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Abstract Extracting the relationship between high-dimensional recordings of neural activity and complex behav-
ior is a ubiquitous problem in systems neuroscience. Toward this goal, encoding and decoding models attempt
to infer the conditional distribution of neural activity given behavior and vice versa, while dimensionality reduc-
tion techniques aim to extract interpretable low-dimensional representations. Variational autoencoders (VAEs)
are flexible deep-learning models commonly used to infer low-dimensional embeddings of neural or behavioral
data. However, it is challenging for VAEs to accurately model arbitrary conditional distributions, such as those
encountered in neural encoding and decoding, and even more so simultaneously. Here, we present a VAE-based
approach for accurately calculating such conditional distributions. We validate our approach on a task with known
ground truth and demonstrate the applicability to high-dimensional behavioral time series by retrieving the condi-
tional distributions over masked body parts of walking flies. Finally, we probabilistically decode motor trajectories
from neural population activity in a monkey reach task and query the same VAE for the encoding distribution of
neural activity given behavior. Our approach provides a unifying perspective on joint dimensionality reduction and
learning conditional distributions of neural and behavioral data, which will allow for scaling common analyses in
neuroscience to today’s high-dimensional multi-modal datasets.

.
Introduction
Recent developments in experimental techniques allow real-time behavioral tracking of animals (Mathis et al.,
2018; Günel et al., 2019; Pereira et al., 2019), and simultaneous recordings of hundreds of neurons across multi-
ple brain regions (Ahrens et al., 2013; Sofroniew et al., 2016; Jun et al., 2017). Modern datasets in neuroscience
are thus increasingly large, high-dimensional (de Vries et al., 2020; Siegle et al., 2021), and commonly consist of
multiple modalities—e.g., neural activity and behavior (Mimica et al., 2023)—that often have highly non-linear re-
lationships (Sani et al., 2021b). While data collection has changed drastically in the last years, an important goal of
systems neuroscience remains the same: understanding how brain activity gives rise to complex behavior.
To gain insights from neural and behavioral data, neuroscientists have developed various neural encoding and
decoding models (Kriegeskorte and Douglas, 2019). These tasks should be ideally addressed in a probabilistic
manner to account for the inherent variability of neural and behavioral measurements and in order to quantify re-
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sulting uncertainty. As experimental neuroscience is moving towards less controlled, unconstrained multi-modal
data collection, this aspect becomes evenmore relevant. Both probabilistic encoding and decoding tasks can, algo-
rithmically, be boiled down to the task of calculating conditional distributions: Encoding studies in neuroscience in-
volve calculating the conditional distribution of neural activity given behavior or other observations such as stimuli
(Pillow et al., 2008). Conversely, for decoding analyses, one needs to calculate the conditional distribution over be-
havior, given neural activity (Figure 1a, left). Generating interpretable, accessible neuroscientific predictions from
complex, high-dimensional data directly is very challenging (Paninski and Cunningham, 2018; Chen and Pesaran,
2021), highlighting the need for tools that can infer low-dimensional representations of high-dimensional neural
and behavioral datasets (Figure 1a, right). In short, to gain neuroscientific insights from such complex datasets, our
goal is to unify 1) the ability to link neural and behavioral data (i.e., through encoding/decoding models, Figure 1a,
left), and 2) joint dimensionality reduction of the data, ideally in a probabilistic and generative manner (Figure 1a,
right).
Various dimensionality reduction methods have demonstrated that a substantial fraction of variability both in un-
constrained behavior and neural population activity can be captured by a few latent (i.e., unobserved) dimensions
(Yu et al., 2009; Sussillo et al., 2016; Batty et al., 2019; Keeley et al., 2020; Sani et al., 2021a; Luxem et al., 2022;
Schneider et al., 2023). This insight has driven the development of various latent variable models that infer un-
derlying low-dimensional representations from neural data (Pfau et al., 2013; Sussillo et al., 2016; Schimel et al.,
2021; Jensen et al., 2021; Bashiri et al., 2021). Classical methods often require simplifying modeling assumptions,
such as (switching) linear dynamics (Macke et al., 2011; Petreska et al., 2011; Linderman et al., 2017), or strictly
Gaussian observations (Yu et al., 2009), and rely on model-specific optimization schemes, e.g., Expectation Maxi-
mization algorithms or subspace-identification methods (Buesing et al., 2012; Sani et al., 2021a). With the rise of
deep learning andmore flexible optimization schemes, various of these assumptions can be relaxed (Sussillo et al.,
2016; Luxem et al., 2022; Schneider et al., 2023), leading to latent variable models that can capture complicated
non-linear relationships in the data and underlying low-dimensional dynamics (Girin et al., 2021).
One such model class, exploiting deep inference networks, is the variational autoencoder (VAE) (Rezende et al.,
2014; Kingma and Welling, 2014). Inference networks of VAEs take observed data as the input and return a dis-
tribution over the latent state. Sequential variants of VAEs can infer latent representations underlying heteroge-
neous time-series datasets, e.g., consisting of both continuous and count data (spiking) (Nazábal et al., 2020; Girin
et al., 2021; Brenner et al., 2024) and are commonly used in analyzing neural and behavioral data (Sussillo et al.,
2016; Zhou and Wei, 2020; Schimel et al., 2021; Luxem et al., 2022). However, most VAE-based methods cannot
adequately deal with a ubiquitous analysis task in neuroscience: calculating arbitrary conditional distributions
𝑝 (data subset A ∣ data subset B) (Williams et al., 2019; Ivanov et al., 2019; Collier et al., 2020). The reason for this is
that inference networks of VAEs typically can only deal with fully observed input data, and have nomeans tomodel
the (additional) uncertainty arising from partial observations.
Such conditional distributions do not only arise when estimating behavioral decoding (Figure 1b, top) and neural
encoding distributions (Figure 1b, middle) but also become relevant when dealing with partially observed data
or when studying interactions between brain regions or tracked body parts (Figure 1b, bottom). An ideal model
should correctly estimate howuncertain it is about the inferred underlying representation and its predictions (error
bands, Figure 1b). Accurate uncertainty estimates can tell us how constrained one subset is given the other subset
and let us reason about their dependencies beyond accuracy or similarity scores. However, in neuroscience, the
quality of uncertainty estimates is typically not assessed.
In this work, we present an approach that enables VAEs to accurately model arbitrary data-conditionals arising in
neuroscience. Specifically, we use a masked-training approach and demonstrate it in a variety of neuroscience
applications where we achieve both dimensionality reduction and sampling of conditional distributions. Further-
more, we propose calibration tests to assess the quality of the generated conditional distributions.
VAEs have been extended tomodel the distribution of amissing data subset given an observed data subset (Ivanov
et al., 2019; Nazábal et al., 2020; Collier et al., 2020). Conceptually, we build on these results and treat the modal-
ity we want to learn the conditional distribution over as missing. For example, to capture a behavioral decoding
distribution, we modify the loss and training scheme of a VAE during joint training on neural and behavioral data
by stochastically masking behavior. Our training approach is not limited to a specific modeling architecture but
can be applied to a variety of VAE approaches. We showcase our approach on diverse datasets: sequential and
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Figure 1. Latent variable models that can deal with conditional distributions arising in large-scale
multi-modal datasets a Our approach aims to address two common goals of (neuro)scientific analyses:Conditioning, e.g., for linking brain activity (neuro) and behavior (behav) and joint dimensionality reduc-tion of potentially high-dimensional neural and behavioral data. b Conditional distributions arise, e.g.,when learning the distribution over behavior given brain activity (behavioral decoding), the distributionover neural activity given behavior (neural encoding), or when analyzing the interaction of data subsetssuch as different behavioral variables or multiple brain regions. c Masked variational autoencoder train-ing scheme for data of potentially different data types (e.g., count and continuous) with structured masksfor modeling conditional distributions. During each training iteration, one mask is chosen randomly. Thereconstruction loss is computed solely on observed data. The Kullback-Leibler divergence 𝐷𝐾𝐿 of theinferred latent representation and a defined prior leads to a regularization of the latent space (see Meth-ods).

static, multi- and uni-modality, discrete and continuous datasets, each of which with a different VAE architecture.
We first validate our approach on a task on which we have access to the ground-truth distributions. We demon-
strate that our approach allows for correct inference of low-dimensional latents and accurate predictions. On a
high-dimensional behavioral dataset of walking flies, we successfully recover the relationship between different
body parts along with uncertainties and obtain realistic samples from the conditional distributions of masked legs.
Finally, we showcase the approach in a challenging multi-modal neural and behavioral dataset, where we model
encoding and decoding distributions of high-dimensional population activity from primary motor areas and self-
paced reach movements (O’Doherty et al., 2017).
Results
Masked training of variational autoencoders for estimating conditional distributions
To prepare variational autoencoders to deal with conditional distributions commonly arising in neuroscience, we
modify the training scheme of classical VAEs. During joint training onmultiple data subsets, our approach prepares
the network for each subset to be structurally masked at test time (Figure 1c). We use the term structuredmasking to
refer to algorithmicmasking of data subsets for conditioning to avoid confusionwith actual datamissingness—e.g.,
individual input channels that drop in and out. First, we specify the structured masks depending on the desired con-
ditional distributions and specify how often (on average) each mask should be selected during training (Figure 1c,
left, see Methods). We calculate the reconstruction loss  solely considering observed subsets (see Methods) in the
evidence lower bound, which is the optimization target of VAEs (Kingma and Welling, 2014; Collier et al., 2020). To
make it easier for the network to learn that an input has been masked, one can additionally pass the binary mask
to the encoder network.
In summary, we propose modeling conditional distributions with VAEs, e.g., for neural encoding and behavioral
decoding, by recasting it as a structured masking problem. This approach allows us to sample from a distribution of
interest, e.g., to visualize time series of various potential behaviors that are likely given a neural population activity
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Figure 2. Inference of conditionals in a Gaussian Latent Variable Model (GLVM). a Left: Schematic of a GLVM withfixed parameters 𝜃 = 𝐶, 𝑑,Λ, where Λ = diag(𝜎2𝑖 ) for 𝑖 ∈ {1, 20}. Right: Structured masks for conditioning specified bythe user. Here, with either 50% of the values masked or fully observed (0% masked). b-h Comparison of our maskedtraining approach (red) with a vanilla VAE approach (blue, naive) when half of the inputs 𝑥 are masked out at test time.
bModel reconstructions and true test data samples (1D and 2Dmarginal distributions over 𝑥). c Inferred and analytical(true) posterior distributions over latent z given only the observed dimension of one test sample, i.e., 𝑝(𝑧 | 𝐱obs). d Trueversus inferred posterior mean given a range of test samples. e Inferred posterior variance across multiple instantia-tions (seeds) and true posterior variance (dotted line). Box plots show median, minimum, maximum, 1st quartile, and3rd quartile. f Average Kullback-Leibler divergence between true and inferred posterior distributions across differentGLVM parameters (𝜃 = 𝐶, 𝑑,Λ) and structured masks. g Conditional distributions over randomly chosen masked 𝑥 di-mensions (see Methods) for the same test sample as in panel c. h Left: Schematic of statistical calibration, evaluatingthe quality of uncertainty estimates. Optimal calibration: n% of true data points lie in the nth percentile confidenceinterval of the sampling distribution. Example of an 𝑥 within the interval (green, top) and one outside of it (red, bot-tom). Right: Calibration checks of predicted conditional distributions 𝑝(𝑥unobs𝑖 | 𝐱obs) for all masked 𝑥-dimensions acrossmultiple model seeds.

trace and vice versa. The generality of this approach allows for applying it to a variety of conditional distributions
and variational autoencoder settings.
Inference of conditionals in a tractable Gaussian Latent Variable Model (GLVM)
First, we evaluated if our training scheme and loss modification allow us to learn the correct distributions of inter-
est on a simulated dataset where we have access to the ground-truth conditional and posterior distributions. This
dataset was generated from a Gaussian Latent Variable Model (GLVM) with latent (unobserved) random variable 𝑧
and data dimensions 𝑥, which linearly depend on the latent 𝑧 (Figure 2a, see Methods). In this illustrative example,
we can think of a subset of 𝑥 as the high-dimensional neural activity, another subset of 𝑥 as high-dimensional be-
havior, and the latent variable 𝑧 as the low-dimensional representation underlying both neural and behavioral data.
The inference network infers the distribution over these unobserved latents given a chosen 𝑥—i.e., it calculates
the posterior distribution 𝑝 (𝑧 | observed x )—effectively inverting the data generation process in a probabilistic way.
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The strength of the linear coupling and the noise levels of individual 𝑥 dimensions define how much information
about the latent can be gained by observing those 𝑥 dimensions.
We contrast the masked VAE with a regular VAE trained on all data (referred to as naive training) regarding the
capacity to capture data-conditionals 𝑝 ( masked x | observed x ) at test time (Figure 2). The naive approach fails to
capture the true data distribution (grey), with overly narrow 1D and 2D (marginal) distributions (Figure 2b left).
Masked VAEs, however, can successfully reconstruct observed values (𝑥𝑜𝑏𝑠

𝑖 ) and impute masked ones (𝑥𝑢𝑛𝑜𝑏𝑠
𝑖 ) (Fig-

ure 2b, right). The reason for this discrepancy lies in the ability to learn the distribution over the latents (posterior
distribution) when some of the input data are unobserved. Masked training can perfectly infer the true (analyti-
cally calculated) posterior. In contrast, naive training fails to do so (Figure 2c). The naive network does not detect
masked values as such. Hence, its posterior mean inference is biased (Figure 2d), and the posterior variance is too
small (Figure 2c). In short, naive VAE training leads to confidently wrong predictions, while the masked network
correctly adjusts the uncertainty about its predictions. This finding generalizes across different parameter sets
(𝐶, 𝑑, 𝜆) and masking conditions (Figure 2f, Figure S1).
One of the advantages of VAEs is that once trained, sampling from VAEs is straightforward. Thus, we can easily
investigate whether the conditional samples for unseen test data correspond to the conditional distribution we
set out to model. Wrongly inferred posterior distributions will likely result in inaccurate conditional samples.
Indeed, for four example masked data dimensions (𝑥𝑢𝑛𝑜𝑏𝑠

𝑖 ), the distribution of conditional samples from the naive
VAE is wrong, whereas the masked training distribution matches the true (analytical) conditional (Figure 2g).
In real neuroscientific datasets, we do not have access to the true conditional distributions for comparison. For
such cases, we propose to evaluate the quality of the inferencemethod and its uncertainty estimates with an adap-
tation of simulation-based calibration (Cook et al., 2006; Talts et al., 2018). These calibration checks allow us to
also evaluate the quality of the uncertainty estimates, and thus go beyond the evaluation of mean squared error
or log-likelihood of structurally masked values, which informs only about the quality of the mean predictions. More
concretely, calibration checks count how often masked test sample values 𝑥𝑢𝑛𝑜𝑏𝑠

𝑖 lie in the respective predicted
conditional sampling distribution (Figure 2h, see Methods). We found that for the masked training, predictions
are well-calibrated, i.e., neither overconfident nor underconfident (values close to the diagonal Figure 2h, red).
In contrast, the naive approach is confidently wrong for many test cases (Figure 2h, blue). Overall, these results
suggest that masked training allows us to infer both the correct posterior 𝑝 (𝑧 | only observed x ) and conditional
distributions 𝑝 (masked x | only observed x) in a tractable, well-specified example. The results demonstrate the statis-
tical challenges that arise when one aims to use VAEs to perform conditioning and provide a theoretical basis for
applying the masked training approach to neuroscientific data.
Probabilistic conditional modeling of masked keypoint trajectories in fly walking behavior
Next, we wanted to investigate if the masked approach is applicable to complex time-series data in neuroscience
and can successfully model conditional distributions of scientific interest. In particular, we focused on an experi-
ment that characterizes the (backward) walking behavior of the fruit fly, Drosophila melanogaster, and applied our
masked training approach to a sequential VAE developed for this high-dimensional behavioral dataset.
We obtained the dataset by tracking the centroids of individual flies and aligning the video frames such that fly
heads are all pointing upward (Figure 3a, left). We tracked 32 body parts (𝑥, 𝑦 each) with DeepLabCut (Mathis et al.,
2018), resulting in a 64-dimensional time series (see Methods). To account for the temporal structure of the data,
the VAE’s architecture has both convolutional elements and recurrent neural networks based on Gated Recurrent
Units (Cho et al., 2014), as well as elements for non-linear dimensionality reduction (see Methods). Analogous
to the GLVM case, we adapted the masked training scheme for this sequential VAE to allow for modeling the
conditional distribution over a subset of the fly body keypoints, given the remaining ones (Figure 3a, right, masked
legs in green, see Methods). Here, we chose to mask body keypoints that are crucial for walking behaviors and
show characteristic variability during walking: hind claw, hind tibia-tarsal joint, mid tibia tarsus, and mid claw of
the left side.
If the model captures the dependence correctly via the compact latent representation, we expect accurate condi-
tional modeling of these masked legs. In the previous example, the variability in the data was captured by one
latent variable, but for experimental data, the underlying dimensionality is unknown. Here, we are dealing with
a dataset with high intrinsic dimensionality: almost 32 principal components are required to capture 95% of the
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Figure 3. Conditional sampling of masked legs of walking flies. a Three flies are filmed from the bottom duringwalking behavior in a constrained arena. Cropped video frames of individual flies are centered, aligned for constanthead direction, and tracked with Deeplabcut, resulting in a 64-dimensional time series. Schematic of the target distri-bution: the conditional distribution over masked left legs given the remaining body keypoints. b Cumulative explainedvariance of the number of components when performing principal component analysis on all concatenated time-seriesdata. c Two example time series (from the test set) of the unobserved limb, marked with a circle in panel a. Condi-tional samples from the masked model in red, naive in blue, and true limb trajectory in grey. d Mean squared error(MSE) of mean predictions for the masked limb, averaged across time and test samples, for both training schemes.Box plots show the median and lower and upper quartiles. e Calibration checks of predicted conditional distributions
𝑝 (limbunobs𝑖 | limbsobs) for all masked leg keypoints shown in panel a, across multiple model seeds (different hue perseed). Optimal calibration in black.

variance of the 64-dimensional dataset (Figure 3b). In our sequential VAE, we can exploit temporal dependencies
and thus further reduce the dimensionality of the latent space while capturing stereotyped walking behavior (see
Methods). Samples from the naive model capture overall trends of the masked left hind claw (circle in Figure 3a)
well, particularly during highly periodic walking (Figure 3c, left). However, ground-truth trajectories often deviate
from the sampled trajectories (blue). In contrast, masked training produces more faithful predictions and uncer-
tainty estimates (red), reflected in the inclusion of the ground truth for most time steps (Figure 3c, right). This is
also captured by a lower average mean squared error (MSE) of the masked VAE test predictions (averaged across
time) of the masked keypoint shown in panel c. Yet, MSE alone does not immediately reveal a substantial per-
formance boost through masked training (Figure 3d). The difference, however, becomes clear when inspecting
the uncertainty estimates: when the naive approach is wrong, it is confidently wrong (large deviations from the
diagonal in Figure 3e), while the masked approach is better calibrated.
We conclude that our masked training methodology is indeed applicable to time-series datasets and allows us to
faithfullymodel the conditional distributions ofmasked body keypoints given the remaining ones. Masked training
leads to better uncertainty estimates—it allows the network to know better when it does not know.
Decoding continuous reaches from neural population activity
To be effective for neuroscientific research, our method should be able to deal with data types andmodalities that
commonly arise in neuroscience. Therefore, we implemented the masked training scheme for a classic monkey
reach task, which is particularly challenging due to its continuous instead of trial-based structure (using publicly
available data from O’Doherty et al. (2017), Figure 4a, left). We focus on the behavioral decoding distributions, i.e.,
the conditional distribution of 𝑥- and 𝑦-reach directions given activity traces of >200 neurons (Figure 4a, right).
Themonkey reaches toward an indicated light target on an 8x8 grid, leading tomovements of different lengths, het-
erogeneous angles, and velocities (Figure 4b). Neural activity is simultaneously recorded in primary motor cortex.
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Figure 4. Behavioral decoding of continuous reach movements from monkey primary motor cortex a A mon-key performs self-paced, continuous reaches on an 8x8 grid with simultaneous cortical electrophysiology recordings.Schematic of the target distribution: the conditional distribution over behavior, in this case, cursor trajectories givenneural population activity recorded in monkey primary motor cortex. b Behavioral trace of continuous reach move-ments (grey) and targets (black). c Frequency of observed spike counts across primary motor cortex during the reachmovements shown in panel b, binned at 64ms. d Example traces of cursor positions and the mean predictions for thenaive (blue) and masked (red) modeling approaches for multiple model seeds (different hue per seed). e Same cursortraces as in panel d but with conditional samples from a single naive (blue) andmasked (red) model, respectively. f Cal-ibration checks of predicted conditional distributions 𝑝 (behavior | neural activity) respectively for x-y-directions, acrossmultiple model seeds. Optimal calibration in grey. d-f The y-direction is in the top and the x-direction in the bottomrow.

The maximum spike count of individual units is six spikes in time windows of 64 ms (Figure 4c, binning consistent
withMakin et al. (2018) to capture behaviorally relevant timescales). We built a sequential VAE for this multi-modal
dataset, which consists of both continuous (behavioral) and discrete data (spike counts). Our reconstruction loss,
therefore, is composed of a Poisson- (for spike counts) and Gaussian- (for behavior) negative log-likelihood (GNLL)
loss (see Methods, Nazábal et al. (2020); Brenner et al. (2024)). We specified masks for encoding and decoding
distributions during training, i.e., we masked either neural activity (replaced by zeros) or behavior (replaced by the
mean cursor position).
Masked mean reconstructions (red) of behavioral traces are more accurate than naive (blue) predictions across
many model seeds (Figure 4d). Surprisingly, the naive approach is performing relatively well, and while we see
some sections where the masked approach is performing better, the errors are quite consistent across the two
approaches. This indicates that some sections of the traces are less correlated with neural activity than others, and
both models are capable of exploiting some correlations required for conditional modeling. Sampling from indi-
vidual masked and naive models (Figure 4e) and calibration checks (Figure 4f) again demonstrate that the masked
but not naive approach targets the conditional—the decoding distribution. Note that a discrepancy between 𝑥 (bot-
tom rows) and 𝑦 (top) decoding performance (Figure 4d-f) has been reported previously for this dataset (O’Doherty
et al., 2017; Makin et al., 2018; Pei et al., 2021). While the masked VAE is not perfectly calibrated on this dataset,
it clearly outperforms the naive VAE.
In conclusion, our masked training approach can be readily applied to multi-modality datasets and makes it possi-
ble to sample from a conditional distribution over a continuous time series given high-dimensional time series of
discrete count data.
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Figure 5. Neural encoding distributions given the continuousmovements in themonkey reach task a Schematicof the target distribution: the conditional distribution over neural population activity recorded in monkey primarymotor cortex given behavior, i.e., cursor trajectories. b Frequency of observed spike counts across primary motorcortex during reach movements binned at 64ms and the predicted spike count distribution of the masked (red) andnaive (blue) approach. c Rootmean squared error (RMSE) of the population average and predicted population averageaveraged across time for different model seeds. d Log-likelihood per neuron for the masked and naive approachesaveraged across time points and model seeds. Higher is better. e Distribution of differences in log-likelihood (logl) ofthe masked minus the naive approach. Positive values indicate a better model fit of the masked approach. f Sampledrate predictions (10 each) and mean rate prediction from both models (masked red top, naive blue middle) for twoexample neurons with different activity levels given the standardized behavioral trajectory (bottom). g Cumulativedistribution function of the observed spikes (true) vs. predicted spike distributions sampled from the masked (red)and naive (blue) VAE for the rate predictions shown in panel f. To calculate the CDF, spike counts are aggregatedacross five bins due to low spike counts. Optimal predictions would lie on the diagonal (black dotted line).

Encoding of continuous reaches in neural population activity
Next, we assessed the performance of the same trainedmodel on the reversed andmore challenging task: model-
ing the high-dimensional conditional distribution over the activities of 213 neurons in primary motor cortex given
only the two-dimensional behavioral trajectories (Figure 5a).
Both masked and naive approaches generally capture the histogram of observed spike counts given the reach
trajectories (Figure 5b) – despite a slight over-prediction of spike counts –, but the naive approach has worse
population average estimates across model instantiations (Figure 5c). The log-likelihood per neuron across model
instantiations reveals the superior performance of the masked versus naive encoding (Figure 5d,e).
Samples from the trained models suggest that both masked and naive approaches correctly predict time-varying
firing rates that clearly reflect the reach movements (Figure 5f). Notably, the masked approach reveals higher
variability in the rate predictions reflecting higher posterior uncertainty.
Spike counts are discrete rather than continuous variables, so we adapted the method to assess the uncertainty
calibration: we compare the cumulative distribution function (CDF) of the ground-truth spike train against a Pois-
son spike train with a rate sampled from either the masked or the naive models (Figure 5g). We find that the
sampling distribution for both masked and naive capture the ground truth distribution reasonably well (Figure 5g;
for other units see appendix).
In conclusion, our masked VAE approach allows us to model and produce samples from both decoding and encod-
ing distributions in one single model without requiring any retraining.
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Discussion
We introduce a trainingmethodology formodeling conditional distributionswithmasked variational autoencoders,
bridging dimensionality reduction, generative modeling, and encoding and decoding analyses in neuroscience.
Our experiments show that modifying the training scheme and loss through structured masking enables VAEs to
model specified conditional distributions. Thus, our approach allows for joint dimensionality reduction of high-
dimensional multi-modal data and conditioning on specified modalities. It is not restricted to specific architectural
or modeling choices and can be easily applied to a variety of variational autoencoders deployed in neuroscience.
We validated our approach on a tractable example in which we correctly learned the ground-truth posterior and
conditional distributions. We applied our approach to two neuroscientific time-series datasets: a continuous reach
task inmonkeys (O’Doherty et al., 2017), in which we probabilistically encoded behavior in—and decoded behavior
from—high-dimensional neural activity, as well as a behavioral dataset of walking flies, for which we successfully
modeled the conditional distributions of masked body parts. Furthermore, we showed how to assess the models’
uncertainty estimates, a crucial but often neglected aspect in deep-learning-based dimensionality reduction, and
verified that our models learn calibrated distributions.
Generality of modeling conditional distributions in neuroscience and beyond
A key contribution of this work lies in linking conditional distributions of neural and behavioral encoding and de-
coding to probabilistic approaches for dealing with missing data (Nazábal et al., 2020; Collier et al., 2020).
The generality of this approach opens up various possibilities beyond encoding and decoding, as generating con-
ditional samples and performing inference from partial observations has many applications. In experiments such
as the fly walking example where occlusions or tracking issues occur, our approach enables sampling from dis-
tributions over the obscured body keypoints. In addition, the inherent denoising property of VAEs can correct
noisy markers, especially when the observation noise is learned explicitly. More generally, data imputation can
be framed as modeling conditional distributions over missing variables given observed ones. This is a relevant
pre-processing step for many downstream analyses that require complete datasets in neuroscientific and clinical
applications, as well as in other domains (Talukder et al., 2022; Vetter et al., 2023). For example, if an electrode
breaks during a neural recording, a masked VAE approach can salvage the dataset by computing conditionals for
the failed electrode using complete data from other sessions.
Using and assessing uncertainties in deep-learning based models
It is well-established that both modern deep learning models (Guo et al., 2017) and traditional Bayesian decoders
(Wei et al., 2023) can make overconfident predictions. In contrast, trustworthy, well-calibrated models should
exhibit high uncertainty when predictions are likely to be inaccurate and low uncertainty when they are likely to
be accurate. In neuroscientific applications, the ability to assess uncertainty can be particularly important, for
example in tasks where wrong predictions can have serious consequences, such as brain-computer interfaces
and real-time decoding for an actuator.
Classical VAEs provide principled access to the predicted uncertainty over the inferred latent states, often in the
form of the variance of a Gaussian approximate posterior distribution (Rezende et al., 2014; Kingma and Welling,
2014). However, this aspect is sometimes treated as a convenience for robust training rather than as a meaningful
quantity with respect to the systemunder investigation. In this work, we have demonstrated the effect of increased
latent uncertainty when dealing with partially observed inputs, highlighting the need for accurate modeling of
latent uncertainty.
Further, the observation noise process can be modeled explicitly in VAEs allowing the combination of different
data types (Nazábal et al., 2020; Brenner et al., 2024): e.g., Poisson noise for spike counts and Gaussian noise for
behavioral trajectories. Using a Gaussian negative log-likelihood loss allows to estimate observation noise for each
data channel separately, a desirable property in scientific measurements, yet challenging to accomplish (Rybkin
et al., 2021; Seitzer et al., 2022).
To assess overall calibration in VAEs, which reflects both the posterior uncertainty and observation noise, we intro-
duced a version of simulation-based calibration (Talts et al., 2018;Cook et al., 2006), which allows for sample-based
uncertainty evaluation in the absence of tractable ground truth distributions. Assessing calibration for discrete
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data poses additional challenges—in particular in a low count regime where it is not possible to obtain reliable
confidence intervals—and remains an avenue for future investigation (Wei and Held, 2014).
Limitations
Our masked VAE approach allows for calibrated predictions on a variety of conditioning tasks, but has some limi-
tations: First, our approach relies on a small number of specified and structured conditioning masks, rather than
considering all possible combinatorial (2𝐷) masking conditions, where 𝐷 is the data dimension. For many prob-
lems in neuroscience, this suffices since the conditional distributions of interest are usually few and well-specified,
such as behavior given neural data. To tackle the problem of capturing all conditionals, it would be an empirical
question of how big models and datasets would need to be to effectively generalize to this combinatorial space.
Second, similar to other deep-learning-based methods, our approach struggles with capturing interactions on
long and varying timescales. Here, we only investigated cross-modality interactions occuring on similar timescales
(reach movements) and fixed the length of the time segments during training (maximum of 150 time steps). Thus,
behavior or neural activity preceding this segment cannot influence subsequent predictions. Integrating transformer-
based approaches (Vaswani et al., 2017; Jaegle et al., 2022) might be useful for capturing such interactions over
varying timescales (Ye and Pandarinath, 2021; Ye et al., 2023; Azabou et al., 2023; Antoniades et al., 2024).
Third, our approach inherits common issues from VAEs, for example, the lack of a principled way to choose the
dimensionality of the VAE latent space, rendering hyperparameter tuning potentially costly. If the dimensionality
of the latent space is too large, the VAE might fail to exploit correlations within the data and use separate latent
variables for the specified conditional distributions, potentially degrading the quality of conditional generation. On
the other hand, if the dimensionality is too small, the VAEmight not be able to accurately model the data. Thus, for
the monkey reach task, we introduced a sparsity-inducing prior (Ainsworth et al., 2018) that mitigates this issue
by automatically reducing the latent dimensionality if latents are not used by the decoder network.
Lastly, while samples from our masked VAE are well-calibrated in most cases and often close to the ground-truth
neural and behavioral trajectories, the sampling quality of VAEs is known to be limited even for simpler and fully
observed datasets. Recent generative models such as Denoising Diffusion Probabilistic Models (Ho et al., 2020;
Rombach et al., 2022), Normalizing Flows (Rezende and Mohamed, 2015), and Generative Adversarial Networks
(Goodfellow et al., 2014) can produce samples of higher quality, but they lack the main feature of VAEs that makes
them especially relevant in neuroscience: inference of low-dimensional latent states. Combining our approach
with other such generative models (e.g., Zhou and Wei (2020); Bashiri et al. (2021)) could be an interesting future
avenue to improve sampling quality while preserving the possibility of performing latent inference.
Conclusion
We present a method that addresses two common goals in neuroscience: inferring low-dimensional represen-
tations and unveiling dependencies in simultaneously recorded modalities by modeling their conditional distri-
butions. Our approach will allow for scaling encoding and decoding analyses in neuroscience to today’s high-
dimensional multi-modal datasets. Furthermore, this work highlights a crucial aspect of analyzing neural and
behavioral data: the importance of uncertainty estimates.
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Materials and Methods
Here, we adapt variational autoencoders (Kingma and Welling, 2014; Rezende et al., 2014) to address two goals
simultaneously: First, to infer low-dimensional representations underlyingmulti-modal neural andbehavioral time-
series data and, second, to model their conditional distributions. Modeling conditional distributions is ubiquitous
in neuroscience, and since neuroscientific data are typically variable even in controlled experiments, relations be-
tween modalities may also be variable. Therefore, we focus on probabilistic rather than deterministic approaches
to characterize such conditional distributions. We reformulate the estimation of conditional distributions in VAEs
in a more general way: modeling the distribution of an unobserved subset of the data given an observed subset
𝑝 ( unobserved | observed ) similar to (Collier et al., 2020; Nazábal et al., 2020). To target such distributions with a
VAE, we modify the training scheme and loss of classical VAEs. We validate our approach on a tractable example
and two neuroscientific time-series datasets: walking behavior of the fly and a continuous reach task in monkeys.
We introduce calibration metrics to evaluate the models’ uncertainty estimates in the context of scientific data, i.e.,
without access to ground-truth uncertainties.
Background on Variational Autoencoders
Variational Autoencoders (VAEs) are probabilistic models capable of capturing complex multi-modal data distribu-
tions 𝑝(𝐱). The assumption underlying VAEs is that all variations in the data distributions can be captured (up to
observation/measurement noise) by the variations of corresponding unobserved latent variables 𝑧. VAEs learn
stochastic mappings between the observed data space and the unobserved or latent (𝑧-space). Both mappings
from the data to latent distributions and vice versa are typically parameterized through flexible neural networks.
The generative model is described by the joint distribution of data and latent variables, which factorizes into

𝑝𝜃(𝐱, 𝐳) = 𝑝𝜃(𝐳)𝑝𝜃(𝐱|𝐳) (1)
parameterized by 𝜃 where 𝑝(𝐳) is the prior over the latent space. The prior is usually chosen to be a simple distribu-
tion such as a standard Gaussian, and 𝑝𝜃(𝐱|𝐳) is the probabilistic decoder. The inference or encoder model 𝑞𝜙(𝐳|𝐱),parameterized by 𝜙, which infers the latent distribution from data, is an approximation of the true, intractable
posterior 𝑝𝜃(𝐳|𝐱) (Kingma and Welling, 2014; Rezende et al., 2014; Kingma and Welling, 2019). VAEs are trained by
maximizing a lower bound of the data log-likelihood. This so-called Evidence Lower Bound (ELBO) can be written
as:

𝜃,𝜙(𝐱) = 𝔼𝑞𝜙(𝐳|𝐱)
[

log 𝑝𝜃(𝐱|𝐳)
]

− DKL
[

𝑞𝜙(𝐳|𝐱)||𝑝𝜃(𝐳)
]

. (2)
The first term assesses how well the predicted distribution matches the original data and is often referred to
as the reconstruction loss. The second term is the Kullback-Leibler divergence DKL between the approximate
posterior 𝑞𝜙(𝐳|𝐱) and the latent prior 𝑝(𝐳), which regularizes the learned latent space. Maximizing the ELBO 𝜃,𝜙(𝐱)with respect to the parameters 𝜃 and 𝜙 leads to a better generativemodel and increases the similarity between the
approximate and the true (intractable) posterior. All parameters 𝜃 and 𝜙 can be optimized jointly using stochastic
gradient descent. Once trained successfully, one can sample from the prior and consecutively from the stochastic
decoder output to obtain a new sample 𝑥̂pred from the learned data distribution. Alternatively, one can sample from
the approximate posterior of a previously unseen test datum 𝑥test to obtain reconstructions that closely resemble
𝑥test .VAEs have been successfully applied to various types of potentially heterogeneous data (continuous, discrete, or-
dinal, etc.) (Nazábal et al., 2020) and have been extended to time series (Gregor et al., 2015; Chung et al., 2016;
Girin et al., 2021), paving the way for applications to neuroscientific time series (Sussillo et al., 2016; Pandarinath
et al., 2018; Luxem et al., 2022; Brenner et al., 2024).
Capturing arbitrary conditional distributions with VAEs
To model flexible conditional distributions with VAEs, we modified the training scheme of classical VAEs similar to
(Nazábal et al., 2020; Collier et al., 2020). While training the VAE, we randomly mask out subsets of the data cor-
responding to the desired conditional distributions and compute the loss on the remaining data. Prior to training,
for each conditional distribution of interest, we specify a conditioning mask 𝑚 together with a mask probability 𝑝𝑚(Figure 1c, left). During training, the conditioning masks are sampled independently for each data point according
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to the mask probabilities. Concretely, the masking is performed by replacing the data with their respective mean
values. Other replacement values, such as zeros for spiking (count) data, are also possible. We calculate the re-
construction loss 𝑟𝑒𝑐𝑜𝑛 solely on observed, that is, non-masked data. Sometimes, to facilitate learning that some
data has been masked out, we additionally provide the encoder network with a binary mask consisting of 0s for
unobserved and 1s for observed data points (see networks).
Through this training procedure, the masked VAE simultaneously optimizes the ELBO over all different conditional
distributions, that is

masked
𝜃,𝜙 (𝐱) = 𝔼𝑚∼𝑝(𝑚)

[

𝑚
𝜃,𝜙(𝐱)

]

, (3)
where 𝑝(𝑚) is the previously specified probability distribution over all conditioning masks, including the fully ob-
served case, where no data is masked out. As noted above, the mask 𝑚 is applied to both the data and the cor-
responding part of the reconstruction loss. This training procedure promotes the learning of different encoder
networks that share parameters, allowing us to target different approximate posterior distributions given differ-
ent conditioning masks.
From an implementation perspective, the conditioning masks can be passed to the encoder network in various
ways. They can, for example, be concatenated or added directly to the input, but also at later stages in the network,
possibly after transformations with a (non-linear) embedding. In contrast to (Collier et al., 2020), we explicitly do
not pass the conditioning masks to the decoder since all uncertainty and mean shifts induced by masking should
be reflected in the latent representation.
Modeling observation noise with VAEs
It is important to ensure that VAEs correctly capture the uncertainties in the (conditional) data distributions. In a
VAE, there are two sources of uncertainty - the inferred posterior uncertainty and the observation ormeasurement
noise. The latter source of uncertainty is often ignored, which is reflected in the common choice of the mean
squared error (MSE) as the reconstruction loss. The MSE only evaluates the quality of the mean prediction and
ignores the stochastic nature of the VAE decoder. If we instead want to correctly capture the observation noise, it
is necessary to learn it explicitly. Assuming that the observation noise follows a Gaussian distribution, we use the
Gaussian negative log-likelihood (GNLL) as our reconstruction loss. The GNLL for an observation 𝑥 given a model
prediction of the Gaussian mean 𝜇 and standard deviation 𝜎 is given by

GNLL(𝑥;𝜇, 𝜎) = − log𝑃 (𝑋 = 𝑥;𝜇, 𝜎) = 1
2
log(2𝜋𝜎2) +

(𝑥 − 𝜇)2

2𝜎2
. (4)

Note that the MSE is a special case of the GNLL where the standard deviation is set to 1. As noted above, this
usually leads to samples from the model that are not calibrated in the statistical sense. Optimization, however,
is more challenging when using the GNLL and might require additional adjustments (Rybkin et al., 2021; Seitzer
et al., 2022).
Datasets and Data Preprocessing
Linear Gaussian Latent Variable Model
We simulated a dataset based on a Gaussian Latent Variable Model (GLVM) with one latent variable 𝑧, where
𝑧 ∽  (0, 1), and 20 data dimensions 𝐱, where 𝐱 ∽  (𝐂𝑧+𝐝,𝚲) (Figure 2a). To demonstrate the difference between
noisy and more precise, less noisy, variables in a setup that accounts for uncertainty, noise levels for all data
dimensions differ. For each data dimension 𝑖, 𝜎𝑖 is drawn from a log-normal distribution with 𝜇𝐿𝑁 = log(0.7) and
𝜎𝐿𝑁 = 0.5. 𝐶𝑖s are drawn from a normal distribution with 𝜇𝑁 = 1.1 and 𝜎2

𝑁 = 0.1. Additionally, the sign for a given 𝐶𝑖is flipped with probability 0.5. All offsets 𝐝 are set to 1. We use 9000 samples from this model for training and 1000
each for validation and testing. This fully Gaussian setup allows for the analytical computation of both conditional
𝑝(𝐱unobs|𝐱obs) and posterior 𝑝(𝑧|𝐱obs) distributions (see Appendix), which we compare to the distributions learned by
our model.
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Fly walking behavior
To collect the data on fly walking behavior, we placed flies, Drosophila melanogaster, in an acrylic arena that con-
strained them tomove in a 2D plane. Thus, flying is not part of the otherwise rich repertoire of observed behaviors,
which includes both forward and backward walking, grooming, resting, etc. The flies were part of a genetic screen
(not wild-type) but were examined during behavior capture and were morphologically and behaviorally indistin-
guishable from wild-type flies. We placed three female flies in one arena simultaneously and filmed them from
below, three times for three seconds (frame rate of 80𝐻𝑧). This procedure was repeated about 10000 times, result-
ing in 28059 time series with 234 time points each. To extract each fly from the video separately, we tracked the
centroid of each fly using Tracktor (Sridhar et al., 2019), cropped out the flies in each frame, and aligned them to
point in the upward direction. We then tracked 32 body parts (four joints per leg, as well as head features, thorax,
abdomen, and wings), each with x- and y-directions using DeepLabCut (Mathis et al., 2018), resulting in time series
with 64 feature dimensions. We then smoothed the extracted time series using a Savitzky-Golay-Filter (Savitzky
and Golay, 1964) with a polynomial order of two and a window length of seven. The smoothed trajectories were
then cut into sequences of length 48 with buffers of length 9 between each sequence to avoid information leak-
age. 95% of the data was used for training, while the remaining data was used for validation and testing (2806
sequences each). Potential information leakage due to autocorrelation between training and test/validation sets
is further reduced by choosing the last sequences for testing/validation instead of an interleaved approach, which
can often cause information leakage in time-series models. Prior to passing the time series to the network, we
standardize each feature dimension across the 48 time steps.
Continuous reach task in monkeys
The neural and behavioral dataset, made publicly available by O’Doherty et al. (2017), was recorded from two
monkeys (rhesus macaque) performing self-paced continuous reaches, i.e., without gaps or pre-movement delay
intervals. Targets were arranged in an 8 by 8 grid, and a new target was presented when the previous target
was reached. Neural recordings were taken from the cortical hemisphere contralateral to the arm performing the
reach movements. O’Doherty et al. (2017) provide the neural data after spike sorting in the shape channels vs.
spike times. We focus only on one session, ‘loco_20170213_02‘, which contains neural activity from both primary
motor (M1) and (S1) activity, as well as the cursor, target, and finger positions. Here, we take only the neural
activity from M1 and the cursor positions (𝑥,𝑦 direction) as the behavioral correlate. We filter out channels with
firing rates below 0.5 Hz analogous to (Makin et al., 2018), resulting in 213 remaining M1 units. We convert spike
times into spike counts in bins of 64 ms (15.625 Hz). We down-sample the cursor position by querying it at fewer
time points consistent with the reduced sampling rate used for binning the spikes (15.625 Hz instead of 250 Hz).
We do not introduce a delay between neural activity and behavior as done, e.g., in (Schimel et al., 2021; Jensen
et al., 2021), we rather let the model identify which aspects of the respective other time series to consider for its
predictions. We use the first 70% of the data for training (approx. 28 minutes recording time), the following 10%
for testing (approx. 4 minutes), and the remaining 20% for validation (approx. 8 minutes). We standardize the
behavioral train, test, and validation time series with respect to the overall mean and standard deviation of the
training set for both reach directions. During training, we introduce ’pseudo-trials’ with 150 time steps each, that
start at randomly sampled time points.
Network Architectures and Optimization
Model details: GLVM
Training schemeandmasks: Prior to training, we select three randomly sampledmasks (10 out of 20 dimensions
are masked) to test if the masked approach can capture the true posterior and conditional distributions. Since we
chose different loading factors 𝐶𝑖 and noise levels 𝜎𝑖 for each dimension, the corresponding posterior mean and
variance, and thus also the conditional distributions, differ between conditions. During training, we uniformly sam-
pled the four conditioning masks (all observed andmask 1-3) and used the Adam optimizer (Kingma and Ba, 2015)
to train our model.
Architecture: The encoder network consists of a simple linear embedding for the mask, which is passed through
a multilayer perceptron together with the 20-dimensional data vector to parameterize the one-dimensional poste-
riormean and log variance. To focus on posterior inference under differentmasking conditions, we set the decoder
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to be the true generative model. Note, however, that this GLVM example is identifiable, i.e., all parameters of the
generative model (𝐶𝑖, 𝑑𝑖, 𝜎𝑖) can be learned using a VAE, which we confirmed even in our masked training scheme.
Nevertheless, fixing the decoder is beneficial in this case since the posterior is only identifiable up to a rotation in
the latent space (𝜇𝑧, 𝜎𝑧), which in the one-dimensional setting corresponds to a flipped sign.
Loss: For this well-specified, identifiable Gaussian example, the regular masked GNLL was used together with a
standard Gaussian prior in the latent space.
Model details: Fly walking behavior
Training scheme and masks: To investigate low-dimensional representations of fly walking behavior, we built a
sequential VAE and specified masks for the body keypoints most relevant to walking. Analogous to the GLVM case,
we adapted themasked training scheme for the time-series case to allow for modeling the conditional distribution
over a subset of the fly body keypoints, given the remaining keypoints. Specifically, we mask the hind claw, hind
tibia-tarsal joint, mid tibia-tarsal joint, and mid claw of the left side. The entire time segment of masked keypoints
is replaced with the mean value across this segment. We assign a probability of 50% to the all-observed and the
leg-masking condition. We again use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.0005 for
training our model.
Architecture: The VAE for fly walking behavior consists of an encoder and a decoder network that are both
trainable neural networks. The encoder network consists of two sets of 1D convolutional layers, each followed
by batch normalization and ELU activation. We then apply temporal convolutions that compress the data in the
temporal dimension before passing it to a bidirectional RNN (Cho et al., 2014) for temporal context. Thus, the
encoder network is non-causal in time. The RNN output is then passed through a multi-layer perceptron to pa-
rameterize the posterior mean and log variance. This results in a latent space with spatial (𝑁𝑧) and temporal (𝑇𝑧)dimensions smaller than the 64 features and 48 time-steps of the data (for our choice of parameters 𝑁𝑧 = 18 and
𝑇𝑧 = 13, i.e., the size of the latent space is less than 8% of the original data). Unlike in the GVLM case, we do not
pass the mask to the encoder network, since it does not improve the conditional modeling. After sampling from
the approximate posterior, the decoder network expands the time dimension of 𝐳 using transposed convolutions,
followed by dimensionality expansion to parameterize the Gaussian mean and observation noise variance. The
latter is constrained to be positive by a softplus function to ensure well-defined variances.
Loss: For the continuous behavioral data, we again use GNLL (eq. 4), which is computed per feature and timepoint.
The prior distribution in the latent space is standard Gaussian.
Model details: Neural and behavioral data from a monkey reach task
Training scheme and masks: The sequential VAE for the monkey reach task jointly models time series of high-
dimensional neural spike-count data and continuous cursor positions. We specify the masks required for neuro-
scientific encoding and decoding: either all neural activity is masked out (spike counts set to zero), or all behav-
ioral traces are masked and set to their respective mean values. Following Ainsworth et al. (2018), we introduced
a sparsity-inducing prior that sets latent contributions to zero if they are not used by the model. We used the
AdamW optimizer (Loshchilov and Hutter, 2019) with a learning rate of 0.001 and weight decay of 0.2) to train our
encoder and decoder networks. For parameters related to sparsity-induction, we follow (Ainsworth et al., 2018)
and use Stochastic Gradient Descent (SGD) with zero momentum. Here, we show results that are trained on only
one session, but the architecture allows training on data from multiple sessions using session-specific input and
output mappings.
Architecture: First, we expand the data using a session-specific linear mapping. Similar to the sequential VAE
for the fly data, the encoder network then performs a non-linear dimensionality reduction followed by a bidirec-
tional RNN to parameterize the latent posterior mean and log-variance. Here, we do not consider compression in
time, and each latent time-point corresponds to a time-point in dataspace. The decoder also has an RNN and uses
further multi-layer-perceptrons to map the latent samples back into data space. For the continuous behavioral
data, the decoder again predicts the Gaussian mean and observation noise variance. For the discrete spike data,
however, the decoder only models the underlying firing rates.
Loss: This discrepancy arises from the different distributions used to model the respective data modalities. While
behavior is continuous and thus appropriately modeled with a Gaussian, discrete spike counts are best modeled
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with a Poisson distribution. Consequently, the GNLL is replaced by the negative Poisson log-likelihood, which, for
an observed spike count 𝑥 and a rate parameter 𝜆, is defined as:

Poisson(𝑥; 𝜆) = − log𝑃 (𝑋 = 𝑥; 𝜆) = −𝑥 log(𝜆) + 𝜆 + log(𝑥!). (5)
For this task, we also refined the behavioral GNLL loss by incorporating the concept of 𝛽-NLL introduced by Seitzer
et al. (2022) by weighting each data point’s contribution to the loss based on the 𝛽-NLL-exponentiated variance
estimate 𝜎2𝛽𝑁𝐿𝐿

𝑖 . Effectively, this small loss modification prevents a potential issue when learning the observation
noise, namely that poorly fitted variables are assigned high variance, which, since it appears in the denominator
in eq. 4, leads to smaller gradients and hence less incentives for the network to improve its fit. In this application,
a NLL-beta of 0.3 worked well. Before calculating the overall gradients, we sum up the behavioral and neural
contributions to the reconstruction loss. Note that when using heterogeneous noise models the scales of the loss
contributions can vastly differ. Hence, depending on the application and downstream tasks, it can be beneficial
or even necessary to introduce weighting factors to balance out the losses and corresponding gradients (Javaloy
et al., 2022). To improve stability and prevent over-fitting, we additionally regularize the session input and output
weight matrices. For the sparsity-inducing prior in the latent space, we apply a version of Lasso regularization
that encourages sparsity in the weight matrix that transforms the 𝑧-samples before they are passed through the
decoder (see Ainsworth et al. (2018) for details).
Analysis and Metrics
Calibration metrics: Evaluating uncertainties in variational autoencoders
To investigate the statistical calibration in VAEs, we perform a version of simulation-based calibration (Talts et al.,
2018; Cook et al., 2006), which is associated to frequentist coverage tests (Wei et al., 2023). Here, we focus on
the calibration of the predictive distribution in data space. For each test datum 𝑥test , we sample 𝑛𝑧-times from the
approximate posterior, pass the sampled 𝑧 through the decoder and sample from the observation noise model
𝑛𝑜𝑏𝑠-times. This sampling procedure results in a sampling distribution in data space that reflects both posterior
uncertainty and observation noise.
For continuous data, we then compute confidence intervals corresponding to the 𝑛th percentile. For a statistically
well-calibratedmodel, 𝑛%of the ground truth data should lie in this interval. When plotting the different percentiles
against the proportion of data points falling in the corresponding interval, well-calibrated predictions lie on the
diagonal. Here, we evaluate this for the 60th, 80th, 90th, and 95th percentiles, which roughly correspond to one to
three standard deviations. However, other evaluations, including percentile bins from 0 to 100, are also common
(see e.g.Wei et al. (2023)). If a model is overconfident, the corresponding values fall in the lower triangle below the
diagonal. In the underconfident regime, i.e., if the average predictions are accurate, but the estimated uncertainty
is too high, the values fall in the region above the diagonal. In all three datasets, we evaluate the calibration of
masked continuous variables (GLVM, fly walking behavior, and behavior in the monkey reach task). The test set
sizes, as well as the computational cost of estimating confidence intervals, differ between models. Therefore, we
chose different 𝑛𝑧 and 𝑛𝑜𝑏𝑠 to compute the confidence intervals but kept both values the same when evaluating the
naive model to ensure a fair comparison.
For count data, we compute cumulative distribution functions (CDFs) of the spike counts to assess the calibration
of the predicted firing rate. This is because most bin counts are either 0 or 1, making it impractical to construct
confidence intervals (Wei and Held, 2014). More specifically, to obtain informative CDFs, we aggregate five neigh-
boring bin counts. Then, for each of the 𝑛𝑧 ⋅ 𝑛𝑜𝑏𝑠 predicted rate time series, we sample spikes and compute the
CDF over all 40 aggregated bins. Finally, we plot the obtained CDFs against the analogously aggregated CDF of the
ground truth spike train. If the rate predictions are well calibrated, their resulting CDFs closely match the ground
truth CDF and lie on the diagonal.
Code and data availability
Datasets and code for this study will be made available at https://github.com/mackelab/neuro-behavior-conditioning
upon publication.

15 of 29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590082doi: bioRxiv preprint 

https://github.com/mackelab/neuro-behavior-conditioning
https://doi.org/10.1101/2024.04.19.590082
http://creativecommons.org/licenses/by/4.0/


Acknowledgements
This work was supported by the German Research Foundation (DFG) through Germany’s Excellence Strategy (EXC-
Number 2064/1, PN 390727645) and SFB1233 (PN 276693517), SFB 1089 (PN 227953431), the German Federal
Ministry of Education and Research (Tübingen AI Center, FKZ: 01IS18039; the Human Frontier Science Program
(HFSP), and the European Union (ERC, DeepCoMechTome, 101089288). DM acknowledges a Marie Curie EuroTech
postdoctoral fellowship, a Swiss Government Excellence Postdoctoral Scholarship (2018.0483) and funding from
the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant
agreement no. 754462. VL-R acknowledges support from theMexicanNational Council for Science and Technology,
CONACYT, under the grant number 709993. PR acknowledges support from an SNSF Project grant (no. 175667)
and an SNSF Eccellenza grant (no. 181239). AS and JV are members of the International Max Planck Research
School for Intelligent Systems (IMPRS-IS). We would like to thank Paul Fischer for data management support for
the fly dataset, Lisa Haxel for feedback on themanuscript, and all Mackelabmembers for discussions and feedback
throughout the project.

16 of 29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590082doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.19.590082
http://creativecommons.org/licenses/by/4.0/


ReferencesAhrens MB, Orger MB, Robson DN, Li JM, Keller PJ. Whole-brain functional imaging at cellular resolution using light-sheet mi-croscopy. Nature Methods. 2013 May; 10(5):413–420. doi: 10.1038/nmeth.2434.
Ainsworth SK, Foti NJ, Lee AKC, Fox EB. oi-VAE: Output Interpretable VAEs for Nonlinear Group Factor Analysis. In: Proceedings of
the 35th International Conference on Machine Learning PMLR; 2018. p. 119–128.

Antoniades A, Yu Y, Canzano JS, Wang WY, Smith S. Neuroformer: Multimodal and Multitask Generative Pretraining for BrainData. In: International Conference on Learning Representations; 2024. doi: arXiv:2311.00136.
Azabou M, Arora V, Ganesh V, Mao X, Nachimuthu S, Mendelson M, Richards B, Perich M, Lajoie G, Dyer E. A Unified, ScalableFramework for Neural Population Decoding. Advances in Neural Information Processing Systems. 2023 Dec; 36:44937–44956.
Bashiri M, Walker E, Lurz KK, Jagadish A, Muhammad T, Ding Z, Ding Z, Tolias A, Sinz F. A flow-based latent state generativemodel of neural population responses to natural images. In: Advances in Neural Information Processing Systems, vol. 34 CurranAssociates, Inc.; 2021. p. 15801–15815.
Batty E, Whiteway M, Saxena S, Biderman D, Abe T, Musall S, Gillis W, Markowitz J, Churchland A, Cunningham JP, Datta SR,Linderman S, Paninski L. BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos. In: Advances
in Neural Information Processing Systems, vol. 32 Curran Associates, Inc.; 2019. p. 15706–15717.

Brenner M, Hess F, Koppe G, Durstewitz D, Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics;2024. doi: arXiv:2212.07892v2.
Buesing L, Macke JH, Sahani M. Spectral learning of linear dynamics from generalised-linear observations with application toneural population data. In: Advances in Neural Information Processing Systems, vol. 25 Curran Associates, Inc.; 2012. p. 1691–1699.
Chen ZS, Pesaran B. Improving scalability in systems neuroscience. Neuron. 2021 Jun; 109(11):1776–1790. doi:10.1016/j.neuron.2021.03.025.
Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning Phrase Representations usingRNNEncoder–Decoder for StatisticalMachine Translation. In: Proceedings of the 2014 Conference on EmpiricalMethods in Natural
Language Processing (EMNLP)Doha, Qatar: Association for Computational Linguistics; 2014. p. 1724–1734. doi: 10.3115/v1/D14-1179.

Chung J, Kastner K, Dinh L, Goel K, Courville A, Bengio Y. A Recurrent Latent Variable Model for Sequential Data. In: Proceedings
of the 28th International Conference on Neural Information Processing Systems - Volume 2; 2016. p. 2980–2988.

Collier M, Nazabal A, Williams C. VAEs in the Presence of Missing Data. In: ICML Workshop on the Art of Learning with Missing Values
(Artemiss); 2020. doi: arXiv:2006.05301.

Cook SR, Gelman A, Rubin DB. Validation of Software for Bayesian Models Using Posterior Quantiles. Journal of Computationaland Graphical Statistics. 2006 Sep; 15(3):675–692. doi: 10.1198/106186006X136976.
Girin L, Leglaive S, Bie X, Diard J, Hueber T, Alameda-Pineda X. Dynamical Variational Autoencoders: A Comprehensive Review.Foundations and Trends® in Machine Learning. 2021; 15(1-2):1–175. doi: 10.1561/2200000089.
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative Adversarial Nets. In:
Advances in Neural Information Processing Systems, vol. 27 Curran Associates, Inc.; 2014. doi: arXiv:1406.2661.

Gregor K, Danihelka I, Graves A, RezendeD,Wierstra D. DRAW: A Recurrent Neural Network For ImageGeneration. In: Proceedings
of the 32nd International Conference on Machine Learning, vol. 37 of Proceedings of Machine Learning Research Lille, France:PMLR; 2015. p. 1462–1471.

Guo C, Pleiss G, Sun Y, Weinberger KQ. On Calibration of Modern Neural Networks. In: Precup D, Teh YW, editors. Proceedings
of the 34th International Conference on Machine Learning, vol. 70 of Proceedings of Machine Learning Research PMLR; 2017. p.1321–1330.

Günel S, Rhodin H, Morales D, Campagnolo J, Ramdya P, Fua P. DeepFly3D, a deep learning-based approach for 3D limb andappendage tracking in tethered, adult Drosophila. eLife. 2019 Oct; 8:e48571. doi: 10.7554/eLife.48571.
Ho J, Jain A, Abbeel P. Denoising Diffusion Probabilistic Models. In: Advances in Neural Information Processing Systems, vol. 33Curran Associates, Inc.; 2020. p. 6840–6851.
Ivanov O, Figurnov M, Vetrov D. Variational Autoencoder with Arbitrary Conditioning. In: International Conference on Learning
Representations; 2019. doi: arXiv:1806.02382.

17 of 29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590082doi: bioRxiv preprint 

10.1038/nmeth.2434
arXiv:2311.00136
arXiv:2212.07892v2
10.1016/j.neuron.2021.03.025
10.1016/j.neuron.2021.03.025
arXiv:2006.05301
arXiv:1406.2661
10.7554/eLife.48571
arXiv:1806.02382
https://doi.org/10.1101/2024.04.19.590082
http://creativecommons.org/licenses/by/4.0/


Jaegle A, Borgeaud S, Alayrac JB, Doersch C, Ionescu C, Ding D, Koppula S, Zoran D, Brock A, Shelhamer E, Henaff OJ, BotvinickM, Zisserman A, Vinyals O, Carreira J. Perceiver IO: A General Architecture for Structured Inputs & Outputs. In: International
Conference on Learning Representations; 2022. doi: arXiv:2107.14795.

Javaloy A, Meghdadi M, Valera I. Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization. In: Proceedings of
the 39th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research PMLR; 2022. p.9938–9964.

Jensen K, Kao TC, Stone J, Hennequin G. Scalable Bayesian GPFA with automatic relevance determination and discrete noisemodels. In: Advances in Neural Information Processing Systems, vol. 34 Curran Associates, Inc.; 2021. p. 10613–10626.
Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Barbic M, Blanche TJ,Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M, Karsh B, Ledochowitsch P, et al. Fully integrated silicon probesfor high-density recording of neural activity. Nature. 2017 Nov; 551(7679):232–236. doi: 10.1038/nature24636.
Keeley SL, Zoltowski DM, Aoi MC, Pillow JW. Modeling statistical dependencies in multi-region spike train data. Current Opinionin Neurobiology. 2020 Dec; 65:194–202. doi: 10.1016/j.conb.2020.11.005.
Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: International Conference on Learning Representations; 2015. doi:arXiv:1412.6980.
Kingma DP, Welling M. Auto-Encoding Variational Bayes. In: International Conference on Learning Representations; 2014. doi:10.48550/arXiv.1312.6114.
Kingma DP, Welling M. An Introduction to Variational Autoencoders. Foundations and Trends® in Machine Learning. 2019;12(4):307–392. doi: 10.1561/2200000056.
KriegeskorteN, Douglas PK. Interpreting encoding and decodingmodels. CurrentOpinion inNeurobiology. 2019 Apr; 55:167–179.doi: 10.1016/j.conb.2019.04.002.
Linderman S, Johnson M, Miller A, Adams R, Blei D, Paninski L. Bayesian Learning and Inference in Recurrent Switching LinearDynamical Systems. In: Singh A, Zhu J, editors. Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, vol. 54 of Proceedings of Machine Learning Research PMLR; 2017. p. 914–922.

Loshchilov I, Hutter F. Decoupled Weight Decay Regularization. In: International Conference on Learning Representations; 2019.doi: arXiv:1711.05101.
Luxem K, Mocellin P, Fuhrmann F, Kürsch J, Miller SR, Palop JJ, Remy S, Bauer P. Identifying behavioral structure from deepvariational embeddings of animal motion. Communications Biology. 2022 Nov; 5(1):1–15. doi: 10.1038/s42003-022-04080-7.
Macke JH, Buesing L, Cunningham JP, Yu BM, Shenoy KV, SahaniM. Empiricalmodels of spiking in neural populations. In: Advances
in Neural Information Processing Systems, vol. 24 Curran Associates, Inc.; 2011. p. 1350––1358.

Makin JG, O’Doherty JE, Cardoso MMB, Sabes PN. Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. Journal of Neural Engineering. 2018 Jan; 15(2):026010. doi: 10.1088/1741-2552/aa9e95.
Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience. 2018 Sep; 21(9):1281–1289. doi: 10.1038/s41593-018-0209-y.
Mimica B, Tombaz T, Battistin C, Fuglstad JG, Dunn BA, Whitlock JR. Behavioral decomposition reveals rich encoding structureemployed across neocortex in rats. Nature Communications. 2023 Jul; 14(1):3947. doi: 10.1038/s41467-023-39520-3.
Nazábal A, Olmos PM, Ghahramani Z, Valera I. Handling incomplete heterogeneous data using VAEs. Pattern Recognition. 2020Nov; 107:107501. doi: 10.1016/j.patcog.2020.107501.
O’Doherty JE, Cardoso MMB, Makin JG, Sabes PN, Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electro-physiology. Zenodo; 2017. doi: 10.5281/zenodo.583331.
Pandarinath C, O’SheaDJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann EM, KaufmanMT, Ryu SI, Hochberg LR, HendersonJM, Shenoy KV, Abbott LF, Sussillo D. Inferring single-trial neural population dynamics using sequential auto-encoders. NatureMethods. 2018 Oct; 15(10):805–815.
Paninski L, Cunningham J. Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience.Current Opinion in Neurobiology. 2018 Jun; 50:232–241. doi: 10.1016/j.conb.2018.04.007.

18 of 29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590082doi: bioRxiv preprint 

arXiv:2107.14795
10.1016/j.conb.2020.11.005
arXiv:1412.6980
arXiv:1412.6980
10.48550/arXiv.1312.6114
10.48550/arXiv.1312.6114
10.1016/j.conb.2019.04.002
arXiv:1711.05101
10.1016/j.patcog.2020.107501
10.5281/zenodo.583331
10.1016/j.conb.2018.04.007
https://doi.org/10.1101/2024.04.19.590082
http://creativecommons.org/licenses/by/4.0/


Pei FC, Ye J, Zoltowski DM, Wu A, Chowdhury RH, Sohn H, O’Doherty JE, Shenoy KV, Kaufman M, Churchland MM, Jazayeri M,Miller LE, Pillow JW, Park IM, Dyer EL, Pandarinath C. Neural Latents Benchmark ‘21: Evaluating latent variable models ofneural population activity. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2); 2021. doi: arXiv:2109.04463.

Pereira TD, Aldarondo DE, Willmore L, Kislin M, Wang SSH, Murthy M, Shaevitz JW. Fast animal pose estimation using deep neuralnetworks. Nature Methods. 2019 Jan; 16(1):117–125. doi: 10.1038/s41592-018-0234-5.
Petreska B, Yu BM, Cunningham JP, Santhanam G, Ryu S, Shenoy KV, Sahani M. Dynamical segmentation of single trials frompopulation neural data. In: Advances in Neural Information Processing Systems, vol. 24 Curran Associates, Inc.; 2011. p. 756–764.
Pfau D, Pnevmatikakis EA, Paninski L. Robust learning of low-dimensional dynamics from large neural ensembles. In: Advances
in Neural Information Processing Systems, vol. 26 Curran Associates, Inc.; 2013. p. 2391–2399.

Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP. Spatio-temporal correlations and visual signallingin a complete neuronal population. Nature. 2008 Aug; 454(7207):995–999. doi: 10.1038/nature07140.
Rezende DJ, Mohamed S. Variational Inference with Normalizing Flows. In: Proceedings of the 32nd International Conference on
International Conference on Machine Learning-Volume 37; 2015. p. 1530–1538.

Rezende DJ, Mohamed S, Wierstra D. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In:Xing EP, Jebara T, editors. Proceedings of the 31st International Conference onMachine Learning, vol. 32 of Proceedings ofMachineLearning Research Bejing, China: PMLR; 2014. p. 1278–1286.
Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-Resolution Image Synthesis With Latent Diffusion Models. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 10684–10695.

RybkinO,Daniilidis K, Levine S. Simple and Effective VAE Trainingwith CalibratedDecoders. In: Proceedings of the 38th International
Conference on Machine Learning PMLR; 2021. p. 9179–9189.

Sani OG, Abbaspourazad H, Wong YT, Pesaran B, Shanechi MM. Modeling behaviorally relevant neural dynamics enabled bypreferential subspace identification. Nature Neuroscience. 2021 Jan; 24(1):140–149. doi: 10.1038/s41593-020-00733-0.
Sani OG, Pesaran B, Shanechi MM, Where is all the nonlinearity: flexible nonlinear modeling of behaviorally relevant neuraldynamics using recurrent neural networks. bioRxiv; 2021. doi: 10.1101/2021.09.03.458628.
Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 1964Jan; 36:1627–1639. doi: 10.1021/ac60214a047.
Schimel M, Kao TC, Jensen KT, Hennequin G. iLQR-VAE : control-based learning of input-driven dynamics with applications toneural data. In: International Conference on Learning Representations; 2021. doi: 2021.10.07.463540.
Schneider S, Lee JH, Mathis MW. Learnable latent embeddings for joint behavioural and neural analysis. Nature. 2023 May;617(7960):360–368. doi: 10.1038/s41586-023-06031-6.
Seitzer M, Tavakoli A, Antic D, Martius G. On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic NeuralNetworks. In: International Conference on Learning Representations; 2022. doi: 10.48550/arXiv.2203.09168.
Siegle JH, Jia X, Durand S, Gale S, Bennett C, Graddis N, Heller G, Ramirez TK, Choi H, Luviano JA, Groblewski PA, Ahmed R, ArkhipovA, Bernard A, Billeh YN, Brown D, Buice MA, Cain N, Caldejon S, Casal L, et al. Survey of spiking in the mouse visual systemreveals functional hierarchy. Nature. 2021 Apr; 592(7852):86–92. doi: 10.1038/s41586-020-03171-x.
Sofroniew NJ, Flickinger D, King J, Svoboda K. A large field of view two-photon mesoscope with subcellular resolution for in vivoimaging. eLife. 2016 Jun; 5:e14472. doi: 10.7554/eLife.14472.
Sridhar VH, Roche DG, Gingins S. Tracktor: Image-based automated tracking of animal movement and behaviour. Methods inEcology and Evolution. 2019; 10(6):815–820. doi: 10.1111/2041-210X.13166.
Sussillo D, Jozefowicz R, Abbott LF, Pandarinath C, LFADS - Latent Factor Analysis via Dynamical Systems. arXiv; 2016. doi:arXiv:1608.06315.
Talts S, Betancourt M, Simpson D, Vehtari A, Gelman A, Validating Bayesian Inference Algorithms with Simulation-Based Calibra-tion. arXiv; 2018. doi: 10.48550/arXiv.1804.06788.
Talukder SJ, Sun JJ, Leonard MK, Brunton BW, Yue Y. Deep Neural Imputation: A Framework for Recovering Incomplete BrainRecordings. In: NeurIPS 2022 Workshop on Learning from Time Series for Health; 2022. doi: arXiv:2206.08094v1.

19 of 29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590082doi: bioRxiv preprint 

arXiv:2109.04463
10.1101/2021.09.03.458628
2021.10.07.463540
10.48550/arXiv.2203.09168
10.7554/eLife.14472
10.1111/2041-210X.13166
arXiv:1608.06315
arXiv:1608.06315
10.48550/arXiv.1804.06788
arXiv:2206.08094v1
https://doi.org/10.1101/2024.04.19.590082
http://creativecommons.org/licenses/by/4.0/


Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser , Polosukhin I. Attention is All you Need. In: Advances in
Neural Information Processing Systems, vol. 30 Curran Associates, Inc.; 2017. doi: arXiv:1706.03762.

Vetter J, Macke JH, Gao R, Generating realistic neurophysiological time series with denoising diffusion probabilistic models.bioRxiv; 2023. doi: 10.1101/2023.08.23.554148.
de Vries SEJ, Lecoq JA, Buice MA, Groblewski PA, Ocker GK, Oliver M, Feng D, Cain N, Ledochowitsch P, Millman D, Roll K, GarrettM, Keenan T, Kuan L, Mihalas S, Olsen S, Thompson C, Wakeman W, Waters J, Williams D, et al. A large-scale standardizedphysiological survey reveals functional organization of the mouse visual cortex. Nature Neuroscience. 2020 Jan; 23(1):138–151. doi: 10.1038/s41593-019-0550-9.
Wei G, Mansouri ZT, Wang X, Stevenson IH. Calibrating Bayesian decoders of neural spiking activity. bioRxiv. 2023 Nov; doi:10.1101/2023.11.14.567028.
Wei W, Held L. Calibration tests for count data. TEST. 2014 Dec; 23(4):787–805. doi: 10.1007/s11749-014-0380-8.
Williams CKI, Nash C, Nazábal A, Autoencoders and Probabilistic Inference with Missing Data: An Exact Solution for The FactorAnalysis Case. arXiv; 2019. doi: 10.48550/arXiv.1801.03851.
Ye J, Collinger J, Wehbe L, Gaunt R. Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity. Advances inNeural Information Processing Systems. 2023 Dec; 36:80352–80374.
Ye J, Pandarinath C. Representation learning for neural population activity with Neural Data Transformers. Neurons, Behavior,Data analysis, and Theory. 2021 8; 5(3):1–18. doi: 10.51628/001c.27358.
Yu BM, Cunningham JP, SanthanamG, Ryu SI, Shenoy KV, SahaniM. Gaussian-Process Factor Analysis for Low-Dimensional Single-Trial Analysis of Neural Population Activity. Journal of Neurophysiology. 2009 Jul; 102(1):614–635. doi: 10.1152/jn.90941.2008.
Zhou D, Wei XX. Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE. In:
Advances in Neural Information Processing Systems, vol. 33 Curran Associates, Inc.; 2020. p. 7234–7247.

20 of 29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590082doi: bioRxiv preprint 

arXiv:1706.03762
10.1101/2023.08.23.554148
10.1101/2023.11.14.567028
10.1101/2023.11.14.567028
10.48550/arXiv.1801.03851
10.51628/001c.27358
10.1152/jn.90941.2008
https://doi.org/10.1101/2024.04.19.590082
http://creativecommons.org/licenses/by/4.0/


Supplementary Figures

Figure S1. Posterior inference for differentmasking conditions aWe test three differentmasking conditions wherehalf of the input data dimensions are masked in addition to the fully observed case. bMasked VAEs correctly capturethe posterior mean for partially and fully observed conditions, while the naive VAE can only perform correct inferencein the fully observed condition. c Themean squared error (MSE) between the true and predicted posterior mean is lowfor all conditions formasked but not naive VAEs. Note the different orders of magnitude. dMasked VAEs appropriatelyadjust the posterior variance for all conditions, whilemasked VAEs always wrongly predict the variance level of the fullyobserved condition (white rectangle). e Both naive andmasked VAEs are well calibrated in the fully observed condition(left). Yet, only masked VAEs are calibrated when modeling conditional distributions (right).

Figure S2. The VAE correctly captures the correlation structure between the fly keypoints. a Correlation matrixof the y-dimension of the test set. b Correlation matrix of the y-dimension of the corresponding VAE reconstructions(mean)
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Figure S3. Additional cumulative distribution functions of units from monkey primary motor cortex Subset of49 units. Sample CDFs of the encoding predictions of the naive VAE.
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Figure S4. Additional cumulative distribution functions of units from monkey primary motor cortex Subset of49 units. Sample CDFs of the encoding predictions of the masked VAE.
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Figure S5. Additional cumulative distribution functions of units from monkey primary motor cortex Subset of49 units. Sample CDFs of the encoding predictions of the naive VAE.
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Figure S6. Additional cumulative distribution functions of units from monkey primary motor cortex Subset of49 units. Sample CDFs of the encoding predictions of the masked VAE.
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Supplementary Dataset Information and Hyperparameters

Table S1. Summary of relevant hyperparameters and dataset information for the GLVM VAE training
Hyperparameter Value

Learning Rate 0.001
Beta 1.0
Warmup Range 30 epochs
Beta Step 1/30
Epochs 1500
Fraction fully observed 0.25
Latent Size 1
Training Batch Size 1000
Validation/Test Batch Size 1000
Dataset dimensions (samples, dimensions) (10000, 20)
Trainable Parameters 7442

Table S2. Summary of relevant hyperparameters and dataset information for the fly VAE training
Hyperparameter Value

Learning Rate 0.0005
Beta 1.0
Warmup Range epochs 3-6, beta=0 before
Beta Step 0.25
Epochs 700
Epoch when masking starts 250
Fraction fully observed 0.5
Latent Size 18
Training Batch Size 256
Validation/Test Batch Size 512
Dataset dimensions (samples, sequence length, key points) (28059, 234, 64)
Sequence length cut for training 48
Trainable Parameters 39426
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Table S3. Summary of relevant hyperparameters and dataset information for the monkey reach VAE training
Hyperparameter Value

Learning Rate 0.001
Learning Rate sparsity 0.005
Beta 1.0
Warmup Range 50 iterations
Beta Step 1/50
NLL Beta 0.3
Iterations 25000
Iteration when masking starts 5000
Fraction fully observed 0.5
Max. Latent Size 40
Training Batch Size 256
Validation/Test Size 512
Dataset dimensions total time: 26439, units: 213, behavior: 2
Sequence length cut for training 150
Trainable Parameters 379177
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Supplementary Information Gaussian Latent Variable Model
Here we consider a linear Gaussian latent variable model with a one-dimensional latent space and n-dimensional
observations 𝑥.

𝑧

𝑥0 𝑥𝑛...

𝑝(𝑧) =  (𝑧;𝜇𝑧, 𝜎
2
𝑧 ) (6)

𝑝(𝑥𝑖 ∣ 𝑧) =  (𝑥𝑖;𝐶𝑖𝑧 + 𝑑𝑖, 𝜎
2
𝑖 ) (7)

𝑝(𝐱 ∣ 𝑧) =  (𝐱;𝐂𝑧 + 𝐝,𝚲), (8)
where 𝚲) = diag(𝜎2

𝑖 ).

Joint distribution of latent and observed variables
For a GLVM as outlined above the joint distribution of latent and observed variables can be written as

𝑝(𝑧, 𝑥0, ..., 𝑥𝑛) = 
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⎜
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where 𝐂⊤ =
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, 𝐝⊤ =
[

𝑑0 ... 𝑑𝑛
]

, (11)
𝑅 =

[

𝐶0𝜎2
𝑧 ... 𝐶𝑛𝜎2

𝑧

]

, (12)
𝑄 =

[

𝜎2
𝑧

]

, and (13)

𝑆 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶2
0𝜎

2
𝑧 + 𝜎2

0 ... 𝐶0𝐶𝑛−1𝜎2
𝑧 𝐶0𝐶𝑛𝜎2

𝑧

𝐶2
1𝜎

2
𝑧 + 𝜎2

1 ...
... 𝐶𝑛−1𝐶𝑛𝜎2

𝑧

𝐶2
𝑛𝜎

2
𝑧 + 𝜎2

𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. (14)

Marginalization in the fully Gaussian case corresponds to ignoring the rows and columns of the mean and covari-
ance matrices of the joint distribution that correspond to the variable we aim to marginalize out. This means that
the covariance of e.g. the joint of only the data dimensions 𝑝(𝑥0, ..., 𝑥𝑛) is simply the submatrix that leaves out the
first row and column of (9). Corresponding adjustments to the matrices when marginalizing out certain variables
are denoted as 𝑄̂, 𝑅̂, 𝑆̂, 𝐶̂ and 𝑑.
Posterior distribution - inferring the latent distribution given observations
In order to compute the posterior of 𝑝(𝑧|𝐱), we can apply the conditioning rule for Gaussians and obtain

𝑝 (𝑧 ∣ 𝐱) =  (𝑧;𝜇𝑧 + 𝑅𝑆−1(𝐱 − 𝐂𝜇𝑧 − 𝐝), 𝑄 − 𝑅𝑆−1𝑅⊤). (15)
If some variables are unobserved, we can still perform exact inference of the posterior distribution 𝑝

(

𝑧 ∣ 𝐱obs
). We

obtain the analytical result by first marginalizing out the respective unobserved variables in the joint distribution
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in Eq. 9 before performing the conditioning step as in Eq. 15.
𝑝
(

𝑧 ∣ 𝐱obs
)

=  (𝑧;𝜇𝑧 + 𝑅̂𝑆̂−1(𝐱̂ − 𝐂̂𝜇𝑧 − 𝐝̂), 𝑄 − 𝑅̂𝑆̂−1𝑅̂⊤) (16)
where the hat indicates altered matrices where respective entries corresponding to unobserved values have been
dropped.
Hence, for each masking pattern, a different matrix inversion has to be carried out. Also, see the discussion of
exact inference in the factor analysis model in Williams et al. (2019). It is worth noting here that the posterior
variance does not depend on the exact 𝑥 values. Intuitively, the posterior variance (uncertainty) will increase if
some of the inputs are unobserved.
Accurate posterior inference and conditional sampling in masked VAEs with fixed decoders
As pointed out in the Methods section, the masked training procedure promotes the learning of different encoder
networks that share parameters. This allows for targeting different approximate posterior distributions given
different conditioning masks: 𝑞𝜙(𝐳|𝐱all obs) will most likely not be equal to 𝑞𝜙(𝐳|𝐱partial obs), where partial obs indicates
that some but not all x-dimensions where observed in contrast to all obs. The generative model (Eq. 1) of the VAE
𝑝𝜃(𝐱|𝐳), however, should not depend on the masking condition. Once this relationship from latent to data space is
learned and once we can correctly infer the approximate posterior given only observed variables 𝑞𝜙(𝐳|𝐱obs) we cancorrectly capture conditional distributions of unobserved data 𝐱unobs given observed data 𝐱obs:

𝑝(𝐱unobs|𝐱obs) = ∫ 𝑝(𝐱unobs, 𝐳|𝐱obs) 𝑑𝐳

= ∫ 𝑝(𝐱unobs|𝐳, 𝐱obs)𝑝(𝐳|𝐱obs) 𝑑𝐳

= ∫ 𝑝(𝐱unobs|𝐳)𝑝(𝐳|𝐱obs) 𝑑𝐳

= 𝔼𝐳∼𝑝(𝐳|𝐱obs)[𝑝(𝐱unobs|𝐳)].

(17)

Note that we used that 𝑝𝜃(𝐱|𝐳) can be written as 𝑝𝜃(𝐱obs, 𝐱unobs, |𝐳) and since 𝐱obs and 𝐱unobs are conditionally indepen-
dent given 𝐳, 𝑝(𝐱unobs|𝐳, 𝐱obs) simplifies to 𝑝(𝐱unobs|𝐳). Hence, assuming we have correctly learned to infer 𝑝(𝐳|𝐱obs) and
𝑝(𝐱unobs|𝐳), we can sample from all sorts of conditional distributions we specify prior to training with structured
masks.
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