

1 Occurrence of strawberry viruses in *Fragaria* germplasm and evaluation of
2 cryotherapy as an eradication method for strawberry viruses

3 Thomas Wöhner, Monika Höfer

4 Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for
5 Breeding Research on Fruit Crops, Pillnitzer Platz 3a, D-01326, Dresden, Germany

6

7 *corresponding author: thomas.woehner@julius-kuehn.de

8 **Abstract**

9 Strawberry plants are highly susceptible to viral infections, which pose significant
10 threats to global strawberry production. This study aims to explore the efficacy of *in*
11 *vitro* initiation and cryopreservation of shoot tips as a potential strategy for eradicating
12 strawberry viruses. We tested plants for four important strawberry viruses namely:
13 SMoV, SCV, SMEY and SVBV. The plants, which tested positive were either cultivated
14 as *in vitro* cultures then returned to a green house or field collection cultivation, or
15 treated by cryopreservation. After cryopreservation, the plants were cultivated again
16 *in vitro* and then in the green house or field. The viruses were detected within each
17 propagation step. Significant eradication effects were found for SMoV and SCV when
18 plants were treated by *in vitro* initiation or with cryotherapy, but not for SMEY or SVBV.
19 The results of this study show that cryotherapy or *in vitro* initiation can lead to the
20 elimination of strawberry viruses, but the kind of therapy appears to depend on the
21 type of virus.

22 **Keywords:** *Fragaria*, virus eradication, cryotherapy

23 **Text**

24 Strawberries are one of the most economically important temperate fruit crops, with
25 an annual production of 9.157,127.5 t on an area of 389,665 ha worldwide in 2021
26 (FAO stat, <https://www.fao.org/faostat/en>). The main producing countries are USA,
27 Netherlands, Morocco, Spain and Albania. With a percentage of 3.1% of the German

28 fruit production, strawberry cultivation was the third-largest in Europe with a yield of
29 130,630 tonnes on an area of 12,500 ha in 2021 (FAO stat,
30 <https://www.fao.org/faostat/en>). For the successful cultivation of strawberries, it is
31 necessary to provide virus-free plant material. Virus infections are one main reason
32 for the degeneration of propagation material in strawberries. Once infected, vegetative
33 propagation transmits the viruses from one propagation phase to the next. An infested
34 plant weakens the plant in the long term, leading to increased pathogen susceptibility.
35 However, the virus infection itself also leads to economic losses due to bad fruit
36 quality, deformation of leaves and other symptoms (Martin and Tzanetakis 2006).
37 More than 25 viruses have been described for strawberries to date (Fránová et al.
38 2019, Koloniuk et al 2022a), which were transmitted via insects, nematodes or other
39 vectors (Bragard et al. 2019, Martin and Tzanetakis et al. 2006, Franova et al. 2019,
40 Koloniuk et al 2022b). Martin and Tzanetakis (2006) reported aphid transmitted
41 viruses, mainly, the *strawberry mottle virus* (SMoV), *strawberry mild yellow edge virus*
42 (SMYEV), *strawberry crinkle virus* (SCV) and *strawberry vein banding virus* (SVBV) as
43 the most economically important ones in strawberry cultivation areas of the world..
44 Although control of field infestation of the vector *Chaetosiphon fragaefolii* (strawberry
45 aphid) is possible (reviewed in CABI 2022), once a plant is infected, the only way to
46 stop virus dissemination is an eradication of infested plants (Greber 1979, Boxus
47 1989, Nazarov et al. 2020, Rubio et al. 2020). The generation of virus free plants is an
48 important task for the provision of plants for vegetative propagation, cultivation and
49 preservation of genetic resources. Methods for virus elimination are described for
50 several cultivated plant species and are mainly chemotherapy (Faccioli 2001,
51 Modarresi Chahardehi et al. 2016, AlMaarri et al. 2012), thermotherapy (Faccioli 2001,
52 Wang et al. 2006, AlMaarri et al. 2012, Waswa et al. 2017, Zhao et a. 2018),
53 electrotherapy (AlMaarri et al. 2012), cryotherapy (Zhao et al. 2018) or meristem
54 culture (Faccioli 2001, Quazi and Martin, 1978, Wang et al. 2006, Zhang et al. 2019).
55 For strawberries cryotherapy, thermotherapy and *in vitro* culture techniques were
56 described for single virus eradication (Boxus 1976, McGrew 1965). However,
57 cryotherapy has not been investigated for the eradication of different strawberry
58 viruses. This study investigated the occurrence of strawberry viruses in the

59 germplasm repository in the Fruit Genebank of the Julius Kühn-Institute (JKI)
60 Dresden-Pillnitz and used the well-established method of cryopreservation (Höfer et
61 al. 2016) as a possible method for the eradication of different strawberry viruses.

62 The plant material was obtained from the *Fragaria* collection of the Fruit Genebank of
63 the Julius Kuehn Institut (JKI). Seventy-seven cultivars and seven unassigned
64 accessions of *Fragaria ×ananassa* as well as 168 accession of *Fragaria* wild species
65 and hybrids were tested for four strawberry viruses in the field (see list of the tested
66 cultivars and wild species accession in supplemental material table S1). PCR was
67 used to test and detect four strawberry viruses namely: (SMoV - strawberry mottle
68 virus, SCV – strawberry crinkle virus, SMYEV – strawberry mild yellow edge virus,
69 SVBV – strawberry vain banding virus). A mix of different leaves of up to eight plant
70 samples per accession (n=1-8) were collected (see table S1) for virus detection in the
71 cultivar collection. For initial virus detection in the wild species collection, a mix of
72 different leaves from up to three plants per accession was collected and tested as
73 one sample (n=1). Between three to 10 plant samples (n=3-10) per cultivar were
74 collected for the detection of viruses in the set of 19 cultivars for evaluation of virus
75 eradication efficiency in the field, after in vitro initiation, after cryo-conservation and
76 finally after transfer into the greenhouse again. RNA was isolated from 40 mg leaf
77 material, and the invitrap Spin RNA Mini Kit (Invitec Molecular GmbH, Berlin,
78 Germany) was used for extraction according to the manufacturer's protocol. The RNA
79 obtained was diluted in 50 µl dd H₂O. The quantification of the isolated nucleic acid
80 was performed on the NanoDrop 2000c device. Synthesis of cDNA was performed
81 using the Revert Aid First Strand cDNA Synthesis Kit (Thermo Fisher) according to the
82 manufacturer's protocol. Random hexamer oligos and oligo_dT18-nucleotides were
83 used for the synthesis. A total of 1 µg RNA was the input amount for cDNA synthesis
84 per sample. Successful cDNA synthesis was evaluated using a standard PCR method
85 using elongation factor EF specific primers (EF_F und EF_R, Flachowsky et al. 2007).
86 The PCR conditions were: 13,4 µl ddH₂O, 2.5 µl 10x DreamTaq Puffer with 20 mM
87 MgCl₂, 2.5 µl dNTPs with 2 mM, 1.25 µl of 10 µM EF1aF and EF1aR, 1 µl 20x red
88 buffer, 1 µl of 0,125% BSA (Zhang et al. 2014), 1 µl of 25% PVP (Koonjul et al. 1999)
89 and 0,1 µl of 5 U µl-1 DreamTaq polymerase. A total of 1µl cDNA was used for each

90 PCR reaction. PCR was performed with 1 x initial denaturation: 94 °C 3', 35 x
91 denaturation/annealing/elongation: 94 °C 30''/56 °C 1'/72 °C 1', 1 x final elongation:
92 72 °C 3' and 1 x cooling: 10 °C ∞. The primer sequences to proof strawberry leaf
93 material on the occurrence of strawberry viruses was obtained from the publication
94 listed in table S2 and PCR was performed according to the mastermix and conditions
95 in table S3. Amplificates of investigated samples, positive and negative control
96 samples will be separated by agarose gel electrophoresis. For each sample 10 µl PCR
97 product is loaded into a 1,5 % agarose gel and separated at 90 Volt. A 50 bp size
98 standard (Thermo-Fisher Scientific) is used. Positive samples amplify the specific
99 fragment, whereas negative samples obtained no fragment. The evaluation of virus
100 eradication effect by cryotherapy compared to *in vitro* initiation was tested on 19
101 cultivars (Coral, Dukat, Florika, Fraginetta, Gloria, Mieze Nova, Mrak, Pantagruella,
102 Papa Lange, Pegasus, Pervagata, Polka, Rosa Perle, Rubia, Senga Dulcita, Senga
103 Gigana, Symphony, Talisman, Triscana). For the evaluation of virus eradication effect
104 by cryotherapy, samples of the cultivars were obtained from the field (test phase – A).
105 Stolons of positive tested plants were obtained and shoot tips were isolated in the
106 laboratory according to the experimental procedures described in Höfer (2011). Up to
107 three single shoot tips of virus positive plants (n= up to 3) were dissected to establish
108 *in vitro* cultures before cryotherapy (test phase – B). Negatively tested plants obtained
109 from *in vitro* cultures were used for re-transmission from the laboratory into the
110 greenhouse (test phase – C) for virus retesting to study the effect of shoot tip
111 dissection on virus elimination. Up to three individual plants (n= up to 3) were used for
112 virus testing. *In vitro* apical shoot tips from positive tested cultivars were dissected
113 from up to 4-week-old *in vitro* plants and the method described in Höfer et al. 2016
114 was performed for cryopreservation and recovery of plant shoot tips. Up to 10 plants
115 per cultivar were (n= up to 10) were tested on the occurrence of viruses (in-vitro culture
116 after cryo, test phase – D). After transmission of recovered plants into the greenhouse
117 (test phase – E, plants were tested on the occurrence of viruses as described for initial
118 virus testing (n= up to 9). The frequency of positive tested plant samples per virus, the
119 percentage of positive and negative tested cultivars/species was calculated. For the

120 19 cultivars mentioned above, the frequency of positive tested samples for each virus
121 was calculated per cultivar and test phase.

122 A total of 84 *Fragaria xananassa* accessions and 164 accessions of 22 *Fragaria* wild
123 species and hybrids were tested on the occurrence of four strawberry viruses. An
124 example of the detection results obtained by PCR for each single virus is shown in
125 figure 1. Table 1 shows the percentage of positive tested samples. The highest virus
126 frequency in *Fragaria xananassa* was observed for the SCV (73.2%) and SMYEV
127 (72.1%). A lower frequency was obtained for SMoV (57.5%) and SVBV (4.3%). Single
128 virus frequencies determined for each species are shown in table 1. To determine the
129 frequency of each virus over all tested samples and species, a mean frequency of
130 each virus was calculated. The most frequent virus was SMYEV (74.5%), whereas
131 SCV (35.9%), SMoV (30.9%) and SVBV (11.8%) showed a lower mean frequency.
132 Between 6.8 % (SVBV) and 82.9 % (SMYEV) of samples collected from 19 cultivars
133 tested positive for all four viruses in field. The effect of virus elimination when shoot
134 tips were isolated from stolons of infected strawberry plants to establish *in vitro*
135 cultures resulted in 26.3 % (SMYEV) to 98.2 % (SVBV) virus free plants. After re-
136 transmission into the green house between 2.6 % (SCV) to 76.3 % (SMYEV) of the
137 tested plants were re-infected with viruses (table 2). The effect of cryotherapy was
138 also investigated and 14.9 % (SMYEV) to 100 % (SCV) negative tested plants were
139 obtained. After re-transmission of cryotherapy threatened plants into the green house
140 between 22.6 % (SMYEV) and 100 % (SCV) of plants tested negative on the
141 strawberry viruses. The results are shown in table 3.

142 Strawberries are highly susceptible to strawberry viruses, and sources of resistance
143 to the viruses or vectors are not investigated so far (Shanks and Barrit 1974, Barrit
144 and Shanks 1980). Chemical controls against the vectors are also possible, but only
145 with very high application rates, which is contrary to current socio-economic
146 developments. Once a plant is infected, it can only be eradicated and new virus-free
147 plant material has to be made available. Providing virus-free plant material for new
148 plantings is therefore the best strategy so far (Bettoni et al. 2022). In this study, we
149 therefore investigated the effect of *in vitro* initiation and cryopreservation on virus

150 elimination on strawberry (Figure 1A). Significant eradication effects were found for all
151 viruses by *in vitro* initiation and further by cryopreservation (Table 2 and 3). In
152 potatoes, Bettonie et al. 2022 and Kushnarenko et al. 2017 showed a high elimination
153 rate against three viruses by chemotherapy and cryotherapy. In other species such
154 as raspberry (35%), sweet potato (100%), banana (34 to 90%), grapevine (96% to
155 100%), quince (33 to 37%), apple (35 to 100%) and *Prunus* spec. (50%), cryotherapy
156 was also successfully performed to eliminate viruses (Harding et al. 2004, Helliot et
157 al. 2002, Feng et al. 2013, Cui et al. 2015; Pathirana et al. 2015, 2019, Farhadi-Tooli
158 et al. 2022, Wang et al. 2022a). In addition to cryotherapy, this study confirms that *in*
159 *vitro* initiation (Table 2) already leads to a reduction on strawberry viruses, which was
160 previously shown by Boxus (1976). However, the experiments also show that no effect
161 could be detected for the eradication of SMYEV. Binhua et al. (2008) especially reports
162 the successful elimination of SMYEV by freezing, which is contradictory to the results
163 of that study. This virus showed the highest frequency in the tested plant assortment.
164 Whether this virus can be successfully eliminated in combination with heat or
165 chemotherapy (Bettonie et al. 2022) remains to be answered in future research
166 projects.

167 **Acknowledgements**

168 We would like to thank Sabine Bartsch for her technical assistance with sampling,
169 DNA isolation and virus testing, and Ute Sonntag and Katrin Winkler for her assistance
170 with inculting and cryotherapy of strawberries.

171 **References**

172 Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays
173 with tobacco tissue cultures. *Physiologia plantarum*, 15(3), 473-497.

174 Höfer, M. (2011) Conservation strategy of genetic resources for strawberry in
175 Germany. *Acta Horticulturae* 908, 421-429.

176 Höfer, M. (2016). Cryopreservation of *in vitro* shoot tips of strawberry by the
177 vitrification method—establishment of a duplicate collection of *Fragaria* germplasm.
178 *CryoLetters*, 37(3), 163-172.

179 Agresti, Alan; Coull, Brent A. (1998): Approximate Is Better than "Exact" for Interval
180 Estimation of Binomial Proportions. In: *The American Statistician* 52 (2), S. 119. DOI:
181 10.2307/2685469.

182 AlMaarri, K.; Massa, R.; AlBiski, F. (2012): Evaluation of some therapies and
183 meristem culture to eliminate Potato Y potyvirus from infected potato plants. In:
184 *Plant Biotechnology* 29 (3), S. 237–243. DOI: 10.5511/plantbiotechnology.12.0215a.

185 Barritt, Bruce H.; Shanks, Carl H. (1980): Breeding Strawberries for Resistance to
186 the Aphids *Chaetosiphon fragaefolii* and *C. thomasi*1. In: *horts* 15 (3), S. 287–288.
187 DOI: 10.21273/HORTSCI.15.3.287.

188 Bettoni, Jean Carlos; Kretzschmar, Aike Anneliese; Bonnart, Remi; Shepherd,
189 Ashley; Volk, Gayle M. (2019): Cryopreservation of 12 *Vitis* Species Using Apical
190 Shoot Tips Derived from Plants Grown In Vitro. In: *HortScience* 54 (6), S. 976–981.
191 DOI: 10.21273/HORTSCI13958-19.

192 Bettoni, J. C., Souza, J. A., Volk, G. M., Dalla Costa, M., da Silva, F. N., &
193 Kretzschmar, A. A. (2019). Eradication of latent viruses from apple cultivar
194 'Monalisa'shoot tips using droplet-vitrification cryotherapy. *Scientia Horticulturae*,
195 250, 12-18.

196 Bettoni, J. C., Mathew, L., Pathirana, R., Wiedow, C., Hunter, D. A., McLachlan, A.,
197 ... & Nadarajan, J. (2022). Eradication of Potato Virus S, Potato Virus A, and Potato
198 Virus M from infected in vitro-grown potato shoots using in vitro therapies. *Frontiers*
199 in Plant Science, 1431.

200 Binhua, C., Jiyu, Z., & Shenchun, Q. (2008). Preliminary study on the elimination of
201 mild yellow-edge virus from in vitro shoot tips of Meihou strawberry cultivar by
202 vitrification-cryopreservation treatment. *Journal of Fruit Science*.

203 BOXUS, P. (1976): RAPID PRODUCTION OF VIRUS-FREE STRAWBERRY BY "IN
204 VITRO" CULTURE. In: *Acta Hortic.* (66), S. 35–38. DOI:
205 10.17660/actahortic.1976.66.4.

206 BOXUS, P. (1989): REVIEW ON STRAWBERRY MASS PROPAGATION. In: *Acta*
207 *Hortic.* (265), S. 309–320. DOI: 10.17660/actahortic.1989.265.46.

208 Bragard, Claude; Dehnen-Schmutz, Katharina; Gonthier, Paolo; Jacques, Marie-
209 Agnès; Jaques Miret, Josep Anton; Justesen, Annemarie Fejer et al. (2019): Pest
210 categorisation of non-EU viruses of *Fragaria* L. In: *EFSA Journal* 17 (9), e05766. DOI:
211 10.2903/j.efsa.2019.5766.

212 *Chaetosiphon fragaefolii* (strawberry aphid) (2022). In: *CABI Compendium CABI*
213 Compendium, Artikel 13305.

214 Cui, Z.-H.; Li, B.-Q.; Bi, W.-L.; Li, J.-W.; Wang, Q.-C. (2015): PLANT PATHOGEN
215 ERADICATION BY CRYOTHERAPY OF SHOOT TIPS: DEVELOPMENT,
216 ACHIEVEMENTS AND PROSPECTIVE. In: *Acta Hortic.* (1083), S. 35–41. DOI:
217 10.17660/ActaHortic.2015.1083.2.

218 Diaz-Lara, Alfredo; Stevens, Kristian A.; Klaassen, Vicki; Hwang, Min Sook; Al
219 Rwahnih, Maher (2021): Sequencing a Strawberry Germplasm Collection Reveals
220 New Viral Genetic Diversity and the Basis for New RT-qPCR Assays. In: *Viruses* 13
221 (8), S. 1442. DOI: 10.3390/v13081442.

222 Faccioli, G. (2001): Control of Potato Viruses using Meristem and Stem-cutting
223 Cultures, Thermotherapy and Chemotherapy. In: *Virus and Virus-like Diseases of*
224 *Potatoes and Production of Seed-Potatoes*: Springer, Dordrecht, S. 365–390. Online
225 verfügbar unter https://link.springer.com/chapter/10.1007/978-94-007-0842-6_28.

226 Farhadi-Tooli, Sakineh; Ghanbari, Alireza; Kermani, Maryam Jafarkhani;
227 Zeinalabedini, Mehrshad; Bettoni, Jean Carlos; Naji, Amir Mohammad; Kazemi,
228 Nooshin (2022): Droplet-vitrification cryotherapy and thermotherapy as efficient tools
229 for the eradication of apple chlorotic leaf spot virus and apple stem grooving virus
230 from virus-infected quince in vitro cultures. In: *Eur J Plant Pathol* 162 (1), S. 31–43.
231 DOI: 10.1007/s10658-021-02400-x.

232 Flachowsky, H., Peil, A., Sopanen, T., Elo, A., & Hanke, V. (2007). Overexpression of
233 BpMADS4 from silver birch (*Betula pendula* Roth.) induces early-flowering in apple
234 (*Malus x domestica* Borkh.). *Plant Breeding*, 126(2), 137–145.

235 Fránová, Jana; Přibylová, Jaroslava; Koloniuk, Igor (2019): Molecular and Biological
236 Characterization of a New Strawberry Cytorhabdovirus. In: *Viruses* 11 (11). DOI:
237 10.3390/v11110982.

238 Feng, C., Wang, R., Li, J., Wang, B., Yin, Z., Cui, Z., ... & Wang, Q. (2013).
239 Production of pathogen-free horticultural crops by cryotherapy of in vitro-grown
240 shoot tips. *Protocols for Micropropagation of Selected Economically-Important*
241 *Horticultural Plants*, 463-482.

242 Greber, R. S. (1979): Virus diseases of Queensland strawberries and the
243 epidemiological effects of the strawberry runner approval scheme. In: *Queensland*
244 *Journal of Agricultural and Animal Sciences* 36 (1), S. 93–103.

245 Harding, K. (2004). Genetic integrity of cryopreserved plant cells: a review.
246 *CryoLetters*, 25(1), 3-22.

247 Helliot, B., Panis, B., Poumay, Y., Swennen, R., Lepoivre, P., & Frison, E. (2002).
248 Cryopreservation for the elimination of cucumber mosaic and banana streak viruses
249 from banana (*Musa* spp.). *Plant Cell Reports*, 20, 1117-1122.

250 Koloniuk, Igor; Matyášová, Alena; Brázdová, Sára; Veselá, Jana; Přibylová,
251 Jaroslava; Fránová, Jana; Elena, Santiago F. (2022): Transmission of Diverse
252 Variants of Strawberry Viruses Is Governed by a Vector Species. In: *Viruses* 14 (7).
253 DOI: 10.3390/v14071362.

254 Koloniuk, Igor; Přibylová, Jaroslava; Čmejla, Radek; Valentová, Lucie; Fránová, Jana
255 (2022): Identification and Characterization of a Novel Umbra-like Virus, Strawberry
256 Virus A, Infecting Strawberry Plants. In: *Plants* 11 (5), S. 643. DOI:
257 10.3390/plants11050643.

258 Martin, Robert R.; Tzanetakis, Ioannis E. (2006): Characterization and Recent
259 Advances in Detection of Strawberry Viruses. In: *Plant disease* 90 (4), S. 384–396.
260 DOI: 10.1094/PD-90-0384.

261 McGrew, J. R. (1965): Eradication of latent C virus in the Suwannee variety of
262 Strawberry by heat plus excised runner-tip culture. In: *Phytopathology* 55 (4), S.
263 480–481.

264 Modarresi Chahardehi, Amir; Rakhshandehroo, Farshad; Mozafari, Javad; Mousavi,
265 Leila (2016): Efficiency of a chemo-thermotherapy technique for eliminating Arabis
266 mosaic virus (ArMV) and Prunus necrotic ringspot virus (PNRSV) from in vitro rose
267 plantlets. In: *Journal of Crop Protection* 5 (4), S. 497–506. Online verfügbar unter
268 https://jcp.modares.ac.ir/browse.php?a_id=971&sid=3&slc_lang=en.

269 Moses, Waswa; Rogers, Kakuhenzire; Mildred, Ochwo-Ssemakula (2017): Effect of
270 thermotherapy duration, virus type and cultivar interactions on elimination of potato
271 viruses X and S in infected seed stocks. In: *Afr. J. Plant Sci.* 11 (3), S. 61–70. DOI:
272 10.5897/AJPS2016.1497.

273 Nazarov, P. A.; Baleev, D. N.; Ivanova, M. I.; Sokolova, L. M.; Karakozova, M. V.
274 (2020): Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects
275 in Plant Protection. In: *Acta naturae* 12 (3), S. 46–59. DOI:
276 10.32607/actanaturae.11026.

277 Pathirana, R.; McLachlan, A.; Hedderley, D.; Carra, A.; Carimi, F.; Panis, B. (2015):
278 REMOVAL OF LEAFROLL VIRUSES FROM INFECTED GRAPEVINE PLANTS BY
279 DROPLET VITRIFICATION. In: *Acta Hortic.* (1083), S. 491–498. DOI:
280 10.17660/ActaHortic.2015.1083.64.

281 Priegnitz, Uta; Lommen, Willemien J. M.; van der Vlugt, René A. A.; Struik, Paul C.
282 (2020): Potato Yield and Yield Components as Affected by Positive Selection During
283 Several Generations of Seed Multiplication in Southwestern Uganda. In: *Potato Res.*
284 63 (4), S. 507–543. DOI: 10.1007/s11540-020-09455-z.

285 Rubio, Luis; Galipienso, Luis; Ferriol, Inmaculada (2020): Detection of Plant Viruses
286 and Disease Management: Relevance of Genetic Diversity and Evolution. In:
287 *Frontiers in plant science* 11, S. 1092. DOI: 10.3389/fpls.2020.01092.

288 Shanks, Carl H.; Barritt, Bruce H. (1974): *Fragaria chiloensis* Clones Resistant to the
289 Strawberry Aphid1. In: *HortScience* 9 (3), S. 202–203. DOI:
290 10.21273/HORTSCI.9.3.202.

291 Souza, Juliana A.; Bogo, Amauri; Bettoni, Jean C.; Costa, Murilo Dalla; da Silva,
292 Fabio N.; Casa, Ricardo T.; Rufato, Leo (2020): Droplet-vitrification cryotherapy for

293 eradication of apple stem grooving virus and apple stem pitting virus from
294 “Marubakaido” apple rootstock. In: *Trop. plant pathol.* 45 (2), S. 148–152. DOI:
295 10.1007/s40858-019-00321-z.
296 Virus and Virus-like Diseases of Potatoes and Production of Seed-Potatoes (2001):
297 Springer, Dordrecht.

298
299 Wang, Qiaochun; Liu, Yong; Xie, Yonghong; You, Misa (2007): Cryotherapy of
300 Potato Shoot Tips for Efficient Elimination of Potato Leafroll Virus (PLRV) and Potato
301 Virus Y (PVY). In: *Potato Res.* 49 (2), S. 119–129. DOI: 10.1007/s11540-006-9011-4.
302 Zhao, Lei; Wang, Min-Rui; Cui, Zhen-Hua; Chen, Long; Volk, Gayle M.; Wang, Qiao-
303 Chun (2018): Combining Thermotherapy with Cryotherapy for Efficient Eradication of
304 Apple stem grooving virus from Infected In-vitro-cultured Apple Shoots. In: *Plant
305 disease* 102 (8), S. 1574–1580. DOI: 10.1094/PDIS-11-17-1753-RE.

306
307 **Figures**

308 **Figure 1** (A) Schematic phases of virus elimination by in vitro initiation and cultivation
309 or cryopreservation (A-E). (B) Detection of four strawberry viruses with RT-PCR. E1
310 SMYEV –positive control of strawberry mild yellow edge virus with a band at 271 bp,
311 E2 SCV –positive control of strawberry crinkle virus with a band at 345 bp, E3 SVBV
312 –positive control of strawberry vein banding virus with a band at 435 bp, E4 –positive
313 control of strawberry mottle virus with a band at 219 bp, E1-E4 –negative control using
314 the AtropaNad2 band at 188 bp, 50bp – size marker.

315
316 **Tables**

317 **Table 1** Frequency of four strawberry viruses in *Fragaria* germplasm.

318 **Table 2** Results from the evaluation of strawberry virus eradication via stolon
319 meristem explant isolation and re-transmission into the green house

320 **Table 3** Results from the evaluation of strawberry virus eradication via stolon
321 meristem explant isolation, cryopreservation treatment and re-transmission into the
322 green house

323

324 **Supplemental tables**

325 **Table S1** Tested accessions used in this study.

326 **Table S2** Primer sequences to proof strawberry leaf material on the occurrence of 4
327 strawberry viruses.

328 **Table S3** Mastermix and PCR conditions for strawberry virus detection.

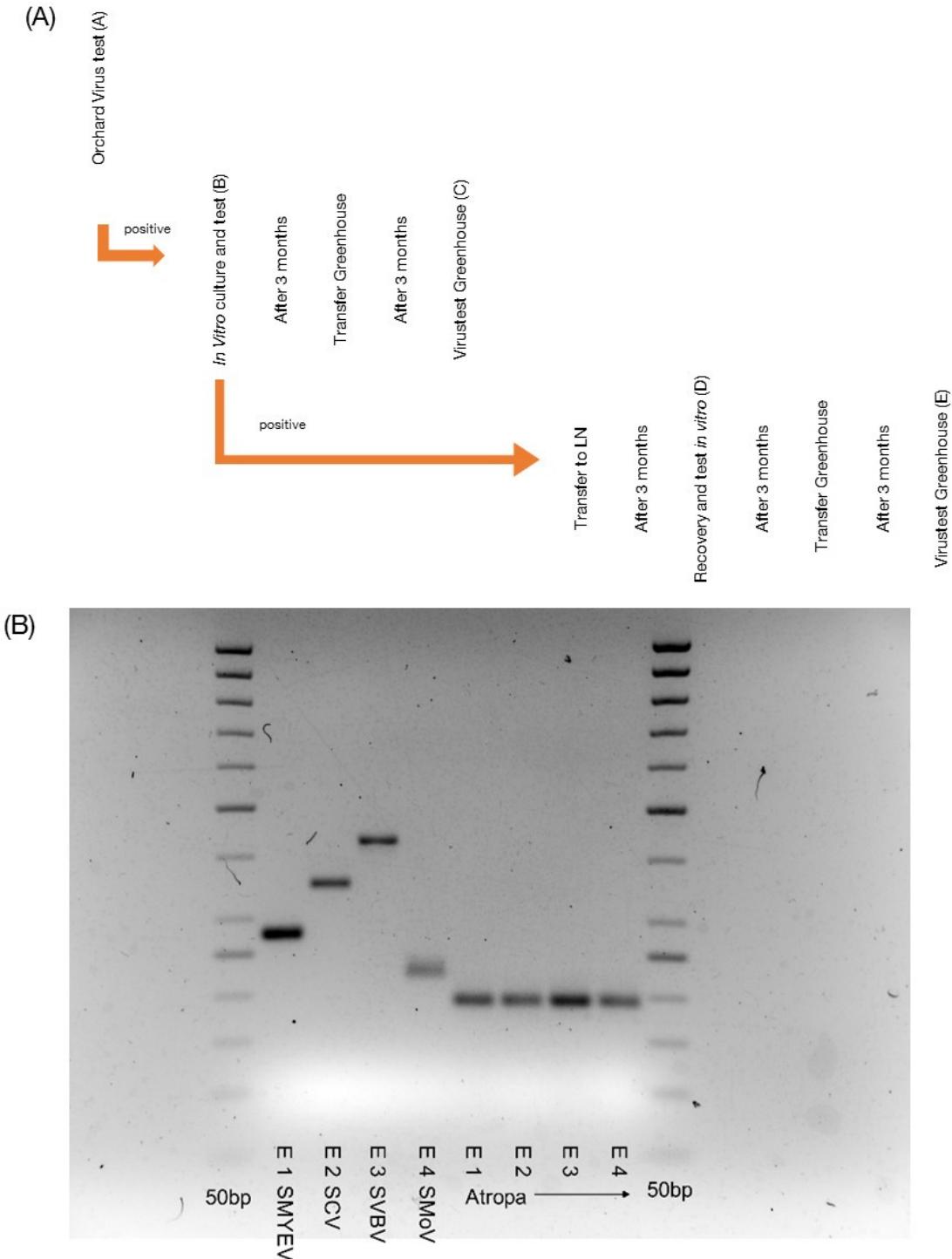


Figure 1A Schematic phases of virus elimination by in vitro initiation and cultivation or cryopreservation (A-E), LN – liquid nitrogen. 1B Detection of four strawberry viruses with RT-PCR. E1 SMYEV –positive control of strawberry mild yellow edge virus with a band at 271 bp, E2 SCV –positive control of strawberry crinkle virus with a band at 345 bp, E3 SVBV – positive control of strawberry vein banding virus with a band at 435 bp, E4 –positive control of strawberry mottle virus with a band at 219

bp, E1-E4 –negative control using the AtropaNad2 band at 188 bp, 50bp – size marker.

Table 1 Frequency of four strawberry viruses in *Fragaria* germplasm.

Species	No. of samples	% positive tested samples* / accessions			
		SMoV	SMYEV	SCV	SVBV
<i>Fragaria xananassa</i>	280	57.5	72.1	73.2	4.3
<i>Fragaria xbifera</i>	3	100.0	100.0	100.0	66.7
<i>Fragaria xbringhurstii</i>	1	0.0	100.0	100.0	0.0
<i>Fragaria bucharica</i>	8	12.5	75.0	37.5	0.0
<i>Fragaria chiloensis</i>	19	36.8	100.0	78.9	15.8
<i>Fragaria corymbosa</i>	9	22.2	44.4	0.0	33.3
<i>Fragaria gracilis</i>	4	50.0	0.0	0.0	0.0
<i>Fragaria hybr.</i>	2	50.0	100.0	50.0	0.0
<i>Fragaria iinumae</i>	1	0.0	100.0	0.0	100.0
<i>Fragaria mandshurica</i>	8	25.0	75.0	25.0	0.0
<i>Fragaria moschata</i>	10	30.0	10.0	40.0	10.0
<i>Fragaria moupinensis</i>	1	0.0	0.0	0.0	0.0
<i>Fragaria nilgerrensis</i>	5	0.0	100.0	0.0	20.0
<i>Fragaria nipponica</i>	7	14.3	100.0	42.9	0.0
<i>Fragaria nubicola</i>	6	0.0	100.0	33.3	0.0
<i>Fragaria orientalis</i>	7	28.6	100.0	28.6	0.0
<i>Fragaria pentaphylla</i>	3	66.7	0.0	0.0	0.0
<i>Fragaria sp.</i>	19	5.3	42.1	5.3	0.0
<i>Fragaria tibetica</i>	4	0.0	100.0	0.0	0.0
<i>Fragaria vesca</i>	18	38.9	100.0	83.3	5.6
<i>Fragaria virginiana</i>	16	43.8	93.8	50.0	0.0
<i>Fragaria viridis</i>	6	100.0	100.0	50.0	16.7
<i>Fragaria yezoensis</i>	7	28.6	100.0	28.6	0.0

* in case of *Fragaria xananassa* more then one sample per accession were tested

Table 2 Results from the evaluation of strawberry virus eradication via stolon meristem explant isolation and re-transmission into the green house

No.	test phase	plant material	virus	samples tested	no. positive	no. negative	%-pos.	%-difference from 100 % pos. tested plant material
A	from field collection	leaves from flower box	SMoV	51	25	69.8	-	-
			SMYEV	58	18	82.9	-	-
			SCV	58	18	73.3	-	-
			SVBV	5	71	6.8	-	-
↓ only positive plants from phase (I) were used in phase (II)								
B	in-vitro culture before cryo	explants from stolon meristem	SMoV	15	32	31.6	68.4	
			SMYEV	35	12	73.7	26.3	
			SCV	3	44	6.1	93.9	
			SVBV	1	46	1.8	98.2	
↓ only negative plants from phase (II) were used in phase (III)								
C	re-transmission from the lab into green house	leaves from flower box	SMoV	8	41	17.5	82.5	
			SMYEV	38	11	76.3	23.7	
			SCV	2	47	2.6	97.4	
			SVBV	2	47	4.4	95.6	

Table 3 Results from the evaluation of strawberry virus eradication via stolon meristem explant isolation, cryopreservation treatment and re-transmission into the green house

No.	test phase	plant material	virus	samples tested	no. positive	no. negative	%-pos.	%-difference from 100 % pos. tested plant material
↓ only positive plants from phase (I) were used in phase (II)								
B	in-vitro culture before cryo	explants from stolon meristem	SMoV	47	15	32	31.6	68.4
			SMYEV		35	12	73.7	26.7
			SCV		3	44	6.1	93.9
			SVBV		1	46	1.8	98.2
↓ only positive plants from phase (II) were used in phase (III)								
D	in-vitro culture after cryo	explants from stolon meristem	SMoV	111	12	99	9.0	91.0
			SMYEV		39	12	85.1	14.9
			SCV		0	111	0	100.0
			SVBV		2	109	1.1	98.9
↓ only negative plants from phase (III) were used in phase (IV)								
E	re-transmission from the lab after cryo	leaves from flower box	SMoV	108	10	98	9.1	90.9
			SMYEV		84	24	77.4	22.6
			SCV		0	108	0	100.0
			SVBV		1	107	0.4	99.6

Table S1 Tested accessions used in this study.

Accession no.	Species	cultivar name
ERB0018	<i>Fragaria xananassa</i>	Asinigra
ERB0048		Calea
ERB0065		Coral
ERB0077		Demerland
ERB0089		Dukat
ERB0094		Elsanta
ERB0115		Fraginetta
ERB0120		Fraroma
ERB0136		Gento
ERB0142		Gloria
ERB0144		Gorella
ERB0171		Imtraga
ERB0180		Joghana
ERB0186		Jurica
ERB0195		Korbinskaya rannyaya
ERB0201		Lihama
ERB0209		Machern
ERB0239		Optima
ERB0240		Orion
ERB0245		Papa Lange
ERB0251		Pervagata
ERB0253		Pink Panda
ERB0255		Polka
ERB0257		Senga Precosa
ERB0258		Senga Precosana
ERB0262		Prinz Julius Ernst
ERB0272		Redgauntlet
ERB0277		Rigensa
ERB0281		Rosella
ERB0283		Roter Regen
ERB0285		Rubia
ERB0288		Rupine
ERB0295		Sara
ERB0297		Schloß Horneburg
ERB0300		Seligra
ERB0301		Senga Dulcita
ERB0302		Senga Gigana
ERB0313		Silvia
ERB0322		Spadeka
ERB0331		Sturms Zuckersüße
ERB0336		Surprise des Halles
ERB0338		Sweetheart
ERB0339		Symphony
ERB0342		Talisman
ERB0346		Tenira
ERB0348		Thielesa
ERB0349		Thuriga
ERB0350		Tina

Accession no.	Species	cultivar name
ERB0355		Tribute
ERB0356		Triscana
ERB0362		Unermüdliche
ERB0390		Mrak
ERB0391		Pantagruella
ERB0392		Tioga
ERB0393		Royal Sovereign
ERB0398		Paula
ERB0401		Frabella
ERB0403		Tago
ERB0407		Pegasus
ERB0409		Profumata di Tortona
ERB0419		Mieze Nova
ERB0422		Multiplex
ERB0423		Rosa Perle
ERB0424		Quarantaine de Prin
ERB0425		Blanc Amélioré
ERB0426		Little Scarlet
ERB0427		Muricata
ERB0429		Sannié
ERB0430		Gartenfreude
ERB0432		Marie Charlotte
ERB0433		Ronja
ERB0434		Weiße Hagmann
ERB0435		Florika
ERB0436		Linné
ERB0437		Lucida Perfecta
ERB0438		Illa Martin
ERB0440		Ulrichsberg
FRA0001	<i>Fragaria bucharica</i>	-
FRA0002	<i>Fragaria bucharica</i>	-
FRA0003	<i>Fragaria bucharica</i>	-
FRA0004	<i>Fragaria bucharica</i>	-
FRA0005	<i>Fragaria bucharica</i>	-
FRA0006	<i>Fragaria bucharica</i>	-
FRA0007	<i>Fragaria bucharica</i>	-
FRA0011	<i>Fragaria chiloensis</i>	-
FRA0012	<i>Fragaria chiloensis</i>	-
FRA0013	<i>Fragaria chiloensis</i>	-
FRA0015	<i>Fragaria chiloensis</i>	-
FRA0022	<i>Fragaria chiloensis</i>	-
FRA0023	<i>Fragaria corymbosa</i>	-
FRA0024	<i>Fragaria corymbosa</i>	-
FRA0025	<i>Fragaria corymbosa</i>	-
FRA0026	<i>Fragaria corymbosa</i>	-
FRA0027	<i>Fragaria corymbosa</i>	-
FRA0028	<i>Fragaria corymbosa</i>	-
FRA0029	<i>Fragaria corymbosa</i>	-
FRA0030	<i>Fragaria corymbosa</i>	-

Accession no.	Species	cultivar name
FRA0031	<i>Fragaria corymbosa</i>	-
FRA0033	<i>Fragaria gracilis</i>	-
FRA0034	<i>Fragaria gracilis</i>	-
FRA0035	<i>Fragaria gracilis</i>	-
FRA0036	<i>Fragaria gracilis</i>	-
FRA0037	<i>Fragaria</i> sp.	-
FRA0038	<i>Fragaria</i> hybr.	-
FRA0039	<i>Fragaria iinumae</i>	-
FRA0041	<i>Fragaria mandshurica</i>	-
FRA0042	<i>Fragaria mandshurica</i>	-
FRA0045	<i>Fragaria mandshurica</i>	-
FRA0046	<i>Fragaria mandshurica</i>	-
FRA0048	<i>Fragaria moschata</i>	-
FRA0050	<i>Fragaria moschata</i>	-
FRA0052	<i>Fragaria moschata</i>	-
FRA0054	<i>Fragaria moschata</i>	-
FRA0057	<i>Fragaria moschata</i>	-
FRA0058	<i>Fragaria moschata</i>	-
FRA0061	<i>Fragaria moschata</i>	-
FRA0066	<i>Fragaria moschata</i>	-
FRA0068	<i>Fragaria moschata</i>	-
FRA0073	<i>Fragaria moschata</i>	-
FRA0075	<i>Fragaria</i> hybr.	-
FRA0076	<i>Fragaria moupinensis</i>	-
FRA0077	<i>Fragaria nilgerrensis</i>	-
FRA0078	<i>Fragaria nilgerrensis</i>	-
FRA0079	<i>Fragaria nilgerrensis</i>	-
FRA0080	<i>Fragaria nilgerrensis</i>	-
FRA0081	<i>Fragaria nilgerrensis</i>	-
FRA0084	<i>Fragaria nipponica</i>	-
FRA0085	<i>Fragaria nipponica</i>	-
FRA0087	<i>Fragaria nubicola</i>	-
FRA0088	<i>Fragaria nubicola</i>	-
FRA0089	<i>Fragaria nubicola</i>	-
FRA0090	<i>Fragaria orientalis</i>	-
FRA0091	<i>Fragaria orientalis</i>	-
FRA0092	<i>Fragaria orientalis</i>	-
FRA0093	<i>Fragaria orientalis</i>	-
FRA0095	<i>Fragaria orientalis</i>	-
FRA0096	<i>Fragaria pentaphylla</i>	-
FRA0097	<i>Fragaria pentaphylla</i>	-
FRA0098	<i>Fragaria pentaphylla</i>	-
FRA0099	<i>Fragaria</i> sp.	-
FRA0100	<i>Fragaria mandshurica</i>	-
FRA0101	<i>Fragaria mandshurica</i>	-
FRA0102	<i>Fragaria mandshurica</i>	-
FRA0103	<i>Fragaria</i> sp.	-
FRA0104	<i>Fragaria</i> sp.	-
FRA0105	<i>Fragaria</i> sp.	-

Accession no.	Species	cultivar name
FRA0106	<i>Fragaria</i> sp.	-
FRA0107	<i>Fragaria</i> sp.	-
FRA0108	<i>Fragaria</i> sp.	-
FRA0110	<i>Fragaria</i> sp.	-
FRA0111	<i>Fragaria</i> sp.	-
FRA0112	<i>Fragaria</i> sp.	-
FRA0113	<i>Fragaria</i> sp.	-
FRA0114	<i>Fragaria</i> sp.	-
FRA0115	<i>Fragaria</i> sp.	-
FRA0118	<i>Fragaria mandshurica</i>	-
FRA0119	<i>Fragaria</i> sp.	-
FRA0120	<i>Fragaria</i> sp.	-
FRA0121	<i>Fragaria</i> sp.	-
FRA0122	<i>Fragaria</i> sp.	-
FRA0123	<i>Fragaria</i> sp.	-
FRA0125	<i>Fragaria tibetica</i>	-
FRA0127	<i>Fragaria tibetica</i>	-
FRA0128	<i>Fragaria tibetica</i>	-
FRA0135	<i>Fragaria vesca</i>	-
FRA0140	<i>Fragaria vesca</i>	-
FRA0142	<i>Fragaria vesca</i>	-
FRA0150	<i>Fragaria vesca</i>	-
FRA0164	<i>Fragaria vesca</i>	-
FRA0172	<i>Fragaria vesca</i>	-
FRA0175	<i>Fragaria vesca</i>	-
FRA0178	<i>Fragaria vesca</i>	-
FRA0182	<i>Fragaria vesca</i>	-
FRA0185	<i>Fragaria vesca</i>	-
FRA0186	<i>Fragaria vesca</i>	-
FRA0195	<i>Fragaria vesca</i>	-
FRA0201	<i>Fragaria vesca</i>	-
FRA0205	<i>Fragaria vesca</i>	-
FRA0207	<i>Fragaria virginiana</i>	-
FRA0208	<i>Fragaria virginiana</i>	-
FRA0209	<i>Fragaria virginiana</i>	-
FRA0218	<i>Fragaria virginiana</i>	-
FRA0220	<i>Fragaria virginiana</i>	-
FRA0222	<i>Fragaria virginiana</i>	-
FRA0227	<i>Fragaria virginiana</i>	-
FRA0230	<i>Fragaria virginiana</i>	-
FRA0231	<i>Fragaria virginiana</i>	-
FRA0233	<i>Fragaria virginiana</i>	-
FRA0234	<i>Fragaria virginiana</i>	-
FRA0237	<i>Fragaria virginiana</i>	-
FRA0240	<i>Fragaria virginiana</i>	-
FRA0244	<i>Fragaria virginiana</i>	-
FRA0246	<i>Fragaria virginiana</i>	-
FRA0249	<i>Fragaria virginiana</i>	-
FRA0254	<i>Fragaria viridis</i>	-

Accession no.	Species	cultivar name
FRA0262	<i>Fragaria viridis</i>	-
FRA0263	<i>Fragaria viridis</i>	-
FRA0272	<i>Fragaria viridis</i>	-
FRA0280	<i>Fragaria viridis</i>	-
FRA0282	<i>Fragaria viridis</i>	-
FRA0283	<i>Fragaria xananassa</i>	-
FRA0284	<i>Fragaria xananassa</i>	-
FRA0286	<i>Fragaria xananassa</i>	-
FRA0287	<i>Fragaria xananassa</i>	-
FRA0288	<i>Fragaria xananassa</i>	-
FRA0289	<i>Fragaria xananassa</i>	-
FRA0290	<i>Fragaria xananassa</i>	-
FRA0292	<i>Fragaria xbifera</i>	-
FRA0295	<i>Fragaria xbifera</i>	-
FRA0296	<i>Fragaria xbifera</i>	-
FRA0298	<i>Fragaria xbringhurstii</i>	-
FRA0299	<i>Fragaria yezoensis</i>	-
FRA0301	<i>Fragaria yezoensis</i>	-
FRA0303	<i>Fragaria yezoensis</i>	-
FRA0305	<i>Fragaria yezoensis</i>	-
FRA0306	<i>Fragaria yezoensis</i>	-
FRA0308	<i>Fragaria yezoensis</i>	-
FRA0311	<i>Fragaria bucharica</i>	-
FRA0312	<i>Fragaria tibetica</i>	-
FRA0313	<i>Fragaria orientalis</i>	-
FRA0314	<i>Fragaria nubicola</i>	-
FRA0315	<i>Fragaria nubicola</i>	-
FRA0316	<i>Fragaria nubicola</i>	-
FRA0317	<i>Fragaria vesca</i>	-
FRA0319	<i>Fragaria yezoensis</i>	-
FRA0320	<i>Fragaria vesca</i>	-
FRA0322	<i>Fragaria nipponica</i>	-
FRA0323	<i>Fragaria nipponica</i>	-
FRA0324	<i>Fragaria nipponica</i>	-
FRA0325	<i>Fragaria nipponica</i>	-
FRA0326	<i>Fragaria nipponica</i>	-
FRA0327	<i>Fragaria chiloensis</i>	-
FRA0333	<i>Fragaria orientalis</i>	-
FRA0334	<i>Fragaria vesca</i>	-
FRA0335	<i>Fragaria chiloensis</i>	-
FRA0337	<i>Fragaria chiloensis</i>	-
FRA0340	<i>Fragaria chiloensis</i>	-
FRA0341	<i>Fragaria chiloensis</i>	-
FRA0344	<i>Fragaria chiloensis</i>	-
FRA0345	<i>Fragaria chiloensis</i>	-
FRA0346	<i>Fragaria chiloensis</i>	-
FRA0349	<i>Fragaria chiloensis</i>	-
FRA0350	<i>Fragaria chiloensis</i>	-
FRA0351	<i>Fragaria chiloensis</i>	-

Accession no.	Species	cultivar name
FRA0353	<i>Fragaria chiloensis</i>	-
FRA0355	<i>Fragaria chiloensis</i>	-
FRA0356	<i>Fragaria chiloensis</i>	-
FRA0372	<i>Fragaria vesca</i>	-

Table S2: Primer sequences to proof strawberry leaf material on the occurrence of 4 strawberry viruses.

Primer	Type	Sequence	Expected fragment size (bp)	Reference
SVBVdetaf	F	AGT AAG ACT GTT GGT AAT GCC A	435	Thompson et al. 2003
SVBVdetb	R	TTT CTC CAT GTA GGC TTT GA		
SCVdeta	F	CAT TGG TGG CAG ACC CAT CA		
SCVdetb	R	TTC AGG ACC TAT TTG ATG ACA		
SMYEVdeta	F	GTG TGC TCA ATC CAG CCA G		
SMYEVdetb	R	CAT GGC ACT CAT TGG AGC TGG G		
SMoVdeta	F	TAA GCG ACC ACG ACT GTG ACA AAG		
SMoVdetb	R	TCT TGG GCT TGG ATC GTC ACC TG		
AtropaNad2.1a	F	GGA CTC CTG ACG TAT ACG AAG GATC		
AtropaNad2.2b	R	AGC AAT GAG ATT CCC CAA TAT CAT	188	

Table S3 Mastermix and PCR conditions for strawberry virus detection.

Reagent (initial concentration)	µl per sample	Final concentration	PCR conditions
dd H ₂ O	13,4		Cycler: room 215 Programm: SVBV
10 x DreamTaq Puffer (20 mM MgCl ₂)	2,5	1 x	1 x initial denaturation: 94 °C 3'
2 mM dNTP's	2,5	0,2 mM	38 x
SVBVdetaf (10 µM)	1,25	0,5 µM	denaturation/annealing/elongation:
SVBVdetb (10 µM)	1,25	0,5µM	94 C° 1'/55 °C 40''/72 °C 40''
20 x rot Puffer	1	0,8 x	1 x final elongation: 72 °C 5'
BSA ^a (0,125 %)	1	0,005 %	
PVP ^b (25 %)	1	1 %	1 x cooling: 10 °C ∞
DreamTaq Polymerase (5 U/µl)	0,1	0,5 U	
DNA-Probe ^c	1		
Total	25		

^a 0,005 % BSA (Bovine serum albumin)/µl was added to the mastermix to prevent PCR-inhibitory substrates (Zhang et al. 2014).

^b 1 % PVP (Polyvinylpyrrolidone)/µl was added to the mastermix to prevent PCR-inhibitory substrates (Koonjul et al. 1999).

^c In general 10 ng/µl DNA per standard-PCR each was used, using cDNA no concentration was determined.