

1 O-GlcNAc Signaling Increases Neuron Regeneration Through

2 One-Carbon Metabolism in *Caenorhabditis elegans*

3

4 **Dilip Kumar Yadav¹# Andrew C Chang¹ Christopher V Gabel^{123*}**

5

6 **Affiliations**

7 ¹ Physiology and Biophysics, ² Pharmacology and Experimental Therapeutics, ³ Neurophotonics

8 Center, Boston University Chobanian & Avedisian School of Medicine, Boston MA 02118 USA, #

9 First Author and Co-corresponding author, * Corresponding and Lead Author

10

11 **Abstract**

12 Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following
13 physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to
14 neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β -
15 N-acetylglucosamine (O-GlcNAc), a ubiquitous post-translational modification that acts as a
16 cellular nutrient sensor, can significantly enhance *in vivo* neuron regeneration. Here we define
17 the specific metabolic pathway by which mutation of the O-GlcNAc transferase (*ogt-1*) increases
18 regenerative outgrowth. Performing *in vivo* laser axotomy and measuring subsequent
19 regeneration of individual neurons in *C. elegans*, we find that the *ogt-1* mutation increases
20 regeneration by diverting the metabolic flux of enhanced glycolysis towards one carbon
21 metabolism (OCM) and the downstream transsulfuration metabolic pathway (TSP). These effects
22 are abrogated by genetic and/or pharmacological disruption of OCM or the serine synthesis
23 pathway (SSP) that links OCM to glycolysis. Testing downstream branches of this pathway, we

24 find that enhanced regeneration is dependent only on the vitamin B12 independent shunt
25 pathway. These results are further supported by RNA-sequencing that reveals dramatic
26 transcriptional changes, by the *ogt-1* mutation, in the genes involved in glycolysis, OCM, TSP and
27 ATP metabolism. Strikingly, the beneficial effects of the *ogt-1* mutation can be recapitulated by
28 simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken
29 together, these data unearth the metabolic pathways involved in the increased regenerative
30 capacity of a damaged neuron in *ogt-1* animals and highlight the therapeutic possibilities of OCM
31 and its related pathways in the treatment of neuronal injury.

32

33

34

35

36

37

38

39

40

41

42

43 INTRODUCTION

44 To regenerate efficiently, a damaged neuron must undergo molecular and metabolic
45 rearrangement to induce and endure a range of complex cellular processes (Mahar and Cavalli

46 2018, Taub, Awal et al. 2018, Yang, Wang et al. 2020). These processes are extremely
47 metabolically challenging, energy demanding and critical for the regenerative capacity of a neuron
48 (Byrne, Walradt et al. 2014, Cartoni, Norsworthy et al. 2016, He and Jin 2016, Yang, Wang et al.
49 2020). The importance of metabolic pathways, particularly in neuronal regeneration including the
50 insulin-signaling pathway, energy metabolism, and mitochondrial function have been reported in
51 research articles by several groups (Byrne, Walradt et al. 2014, Cartoni, Norsworthy et al. 2016,
52 Han, Baig et al. 2016, Han, Xie et al. 2020). Nonetheless critical questions remain as to the
53 alterations in cellular metabolism and energy production in a damaged and regenerating neuron
54 and how these processes might be exploited for therapeutic benefits.

55 In a previous study our group demonstrated that perturbation in O-linked β -N-acetylglucosamine
56 (O-GlcNAc) signaling, a post-translational modification of serine and threonine that is known to
57 act as a nutrient sensor, substantially increased axonal regeneration in *Caenorhabditis elegans*
58 (*C. elegans*) (Taub, Awal et al. 2018). Carrying out *in vivo* laser axotomies, we demonstrated that
59 a reduction of O-GlcNAc levels, due to mutation of the O-GlcNAc transferase (*ogt-1*), induces the
60 AKT-1 branch of the insulin-signaling pathway to utilize glycolysis and significantly enhanced
61 neuronal regeneration. Inhibition of the glycolytic pathway through RNAi knockdown of
62 phosphoglycerate kinase (*pgk-1*) or loss of function of phosphofructokinase-1.1 (*pfk-1.1*)
63 specifically suppressed *ogt-1* enhanced regeneration but did not alter wild-type regeneration
64 (Taub, Awal et al. 2018). Furthermore, supplementation with glucose in wild type animals is
65 sufficient to increase axonal regeneration after axotomy (Taub, Awal et al. 2018). These
66 observations established the importance of increased glycolytic metabolism to control and
67 enhance neuronal regeneration.

68 To date key questions, remain as to what specific metabolic pathways are stimulated in the *ogt-*
69 *1* mutant background and what cellular processes are augmented to increase regenerative
70 capacity. Numerous reports suggest that increased glycolysis averts metabolic flux towards one

71 carbon metabolism (OCM) to regulate numerous biological processes including molecular
72 reprogramming, immunological functions as well as neuronal development and function
73 (Iskandar, Rizk et al. 2010, Konno, Asai et al. 2017, Yu, Wang et al. 2019). In addition, studies
74 have reported the importance of metabolic amendments of OCM, the serine synthesis pathway
75 (SSP) and the transsulfuration pathway (TSP) in neuronal development, structure, function, and
76 regeneration (Iskandar, Rizk et al. 2010, Bonvento and Bolaños 2021, Lam, Kervin et al. 2021,
77 Chen, Calandrelli et al. 2022). Measuring neuronal regeneration in *C. elegans* following laser
78 axotomy under genetic, pharmacological, and metabolic perturbations, we demonstrate that *ogt-*
79 1 mutation in fact diverts glycolytic flux to OCM *via* the SSP and that functional OCM and SSP
80 are both essential for enhanced neuronal regeneration in *ogt-1* animals. From there, we observed
81 that metabolic flux from OCM through the TSP resulting in cystathionine metabolism into Acetyl-
82 CoA *via* the vitamin B12 independent shunt pathway is also critical to *ogt-1* regeneration. Taken
83 together our results illustrate how *ogt-1* acts as a major regulator of metabolic flux to orchestrate
84 and maximize the regenerative response in a damaged neuron and suggest that OCM and its
85 related pathways could serve as a potent neurotherapeutic target.

86

87 **RESULTS**

88 **1. Enhanced glycolysis pathway is sufficient for increased neuronal regeneration in *ogt-* 89 1 animals:**

90 Following our previous study, we sought to verify that increased glycolytic flux is the main
91 mechanism of increased neuronal regeneration in the *ogt-1* mutant background. Performing laser
92 axotomy on individual neurons and measuring regenerative outgrowth after 24 h, we found that
93 *ogt-1* mutation increases the neuronal regeneration in ALM and PLN neurons in *C. elegans* (fig
94 1A-1B, Table-S1 and supp fig 1A, Table-S1). Reduced O-GlcNAc levels due to the *ogt-1* mutation

95 will effectively block the metabolic flux into the Hexosamine Biosynthesis Pathway (HBP) diverting
96 metabolites towards glycolysis (Yi, Clark et al. 2012, Józwiak, Forma et al. 2014, Kim, Nakayama
97 et al. 2018). We recapitulated this effect by knocking down Glutamine-Fructose 6-phosphate
98 Amino Transferase (*gfat-1* and *gfat-2*) using neuron specific RNAi. *gfat-1* and *gfat-2*, orthologs of
99 the human, glutamine--fructose-6-phosphate transaminase 1 (*GFPT1*), catalyze the very first and
100 rate limiting step of HBP (fig. 1A). We found that knocking down either *gfat-1* or *gfat-2* significantly
101 increases the regeneration of ALM neurons in *C. elegans* compared to RNAi control in wild type
102 (fig. 1C, Table-S1). Earlier we have reported that genetic inhibition of the glycolytic enzymes
103 phosphoglycerate kinase (*pgk-1*) and phosphofructokinase-1.1 (*pfk-1*), both of which work in early
104 steps of the glycolysis pathway, suppresses *ogt-1* neuronal regeneration (Supp fig 1B; and Taub
105 et al). Reports suggest O-GlcNAc levels regulate the expression and activity of pyruvate kinase,
106 PKM1/2, encoded by *pyk-1* in *C. elegans*, which catalyzes the final step of glycolysis to produce
107 pyruvate from phosphoenolpyruvate (Wang, Liu et al. 2017, Bacigalupa, Bhadiadra et al. 2018,
108 Yu, Teoh et al. 2019). *C. elegans* has two orthologs of mammalian PK, *pyk-1* and *pyk-2*, with *pyk-*
109 *1* expression primarily in neurons including the ALM and PLM neurons and *pyk-2* showing limited
110 neuron expression (Hammarlund, Hobert et al. 2018) (supp fig. 1A and 1B). We found that knock
111 down of the *C. elegans* ortholog, *pyk-1*, via neuron specific RNAi, does not affect regeneration in
112 the *ogt-1* mutant but significantly increases regeneration in WT (fig. 1A, 1D, Table-S1), effectively
113 phenocopying *ogt-1*. Furthermore, by performing *pyk-1* activity assay in whole worm lysate we
114 observed that over all *pyk-1* activity is significantly down in *ogt-1* worms (fig. 1E).
115 In Taub et al we present strong evidence that enhanced glycolytic metabolism is a key element
116 of the increased regeneration in *ogt-1* animals. To further investigate if the energy production is
117 critical for these effects, we performed neuron specific RNAi knockdown of *atp-3*, an ortholog of
118 human ATP5PO (ATP synthase peripheral stalk subunit OSCP) predicted to have proton-
119 transporting ATP synthase activity. *atp-3* knockdown abrogated the *ogt-1* mediated enhanced

120 regeneration but has no effect on regeneration in WT (Fig. 1D, Table-S1). However, these effects
121 did not translate to whole animal ATP level measurements. Employing a FRET-based transgenic
122 fluorescence ATP sensor (as described earlier in Soto et al, 2020) (Fig. 1F, Table-S1) as well as
123 ATP measurements in whole worm lysate, we found that ATP levels were significantly lower in
124 *ogt-1* than WT worms (supp fig. 1C). In addition, we assessed whole animal ATP utilization
125 measuring pyrophosphate (PPi) levels as an indirect indication of ATP hydrolysis but found no
126 measurable difference between WT and *ogt-1* worms (supp fig. 1D). Taken as a whole, these
127 results confirm that increased flux through the majority of the glycolytic pathway and neuron
128 specific ATP production is indeed important for *ogt-1* mediated enhanced regeneration, but that
129 a complex interaction of metabolic pathways beyond that of canonical glycolysis may be involved
130 specifically within the damaged and regenerating neuron.

131

132 **2. Gene expression analysis reveals the involvement of One Carbon Metabolism (OCM)
133 and its offshoot pathways in enhanced neuron regeneration in *ogt-1* animals:**

134 To identify additional genes and pathways involved in the enhanced regeneration of the *ogt-1*
135 mutant, we took an unbiased approach measuring differential gene expression *via* RNAseq
136 analysis in WT and *ogt-1* mutants. We first executed RNAseq analysis from RNA isolated from
137 whole animals and identified a substantial number of differentially expressed genes (DEGs) in
138 *ogt-1* compared to WT (fig. 2A, Table-S2). Gene ontology (GO) and Kegg pathway classification
139 analysis of DEGs identified metabolic processes such as carbohydrate, lipid, amino acids, and
140 nucleotide metabolism as the most enriched biological processes (fig. 2B-2C, Table-S2). In
141 addition, cell membrane, cargo transport, nutrient reservoir and energy metabolism are also
142 enriched in *ogt-1* (fig. 2B-2C, Table-S2). Kegg metabolic pathway enrichment analysis revealed
143 the enrichment of xenobiotics, drug metabolism along with glutathione metabolism, energy
144 metabolism, amino acid, and nitrogen metabolic pathways (fig. 2D, Table-S2). GO molecular

145 function analysis highlights the nutrient reservoir, glutathione and s-adenosyl methionine (SAM)
146 dependent molecular functions (fig. 2E, Table-S2). The enrichment of amino acid, nucleotide,
147 glutathione, and SAM dependent metabolic pathways indicates a possible role of one carbon
148 metabolism (OCM) and its offshoot pathways in *ogt-1* mutant mediated regeneration.

149 To further investigate if OCM and its related pathways are influenced by *ogt-1* mutation
150 specifically within neuronal cells, we performed RNAseq analysis in the RNA samples isolated
151 from FACs (Fluorescence-activated cell sorting) sorted neuronal cells in WT and *ogt-1* worms
152 (supp fig. 2A). Neuron specific RNAseq analysis identified a significant number of differentially
153 expressed genes (DEGs) (supp fig. 2B, Table-S3). As with whole worm analysis, Gene Ontology
154 (GO) pathway analysis of neuron specific DEGs identified metabolic processes such as cellular,
155 macromolecule, nitrogen compound, nucleic acid metabolism etc. (fig. 2F, Table-S3). GO analysis
156 of twofold up regulated genes revealed neuron specific pathways as anticipated (neuronal
157 perception, chemical and olfactory perception, synapses etc) along with carbohydrate and
158 polysaccharide metabolic pathways (supp fig. 2C, Table-S3), while twofold down regulated genes
159 included biological processes like meiosis, mitosis, gamete/ germ cell production and maturation,
160 reproduction, cell cycle, nuclear division and embryonic developments etc. which are expected to
161 be down regulated in the neuronal tissue (supp fig. 2D, Table-S3). Our top 50 up and down
162 regulated genes (supp fig. 2E and 2F) include important genes regulated by *daf-2* and *daf-16*
163 which have been reported to play critical role in adult neuron function and regeneration (Kaletsky,
164 Lakhina et al. 2016). In addition, other important genes involve in metabolism, epigenetic
165 modification and ATP metabolism are also enriched. Employing whole animal qRT-PCR, we
166 further confirmed that *folr-1*, *metr-1*, *sams-1*, important genes for OCM, were significantly up
167 regulated in the *ogt-1* background compared to WT (fig. 2G). While DNA methyltransferase (*damt-1*)
168 was significantly down regulated and DNA demethylases (*nmad-1*) was unchanged (fig. 2G),
169 Further bioinformatic analysis of neuron specific DEGs using the Functional Annotation Tool

170 “DAVID Bioinformatics Resources” revealed enrichment of metabolic pathways such as
171 glycolysis, lipid metabolism along with serine synthesis pathway (SSP), OCM, amino acid,
172 nucleotide, and nitrogen compound metabolism etc. (supp fig. 3A). While biosynthesis of cofactor
173 analysis specified enrichment of Folate, Methionine and SAM metabolism cycles, glutathione
174 metabolism and ATP synthesis pathways (supp fig. 3B). Taken together, the results of our
175 unbiased high throughput gene expression analysis strongly indicate the involvement of OCM
176 and its offshoot pathways in the increased neuronal regeneration in *ogt-1* mutant animals.

177

178 **3. Functional One-carbon Metabolism (OCM) and Serine Synthesis Pathway (SSP) are
179 indispensable for enhanced regeneration in *ogt-1* animals:**

180
181 Following the result of our gene expression analysis we sought to functionally validate the
182 importance of the OCM and related pathways in neuronal regeneration in *ogt-1* worms. We first
183 focused on the serine synthesis pathway (SSP) as it metabolically connects glycolysis with OCM
184 (fig. 3A) (Yu, Wang et al. 2019). NCT502 (MCE HY-117240) is a chemical agent reported to inhibit
185 the mammalian phosphoglycerate dehydrogenase (PHGDH) enzyme, which catalyzes the first
186 and rate limiting step of serine biosynthesis (Tabatabaie, Klomp et al. 2010, Zogg 2014, Pacold,
187 Brimacombe et al. 2016). Applied to *C. elegans*, NCT502 abrogated the effect of *ogt-1* mutation
188 on neuronal regeneration but significantly increased the regeneration in WT worms (fig. 3B, Table-
189 S4). In addition, we observe that supplementation of L-serine, the final product of SSP, which
190 feeds in to OCM, rescued the abrogative effect of NCT502 in *ogt-1* (fig. 3B, Table-S4). Previously
191 we found that AKT kinase, *akt-1*, activity, plays an important role in *ogt-1* regeneration, *akt-1*
192 mutation blocked the enhanced regeneration of *ogt-1*, while gain of function *akt-1* (++)
193 phenocopied *ogt-1* effect (Taub, Awal et al. 2018). Interestingly, NCT502 blocked the enhanced
194 regeneration in *ogt-1* (-); *akt-1* (++) worms (supp fig. 4A, Table-S6) and serine supplementation

195 rescued the enhanced regeneration that is eliminated in *akt-1(-);ogt-1(-)* worms (supp fig. 4A,
196 Table-S6). Since NCT502 has not been earlier reported to be used in *C. elegans*, we also tested
197 the effects of blocking SSP using RNAi gene knockdown. In concordance to NCT502 treatment,
198 neuron specific RNAi against C31C9.2 (*phgdh-1*), the *C. elegans* ortholog of human PHGDH and
199 target of NCT502, abrogated the effects of *ogt-1* mediated regeneration, and significantly
200 increased the regeneration in WT worms even beyond that of *ogt-1* worms (fig. 3C, Table-S4).
201 Interestingly, systemic RNAi knockdown against C31C9.2 (*phgdh-1*), that is ineffective in neurons,
202 did not alter regeneration levels in *ogt-1* animals suggesting a neuron specific mechanism.
203 However, it did significantly increase regeneration in WT worms (Supp fig. 4B, Table-S6). We
204 further measured *pyk-1* activity in WT worms and found that it was significantly enhanced by
205 NCT502 treatment (supp fig. 4C) suggesting increased glycolytic activity upon blocking the SSP.
206 Interestingly, we observed equally enhanced *pyk-1* activity in *ogt-1* worms with NCT502 treatment
207 (supp fig. 4D). These results demonstrate the importance of the SSP pathway in *ogt-1* mediated
208 enhanced neuron regeneration but suggest that in wild-type animals the reverse may be true and
209 blocking SSP becomes beneficial.

210 To test the importance of OCM in *ogt-1* mediated regeneration directly, we tested mutations of
211 methionine synthase (*metr-1*), an ortholog of the human MTR gene and s-adenosyl methionine
212 synthetase-1 (*sams-1*), an ortholog of human MAT1A and MAT2A genes, in the *ogt-1* background
213 (*ogt-1::metr-1* and *ogt-1::sams-1*) (fig. 3D). Both mutations abrogated the enhanced regeneration
214 in *ogt-1* animals but had no significant effect on WT regeneration (fig. 3E, Table-S4). Methionine
215 is an important metabolite of the OCM cycle and its supplementation increases OCM flux
216 (Miousse, Pathak et al. 2017, Sanderson, Gao et al. 2019, Lighthart-Melis, Engelen et al. 2020).
217 Methionine supplementation significantly increased the regeneration in WT worms but had no
218 additional effect on *ogt-1* worms (fig. 3F, Table-S4, and supp fig. 4E, Table-S6). Nor did it alter
219 the effects of blocking the SSP in either WT or *ogt-1* animals (fig. 3F, Table-S4) which may be in

220 part due to the requirement of serine for normal OCM progression (Yang and Vousden 2016,
221 Clare, Brassington et al. 2019, Geeraerts, Heylen et al. 2021). S-adenosyl Methionine (SAM), a
222 product of SAMS-1 and an important metabolite of OCM, mediates numerous cellular processes
223 including several biosynthetic, post-translational modifications and epigenetic modifications of
224 histones and nucleic acids for regulation of gene expression and metabolism, including glycolysis
225 (Ducker and Rabinowitz 2017, Clare, Brassington et al. 2019). It participates in the Kennedy
226 pathway to synthesize lipid (Phosphatidyl Choline) an important component of the cellular
227 membrane (fig. 3G) (Walker 2017). Phosphatidyl Choline can alternatively be synthesized from
228 choline. However we found that choline supplementation in *ogt-1::sams-1* dual mutant failed to
229 rescue the effects of *sams-1* mutation (fig. 3H, Table-S4). Furthermore, neuron specific RNAi
230 against Phosphoethanolamine Methyl Transferase (*pmt-1*), involved in Phosphatidyl Choline
231 biosynthesis from SAM, did not reduce *ogt-1* mediated regeneration, although it did enhance the
232 regeneration in WT worms (fig. 3H, Table-S4). SAM also acts as a methyl doner for
233 transmethylation reactions including histone modification. To test if the epigenetic modification of
234 histones by histone methyltransferases play any role in *ogt-1* enhanced regeneration, we knocked
235 down several reported H3K4 methyltransferase with known effects on H3K4 methylation and/or
236 neuronal regeneration including *set-2*, *set-11*, *set-16* and *set-17* (Walker, Jacobs et al. 2011,
237 Wilson, Giono et al. 2020). Knocking down these methyltransferases had no significant effect on
238 *ogt-1* mediated enhanced regeneration but significantly increased regeneration in WT worms (fig.
239 3I, Table-S4). RNAseq analysis also showed that DNA methylases (*damt-1*) and demethylase
240 (*nmad-1*) as well as *pmt-1/pmt-2*, required for Phosphatidyl Choline synthesis from SAM, were all
241 relatively downregulated while OCM genes were relatively upregulated in neuronal tissue in *ogt-1*
242 animals (supp fig. 4F). Thus, while the functional OCM pathway mediated by MERT-1 and
243 SAMS-1 is essential for *ogt-1* mediated enhanced regeneration, these results suggest that it does
244 not act through either lipogenesis or transmethylation pathways involved in epigenetic regulation.

245

246 **4. The transsulfuration pathway (TSP), an offshoot of OCM, is critical for enhanced**
247 **neuronal regeneration in *ogt-1* animals:**

248 Our gene expression analysis revealed that OCM related pathways such as glutathione and SAM
249 metabolism are highly altered in *ogt-1* worms. We therefore tested the importance of the
250 transsulfuration pathway in *ogt-1* mediated regeneration (fig. 4A). The transsulfuration pathway
251 involves cysteine and cystathionine metabolism that is utilized in glutathione synthesis important
252 for oxidative stress maintenance in neurons (Vitvitsky, Thomas et al. 2006, Sbodio, Snyder et al.
253 2019). Performing neuron specific RNAi against Glutathione Synthetase (*gss-1*), an ortholog of
254 human glutathione synthetase (GSS), we detected no effect on the enhanced regeneration in the
255 *ogt-1* mutant background but significantly increased regeneration in WT (fig. 4B, Table-S5). In a
256 complimentary manor, supplementation with L-Glutathione (GHS) significantly decreased
257 regeneration in *ogt-1* worms but had no effect on WT worms (fig. 4B, Table-S5). By contrast,
258 supplementation with L-cystathionine had no detectable effect on regeneration in *ogt-1* worms or
259 WT (fig. 4C, Table-S5) but rescued the effect of blocking SSP with NCT502 in *ogt-1* worms (fig.
260 4C, Table-S5). These observations suggest that while the transsulfuration pathway is functionally
261 involved in *ogt-1* mediated enhanced regeneration it is not through glutathione synthesis.

262 Cystathionine can be further metabolized in to succinyl-CoA or acetyl-CoA through either the
263 vitamin B12 dependent canonical pathway or the vitamin B12 independent shunt pathways
264 respectively (Watson, Olin-Sandoval et al. 2016, Giese, Walker et al. 2020). Succinyl-CoA or
265 acetyl-CoA can be further used for different metabolic processes or can enter the Krebs Cycle to
266 produce ATP. Our neuronal cell specific RNAseq analysis revealed that genes involved in OCM
267 (*metr-1*, *sams-1*, *folr-1*, *mthf-1* etc.), transsulfuration (*cth-1*) (supp fig. 4F, 5A), and the
268 downstream vitamin B12 independent shunt pathway (*acdh-1*, *ech-6*, *hach-1*, *hphd-1* & *alh-8*)
269 were relatively upregulated (supp fig. 5A) in *ogt-1* animals, while genes involved in the vitamin

270 B12 dependent canonical pathway (*pcca-1*, *pccb-1*, *mce-1* & *mmcm-1*) were down regulated
271 (supp fig. 5A). Likewise, performing qRT-PCR analysis against genes in these pathways, we
272 found that genes involved in TSP (*cth-1*, *cht-2*) and in the vitamin B12 independent shunt pathway
273 showed unidirectional upregulated expression in *ogt-1* (fig. 4D), while genes involved in the
274 canonical vitamin B12 dependent pathway showed no clear trend in differential expression (fig.
275 4D).

276 To test the role of cystathionine metabolism through shunt and canonical pathways directly in
277 neuronal regeneration, we generated double mutants with acyl-CoA dehydrogenase (*acdh-1*) that
278 mediates the vitamin B12 independent shunt pathway, *ogt-1::acdh-1*, and methylmalonyl-CoA
279 epimerase (*mce-1*) that mediates the vitamin B12 dependent canonical pathway *ogt-1::mce-1* (fig.
280 4E). The *mce-1* mutation had no effect on regeneration in either WT or the *ogt-1* background (*ogt-*
281 *1::mce-1*) (fig. 4F, Table-S5). However, while *acdh-1* mutation had no effect on WT regeneration,
282 it selectively eliminated the enhance regeneration of the *ogt-1* background (fig. 4F, Table-S5).
283 These results were recapitulated using neuron specific RNAi knockdown against *acdh-1* and *mce-*
284 *1* in the *ogt-1* background (supp fig. 5B, Table-S6). Neuron specific RNAi against *mce-1* in the
285 *ogt-1::acdh-1* double mutant had no observable effect (fig. 4F, Table-S5). The *acdh-1* mediated
286 shunt pathway is involved in the production of acetyl CoA from L-Cystathionine which can be
287 further used for several processes including lipid synthesis and/or ATP production. Thus, we
288 tested if lipid synthesis plays a role by neuron specific RNAi against *pod-2* (acetyl-CoA
289 carboxylase), an ortholog of human ACACA (acetyl-CoA carboxylase alpha), that is important for
290 lipid synthesis from acetyl CoA, but found it had no effect on either WT or *ogt-1* regeneration (fig.
291 4G, Table-S5). In contrast, the enhanced regeneration in *ogt-1* worms was clearly blocked by
292 neuron specific RNAi against *atp-3* RNAi that reduces cellular ATP production, (as described
293 above earlier fig. 1C and fig. 4G, Table-S5). In combination with gene expression analysis, these

294 results further define the pathway of *ogt-1* regeneration to specifically involve acetyl CoA
295 production by cystathionine metabolism through the vitamin B12 independent shunt pathway.

296

297 **Discussion**

298 In order to initiate and sustain the energetically demanding growth state required for effective
299 regeneration there must be sufficient modulation of the underlying molecular and metabolic
300 processes within the damaged neuron (He and Jin 2016). Numerous studies have focused on the
301 molecular and genetic mechanisms involved in axonal regeneration (Sun, Shay et al. 2014,
302 Chisholm, Hutter et al. 2016, Chung, Awal et al. 2016). Yet the role of metabolic function in neuron
303 regeneration is relatively less explored, despite its clear role in determining regenerative capacity
304 (Taub, Awal et al. 2018, Li, Sami et al. 2020, Yang, Wang et al. 2020). Previously, our group
305 demonstrated that genetically altered O-GlcNAc levels can substantially enhance neuronal
306 regeneration through modulation of the neuronal metabolic response (Taub, Awal et al. 2018).
307 Exploiting the genetic and optical accessibility of *C. elegans*, we demonstrated that a reduction of
308 O-GlcNAc levels (*ogt-1* mutation), a proxy for metabolic deficit, resulted in enhanced glycolysis
309 that supports increased regenerative capacity (Taub, Awal et al. 2018) and (fig. 1A). Disruption
310 of glycolysis (genetic or pharmacological) selectively eliminates the enhanced regeneration of the
311 *ogt-1* mutant (Taub, Awal et al. 2018). Glycolysis is a key energy source for neurons, particularly
312 under energy-limiting conditions (Jang, Nelson et al. 2016) and in developing neurons that foster
313 high axonal growth rates (Han, Baig et al. 2016, Zheng, Boyer et al. 2016, Han, Xie et al. 2020).
314 We have further verified this by neuron specific RNAi knockdown of *atp-3*, which significantly
315 reduces cellular ATP levels (Soto, Rivera et al. 2020) and blocks the enhance regeneration in
316 *ogt-1* animals (fig 1C). While our previous work established that neuronal glycolysis is a key
317 component of enhanced axonal regeneration following injury in *ogt-1* worms (Taub, Awal et al.

318 2018), key questions remained as to what specific metabolic pathways, within the enhanced
319 glycolysis background, are amended and involved to support regeneration.

320 Our results indicate that a complex metabolic pathway beyond that of canonical glycolysis is
321 involved in the enhanced regeneration in *ogt-1* animals (fig 5). In our earlier study, we
322 demonstrated the importance of early glycolytic enzymes (*pfk-1.1*, and *pgk-3*) in the *ogt-1* effect
323 (Taub, Awal et al. 2018). However, we found here that this does not extend to the complete
324 glycolytic pathway as neuron specific disruption of pyruvate kinase (*pyk-1*), which catalyzes the
325 final step of glycolysis to produce pyruvate, had no effect on regeneration in *ogt-1* (Fig. 1C). This
326 is in accordance with the reported effects of O-GlcNAcylation on these enzymes. High O-
327 GlcNAcylation decreases *pfk-1.1* function (Bacigalupa, Bhadiadra et al. 2018). Despite the fact
328 that high O-GlcNAcylation also destabilizes the pyruvate kinase, PKM1/2, complex (Wang, Liu et
329 al. 2017), reports show that inhibition of *ogt-1* results in low pyruvate kinase expression and
330 cellular activity (Yu, Teoh et al. 2019). The *ogt-1* mutation, which reduces O-GlcNAcylation, is
331 therefor expected to increase *pfk-1.1*, and reduce *pyk-1*, activity respectively, which agrees with
332 their measured importance in *ogt-1* neuron regeneration.

333 As these results indicate that the increased regeneration in *ogt-1* mutants does not entail direct
334 ATP production in the TCA cycle of canonical glycolysis, we further adopted an unbiased
335 approach performing genome wide gene expression analysis to identify additional pathways
336 involved. Through Gene ontology (GO) and Kegg pathway classification analysis of RNAseq data
337 from wild-type and *ogt-1* mutant animals we identified several metabolic pathways altered in both
338 whole animals and FACs sorted neuron samples (fig. 2A and supp fig. 2B). In addition to
339 numerous genes and cellular processes with known roles in regeneration such as amino acid,
340 nucleotide metabolism, lipid synthesis, methylation and glycolysis (Ducker and Rabinowitz 2017,
341 Clare, Brassington et al. 2019), our analysis further identified metabolic processes including
342 glutathione and s-adenosyl methionine (SAM) metabolism, energy metabolism and ATP

343 synthesis that were significantly enriched in the *ogt-1* background. This pathway enrichment
344 analysis indicates the involvement of One Carbon Metabolism (OCM) and its associated
345 pathways in enhanced regeneration in *ogt-1* animals (fig2 and supp fig. 3). These results were
346 further confirmed *via* specific gene expression analysis using qRT-PCR (fig 2G and fig. 4D) and
347 indicate the importance of OCM and the Transsulfuration Pathway (TSP) as key metabolic
348 pathways altered by the *ogt-1* mutation (fig. 2D-E).

349 OCM is involved in a wide array of cellular processes including biosynthesis (purines and
350 thymidine), amino acid homeostasis (glycine, serine, and methionine), epigenetic maintenance
351 (nucleic acid and histone methylation), and redox defense (Ducker and Rabinowitz 2017).
352 Enhanced glycolysis drives OCM through the Serine Synthesis Pathway (SSP) (Locasale 2013,
353 Yu, Wang et al. 2019) that is known to be involved in several neuronal conditions including,
354 neuronal growth, neural tube defect and Alzheimer's disease (Coppedè 2010, Bonvento and
355 Bolaños 2021, Lionaki, Ploumi et al. 2022). Through a combination of genetic manipulation,
356 pharmacological treatment, and metabolic supplementation in our *C. elegans* neuronal
357 regeneration assays, we have determined the specific metabolic pathway by which OCM
358 contributes to the enhanced regeneration in the *ogt-1* mutant. The complete pathway is illustrated
359 in green in Figure 5. We found that metabolic flux from the early steps of glycolysis is diverted to
360 OCM through SSP, which is in agreement with earlier reports where enhanced glycolysis diverts
361 metabolic flux towards OCM through SSP (Yu, Wang et al. 2019). This was most dramatically
362 illustrated by the reduction in regeneration from pharmacological, or genetic, disruption of *phgdh-*
363 1 (C31C9.2, ortholog of human *PHGDH*), a key element of the SSP. The role of the SSP was
364 further confirm by serine supplementation in the *akt-1* and *ogt-1* double mutant (*ogt-1;akt-1*),
365 which restored the enhanced *ogt-1* regeneration blocked by the *akt-1* mutation (supp Fig. 4A).
366 These results are in agreement with earlier metabolomic findings that enhanced glycolysis (Yu,
367 Wang et al. 2019) and/or knock down of PMK1/2 (mammalian ortholog of *pyk-1*) diverts metabolic

368 flux toward serine synthesis pathway to sustain cellular metabolic requirements (Yu, Teoh et al.
369 2019).

370 Although OCM is involved in both lipogenesis and DNA transmethylation (Kersten 2001, Yu,
371 Wang et al. 2019) that could potentially play significant roles in increasing neuron regeneration
372 (Iskandar, Rizk et al. 2010), we found that the regeneration effects of *ogt-1* were primarily
373 dependent on L-cystathionine metabolism *via* the downstream TSP (fig. 4C). The TSP is
374 influenced by OCM and its metabolites and has been reported to play an important role in
375 neurodegenerative diseases and ATP production (Giese, Walker et al. 2020, Lam, Kervin et al.
376 2021). We found that cystathionine supplementation rescued the prohibitory effects of blocking
377 the SSP pathway in the *ogt-1* background (fig. 4C). Testing branches of the TSP, we found that
378 only the vitamin B12 independent shunt pathway was required, *via* Acyl CoA dehydrogenase
379 (*acdh-1*), for *ogt-1* mediated enhanced regeneration. The shunt pathway generates Acetyl-CoA
380 that will drive ATP production through the Kreb's cycle ultimately bringing the metabolic
381 consequences of *ogt-1* back to cellular energy production and utilization as we demonstrated in
382 Taub et al. Though we observed a significant decrease in ATP levels (fig. 1F & supp fig. 1C) and
383 no difference in ATP utilization (supp fig. 1D) in *ogt-1* animals, these observations maybe due to
384 the fact that the measurements were either in whole worm or in nonneuronal tissues rather than
385 neuron specific. Indeed, the down regulation of *pyk-1* from *ogt-1* inhibition has been associated
386 with total reduced ATP levels previously (Dey, Son et al. 2019). Regardless, our work here has
387 now deciphered the specific metabolic pathway through which the enhanced regenerative effect
388 of *ogt-1* occurs.

389 While the *ogt-1* mutant diverts metabolic flux through a specific pathway to support and sustain
390 enhance regeneration, we also discovered several additional conditions where restriction or
391 diversion of metabolic flux in wild-type animals has similar beneficial effects. For instance, the
392 HBS pathway nominally shunts off ~5% of glycolytic flux (Marshall, Bacote et al. 1991, Bond and

393 Hanover 2015). We found that blocking the HBS pathway through RNAi against *gfat-1* and *gfat-*
394 2 (Yi, Clark et al. 2012, Jóźwiak, Forma et al. 2014, Kim, Nakayama et al. 2018), appears to divert
395 metabolic flux towards glycolysis and results in enhanced regeneration in WT animals similar to
396 that of *ogt-1* (fig. 1B). Likewise, *pyk-1* knockdown increases regeneration in WT and is known to
397 divert metabolic flux toward the SSP (Yu, Teoh et al. 2019). Within OCM, we found that
398 transmethylation pathways required for epigenetic modifications and phospholipid synthesis were
399 not essential for the enhanced regeneration in *ogt-1* animals but that blocking histone methyl
400 transferases in WT animals (fig. 3I) increased regeneration. In addition, supplementation in wild
401 type with the metabolite, L-methionine (product of *metr-1*), which increases OCM, phenocopied
402 the enhance regeneration of the *ogt-1* mutant (fig 3F) as did blocking neuronal glutathione
403 synthesis within the TSP (*gss-1* RNAi) (Fig 4B). While in the above instances restriction or
404 enhancement of specific metabolic steps could be augmenting the same pathway utilized in *ogt-*
405 1 regeneration, in other cases clearly alternative pathways are at work. For example,
406 pharmacologically (NCT502 treatment) or genetically (*phgdh-1* knock down) blocking SSP which
407 restricts the *ogt-1* regeneration pathway effectively increases regeneration in WT. This effect is
408 possibly due to increased metabolic flux through glycolysis, as we observed increased activity of
409 *pyk-1* after NCT502 treatment (supp fig. 4C). Likewise, we had previously found that mutation of
410 the O-GlcNAcase, *oga-1*, which increases O-GlcNAc levels, also increased neuron regeneration
411 in *C. elegans*, but did so through an independent pathway of enhanced mitochondrial stress
412 response (Taub, Awal et al. 2018).

413 Thus, within the complex web of cellular metabolism and energy production there appears to be
414 numerous pathways for metabolite utilization that are beneficial for neuron regeneration. Here,
415 employing genetic tools, we have defined the specific metabolic pathways (glycolysis, SSP, OCM
416 and TSP) through which the *ogt-1* mutation diverts metabolic flux to increase neuronal
417 regeneration. It is important to emphasize the accessibility of these metabolic effects to

418 pharmacological treatment and/or metabolite supplement. For example, we previously
419 demonstrated increased regeneration in wild-type animals with glucose supplementation (Taub,
420 Awal et al. 2018). Here we find similar effects with L-methionine supplementation or treatment
421 with the SSP blocking agent NCT502 in wild-type animals. Nutrient supplements and metabolic
422 drug targets have been employed in neurotherapeutic treatments and prevention in numerous
423 contexts including neuronal developmental defects (Greene, Leung et al. 2017, Businaro,
424 Vauzour et al. 2021, Wu, Gao et al. 2022) and age associated neurodegenerative diseases
425 (Stempler, Yizhak et al. 2014, Businaro, Vauzour et al. 2021). Our work demonstrates the
426 necessities of OCM, SSP and TSP metabolic pathways and their interaction in the increased
427 regenerative capacity of a damaged neuron in *ogt-1* animals and further highlights the distinct
428 possibilities for such metabolic targets in the treatment of neuronal injury.

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443 **Methods Details**

444 **KEY RESOURCES TABLE**

REAGENT	RESOURCE SOURCE	IDENTIFIER
Bacterial Strains		
E. coli OP50	Caenorhabditis Genetics Centre	OP50
Vidal and Ahringer RNAi Libraries in HT115 (D3) E. coli	Source Bioscience	N/A
Chemicals and Pharmacological Reagents		
L-methionine	Fisher Scientific	Cat#: AC166160025 CAS: 63-68-3
L-Cystathionine	Sigma	Cat#: C7505-10MG
L-Methionine	Sigma	Cat#: M-9625
L-Serine	Sigma	Cat#: S-4500
Choline Chloride	Millipore Sigma	Cat#: C7017-5G, CAS:67-48-1
Sodium Chloride (NaCl)	Fisher Bioreagents	Cat#: BP358-1 CAS:7647-14-5
β-mercaptoethanol	Fisher Scientific	Cat#: AC125470100 CAS: 60-24-2
Trizol	ThermoFisher Scientific	Cat#: 15596018
PowerUp SYBR Green Master Mix	Applied Biosystems	Cat#: A25741
Agarose	Fisher Bioreagents	Cat#: BP160-500, CAS: 9012-36-6
Pronase	Sigma- Aldrich	SKU# 10165921001
DMSO (Dimethyl Sulfoxide)	ThermoFisher Scientific	Cat#: 85190, Cas:67-68-5
Water, Molecular Grade, Sterile, DEPC Free	Fisher Scientific	Cat#: R91450001G, CAS: 7732-18-5
NCT502	MedChemExpress (MCE)	Cat#: HY-117240
Polybead polystyrene	Polysciences	Cat#08691-10
Commercial kit used		
ATP Assay Kit (Colorometric/ Fluorometric)	Abcam	Ab83355
Pyrophosphate Assay Kit (Fluorometric)	Abcam	Ab112155
Pyruvate Kinase (PK) Assay Kit (Colorimetric)	Abcam	Ab83432
BCA Protein Quantification Kit	Abcam	Ab102536
RNAeasy columns	QIAGEN	Cat#74034

Direct-zol RNA Miniprep Plus Kit	Zymo Research	Cat# R2070
----------------------------------	---------------	------------

445

Experimental models: Organisms/strains		
Worm	Strain	Source
WT (zdis5 pmec-4::GFP)	SK4005	Taub <i>et. al.</i>
<i>ogt-1(ok1474)_zdis-5 pmec-4::GFP</i>	NA	Taub <i>et. al.</i>
<i>ogt-1(ok1474)</i>	RB1342	Taub <i>et. al.</i>
TU3568 (sid-1(pk3321) him-5(e1490) V; lin-15B(n744) X; uls71[(pCFJ90) pmyo-2::mCherry + pmec-18::sid-1])	NA	Taub <i>et. al.</i>
<i>ogt-1(ok1474)_TU3568</i>	NA	Taub <i>et. al.</i>
<i>sams-1(ok3033)</i>	RB2240	CGC
<i>sams-1_zdis-5</i>	NA	in this study
<i>ogt-1;sams-1_zdis-5</i>	NA	in this study
<i>metr-1(R03D7.1(ok521))</i>	RB755	CGC
<i>metr-1_zdis-5</i>	NA	in this study
<i>ogt-1;metr-1_zdis-5</i>	NA	in this study
<i>acdh-1(ok1489)</i>	VC1011	CGC
<i>acdh-1_zdis-5</i>	NA	in this study
<i>ogt-1;acdh-1_zdis-5</i>	NA	in this study
<i>mce-1(D2030.5(ok243))</i>	RB512	CGC
<i>mce-1_zdis-5</i>	NA	in this study
<i>mce-1_TU3568_zdis-5</i>	NA	in this study
<i>ogt-1;mce-1_TU3568_zdis-5</i>	NA	in this study
<i>ogt-1;akt-1(mg144)</i>	CG122	Taub <i>et. al.</i>
<i>ogt-1;akt-1(ok525)</i>	CG125	Taub <i>et. al.</i>
<i>irls158 (normal ATP sensor, CAmA)</i>	MS2495	Soto and Rivera <i>et. al.</i>
<i>ogt-1; CAmA</i>	NA	In this study

446

447

448 REAGENTS AND RESOURCES

449 Further information and requests for resources, data and reagents should be directed to and will
450 be fulfilled by the Lead Contact, Christopher V. Gabel (cvgabel@bu.edu).

451

452

453 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

454 All *C. elegans* strains were cultured and maintained at 20°C on Nematode Growth Media (NGM)
455 agar plates seeded with OP50 *E. coli*, unless otherwise noted. Strains were obtained from the
456 Caenorhabditis Genetics Consortium (CGC at the University of Minnesota). To visualize the
457 mechanosensory neurons, strains were crossed either into SK4005 (zdis5 [pmec4::GFP]) or *ogt*-
458 1::zdis-5. Strains used are listed in detail in the experimental model table above. All strains
459 generated by crossing were confirmed by genotyped using primers recommended by the CGC.

460

461 **Laser Axotomy**

462 *In vivo* Laser Axotomy was performed with a Ti:Sapphire infrared laser system (Mantis
463 PulseSwitch Laser, Coherent Inc), that generated a 1 mHz train of 100 fs pulses in the near
464 infrared (800 nm), pulse energy of 15-30 nJ/pulse. Axotomy was performed on a Nikon Ti-2000
465 inverted fluorescent microscope with a Nikon 40X 1.4 NA objective. Neurons were imaged for
466 axotomy and subsequent measurement of regeneration *via* standard wide-field fluorescence of
467 gfp expressed in the targeted neuron. Day 1 adult *C. elegans* were mounted on 5-6% agarose
468 pads and immobilized in a 3-5 µL slurry of polystyrene beads (Polysciences, Polybead
469 Polystyrene, 0.05 µM microsphere, cat#08691-10) and NGM buffer (Kim, Sun et al. 2013).
470 Axotomy consisted of 3-5 short laser exposures (0.25 s each) resulting in vaporization at the focal
471 point and severing of the targeted axon. The Anterior Lateral Microtubule (ALM) neuron was
472 injured with two targeted cuts. The first cut was made 20 µm from the cell soma and a second cut
473 was made 40-50 µm from the cell soma, creating a 20-30 µm gap. Regeneration was reimaged
474 with a Nikon 40X 1.4 NA objective 24 h after axotomy, or as otherwise indicated, by placing the
475 animals on a 2% agarose pad with 5mM sodium azide. Regeneration lengths were measured by
476 tracing along the new neuron outgrowth with ImageJ/FIJI.

477

478

479 **Mechanosensory Neuron Specific RNAi Feeding**

480 To evaluate the function of specific genes, RNAi gene knockdown was employed following
481 protocols we used previously, Taub *et al.* These protocols were first confirmed by performing
482 RNAi knockdown against GFP in mechanosensory neurons and visually confirming significant
483 reduction in GFP expression. Both the Ahringer and Vidal bacterial RNAi libraries were employed
484 (Kamath and Ahringer 2003, Rual, Ceron *et al.* 2004). Following standard protocols, bacteria
485 colonies were streaked out on LB agar containing penicillin and grown at 37⁰C overnight. The
486 next day, single colonies were selected and grown in 10 mL of LB with Ampicillin overnight at
487 37⁰C. From this subculture, 250 micro-liters (uL) was spread onto RNAi agar plates containing
488 penicillin and 2mM IPTG. Plates were dried and incubated at room temperature for at least 48
489 hours before using them for worm culturing. For mechanosensory neuron specific RNAi gene
490 knockdown, we employed the TU3568 (sid-1(pk3321) him-5(e1490) V; lin-15B(n744) X; uls71
491 [(pCFJ90) pmyo-2::mCherry + pmec-18::sid-1]) background (Calixto, Chelur *et al.* 2010). This
492 strain has RNAi sensitivity specifically in the mechanosensory neurons and is RNAi resistant in
493 all other tissues. TU3568 was crossed into the *ogt-1* mutant background. Following protocols we
494 established in Taub *et al* 2018, gravid adults were bleached, and embryos were allowed to hatch
495 onto RNAi-bacteria plates. Once the F1 generation reached adulthood, 30-40 gravid adults were
496 picked onto fresh RNAi-bacteria plates and allowed to lay eggs for 3-4 hours. The day 1 adults of
497 the F2 generation were then used for Laser Axotomy and regeneration assays as described
498 above. Animals were rescued on a fresh RNAi plate and cultured until imaging was performed.

499

500 **Drug Treatments in *C. elegans***

501 For all chemical reagent and metabolite treatments, the compound was dissolved in NGM agar
502 before being poured into plates. Animals were cultured on treated plates for their lifespan before
503 and after axotomy. Choline 30mM (Sigma, Cat#: C7017-5G), (Ding, Smulan *et al.* 2015), L-
504 Methionine 75 μ M (Fisher Scientific, Cat#: AC166160025), 5 mM L-Serine (Sigma, cat# S-4500)

505 (Liu, Janssens et al. 2019), L-Cystothionine 50 μ M (Sigma, Cat#: C7017-5G, CAS:67-48-1) and
506 L-Glutathione reduced 100 μ M (Cat#: G4251-50G), were dissolved in molecular grade water
507 (Fisher Scientific, Cat#: R91450001G, CAS: 7732-18-5) at required stock concentrations
508 (Ellwood, Slade et al. 2022). The phgdh (C31C9.2) inhibitor N-(4,6-dimethylpyridin-2-yl)-4-[5-
509 (trifluoromethyl)pyridin-2-yl]piperazine-1-carbothioamid (NCT502) (MedChemExpress, Cat#: HY-
510 117240) was initially dissolved in DMSO and diluted in ddH₂O to use at a concentration of 25 μ M
511 in NGM plates (Pacold, Brimacombe et al. 2016). (note: we have shown previously that DMSO
512 does not affect regeneration (Taub, Awal et al. 2018).
513

514 **qRT-PCR**

515 To evaluate the expression levels of candidate genes in wildtype and *ogt-1* animals we performed
516 qRT-PCR. Day 1 adult *C. elegans* were lysed in 0.5% SDS, 5% b-ME, 10 mM EDTA, 10 mM Tris-
517 HCl pH 7.4, 0.5 mg/ml Proteinase K, then RNA was purified with Tri-Reagent (Sigma). DNase I
518 treatment (NEB M03035) of 2-3 ug RNA followed by cDNA conversion using High-Capacity cDNA
519 Reverse Transcription Kit (Thermo Fisher Scientific cat#4368814). qRT-PCR was performed in
520 biological triplicate with three technical triplicates for each condition using Real-Time PCR
521 Quantstudio 12K Flex qPCR System and Fast SYBR Green Master Mix (Thermo Fisher,
522 4385617). Relative transcript abundance was determined by using the DD_{Ct} method and
523 normalized to *act-1* mRNA expression levels as a control. Primers are listed in table-S7.
524

525 **Neuronal cell isolation from adult animals using FACS**

526 To isolate neuronal cells from Day 1 adult worms we utilized the protocol developed and described
527 earlier (Zhang, Banerjee et al. 2011, Kaletsky, Lakhina et al. 2016). In brief WT (*unc-119*::GFP)
528 and *ogt-1* (*ogt-1*::*unc-119*::GFP) worms expressing GFP in all neurons were generated by
529 crossing WT or OGT-1 worms with otl1s45 [*unc-119*::GFP]. Synchronized day 1 adult worms were
530 washed (3X) with s-basal buffer to remove excess bacteria. The packed worm volume (250-350

531 μ l) was washed twice with 500 μ l lysis buffer (200 mM DTT, 0.25% SDS, 20 mM HEPES pH 8.0,
532 3% sucrose) and resuspended in 1,000 μ l lysis buffer. Worms were incubated in lysis buffer with
533 intermittent gentle tapping for 10 minutes at room temperature. The pellet was washed 6X with s-
534 basal and resuspended in 20 mg/ml pronase solution from Streptomyces griseus (Sigma- Aldrich,
535 SKU# 10165921001). Worms were incubated at room temperature (15-20 min) with periodic
536 mechanical disruption by pipetting at every 2 min intervals. When most worm bodies were
537 dissociated, leaving only small debris and eggs (as observed under a dissecting microscope),
538 dissolved whole worm tissues were filtered to remove eggs and single cells were pelleted down
539 at 4K RPM for 20 minutes at 4 $^{\circ}$ C. The pellets were resuspended in ice-cold PBS buffer containing
540 2% fetal bovine serum (Gibco). The resulting dissociated cell suspension was subjected to
541 Fluorescence-activated cell sorting (FACs) to isolate GFP labeled neurons (supp fig. 2A).

542

543 **Expression profiling by RNA-seq**

544 Gene expression patterns in WT and *ogt-1* mutants were measured by RNAseq analysis from
545 RNA extracted from both, day 1 adult, whole animal and FACs sorted neuronal cells. RNA from
546 FACS-sorted neurons was extracted using the Direct-zol RNA Miniprep Plus Kit (Zymo Research,
547 R2070). RNA from whole animals was extracted manually by lysing day 1 adult *C. elegans* in
548 0.5% SDS, 5% b-ME, 10 mM EDTA, 10 mM Tris-HCl pH 7.4, 0.5 mg/ml Proteinase K, then RNA
549 was purified with Tri-Reagent (Sigma cat# T9424-25ML). Isolated RNA was purified by RNAeasy
550 columns (QIAGEN, Cat#74034) and quality of RNA was evaluated with the 2100 bioanalyzer
551 (Agilent) before library generation for the RNAseq experiments. RNA-seq experiments were not
552 randomized, nor results blinded, as all analysis is fully automated and unbiased. For whole-worm
553 and neuron-specific RNA sequencing of adult animals N = 2 biological replicates were used. No
554 statistical methods were used to predetermine sample size (Kaletsky, Lakhina et al. 2016).

555

556 For whole body RNAseq analysis we acquired DNBseq RNA sequencing services from BGI
557 Global (<https://gtech.bgi.com/bgi/home>). Total RNAseq and data analysis was performed by using
558 BGI Global inhouse developed sequencing methods and data analysis. In brief, transcriptome
559 libraries were generated using the library conversion kit before sequencing was performed on the
560 DNBseq platform. For each library, 10 ng library was used to incorporate a 5' phosphorylation, on
561 the forward strand only, using polymerase chain reaction (PCR). Purified PCR product with 5'
562 phosphorylation was then denatured and mixed with an oligonucleotide 'splint' that is homologous
563 to the P5 and P7 adapter regions of the library to generate a ssDNA circle. A DNA ligation step
564 was then performed to create a complete ssDNA circle of the forward strand, followed by an
565 exonuclease digestion step to remove single stranded non-circularized DNA molecules. Circular
566 ssDNA molecules were then further subjected to Rolling Circle Amplification (RCA) to generate
567 DNA Nanoballs (DNB) containing 300–500 copies of the libraries. Each DNB library was then
568 drawn through a flow cell ready for sequencing using the DNBseq platform to generate 30 M clean
569 reads per sample. FASTQ files were generated locally at sequencing performed by BGI. After
570 data cleaning, processing includes removing adaptors, contamination, and low-quality reads.
571 Bowtie2 was used to map the clean reads to the reference gene sequence (transcriptome), and
572 then RSEM was used to calculate the gene expression level of each sample. The DEseq2 method
573 was used to detect differentially expressed genes (DEGs).

574
575 For neuron specific RNAseq analysis we employed the Illumina NextSeq 2000 RNA sequencing
576 services from "The Boston University Microarray & Sequencing Resource"
577 (<https://www.bumc.bu.edu/microarray/>). RNA isolated from FACs sorted neuronal cells were
578 subjected to quality control assessment using a bioanalyzer (Aligent). mRNA enrichment, library
579 preparation and quality assessment were performed according to manufacturer protocols
580 (Illumina). Sequencing was performed on the Illumina NextSeq 2000 System using the NextSeq
581 2000, P2 Reagent Kit (100 cycles) with sequencing read length 50x50 paired end. Sequencing

582 data were assessed for the quality of each sample using **FastQC**
583 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>), and **RSeQC**
584 (<https://rseqc.sourceforge.net/>). Each sample was aligned to the genome using **STAR**
585 (<https://github.com/alexdobin/STAR>), and **SAMtools** (<https://samtools.sourceforge.net/>) was
586 used to count proper pairs of reads aligning to mitochondrial or ribosomal RNA. The subread
587 package: high-performance read alignment, quantification and mutation discovery
588 **featureCounts** (<https://subread.sourceforge.net/>) was used for alignment of proper read pairs
589 unique to non-mitochondrial Ensemble Genes. As a control, all reads were also aligned to the
590 GFP sequence, which indicated that all samples were GFP-positive as expected. To identify
591 genes whose expression changes significantly between genotypes, a one-way analysis of
592 variance (ANOVA) was performed using a likelihood ratio test to obtain a p value for each gene.
593 Benjamini-Hochberg False Discovery Rate (FDR) correction was applied to obtain FDR-corrected
594 p values (q values), which represent the probability that a given result is a false positive based on
595 the overall distribution of p values. The FDR q value was also recomputed after removing genes
596 that did not pass the "independent filtering" step in the DESeq2 package. Wald tests were then
597 performed for each gene between experimental groups to obtain a test statistic and p value for
598 each gene. FDR correction was then applied, across all genes for which a p value could be
599 computed for all comparisons and across only those genes that passed expression filtering.
600

601 **RNA Seq Bioinformatic Analysis**

602 The following unbiased enrichment analysis was used to understand whether the differentially
603 expressed gene list identified in the RNAseq data was significantly enriched in a pathway,
604 molecular function, or particula biological process. **Gene Ontology (GO)** was employed to
605 determine the molecular function, cellular component, and biological process of the differentially
606 expressed genes. All differentially expressed genes where mapped to terms in the Gene Ontology
607 database (<http://www.geneontology.org/>), the number of genes in each term calculated and a

608 hypergeometric test applied to identify GO terms that are significantly enriched in candidate genes
609 compared to the background of all genes in the species. In addition, we also utilized the online
610 ShinyGO v0.741: Gene Ontology Enrichment Analysis (<http://bioinformatics.sdsstate.edu/go74/>) to
611 analyze neuronally enriched genes. **KEGG Pathway-based analysis** (Qvalue ≤ 0.05) was
612 employed to determine the most important biochemical metabolic and signal transduction
613 pathways significantly enriched in the differentially expressed genes. The differentially expressed
614 gene list was further analyzed for functional annotation of enriched pathways using The **Database**
615 **for Annotation, Visualization, and Integrated Discovery (DAVID)**. These tools are powered by
616 the comprehensive DAVID Knowledgebase built upon the DAVID Gene concept which pulls
617 together multiple sources of functional annotations. Using the recommended protocol for analysis
618 in wizard tool of DAVID (<https://david.ncifcrf.gov/tools.jsp>) we analyzed the pathways and
619 metabolites most affected in neurons of *ogt-1* mutants.

620

621 **ATP Quantification via the FRET based ATP Sensor**

622 We obtained the worm strain (MS2495) expressing the Fluorescence resonance energy transfer
623 (FRET) based ATP sensor (novelClover-ATP-mApple fusion protein; **CAmA**) under the *pept-1*
624 promoter expressed in the intestinal cells from Dr. Morris F Moduro lab (Soto, Rivera et al. 2020).
625 Clover is a green fluorescent protein that is excited by blue light (480nm-510nm laser) and emits
626 green light (511nm-530nm). mApple is a red fluorescent protein that is excited by green light
627 (522nm-577nm) and emits red light (580nm-675nm). The *ogt-1* mutant was crossed with the ATP
628 sensor strain (MS2495). The anterior gut of day1 adult worms (control and *ogt-1* mutant) was
629 imaged to measure FRET fluorescence using a 63x objective on a confocal Zeiss LSM 880
630 microscope. Following established FRET imaging protocols, a mApple image was acquired first
631 via direct excitation (561nm laser) and emission (594nm) to assess where the sensor protein was
632 present and establish a baseline measurement. A second image was then obtained using a FRET
633 filter set, i.e. excitation of Clover (488nm laser), producing green emission (522nm-577nm) that

634 excites mApple which is detected as red emission (516nm) (FRETred). ImageJ was used to
635 quantify the relative FRET pixel intensity (FRETred/baseline) within the region of interest.

636

637 **ATP and Pyrophosphate (PPi) Quantification and *pyk-1* Activity Assay**

638 Synchronized day 1 adult worms were collected in S-basal buffer and were washed 3x with s-
639 basal and 1x in ATP assay buffer (Abcam, Ab83355), followed by sonication on ice in ATP assay
640 buffer using a model 110V/T Ultrasonic Homogenizer for two cycles of 15 minutes. Sonicated
641 samples were then centrifuged at 13,000 RPM for 15 minutes at 4°C. The supernatant was
642 collected and moved to a fresh microcentrifuge tube and ATP quantitation was performed with
643 the ATP Assay Kit (Colorometric/ Fluorometric) (Abcam, Ab83355) using a Tecan Infinite M1000
644 Pro Multi Microplate Reader. ATP was normalized to protein content measured with the BCA
645 Protein Quantification Kit (Abcam, Ab102536). Triplicate technical replicates were performed for
646 each sample; at least three biological samples were assayed for each condition reported. For *pyk-*
647 1 activity and pyrophosphate PPi quantification assays, animals were cultured as in ATP
648 quantification assays and animals were sonicated on ice in respective assay buffers (*pyk-1* or PPi
649 assay buffer) and activity was recorded using a Tecan Infinite M1000 Pro Multi Microplate Reader.
650 To normalize samples, the BCA Protein Quantification Kit (Abcam, Ab102536) was used.

651

652 **Quantification and Statistical Analysis**

653 Statistical analysis and graph generation was performed with Prism (Graph Pad). All data were
654 compared with either WT, *ogt-1* mutant or RNAi control regeneration data. Data are shown as the
655 mean with error bars representing the standard error of the mean. One-way ANOVA analysis with
656 Dunnett's and *post hoc* Bonferroni's correction was employed for multiple comparisons. When
657 only two groups of data were compared an unpaired t test was employed. In all cases, *p < 0.05
658 **p < 0.01, ***p < 0.001.

659 **SUPPLEMENTAL INFORMATION**

660 Supplemental Information includes four figures and one table and can be found with this article
661 online at

662 **ACKNOWLEDGMENTS**

663 We would like to thank Dr. Amy Walker, UMASS Worcester, MA, USA, Dr. Morris Maduro, UC
664 Riverside, and The *C. elegans* Genetics Center provided many of the strains and Boston
665 University Core (Dr. Tilton, Brian Richard (FACs); Dr. Yuriy Alekseyev (RNA sequencing and data
666 analysis), Dr. Trinkaus-Randall (confocal Zeiss LSM 880 microscopy), and Dr. Lyn and Au,
667 Matthew Bo (qRT-PCR) facilities for maintaining and making available different instrument for
668 use. Dr. Walker provided *sams-1* worm, Dr. Maduro provided ATP expressing strain. Dr Danial
669 Taub provided feedback and suggestions on the manuscript. Funding was provided by the
670 Massachusetts Spinal Cord Injury Cure Research Program, INTF3110HH2191525007, from the
671 Massachusetts Department of Public Health.

672 **DECLARATION OF INTERESTS**

673 The authors declare no competing interests.

674 **AUTHOR CONTRIBUTIONS**

675 D.K.Y. and C.V.G. conceived and designed experiments. D.K.Y. and C.V.G. performed all the
676 experiments and aided in the analysis of data. A.S.C. aided in confocal imaging and analysis.
677 D.K.Y. and C.V.G. wrote the manuscript with input from all authors.

678

679

680

681

682 **References**

683 Bacigalupa, Z. A., C. H. Bhadiadra and M. J. Reginato (2018). "O-GlcNAcylation: key regulator of glycolytic
684 pathways." J Bioenerg Biomembr **50**(3): 189-198.

685 Bond, M. R. and J. A. Hanover (2015). "A little sugar goes a long way: the cell biology of O-GlcNAc." J Cell
686 Biol **208**(7): 869-880.

687 Bonvento, G. and J. P. Bolaños (2021). "Astrocyte-neuron metabolic cooperation shapes brain activity."
688 Cell Metab **33**(8): 1546-1564.

689 Businaro, R., D. Vauzour, J. Sarris, G. Münch, E. Gyengesi, L. Brogelli and P. Zuzarte (2021). "Therapeutic
690 Opportunities for Food Supplements in Neurodegenerative Disease and Depression." Front Nutr **8**:
691 669846.

692 Byrne, A. B., T. Walradt, K. E. Gardner, A. Hubbert, V. Reinke and M. Hammarlund (2014). "Insulin/IGF1
693 signaling inhibits age-dependent axon regeneration." Neuron **81**(3): 561-573.

694 Calixto, A., D. Chelur, I. Topalidou, X. Chen and M. Chalfie (2010). "Enhanced neuronal RNAi in *C. elegans*
695 using SID-1." Nat Methods **7**(7): 554-559.

696 Cartoni, R., M. W. Norsworthy, F. Bei, C. Wang, S. Li, Y. Zhang, C. V. Gabel, T. L. Schwarz and Z. He (2016).
697 "The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration."
698 Neuron **92**(6): 1294-1307.

699 Chen, X., R. Calandrelli, J. Girardini, Z. Yan, Z. Tan, X. Xu, A. Hiniker and S. Zhong (2022). "PHGDH expression
700 increases with progression of Alzheimer's disease pathology and symptoms." Cell Metab **34**(5): 651-653.

701 Chisholm, A. D., H. Hutter, Y. Jin and W. G. Wadsworth (2016). "The Genetics of Axon Guidance and Axon
702 Regeneration in *Caenorhabditis elegans*." Genetics **204**(3): 849-882.

703 Chung, S. H., M. R. Awal, J. Shay, M. M. McLoed, E. Mazur and C. V. Gabel (2016). "Novel DLK-independent
704 neuronal regeneration in *Caenorhabditis elegans* shares links with activity-dependent ectopic outgrowth."
705 Proc Natl Acad Sci U S A **113**(20): E2852-2860.

706 Clare, C. E., A. H. Brassington, W. Y. Kwong and K. D. Sinclair (2019). "One-Carbon Metabolism: Linking
707 Nutritional Biochemistry to Epigenetic Programming of Long-Term Development." Annu Rev Anim Biosci
708 **7**: 263-287.

709 Coppedè, F. (2010). "One-carbon metabolism and Alzheimer's disease: focus on epigenetics." Curr
710 Genomics **11**(4): 246-260.

711 Dey, P., J. Y. Son, A. Kundu, K. S. Kim, Y. Lee, K. Yoon, S. Yoon, B. M. Lee, K. T. Nam and H. S. Kim (2019).
712 "Knockdown of Pyruvate Kinase M2 Inhibits Cell Proliferation, Metabolism, and Migration in Renal Cell
713 Carcinoma." Int J Mol Sci **20**(22).

714 Ding, W., L. J. Smulan, N. S. Hou, S. Taubert, J. L. Watts and A. K. Walker (2015). "s-Adenosylmethionine
715 Levels Govern Innate Immunity through Distinct Methylation-Dependent Pathways." Cell Metab **22**(4):
716 633-645.

717 Ducker, G. S. and J. D. Rabinowitz (2017). "One-Carbon Metabolism in Health and Disease." Cell Metab
718 **25**(1): 27-42.

719 Ellwood, R. A., L. Slade, J. Lewis, R. Torregrossa, S. Sudevan, M. Piasecki, M. Whiteman, T. Etheridge and
720 N. J. Szewczyk (2022). "Sulfur amino acid supplementation displays therapeutic potential in a *C. elegans*
721 model of Duchenne muscular dystrophy." Commun Biol **5**(1): 1255.

722 Geeraerts, S. L., E. Heylen, K. De Keersmaecker and K. R. Kampen (2021). "The ins and outs of serine and
723 glycine metabolism in cancer." Nat Metab **3**(2): 131-141.

724 Giese, G. E., M. D. Walker, O. Ponomarova, H. Zhang, X. Li, G. Minevich and A. J. Walhout (2020).
725 "Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a
726 nuclear hormone receptor." Elife **9**.

727 Greene, N. D., K. Y. Leung and A. J. Copp (2017). "Inositol, neural tube closure and the prevention of neural
728 tube defects." Birth Defects Res **109**(2): 68-80.

729 Hammarlund, M., O. Hobert, D. M. Miller, 3rd and N. Sestan (2018). "The CeNGEN Project: The Complete
730 Gene Expression Map of an Entire Nervous System." Neuron **99**(3): 430-433.

731 Han, Q., Y. Xie, J. D. Ordaz, A. J. Huh, N. Huang, W. Wu, N. Liu, K. A. Chamberlain, Z. H. Sheng and X. M. Xu
732 (2020). "Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal
733 Cord Injury." Cell Metab **31**(3): 623-641.e628.

734 Han, S. M., H. S. Baig and M. Hammarlund (2016). "Mitochondria Localize to Injured Axons to Support
735 Regeneration." Neuron **92**(6): 1308-1323.

736 He, Z. and Y. Jin (2016). "Intrinsic Control of Axon Regeneration." Neuron **90**(3): 437-451.

737 Iskandar, B. J., E. Rizk, B. Meier, N. Hariharan, T. Bottiglieri, R. H. Finnell, D. F. Jarrard, R. V. Banerjee, J. H.
738 Skene, A. Nelson, N. Patel, C. Gherasim, K. Simon, T. D. Cook and K. J. Hogan (2010). "Folate regulation of
739 axonal regeneration in the rodent central nervous system through DNA methylation." J Clin Invest **120**(5):
740 1603-1616.

741 Jang, S., J. C. Nelson, E. G. Bend, L. Rodríguez-Laureano, F. G. Tueros, L. Cartagenova, K. Underwood, E. M.
742 Jorgensen and D. A. Colón-Ramos (2016). "Glycolytic Enzymes Localize to Synapses under Energy Stress
743 to Support Synaptic Function." Neuron **90**(2): 278-291.

744 Jóźwiak, P., E. Forma, M. Bryś and A. Krześlak (2014). "O-GlcNAcylation and Metabolic Reprograming in
745 Cancer." Front Endocrinol (Lausanne) **5**: 145.

746 Kaletsky, R., V. Lakhina, R. Arey, A. Williams, J. Landis, J. Ashraf and C. T. Murphy (2016). "The *C. elegans*
747 adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators." Nature **529**(7584): 92-96.

748 Kamath, R. S. and J. Ahringer (2003). "Genome-wide RNAi screening in *Caenorhabditis elegans*." Methods
749 **30**(4): 313-321.

750 Kersten, S. (2001). "Mechanisms of nutritional and hormonal regulation of lipogenesis." EMBO Rep **2**(4):
751 282-286.

752 Kim, E., L. Sun, C. V. Gabel and C. Fang-Yen (2013). "Long-term imaging of *Caenorhabditis elegans* using
753 nanoparticle-mediated immobilization." *PLoS One* **8**(1): e53419.

754 Kim, Y. H., T. Nakayama and J. Nayak (2018). "Glycolysis and the Hexosamine Biosynthetic Pathway as
755 Novel Targets for Upper and Lower Airway Inflammation." *Allergy Asthma Immunol Res* **10**(1): 6-11.

756 Konno, M., A. Asai, K. Kawamoto, N. Nishida, T. Satoh, Y. Doki, M. Mori and H. Ishii (2017). "The one-
757 carbon metabolism pathway highlights therapeutic targets for gastrointestinal cancer (Review)." *Int J
758 Oncol* **50**(4): 1057-1063.

759 Lam, A. B., K. Kervin and J. E. Tanis (2021). "Vitamin B(12) impacts amyloid beta-induced proteotoxicity by
760 regulating the methionine/S-adenosylmethionine cycle." *Cell Rep* **36**(13): 109753.

761 Li, F., A. Sami, H. N. Noristani, K. Slattery, J. Qiu, T. Groves, S. Wang, K. Veerasammy, Y. X. Chen, J. Morales,
762 P. Haynes, A. Sehgal, Y. He, S. Li and Y. Song (2020). "Glial Metabolic Rewiring Promotes Axon
763 Regeneration and Functional Recovery in the Central Nervous System." *Cell Metab* **32**(5): 767-785.e767.

764 Lighthart-Melis, G. C., M. Engelen, S. Y. Simbo, G. A. M. Ten Have, J. J. Thaden, L. Cynober and N. E. P. Deutz
765 (2020). "Metabolic Consequences of Supplemented Methionine in a Clinical Context." *J Nutr* **150**(Suppl 1):
766 2538s-2547s.

767 Lionaki, E., C. Ploumi and N. Tavernarakis (2022). "One-Carbon Metabolism: Pulling the Strings behind
768 Aging and Neurodegeneration." *Cells* **11**(2).

769 Liu, Y. J., G. E. Janssens, R. L. McIntyre, M. Molenaars, R. Kamble, A. W. Gao, A. Jongejan, M. V. Weeghel,
770 A. W. MacInnes and R. H. Houtkooper (2019). "Glycine promotes longevity in *Caenorhabditis elegans* in a
771 methionine cycle-dependent fashion." *PLoS Genet* **15**(3): e1007633.

772 Locasale, J. W. (2013). "Serine, glycine and one-carbon units: cancer metabolism in full circle." *Nat Rev
773 Cancer* **13**(8): 572-583.

774 Mahar, M. and V. Cavalli (2018). "Intrinsic mechanisms of neuronal axon regeneration." *Nat Rev Neurosci*
775 **19**(6): 323-337.

776 Marshall, S., V. Bacote and R. R. Traxinger (1991). "Discovery of a metabolic pathway mediating glucose-
777 induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction
778 of insulin resistance." J Biol Chem **266**(8): 4706-4712.

779 Miousse, I. R., R. Pathak, S. Garg, C. M. Skinner, S. Melnyk, O. Pavliv, H. Hendrickson, R. D. Landes, A.
780 Lumen, A. J. Tackett, N. E. P. Deutz, M. Hauer-Jensen and I. Koturbash (2017). "Short-term dietary
781 methionine supplementation affects one-carbon metabolism and DNA methylation in the mouse gut and
782 leads to altered microbiome profiles, barrier function, gene expression and histomorphology." Genes Nutr
783 **12**: 22.

784 Pacold, M. E., K. R. Brimacombe, S. H. Chan, J. M. Rohde, C. A. Lewis, L. J. Swier, R. Possemato, W. W.
785 Chen, L. B. Sullivan, B. P. Fiske, S. Cho, E. Freinkman, K. Birsoy, M. Abu-Remaileh, Y. D. Shaul, C. M. Liu, M.
786 Zhou, M. J. Koh, H. Chung, S. M. Davidson, A. Luengo, A. Q. Wang, X. Xu, A. Yasgar, L. Liu, G. Rai, K. D.
787 Westover, M. G. Vander Heiden, M. Shen, N. S. Gray, M. B. Boxer and D. M. Sabatini (2016). "A PHGDH
788 inhibitor reveals coordination of serine synthesis and one-carbon unit fate." Nat Chem Biol **12**(6): 452-
789 458.

790 Rual, J. F., J. Ceron, J. Koreth, T. Hao, A. S. Nicot, T. Hirozane-Kishikawa, J. Vandenhoute, S. H. Orkin, D. E.
791 Hill, S. van den Heuvel and M. Vidal (2004). "Toward improving *Caenorhabditis elegans* phenotype mapping
792 with an ORFeome-based RNAi library." Genome Res **14**(10b): 2162-2168.

793 Sanderson, S. M., X. Gao, Z. Dai and J. W. Locasale (2019). "Methionine metabolism in health and cancer:
794 a nexus of diet and precision medicine." Nat Rev Cancer **19**(11): 625-637.

795 Sbodio, J. I., S. H. Snyder and B. D. Paul (2019). "Regulators of the transsulfuration pathway." Br J
796 Pharmacol **176**(4): 583-593.

797 Soto, J., M. Rivera, G. Broitman-Maduro and M. F. Maduro (2020). "Expression of a FRET-based ATP
798 Biosensor in the *C. elegans* Intestine." MicroPubl Biol **2020**.

799 Stempler, S., K. Yizhak and E. Ruppin (2014). "Integrating transcriptomics with metabolic modeling
800 predicts biomarkers and drug targets for Alzheimer's disease." PLoS One **9**(8): e105383.

801 Sun, L., J. Shay, M. McLoed, K. Roodhouse, S. H. Chung, C. M. Clark, J. K. Pirri, M. J. Alkema and C. V. Gabel
802 (2014). "Neuronal regeneration in *C. elegans* requires subcellular calcium release by ryanodine receptor
803 channels and can be enhanced by optogenetic stimulation." J Neurosci **34**(48): 15947-15956.

804 Tabatabaei, L., L. W. Klomp, R. Berger and T. J. de Koning (2010). "L-serine synthesis in the central nervous
805 system: a review on serine deficiency disorders." Mol Genet Metab **99**(3): 256-262.

806 Taub, D. G., M. R. Awal and C. V. Gabel (2018). "O-GlcNAc Signaling Orchestrates the Regenerative
807 Response to Neuronal Injury in *Caenorhabditis elegans*." Cell Rep **24**(8): 1931-1938 e1933.

808 Vitvitsky, V., M. Thomas, A. Ghorpade, H. E. Gendelman and R. Banerjee (2006). "A functional
809 transsulfuration pathway in the brain links to glutathione homeostasis." J Biol Chem **281**(47): 35785-
810 35793.

811 Walker, A. K. (2017). "1-Carbon Cycle Metabolites Methylate Their Way to Fatty Liver." Trends Endocrinol
812 Metab **28**(1): 63-72.

813 Walker, A. K., R. L. Jacobs, J. L. Watts, V. Rottiers, K. Jiang, D. M. Finnegan, T. Shioda, M. Hansen, F. Yang,
814 L. J. Niebergall, D. E. Vance, M. Tzoneva, A. C. Hart and A. M. Näär (2011). "A conserved SREBP-
815 1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans." Cell **147**(4): 840-852.

816 Wang, Y., J. Liu, X. Jin, D. Zhang, D. Li, F. Hao, Y. Feng, S. Gu, F. Meng, M. Tian, Y. Zheng, L. Xin, X. Zhang,
817 X. Han, L. Aravind and M. Wei (2017). "O-GlcNAcylation destabilizes the active tetrameric PKM2 to
818 promote the Warburg effect." Proc Natl Acad Sci U S A **114**(52): 13732-13737.

819 Watson, E., V. Olin-Sandoval, M. J. Hoy, C. H. Li, T. Louisse, V. Yao, A. Mori, A. D. Holdorf, O. G. Troyanskaya,
820 M. Ralser and A. J. Walhout (2016). "Metabolic network rewiring of propionate flux compensates vitamin
821 B12 deficiency in *C. elegans*." Elife **5**.

822 Wilson, C., L. E. Giono, V. Rozés-Salvador, A. Fiszbein, A. R. Kornblihtt and A. Cáceres (2020). "The Histone
823 Methyltransferase G9a Controls Axon Growth by Targeting the RhoA Signaling Pathway." Cell Rep **31**(6):
824 107639.

825 Wu, Q., Z. J. Gao, X. Yu and P. Wang (2022). "Dietary regulation in health and disease." Signal Transduct
826 Target Ther **7**(1): 252.

827 Yang, C., X. Wang, J. Wang, X. Wang, W. Chen, N. Lu, S. Siniossoglou, Z. Yao and K. Liu (2020). "Rewiring
828 Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration." Neuron **105**(2): 276-
829 292.e275.

830 Yang, M. and K. H. Vousden (2016). "Serine and one-carbon metabolism in cancer." Nat Rev Cancer **16**(10):
831 650-662.

832 Yi, W., P. M. Clark, D. E. Mason, M. C. Keenan, C. Hill, W. A. Goddard, 3rd, E. C. Peters, E. M. Driggers and
833 L. C. Hsieh-Wilson (2012). "Phosphofructokinase 1 glycosylation regulates cell growth and metabolism."
834 Science **337**(6097): 975-980.

835 Yu, L., S. T. Teoh, E. Ensink, M. P. Ogrodzinski, C. Yang, A. I. Vazquez and S. Y. Lunt (2019). "Cysteine
836 catabolism and the serine biosynthesis pathway support pyruvate production during pyruvate kinase
837 knockdown in pancreatic cancer cells." Cancer Metab **7**: 13.

838 Yu, W., Z. Wang, K. Zhang, Z. Chi, T. Xu, D. Jiang, S. Chen, W. Li, X. Yang, X. Zhang, Y. Wu and D. Wang
839 (2019). "One-Carbon Metabolism Supports S-Adenosylmethionine and Histone Methylation to Drive
840 Inflammatory Macrophages." Mol Cell **75**(6): 1147-1160.e1145.

841 Zhang, S., D. Banerjee and J. R. Kuhn (2011). "Isolation and culture of larval cells from *C. elegans*." PLoS
842 One **6**(4): e19505.

843 Zheng, X., L. Boyer, M. Jin, J. Mertens, Y. Kim, L. Ma, L. Ma, M. Hamm, F. H. Gage and T. Hunter (2016).
844 "Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative
845 phosphorylation." Elife **5**.

846 Zogg, C. K. (2014). "Phosphoglycerate dehydrogenase: potential therapeutic target and putative metabolic
847 oncogene." J Oncol **2014**: 524101.

848

849

850

851

852

853

854

855

856

857

Main-Figures panel

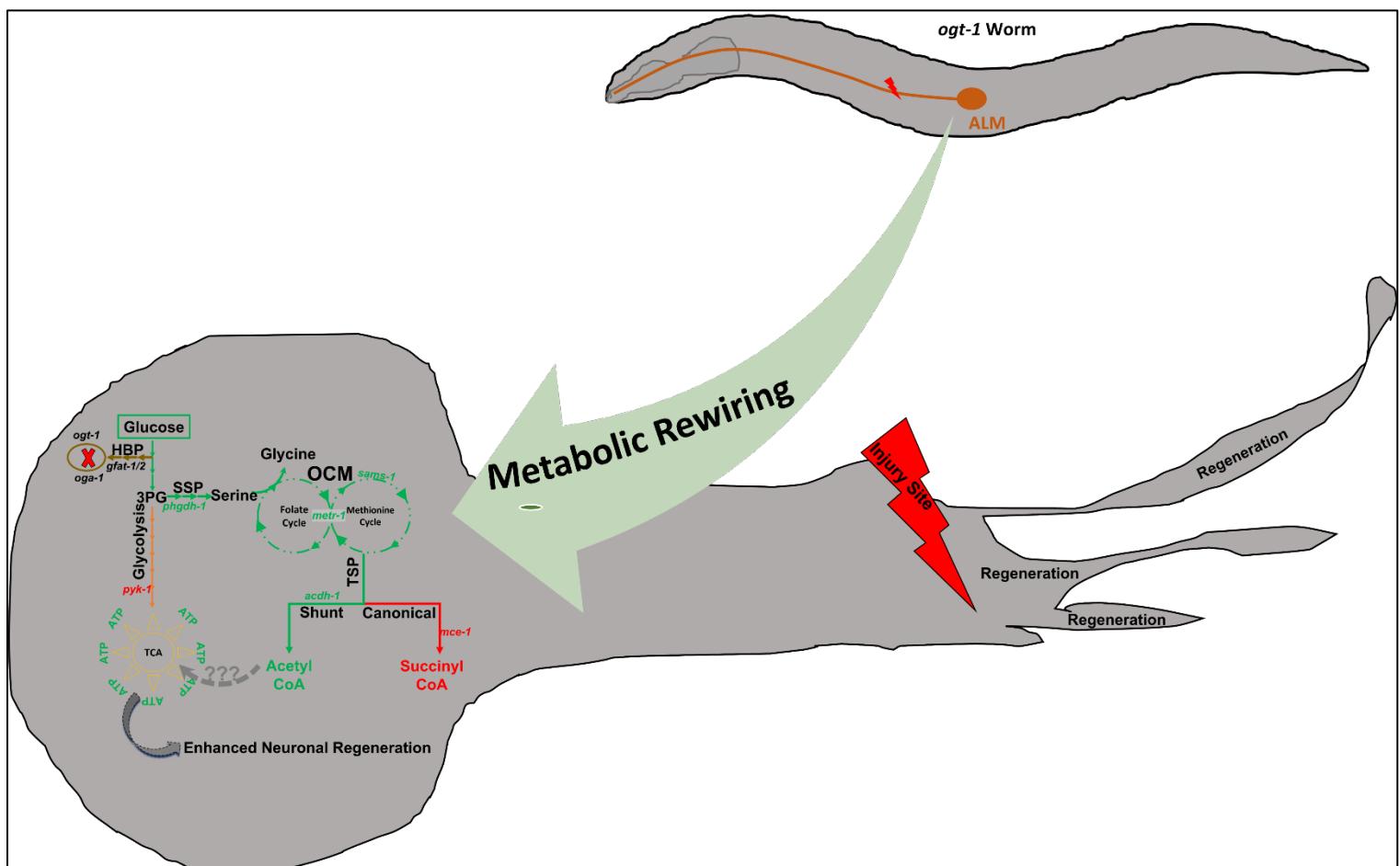
858

859

860

861

862

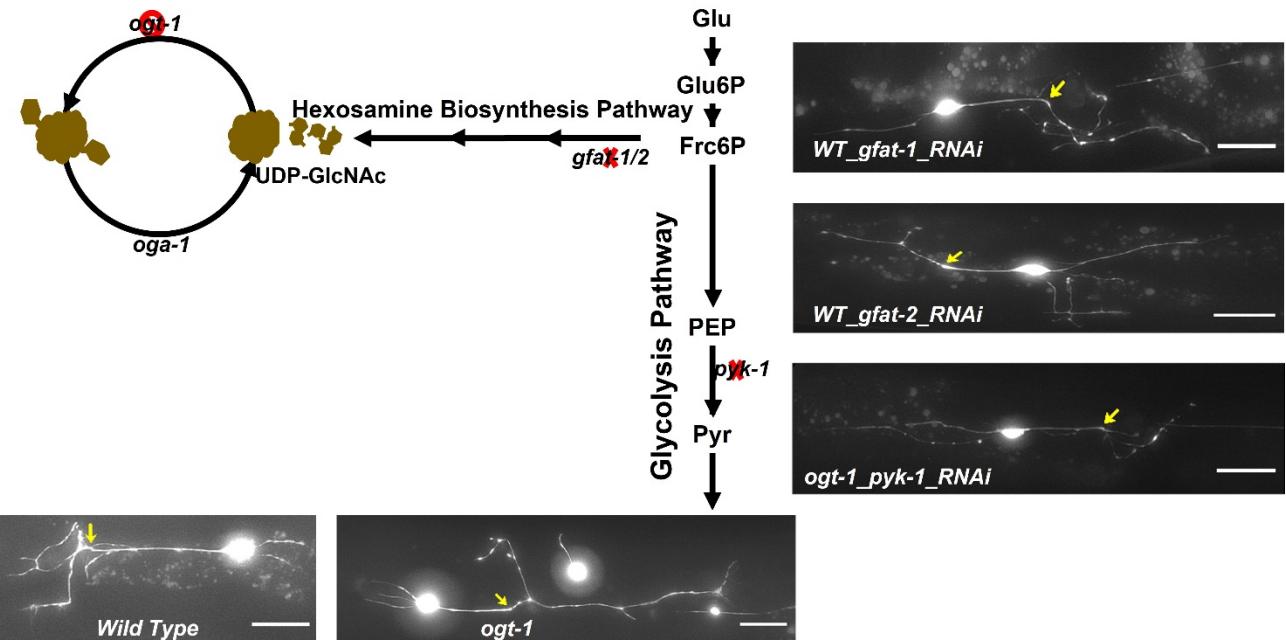

863

864

Abstarct Figure.

867

868


869

870

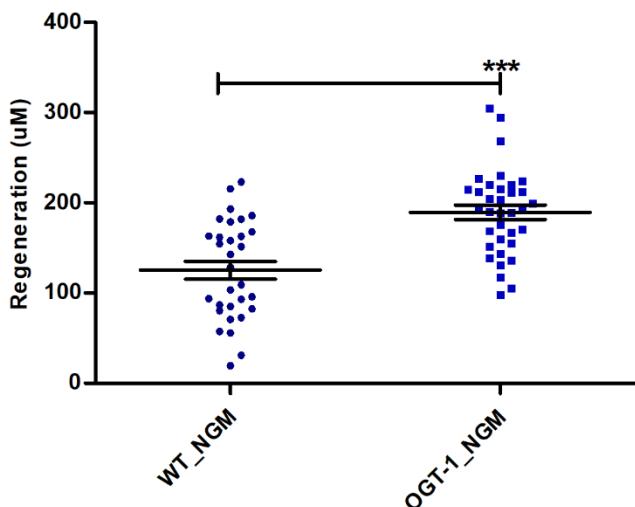
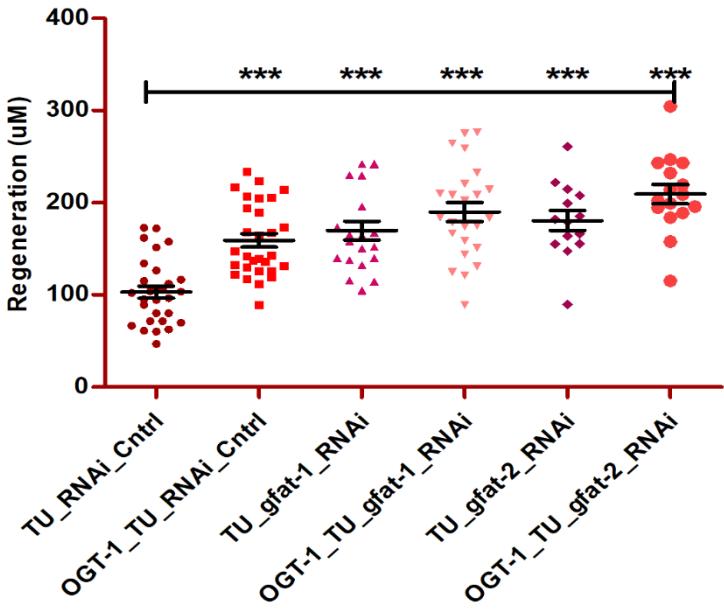
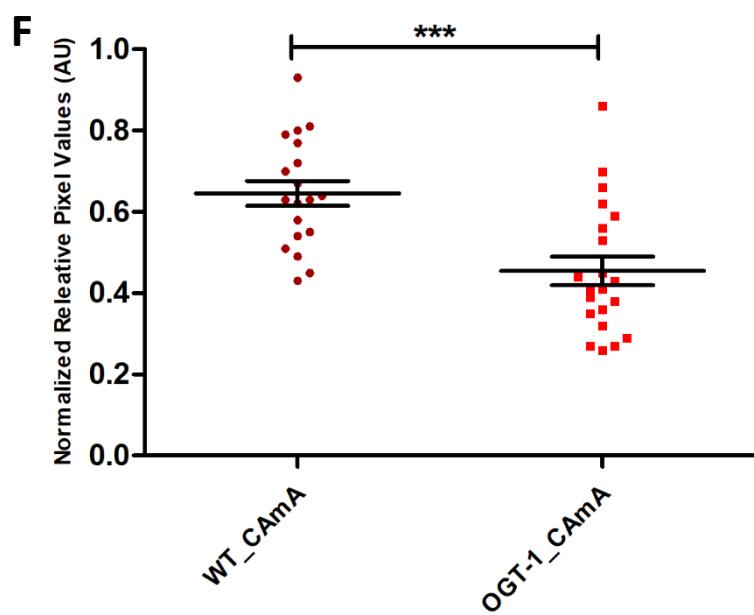
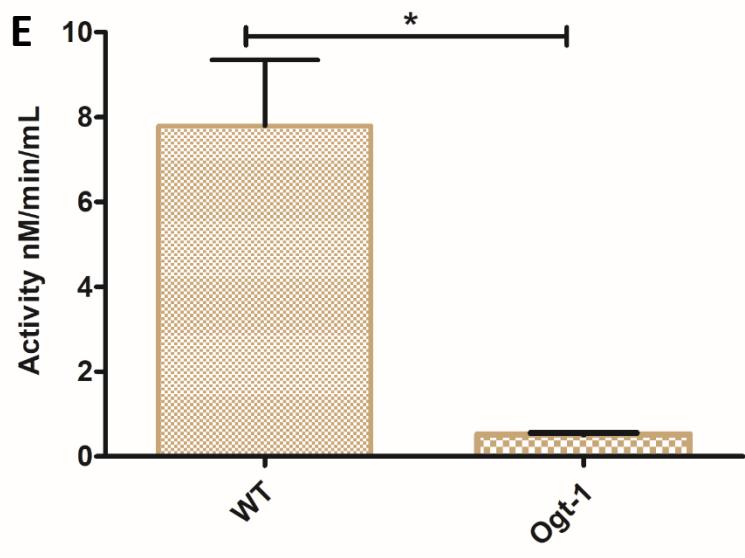
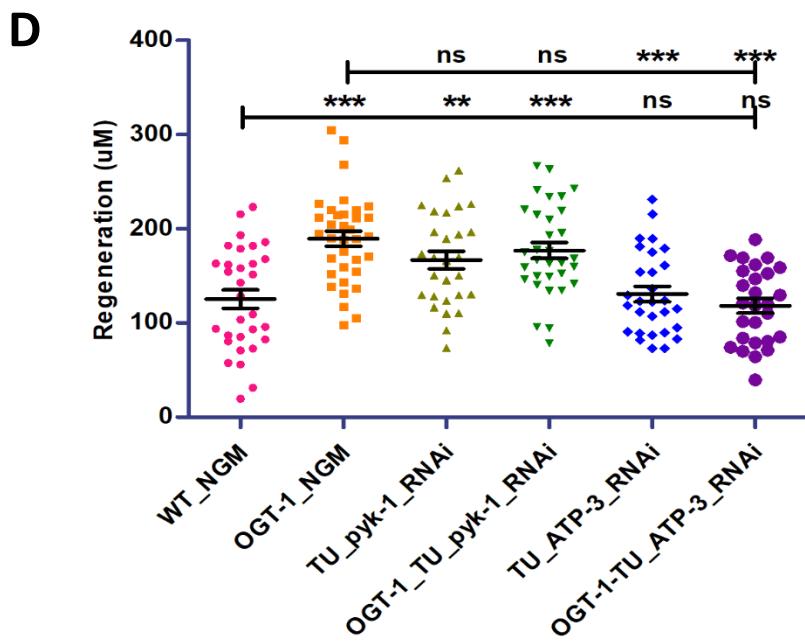
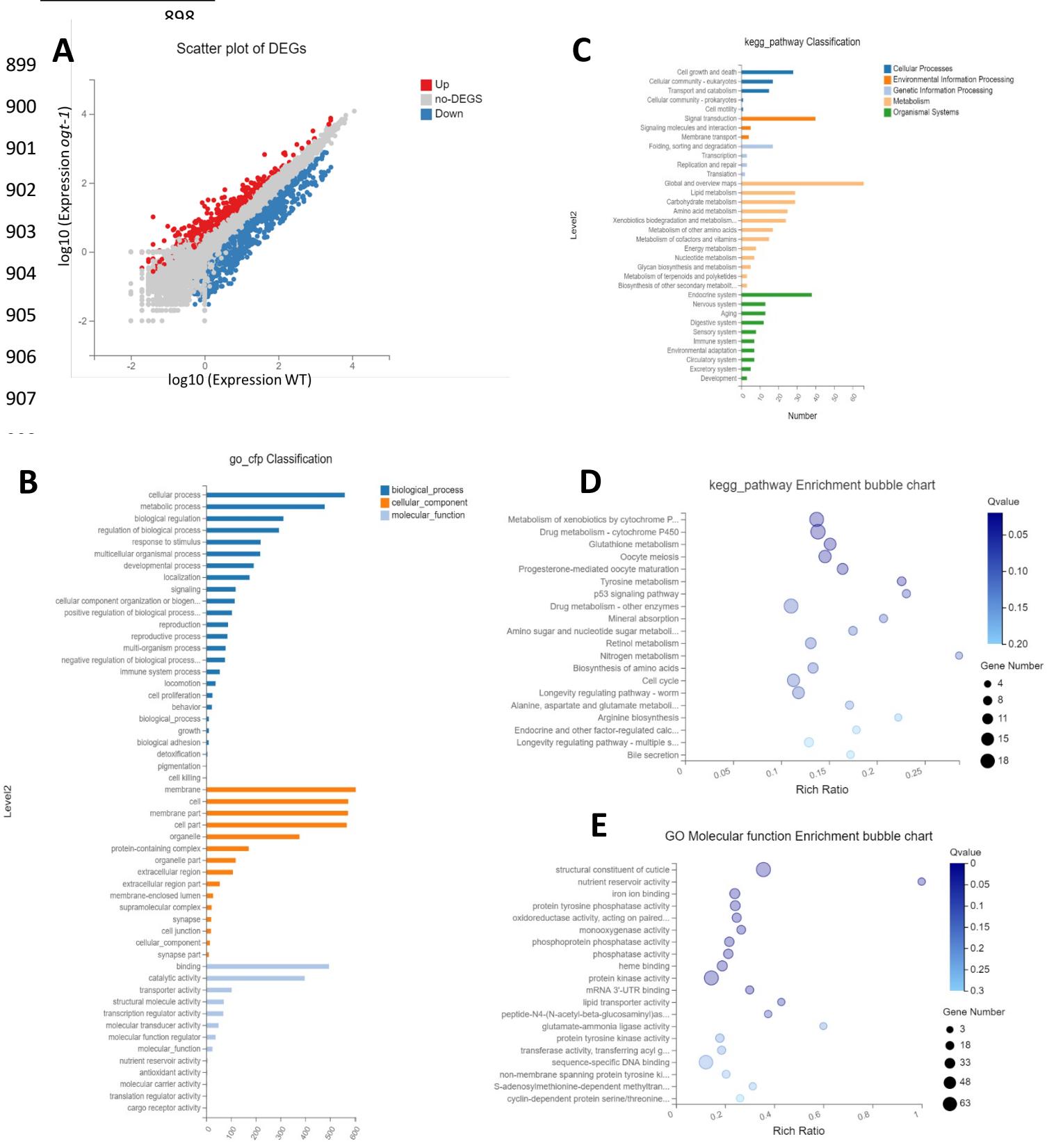

871

Figure 1.


872 **A**




885 **B**


896 **C**

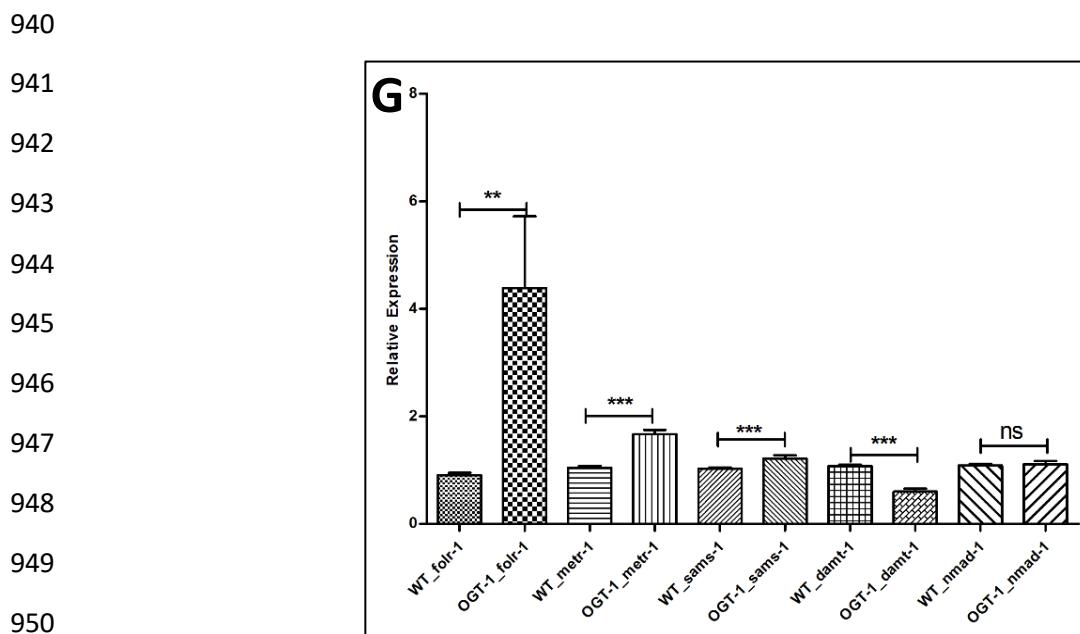
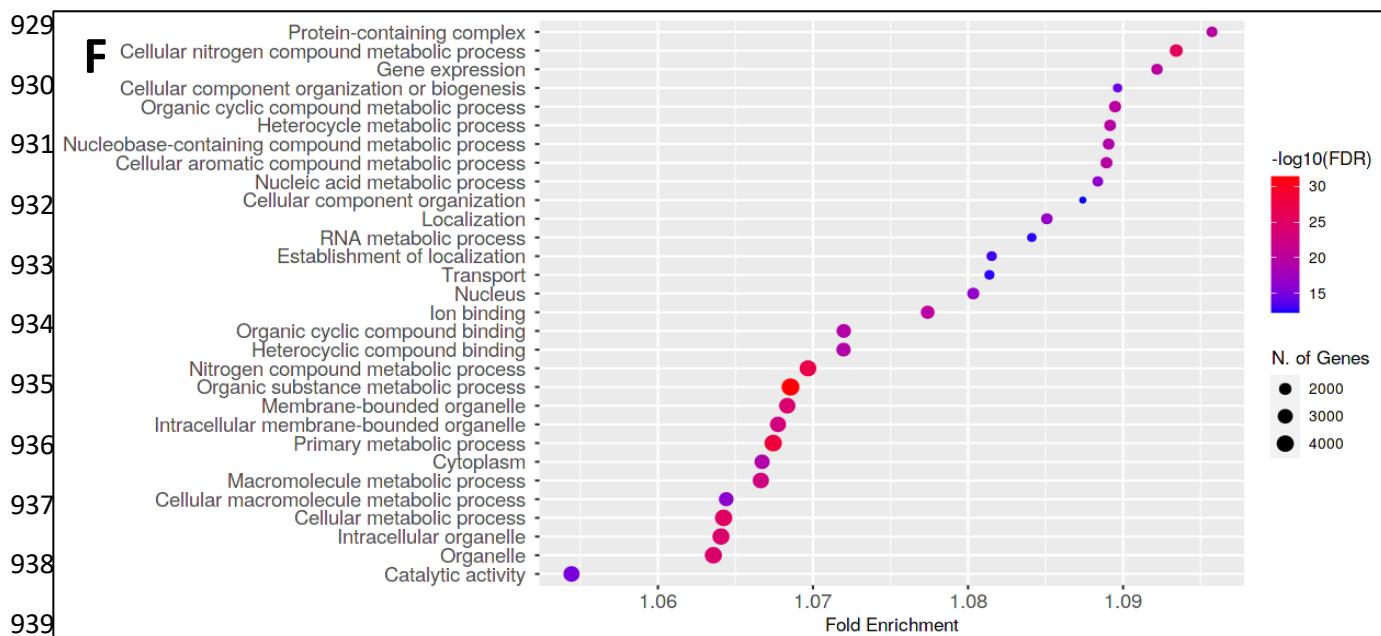
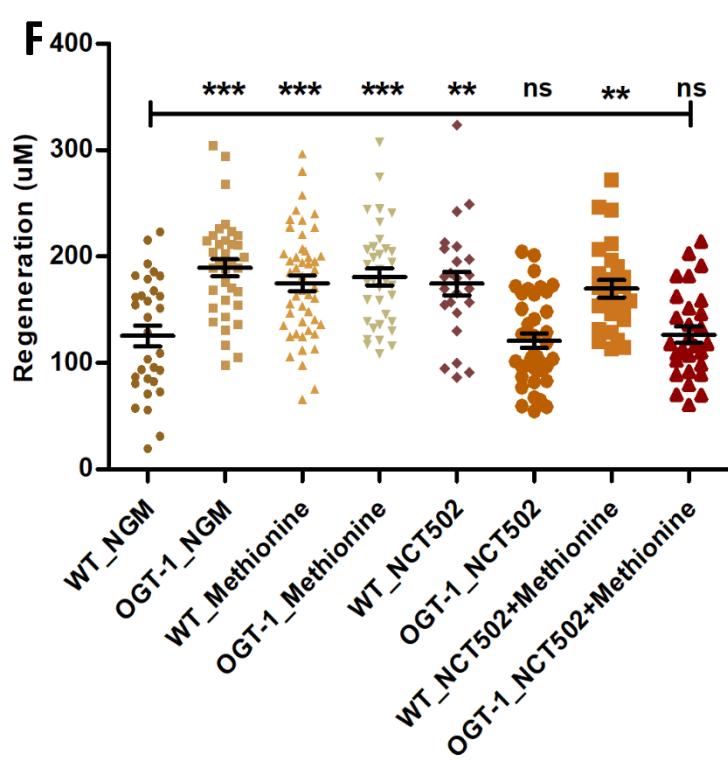
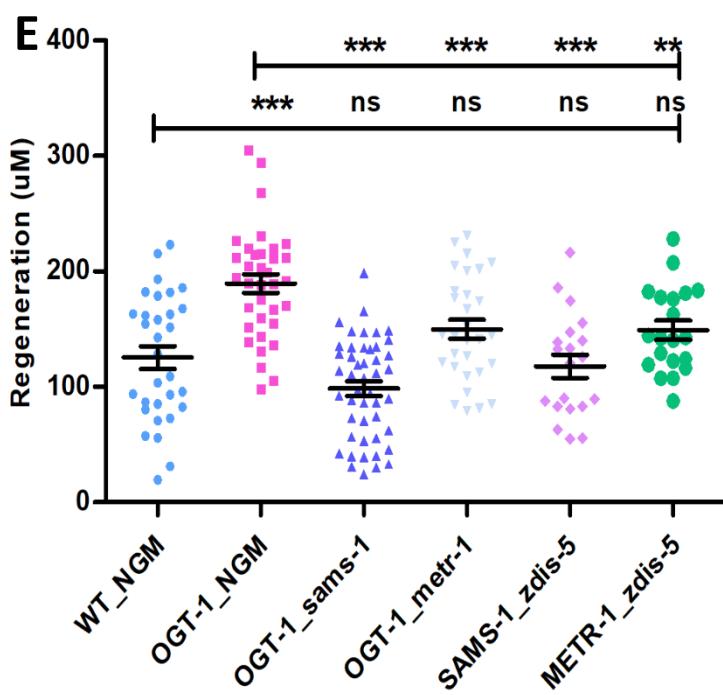
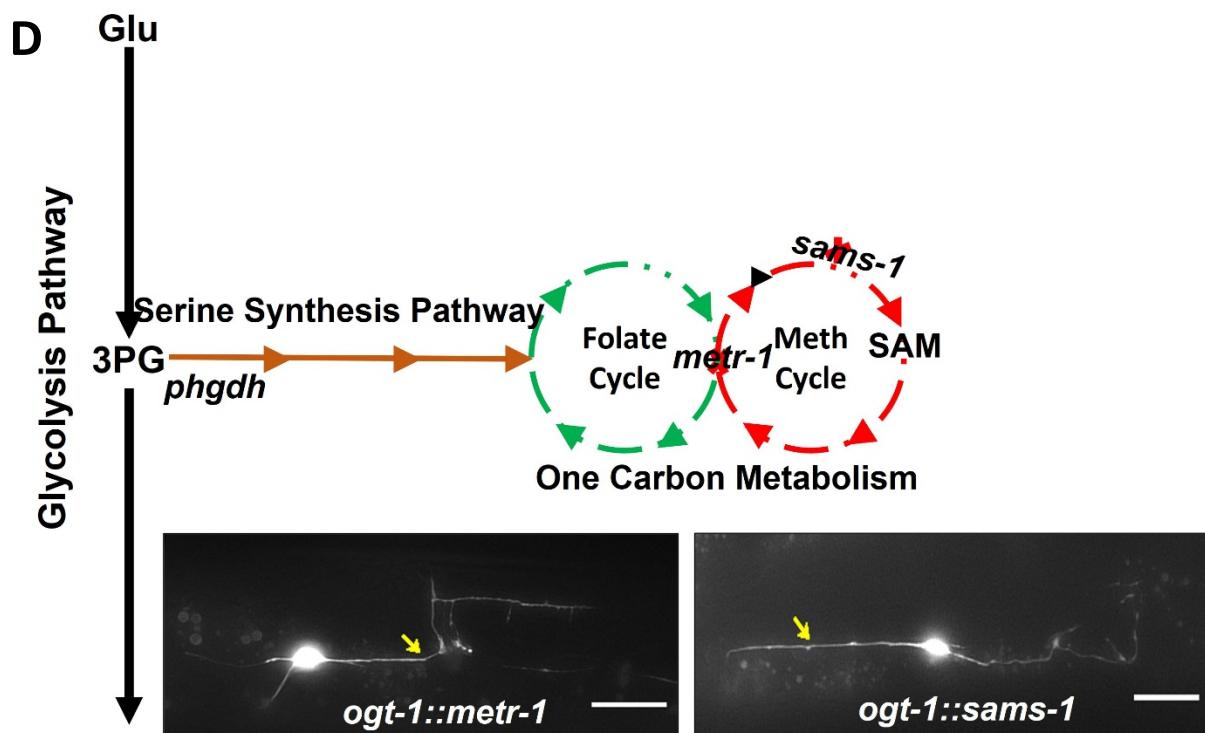


896

Figure 2.

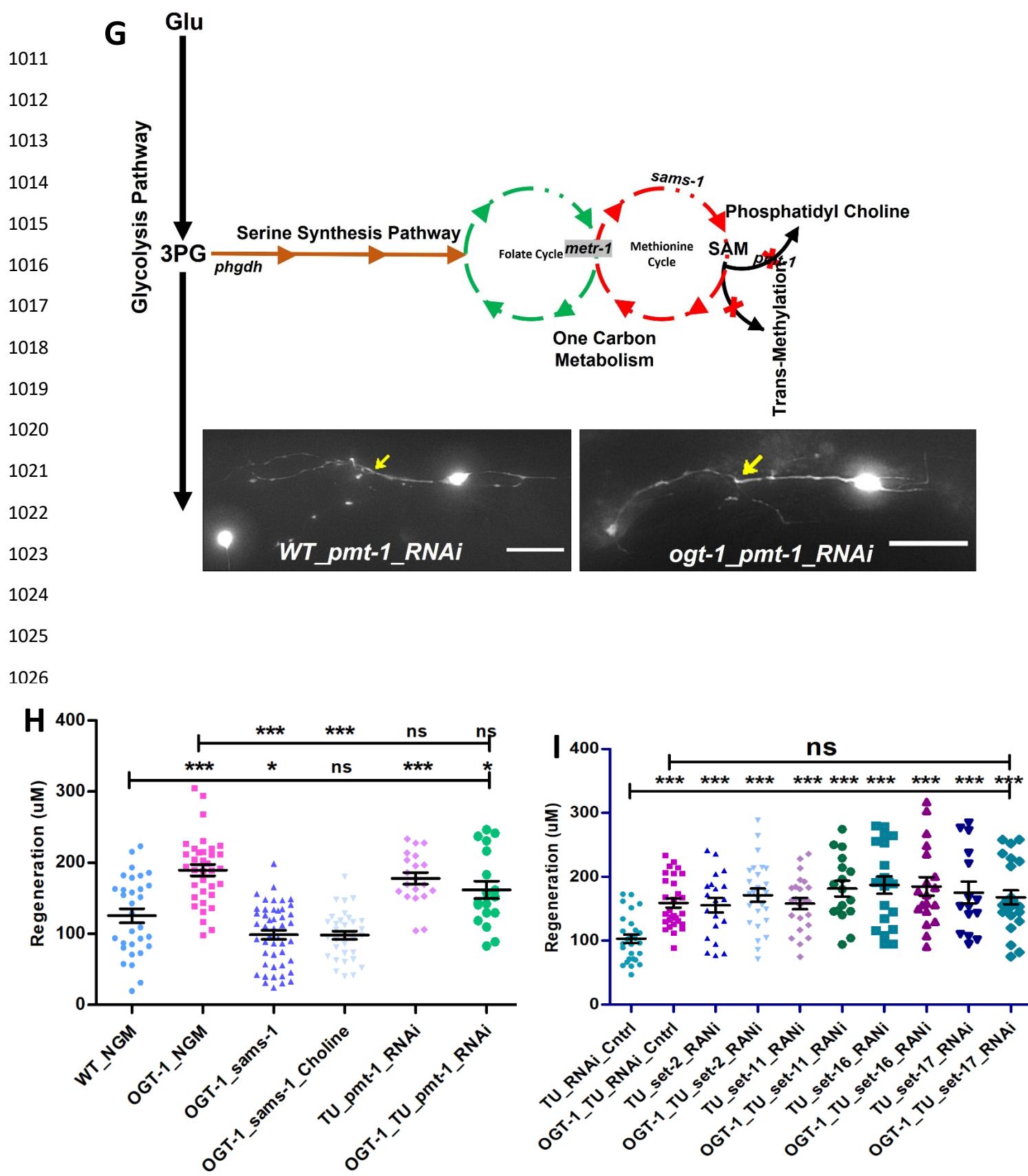

925
926
927
928

Figure 3.

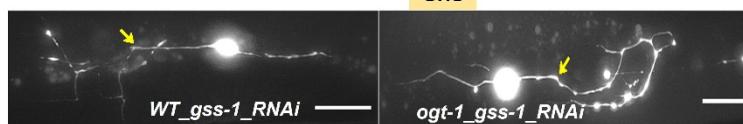
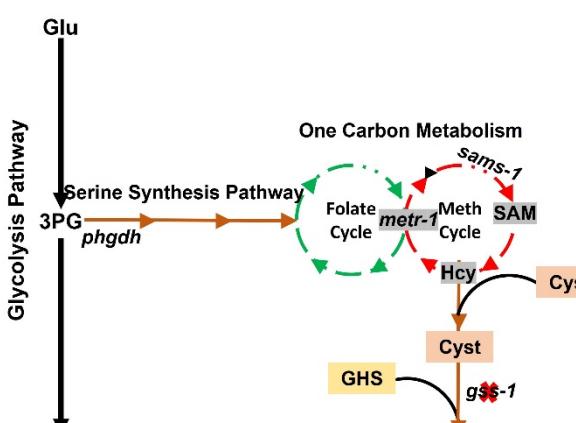



Figure 4.

A

1041

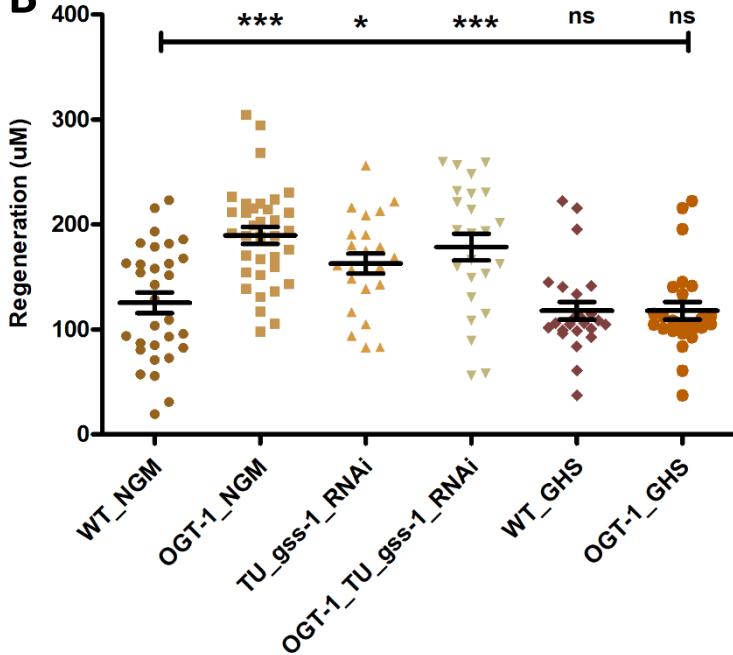
1042

1043

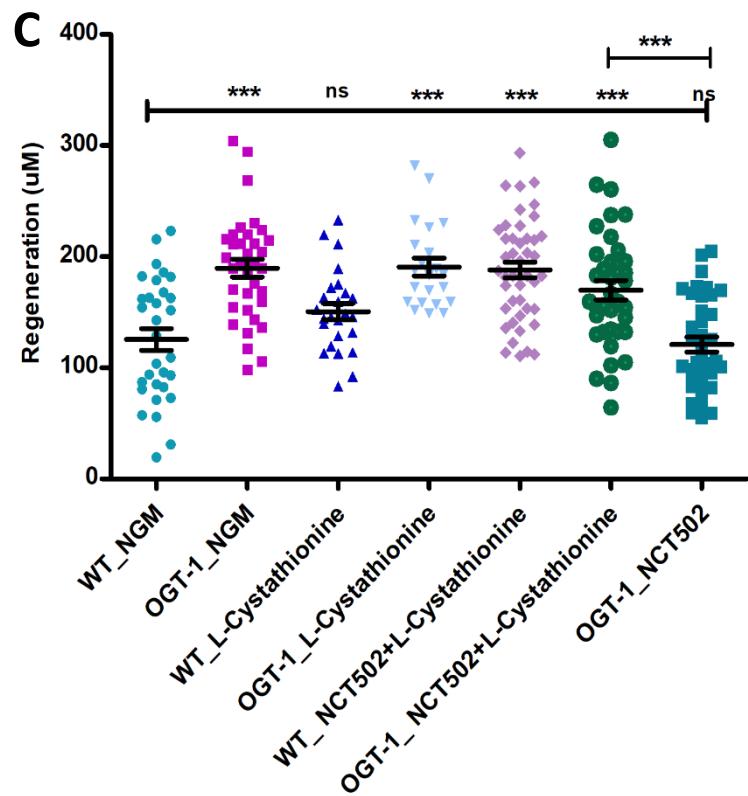
1044

1045

1046


1047

1048


1049

1050

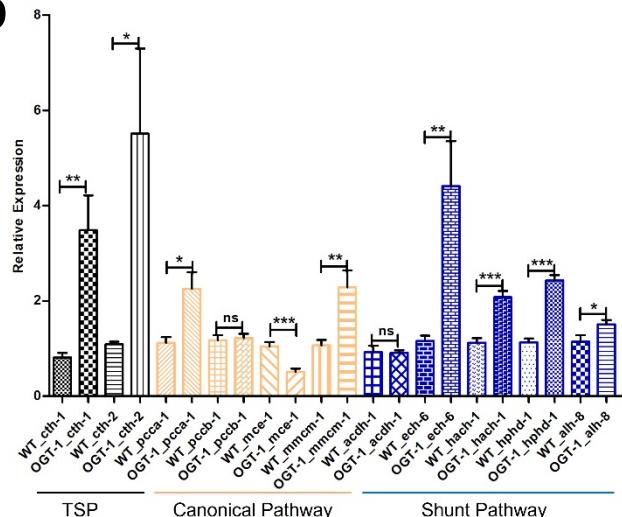
B

C

1063

1064

1065


1066

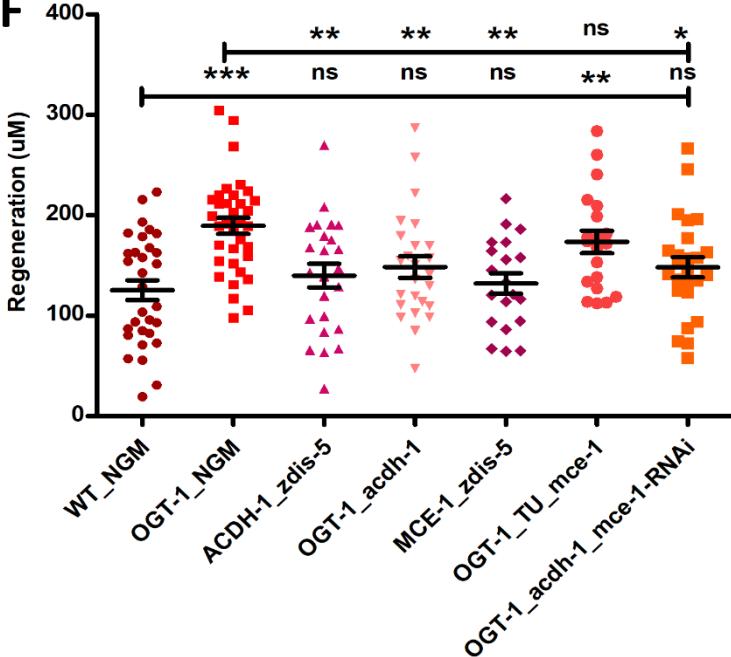
1067

1068

1069

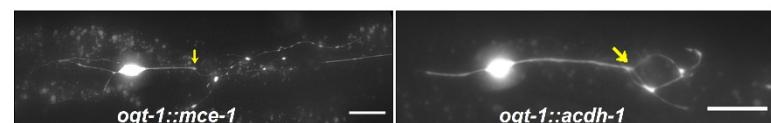
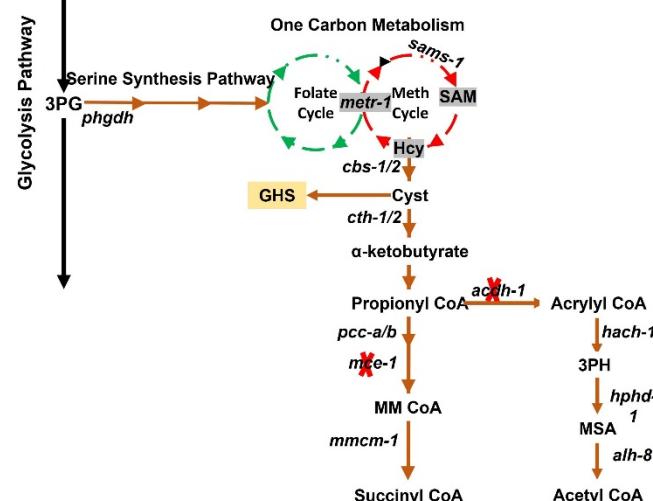
D

1079


1080

1081

1082



1083

F

1095

E

G

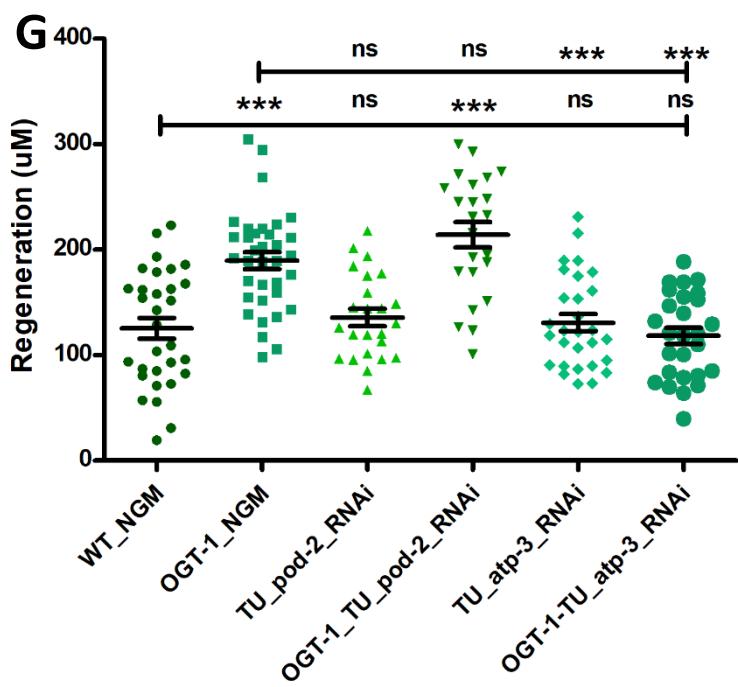
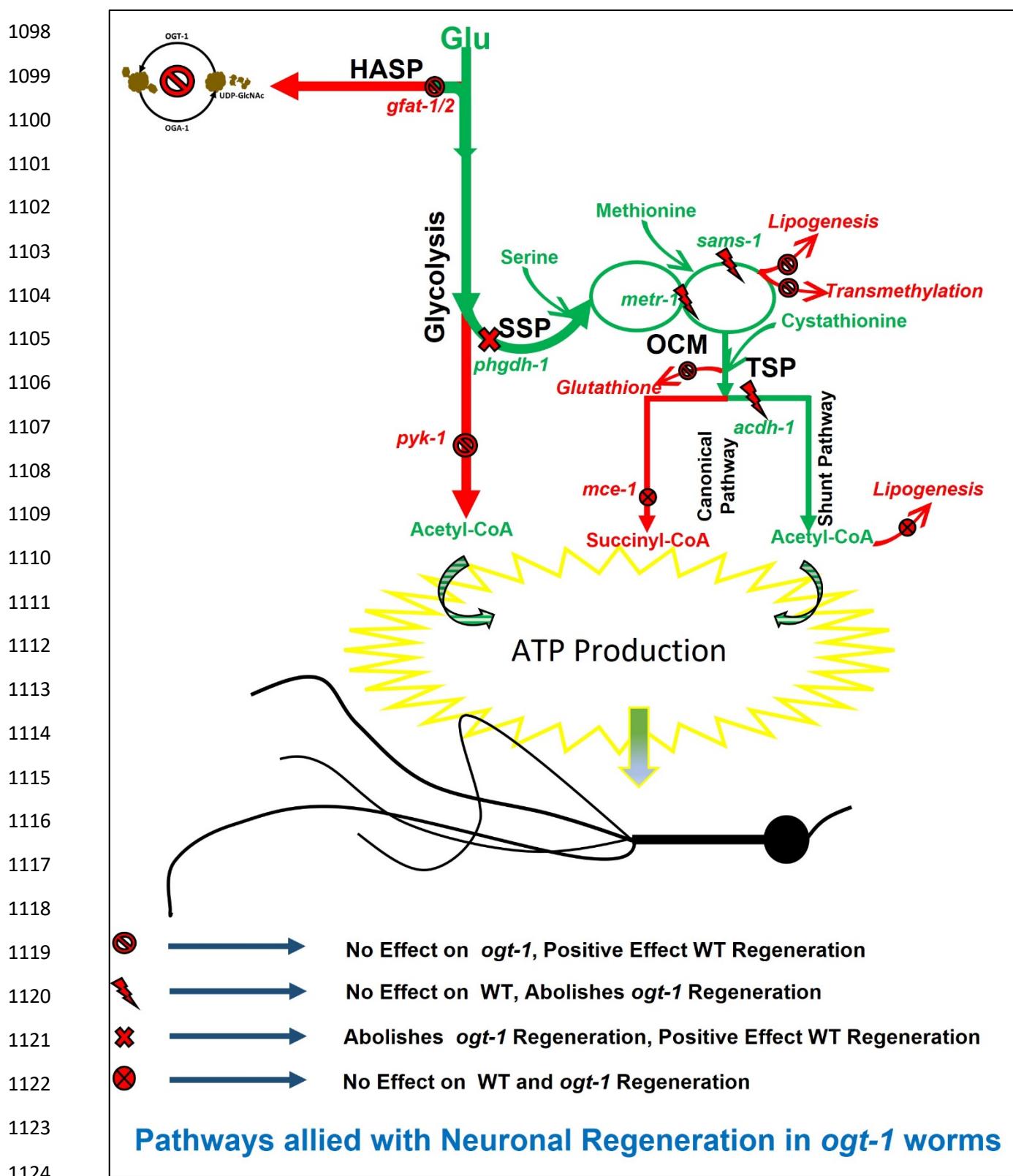



Figure 5.

1125 **Figure Legends**

1126 **Abstract Fig. Metabolic pathways involved in the enhanced neuronal regeneration**
1127 **in *ogt-1* animals:**

1128 The green highlighted pathway illustrates the metabolic rewiring in *ogt-1* mutant animals
1129 supporting enhanced axonal regeneration of injured neurons *in vivo*.

1130 **Fig.1. Enhanced glycolysis is sufficient to support neuronal regeneration.**

1131 **(A)** Schematic diagram showing the hexosamine synthesis pathway linking glycolysis and
1132 *ogt-1* function, and the effect of *ogt-1* mutation and *gfat-1/gfat-2* and *pyk-1* RNAi
1133 knockdown on regenerating neurons imaged at 24 h (arrow indicates the point of injury).
1134 **(B)** 24 h regeneration data of WT and *ogt-1* mutant worms. **(C)** 24 h regeneration data of
1135 control and *gfat-1/gfat-2* RNAi experiments. **(D)** 24 h regeneration data of control and
1136 RNAi experiment for *pyk-1* and *atp-3*. **(E)** *pyk-1* activity measured in WT and *ogt-1* animal
1137 whole lysate using Pyruvate Kinase (PK) Assay Kit (Abcam, cat# Ab83432). **(F)** Relative
1138 amount of ATP measured using a FRET-based ATP sensor. AU; Arbitrary Unit, scale bar
1139 = ~10uM, all data shown in \pm SEM, analytical methods student t-test and One Way
1140 ANOVA, *pValue <0.05, **pValue <0.01, ***pValue <0.001.

1141

1142 **Fig.2. RNAseq data Analysis suggests important role of one carbon metabolism**
1143 **and related pathways in *ogt-1* mediated neuronal regeneration.**

1144 **(A)** A scatter plot of differentially expressed genes (DEGs) identified in RNAseq between
1145 WT and *ogt-1* mutants. **(B)** Gene Ontology (GO) classification of DEGs in WT-vs-*ogt-1*.

1146 **(C)** KEGG pathway classification of differentially expressed genes (DEGs) in WT-vs-*ogt*-
1147 **1. (D)** KEGG pathway enrichment bubble plot of differentially expressed genes (DEGs).
1148 **(E)** Enrichment bubble plot of Gene Ontology molecular function analysis differentially
1149 expressed genes (DEGs). **(F)** Gene Ontology (GO) analysis of differentially expressed
1150 genes (DEGs) identified in neuron specific RNAseq between WT and *ogt-1* mutant
1151 (FDR0.1). **(G)** qRT-PCR of selected genes involved in OCM (*folr-1*, *metr-1* & *sams-1*) and
1152 nucleic acid methyltransferases and demethylases (*damt-1* & *nmad-2*). All data shown
1153 \pm SEM, Student t-test; * p<0.05, **p<0.01, ***p<0.001.

1154 **Fig.3. Functional one carbon metabolism (OCM) and serine synthesis pathway**
1155 **(SSP) are essential for neuronal regeneration in *ogt-1* worms.**

1156 **(A)** Schematic representation showing Glycolysis and the Serine Synthesis Pathway
1157 (SSP), along with representative images at 24 h neuron regeneration in conditions
1158 blocking the SSP in *ogt-1* mutants using either neuron specific RNAi or NCT502 drug
1159 (arrow indicates the point of injury). **(B)** Effect of NCT502 drug and supplementation of
1160 serine on WT and *ogt-1* mutant 24 h neuronal regeneration. **(C)** Effect of neuron specific
1161 RNAi against *C31C9.2* (ortholog of human *PHGDH* gene) on WT and *ogt-1* mutant
1162 neuronal regeneration. **(D)** Schematic representation of the metabolic link between
1163 glycolysis and OCM via SSP, along with images of 24 h neuron regeneration with OCM
1164 gene mutations. **(E)** Effects of *metr-1* and *sams-1* mutations on enhanced regeneration
1165 in *ogt-1* worms. **(F)** Effects of methionine supplementation on regeneration in WT, *ogt-1*
1166 animals, and on the *phgdh-1* inhibitor drug NCT502. **(G)** Schematic representation of
1167 OCM metabolite SAM usage in lipogenesis and transmethylation, along with images of
1168 neuron regeneration when they are blocked. **(H)** 24 h neuron regeneration with choline

1169 supplementation and neuron specific RNAi against *pmt-1*. **(I)** 24 h neuron regeneration
1170 when blocking methyltransferases by neuron specific RNAi (*set-2*, *set-11*, *set-16*, and *set-*
1171 *17*) in WT and *ogt-1* animals. scale bar = ~10uM, all data shown in ±SEM, One Way
1172 ANOVA *pValue <0.05, **pValue <0.01, ***pValue <0.001.

1173

1174 **Fig. 4. The transsulfuration pathway (TSP) leading to Acetyl-CoA production**
1175 **mediates enhanced regeneration in *ogt-1* animals:**

1176 **(A)** Schematic representation of the transsulfuration pathway (TSP) branch of OCM,
1177 along with supplementation with TSP metabolites L-cystathionine, Glutathione and
1178 neuron specific RNAi against Glutathione synthetase (*gss-1*) with its effect on 24 h neuron
1179 regenerating neuron images (arrow indicates the point of injury). **(B)** Effects of GHS
1180 supplementation and neuronal RNAi knockdown against *gss-1* on neuronal regeneration
1181 in WT and *ogt-1* worms. **(C)** Effects of L-cystathionine supplementation on neuronal
1182 regeneration in WT and *ogt-1* worms, with or without SSP blocking by NCT502. **(D)** qRT-
1183 PCR of selected genes involved in transsulfuration (*cth-1* & *cth-2*), as well as the related
1184 downstream vitamin B12 dependent canonical pathways (*pcca-1*, *pccb-1*, *mce-1* &
1185 *mmcm-1*) and the vitamin B12 independent Shunt pathway (*acdh-1*, *ech-6*, *hach-1*, *hphd-*
1186 *1* & *alh-8*). **(E)** Schematic representation of the transsulfuration pathway (TSP)
1187 metabolites L-Cystathionine metabolism in to succinyl-CoA and Acetyl-CoA and genes
1188 involved with indicated mutant used in the study, along with representative regenerating
1189 neuron image (arrow indicates the point of injury). **(F)** Effect of *acdh-1* and *mce-1* mutation
1190 in WT and *ogt-1* background on neuronal regeneration. **(G)** Effect of blocking lipid
1191 synthesis from acetyl CoA and ATP production on regeneration in WT and *ogt-1*. scale

1192 bar = ~10uM, all data shown in \pm SEM, analytical methods student t-test and One Way
1193 ANOVA were used *pValue <0.05, **pValue <0.01, ***pValue <0.001.I

1194

1195 **Fig. 5. The metabolic pathway for enhanced neuronal regeneration in *ogt-1***

1196 **animals:**

1197 A detailed schematic of the metabolic pathway for the enhanced regeneration in *ogt-1*
1198 animals with the tested genes, metabolite supplementations and pharmacological
1199 treatments indicated. As highlighted in green, *ogt-1* mutations divert metabolic flux from
1200 enhanced glycolysis to OCM *via* the SPP, driving metabolites in the transsulfuration
1201 pathway (TSP) to support enhanced regeneration *via* the vitamin B12 independent shunt
1202 pathway. Dispensable metabolic branches are shown in red.

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227 Supplementary Figures

1228

1229

1230

1231

1232

1233

1234

1235

1236

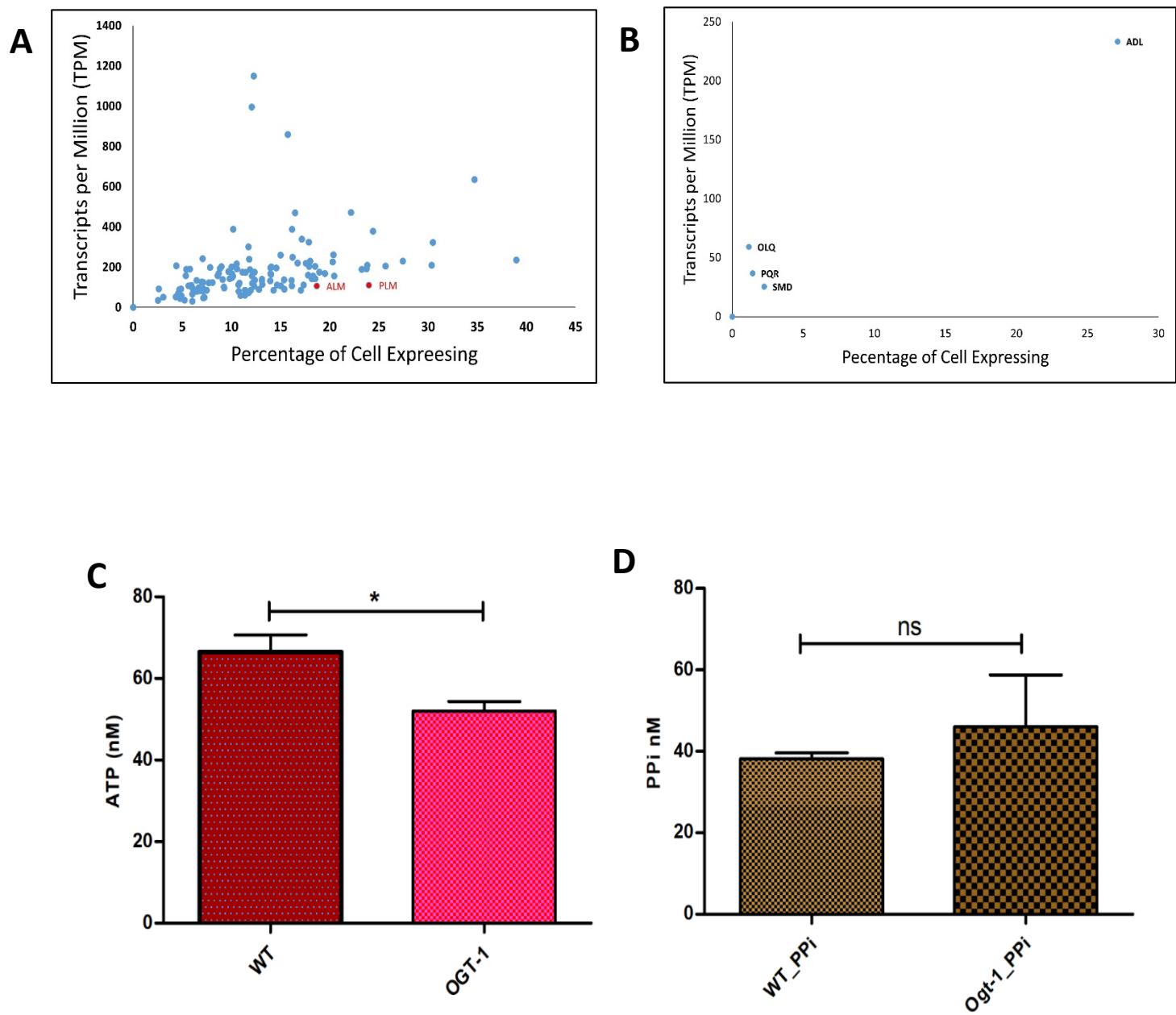
1237

1238

1239

1240

1241

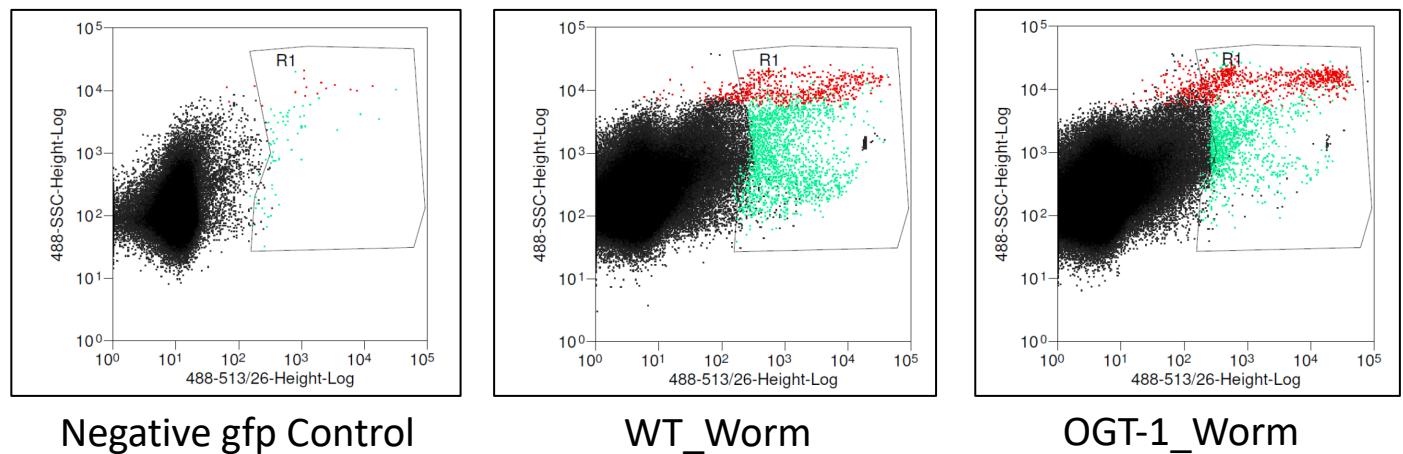

1242

1243

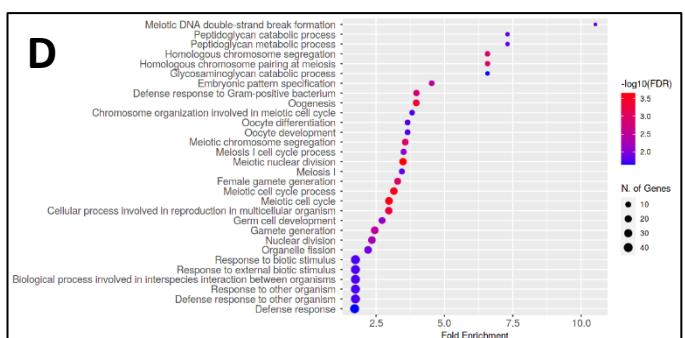
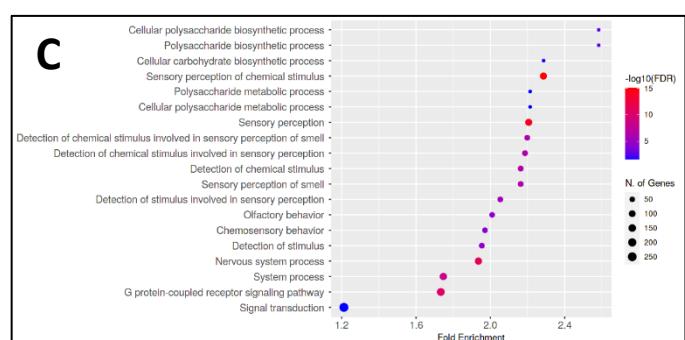
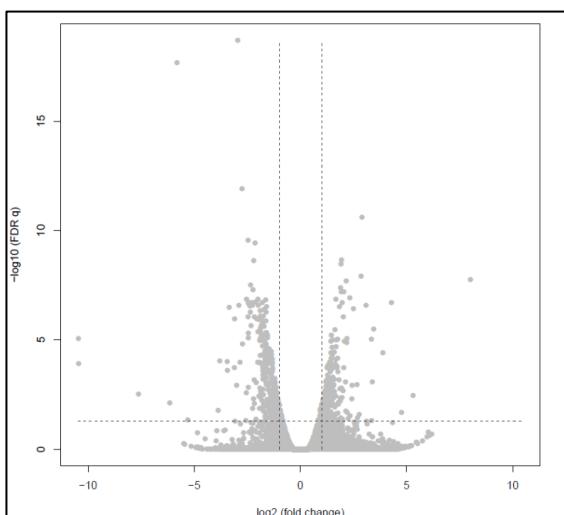
1244

1245

1246 **Supplemental Fig 1.**



1247 Supplemental Figure 2.




1248

1249

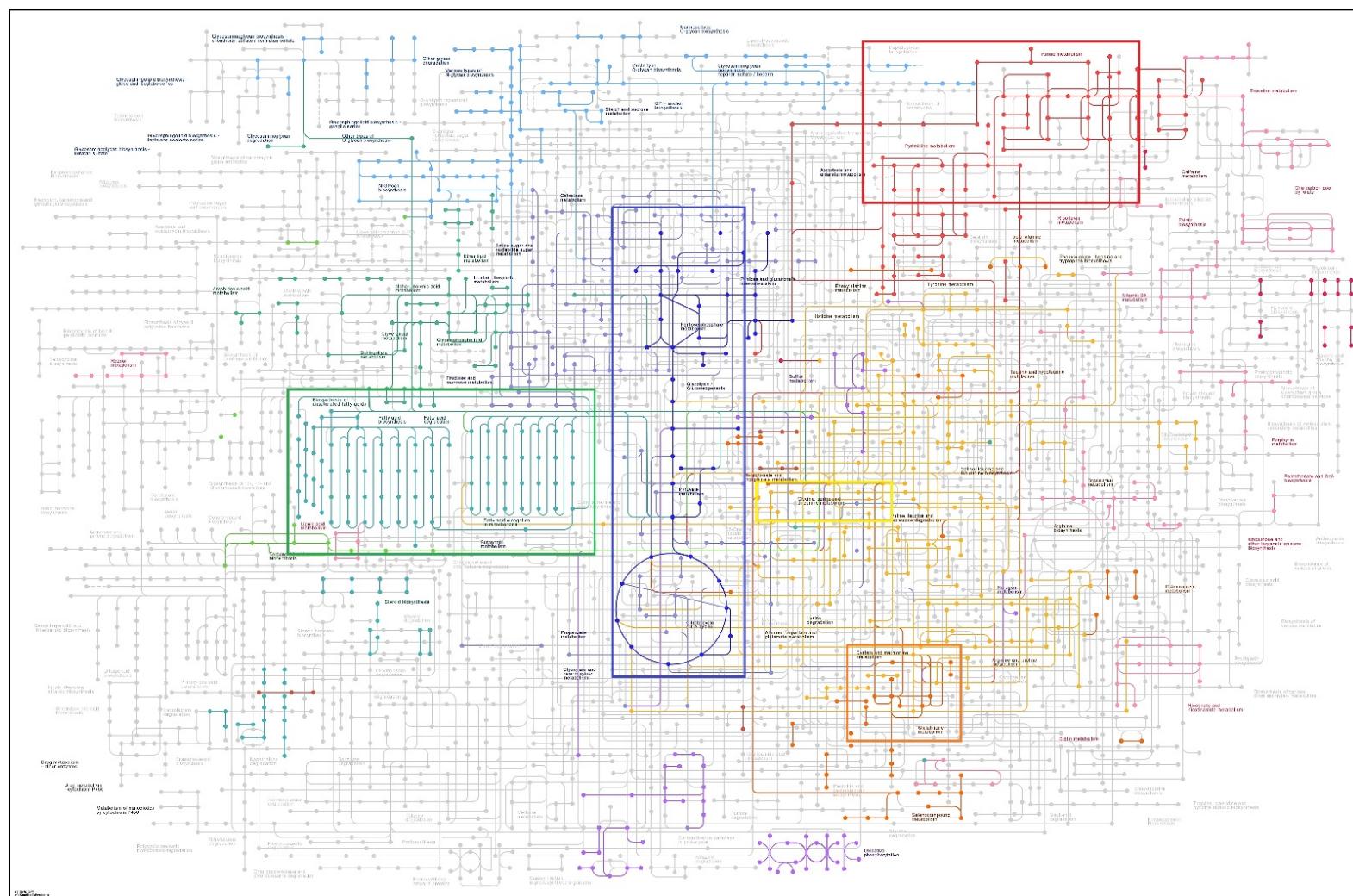
A

B

1250

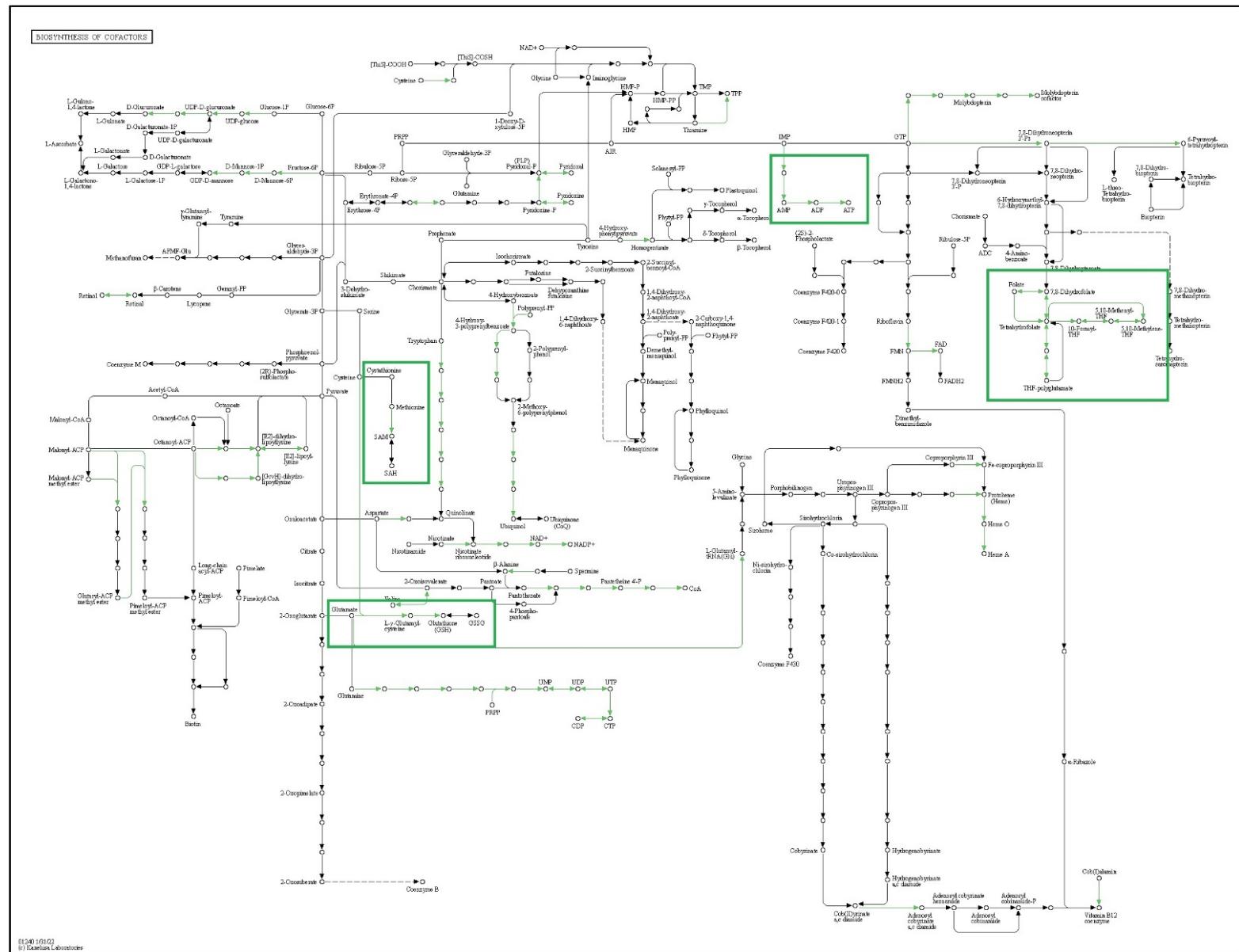
E	Symbol	<i>WT</i>	<i>WT</i>	<i>OGT-1</i>	<i>OGT-1</i>	Description
	<i>ZK218.5</i>	Blue	Blue	Red	Red	affected genes including <i>daf-16</i> ; <i>daf-2</i> ; and <i>sir-2.1</i>
	<i>delm-2</i>	Blue	Blue	Red	Red	DEgenerin Linked to Mechanosensation
	<i>ZK218.7</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-2</i> ; <i>sir-2.1</i> ; and <i>clk-1</i>
	<i>tag-293</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-16</i> ; <i>skn-1</i> ; and <i>elt-2</i>
	<i>T26E4.10</i>	Blue	Blue	Red	Red	affected by several genes including <i>eat-2</i> ; <i>sir-2.1</i> ; and <i>prg-1</i>
	<i>sri-4</i>	Blue	Blue	Red	Red	Serpentine Receptor, class I
	<i>F13E9.14</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-2</i> ; <i>rrf-3</i> ; and <i>elt-2</i>
	<i>srh-59</i>	Blue	Blue	Red	Red	Serpentine Receptor, class H
	<i>srsx-28</i>	Blue	Blue	Red	Red	Serpentine Receptor, class SX
	<i>ZK1025.3</i>	Blue	White	Red	Red	Predicted to be integral component of membrane.
	<i>T05A7.12</i>	Blue	Blue	Red	Red	affected by <i>met-2</i> and <i>spr-5</i>
	<i>Y69A2AR.23</i>	Blue	Blue	Red	Red	Predicted to be integral component of membrane.
	<i>C55C3.7</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-2</i> ; <i>glp-1</i> ; and <i>pie-1</i>
	<i>irl-33</i>	Blue	Blue	Red	Red	Insulin/EGF-Receptor L Domain protein
	<i>srt-25</i>	Blue	Blue	Red	Red	affected by several genes including <i>clk-1</i> ; <i>hpl-2</i> ; and <i>dpy-21</i>
	<i>elo-7</i>	Blue	Blue	Red	Red	Elongation of very long chain fatty acids protein
	<i>srz-43</i>	Blue	Blue	Red	Red	affected by <i>clk-1</i>
	<i>F21C10.6</i>	Blue	Blue	Red	Red	Predicted to be integral component of membrane.
	<i>21ur-10387</i>	Blue	Blue	Red	Red	
	<i>ZK353.11</i>	Blue	Blue	Red	Red	affected by <i>hpl-2</i>
	<i>W06H8.4</i>	Blue	White	Red	Red	affected by several genes including <i>daf-2</i> ; <i>rrf-3</i> ; and <i>eat-2</i>
	<i>H12D21.6</i>	Blue	Blue	Red	Red	affected by several genes including <i>elt-2</i> ; <i>clk-1</i> ; and <i>nhr-49</i>
	<i>R06C1.11</i>	Blue	Blue	Red	Red	affected by <i>set-2</i>
	<i>C04E6.4</i>	Blue	Blue	Red	Red	Predicted to be integral component of membrane.
	<i>F35E8.10</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-16</i> ; <i>daf-2</i> ; and <i>let-60</i>
	<i>col-90</i>	Blue	Blue	Red	Red	Putative cuticle collagen 90
	<i>ZK218.11</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-2</i> ; <i>sir-2.1</i> ; and <i>clk-1</i>
	<i>clec-101</i>	Blue	Blue	Red	Red	C-type LECtin
	<i>F14D7.11</i>	Blue	Blue	Red	Red	Predicted to be located in plasma membrane
	<i>C09G9.3</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-12</i> ; <i>rrf-3</i> ; and <i>clk-1</i>
	<i>srg-5</i>	Blue	Blue	Red	Red	Serpentine receptor class gamma-5
	<i>lmd-4</i>	Blue	Blue	Red	Red	LysM Domain (Peptidoglycan binding) protein
	<i>C04E12.10</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-16</i> ; <i>daf-12</i> ; and <i>lin-4</i>
	<i>C25E10.17</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-16</i> ; <i>daf-2</i> ; and <i>daf-12</i>
	<i>C17B7.8</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-16</i> ; <i>let-60</i> ; and <i>daf-12</i>
	<i>C17H1.2</i>	Blue	Blue	Red	Red	affected by several genes including <i>skn-1</i> ; <i>elt-2</i> ; and <i>eat-2</i>
	<i>srh-275</i>	Blue	Blue	Red	Red	Serpentine Receptor, class H
	<i>VC27A7L.1</i>	Blue	Blue	Red	Red	Expressed in neurons.
	<i>Y6G8.16</i>	Blue	Blue	Red	Red	affected by several genes including <i>daf-2</i> ; <i>rrf-3</i> ; and <i>eat-2</i>
	<i>F46B3.20</i>	Blue	Blue	Red	Red	Enriched in AVK based on RNA-seq studies. Is affected by <i>adr-1</i>
	<i>str-155</i>	Blue	Blue	Red	Red	Seven TM Receptor
	<i>gst-37</i>	Blue	Blue	Red	Red	Glutathione S-Transferase
	<i>bli-2</i>	Blue	Blue	Red	Red	BListered cuticle
	<i>srh-172</i>	Blue	Blue	Red	Red	Serpentine Receptor, class H
	<i>T20H9.6</i>	Blue	Blue	Red	Red	affected by several genes including <i>rrf-3</i> ; <i>eat-2</i> ; and <i>sir-2.1</i>
	<i>srw-9</i>	Blue	Blue	Red	Red	Serpentine Receptor, class W
	<i>str-133</i>	Blue	Blue	Red	Red	affected by <i>clk-1</i> and <i>daf-2</i>
	<i>R09H10.6</i>	Blue	Blue	Red	Red	Predicted to enable calcium ion binding activity
	<i>str-183</i>	Blue	Blue	Red	Red	Enriched in sensory neurons and affected genes <i>daf-16</i> ; <i>daf-12</i>
	<i>F42E8.1</i>	Blue	Blue	Red	Red	Enriched in neurons affected by genes <i>pgl-1</i> ; <i>aak-2</i> ; and <i>fbf-1</i>
	<i>clec-185</i>	Blue	Blue	Red	Red	C-type LECtin

1251


F

Symbol	WT	WT	OGT-1	OGT-1	Description
<i>F44E5.4</i>					ATP binding activity; ATP hydrolysis activity;
<i>F44E5.5</i>					Predicted to enable ATP binding activity and ATP hydrolysis activity
<i>F56A4.3</i>					Predicted to enable glutathione transferase activity.
<i>grl-21</i>					GRound-Like (Grd related)
<i>ins-19</i>					INSulin related
<i>catp-2</i>					Cation transporting ATPase
<i>C07G3.10</i>					Predicted to enable lipid binding activity.
<i>F20E11.17</i>					Enriched in dopaminergic neurons; affected by genes including <i>daf-16</i> ; <i>daf-2</i> ; and <i>skn-1</i>
<i>Y105C5A.1285</i>					
<i>sri-36</i>					Serpentine Receptor, class I
<i>Y73C8C.10</i>					Predicted to enable FMN binding activity and oxidoreductase activity.
<i>ZC204.1</i>					affected by <i>hpl-2</i> ; <i>drh-3</i> ; and <i>sir-2.1</i>
<i>fbxa-113</i>					F-box A protein
<i>D2062.4</i>					Predicted to be integral component of membrane.
<i>F59H6.15</i>					Predicted to be integral component of membrane.
<i>W06B11.10</i>					affected by <i>cep-1</i>
<i>21ur-2521</i>					
<i>acp-4</i>					ACid Phosphatase family
<i>asp-16</i>					ASpartyl Protease
<i>C39F7.7</i>					affected by <i>hrpr-1</i> and <i>eat-2</i>
<i>M7.15</i>					
<i>M02G9.4</i>					ffected by several genes including <i>eat-2</i> ; <i>pgl-1</i> ; and <i>unc-30</i>
<i>C06C3.14</i>					affected by several genes including <i>eat-2</i> ; <i>lem-2</i> ; and <i>emr-1</i>
<i>C14A6.3</i>					Predicted to be integral component of membrane.
<i>C10G11.10</i>					Predicted to be integral component of membrane.
<i>Y71F9AM.9</i>					Enriched in M1 neuron based on RNA-seq studies. Is affected by <i>adr-1</i>
<i>hpo-41</i>					affected by several genes including <i>daf-16</i> ; <i>eat-2</i> ; and <i>sir-2.1</i>
<i>C15C8.8</i>					affected by several genes including <i>clk-1</i> ; <i>dpy-7</i> ; and <i>daf-1</i>
<i>F41G4.10</i>					
<i>T23F11.8</i>					
<i>Y50D7A.13</i>					Predicted to enable metalloendopeptidase activity
<i>K10H10.4</i>					affected by several genes including <i>daf-16</i> ; <i>daf-2</i> ; and <i>skn-1</i>
<i>F57B10.17</i>					affected by <i>cep-1</i> and <i>set-2</i>
<i>K01D12.9</i>					affected by several genes including <i>daf-16</i> ; <i>daf-2</i> ; and <i>skn-1</i>
<i>F13A2.10</i>					Enriched in sensory neurons and affected by several genes including <i>eat-2</i> ; <i>sek-1</i> ; and <i>pgl-1</i>
<i>fbxa-86</i>					F-box A protein
<i>phat-5</i>					PHAryngeal gland Toxin-related
<i>C49F8.14</i>					
<i>clec-61</i>					C-type LECTin
<i>21ur-14927</i>					
<i>21ur-5910</i>					
<i>F11F1.4</i>					affected by several genes including <i>daf-2</i> ; <i>sir-2.1</i> ; and <i>pgl-1</i>
<i>F16B12.5</i>					affected by several genes including <i>daf-16</i> ; <i>daf-12</i> ; and <i>eat-2</i>
<i>F39G3.4</i>					Predicted to be integral component of membrane.
<i>F46C3.5</i>					ffected by several genes including <i>daf-2</i> ; <i>let-418</i> ; and <i>chd-3</i>
<i>Y54G2A.77</i>					Serpentine receptor class gamma
<i>Y71H10A.3</i>					
<i>srh-269</i>					Serpentine Receptor, class H
<i>M151.4</i>					affected by several genes including <i>daf-2</i> ; <i>unc-30</i> ; and <i>alg-1</i>
<i>srh-180</i>					Serpentine Receptor, class H

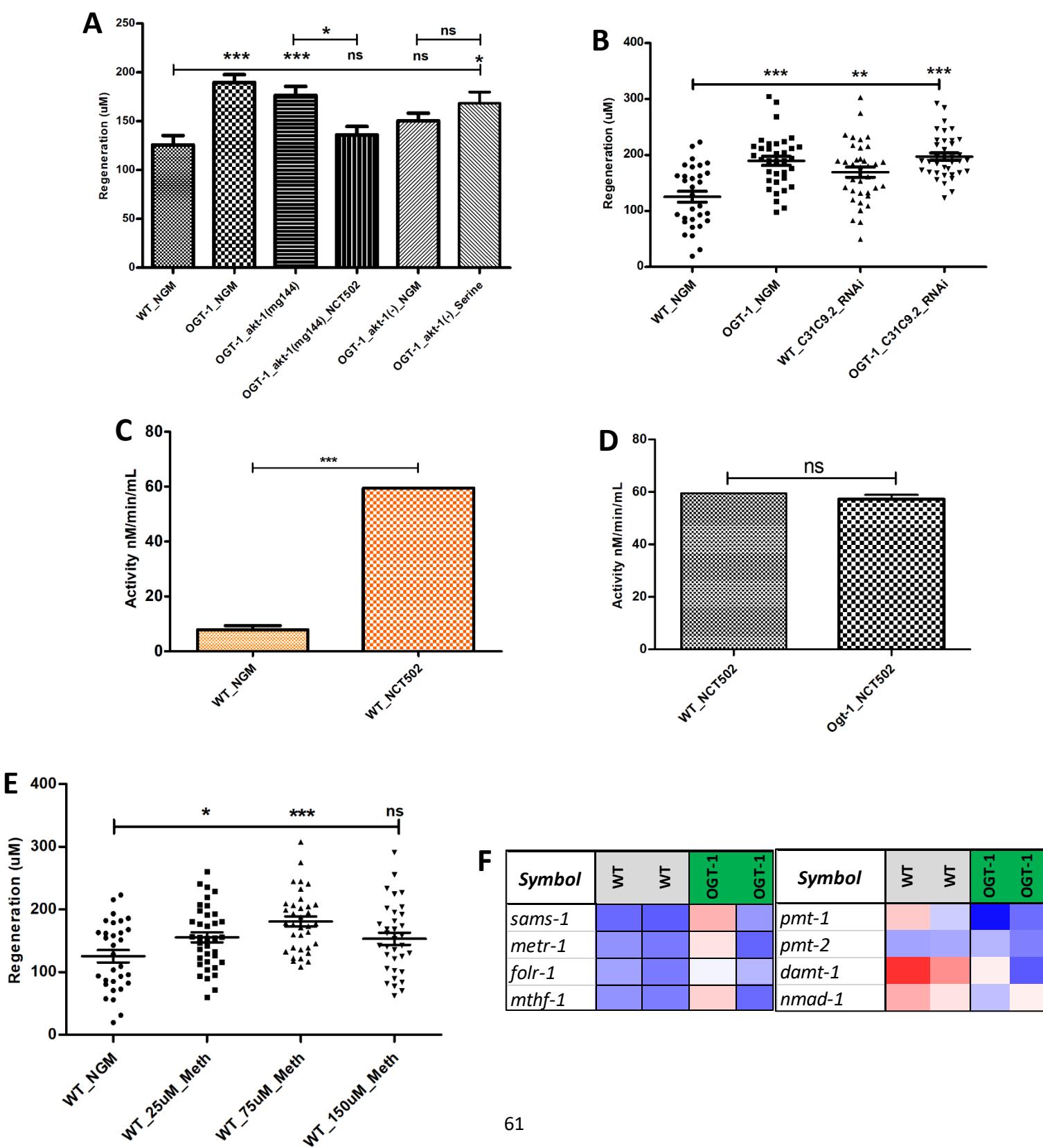
1252 **Supplemental Figure 3.**


1253 **A. DAVID Metabolic Pathway Analysis**

1254

1255 ***B. DAVID Biosynthesis of Cofactor***

1256

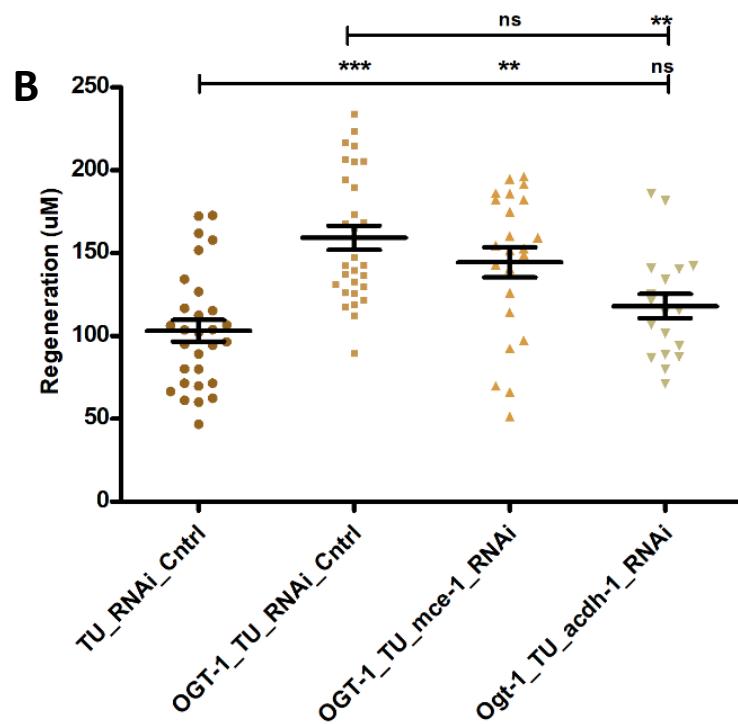

1257

1258

1259

1260

1261 **Supplemental Figure 4.**


1262 **Supplemental Figure 5.**

1263

A

<i>Symbol</i>	WT	WT	OGT-1	OGT-1	WT	WT	OGT-1	OGT-1
<i>acd-1</i>	Blue	Blue	White	Blue	Blue	Blue	White	Blue
<i>ech-6</i>	Blue	Blue	Red	Blue	Red	Red	Red	Red
<i>hach-1</i>	Light Blue	Light Blue	Red	Light Blue				
<i>hphd-1</i>	Blue	Blue	Red	Blue	Blue	Blue	Blue	Blue
<i>alh-8</i>	Red	Red	White	Blue	Blue	Blue	Blue	Blue

1268

1288 **Supplemental Figure 1.**

1289 **(A)** *pyk-1* expression analysis in neuronal cell, single cell neuronal RNAseq data from
1290 worm base (https://wormbase.org/species/c_elegans/gene/WBGene00009126#0-9fce6b37d81-10) was used to generate the image. **(B)** *pyk-2* expression analysis in
1291 neuronal cell, as for *pyk-1*. **(C)** Relative amount of ATP measured using ATP Assay kit
1292 (Abcam, cat# Ab83355) in whole worm lysate. **(D)** Relative amount of Pyrophosphate (PPi)
1293 measured using Pyrophosphate Assay kit (Abcam, cat# Ab112155) in whole worm lysate.
1294 All data shown in \pm SEM, analytical methods, student t-test and One Way ANOVA were
1295 used *pValue <0.05, **pValue <0.01, ***pValue <0.001.

1297 **Supplemental Figure 2.**

1298 **(A)** Representative image of FACs sorting for GFP tagged neuronal cells used for RNA
1299 isolation and RNAseq analysis. GFP control (left), wild type (middle) and *ogt-1* mutant
1300 (right) worms, respectively. **(B)** Volcano plot for differentially expressed genes (DEGs)
1301 FDR0.05. **(C)** Gene Ontology (GO) analysis of 2fold up regulated DEGs in WT-vs-*ogt-1*
1302 (FDR0.1) **(D)** Gene Ontology (GO) analysis of 2fold down regulated DEGs in WT-vs-*ogt-1*
1303 1 (FDR0.1). **(E)** List of top 50 up regulated genes, and **(F)** top 50 down regulated genes
1304 and their function, in *ogt-1* animals, identified in neuron specific RNAseq.

1305 **Supplemental Figure 3.**

1306 **(A)** Visualization of metabolic pathway enriched in differentially expressed genes
1307 (FDR0.1) identified in neuron specific RNAseq analysis using “DAVID Metabolic Pathway
1308 Analysis” tool. Top highlighted pathways are glycolysis (blue); lipid metabolism (green);

1309 nucleotide metabolism (red); serine synthesis pathway (light yellow) and one carbon
1310 metabolism and related pathways (dark yellow) respectively.

1311 **(B)** Pathway analysis of co-factor mediated biosynthesis of differentially expressed genes
1312 (FDR0.1) identified in neuron specific RNAseq analysis using the “DAVID Biosynthesis of
1313 Cofactors Analysis” tool. Most affected pathways (green highlighted) include those related
1314 with One Carbon Metabolism (folate, methionine and SAM metabolism); Transsulfuration
1315 pathway (Cystein & Glutathione metabolism) and ATP production.

1316 **Supplemental Figure 4.**

1317 **(A)** The effects of NCT502 mediated inhibition of the serine synthesis pathway and serine
1318 supplementation on regeneration in *akt-1* (gain of function) and *akt-1* (loss of function)
1319 mutations in the *ogt-1* background. **(B)** 24 h neuron regeneration with systemic RNAi
1320 knockdown against C31C9.2 (ortholog of human PHGDH). **(C)** *pyk-1* activity in WT worms
1321 grown with and without NCT502 treatment. **(D)** *pyk-1* activity in WT and *ogt-1* worms
1322 grown with NCT502 treatment. **(E)** The effect of different doses of methionine
1323 supplementation on 24 h neuron regeneration in WT worms. **(F)** Expression, patterns of
1324 selected genes involved in One Carbon Metabolism (*sams-1*, *metr-1*, *folr-1* & *mthf-1*),
1325 Transmethylation (*damt-1* & *nmad-1*) and lipogenesis (*pmt-1* & *pmt-2*) in neuronal cell
1326 RNAseq analysis which passed FDR 0.1. All data shown in \pm SEM, analytical methods;
1327 student t-test and One Way ANOVA were used; ns, no significance; *pValue <0.05,
1328 **pValue <0.01, ***pValue <0.001.

1329

1330 **Supplemental Figure 5.**

1331 **(A)** Expression patterns, of selected genes involved in vitamin B12 independent shunt
1332 pathway (*acdh-1*, *each-6*, *hach-1*, *hphd-1* & *alh-8*) and vitamin B12 dependent canonical
1333 pathway (*cth-1*, *pcca-1*, *pccb-1*, *mce-1* & *mmc-1*) downstream to Transsulfuration
1334 Pathway (TSP), in neuronal cell RNAseq analysis which passed FDR 0.1.

1335 **(B)** The effect on 24 h neuron regeneration from neuron specific RNAi knock down of
1336 *acdh-1* and *mce-1* in *ogt-1* and WT worms. All data shown in \pm SEM, analytical methods;
1337 One Way ANOVA was used; ns, no significance; *pValue <0.05, **pValue <0.01, ***pValue
1338 <0.001.

1339

1340

1341 **Supplemental Tables.**

1342 Table S1. Regeneration data for Fig. 1.

1343 Table S2. Systemic RNAseq_DEGs Data.

1344 Table S3. Neuronal RNAseq_DEGs Data.

1345 Table S4. Regeneration data for Fig. 3.

1346 Table S5. Regeneration data for Fig. 4.

1347 Table S6. Regeneration data for supplemental Fig. 4 and Fig. 5.

1348 Table S7. List of qRT-PCR primers used in the study.