

Across cells and recordings, the GLM shift model yielded sharper receptive fields than standard rate 947 
maps with respect to tracked position (Extended Data Fig. 7i). The model’s estimates of position tuning 948 
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were more robust than those from the LMT model, because the latter depended on large numbers of 949 
co-recorded spatially modulated cells. Therefore, rate maps based on the GLM-shifted position were 950 
deemed most appropriate to use for identifying grid cells and grid modules (see section Identification 951 
of grid cells and grid modules).  952 

Sweeps through unvisited space 953 
For analyses of sweeps and spatial tuning to never-visited locations outside the bounds of the wagon-954 
wheel track, we first defined the area of space that the animal had visited. This was achieved by binning 955 
the 2D environment in 2.5 cm bins and finding all bins that the rat had visited (resulting in a binary 2D 956 
map with values of 1 for visited bins and 0 otherwise). The bounds of animal’s coverage was found by 957 
applying a binary dilation operation of the occupancy map (Matlab function imdilate with a disk-958 
shaped structuring element, radius=1) followed by a morphological closing operation (Matlab function 959 
imclose with a disk-shaped structuring element, radius=1). The zero-valued bins in the resulting 960 
occupancy map were defined as never-visited.  961 

Sleep stage classification 962 
Sleep stages were identified as described in previous studies5,19. First, we identified periods of 963 
sustained immobility (longer than 120 s, locomotion speed below 1 cm/s, head angular speed below 964 
6 deg/sec). These periods were subclassified into SWS and REM based on delta- and theta-rhythmic 965 
population activity in the recorded cells. Population firing rate was computed by summing the 966 
binarized 10ms spike counts from each cell. The rhythmicity of this aggregated firing rate with respect 967 
to delta (1–4 Hz) and theta (5–10 Hz) frequency bands was quantified by applying a zero-phase, fourth-968 
order Butterworth band-pass filter and then calculating the amplitude from the absolute value of the 969 
Hilbert transform of the filtered signal, followed by smoothing (Gaussian kernel with σ = 5 s) and 970 
standardization (z-scoring). Periods for which the ratio of the amplitudes of theta and delta activity 971 
(theta/delta ratio) remained above 5.0 for at least 20 s were classified as REM. Periods during which 972 
theta/delta ratio remained below 2.0 for at least 20 s were classified as SWS (Extended Data Fig. 9B). 973 

Detection of sweep and internal direction signals during sleep 974 
To decode sweeps and internal direction from neural activity during sleep, we used tuning curves (LMT) 975 
from open-field sessions from the same recording day as the sleep session. Position was decoded 976 
separately for individual grid modules (see section single-module decoding), since the correlation 977 
structure of grid cells across brain states may be preserved within but not across modules5,19. Since the 978 
theta rhythm is absent during slow-wave sleep (SWS), we used local maxima in population activity as 979 
reference points for analysis of sweeps and direction signals in all brain states. To detect local maxima 980 
in the population activity, regardless of brain state, the spike counts of all internal direction cells was 981 
summed and smoothed with a Gaussian kernel (σ = 20ms), before applying the Matlab function 982 
findpeaks with default parameters to detect peaks in the summed activity. Local maxima occurred at 983 
theta-rhythmic intervals during wake and REM and irregularly during SWS (Extended Data Fig. 9). Pairs 984 
of local maxima 2–250 ms apart were used to quantify directional alternation in all brain states, while 985 
all detected maxima were used to measure alignment between sweep and direction signals. Internal 986 
direction was taken as the decoded direction at the time of local maxima. To extract sweeps, we 987 
identified smooth sequences of decoded positions (sequences where decoded position jumped less 988 
than 15% of grid spacing and changed direction less than 2 radians between successive time bins) that 989 
occurred in windows centered around each of the local maxima in population activity. The windows 990 
extended 50 ms to either side of local maxima or to the edge of the neighboring window. Since spatial 991 
representations were decoupled from physical movement during sleep (Extended Data Fig. 9g), sweep 992 
trajectories were referenced to the low-pass-filtered decoded trajectory (smoothed with a 100 ms 993 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.16.594473doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.16.594473
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

gaussian kernel) and aligned to a “virtual head direction” (low-pass-filtered decoded direction, σ = 1 994 
theta cycle gaussian smoothing). 995 

Simulation of an ideal sweep-generating agent 996 
To test the hypothesis that alternating sweeps are controlled by an algorithm that maximizes the 997 
sampling of surrounding space, we simulated a sweep-generating agent that maximized environmental 998 
sampling by choosing sweep directions that minimized overlap with previous sweeps.  999 

First, we modeled the spatial coverage of a single sweep. Since grid modules express sweeps at 1000 
multiple spatial scales, we reasoned that the total spatial coverage of a sweep may be considered as a 1001 
sum of sweeps across individual grid modules (Extended Data Fig. 10a). A model sweep footprint was 1002 
formulated, based on previous empirical observations of geometric relationships between single-1003 
module grid patterns16, and the geometric properties of sweeps in the present results (Fig. 1e-g). 1004 
Briefly, we summed the grid patterns of five idealized grid modules, with an inter-module scale ratio 1005 
of √2 and gaussian-shaped grid fields with 𝜎𝜎 = 1 6⁄  of each module’s spacing, at offsets from the 1006 
origin corresponding to typical single-module sweep lengths of 1 3⁄  of module spacing. The sum of 1007 
sweeps across modules resembled a torch beam radiating outwards: as distance from the origin 1008 
increases, the footprint broadens and decays in intensity (Extended Data Fig. 10a). We approximated 1009 
this shape by multiplying two simple spatial functions: (1) an inverse distance function and (2) an 1010 
angular weighting function taken from a Von Mises distribution.  1011 

If we let 𝑑𝑑 and 𝜃𝜃 denote the distance and direction from the agent’s [𝑥𝑥,𝑦𝑦]-position 𝐱𝐱𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 to a location 1012 
𝐱𝐱 in the environment (𝑑𝑑 = � 𝐱𝐱 −  𝐱𝐱𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 � and 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱 −  𝐱𝐱𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂)), the intensity of the sweep 1013 
footprint at location 𝐱𝐱 for a chosen sweep direction 𝛼𝛼 becomes: 1014 

𝑓𝑓(𝐱𝐱) = 1/𝑑𝑑2 exp(𝜅𝜅 cos(𝜃𝜃 − 𝛼𝛼)) 1015 

where 𝜅𝜅 is the angular concentration parameter of a Von Mises distribution, which determines the 1016 
angular width of the sweep footprint. A value of 𝜅𝜅 = 5 was used initially (Fig. 6a) to reflect the 1017 
empirically derived sweep-shape (Extended Data Fig. 10a), but a parameter search revealed that stable 1018 
alternation emerged across a range of 𝜅𝜅-values (Extended Data Fig. 10c).  1019 

To run the simulation of sweeps on a linear track, we created an artificial scale-free 2D environment, 1020 
binned into a 401-by-401 square grid. The agent was moved along a linear path at constant speed and 1021 
asked to generate a sweep every time step, by placing a sweep footprint in a specified direction. The 1022 
cumulative trace of sweeps ℎ at time 𝑡𝑡 was computed by summing the footprints of previous sweeps: 1023 

ℎ𝑡𝑡(𝐱𝐱) = �𝑓𝑓𝑖𝑖(𝐱𝐱)
t-1

i=1

 1024 

The optimal sweep direction 𝛼𝛼optimal at time t was chosen by finding the angle 𝛼𝛼 that minimized the 1025 
spatial overlap between the current sweep 𝑓𝑓 and the cumulative trace of previous sweeps ℎ: 1026 

𝛼𝛼optimal = argmin  
α

�𝑓𝑓(𝐱𝐱𝑖𝑖,𝛼𝛼) ℎ(𝐱𝐱𝑖𝑖)
N

i=1

 1027 

where the spatial overlap was computed by multiplying the current sweep footprint and the 1028 
cumulative sweep trace and summing across all N spatial bins. 1029 

Next, the simulation was run using the recorded behavioral trajectory of rats running in the open field. 1030 
Real-world positions were mapped onto the agent’s simulated environment by setting the agent’s bin 1031 
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size to 1 cm and placing the open field at the center of the bin grid. The agent’s time steps were yoked 1032 
to the times of  theta cycles in the experimental data, and for each theta cycle, the agent deployed the 1033 
above algorithm to select the optimal sweep direction. To prevent the agent from being influenced by 1034 
sweeps that occurred at similar locations far in the past, we introduced a temporal decay factor 𝜏𝜏 1035 
(range: 0-1), that exponentially discounted the intensity of the cumulative coverage trace at each time 1036 
step:  1037 

ℎ(𝐱𝐱) = ℎ(𝐱𝐱) 𝜏𝜏𝑑𝑑𝑑𝑑   1038 

Since the agent’s sweep-direction choices are determined solely by its previous decisions, we call this 1039 
the “free” version of the model. We also formulated a “hybrid” version, where the agent was tasked 1040 
with predicting the optimal sweep at each time step, given the directions of previous sweeps decoded 1041 
from neural data. This was implemented by using the latent internal direction (LMT), instead of the 1042 
agent’s past sweep directions, to compute the cumulative sweep trace. Four animals with were 1043 
excluded from these analyses, since internal direction could not be reliably estimated in these animals. 1044 

Histology and recording locations 1045 
The rats received an overdose of pentobarbital, after which they were perfused intracardially with 1046 
saline followed by 4% formaldehyde. The brains were extracted and stored in 4% formaldehyde, and 1047 
later cut in 30-µm sagittal or coronal sections with a cryostat. The sections were Nissl-stained with 1048 
cresyl violet and probe shank traces were identified in photomicrographs. In 14 animals, recording 1049 
sites on the probes targeting MEC-parasubiculum were aligned to the histological sections as done 1050 
previously5 by using as reference points (1) the tip of the probe shank and (2) the intersection of the 1051 
shank with the brain surface. The aligned shank map was then used to calculate the anatomical 1052 
locations of individual recording sites (Extended Data Fig. 1). Estimates of anatomical locations are 1053 
subject to some degree of measurement error, due to the limited accuracy of the alignment process 1054 
and the fact that units may be detected some distance away from the recording site.  1055 

Data analysis and statistics 1056 
Data analyses were performed with custom-written scripts in Matlab and Python. Clustering analyses 1057 
of grid cell modules and bursting subtypes of grid cells were conducted using the python package 1058 
Scanpy75 and its dependencies. The latent manifold tuning model and the functional connectivity 1059 
analyses were implemented by adapting publicly available code from Wu et al.45 and Spivak et al.68, 1060 
respectively. Statistical analysis was performed in Matlab. Circular statistics were computed using the 1061 
Circular Statistics Toolbox76. Results are reported with means ± s.e.m. unless otherwise indicated. 1062 
Statistical tests were nonparametric and two-tailed, unless otherwise indicated. The Mann-Whitney U 1063 
test was used for unpaired comparisons, and the Wilcoxon signed-rank test was used for paired 1064 
comparisons. Pearson correlations were used unless otherwise indicated. Power analysis was not used 1065 
to determine sample sizes. The study did not involve any experimental subject groups; therefore, 1066 
random allocation and experimenter blinding did not apply and were not performed.  1067 

Data availability 1068 
The datasets generated during the current study will be available at… (to be provided before 1069 
publication). 1070 

Code availability 1071 
Code for reproducing the analyses in this article are available at… (to be provided before publication). 1072 
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Figure 1. Grid cells and place cells sample ambient space with alternating “sweeps”  

a. Theta-paced sweeps in ensembles of MEC and parasubiculum cells. Top: Summed spike counts from 
co-recorded MEC and PaS cells during a 3.5s epoch, showing 8-10 Hz theta-rhythmic population 
activity (Rat 25843, session 1). Bottom: Sweeps decoded from joint activity of all MEC-parasubiculum 
cells during the four successive theta cycles highlighted above. Panels show snapshots of the 
recording arena at the beginning of each theta cycle. White dashed line shows animal’s future 
trajectory. Decoded position throughout each theta cycle is plotted as colored blobs (position bins 
where correlation values exceeded the 99th percentile) with color indicating time within sweep. 
Note that sweeps progress outwards from the animal and are directed to the animal’s left and right 
side in alternation. Right: Decoded sweeps during the whole 3.5s period shown in top panel (one 
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sweep per theta cycle). Each sweep is plotted as a line with colors corresponding to even and odd 
theta cycles. 

 
b. Sweeps rotated to head-centered coordinates (head orientation is vertical) and averaged across 

theta cycles where the preceding sweep was directed to the left (red) or to the right (blue). Data 
from 16 animals is shown (one pair of red/blue lines per animal). Note that the decoded position 
sweeps forward to alternating sides, in the opposite direction of the previous sweep (no red sweeps 
on left side, no blue sweeps on right side).  

 
c. Sweeps systematically alternate between left and right. Temporal autocorrelograms of angles 

between successive sweep directions, discretized in theta cycles, across all recording sessions. Grey 
dots show values for individual animals (n=16). Mean and s.d. are indicated by red dots with 
whiskers. Theta cycles are indicated by alternation of grey and white background shading. Note 
peaks at every other theta cycle, indicating rhythmic alternation from side to side. 

  
d. Sweeps are strongly expressed by grid cells. Left and center: Position was decoded separately from 

grid cells or a size-matched random selection of non-grid cells, repeated 100 times, within the 
recording region from the same session in the same animal. Plots show averaged decoded position 
for grid cells (left) and non-grid cells (right) during theta cycles that followed left (red) or right (blue) 
sweeps detected in the whole-population decoder (1 pair of lines per animal), plotted in head-
centered coordinates as in b. Note that the decoded position sweeps outwards more uniformly when 
analysis is restricted to grid cells. Right: Fraction of theta cycles with detected sweeps when decoding 
position from grid cells or non-grid cells. Dots connected by lines show data from the same session 
in the same animal (n=16).  

 
e. Grid modules express sweeps at different scales. Left: Colored blobs show correlation between 

instantaneous population vectors and reference maps for a single grid module during a single sweep 
(plotted as in a; color corresponding to temporal order of decoding frames). Right: Running 
trajectory of the rat (grey) during a 3.5s period (same as in a), with trajectories of alternating sweeps 
decoded from single-module population activity (orange/blue for even/odd theta cycles). Note 
coordinated left-right alternation and the relationship between the grid spacing and sweep 
trajectory length.  

 
f. Sweeps of grid cells in different modules are aligned in direction. Heat maps show joint distribution 

of head-centered sweep directions (left/right) for pairs of simultaneously recorded modules during 
one recording session (same as e). Note strong correspondence between left/right sweeps across 
the modules.  

 
g. Sweep length is proportional to grid spacing. Top: Histograms showing distribution of sweep lengths 

(measured from start- to end-position of each sweep) in the same 3 simultaneously recorded grid-
cell modules shown in e (module spacing in parenthesis). Bottom: Mean sweep lengths for all 
modules. Each dot corresponds to one grid module; different animals are plotted with different 
colors (1 session per animal).  
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h. Example sweep decoded from hippocampal ensemble activity (all cells) during foraging in an open 
field arena (plotted as in a and e).  

 
i. Hippocampal sweeps follow MEC-parasubiculum sweeps. Top: Each panel shows decoded sweeps 

from co-recorded hippocampal cells (green) and MEC-parasubiculum cells (blue) over 5 successive 
theta cycles. The rat’s current location and its future path are indicated by arrowhead and grey line. 
Note alignment of hippocampal and MEC-parasubiculum sweeps. Bottom: Plot shows the forward 
progression of decoded sweeps as a function of time from the beginning of each theta cycle during 
an example recording session. The offset between decoded position and lowpass-filtered decoded 
trajectory was projected onto the rat’s head axis and averaged across all theta cycles in the session. 
Note that hippocampal sweeps are delayed relative to MEC sweeps. 

 
j. Left: Heat map showing density of sweep directions (head-centered) decoded from co-recorded MEC 

and hippocampal cells. Note directional alignment of hippocampal and entorhinal sweeps. Right: 
Fraction of theta cycles where sweeps from both regions pointed to same side of the animal’s head 
axis for 6 animals with paired hippocampus/MEC-parasubiculum recordings. Red dot and whiskers 
indicate mean and s.d. 

 
k. Place-cell sweeps lag behind sweeps in grid cells. Temporal cross-correlation of decoded positions in 

MEC and hippocampus for 6 animals (1 session per animal). Decoded position was referenced and 
rotated as in i (bottom panel) before cross-correlation. Cross-correlations from individual animals 
are plotted as individual lines. Note peak correlation values at positive lags, indicating that sweeps 
in the hippocampus are delayed relative to MEC. Mean and s.d. are indicated by red dot and 
whiskers. 
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Figure 2. Sweeps are aligned with an alternating direction signal in parasubiculum 
a. Many theta-modulated cells in parasubiculum are broadly tuned to the animal’s head direction. Top 

row: circular firing rate plots showing tuning to head direction (HD) for four example cells. Middle: 2D 
position firing rate maps for the same cells. Bottom row: temporal auto-correlograms of the cells’ firing 
rates. Arrows indicate temporal lags corresponding to the second theta peak (~250 ms). Note 
prominent theta rhythmicity, varying degrees of theta cycle skipping (stronger in the first two cells), 
and conjunctive grid tuning in some cells.  

 
b. Theta-rhythmic directional cells are localized primarily in parasubiculum. Left: Serial sagittal sections 

from rat 25953 showing tracks from a 4-shank Neuropixels 2.0 probe. Sections are organized from 
lateral to medial and each section contains the track from one of four recording shanks (~250 µm 
apart). Parasubiculum and MEC are highlighted in yellow and orange, respectively. Right: Density of 
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theta-rhythmic ‘internal direction’ cells (green) and pure grid cells (blue) along each of the probe 
shanks (quantified as proportion of all cells at corresponding depths). Anatomical location of recording 
sites is indicated by background color. Black portions of probe shanks show active recording sites 
(combining 7 sessions with different site configurations). 

 
c. Raster plot showing flickering of direction-tuned activity around the animal’s head direction on 

successive theta cycles. Top: Solid line shows head direction of a rat (rat 25843, session 1) during 30 s 
of running in an open arena. Black rasters indicate spikes fired by 533 co-recorded internal direction 
cells, mostly from parasubiculum. Cells (rows) are sorted according to preferred firing direction. 
Bottom: Directional activity in parasubicular direction cells is dominated by theta-timescale 
population dynamics. Population activity is shown for a 4 second extract from top panel. Theta cycles 
are indicated by alternating grey and white background shading. Discrete, theta-paced “packets” of 
population activity alternate between the left and right of the animal’s head direction (solid blue line). 
Green circles (in right half of plot) show the decoded direction in each theta cycle.  

 
d. The parasubicular direction signal is correlated with, but distinct from, tracked head direction (circular 

correlation r=0.79 ± 0.006; absolute mean offset 4.7 ± 0.2 deg; 16 animals). Left: Plotting the offset 
between head direction and decoded direction in a polar histogram shows a systematic relationship 
between the two variables (rat 25953, session 4). Decoded direction is distributed at two principal 
angles on either side of head direction. Right: Distributions of decoded direction (relative to head 
direction) for all 16 animals. Each red or blue line shows the distribution of decoded directions when 
the previous decoded direction was oriented to the left (red) or right (blue). 

 
e. Decoded direction systematically alternates between left and right on successive theta cycles.  Shown 

are temporal autocorrelograms of angles between decoded direction in successive theta cycles, for all 
animals. Grey dots correspond to individual animals. Mean and s.d. are indicated by red dots with 
whiskers. Theta cycles are indicated by grey and white background shading. Note peaks at every other 
theta cycle, indicating rhythmic alternation of decoded direction from side to side.  

 
f. Sweeps are aligned to the direction signal. Top: Decoded direction (green arrows) and sweep direction 

(grey patches) over 12 successive theta cycles (~1.5 seconds, same session as c) plotted with reference 
to the animal’s head direction (horizontal line). Theta cycles are evenly spaced along the horizontal 
axis. Note that internal direction and sweeps are aligned to each other.  

 
g. Left: Heat map showing joint distribution of decoded direction and sweep direction (both in head-

centered coordinates) across theta cycles throughout the recording session shown in c and f. Right: 
Alignment of decoded direction and sweeps across animals was quantified by computing the fraction 
of theta cycles where they pointed to same side of the animal’s head axis. Each dot corresponds to 
one animal. Means (± s.d.) are indicated with colored dots (whiskers).   
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Figure 3. A microcircuit for directing sweeps 
a. Identification of putative monosynaptic connections. Left: Dots show locations of co-recorded internal 

direction cells (green), conjunctive grid cells (pink) and pure grid cells (blue) along each of the four 
recording shanks during an example session. Lines show detected connections between pairs of cells 
with color indicating the functional identity of the presynaptic cell. One example pair of connected 
cells (conjunctive grid to pure grid) is highlighted. Right: Cross-correlogram between the firing rates of 
the two cells highlighted in the left panel. Blue rectangle indicates the time window (0.7-4.7ms) used 
to detect putative monosynaptic connections. A clear, short-latency positive peak (red arrow) in the 
cross-correlogram is consistent with the possibility of a monosynaptic excitatory connection from cell 
1 to cell 2.  

 
b. Estimated connection probability (in %, means and standard deviations, data pooled across 16 

animals) for projections originating from each of three functional classes (internal direction (‘ID’), 
conjunctive grid (‘conj’), and pure grid (‘grid’)). Note connections from internal direction cells to 
conjunctive grid cells and from conjunctive grid cells to pure grid cells, in addition to recurrent 
connections within each class.  

 
c. A cell pair consisting of an internal directional cell (green) with a putative projection to a conjunctive 

grid cell (pink). Left to right: Temporal cross-correlogram of firing rates, directional tuning, position 
tuning (rate expressed by color intensity, ranging from 10th to 99th percentile of each cell’s firing rate 
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map) for the putative pre- and postsynaptic cells. Note similar preferred direction of the two cells 
(middle panel). 

 
d. Preferred directions for all pairs (dots) of putatively connected internal direction to conjunctive grid 

cells (150 pairs from 13 animals).  
 
e. Schematic of inferred connectivity between internal direction cells and conjunctive grid cells. Internal 

direction cells relay the direction signal to conjunctive grid cells with similar directional tuning 
(preferred directions indicated by short arrows). 

 
f. A cell pair consisting of a conjunctive grid cell (pink) projecting to a pure grid cell from the same grid 

module (blue). Left to right: Temporal cross-correlogram of firing rates, directional tuning and position 
tuning for putative pre- and postsynaptic cell, plotted as in c. The conjunctive grid cell projects to a 
pure grid cell with position receptive fields that are shifted along the preferred direction of the 
conjunctive cell. The direction and magnitude of this offset (green arrow, right panel) was found by 
cross-correlating the spatial rate maps of the cells. 

 
g. Preferred direction of pre-synaptic conjunctive grid cells and grid phase offset direction between pre- 

and postsynaptic cell for all pairs (dots) of putatively connected conjunctive grid to pure grid cells (86 
pairs from 12 animals).  

 
h. Schematic of inferred connectivity between conjunctive grid cells and pure grid cells. Conjunctive grid 

cells project asymmetrically to pure grid cells, and excite pure grid cells with a spatial position phase 
offset that is aligned to the conjunctive cell’s preferred direction. In this connectivity scheme, 
activation of a set of conjunctive cells with a particular preferred direction leads to a sweep-like 
trajectory in that direction in postsynaptic grid cells. 
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Figure 4. Sweeps extend to never-visited locations 
a. Decoded (‘internal’) direction signals (population-vector correlation, based on head-direction tuning 

curves from the same session, all MEC-parasubiculum cells) point towards inaccessible and never-
visited locations along an elevated linear track (left) or a wagon-wheel track (right). Panels show 
decoded direction (arrows of constant length) for successive theta cycles over the course of a 3-s 
running segment in each task. Alternating theta cycles are plotted with different colors. The running 
trajectory from the segment is plotted in black, while the full trajectory is plotted in light grey. 
 

b. Sweeps on the wagon-wheel track decoded from a single grid module, based on rate maps from a 
preceding open field recording (inset shows example rate map). Decoded position during each theta 
cycle is plotted on top of the animal’s running trajectory. 

 
c. A latent manifold tuning (LMT) model allows decoding to include never-visited locations. The LMT 

model is fitted to the neural data by iteratively updating a latent 1-D and 2-D trajectory. Orange and 
blue arrows/lines show latent direction (top) and position trajectory (bottom) during 17 theta cycles 
from a wagon-wheel session at different stages of the model-fitting (left to right). The full running 
trajectory is plotted in light grey. The latent direction and position signals are initialized with the rat’s 
actual head direction and running trajectory (iteration 1) but evolve into sweep-like trajectories that 
cover the 2-D space surrounding the maze (iteration 150). 
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d. Sequence of four successive sweeps and internal direction signals during navigation on an elevated 

wagon-wheel maze (Bayesian decoder, based on fitted LMT tuning curves for all MEC-parasubiculum 
cells). Each video frame shows the maximum-likelihood direction (green arrow; length is fixed) and 
position probability (colored bumps, corresponding to positions where p > 99.9th percentile of each 
frame) during one sweep. Note that sweeps travel into the inaccessible space inside and outside the 
navigable track. 

 
e. The stereotypical left-right alternating pattern of internal direction and sweep signals is preserved in 

1-D environments. Top row: Circular histogram showing head-centered distribution of fitted LMT 
internal direction values from one example session on the wagon-wheel track (left) and on the linear 
track (right). Note that internal direction is bimodally distributed around the animal’s head direction 
(wagon wheel: 23.7 ± 0.7 deg to either side, left-right alternation in 76.1 ± 5.7% of theta cycles, 2 rats; 
linear track: 36.4 ± 0.1 deg to either side, left-right alternation in 80.7 ± 0.3% of theta cycles, 5 rats), 
like in the open field (Fig. 2). Bottom row: Lines show sweeps averaged across each recording session 
(plotted as in Extended Data Fig. 2e), during theta cycles that followed a left (red) or right (blue) sweep. 
Each pair of red and blue lines corresponds to one animal (wagon-wheel: 2 rats; linear track: 5 rats). 

 
f. Out-of-bounds sweeps reliably coincide with internal direction pointing towards the same location. 

Sweeps terminating inside and outside the environment boundaries are similarly coupled to the 
internal direction signal. Each plot shows a color-coded 2D histogram of conditional occurrences of 
the two LMT latent variables – internal direction and sweeps (in head-centered coordinates) – for 
sweeps that terminate inside (top) or outside (bottom) visited portions of the environment in one 
animal (rat 25843, same session as a-c). The circular correlation coefficient between head-centered 
internal direction and sweep directions was similar when analysis was confined to theta cycles where 
sweeps terminated inside vs. outside the wagon wheel track: r=0.83 vs. 0.82, 1.2% difference. Similar 
results were obtained in a second rat with fewer cells (not shown): r=0.34 vs. 0.35, 2.9% difference.  

 
g. Grid-cell maps extend across never-visited space. Plots show firing-rate maps of the same grid cell in 

(top row) the wagon-wheel session shown in a-c, or (bottom row) an open-field session recorded on 
the same day. Left column based on the original position data; right column based on latent position 
fitted by the LMT model. The LMT model infers the continuation of grid-like periodic tuning to 
locations beyond the environmental boundaries. 

 
h. Hippocampal sweeps extend into never-visited locations. Heatmap of sweep end positions as inferred 

by the LMT model when fitted to hippocampal data from one example session. Note that many sweeps 
terminate outside the confines of the open field arena (red box). A total of 17.6 ± 0.6% (mean ± s.e.m.) 
of hippocampal sweeps terminated outside the open field arena (5 rats).  

 
i. Place-cell maps include never-visited space. Plots show firing-rate maps for two hippocampal place 

cells during an open-field session based on (left) original tracked position, (middle) latent position 
extracted from hippocampal activity, and (right) latent position extracted from co-recorded MEC-
parasubiculum cells. Note that the two LMT models agree, both inferring place fields outside the walls 
of the arena.  
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Figure 5. Sweeps and internal direction signals persist during sleep. 
a. Sweeps and alternating internal direction signals are preserved during REM sleep. Top: Raster plot 

with spike times (black ticks) of internal direction cells sorted by preferred firing direction, and tracked 
head direction (solid blue line), during a 2.5 s extract from an epoch of REM sleep. Note theta-paced, 
left-right alternating packets of direction-correlated activity. Bottom: Decoded sweeps (filled circles, 
color-coded by time) from grid cells of one module and decoded internal direction from direction-
tuned cells (green arrows) during 4 successive theta cycles (labelled 1-4 in the top panel). Grey line 
shows the reconstructed trajectory after smoothing with a wide gaussian kernel (σ = 100 ms) over the 
entire 2.5 s period. For both position and internal direction, a Bayesian decoder was used, using tuning 
curves estimated by the LMT model during an open field foraging session from the same recording 
day. 

 
b. Internal direction-aligned, non-rhythmic trajectories during SWS. Top: Raster plot (as in a) showing 

activity of internal direction cells during a 3 s extract from SWS. Note sharp transitions between up 
and down states (with and without spiking activity, respectively). Bottom: Decoded position from a 
single grid module (as in a) during each of three highlighted segments in the top panel. Note sweep-
like position trajectories in the same direction as the decoded internal direction (green arrows) in each 
segment of the up-state.   
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c. Decoded direction alternates from side to side during wake and REM, but not during SWS. Top: 
Distribution of angles between decoded direction (same decoding method as a) at successive peaks 
of activity, when the previous decoded direction was directed to the right (red) or left (blue). Bottom: 
Autocorrelogram of decoded direction across brain states. Note rhythmic alternation during wake and 
REM. 

 
d. Top: Decoded trajectories for 100 example sweeps from one example grid module (same decoding 

method as a), sorted based on whether the previous decoded direction pointed to the right (blue) or 
left (red). Since spatial representations are decoupled from physical movement during sleep, sweep 
trajectories are referenced to the low-pass-filtered decoded trajectory (smoothed with a 100 ms 
gaussian kernel) and aligned to a “virtual head direction” (low-pass-filtered decoded direction). 
Individual sweeps are plotted as separate lines. Note that during wake and REM most sweeps are 
directed forward to the opposite side of the previous sweep (few red sweeps on left side, few blue 
sweeps on right side). Bottom: Averaged sweeps across brain states for all 23 grid modules of all 9 
animals. Sweeps were referenced, rotated and sorted as in the top panel, normalized by the grid 
module’s spacing, and then averaged across all theta cycles. Each pair of red and blue lines 
corresponds to one module. 
 

e. Sweeps are aligned with direction signals in all brain states. Panels show distribution of angles 
between decoded (same method as a) direction and position (sweep) signals during wake, REM sleep 
and SWS (left to right). Note alignment in all states. Individual modules are plotted as separate lines. 
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Figure 6: Sweeps sample nearby space with optimal efficiency 
a. Simulation of a sweep-generating agent deploying an algorithm that minimizes each sweep’s overlap 

with preceding sweeps. The agent is moved along a scale-free linear path and generates a sweep at 
each time step by placing a beam-like sweep footprint in a specified direction. The selected sweep 
directions spontaneously alternate between two directions relative to the direction of movement.  

 
b. Alternation of sweep directions in 1,000 runs of the simulation in a. Circles show mean alternation 

score (range 0 to 1) for each time step and error bars indicate the 5th and 95th percentiles across runs. 
Horizontal line indicates expected alternation score for random, uniformly distributed angles. Note 
reliable and near-perfect alternation within few steps of the simulation. 

 
c. The agent accurately predicts empirical sweep directions. Unlike the “free” simulations in a-b, this 

“hybrid” version of the model predicts the direction of a sweep in a given theta cycle (blue), given the 
recent history of decoded direction values (green). 

 
d. Internal direction fitted by the LMT model (arrows) and sweep directions predicted by the agent 

(colored patches) during 16 theta cycles in an open field session (both plotted in a head-centered 
reference frame). Theta cycles are evenly spaced along the horizontal axis. Note alignment between 
decoded and predicted directions.  

 
e. Running speed modulates the distribution of sweep direction. Top row: distribution of head-centered 

sweep directions chosen by the agent in an open-field session (same as in d, but simulation now run 
in “free” mode without influence of decoded direction), shown separately for different running-speed 
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bins. Bottom row: distributions of head-centered internal direction decoded from empirical data 
(same session). Note that in both cases, the distribution’s bimodality increases with running speed. 

 
f. Alternation of sweep directions increases with speed. Left: Average alternation score of the sweep 

directions chosen by the agent in “free” mode during an open field session, binned at different running 
speeds. Each set of connected dots shows data from a different animal. Horizontal line indicates 
expected alternation score for random, uniformly distributed angles. Right: same, but for decoded 
(“empirical”) internal direction from the same 12 animals.  
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Extended Data Fig. 1: Recording locations and anatomical segregation of functional cell 
types 
a. Anatomical separation of rhythmic direction-tuned cells (‘internal direction cells’), conjunctive grid 

cells and pure grid cells. Left: Serial sagittal sections from rat 25953 (also shown in 2b) showing tracks 
from a 4-shank Neuropixels 2.0 probe. Sections are organized from lateral to medial and each section 
contains the track from one of four recording shanks (~250 µm apart; section with clearest track is 
shown). Borders between brain regions are indicated with dashed lines (MEC, medial entorhinal 
cortex; PaS, parasubiculum). Middle: Density of internal direction cells (green), conjunctive grid cells 
(pink) and pure grid cells (blue) along each of the probe shanks, estimated by counting the number of 
functional cells recorded in 50 µm bins along the probe divided by the total number of recorded cells 
in each bin. To maximize anatomical coverage of the distribution plot, cell counts are pooled across 7 
recording sessions with different configurations of active recording sites (only 384 out of 5,120 sites 
can be recorded at any given time). Black portions of probe shanks show sites that were recorded 
from. Right: Percentage of recorded cells in MEC and parasubiculum belonging to each of the three 
functional cell classes (MEC layer II: 43.7% pure grid cells, 0.7% conjunctive grid cells, 3.8% direction-
tuned cells; MEC layer III: 34.4% pure grid cells, 0.9% conjunctive grid cells, 1.1% internal direction 
cells; PaS: 4.8% pure grid cells, 12% conjunctive grid cells, 34.9% internal direction cells; 27,413 cells 
from 14 rats, 2-7 recording sessions per rat). Note that most pure grid cells in the sample were located 
in MEC layers II and III (3,377/3,861 or 87.4%), while most of the conjunctive grid cells (1,224/1,285 
or 95.3%) and internal direction cells were located in parasubiculum (3,547/3,796 or 93.4%). 

 
b. Sagittal histological sections with probe tracks for four additional representative animals with probes 

in MEC-parasubiculum (reconstructions were performed for 14 of the 16 animals with MEC-
parasubiculum implants). Animal identity and hemisphere are indicated above each section for the 
four animals. For each implanted probe shank, the section with the clearest track in MEC-
parasubiculum is shown. Insets show, for each animal, the density of internal direction cells, 
conjunctive grid cells and pure grid cells along the probe shanks (as in a) across multiple recordings 
(range: 2-4). Red arrowheads indicate the most dorsal enabled recording site for each probe. Note 
that functional cell types are anatomically segregated in most animals. 

 
c. Histological sections (coronal and sagittal) showing two representative examples of recording 

locations in hippocampus. Arrowheads indicate the dorsoventral range of recording sites that were 
included in the study. 
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Extended Data Fig. 2: Left-right alternating sweeps in grid cells and place cells 
a. Number of detected sweeps scales with number of recorded MEC-parasubiculum cells (left), number 

of grid cells (middle), and number of spikes per theta cycle (right), suggesting that the reported 
fraction of theta cycles with sweeps is underestimated. Data from individual animals are plotted as 
dots (left and middle) or lines (right). 
 

b. Stacked firing-rate autocorrelograms (±350 ms) for all theta-modulated grid cells (2,399/3,194 or 
75.1% of grid cells were theta-modulated), sorted by tendency to fire on alternating theta cycles. Firing 
rates are color-coded. Lags corresponding to repetitions of the ~8 Hz theta rhythm is indicated with 
red arrowheads. Note that a large fraction of theta-modulated grid cells (1,289/2,399 or 53.7%) display 
theta skipping, with prominent peaks at lags corresponding to every other theta cycle. 
 

c. Left: Scatter of directions of all sweeps and tracked head direction at the corresponding times during 
one example recording session (same session as Fig. 1a). Sweep directions are distributed bimodally 
around the animal’s head direction (circular correlation between sweep direction and head direction 
r=0.55 ± 0.007, p<0.001 in all 16 animals, absolute mean offset 3.1 ± 0.7 deg, mean ± s.e.m. across 16 
animals). Right: Histogram of angles between successive sweeps. Note that these angles are clustered 
around ±60 deg. Sweeps directed to the right or left of the previous sweep are defined as ‘right’ and 
‘left’ sweeps, respectively.  

 
d. Circular histograms of head-centered sweep directions for the 10 animals with the highest fraction of 

theta cycles with detected sweeps. Sweeps are rotated to head-centered coordinates (head 
orientation is vertical) and sorted based on whether the previous sweep was directed to the right 
(blue) or left (red). Note clustering of sweeps around two principal head-centered directions offset 
~30 deg to the left and right of the animal’s head direction.  

 
e. Sweeps averaged across theta cycles for all cells of a grid module, as in Fig. 1b, but now showing all 

modules. Sweeps are plotted with reference to the lowpass-filtered decoded trajectory (origin) and 
rotated to head-centered coordinates (head orientation is vertical). Sweep lengths are normalized by 
the grid spacing of each module. Note that sweeps have similar lengths relative to the scale of the grid 
cells. 

 
f. Averaged sweeps decoded from hippocampal ensemble activity (8 rats), plotted as in Fig. 1b. 

Hippocampal sweeps alternated from side to side in 78.5 ± 1.1% (mean ± s.e.m.) of successive triplets 
of theta cycles with detected sweeps, significantly more than when sweep directions were shuffled 
(>99.9th percentile for all animals).  

 
g. Forward progression of decoded sweeps (projected onto the rats’ head axis) as a function of time from 

the beginning of each theta cycle for MEC-parasubiculum (left) and hippocampus (right) for all 6 rats 
with dual HC/MEC implants, plotted as in Fig. 1i. Data from each of the rats is plotted as separate lines 
(1 session per rat). Note that hippocampal sweeps are delayed relative to MEC sweeps.  
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Extended Data Fig. 3: Alternating sweeps and directional signals can be decoded with 
several methods 
a. Example sweeps decoded from all co-recorded MEC/PaS cells (same time period as Fig 1a) using 

different decoding methods. The Bayesian decoder was trained with either standard rate maps (top 
row) or the fitted tuning curves from the latent manifold tuning model (bottom row; Fig 4, Extended 
Data Fig. 8). Sweeps are similar with all methods, but can be extracted with higher fidelity by the LMT 
model. 
 

b. Single-module sweeps extracted by PV-correlation decoding (top; as in Fig. 1e) and by the LMT latent 
variables (bottom). Note that the two methods yield similar results. 

 
c. Left: Alternating sequences in decoded internal direction are similar regardless of the decoding 

method used. In each plot, rows of black ticks indicate spike times from 533 rhythmic directional cells, 
with cells vertically sorted by preferred direction (as in Fig. 2c). Colored dots show the extracted 
population signal using 4 different decoding methods (colors indicate odd and even-numbered theta 
cycles). Note that all methods extract a left-right alternating directional signal that follows the angles 
of the packets of spiking activity.  
 

d. Left: Circular distribution of head-centered internal direction (as in Fig 2d). Right: auto-correlograms 
of internal direction (as in Fig 2e) for each of the decoding methods.  
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Extended Data Fig. 4
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Extended Data Fig. 4: Bursty MEC layer II grid cells are strong carriers of the sweep signal 
a. Three subclasses  of grid cells with distinct temporal dynamics are revealed by clustering of firing-rate 

temporal autocorrelograms. Top: Scatter plot showing burst scores (Methods) and theta phase 
modulation for all recorded grid cells (dots). Note three separable clusters of grid cells. Two of the 
subclasses fire in bursts (“bursty I” and “bursty II”) and can be dissociated from each other based on 
autocorrelogram shape and theta modulation. ‘Bursty I’ grid cells include non-directional ‘pure’ grid 
cells in MEC layer II. ‘Bursty II’ grid cells include most conjunctive grid cells in parasubiculum and some 
non-directional ‘pure’ grid cells in MEC layer II. The third subclass (‘non-bursty’) does not fire in theta-
rhythmic bursts. Histogram above scatter shows bimodal distribution of burst scores in the cell sample, 
with thresholds for binary classification (bursty or non-bursty) indicated by red vertical lines (cells with 
burst scores between the two lines were unclassified). Bottom: One example autocorrelogram (±50 
ms) from each grid cell subclass is shown to the left. Middle and right: Stacked autocorrelograms (±50 
ms and ±350 ms) from 500 example grid cells in each subclass. Firing rate is color-coded. Cells are 
sorted by cluster identity (top to bottom). Note prominent theta-rhythmic activity in bursting grid cells. 

 
b. Anatomical segregation of grid-cell subclasses (see a for reference). Left: Histological section from rat 

25843 with electrodes in MEC layer II and parasubiculum (labelled ‘PaS’). The proportions of recorded 
cells belonging to each grid-cell subclass at each location along the probe are shown as vertical 
histograms. Bursty II grid cells with conjunctive direction tuning (labelled ‘Conj.’) are plotted separately 
from pure bursty II grid cells. Note predominance of bursty grid cells in MEC layer II and parasubiculum. 
Right: Histological section from rat 25953 with electrodes in MEC layer III and PaS. Note predominance 
of non-bursty grid cells in MEC layer III. Based on inspection of probe tracks in 14 animals, 84.3% or 
2,316/2,747 of bursty I-II grid cells (excluding conjunctive grid cells) were found to be in MEC layer II, 
76.5% or 724/946 of non-bursty cells were in MEC layer III, and 92.7% or 1,240/1,337 of conjunctive 
grid cells were in parasubiculum (data from 2-7 sessions per animal). 

 
c. Left: Progression of sweeps decoded separately from bursty grid cells (top) and non-bursty grid cells 

(bottom) visualized by plotting the offset between decoded position and lowpass-filtered trajectory 
projected onto the rats’ head axis and averaged across all theta cycles in each session. Position was 
decoded from a random subsample of 100 bursty or non-bursty grid cells in all sessions with more 
than 100 co-recorded bursty grid cells (9 sessions from 10 animals, 1-3 sessions per animal) or non-
bursty grid cells (5 sessions from 3 animals, 1-3 sessions per animal). Each line corresponds to one 
session. Sweeps are more prominent when decoding from bursty grid cells. Right: Decrease in number 
of detected sweeps when omitting all grid cells or individual grid-cell subclasses from the decoder 
input data (all 16 animals, 1 session per animal, plotted as individual dots). Values are normalized by 
comparing the number of sweeps obtained when omitting a size-matched random selection of non-
grid cells (repeated 100 times per session) and dividing by the number of dropped cells. Means and 
s.d. are shown as red dots and whiskers. Excluding all grid cells (47-650 cells) or bursty grid cells (27-
567 cells) results in a significant drop in the number of detected sweeps (all grid cells: -6.2 ± 0.3% per 
100 dropped units, p=0.0008; bursty grid cells: -6.8 ± 0.4%, p=0.002, Mann-Whitney U test). Excluding 
non-bursty grid cells (3-244 cells) did not result in a significant change in the number of detected 
sweeps (+1.9 ± 0.2%, p=0.12). 

 
d. Bursty grid cells are maximally active when decoded position sweeps outwards. Top: Firing rate for 

bursty and non-bursty grid cells during the course of the theta cycle (summed across all co-recorded 
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cells, one line per session). Bottom: Offset between decoded position and lowpass-filtered decoded 
position as a function of theta phase (each line corresponds to one animal). Right: Polar histogram of 
preferred firing phase for all bursty and non-bursty grid cells. Note that bursty and non-bursty grid 
cells are active at opposing phases of the theta cycle32,77. 

 
e. Out-of-field spikes in bursting grid cells coincide with outgoing sweeps. Panels show firing locations 

for an example grid cell with dots corresponding to the animal’s location at the time of individual 
spikes and color corresponding to theta phase (left) or offset between decoded position and tracked 
position (right). Note that out-of-field spikes occur at phases where the decoded position sweeps 
ahead of the animal (180-270 deg with 0 deg as the phase of minimum activity). 

 
f. Spatial receptive fields of bursty grid cells can be sharpened by accounting for sweeps. Example rate 

maps plotted with respect to tracked position (top row) and rate maps with respect to decoded 
position (bottom row) for three bursty grid cells and one non-bursty grid cell (columns). Note that for 
bursty cells, grid patterns are clearer and sometimes only visible when activity is plotted as a function 
of decoded position, which sweeps outwards from tracked position, indicating that the cells are tuned 
to the position of the sweep rather than the animal’s tracked location. Difference in spatial information 
content (‘SI diff’) between the original and corrected rate maps is noted above each cell and indicates 
the strength of sweep-modulation.  

 
g. Sweep-modulation is primarily associated with grid-cell identity. Sweep modulation scores (difference 

in spatial information content between the original and corrected rate maps) are higher for bursty grid 
cells than for non-bursty grid cells (sweep modulation score for bursty grid cells: 0.27 ± 0.23, mean ± 
s.d. for n=2,766 cells;  non-bursty grid cells: -0.08 ± 0.13 (n=460 cells); non-grid cells, i.e. all putative 
excitatory cells excluding grid cells; 0.14 ± 0.23 (n=9,702 cells); 16 animals, 1 session per animal; Mann-
Whitney U=31.5 p<0.001 (2.1e-218) for bursty vs. non-bursty cells and Mann-Whitney U=28.8 p<0.001 
(5.5e-182) for bursty vs. non-grid cells).  
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Extended Data Fig. 5: The internal direction signal is expressed by a discrete population of 
cells in parasubiculum 
a. Left: Scatter plot of head direction (HD) and theta-phase tuning strength (mean vector length, MVL) 

for all recorded cells (12,300 cells, 16 animals, 1 session per animal). Each dot corresponds to one cell. 
Conjunctive grid cells are plotted in pink (23.3% or 848/3,632 of all direction-tuned cells were 
conjunctive grid cells). Note broad range of directional tuning and high proportion of theta-rhythmic 
cells (83.9% or 3,049/3,632 of all direction-tuned cells and 93.6% or 794/848 conjunctive grid cells 
were significantly modulated by theta oscillation phase). 

 
b. Stacked firing-rate autocorrelograms (±500 ms), color-coded by firing rate, for all theta-modulated 

direction-tuned cells, sorted by tendency to fire on alternating theta cycles. Lags corresponding to 
repetitions of the ~8 Hz theta rhythm are indicated with red arrowheads. Cells above the red horizontal 
line have positive scores and are thus classified as ‘skipping’ cells. Note that most cells (73.9% or 
2,253/3,049) display theta skipping, with prominent peaks at lags corresponding to every other theta 
cycle. 

 
c. Left: Directional tuning curves with respect to head direction (HD, brown) and decoded direction 

(green) for two example cells. Bottom: Temporal autocorrelogram of cells’ firing rates. The theta-
rhythmic cell is sharply tuned to the decoded internal direction (ID) signal, while the non-rhythmic cell 
is more strongly tuned to HD. Right: Histograms showing relative tuning width to HD vs ID from cells 
with significant tuning to either HD or ID (4,628 cells from 16 animals). Theta-rhythmic directional cells 
are more sharply tuned to ID than HD (90.5% or 3,527/3,897 of rhythmic directional cells were ID-
preferring; difference in tuning width, defined as two standard deviations of the tuning curve, to ID vs 
HD: -15.4 ± 13.4 deg, mean ± s.d., p<0.01 Wilcoxon signed rank test), while non-rhythmic cells are 
more strongly tuned to HD (73.4% or 408/556 of non-rhythmic directional cells were HD-preferring; 
difference in tuning width: 4.8 ± 12.1 deg, p<0.01, Wilcoxon signed rank test). Conjunctive grid cells 
were mostly ID-preferring (96.5% or 950/985, tuning width difference: -14.9 ± 9.5 deg, mean ± s.d., 
p<0.01 Wilcoxon signed rank test). This indicates that there are separate populations of directional 
cells that encode distinct signals. 

 
d. Sagittal histological section from rat 28304 with recording sites in parasubiculum and MEC layer V-VI, 

showing the track of a probe shank that went through deep layers of MEC before entering 
parasubiculum (PaS). Right: Distribution of rhythmic and non-rhythmic directional cells along the 
probe shank. Note the high proportion of non-rhythmic directional cells in MEC layer V-VI. 

 
e. Four example rhythmic directional cells recorded from parasubiculum (left) and four non-rhythmic 

directional cells recorded from the deep layers of MEC (right) in the animal shown in e. Tuning curves 
and autocorrelograms are plotted as in d. Note that the rhythmic cells are more strongly tuned to ID, 
while the non-rhythmic cells are sharply tuned to HD (resembling classical HD cells). 

 
f. Alternating sweep and direction signals are expressed by separate neural populations. Left: Stacked 

bar chart showing the number of functional cells recorded in an example animal (25843). Right: Heat 
map showing alignment between direction of sweeps decoded from pure grid cells (n=422) and 
internal direction decoded from simultaneously recorded pure internal direction (‘ID’) cells (n=269), 
both expressed in head-centered coordinates as in Fig. 2g. Conjunctive grid cells were excluded from 
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the decoder input data. Decoded sweep and direction signals remain aligned (both left or both right) 
in 88.1% of theta cycles where sweeps and direction signals were detected (correlation between 
sweep and direction signals: r=0.84, p<0.0001), suggesting that the observed dynamics is not caused 
by using the same cells to decode position and direction.   
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Extended Data Fig. 6
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Extended Data Fig. 6: Connectivity between functional cell types 
a. Estimated connection probabilities for all combinations of cell types. Bars show average connection 

rate across animals (as in Fig. 3b) and dots show connection rates in individual animals. Note that 
internal direction (ID) cells and conjunctive grid cells have putative connections to bursty pure grid 
cells, but not non-bursty pure grid cells (connection rates for direction-tuned to bursty: 239/124,914 
or 0.191±0.012%; ID to non-bursty: 4/63,404 or 0.006±0.003%; conjunctive to bursty: 188/32,433 or 
0.580±0.042%; conjunctive to non-bursty: 3/19,858 or 0.015±0.009%). Although estimated 
connection rates varied from animal to animal, the general pattern of connections was preserved.  

 
b. Examples of putative recurrent connections between internal direction (ID) cells. Each of the three 

rows shows firing rate cross-correlogram (left column) and directional tuning curves (right column) for 
an example pair of putatively connected ID → ID cells. Preferred firing direction (PFD) of each cell is 
indicated above directional tuning curves. Note similar directional tuning between connected cells. 

 
c. Three example cell pairs illustrating putative connections between ID-tuned cells (green) and 

conjunctive grid cells (pink). Plotted as in Fig. 3c. 
 
d. Three example cell pairs showing putative connections between conjunctive grid cells (pink) and pure 

grid cells (blue). Plotted as in Fig. 3f. 
  

e. Alignment of directional tuning for other putatively connected cell pairs. Scatter plot shows preferred 
directions of pairs of pre- and postsynaptic cells, plotted as in Fig. 3d. Note that all combinations of 
connected direction-tuned cells have similar directional tuning (angle between preferred directions: 
12.1 ± 58.0 deg, correlation: r=0.49, p<0.001 for 726 putative ID → ID pairs; angle: 4.6 ± 58.2 deg, 
correlation: r=0.48 p<0.001 for 323 putative conjunctive grid → ID pairs; and angle: 11.1 ± 58.0 deg, 
correlation: r=0.52 p<0.001 for 132 putative conjunctive grid → conjunctive grid pairs). 

 
f. Alignment of directional tuning is present across all recording sessions. Left: Preferred directions for 

all pairs of connected ID cells to conjunctive grid cells (angle between preferred directions: 8.4 ± 51.6 
deg, correlation: r=0.56 p<0.001, n=351 pairs from 40 sessions, 16 animals). Right: Preferred direction 
of pre-synaptic grid cells and direction of grid phase offset between pre- and postsynaptic cell for all 
pairs of putatively connected conjunctive grid cells and ‘pure’ grid cells (angle: -0.7 ± 64.1 deg, 
correlation: r=0.35 p<0.001, n=217 pairs from 40 sessions). Each dot corresponds to one pair of cells.  

 
g. Left: Tuning directions for randomly selected pairs of non-connected ID cells conjunctive grid cells 

(1,600 pairs, 100 pairs per animal). Absolute angles between tuning directions were significantly 
smaller for connected ID → conjunctive grid pairs than for randomly selected cell pairs (mean absolute 
offset: 42.0 deg vs. 84.6 deg (chance 90 deg), p=7.4e-17, Mann-Whitney U test). Right: Tuning 
directions for randomly selected pairs of non-connected conjunctive grid cells and pure grid cells 
(1,600 pairs, 100 pairs per animal). Absolute angles between preferred directions were significantly 
smaller for connected conjunctive grid → pure grid cell pairs than for randomly selected cell pairs 
(mean absolute offset: 34.1 deg vs. 91.5 deg, p = 1.5e-11, Mann-Whitney U test). 
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h. Connection rates between functional cell types estimated with different significance thresholds for 
identification of monosynaptic connections. Thresholds are specified in terms of standard deviations 
from the baseline firing-rate cross-correlograms. While connection probabilities are heavily 
dependent on detection thresholds (average connection probability ranging from 0.04% to 0.4%), the 
connection probability ratios are fairly stable. 

 
i. Alignment of tuning relationships of connected cell pairs is stable across significance thresholds for 

detecting monosynaptic connections. Left: directional tuning in ID → conjunctive grid cell pairs (mean 
angles: 12.7–16.3 deg, correlation coefficients 0.35–0.68); right: directional-tuning vs. grid-phase 
offset angle in conjunctive grid → pure grid cell pairs (mean angles between preferred directions: -2.0 
to -0.4 deg, correlation coefficients 0.34–0.79). 
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Extended Data Fig. 7: Sweeps extend into never-visited space and persist in novel environments 
and during darkness 
a. Left: Histogram of decoded directions (green bars) and head-direction occupancy (solid line) during an 

example linear-track session (top) and wagon-wheel session (bottom). Although the occupancy on the 
linear track is biased to the axes of the track (visible as peaks), the sampling of other angles was 
sufficient for subsequent decoding of the direction to either side of the track. Right: Circular histogram 
of decoded directions in head-centered coordinates. Note that the internal direction signal is 
bimodally distributed around the head axis also in 1-D environments. 
 

b. Theta cycle skipping during linear-track running. Heat maps show firing-rate temporal 
autocorrelograms (±500 ms) from all theta-modulated direction-tuned cells, grid cells and 
hippocampal cells (left to right). Each row corresponds to one cell; cells are sorted by theta-skipping 
index. Cells above the red arrowhead have positive scores and are thus classified as ‘skipping’ cells. 
One example autocorrelogram from a skipping cell is shown above each plot. The presence of cycle 
skipping in this task indicates representation of alternating directions and locations, incompatible with 
coding for the running path, but compatible with representation of unvisited space on either side of 
the track. 
 

c. Alternating direction signals and sweeps during linear-track running extracted from fitted latent 
variables. Left: Raster plot showing spike times of internal direction cells (sorted by preferred internal 
direction) during a lap on the linear track. Right: Decoded sweeps (lines) and internal direction 
(arrows) during four theta cycles of the lap (indicated by red square in left panel). Note that sweep 
and direction signals point to the same side of the track in an alternating pattern. 
 

d. Decoded direction and sweeps from consecutive theta cycles during a period of running along one of 
the open-field walls (white square). Sweeps and decoded direction are plotted as in Fig. 4d, with color 
indicating time within sweep. Note that sweeps travel through the opaque walls of the arena, in 
alignment with the internal direction signal. 
 

e. Sweeps span a 2D map even when navigation is confined to 1D paths. Scatter plot of sweep terminal 
positions during a recording session on the WW maze. Note that density of sweep terminal positions 
is similar for visited and unvisited locations (density of sweep endpoints in visited vs unvisited portions 
of the area inside the outer circumference of the maze: 51.2 ± 11.8% vs 50.2 ± 4.1%, mean ± s.e.m. 
across two rats).  

 
f. Sweeps extracted from the LMT position latent variable during exploration of a novel circular open 

field during darkness. Alternating sweeps are visible, although the decoded position deviates 
substantially from the rat’s actual running trajectory (in grey).  
 

g. More examples of grid-cell tuning to unvisited locations in the three environments (top to bottom: 
open field, wagon wheel, linear track). Each column corresponds to one cell and shows the position 
of the rat at the time of each spike (left) or the latent position from the LMT model at the time of each 
spike (right). 
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h. Because the LMT model, like other dimensionality-reduction methods, finds dense representations of 
the input data, in principle, grid-like tuning could emerge as a close-packing artifact during fitting. As 
a control, an alternative single-cell model was used to infer out-of-bounds tuning for each cell 
independently. The activity of each cell was fitted by a GLM-based model in which the animal’s 
recorded position (black dot) was shifted along the axis parallel to internal direction (‘ID’) as a function 
of theta phase, according to a “shift curve” which was fitted separately for each cell (see Methods for 
details).  
 

i. Firing-rate maps for a grid cell with respect to tracked 2-D position (left), inferred by the LMT model 
(middle) and by the GLM-based single-cell model (right) during an open field experiment (top row) 
and on the wagon wheel track (middle row). Each plot in the bottom row shows the positions of spatial 
receptive fields (colored patches) of three co-recorded cells on the wagon wheel track. Spikes from 
each cell is plotted with different colors. Note that the latent fields identified by the LMT and GLM 
models preserve similar phase offsets between the grid cells, as expected based on extrapolation of 
their grid patterns.  

 
j. Scatter of hippocampal sweep endpoints during theta cycles where sweeps from co-recorded MEC-

parasubiculum cells terminated outside the open field arena (red box). Out-of-bounds hippocampal 
sweeps were detected in the majority (65.7 ± 2.6%, mean ± s.e.m.) of theta cycles in which 
simultaneously decoded MEC sweeps terminated outside the open field arena, significantly more 
often than during theta cycles that preceded or followed a MEC sweep outside the arena (difference 
in fraction of outside sweeps: 11.6 ± 1.1%, p=0.031, two-tailed Wilcoxon signed-rank test). 

 
k. More examples of place-cell tuning to locations outside the open field arena. Each row corresponds 

to one cell. Columns show firing-rate maps with respect to tracked position (left), and fitted position 
from the LMT model, either fitted to hippocampal activity (middle) or MEC activity (right).  
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Extended Data Fig. 8: Latent variable model 
a. Illustration showing the basic principles of using the latent manifold tuning (LMT) model to extract a 

latent signal from neural population activity. A latent variable (top, black curve) evolves smoothly in 
time on a one-dimensional manifold. Individual cells are tuned to specific locations on the manifold 
(top right). At each point in time, the latent variable value predicts each cell’s log-firing rate (second 
row), which is then transformed with an exponential nonlinearity into a firing-rate prediction. The 
latter is compared with the observed spikes fired by the cells, treating the spike counts as a Poisson 
process. The model is learned by iteratively optimizing the latent variable and the tuning curves to 
improve the prediction of the observed spikes. 

 
b. Schematic showing the design of the complete "composite” model. b1: neural activity is modeled as 

a function of five input variables (first column). The two latent variables of interest (internal direction 
(‘ID’) and position; first two rows), are fitted while regressing out contributions of three observed 
variables known to modulate MEC neural activity (theta phase, HD and population firing rate; three 
bottom rows).  Left column: example traces of the input variables. All variables are assigned with 
corresponding tuning for each cell (second column; 100 example cells are shown), which, in 
conjunction with the latent variable’s value, predicts each cell’s log-firing-rate at each time point (third 
column). The log-firing-rate predictions are linearly summed across all variables (b2, top), then the 
sum is exponentiated, yielding a net prediction of the population firing rates (bottom). For reference, 
observed spikes for each cell are overlaid (red circles). b3: The unaccounted-for (“residual”) neural 
activity is calculated by subtracting the predicted firing rates from the observed firing. At each iteration 
of fitting the model, the residuals are used to calculate the next update to the latent variables and the 
tuning curves (enclosed by blue dashed box), leading to gradual improvement in the match between 
predicted and observed spiking. 
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Extended Data Fig. 9

g)

f)

e)

h)

a) b)

d)

c)

-0.2 0 0.2D
ot

 p
ro

du
ct

 (a
.u

.)

WAKE

-0.2 0 0.2
Time lag (s)

REM

-0.2 0 0.2

SWS

Dot product between internal direction 
and velocity of decoded pos.

Internal directionDisplacement
vector

Aligned 
movement

Rhythmic
sweeps

0.15

Sp
ee

d 
(m

/s
)

0

0.4

A
ng

ul
ar

 h
ea

d
sp

ee
d 

(r
ad

/s
)

0
1 hour

100

Th
et

a-
de

lta
ra

tio
 (a

.u
.)

SWS REM

Time30s

30

20

0.4

Autcorrelation 
of activity peaks

0

10

Wake

REM

SWS

N
 a

ct
iv

ity
 p

ea
ks

 (n
or

m
. c

ou
nt

)

Time lag (s)

-0.2 0
1

21

0.2

M
od

ul
es

-0.2 0 0.2
Time lag (s)

-0.2 0 0.2

maxmin

Dot prod.

WAKE REM SWS

Grid spacing: 1.2 m

0

360

720

Grid spacing: 1.4 m

0

360

720

Grid spacing: 0.9 m

0

360

720

1s

1s

1s

0°

360°

0.5s

0.5m0.5m0.5m

In
te

rn
al

di
re

ct
io

n
FR

0°

360°

Module 1 Module 2 Module 3

1s

0.5 m 0.5 m 0.5 m

FR

Activity peaks

1 s Time

Population
Firing rate

Spike raster
(all cells)

Activity peaks

1 s Time

REM sleep

REM episode (2min 19sec)

SWS 

SWS SWS

SWS 

x-pos

Start

2 m

y-
po

s

Module 1

x-pos

y-
po

s

Module 2

x-pos

y-
po

s

Module 3
2 m 2 m

0s 139 sTime

Reconstructed trajectory

Population
Firing rate

Spike raster
(all cells)

In
te

rn
al

di
re

ct
io

n
In

te
rn

al
di

re
ct

io
n 

(°
)

In
te

rn
al

di
re

ct
io

n 
(°

)
In

te
rn

al
di

re
ct

io
n 

(°
)

In
te

rn
al

di
re

ct
io

n

0°

360°

start end
Time

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.16.594473doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.16.594473
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Fig. 9: Sleep 
a. Sleep classification based on movement parameters and electrophysiological signatures, shown here 

for one example recording. Panels show head speed (top), angular head speed (middle) and 
theta/delta ratio (bottom) over the course of a recording session (scale bar, 1 h). We used these 
parameters to identify episodes of slow-wave sleep (SWS; red background shading) and REM sleep 
(blue background shading). 
 

b. Spike rasters from all cells recorded simultaneously in MEC-parasubiculum during 5-s epochs of REM 
sleep (top) and SWS (bottom) in an example animal. Cells are sorted by mean firing rate. Population 
activity is dominated by theta oscillations during REM and by distinct UP and DOWN-states during 
SWS. Theta-rhythmic activity peaks can be detected in summed population activity (shown above 
rasters) during REM, while activity peaks occur at irregular intervals during SWS. 
 

c. Temporal autocorrelation of activity peaks across brain states. Activity peaks were identified from the 
summed activity of all direction-tuned cells. Panels show autocorrelation histograms of detected 
activity peaks during wake, REM and SWS (top to bottom), with counts of activity peaks (y-axis) at 
different time lags (x-axis). Note that peaks of activity occur at theta-rhythmic intervals during wake 
and REM, but not during SWS. 
 

d. Internal direction-aligned, non-rhythmic trajectories during SWS. Top: Summed firing rate of internal 
direction cells over a ~3-second SWS epoch. Middle: Sorted population activity of internal direction 
cells (black ticks) and tracked head direction (solid blue line) during the same period. Note sharp 
transitions between up and down states (with and without spiking activity, respectively). Bottom: 
Decoded position (from three simultaneously recorded grid modules; color-coded by time) centered 
around each of the highlighted peaks of direction-correlated activity (red filled circles in the top panel). 
Red dots show the decoded position at the time of the activity peaks. Green arrows indicate decoded 
direction at the time of the activity peaks. Note that the activity burst is accompanied by aligned 
sweeps in all three modules.  

 
e. Same as d but showing decoded position from a single grid module during three separate peaks of 

population activity (red filled circles in the top panel). Note that the population activity of direction-
tuned cells is discretized in brief bursts and that the internal direction signal often resets between 
bursts of activity.   

 
f. More examples of decoded internal direction and sweeps during SWS. Left: Each panel shows spike 

rasters from internal direction cells (sorted by preferred direction) during a 5 s epoch of SWS activity 
from three different animals (first examples from same session as in Fig. 5a-b). Right: Each panel shows 
a decoded sweep and internal direction (same as in d,e) during the period highlighted in the 
corresponding left panel.  
 

g. Decoded direction and sweep trajectories during a REM sleep episode of 2 min and 19 s. Top: Raster 
plot showing spike times of internal direction cells during the REM episode, sorted by preferred firing 
direction during a separate session of open field foraging. Bottom: Decoded position from grid cells 
during the same REM period based on fitted LMT tuning curves during wake. Position was decoded 
separately from grid cells belonging to each of three simultaneously recorded grid modules based on 
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tuning curves from the open field session. Trajectories are smoothed in time with a wide gaussian 
kernel (σ = 100 ms). Each panel shows the decoded trajectory for each of the three grid modules (left 
to right), color-coded by time. Note that all modules play out similar trajectories (of several meters’ 
length) over the course of the REM episode (minutes). 

 
h. Direction-aligned sweeps are rhythmic during wake and REM, but not during SWS. Top: We computed 

the dot product between two vectors (arrows): internal direction (green) and sweep displacement 
vectors (black) at a range of time lags relative to directional activity peaks. The dot product is the 
length of the projection of one vector onto the other (red line). Middle: Dot product across brain states 
for an example grid module. The dot product is positive at 0-lag during all states, indicating that 
sweeps and internal direction move synchronously in alignment. Note that the dot product oscillates 
at theta frequency during wake and REM (arrows), meaning that the grid module expresses rhythmic, 
direction-aligned trajectories that reset on every theta cycle. Direction-aligned trajectories are also 
present during SWS (positive dot product at zero lag), but they are not rhythmic. Bottom: Dot product 
(color-coded) as a function of time lag for all grid modules across animals. Each row shows one grid 
module (21 grid modules from 9 animals).  
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Extended Data Fig. 10: Left-right alternation is a stable regime for efficient spatial sampling 
a. The sum of sweeps across grid modules has a characteristic beam-like spatial footprint which expands 

and decays with distance. Left: simulated spatial firing patterns (top row) and sweep footprints 
(bottom row) for five simulated grid-cell modules. During the simulation, the agent is tasked with 
placing this footprint in the direction that minimizes overlap with previous footprints, considering all 
possible directions. Note the proportionality between the grid field size, grid inter-field spacing, sweep 
footprint size and sweep distance. Right: total sweep footprint yielded by combining the five module 
footprints, weighted such that each module makes the same total contribution. Note how the intensity 
decays and broadens with distance, like a torch beam.  

 
b. Optimality and bimodality of the agent’s choices in 1,000 runs of the simulation in Fig. 6a. Left: average 

value of the largest (“worst”) and smallest (“best”) sweep overlap values at each time step, 
considering all possible sweep directions. The overlap value for a sweep at a given position and 
direction is defined as the product of the preexisting coverage trace with the footprint of the current 
sweep. Error bars indicate the 5th and 95th percentiles. Middle: optimality at each time step, defined 
as the difference between the best and the worst choice. Note that all metrics appear to reach 
convergence before the end of the simulation. Right: Circular histogram of optimal sweep directions 
(smallest possible overlap with previous sweeps), relative to the direction of movement (“front”).  

 
c. Alternation is stable within a range of sweep widths. Left: the angular concentration of the sweep is 

set by the Von Mises distribution parameter κ. Top right: Alternation score (mean and 5th-95th 
percentiles) for repeated simulations across a range of sweep widths. Bottom right: Color-coded 
histograms (columns) of optimal sweep directions for different sweep widths. Note the bimodality of 
sweep directions for an intermediate range of sweep widths. 

 
d. Rapid forgetting yields consistent alternation in the open field. Left: the temporal decay of the 

cumulative coverage trace is set by the forgetting factor τ. When τ < 1 (bottom) the penalty trace fades 
over time, meaning that the agent is less influenced by earlier sweeps. The direction of the final sweep 
(blue ellipse) changes depending on how much the penalty from the first sweep has decayed. Right 
panels: Exploration of κ and τ parameter space in simulations where the agent was tasked with 
choosing sweep directions based on the recorded behavioral trajectories of each rat. Top right: 
average alternation score of the agent’s chosen sweep directions, for each combination of κ and τ,  
based on the running trajectory of an animal during a recording in the open field (same session as Fig 
6c-e). Bottom right: circular correlation coefficient (‘ID correlation’) between decoded internal 
direction (ID) and the simulated sweep directions when the agent was run in ‘hybrid’ mode (as 
illustrated in Fig. 6c). Blue crosses indicate the position of the maximum. Note that rapid forgetting 
and intermediate sweep widths results in robust alternation (τ: 0.039 ± 0.0012, κ: 3.1 ± 0.01, mean ± 
s.e.m. across 12 animals) and high correlation with empirical sweep directions (τ: 0.01 ± 0.00, κ: 2.3 ± 
0.12, mean ± s.e.m. across 12 animals). 

 
e. Alternation of sweep directions increases with path straightness. Path straightness was computed for 

each time step of the recording by dividing net travel distance by cumulative traveled distance within 
a 2 s moving window (high values correspond to straight paths). Left: Average alternation score of the 
angles chosen by the agent during an open field session, binned at different levels of path straightness. 
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Each set of connected dots (with similar color) shows data from a different animal (n=12). Right: same, 
but for empirical decoded directions from the same animals.  

 
f. The agent accurately predicts empirical sweep directions. Heat map of decoded direction and 

predicted sweep directions (both in egocentric coordinates, relative to head axis) showing a high 
degree of correspondence between empirical and predicted sweep directions. 
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Supplementary Videos 
Supplementary Video 1 
Video showing decoded position (Bayesian decoding from LMT tuning curves) from all recorded MEC-
parasubiculum cells during an epoch of running in the open field (same example as Fig. 1a; slowed down 
15x). Decoded position throughout each theta cycle is plotted as colored blobs with color indicating time 
within sweep (reset at the beginning of each sweep) and color intensity indicating decoding probability 
(color range from zero to the maximal posterior probability value of each frame). Note that the decoded 
position sweeps outwards in a left-right-alternating pattern across theta cycles. 
 
Supplementary Video 2 
Video showing decoded position (Bayesian decoding from LMT tuning curves) from three simultaneously 
recorded grid modules during an epoch of running in the open field (same example as Fig. 1e; slowed 
down 15x). Decoded position throughout each theta cycle is plotted as colored blobs (position bins where 
decoding probability exceeded the 90th percentile of probability values in each frame). Note coordinated 
left-right alternation and the relationship between the grid spacing and sweep trajectory length. 
 
Supplementary Video 3 
Video showing decoded position (based on LMT position rate maps, as in Video 1) and decoded direction 
(based on LMT internal direction tuning curves) from all recorded MEC-parasubiculum cells during an 
epoch of running in the open field (same example as Fig. 1a; slowed down 15x). Decoded ‘internal’ 
direction is plotted as a green arrow with length scaled to the population firing rate. Note that the 
decoded direction points in the same direction as sweeps. 
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